Page Menu
Home
GnuPG
Search
Configure Global Search
Log In
Files
F35313423
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Size
253 KB
Subscribers
None
View Options
diff --git a/doc/gpg.texi b/doc/gpg.texi
index 4dab23816..ca1304756 100644
--- a/doc/gpg.texi
+++ b/doc/gpg.texi
@@ -1,4180 +1,4180 @@
@c Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
@c 2008, 2009, 2010 Free Software Foundation, Inc.
@c This is part of the GnuPG manual.
@c For copying conditions, see the file gnupg.texi.
@include defs.inc
@node Invoking GPG
@chapter Invoking GPG
@cindex GPG command options
@cindex command options
@cindex options, GPG command
@c Begin standard stuff
@ifclear gpgtwohack
@manpage gpg.1
@ifset manverb
.B gpg
\- OpenPGP encryption and signing tool
@end ifset
@mansect synopsis
@ifset manverb
.B gpg
.RB [ \-\-homedir
.IR dir ]
.RB [ \-\-options
.IR file ]
.RI [ options ]
.I command
.RI [ args ]
@end ifset
@end ifclear
@c End standard stuff
@c Begin gpg2 hack stuff
@ifset gpgtwohack
@manpage gpg2.1
@ifset manverb
.B gpg2
\- OpenPGP encryption and signing tool
@end ifset
@mansect synopsis
@ifset manverb
.B gpg2
.RB [ \-\-homedir
.IR dir ]
.RB [ \-\-options
.IR file ]
.RI [ options ]
.I command
.RI [ args ]
@end ifset
@end ifset
@c End gpg2 hack stuff
@mansect description
@command{@gpgname} is the OpenPGP part of the GNU Privacy Guard (GnuPG). It
is a tool to provide digital encryption and signing services using the
OpenPGP standard. @command{@gpgname} features complete key management and
all the bells and whistles you would expect from a full OpenPGP
implementation.
There are two main versions of GnuPG: GnuPG 1.x and GnuPG 2.x. GnuPG
2.x supports modern encryption algorithms and thus should be preferred
over GnuPG 1.x. You only need to use GnuPG 1.x if your platform
doesn't support GnuPG 2.x, or you need support for some features that
GnuPG 2.x has deprecated, e.g., decrypting data created with PGP-2
keys.
@ifclear gpgtwohack
If you are looking for version 1 of GnuPG, you may find that version
installed under the name @command{gpg1}.
@end ifclear
@ifset gpgtwohack
In contrast to the standalone command @command{gpg} from GnuPG 1.x,
the 2.x version is commonly installed under the name
@command{@gpgname}.
@end ifset
@manpause
@xref{Option Index}, for an index to @command{@gpgname}'s commands and options.
@mancont
@menu
* GPG Commands:: List of all commands.
* GPG Options:: List of all options.
* GPG Configuration:: Configuration files.
* GPG Examples:: Some usage examples.
Developer information:
* Unattended Usage of GPG:: Using @command{gpg} from other programs.
@end menu
@c * GPG Protocol:: The protocol the server mode uses.
@c *******************************************
@c *************** ****************
@c *************** COMMANDS ****************
@c *************** ****************
@c *******************************************
@mansect commands
@node GPG Commands
@section Commands
Commands are not distinguished from options except for the fact that
only one command is allowed. Generally speaking, irrelevant options
are silently ignored, and may not be checked for correctness.
@command{@gpgname} may be run with no commands. In this case it will
perform a reasonable action depending on the type of file it is given
as input (an encrypted message is decrypted, a signature is verified,
a file containing keys is listed, etc.).
@menu
* General GPG Commands:: Commands not specific to the functionality.
* Operational GPG Commands:: Commands to select the type of operation.
* OpenPGP Key Management:: How to manage your keys.
@end menu
@c *******************************************
@c ********** GENERAL COMMANDS *************
@c *******************************************
@node General GPG Commands
@subsection Commands not specific to the function
@table @gnupgtabopt
@item --version
@opindex version
Print the program version and licensing information. Note that you
cannot abbreviate this command.
@item --help
@itemx -h
@opindex help
Print a usage message summarizing the most useful command-line options.
Note that you cannot arbitrarily abbreviate this command
(though you can use its short form @option{-h}).
@item --warranty
@opindex warranty
Print warranty information.
@item --dump-options
@opindex dump-options
Print a list of all available options and commands. Note that you cannot
abbreviate this command.
@end table
@c *******************************************
@c ******** OPERATIONAL COMMANDS ***********
@c *******************************************
@node Operational GPG Commands
@subsection Commands to select the type of operation
@table @gnupgtabopt
@item --sign
@itemx -s
@opindex sign
Sign a message. This command may be combined with @option{--encrypt}
(to sign and encrypt a message), @option{--symmetric} (to sign and
symmetrically encrypt a message), or both @option{--encrypt} and
@option{--symmetric} (to sign and encrypt a message that can be
decrypted using a secret key or a passphrase). The signing key is
chosen by default or can be set explicitly using the
@option{--local-user} and @option{--default-key} options.
@item --clear-sign
@opindex clear-sign
@itemx --clearsign
@opindex clearsign
Make a cleartext signature. The content in a cleartext signature is
readable without any special software. OpenPGP software is only needed
to verify the signature. cleartext signatures may modify end-of-line
whitespace for platform independence and are not intended to be
reversible. The signing key is chosen by default or can be set
explicitly using the @option{--local-user} and @option{--default-key}
options.
@item --detach-sign
@itemx -b
@opindex detach-sign
Make a detached signature.
@item --encrypt
@itemx -e
@opindex encrypt
Encrypt data to one or more public keys. This command may be combined
with @option{--sign} (to sign and encrypt a message),
@option{--symmetric} (to encrypt a message that can decrypted using a
secret key or a passphrase), or @option{--sign} and
@option{--symmetric} together (for a signed message that can be
decrypted using a secret key or a passphrase). @option{--recipient}
and related options specify which public keys to use for encryption.
@item --symmetric
@itemx -c
@opindex symmetric
Encrypt with a symmetric cipher using a passphrase. The default
symmetric cipher used is @value{GPGSYMENCALGO}, but may be chosen with the
@option{--cipher-algo} option. This command may be combined with
@option{--sign} (for a signed and symmetrically encrypted message),
@option{--encrypt} (for a message that may be decrypted via a secret key
or a passphrase), or @option{--sign} and @option{--encrypt} together
(for a signed message that may be decrypted via a secret key or a
passphrase). @command{@gpgname} caches the passphrase used for
symmetric encryption so that a decrypt operation may not require that
the user needs to enter the passphrase. The option
@option{--no-symkey-cache} can be used to disable this feature.
@item --store
@opindex store
Store only (make a simple literal data packet).
@item --decrypt
@itemx -d
@opindex decrypt
Decrypt the file given on the command line (or STDIN if no file
is specified) and write it to STDOUT (or the file specified with
@option{--output}). If the decrypted file is signed, the signature is also
verified. This command differs from the default operation, as it never
writes to the filename which is included in the file and it rejects
files that don't begin with an encrypted message.
@item --verify
@opindex verify
Assume that the first argument is a signed file and verify it without
generating any output. With no arguments, the signature packet is
read from STDIN. If only one argument is given, the specified file is
expected to include a complete signature.
With more than one argument, the first argument should specify a file
with a detached signature and the remaining files should contain the
signed data. To read the signed data from STDIN, use @samp{-} as the
second filename. For security reasons, a detached signature will not
read the signed material from STDIN if not explicitly specified.
Note: If the option @option{--batch} is not used, @command{@gpgname}
may assume that a single argument is a file with a detached signature,
and it will try to find a matching data file by stripping certain
suffixes. Using this historical feature to verify a detached
signature is strongly discouraged; you should always specify the data file
explicitly.
Note: When verifying a cleartext signature, @command{@gpgname} verifies
only what makes up the cleartext signed data and not any extra data
outside of the cleartext signature or the header lines directly following
the dash marker line. The option @code{--output} may be used to write
out the actual signed data, but there are other pitfalls with this
format as well. It is suggested to avoid cleartext signatures in
favor of detached signatures.
Note: Sometimes the use of the @command{gpgv} tool is easier than
using the full-fledged @command{gpg} with this option. @command{gpgv}
is designed to compare signed data against a list of trusted keys and
returns with success only for a good signature. It has its own manual
page.
@item --multifile
@opindex multifile
This modifies certain other commands to accept multiple files for
processing on the command line or read from STDIN with each filename on
a separate line. This allows for many files to be processed at
once. @option{--multifile} may currently be used along with
@option{--verify}, @option{--encrypt}, and @option{--decrypt}. Note that
@option{--multifile --verify} may not be used with detached signatures.
@item --verify-files
@opindex verify-files
Identical to @option{--multifile --verify}.
@item --encrypt-files
@opindex encrypt-files
Identical to @option{--multifile --encrypt}.
@item --decrypt-files
@opindex decrypt-files
Identical to @option{--multifile --decrypt}.
@item --list-keys
@itemx -k
@itemx --list-public-keys
@opindex list-keys
List the specified keys. If no keys are specified, then all keys from
the configured public keyrings are listed.
Never use the output of this command in scripts or other programs.
The output is intended only for humans and its format is likely to
change. The @option{--with-colons} option emits the output in a
stable, machine-parseable format, which is intended for use by scripts
and other programs.
@item --list-secret-keys
@itemx -K
@opindex list-secret-keys
List the specified secret keys. If no keys are specified, then all
known secret keys are listed. A @code{#} after the initial tags
@code{sec} or @code{ssb} means that the secret key or subkey is
currently not usable. We also say that this key has been taken
offline (for example, a primary key can be taken offline by exporting
the key using the command @option{--export-secret-subkeys}). A
@code{>} after these tags indicate that the key is stored on a
smartcard. See also @option{--list-keys}.
@item --check-signatures
@opindex check-signatures
@itemx --check-sigs
@opindex check-sigs
Same as @option{--list-keys}, but the key signatures are verified and
listed too. Note that for performance reasons the revocation status
of a signing key is not shown. This command has the same effect as
using @option{--list-keys} with @option{--with-sig-check}.
The status of the verification is indicated by a flag directly
following the "sig" tag (and thus before the flags described below. A
"!" indicates that the signature has been successfully verified, a "-"
denotes a bad signature and a "%" is used if an error occurred while
checking the signature (e.g. a non supported algorithm). Signatures
-where the public key is not availabale are not listed; to see their
+where the public key is not available are not listed; to see their
keyids the command @option{--list-sigs} can be used.
For each signature listed, there are several flags in between the
signature status flag and keyid. These flags give additional
information about each key signature. From left to right, they are
the numbers 1-3 for certificate check level (see
@option{--ask-cert-level}), "L" for a local or non-exportable
signature (see @option{--lsign-key}), "R" for a nonRevocable signature
(see the @option{--edit-key} command "nrsign"), "P" for a signature
that contains a policy URL (see @option{--cert-policy-url}), "N" for a
signature that contains a notation (see @option{--cert-notation}), "X"
for an eXpired signature (see @option{--ask-cert-expire}), and the
numbers 1-9 or "T" for 10 and above to indicate trust signature levels
(see the @option{--edit-key} command "tsign").
@item --locate-keys
@opindex locate-keys
Locate the keys given as arguments. This command basically uses the
same algorithm as used when locating keys for encryption or signing and
may thus be used to see what keys @command{@gpgname} might use. In
particular external methods as defined by @option{--auto-key-locate} may
be used to locate a key. Only public keys are listed.
@item --show-keys
@opindex show-keys
This commands takes OpenPGP keys as input and prints information about
them in the same way the command @option{--list-keys} does for
imported key. No internal state is changed. For automated processing
this command should be combined with the option
@option{--with-colons}.
@item --fingerprint
@opindex fingerprint
List all keys (or the specified ones) along with their
fingerprints. This is the same output as @option{--list-keys} but with
the additional output of a line with the fingerprint. May also be
combined with @option{--check-signatures}. If this
command is given twice, the fingerprints of all secondary keys are
listed too. This command also forces pretty printing of fingerprints
if the keyid format has been set to "none".
@item --list-packets
@opindex list-packets
List only the sequence of packets. This command is only useful for
debugging. When used with option @option{--verbose} the actual MPI
values are dumped and not only their lengths. Note that the output of
this command may change with new releases.
@item --edit-card
@opindex edit-card
@itemx --card-edit
@opindex card-edit
Present a menu to work with a smartcard. The subcommand "help" provides
an overview on available commands. For a detailed description, please
see the Card HOWTO at
https://gnupg.org/documentation/howtos.html#GnuPG-cardHOWTO .
@item --card-status
@opindex card-status
Show the content of the smart card.
@item --change-pin
@opindex change-pin
Present a menu to allow changing the PIN of a smartcard. This
functionality is also available as the subcommand "passwd" with the
@option{--edit-card} command.
@item --delete-keys @var{name}
@opindex delete-keys
Remove key from the public keyring. In batch mode either @option{--yes} is
required or the key must be specified by fingerprint. This is a
safeguard against accidental deletion of multiple keys.
@item --delete-secret-keys @var{name}
@opindex delete-secret-keys
Remove key from the secret keyring. In batch mode the key must be
specified by fingerprint. The option @option{--yes} can be used to
advice gpg-agent not to request a confirmation. This extra
pre-caution is done because @command{@gpgname} can't be sure that the
secret key (as controlled by gpg-agent) is only used for the given
OpenPGP public key.
@item --delete-secret-and-public-key @var{name}
@opindex delete-secret-and-public-key
Same as @option{--delete-key}, but if a secret key exists, it will be
removed first. In batch mode the key must be specified by fingerprint.
The option @option{--yes} can be used to advice gpg-agent not to
request a confirmation.
@item --export
@opindex export
Either export all keys from all keyrings (default keyrings and those
registered via option @option{--keyring}), or if at least one name is given,
those of the given name. The exported keys are written to STDOUT or to the
file given with option @option{--output}. Use together with
@option{--armor} to mail those keys.
@item --send-keys @var{keyIDs}
@opindex send-keys
Similar to @option{--export} but sends the keys to a keyserver.
Fingerprints may be used instead of key IDs. Option
@option{--keyserver} must be used to give the name of this
keyserver. Don't send your complete keyring to a keyserver --- select
only those keys which are new or changed by you. If no @var{keyIDs}
are given, @command{@gpgname} does nothing.
@item --export-secret-keys
@itemx --export-secret-subkeys
@opindex export-secret-keys
@opindex export-secret-subkeys
Same as @option{--export}, but exports the secret keys instead. The
exported keys are written to STDOUT or to the file given with option
@option{--output}. This command is often used along with the option
@option{--armor} to allow for easy printing of the key for paper backup;
however the external tool @command{paperkey} does a better job of
creating backups on paper. Note that exporting a secret key can be a
security risk if the exported keys are sent over an insecure channel.
The second form of the command has the special property to render the
secret part of the primary key useless; this is a GNU extension to
OpenPGP and other implementations can not be expected to successfully
import such a key. Its intended use is in generating a full key with
an additional signing subkey on a dedicated machine. This command
then exports the key without the primary key to the main machine.
GnuPG may ask you to enter the passphrase for the key. This is
required, because the internal protection method of the secret key is
different from the one specified by the OpenPGP protocol.
@item --export-ssh-key
@opindex export-ssh-key
This command is used to export a key in the OpenSSH public key format.
It requires the specification of one key by the usual means and
exports the latest valid subkey which has an authentication capability
to STDOUT or to the file given with option @option{--output}. That
output can directly be added to ssh's @file{authorized_key} file.
By specifying the key to export using a key ID or a fingerprint
suffixed with an exclamation mark (!), a specific subkey or the
primary key can be exported. This does not even require that the key
has the authentication capability flag set.
@item --import
@itemx --fast-import
@opindex import
Import/merge keys. This adds the given keys to the
keyring. The fast version is currently just a synonym.
There are a few other options which control how this command works.
Most notable here is the @option{--import-options merge-only} option
which does not insert new keys but does only the merging of new
signatures, user-IDs and subkeys.
@item --receive-keys @var{keyIDs}
@opindex receive-keys
@itemx --recv-keys @var{keyIDs}
@opindex recv-keys
Import the keys with the given @var{keyIDs} from a keyserver. Option
@option{--keyserver} must be used to give the name of this keyserver.
@item --refresh-keys
@opindex refresh-keys
Request updates from a keyserver for keys that already exist on the
local keyring. This is useful for updating a key with the latest
signatures, user IDs, etc. Calling this with no arguments will refresh
the entire keyring. Option @option{--keyserver} must be used to give the
name of the keyserver for all keys that do not have preferred keyservers
set (see @option{--keyserver-options honor-keyserver-url}).
@item --search-keys @var{names}
@opindex search-keys
Search the keyserver for the given @var{names}. Multiple names given here will
be joined together to create the search string for the keyserver.
Option @option{--keyserver} must be used to give the name of this
keyserver. Keyservers that support different search methods allow using
the syntax specified in "How to specify a user ID" below. Note that
different keyserver types support different search methods. Currently
only LDAP supports them all.
@item --fetch-keys @var{URIs}
@opindex fetch-keys
Retrieve keys located at the specified @var{URIs}. Note that different
installations of GnuPG may support different protocols (HTTP, FTP,
LDAP, etc.). When using HTTPS the system provided root certificates
are used by this command.
@item --update-trustdb
@opindex update-trustdb
Do trust database maintenance. This command iterates over all keys and
builds the Web of Trust. This is an interactive command because it may
have to ask for the "ownertrust" values for keys. The user has to give
an estimation of how far she trusts the owner of the displayed key to
correctly certify (sign) other keys. GnuPG only asks for the ownertrust
value if it has not yet been assigned to a key. Using the
@option{--edit-key} menu, the assigned value can be changed at any time.
@item --check-trustdb
@opindex check-trustdb
Do trust database maintenance without user interaction. From time to
time the trust database must be updated so that expired keys or
signatures and the resulting changes in the Web of Trust can be
tracked. Normally, GnuPG will calculate when this is required and do it
automatically unless @option{--no-auto-check-trustdb} is set. This
command can be used to force a trust database check at any time. The
processing is identical to that of @option{--update-trustdb} but it
skips keys with a not yet defined "ownertrust".
For use with cron jobs, this command can be used together with
@option{--batch} in which case the trust database check is done only if
a check is needed. To force a run even in batch mode add the option
@option{--yes}.
@anchor{option --export-ownertrust}
@item --export-ownertrust
@opindex export-ownertrust
Send the ownertrust values to STDOUT. This is useful for backup purposes
as these values are the only ones which can't be re-created from a
corrupted trustdb. Example:
@c man:.RS
@example
@gpgname{} --export-ownertrust > otrust.txt
@end example
@c man:.RE
@item --import-ownertrust
@opindex import-ownertrust
Update the trustdb with the ownertrust values stored in @code{files} (or
STDIN if not given); existing values will be overwritten. In case of a
severely damaged trustdb and if you have a recent backup of the
ownertrust values (e.g. in the file @file{otrust.txt}), you may re-create
the trustdb using these commands:
@c man:.RS
@example
cd ~/.gnupg
rm trustdb.gpg
@gpgname{} --import-ownertrust < otrust.txt
@end example
@c man:.RE
@item --rebuild-keydb-caches
@opindex rebuild-keydb-caches
When updating from version 1.0.6 to 1.0.7 this command should be used
to create signature caches in the keyring. It might be handy in other
situations too.
@item --print-md @var{algo}
@itemx --print-mds
@opindex print-md
Print message digest of algorithm @var{algo} for all given files or STDIN.
With the second form (or a deprecated "*" for @var{algo}) digests for all
available algorithms are printed.
@item --gen-random @var{0|1|2} @var{count}
@opindex gen-random
Emit @var{count} random bytes of the given quality level 0, 1 or 2. If
@var{count} is not given or zero, an endless sequence of random bytes
will be emitted. If used with @option{--armor} the output will be
base64 encoded. PLEASE, don't use this command unless you know what
you are doing; it may remove precious entropy from the system!
@item --gen-prime @var{mode} @var{bits}
@opindex gen-prime
Use the source, Luke :-). The output format is subject to change
with ant release.
@item --enarmor
@itemx --dearmor
@opindex enarmor
@opindex dearmor
Pack or unpack an arbitrary input into/from an OpenPGP ASCII armor.
This is a GnuPG extension to OpenPGP and in general not very useful.
@item --tofu-policy @{auto|good|unknown|bad|ask@} @var{keys}
@opindex tofu-policy
Set the TOFU policy for all the bindings associated with the specified
@var{keys}. For more information about the meaning of the policies,
@pxref{trust-model-tofu}. The @var{keys} may be specified either by their
fingerprint (preferred) or their keyid.
@c @item --server
@c @opindex server
@c Run gpg in server mode. This feature is not yet ready for use and
@c thus not documented.
@end table
@c *******************************************
@c ******* KEY MANGEMENT COMMANDS **********
@c *******************************************
@node OpenPGP Key Management
@subsection How to manage your keys
This section explains the main commands for key management.
@table @gnupgtabopt
@item --quick-generate-key @var{user-id} [@var{algo} [@var{usage} [@var{expire}]]]
@itemx --quick-gen-key
@opindex quick-generate-key
@opindex quick-gen-key
This is a simple command to generate a standard key with one user id.
In contrast to @option{--generate-key} the key is generated directly
without the need to answer a bunch of prompts. Unless the option
@option{--yes} is given, the key creation will be canceled if the
given user id already exists in the keyring.
If invoked directly on the console without any special options an
answer to a ``Continue?'' style confirmation prompt is required. In
case the user id already exists in the keyring a second prompt to
force the creation of the key will show up.
If @var{algo} or @var{usage} are given, only the primary key is
created and no prompts are shown. To specify an expiration date but
still create a primary and subkey use ``default'' or
``future-default'' for @var{algo} and ``default'' for @var{usage}.
For a description of these optional arguments see the command
@code{--quick-add-key}. The @var{usage} accepts also the value
``cert'' which can be used to create a certification only primary key;
the default is to a create certification and signing key.
The @var{expire} argument can be used to specify an expiration date
for the key. Several formats are supported; commonly the ISO formats
``YYYY-MM-DD'' or ``YYYYMMDDThhmmss'' are used. To make the key
expire in N seconds, N days, N weeks, N months, or N years use
``seconds=N'', ``Nd'', ``Nw'', ``Nm'', or ``Ny'' respectively. Not
specifying a value, or using ``-'' results in a key expiring in a
reasonable default interval. The values ``never'', ``none'' can be
used for no expiration date.
If this command is used with @option{--batch},
@option{--pinentry-mode} has been set to @code{loopback}, and one of
the passphrase options (@option{--passphrase},
@option{--passphrase-fd}, or @option{passphrase-file}) is used, the
supplied passphrase is used for the new key and the agent does not ask
for it. To create a key without any protection @code{--passphrase ''}
may be used.
@item --quick-set-expire @var{fpr} @var{expire} [*|@var{subfprs}]
@opindex quick-set-expire
With two arguments given, directly set the expiration time of the
primary key identified by @var{fpr} to @var{expire}. To remove the
expiration time @code{0} can be used. With three arguments and the
third given as an asterisk, the expiration time of all non-revoked and
not yet expired subkeys are set to @var{expire}. With more than two
arguments and a list of fingerprints given for @var{subfprs}, all
non-revoked subkeys matching these fingerprints are set to
@var{expire}.
@item --quick-add-key @var{fpr} [@var{algo} [@var{usage} [@var{expire}]]]
@opindex quick-add-key
Directly add a subkey to the key identified by the fingerprint
@var{fpr}. Without the optional arguments an encryption subkey is
added. If any of the arguments are given a more specific subkey is
added.
@var{algo} may be any of the supported algorithms or curve names
given in the format as used by key listings. To use the default
algorithm the string ``default'' or ``-'' can be used. Supported
algorithms are ``rsa'', ``dsa'', ``elg'', ``ed25519'', ``cv25519'',
and other ECC curves. For example the string ``rsa'' adds an RSA key
with the default key length; a string ``rsa4096'' requests that the
key length is 4096 bits. The string ``future-default'' is an alias
for the algorithm which will likely be used as default algorithm in
future versions of gpg.
Depending on the given @var{algo} the subkey may either be an
encryption subkey or a signing subkey. If an algorithm is capable of
signing and encryption and such a subkey is desired, a @var{usage}
string must be given. This string is either ``default'' or ``-'' to
keep the default or a comma delimited list (or space delimited list)
of keywords: ``sign'' for a signing subkey, ``auth'' for an
authentication subkey, and ``encr'' for an encryption subkey
(``encrypt'' can be used as alias for ``encr''). The valid
combinations depend on the algorithm.
The @var{expire} argument can be used to specify an expiration date
for the key. Several formats are supported; commonly the ISO formats
``YYYY-MM-DD'' or ``YYYYMMDDThhmmss'' are used. To make the key
expire in N seconds, N days, N weeks, N months, or N years use
``seconds=N'', ``Nd'', ``Nw'', ``Nm'', or ``Ny'' respectively. Not
specifying a value, or using ``-'' results in a key expiring in a
reasonable default interval. The values ``never'', ``none'' can be
used for no expiration date.
@item --generate-key
@opindex generate-key
@itemx --gen-key
@opindex gen-key
Generate a new key pair using the current default parameters. This is
the standard command to create a new key. In addition to the key a
revocation certificate is created and stored in the
@file{openpgp-revocs.d} directory below the GnuPG home directory.
@item --full-generate-key
@opindex full-generate-key
@itemx --full-gen-key
@opindex full-gen-key
Generate a new key pair with dialogs for all options. This is an
extended version of @option{--generate-key}.
There is also a feature which allows you to create keys in batch
mode. See the manual section ``Unattended key generation'' on how
to use this.
@item --generate-revocation @var{name}
@opindex generate-revocation
@itemx --gen-revoke @var{name}
@opindex gen-revoke
Generate a revocation certificate for the complete key. To only revoke
a subkey or a key signature, use the @option{--edit} command.
This command merely creates the revocation certificate so that it can
be used to revoke the key if that is ever needed. To actually revoke
a key the created revocation certificate needs to be merged with the
key to revoke. This is done by importing the revocation certificate
using the @option{--import} command. Then the revoked key needs to be
published, which is best done by sending the key to a keyserver
(command @option{--send-key}) and by exporting (@option{--export}) it
to a file which is then send to frequent communication partners.
@item --generate-designated-revocation @var{name}
@opindex generate-designated-revocation
@itemx --desig-revoke @var{name}
@opindex desig-revoke
Generate a designated revocation certificate for a key. This allows a
user (with the permission of the keyholder) to revoke someone else's
key.
@item --edit-key
@opindex edit-key
Present a menu which enables you to do most of the key management
related tasks. It expects the specification of a key on the command
line.
@c ******** Begin Edit-key Options **********
@table @asis
@item uid @var{n}
@opindex keyedit:uid
Toggle selection of user ID or photographic user ID with index @var{n}.
Use @code{*} to select all and @code{0} to deselect all.
@item key @var{n}
@opindex keyedit:key
Toggle selection of subkey with index @var{n} or key ID @var{n}.
Use @code{*} to select all and @code{0} to deselect all.
@item sign
@opindex keyedit:sign
Make a signature on key of user @code{name}. If the key is not yet
signed by the default user (or the users given with @option{-u}), the program
displays the information of the key again, together with its
fingerprint and asks whether it should be signed. This question is
repeated for all users specified with
@option{-u}.
@item lsign
@opindex keyedit:lsign
Same as "sign" but the signature is marked as non-exportable and will
therefore never be used by others. This may be used to make keys
valid only in the local environment.
@item nrsign
@opindex keyedit:nrsign
Same as "sign" but the signature is marked as non-revocable and can
therefore never be revoked.
@item tsign
@opindex keyedit:tsign
Make a trust signature. This is a signature that combines the notions
of certification (like a regular signature), and trust (like the
"trust" command). It is generally only useful in distinct communities
or groups. For more information please read the sections
``Trust Signature'' and ``Regular Expression'' in RFC-4880.
@end table
@c man:.RS
Note that "l" (for local / non-exportable), "nr" (for non-revocable,
and "t" (for trust) may be freely mixed and prefixed to "sign" to
create a signature of any type desired.
@c man:.RE
If the option @option{--only-sign-text-ids} is specified, then any
non-text based user ids (e.g., photo IDs) will not be selected for
signing.
@table @asis
@item delsig
@opindex keyedit:delsig
Delete a signature. Note that it is not possible to retract a signature,
once it has been send to the public (i.e. to a keyserver). In that case
you better use @code{revsig}.
@item revsig
@opindex keyedit:revsig
Revoke a signature. For every signature which has been generated by
one of the secret keys, GnuPG asks whether a revocation certificate
should be generated.
@item check
@opindex keyedit:check
Check the signatures on all selected user IDs. With the extra
option @code{selfsig} only self-signatures are shown.
@item adduid
@opindex keyedit:adduid
Create an additional user ID.
@item addphoto
@opindex keyedit:addphoto
Create a photographic user ID. This will prompt for a JPEG file that
will be embedded into the user ID. Note that a very large JPEG will make
for a very large key. Also note that some programs will display your
JPEG unchanged (GnuPG), and some programs will scale it to fit in a
dialog box (PGP).
@item showphoto
@opindex keyedit:showphoto
Display the selected photographic user ID.
@item deluid
@opindex keyedit:deluid
Delete a user ID or photographic user ID. Note that it is not
possible to retract a user id, once it has been send to the public
(i.e. to a keyserver). In that case you better use @code{revuid}.
@item revuid
@opindex keyedit:revuid
Revoke a user ID or photographic user ID.
@item primary
@opindex keyedit:primary
Flag the current user id as the primary one, removes the primary user
id flag from all other user ids and sets the timestamp of all affected
self-signatures one second ahead. Note that setting a photo user ID
as primary makes it primary over other photo user IDs, and setting a
regular user ID as primary makes it primary over other regular user
IDs.
@item keyserver
@opindex keyedit:keyserver
Set a preferred keyserver for the specified user ID(s). This allows
other users to know where you prefer they get your key from. See
@option{--keyserver-options honor-keyserver-url} for more on how this
works. Setting a value of "none" removes an existing preferred
keyserver.
@item notation
@opindex keyedit:notation
Set a name=value notation for the specified user ID(s). See
@option{--cert-notation} for more on how this works. Setting a value of
"none" removes all notations, setting a notation prefixed with a minus
sign (-) removes that notation, and setting a notation name (without the
=value) prefixed with a minus sign removes all notations with that name.
@item pref
@opindex keyedit:pref
List preferences from the selected user ID. This shows the actual
preferences, without including any implied preferences.
@item showpref
@opindex keyedit:showpref
More verbose preferences listing for the selected user ID. This shows
the preferences in effect by including the implied preferences of 3DES
(cipher), SHA-1 (digest), and Uncompressed (compression) if they are
not already included in the preference list. In addition, the
preferred keyserver and signature notations (if any) are shown.
@item setpref @var{string}
@opindex keyedit:setpref
Set the list of user ID preferences to @var{string} for all (or just
the selected) user IDs. Calling setpref with no arguments sets the
preference list to the default (either built-in or set via
@option{--default-preference-list}), and calling setpref with "none"
as the argument sets an empty preference list. Use @command{@gpgname
--version} to get a list of available algorithms. Note that while you
can change the preferences on an attribute user ID (aka "photo ID"),
GnuPG does not select keys via attribute user IDs so these preferences
will not be used by GnuPG.
When setting preferences, you should list the algorithms in the order
which you'd like to see them used by someone else when encrypting a
message to your key. If you don't include 3DES, it will be
automatically added at the end. Note that there are many factors that
go into choosing an algorithm (for example, your key may not be the
only recipient), and so the remote OpenPGP application being used to
send to you may or may not follow your exact chosen order for a given
message. It will, however, only choose an algorithm that is present
on the preference list of every recipient key. See also the
INTEROPERABILITY WITH OTHER OPENPGP PROGRAMS section below.
@item addkey
@opindex keyedit:addkey
Add a subkey to this key.
@item addcardkey
@opindex keyedit:addcardkey
Generate a subkey on a card and add it to this key.
@item keytocard
@opindex keyedit:keytocard
Transfer the selected secret subkey (or the primary key if no subkey
has been selected) to a smartcard. The secret key in the keyring will
be replaced by a stub if the key could be stored successfully on the
card and you use the save command later. Only certain key types may be
transferred to the card. A sub menu allows you to select on what card
to store the key. Note that it is not possible to get that key back
from the card - if the card gets broken your secret key will be lost
unless you have a backup somewhere.
@item bkuptocard @var{file}
@opindex keyedit:bkuptocard
Restore the given @var{file} to a card. This command may be used to restore a
backup key (as generated during card initialization) to a new card. In
almost all cases this will be the encryption key. You should use this
command only with the corresponding public key and make sure that the
file given as argument is indeed the backup to restore. You should then
select 2 to restore as encryption key. You will first be asked to enter
the passphrase of the backup key and then for the Admin PIN of the card.
@item delkey
@opindex keyedit:delkey
Remove a subkey (secondary key). Note that it is not possible to retract
a subkey, once it has been send to the public (i.e. to a keyserver). In
that case you better use @code{revkey}. Also note that this only
deletes the public part of a key.
@item revkey
@opindex keyedit:revkey
Revoke a subkey.
@item expire
@opindex keyedit:expire
Change the key or subkey expiration time. If a subkey is selected, the
expiration time of this subkey will be changed. With no selection, the
key expiration of the primary key is changed.
@item trust
@opindex keyedit:trust
Change the owner trust value for the key. This updates the trust-db
immediately and no save is required.
@item disable
@itemx enable
@opindex keyedit:disable
@opindex keyedit:enable
Disable or enable an entire key. A disabled key can not normally be
used for encryption.
@item addrevoker
@opindex keyedit:addrevoker
Add a designated revoker to the key. This takes one optional argument:
"sensitive". If a designated revoker is marked as sensitive, it will
not be exported by default (see export-options).
@item passwd
@opindex keyedit:passwd
Change the passphrase of the secret key.
@item toggle
@opindex keyedit:toggle
This is dummy command which exists only for backward compatibility.
@item clean
@opindex keyedit:clean
Compact (by removing all signatures except the selfsig) any user ID
that is no longer usable (e.g. revoked, or expired). Then, remove any
signatures that are not usable by the trust calculations.
Specifically, this removes any signature that does not validate, any
signature that is superseded by a later signature, revoked signatures,
and signatures issued by keys that are not present on the keyring.
@item minimize
@opindex keyedit:minimize
Make the key as small as possible. This removes all signatures from
each user ID except for the most recent self-signature.
@item change-usage
@opindex keyedit:change-usage
Change the usage flags (capabilities) of the primary key or of
subkeys. These usage flags (e.g. Certify, Sign, Authenticate,
Encrypt) are set during key creation. Sometimes it is useful to
have the opportunity to change them (for example to add
Authenticate) after they have been created. Please take care when
doing this; the allowed usage flags depend on the key algorithm.
@item cross-certify
@opindex keyedit:cross-certify
Add cross-certification signatures to signing subkeys that may not
currently have them. Cross-certification signatures protect against a
subtle attack against signing subkeys. See
@option{--require-cross-certification}. All new keys generated have
this signature by default, so this command is only useful to bring
older keys up to date.
@item save
@opindex keyedit:save
Save all changes to the keyrings and quit.
@item quit
@opindex keyedit:quit
Quit the program without updating the
keyrings.
@end table
@c man:.RS
The listing shows you the key with its secondary keys and all user
IDs. The primary user ID is indicated by a dot, and selected keys or
user IDs are indicated by an asterisk. The trust
value is displayed with the primary key: "trust" is the assigned owner
trust and "validity" is the calculated validity of the key. Validity
values are also displayed for all user IDs.
For possible values of trust, @pxref{trust-values}.
@c man:.RE
@c ******** End Edit-key Options **********
@item --sign-key @var{name}
@opindex sign-key
Signs a public key with your secret key. This is a shortcut version of
the subcommand "sign" from @option{--edit}.
@item --lsign-key @var{name}
@opindex lsign-key
Signs a public key with your secret key but marks it as
non-exportable. This is a shortcut version of the subcommand "lsign"
from @option{--edit-key}.
@item --quick-sign-key @var{fpr} [@var{names}]
@itemx --quick-lsign-key @var{fpr} [@var{names}]
@opindex quick-sign-key
@opindex quick-lsign-key
Directly sign a key from the passphrase without any further user
interaction. The @var{fpr} must be the verified primary fingerprint
of a key in the local keyring. If no @var{names} are given, all
useful user ids are signed; with given [@var{names}] only useful user
ids matching one of theses names are signed. By default, or if a name
is prefixed with a '*', a case insensitive substring match is used.
If a name is prefixed with a '=' a case sensitive exact match is done.
The command @option{--quick-lsign-key} marks the signatures as
non-exportable. If such a non-exportable signature already exists the
@option{--quick-sign-key} turns it into a exportable signature.
This command uses reasonable defaults and thus does not provide the
full flexibility of the "sign" subcommand from @option{--edit-key}.
Its intended use is to help unattended key signing by utilizing a list
of verified fingerprints.
@item --quick-add-uid @var{user-id} @var{new-user-id}
@opindex quick-add-uid
This command adds a new user id to an existing key. In contrast to
the interactive sub-command @code{adduid} of @option{--edit-key} the
@var{new-user-id} is added verbatim with only leading and trailing
white space removed, it is expected to be UTF-8 encoded, and no checks
on its form are applied.
@item --quick-revoke-uid @var{user-id} @var{user-id-to-revoke}
@opindex quick-revoke-uid
This command revokes a user ID on an existing key. It cannot be used
to revoke the last user ID on key (some non-revoked user ID must
remain), with revocation reason ``User ID is no longer valid''. If
you want to specify a different revocation reason, or to supply
supplementary revocation text, you should use the interactive
sub-command @code{revuid} of @option{--edit-key}.
@item --quick-set-primary-uid @var{user-id} @var{primary-user-id}
@opindex quick-set-primary-uid
This command sets or updates the primary user ID flag on an existing
key. @var{user-id} specifies the key and @var{primary-user-id} the
user ID which shall be flagged as the primary user ID. The primary
user ID flag is removed from all other user ids and the timestamp of
all affected self-signatures is set one second ahead.
@item --change-passphrase @var{user-id}
@opindex change-passphrase
@itemx --passwd @var{user-id}
@opindex passwd
Change the passphrase of the secret key belonging to the certificate
specified as @var{user-id}. This is a shortcut for the sub-command
@code{passwd} of the edit key menu. When using together with the
option @option{--dry-run} this will not actually change the passphrase
but check that the current passphrase is correct.
@end table
@c *******************************************
@c *************** ****************
@c *************** OPTIONS ****************
@c *************** ****************
@c *******************************************
@mansect options
@node GPG Options
@section Option Summary
@command{@gpgname} features a bunch of options to control the exact
behaviour and to change the default configuration.
@menu
* GPG Configuration Options:: How to change the configuration.
* GPG Key related Options:: Key related options.
* GPG Input and Output:: Input and Output.
* OpenPGP Options:: OpenPGP protocol specific options.
* Compliance Options:: Compliance options.
* GPG Esoteric Options:: Doing things one usually doesn't want to do.
* Deprecated Options:: Deprecated options.
@end menu
Long options can be put in an options file (default
"~/.gnupg/gpg.conf"). Short option names will not work - for example,
"armor" is a valid option for the options file, while "a" is not. Do not
write the 2 dashes, but simply the name of the option and any required
arguments. Lines with a hash ('#') as the first non-white-space
character are ignored. Commands may be put in this file too, but that is
not generally useful as the command will execute automatically with
every execution of gpg.
Please remember that option parsing stops as soon as a non-option is
encountered, you can explicitly stop parsing by using the special option
@option{--}.
@c *******************************************
@c ******** CONFIGURATION OPTIONS **********
@c *******************************************
@node GPG Configuration Options
@subsection How to change the configuration
These options are used to change the configuration and are usually found
in the option file.
@table @gnupgtabopt
@item --default-key @var{name}
@opindex default-key
Use @var{name} as the default key to sign with. If this option is not
used, the default key is the first key found in the secret keyring.
Note that @option{-u} or @option{--local-user} overrides this option.
This option may be given multiple times. In this case, the last key
for which a secret key is available is used. If there is no secret
key available for any of the specified values, GnuPG will not emit an
error message but continue as if this option wasn't given.
@item --default-recipient @var{name}
@opindex default-recipient
Use @var{name} as default recipient if option @option{--recipient} is
not used and don't ask if this is a valid one. @var{name} must be
non-empty.
@item --default-recipient-self
@opindex default-recipient-self
Use the default key as default recipient if option @option{--recipient} is not
used and don't ask if this is a valid one. The default key is the first
one from the secret keyring or the one set with @option{--default-key}.
@item --no-default-recipient
@opindex no-default-recipient
Reset @option{--default-recipient} and @option{--default-recipient-self}.
@item -v, --verbose
@opindex verbose
Give more information during processing. If used
twice, the input data is listed in detail.
@item --no-verbose
@opindex no-verbose
Reset verbose level to 0.
@item -q, --quiet
@opindex quiet
Try to be as quiet as possible.
@item --batch
@itemx --no-batch
@opindex batch
@opindex no-batch
Use batch mode. Never ask, do not allow interactive commands.
@option{--no-batch} disables this option. Note that even with a
filename given on the command line, gpg might still need to read from
STDIN (in particular if gpg figures that the input is a
detached signature and no data file has been specified). Thus if you
do not want to feed data via STDIN, you should connect STDIN to
g@file{/dev/null}.
It is highly recommended to use this option along with the options
@option{--status-fd} and @option{--with-colons} for any unattended use of
@command{gpg}.
@item --no-tty
@opindex no-tty
Make sure that the TTY (terminal) is never used for any output.
This option is needed in some cases because GnuPG sometimes prints
warnings to the TTY even if @option{--batch} is used.
@item --yes
@opindex yes
Assume "yes" on most questions.
@item --no
@opindex no
Assume "no" on most questions.
@item --list-options @var{parameters}
@opindex list-options
This is a space or comma delimited string that gives options used when
listing keys and signatures (that is, @option{--list-keys},
@option{--check-signatures}, @option{--list-public-keys},
@option{--list-secret-keys}, and the @option{--edit-key} functions).
Options can be prepended with a @option{no-} (after the two dashes) to
give the opposite meaning. The options are:
@table @asis
@item show-photos
@opindex list-options:show-photos
Causes @option{--list-keys}, @option{--check-signatures},
@option{--list-public-keys}, and @option{--list-secret-keys} to
display any photo IDs attached to the key. Defaults to no. See also
@option{--photo-viewer}. Does not work with @option{--with-colons}:
see @option{--attribute-fd} for the appropriate way to get photo data
for scripts and other frontends.
@item show-usage
@opindex list-options:show-usage
Show usage information for keys and subkeys in the standard key
listing. This is a list of letters indicating the allowed usage for a
key (@code{E}=encryption, @code{S}=signing, @code{C}=certification,
@code{A}=authentication). Defaults to yes.
@item show-policy-urls
@opindex list-options:show-policy-urls
Show policy URLs in the @option{--check-signatures}
listings. Defaults to no.
@item show-notations
@itemx show-std-notations
@itemx show-user-notations
@opindex list-options:show-notations
@opindex list-options:show-std-notations
@opindex list-options:show-user-notations
Show all, IETF standard, or user-defined signature notations in the
@option{--check-signatures} listings. Defaults to no.
@item show-keyserver-urls
@opindex list-options:show-keyserver-urls
Show any preferred keyserver URL in the
@option{--check-signatures} listings. Defaults to no.
@item show-uid-validity
@opindex list-options:show-uid-validity
Display the calculated validity of user IDs during key listings.
Defaults to yes.
@item show-unusable-uids
@opindex list-options:show-unusable-uids
Show revoked and expired user IDs in key listings. Defaults to no.
@item show-unusable-subkeys
@opindex list-options:show-unusable-subkeys
Show revoked and expired subkeys in key listings. Defaults to no.
@item show-keyring
@opindex list-options:show-keyring
Display the keyring name at the head of key listings to show which
keyring a given key resides on. Defaults to no.
@item show-sig-expire
@opindex list-options:show-sig-expire
Show signature expiration dates (if any) during
@option{--check-signatures} listings. Defaults to no.
@item show-sig-subpackets
@opindex list-options:show-sig-subpackets
Include signature subpackets in the key listing. This option can take an
optional argument list of the subpackets to list. If no argument is
passed, list all subpackets. Defaults to no. This option is only
meaningful when using @option{--with-colons} along with
@option{--check-signatures}.
@end table
@item --verify-options @var{parameters}
@opindex verify-options
This is a space or comma delimited string that gives options used when
verifying signatures. Options can be prepended with a `no-' to give
the opposite meaning. The options are:
@table @asis
@item show-photos
@opindex verify-options:show-photos
Display any photo IDs present on the key that issued the signature.
Defaults to no. See also @option{--photo-viewer}.
@item show-policy-urls
@opindex verify-options:show-policy-urls
Show policy URLs in the signature being verified. Defaults to yes.
@item show-notations
@itemx show-std-notations
@itemx show-user-notations
@opindex verify-options:show-notations
@opindex verify-options:show-std-notations
@opindex verify-options:show-user-notations
Show all, IETF standard, or user-defined signature notations in the
signature being verified. Defaults to IETF standard.
@item show-keyserver-urls
@opindex verify-options:show-keyserver-urls
Show any preferred keyserver URL in the signature being verified.
Defaults to yes.
@item show-uid-validity
@opindex verify-options:show-uid-validity
Display the calculated validity of the user IDs on the key that issued
the signature. Defaults to yes.
@item show-unusable-uids
@opindex verify-options:show-unusable-uids
Show revoked and expired user IDs during signature verification.
Defaults to no.
@item show-primary-uid-only
@opindex verify-options:show-primary-uid-only
Show only the primary user ID during signature verification. That is
all the AKA lines as well as photo Ids are not shown with the signature
verification status.
@item pka-lookups
@opindex verify-options:pka-lookups
Enable PKA lookups to verify sender addresses. Note that PKA is based
on DNS, and so enabling this option may disclose information on when
and what signatures are verified or to whom data is encrypted. This
is similar to the "web bug" described for the @option{--auto-key-retrieve}
option.
@item pka-trust-increase
@opindex verify-options:pka-trust-increase
Raise the trust in a signature to full if the signature passes PKA
validation. This option is only meaningful if pka-lookups is set.
@end table
@item --enable-large-rsa
@itemx --disable-large-rsa
@opindex enable-large-rsa
@opindex disable-large-rsa
With --generate-key and --batch, enable the creation of RSA secret keys as
large as 8192 bit. Note: 8192 bit is more than is generally
recommended. These large keys don't significantly improve security,
but they are more expensive to use, and their signatures and
certifications are larger. This option is only available if the
binary was build with large-secmem support.
@item --enable-dsa2
@itemx --disable-dsa2
@opindex enable-dsa2
@opindex disable-dsa2
Enable hash truncation for all DSA keys even for old DSA Keys up to
1024 bit. This is also the default with @option{--openpgp}. Note
that older versions of GnuPG also required this flag to allow the
generation of DSA larger than 1024 bit.
@item --photo-viewer @var{string}
@opindex photo-viewer
This is the command line that should be run to view a photo ID. "%i"
will be expanded to a filename containing the photo. "%I" does the
same, except the file will not be deleted once the viewer exits.
Other flags are "%k" for the key ID, "%K" for the long key ID, "%f"
for the key fingerprint, "%t" for the extension of the image type
(e.g. "jpg"), "%T" for the MIME type of the image (e.g. "image/jpeg"),
"%v" for the single-character calculated validity of the image being
viewed (e.g. "f"), "%V" for the calculated validity as a string (e.g.
"full"), "%U" for a base32 encoded hash of the user ID,
and "%%" for an actual percent sign. If neither %i or %I are present,
then the photo will be supplied to the viewer on standard input.
The default viewer is "xloadimage -fork -quiet -title 'KeyID 0x%k'
STDIN". Note that if your image viewer program is not secure, then
executing it from GnuPG does not make it secure.
@item --exec-path @var{string}
@opindex exec-path
@efindex PATH
Sets a list of directories to search for photo viewers and keyserver
helpers. If not provided, keyserver helpers use the compiled-in
default directory, and photo viewers use the @code{PATH} environment
variable.
Note, that on W32 system this value is ignored when searching for
keyserver helpers.
@item --keyring @var{file}
@opindex keyring
Add @var{file} to the current list of keyrings. If @var{file} begins
with a tilde and a slash, these are replaced by the $HOME directory. If
the filename does not contain a slash, it is assumed to be in the GnuPG
home directory ("~/.gnupg" if @option{--homedir} or $GNUPGHOME is not
used).
Note that this adds a keyring to the current list. If the intent is to
use the specified keyring alone, use @option{--keyring} along with
@option{--no-default-keyring}.
If the option @option{--no-keyring} has been used no keyrings will
be used at all.
@item --secret-keyring @var{file}
@opindex secret-keyring
This is an obsolete option and ignored. All secret keys are stored in
the @file{private-keys-v1.d} directory below the GnuPG home directory.
@item --primary-keyring @var{file}
@opindex primary-keyring
Designate @var{file} as the primary public keyring. This means that
newly imported keys (via @option{--import} or keyserver
@option{--recv-from}) will go to this keyring.
@item --trustdb-name @var{file}
@opindex trustdb-name
Use @var{file} instead of the default trustdb. If @var{file} begins
with a tilde and a slash, these are replaced by the $HOME directory. If
the filename does not contain a slash, it is assumed to be in the GnuPG
home directory (@file{~/.gnupg} if @option{--homedir} or $GNUPGHOME is
not used).
@include opt-homedir.texi
@item --display-charset @var{name}
@opindex display-charset
Set the name of the native character set. This is used to convert
some informational strings like user IDs to the proper UTF-8 encoding.
Note that this has nothing to do with the character set of data to be
encrypted or signed; GnuPG does not recode user-supplied data. If
this option is not used, the default character set is determined from
the current locale. A verbosity level of 3 shows the chosen set.
Valid values for @var{name} are:
@table @asis
@item iso-8859-1
@opindex display-charset:iso-8859-1
This is the Latin 1 set.
@item iso-8859-2
@opindex display-charset:iso-8859-2
The Latin 2 set.
@item iso-8859-15
@opindex display-charset:iso-8859-15
This is currently an alias for
the Latin 1 set.
@item koi8-r
@opindex display-charset:koi8-r
The usual Russian set (RFC-1489).
@item utf-8
@opindex display-charset:utf-8
Bypass all translations and assume
that the OS uses native UTF-8 encoding.
@end table
@item --utf8-strings
@itemx --no-utf8-strings
@opindex utf8-strings
Assume that command line arguments are given as UTF-8 strings. The
default (@option{--no-utf8-strings}) is to assume that arguments are
encoded in the character set as specified by
@option{--display-charset}. These options affect all following
arguments. Both options may be used multiple times.
@anchor{gpg-option --options}
@item --options @var{file}
@opindex options
Read options from @var{file} and do not try to read them from the
default options file in the homedir (see @option{--homedir}). This
option is ignored if used in an options file.
@item --no-options
@opindex no-options
Shortcut for @option{--options /dev/null}. This option is detected
before an attempt to open an option file. Using this option will also
prevent the creation of a @file{~/.gnupg} homedir.
@item -z @var{n}
@itemx --compress-level @var{n}
@itemx --bzip2-compress-level @var{n}
@opindex compress-level
@opindex bzip2-compress-level
Set compression level to @var{n} for the ZIP and ZLIB compression
algorithms. The default is to use the default compression level of zlib
(normally 6). @option{--bzip2-compress-level} sets the compression level
for the BZIP2 compression algorithm (defaulting to 6 as well). This is a
different option from @option{--compress-level} since BZIP2 uses a
significant amount of memory for each additional compression level.
@option{-z} sets both. A value of 0 for @var{n} disables compression.
@item --bzip2-decompress-lowmem
@opindex bzip2-decompress-lowmem
Use a different decompression method for BZIP2 compressed files. This
alternate method uses a bit more than half the memory, but also runs
at half the speed. This is useful under extreme low memory
circumstances when the file was originally compressed at a high
@option{--bzip2-compress-level}.
@item --mangle-dos-filenames
@itemx --no-mangle-dos-filenames
@opindex mangle-dos-filenames
@opindex no-mangle-dos-filenames
Older version of Windows cannot handle filenames with more than one
dot. @option{--mangle-dos-filenames} causes GnuPG to replace (rather
than add to) the extension of an output filename to avoid this
problem. This option is off by default and has no effect on non-Windows
platforms.
@item --ask-cert-level
@itemx --no-ask-cert-level
@opindex ask-cert-level
When making a key signature, prompt for a certification level. If this
option is not specified, the certification level used is set via
@option{--default-cert-level}. See @option{--default-cert-level} for
information on the specific levels and how they are
used. @option{--no-ask-cert-level} disables this option. This option
defaults to no.
@item --default-cert-level @var{n}
@opindex default-cert-level
The default to use for the check level when signing a key.
0 means you make no particular claim as to how carefully you verified
the key.
1 means you believe the key is owned by the person who claims to own
it but you could not, or did not verify the key at all. This is
useful for a "persona" verification, where you sign the key of a
pseudonymous user.
2 means you did casual verification of the key. For example, this
could mean that you verified the key fingerprint and checked the
user ID on the key against a photo ID.
3 means you did extensive verification of the key. For example, this
could mean that you verified the key fingerprint with the owner of the
key in person, and that you checked, by means of a hard to forge
document with a photo ID (such as a passport) that the name of the key
owner matches the name in the user ID on the key, and finally that you
verified (by exchange of email) that the email address on the key
belongs to the key owner.
Note that the examples given above for levels 2 and 3 are just that:
examples. In the end, it is up to you to decide just what "casual"
and "extensive" mean to you.
This option defaults to 0 (no particular claim).
@item --min-cert-level
@opindex min-cert-level
When building the trust database, treat any signatures with a
certification level below this as invalid. Defaults to 2, which
disregards level 1 signatures. Note that level 0 "no particular
claim" signatures are always accepted.
@item --trusted-key @var{long key ID}
@opindex trusted-key
Assume that the specified key (which must be given
as a full 8 byte key ID) is as trustworthy as one of
your own secret keys. This option is useful if you
don't want to keep your secret keys (or one of them)
online but still want to be able to check the validity of a given
recipient's or signator's key.
@item --trust-model @{pgp|classic|tofu|tofu+pgp|direct|always|auto@}
@opindex trust-model
Set what trust model GnuPG should follow. The models are:
@table @asis
@item pgp
@opindex trust-model:pgp
This is the Web of Trust combined with trust signatures as used in PGP
5.x and later. This is the default trust model when creating a new
trust database.
@item classic
@opindex trust-model:classic
This is the standard Web of Trust as introduced by PGP 2.
@item tofu
@opindex trust-model:tofu
@anchor{trust-model-tofu}
TOFU stands for Trust On First Use. In this trust model, the first
time a key is seen, it is memorized. If later another key with a
user id with the same email address is seen, both keys are marked as
suspect. In that case, the next time either is used, a warning is
displayed describing the conflict, why it might have occurred
(either the user generated a new key and failed to cross sign the
old and new keys, the key is forgery, or a man-in-the-middle attack
is being attempted), and the user is prompted to manually confirm
the validity of the key in question.
Because a potential attacker is able to control the email address
and thereby circumvent the conflict detection algorithm by using an
email address that is similar in appearance to a trusted email
address, whenever a message is verified, statistics about the number
of messages signed with the key are shown. In this way, a user can
easily identify attacks using fake keys for regular correspondents.
When compared with the Web of Trust, TOFU offers significantly
weaker security guarantees. In particular, TOFU only helps ensure
consistency (that is, that the binding between a key and email
address doesn't change). A major advantage of TOFU is that it
requires little maintenance to use correctly. To use the web of
trust properly, you need to actively sign keys and mark users as
trusted introducers. This is a time-consuming process and anecdotal
evidence suggests that even security-conscious users rarely take the
time to do this thoroughly and instead rely on an ad-hoc TOFU
process.
In the TOFU model, policies are associated with bindings between
keys and email addresses (which are extracted from user ids and
normalized). There are five policies, which can be set manually
using the @option{--tofu-policy} option. The default policy can be
set using the @option{--tofu-default-policy} option.
The TOFU policies are: @code{auto}, @code{good}, @code{unknown},
@code{bad} and @code{ask}. The @code{auto} policy is used by
default (unless overridden by @option{--tofu-default-policy}) and
marks a binding as marginally trusted. The @code{good},
@code{unknown} and @code{bad} policies mark a binding as fully
trusted, as having unknown trust or as having trust never,
respectively. The @code{unknown} policy is useful for just using
TOFU to detect conflicts, but to never assign positive trust to a
binding. The final policy, @code{ask} prompts the user to indicate
the binding's trust. If batch mode is enabled (or input is
inappropriate in the context), then the user is not prompted and the
@code{undefined} trust level is returned.
@item tofu+pgp
@opindex trust-model:tofu+pgp
This trust model combines TOFU with the Web of Trust. This is done
by computing the trust level for each model and then taking the
maximum trust level where the trust levels are ordered as follows:
@code{unknown < undefined < marginal < fully < ultimate < expired <
never}.
By setting @option{--tofu-default-policy=unknown}, this model can be
used to implement the web of trust with TOFU's conflict detection
algorithm, but without its assignment of positive trust values,
which some security-conscious users don't like.
@item direct
@opindex trust-model:direct
Key validity is set directly by the user and not calculated via the
Web of Trust. This model is solely based on the key and does
not distinguish user IDs. Note that when changing to another trust
model the trust values assigned to a key are transformed into
ownertrust values, which also indicate how you trust the owner of
the key to sign other keys.
@item always
@opindex trust-model:always
Skip key validation and assume that used keys are always fully
valid. You generally won't use this unless you are using some
external validation scheme. This option also suppresses the
"[uncertain]" tag printed with signature checks when there is no
evidence that the user ID is bound to the key. Note that this
trust model still does not allow the use of expired, revoked, or
disabled keys.
@item auto
@opindex trust-model:auto
Select the trust model depending on whatever the internal trust
database says. This is the default model if such a database already
exists.
@end table
@item --auto-key-locate @var{mechanisms}
@itemx --no-auto-key-locate
@opindex auto-key-locate
GnuPG can automatically locate and retrieve keys as needed using this
option. This happens when encrypting to an email address (in the
"user@@example.com" form), and there are no "user@@example.com" keys
on the local keyring. This option takes any number of the mechanisms
listed below, in the order they are to be tried. Instead of listing
the mechanisms as comma delimited arguments, the option may also be
given several times to add more mechanism. The option
@option{--no-auto-key-locate} or the mechanism "clear" resets the
list. The default is "local,wkd".
@table @asis
@item cert
Locate a key using DNS CERT, as specified in RFC-4398.
@item pka
Locate a key using DNS PKA.
@item dane
Locate a key using DANE, as specified
in draft-ietf-dane-openpgpkey-05.txt.
@item wkd
Locate a key using the Web Key Directory protocol.
@item ldap
Using DNS Service Discovery, check the domain in question for any LDAP
keyservers to use. If this fails, attempt to locate the key using the
PGP Universal method of checking @samp{ldap://keys.(thedomain)}.
@item keyserver
Locate a key using whatever keyserver is defined using the
@option{--keyserver} option.
@item keyserver-URL
In addition, a keyserver URL as used in the @option{--keyserver} option
may be used here to query that particular keyserver.
@item local
Locate the key using the local keyrings. This mechanism allows the user to
select the order a local key lookup is done. Thus using
@samp{--auto-key-locate local} is identical to
@option{--no-auto-key-locate}.
@item nodefault
This flag disables the standard local key lookup, done before any of the
mechanisms defined by the @option{--auto-key-locate} are tried. The
position of this mechanism in the list does not matter. It is not
required if @code{local} is also used.
@item clear
Clear all defined mechanisms. This is useful to override
mechanisms given in a config file.
@end table
@item --auto-key-retrieve
@itemx --no-auto-key-retrieve
@opindex auto-key-retrieve
@opindex no-auto-key-retrieve
These options enable or disable the automatic retrieving of keys from
a keyserver when verifying signatures made by keys that are not on the
local keyring. The default is @option{--no-auto-key-retrieve}.
If the method "wkd" is included in the list of methods given to
@option{auto-key-locate}, the signer's user ID is part of the
signature, and the option @option{--disable-signer-uid} is not used,
the "wkd" method may also be used to retrieve a key.
Note that this option makes a "web bug" like behavior possible.
Keyserver or Web Key Directory operators can see which keys you
request, so by sending you a message signed by a brand new key (which
you naturally will not have on your local keyring), the operator can
tell both your IP address and the time when you verified the
signature.
@item --keyid-format @{none|short|0xshort|long|0xlong@}
@opindex keyid-format
Select how to display key IDs. "none" does not show the key ID at all
but shows the fingerprint in a separate line. "short" is the
traditional 8-character key ID. "long" is the more accurate (but less
convenient) 16-character key ID. Add an "0x" to either to include an
"0x" at the beginning of the key ID, as in 0x99242560. Note that this
option is ignored if the option @option{--with-colons} is used.
@item --keyserver @var{name}
@opindex keyserver
This option is deprecated - please use the @option{--keyserver} in
@file{dirmngr.conf} instead.
Use @var{name} as your keyserver. This is the server that
@option{--receive-keys}, @option{--send-keys}, and @option{--search-keys}
will communicate with to receive keys from, send keys to, and search for
keys on. The format of the @var{name} is a URI:
`scheme:[//]keyservername[:port]' The scheme is the type of keyserver:
"hkp" for the HTTP (or compatible) keyservers, "ldap" for the LDAP
keyservers, or "mailto" for the Graff email keyserver. Note that your
particular installation of GnuPG may have other keyserver types
available as well. Keyserver schemes are case-insensitive. After the
keyserver name, optional keyserver configuration options may be
provided. These are the same as the global @option{--keyserver-options}
from below, but apply only to this particular keyserver.
Most keyservers synchronize with each other, so there is generally no
need to send keys to more than one server. The keyserver
@code{hkp://keys.gnupg.net} uses round robin DNS to give a different
keyserver each time you use it.
@item --keyserver-options @{@var{name}=@var{value}@}
@opindex keyserver-options
This is a space or comma delimited string that gives options for the
keyserver. Options can be prefixed with a `no-' to give the opposite
meaning. Valid import-options or export-options may be used here as
well to apply to importing (@option{--recv-key}) or exporting
(@option{--send-key}) a key from a keyserver. While not all options
are available for all keyserver types, some common options are:
@table @asis
@item include-revoked
When searching for a key with @option{--search-keys}, include keys that
are marked on the keyserver as revoked. Note that not all keyservers
differentiate between revoked and unrevoked keys, and for such
keyservers this option is meaningless. Note also that most keyservers do
not have cryptographic verification of key revocations, and so turning
this option off may result in skipping keys that are incorrectly marked
as revoked.
@item include-disabled
When searching for a key with @option{--search-keys}, include keys that
are marked on the keyserver as disabled. Note that this option is not
used with HKP keyservers.
@item auto-key-retrieve
This is an obsolete alias for the option @option{auto-key-retrieve}.
Please do not use it; it will be removed in future versions..
@item honor-keyserver-url
When using @option{--refresh-keys}, if the key in question has a preferred
keyserver URL, then use that preferred keyserver to refresh the key
from. In addition, if auto-key-retrieve is set, and the signature
being verified has a preferred keyserver URL, then use that preferred
keyserver to fetch the key from. Note that this option introduces a
"web bug": The creator of the key can see when the keys is
refreshed. Thus this option is not enabled by default.
@item honor-pka-record
If @option{--auto-key-retrieve} is used, and the signature being
verified has a PKA record, then use the PKA information to fetch
the key. Defaults to "yes".
@item include-subkeys
When receiving a key, include subkeys as potential targets. Note that
this option is not used with HKP keyservers, as they do not support
retrieving keys by subkey id.
@item timeout
Tell the keyserver helper program how long (in seconds) to try and
perform a keyserver action before giving up. Note that performing
multiple actions at the same time uses this timeout value per action.
For example, when retrieving multiple keys via @option{--receive-keys}, the
timeout applies separately to each key retrieval, and not to the
@option{--receive-keys} command as a whole. Defaults to 30 seconds.
@item http-proxy=@var{value}
This option is deprecated.
Set the proxy to use for HTTP and HKP keyservers.
This overrides any proxy defined in @file{dirmngr.conf}.
@item verbose
This option has no more function since GnuPG 2.1. Use the
@code{dirmngr} configuration options instead.
@item debug
This option has no more function since GnuPG 2.1. Use the
@code{dirmngr} configuration options instead.
@item check-cert
This option has no more function since GnuPG 2.1. Use the
@code{dirmngr} configuration options instead.
@item ca-cert-file
This option has no more function since GnuPG 2.1. Use the
@code{dirmngr} configuration options instead.
@end table
@item --completes-needed @var{n}
@opindex compliant-needed
Number of completely trusted users to introduce a new
key signer (defaults to 1).
@item --marginals-needed @var{n}
@opindex marginals-needed
Number of marginally trusted users to introduce a new
key signer (defaults to 3)
@item --tofu-default-policy @{auto|good|unknown|bad|ask@}
@opindex tofu-default-policy
The default TOFU policy (defaults to @code{auto}). For more
information about the meaning of this option, @pxref{trust-model-tofu}.
@item --max-cert-depth @var{n}
@opindex max-cert-depth
Maximum depth of a certification chain (default is 5).
@item --no-sig-cache
@opindex no-sig-cache
Do not cache the verification status of key signatures.
Caching gives a much better performance in key listings. However, if
you suspect that your public keyring is not safe against write
modifications, you can use this option to disable the caching. It
probably does not make sense to disable it because all kind of damage
can be done if someone else has write access to your public keyring.
@item --auto-check-trustdb
@itemx --no-auto-check-trustdb
@opindex auto-check-trustdb
If GnuPG feels that its information about the Web of Trust has to be
updated, it automatically runs the @option{--check-trustdb} command
internally. This may be a time consuming
process. @option{--no-auto-check-trustdb} disables this option.
@item --use-agent
@itemx --no-use-agent
@opindex use-agent
This is dummy option. @command{@gpgname} always requires the agent.
@item --gpg-agent-info
@opindex gpg-agent-info
This is dummy option. It has no effect when used with @command{@gpgname}.
@item --agent-program @var{file}
@opindex agent-program
Specify an agent program to be used for secret key operations. The
default value is determined by running @command{gpgconf} with the
option @option{--list-dirs}. Note that the pipe symbol (@code{|}) is
used for a regression test suite hack and may thus not be used in the
file name.
@item --dirmngr-program @var{file}
@opindex dirmngr-program
Specify a dirmngr program to be used for keyserver access. The
default value is @file{@value{BINDIR}/dirmngr}.
@item --disable-dirmngr
Entirely disable the use of the Dirmngr.
@item --no-autostart
@opindex no-autostart
Do not start the gpg-agent or the dirmngr if it has not yet been
started and its service is required. This option is mostly useful on
machines where the connection to gpg-agent has been redirected to
another machines. If dirmngr is required on the remote machine, it
may be started manually using @command{gpgconf --launch dirmngr}.
@item --lock-once
@opindex lock-once
Lock the databases the first time a lock is requested
and do not release the lock until the process
terminates.
@item --lock-multiple
@opindex lock-multiple
Release the locks every time a lock is no longer
needed. Use this to override a previous @option{--lock-once}
from a config file.
@item --lock-never
@opindex lock-never
Disable locking entirely. This option should be used only in very
special environments, where it can be assured that only one process
is accessing those files. A bootable floppy with a stand-alone
encryption system will probably use this. Improper usage of this
option may lead to data and key corruption.
@item --exit-on-status-write-error
@opindex exit-on-status-write-error
This option will cause write errors on the status FD to immediately
terminate the process. That should in fact be the default but it never
worked this way and thus we need an option to enable this, so that the
change won't break applications which close their end of a status fd
connected pipe too early. Using this option along with
@option{--enable-progress-filter} may be used to cleanly cancel long
running gpg operations.
@item --limit-card-insert-tries @var{n}
@opindex limit-card-insert-tries
With @var{n} greater than 0 the number of prompts asking to insert a
smartcard gets limited to N-1. Thus with a value of 1 gpg won't at
all ask to insert a card if none has been inserted at startup. This
option is useful in the configuration file in case an application does
not know about the smartcard support and waits ad infinitum for an
inserted card.
@item --no-random-seed-file
@opindex no-random-seed-file
GnuPG uses a file to store its internal random pool over invocations.
This makes random generation faster; however sometimes write operations
are not desired. This option can be used to achieve that with the cost of
slower random generation.
@item --no-greeting
@opindex no-greeting
Suppress the initial copyright message.
@item --no-secmem-warning
@opindex no-secmem-warning
Suppress the warning about "using insecure memory".
@item --no-permission-warning
@opindex permission-warning
Suppress the warning about unsafe file and home directory (@option{--homedir})
permissions. Note that the permission checks that GnuPG performs are
not intended to be authoritative, but rather they simply warn about
certain common permission problems. Do not assume that the lack of a
warning means that your system is secure.
Note that the warning for unsafe @option{--homedir} permissions cannot be
suppressed in the gpg.conf file, as this would allow an attacker to
place an unsafe gpg.conf file in place, and use this file to suppress
warnings about itself. The @option{--homedir} permissions warning may only be
suppressed on the command line.
@item --require-secmem
@itemx --no-require-secmem
@opindex require-secmem
Refuse to run if GnuPG cannot get secure memory. Defaults to no
(i.e. run, but give a warning).
@item --require-cross-certification
@itemx --no-require-cross-certification
@opindex require-cross-certification
When verifying a signature made from a subkey, ensure that the cross
certification "back signature" on the subkey is present and valid. This
protects against a subtle attack against subkeys that can sign.
Defaults to @option{--require-cross-certification} for
@command{@gpgname}.
@item --expert
@itemx --no-expert
@opindex expert
Allow the user to do certain nonsensical or "silly" things like
signing an expired or revoked key, or certain potentially incompatible
things like generating unusual key types. This also disables certain
warning messages about potentially incompatible actions. As the name
implies, this option is for experts only. If you don't fully
understand the implications of what it allows you to do, leave this
off. @option{--no-expert} disables this option.
@end table
@c *******************************************
@c ******** KEY RELATED OPTIONS ************
@c *******************************************
@node GPG Key related Options
@subsection Key related options
@table @gnupgtabopt
@item --recipient @var{name}
@itemx -r
@opindex recipient
Encrypt for user id @var{name}. If this option or
@option{--hidden-recipient} is not specified, GnuPG asks for the user-id
unless @option{--default-recipient} is given.
@item --hidden-recipient @var{name}
@itemx -R
@opindex hidden-recipient
Encrypt for user ID @var{name}, but hide the key ID of this user's
key. This option helps to hide the receiver of the message and is a
limited countermeasure against traffic analysis. If this option or
@option{--recipient} is not specified, GnuPG asks for the user ID unless
@option{--default-recipient} is given.
@item --recipient-file @var{file}
@itemx -f
@opindex recipient-file
This option is similar to @option{--recipient} except that it
encrypts to a key stored in the given file. @var{file} must be the
name of a file containing exactly one key. @command{@gpgname} assumes that
the key in this file is fully valid.
@item --hidden-recipient-file @var{file}
@itemx -F
@opindex hidden-recipient-file
This option is similar to @option{--hidden-recipient} except that it
encrypts to a key stored in the given file. @var{file} must be the
name of a file containing exactly one key. @command{@gpgname} assumes that
the key in this file is fully valid.
@item --encrypt-to @var{name}
@opindex encrypt-to
Same as @option{--recipient} but this one is intended for use in the
options file and may be used with your own user-id as an
"encrypt-to-self". These keys are only used when there are other
recipients given either by use of @option{--recipient} or by the asked
user id. No trust checking is performed for these user ids and even
disabled keys can be used.
@item --hidden-encrypt-to @var{name}
@opindex hidden-encrypt-to
Same as @option{--hidden-recipient} but this one is intended for use in the
options file and may be used with your own user-id as a hidden
"encrypt-to-self". These keys are only used when there are other
recipients given either by use of @option{--recipient} or by the asked user id.
No trust checking is performed for these user ids and even disabled
keys can be used.
@item --no-encrypt-to
@opindex no-encrypt-to
Disable the use of all @option{--encrypt-to} and
@option{--hidden-encrypt-to} keys.
@item --group @{@var{name}=@var{value}@}
@opindex group
Sets up a named group, which is similar to aliases in email programs.
Any time the group name is a recipient (@option{-r} or
@option{--recipient}), it will be expanded to the values
specified. Multiple groups with the same name are automatically merged
into a single group.
The values are @code{key IDs} or fingerprints, but any key description
is accepted. Note that a value with spaces in it will be treated as
two different values. Note also there is only one level of expansion
--- you cannot make an group that points to another group. When used
from the command line, it may be necessary to quote the argument to
this option to prevent the shell from treating it as multiple
arguments.
@item --ungroup @var{name}
@opindex ungroup
Remove a given entry from the @option{--group} list.
@item --no-groups
@opindex no-groups
Remove all entries from the @option{--group} list.
@item --local-user @var{name}
@itemx -u
@opindex local-user
Use @var{name} as the key to sign with. Note that this option overrides
@option{--default-key}.
@item --sender @var{mbox}
@opindex sender
This option has two purposes. @var{mbox} must either be a complete
user id with a proper mail address or just a mail address. When
creating a signature this option tells gpg the user id of a key used
to make a signature if the key was not directly specified by a user
id. When verifying a signature the @var{mbox} is used to restrict the
information printed by the TOFU code to matching user ids.
@item --try-secret-key @var{name}
@opindex try-secret-key
For hidden recipients GPG needs to know the keys to use for trial
decryption. The key set with @option{--default-key} is always tried
first, but this is often not sufficient. This option allows setting more
keys to be used for trial decryption. Although any valid user-id
specification may be used for @var{name} it makes sense to use at least
the long keyid to avoid ambiguities. Note that gpg-agent might pop up a
pinentry for a lot keys to do the trial decryption. If you want to stop
all further trial decryption you may use close-window button instead of
the cancel button.
@item --try-all-secrets
@opindex try-all-secrets
Don't look at the key ID as stored in the message but try all secret
keys in turn to find the right decryption key. This option forces the
behaviour as used by anonymous recipients (created by using
@option{--throw-keyids} or @option{--hidden-recipient}) and might come
handy in case where an encrypted message contains a bogus key ID.
@item --skip-hidden-recipients
@itemx --no-skip-hidden-recipients
@opindex skip-hidden-recipients
@opindex no-skip-hidden-recipients
During decryption skip all anonymous recipients. This option helps in
the case that people use the hidden recipients feature to hide their
own encrypt-to key from others. If one has many secret keys this
may lead to a major annoyance because all keys are tried in turn to
decrypt something which was not really intended for it. The drawback
of this option is that it is currently not possible to decrypt a
message which includes real anonymous recipients.
@end table
@c *******************************************
@c ******** INPUT AND OUTPUT ***************
@c *******************************************
@node GPG Input and Output
@subsection Input and Output
@table @gnupgtabopt
@item --armor
@itemx -a
@opindex armor
Create ASCII armored output. The default is to create the binary
OpenPGP format.
@item --no-armor
@opindex no-armor
Assume the input data is not in ASCII armored format.
@item --output @var{file}
@itemx -o @var{file}
@opindex output
Write output to @var{file}. To write to stdout use @code{-} as the
filename.
@item --max-output @var{n}
@opindex max-output
This option sets a limit on the number of bytes that will be generated
when processing a file. Since OpenPGP supports various levels of
compression, it is possible that the plaintext of a given message may be
significantly larger than the original OpenPGP message. While GnuPG
works properly with such messages, there is often a desire to set a
maximum file size that will be generated before processing is forced to
stop by the OS limits. Defaults to 0, which means "no limit".
@item --input-size-hint @var{n}
@opindex input-size-hint
This option can be used to tell GPG the size of the input data in
bytes. @var{n} must be a positive base-10 number. This option is
only useful if the input is not taken from a file. GPG may use this
hint to optimize its buffer allocation strategy. It is also used by
the @option{--status-fd} line ``PROGRESS'' to provide a value for
``total'' if that is not available by other means.
@item --key-origin @var{string}[,@var{url}]
@opindex key-origin
gpg can track the origin of a key. Certain origins are implicitly
known (e.g. keyserver, web key directory) and set. For a standard
import the origin of the keys imported can be set with this option.
To list the possible values use "help" for @var{string}. Some origins
can store an optional @var{url} argument. That URL can appended to
@var{string} after a comma.
@item --import-options @var{parameters}
@opindex import-options
This is a space or comma delimited string that gives options for
importing keys. Options can be prepended with a `no-' to give the
opposite meaning. The options are:
@table @asis
@item import-local-sigs
Allow importing key signatures marked as "local". This is not
generally useful unless a shared keyring scheme is being used.
Defaults to no.
@item keep-ownertrust
Normally possible still existing ownertrust values of a key are
cleared if a key is imported. This is in general desirable so that
a formerly deleted key does not automatically gain an ownertrust
values merely due to import. On the other hand it is sometimes
necessary to re-import a trusted set of keys again but keeping
already assigned ownertrust values. This can be achieved by using
this option.
@item repair-pks-subkey-bug
During import, attempt to repair the damage caused by the PKS keyserver
bug (pre version 0.9.6) that mangles keys with multiple subkeys. Note
that this cannot completely repair the damaged key as some crucial data
is removed by the keyserver, but it does at least give you back one
subkey. Defaults to no for regular @option{--import} and to yes for
keyserver @option{--receive-keys}.
@item import-show
@itemx show-only
Show a listing of the key as imported right before it is stored.
This can be combined with the option @option{--dry-run} to only look
at keys; the option @option{show-only} is a shortcut for this
combination. The command @option{--show-keys} is another shortcut
for this. Note that suffixes like '#' for "sec" and "sbb" lines
may or may not be printed.
@item import-export
Run the entire import code but instead of storing the key to the
local keyring write it to the output. The export options
@option{export-pka} and @option{export-dane} affect the output. This
option can be used to remove all invalid parts from a key without the
need to store it.
@item merge-only
During import, allow key updates to existing keys, but do not allow
any new keys to be imported. Defaults to no.
@item import-clean
After import, compact (remove all signatures except the
self-signature) any user IDs from the new key that are not usable.
Then, remove any signatures from the new key that are not usable.
This includes signatures that were issued by keys that are not present
on the keyring. This option is the same as running the @option{--edit-key}
command "clean" after import. Defaults to no.
@item repair-keys. After import, fix various problems with the
keys. For example, this reorders signatures, and strips duplicate
signatures. Defaults to yes.
@item import-minimal
Import the smallest key possible. This removes all signatures except
the most recent self-signature on each user ID. This option is the
same as running the @option{--edit-key} command "minimize" after import.
Defaults to no.
@item restore
@itemx import-restore
Import in key restore mode. This imports all data which is usually
skipped during import; including all GnuPG specific data. All other
contradicting options are overridden.
@end table
@item --import-filter @{@var{name}=@var{expr}@}
@itemx --export-filter @{@var{name}=@var{expr}@}
@opindex import-filter
@opindex export-filter
These options define an import/export filter which are applied to the
imported/exported keyblock right before it will be stored/written.
@var{name} defines the type of filter to use, @var{expr} the
expression to evaluate. The option can be used several times which
then appends more expression to the same @var{name}.
@noindent
The available filter types are:
@table @asis
@item keep-uid
This filter will keep a user id packet and its dependent packets in
the keyblock if the expression evaluates to true.
@item drop-subkey
This filter drops the selected subkeys.
Currently only implemented for --export-filter.
@item drop-sig
This filter drops the selected key signatures on user ids.
Self-signatures are not considered.
Currently only implemented for --import-filter.
@end table
For the syntax of the expression see the chapter "FILTER EXPRESSIONS".
The property names for the expressions depend on the actual filter
type and are indicated in the following table.
The available properties are:
@table @asis
@item uid
A string with the user id. (keep-uid)
@item mbox
The addr-spec part of a user id with mailbox or the empty string.
(keep-uid)
@item key_algo
A number with the public key algorithm of a key or subkey packet.
(drop-subkey)
@item key_created
@itemx key_created_d
The first is the timestamp a public key or subkey packet was
created. The second is the same but given as an ISO string,
e.g. "2016-08-17". (drop-subkey)
@item primary
Boolean indicating whether the user id is the primary one. (keep-uid)
@item expired
Boolean indicating whether a user id (keep-uid), a key (drop-subkey), or a
signature (drop-sig) expired.
@item revoked
Boolean indicating whether a user id (keep-uid) or a key (drop-subkey) has
been revoked.
@item disabled
Boolean indicating whether a primary key is disabled. (not used)
@item secret
Boolean indicating whether a key or subkey is a secret one.
(drop-subkey)
@item sig_created
@itemx sig_created_d
The first is the timestamp a signature packet was created. The
second is the same but given as an ISO date string,
e.g. "2016-08-17". (drop-sig)
@item sig_algo
A number with the public key algorithm of a signature packet. (drop-sig)
@item sig_digest_algo
A number with the digest algorithm of a signature packet. (drop-sig)
@end table
@item --export-options @var{parameters}
@opindex export-options
This is a space or comma delimited string that gives options for
exporting keys. Options can be prepended with a `no-' to give the
opposite meaning. The options are:
@table @asis
@item export-local-sigs
Allow exporting key signatures marked as "local". This is not
generally useful unless a shared keyring scheme is being used.
Defaults to no.
@item export-attributes
Include attribute user IDs (photo IDs) while exporting. Not
including attribute user IDs is useful to export keys that are going
to be used by an OpenPGP program that does not accept attribute user
IDs. Defaults to yes.
@item export-sensitive-revkeys
Include designated revoker information that was marked as
"sensitive". Defaults to no.
@c Since GnuPG 2.1 gpg-agent manages the secret key and thus the
@c export-reset-subkey-passwd hack is not anymore justified. Such use
@c cases may be implemented using a specialized secret key export
@c tool.
@c @item export-reset-subkey-passwd
@c When using the @option{--export-secret-subkeys} command, this option resets
@c the passphrases for all exported subkeys to empty. This is useful
@c when the exported subkey is to be used on an unattended machine where
@c a passphrase doesn't necessarily make sense. Defaults to no.
@item backup
@itemx export-backup
Export for use as a backup. The exported data includes all data
which is needed to restore the key or keys later with GnuPG. The
format is basically the OpenPGP format but enhanced with GnuPG
specific data. All other contradicting options are overridden.
@item export-clean
Compact (remove all signatures from) user IDs on the key being
exported if the user IDs are not usable. Also, do not export any
signatures that are not usable. This includes signatures that were
issued by keys that are not present on the keyring. This option is
the same as running the @option{--edit-key} command "clean" before export
except that the local copy of the key is not modified. Defaults to
no.
@item export-minimal
Export the smallest key possible. This removes all signatures except the
most recent self-signature on each user ID. This option is the same as
running the @option{--edit-key} command "minimize" before export except
that the local copy of the key is not modified. Defaults to no.
@item export-pka
Instead of outputting the key material output PKA records suitable
to put into DNS zone files. An ORIGIN line is printed before each
record to allow diverting the records to the corresponding zone file.
@item export-dane
Instead of outputting the key material output OpenPGP DANE records
suitable to put into DNS zone files. An ORIGIN line is printed before
each record to allow diverting the records to the corresponding zone
file.
@end table
@item --with-colons
@opindex with-colons
Print key listings delimited by colons. Note that the output will be
encoded in UTF-8 regardless of any @option{--display-charset} setting. This
format is useful when GnuPG is called from scripts and other programs
as it is easily machine parsed. The details of this format are
documented in the file @file{doc/DETAILS}, which is included in the GnuPG
source distribution.
@item --fixed-list-mode
@opindex fixed-list-mode
Do not merge primary user ID and primary key in @option{--with-colon}
listing mode and print all timestamps as seconds since 1970-01-01.
Since GnuPG 2.0.10, this mode is always used and thus this option is
obsolete; it does not harm to use it though.
@item --legacy-list-mode
@opindex legacy-list-mode
Revert to the pre-2.1 public key list mode. This only affects the
human readable output and not the machine interface
(i.e. @code{--with-colons}). Note that the legacy format does not
convey suitable information for elliptic curves.
@item --with-fingerprint
@opindex with-fingerprint
Same as the command @option{--fingerprint} but changes only the format
of the output and may be used together with another command.
@item --with-subkey-fingerprint
@opindex with-subkey-fingerprint
If a fingerprint is printed for the primary key, this option forces
printing of the fingerprint for all subkeys. This could also be
achieved by using the @option{--with-fingerprint} twice but by using
this option along with keyid-format "none" a compact fingerprint is
printed.
@item --with-icao-spelling
@opindex with-icao-spelling
Print the ICAO spelling of the fingerprint in addition to the hex digits.
@item --with-keygrip
@opindex with-keygrip
Include the keygrip in the key listings. In @code{--with-colons} mode
this is implicitly enable for secret keys.
@item --with-key-origin
@opindex with-key-origin
Include the locally held information on the origin and last update of
a key in a key listing. In @code{--with-colons} mode this is always
printed. This data is currently experimental and shall not be
considered part of the stable API.
@item --with-wkd-hash
@opindex with-wkd-hash
Print a Web Key Directory identifier along with each user ID in key
listings. This is an experimental feature and semantics may change.
@item --with-secret
@opindex with-secret
Include info about the presence of a secret key in public key listings
done with @code{--with-colons}.
@end table
@c *******************************************
@c ******** OPENPGP OPTIONS ****************
@c *******************************************
@node OpenPGP Options
@subsection OpenPGP protocol specific options
@table @gnupgtabopt
@item -t, --textmode
@itemx --no-textmode
@opindex textmode
Treat input files as text and store them in the OpenPGP canonical text
form with standard "CRLF" line endings. This also sets the necessary
flags to inform the recipient that the encrypted or signed data is text
and may need its line endings converted back to whatever the local
system uses. This option is useful when communicating between two
platforms that have different line ending conventions (UNIX-like to Mac,
Mac to Windows, etc). @option{--no-textmode} disables this option, and
is the default.
@item --force-v3-sigs
@itemx --no-force-v3-sigs
@item --force-v4-certs
@itemx --no-force-v4-certs
These options are obsolete and have no effect since GnuPG 2.1.
@item --force-mdc
@itemx --disable-mdc
@opindex force-mdc
@opindex disable-mdc
These options are obsolete and have no effect since GnuPG 2.2.8. The
MDC is always used. But note: If the creation of a legacy non-MDC
message is exceptionally required, the option @option{--rfc2440}
allows for this.
@item --disable-signer-uid
@opindex disable-signer-uid
By default the user ID of the signing key is embedded in the data
signature. As of now this is only done if the signing key has been
specified with @option{local-user} using a mail address. This
information can be helpful for verifier to locate the key; see
option @option{--auto-key-retrieve}.
@item --personal-cipher-preferences @var{string}
@opindex personal-cipher-preferences
Set the list of personal cipher preferences to @var{string}. Use
@command{@gpgname --version} to get a list of available algorithms,
and use @code{none} to set no preference at all. This allows the user
to safely override the algorithm chosen by the recipient key
preferences, as GPG will only select an algorithm that is usable by
all recipients. The most highly ranked cipher in this list is also
used for the @option{--symmetric} encryption command.
@item --personal-digest-preferences @var{string}
@opindex personal-digest-preferences
Set the list of personal digest preferences to @var{string}. Use
@command{@gpgname --version} to get a list of available algorithms,
and use @code{none} to set no preference at all. This allows the user
to safely override the algorithm chosen by the recipient key
preferences, as GPG will only select an algorithm that is usable by
all recipients. The most highly ranked digest algorithm in this list
is also used when signing without encryption
(e.g. @option{--clear-sign} or @option{--sign}).
@item --personal-compress-preferences @var{string}
@opindex personal-compress-preferences
Set the list of personal compression preferences to @var{string}.
Use @command{@gpgname --version} to get a list of available
algorithms, and use @code{none} to set no preference at all. This
allows the user to safely override the algorithm chosen by the
recipient key preferences, as GPG will only select an algorithm that
is usable by all recipients. The most highly ranked compression
algorithm in this list is also used when there are no recipient keys
to consider (e.g. @option{--symmetric}).
@item --s2k-cipher-algo @var{name}
@opindex s2k-cipher-algo
Use @var{name} as the cipher algorithm for symmetric encryption with
a passphrase if @option{--personal-cipher-preferences} and
@option{--cipher-algo} are not given. The default is @value{GPGSYMENCALGO}.
@item --s2k-digest-algo @var{name}
@opindex s2k-digest-algo
Use @var{name} as the digest algorithm used to mangle the passphrases
for symmetric encryption. The default is SHA-1.
@item --s2k-mode @var{n}
@opindex s2k-mode
Selects how passphrases for symmetric encryption are mangled. If
@var{n} is 0 a plain passphrase (which is in general not recommended)
will be used, a 1 adds a salt (which should not be used) to the
passphrase and a 3 (the default) iterates the whole process a number
of times (see @option{--s2k-count}).
@item --s2k-count @var{n}
@opindex s2k-count
Specify how many times the passphrases mangling for symmetric
encryption is repeated. This value may range between 1024 and
65011712 inclusive. The default is inquired from gpg-agent. Note
that not all values in the 1024-65011712 range are legal and if an
illegal value is selected, GnuPG will round up to the nearest legal
value. This option is only meaningful if @option{--s2k-mode} is set
to the default of 3.
@end table
@c ***************************
@c ******* Compliance ********
@c ***************************
@node Compliance Options
@subsection Compliance options
These options control what GnuPG is compliant to. Only one of these
options may be active at a time. Note that the default setting of
this is nearly always the correct one. See the INTEROPERABILITY WITH
OTHER OPENPGP PROGRAMS section below before using one of these
options.
@table @gnupgtabopt
@item --gnupg
@opindex gnupg
Use standard GnuPG behavior. This is essentially OpenPGP behavior
(see @option{--openpgp}), but with some additional workarounds for common
compatibility problems in different versions of PGP. This is the
default option, so it is not generally needed, but it may be useful to
override a different compliance option in the gpg.conf file.
@item --openpgp
@opindex openpgp
Reset all packet, cipher and digest options to strict OpenPGP
behavior. Use this option to reset all previous options like
@option{--s2k-*}, @option{--cipher-algo}, @option{--digest-algo} and
@option{--compress-algo} to OpenPGP compliant values. All PGP
workarounds are disabled.
@item --rfc4880
@opindex rfc4880
Reset all packet, cipher and digest options to strict RFC-4880
behavior. Note that this is currently the same thing as
@option{--openpgp}.
@item --rfc4880bis
@opindex rfc4880bis
Enable experimental features from proposed updates to RFC-4880. This
option can be used in addition to the other compliance options.
Warning: The behavior may change with any GnuPG release and created
keys or data may not be usable with future GnuPG versions.
@item --rfc2440
@opindex rfc2440
Reset all packet, cipher and digest options to strict RFC-2440
behavior. Note that by using this option encryption packets are
created in a legacy mode without MDC protection. This is dangerous
and should thus only be used for experiments. See also option
@option{--ignore-mdc-error}.
@item --pgp6
@opindex pgp6
Set up all options to be as PGP 6 compliant as possible. This
restricts you to the ciphers IDEA (if the IDEA plugin is installed),
3DES, and CAST5, the hashes MD5, SHA1 and RIPEMD160, and the
compression algorithms none and ZIP. This also disables
@option{--throw-keyids}, and making signatures with signing subkeys as PGP 6
does not understand signatures made by signing subkeys.
This option implies @option{--escape-from-lines}.
@item --pgp7
@opindex pgp7
Set up all options to be as PGP 7 compliant as possible. This is
identical to @option{--pgp6} except that MDCs are not disabled, and the
list of allowable ciphers is expanded to add AES128, AES192, AES256, and
TWOFISH.
@item --pgp8
@opindex pgp8
Set up all options to be as PGP 8 compliant as possible. PGP 8 is a lot
closer to the OpenPGP standard than previous versions of PGP, so all
this does is disable @option{--throw-keyids} and set
@option{--escape-from-lines}. All algorithms are allowed except for the
SHA224, SHA384, and SHA512 digests.
@item --compliance @var{string}
@opindex compliance
This option can be used instead of one of the options above. Valid
values for @var{string} are the above option names (without the double
dash) and possibly others as shown when using "help" for @var{value}.
@end table
@c *******************************************
@c ******** ESOTERIC OPTIONS ***************
@c *******************************************
@node GPG Esoteric Options
@subsection Doing things one usually doesn't want to do
@table @gnupgtabopt
@item -n
@itemx --dry-run
@opindex dry-run
Don't make any changes (this is not completely implemented).
@item --list-only
@opindex list-only
Changes the behaviour of some commands. This is like @option{--dry-run} but
different in some cases. The semantic of this option may be extended in
the future. Currently it only skips the actual decryption pass and
therefore enables a fast listing of the encryption keys.
@item -i
@itemx --interactive
@opindex interactive
Prompt before overwriting any files.
@item --debug-level @var{level}
@opindex debug-level
Select the debug level for investigating problems. @var{level} may be
a numeric value or by a keyword:
@table @code
@item none
No debugging at all. A value of less than 1 may be used instead of
the keyword.
@item basic
Some basic debug messages. A value between 1 and 2 may be used
instead of the keyword.
@item advanced
More verbose debug messages. A value between 3 and 5 may be used
instead of the keyword.
@item expert
Even more detailed messages. A value between 6 and 8 may be used
instead of the keyword.
@item guru
All of the debug messages you can get. A value greater than 8 may be
used instead of the keyword. The creation of hash tracing files is
only enabled if the keyword is used.
@end table
How these messages are mapped to the actual debugging flags is not
specified and may change with newer releases of this program. They are
however carefully selected to best aid in debugging.
@item --debug @var{flags}
@opindex debug
Set debugging flags. All flags are or-ed and @var{flags} may be given
in C syntax (e.g. 0x0042) or as a comma separated list of flag names.
To get a list of all supported flags the single word "help" can be
used.
@item --debug-all
@opindex debug-all
Set all useful debugging flags.
@item --debug-iolbf
@opindex debug-iolbf
Set stdout into line buffered mode. This option is only honored when
given on the command line.
@item --faked-system-time @var{epoch}
@opindex faked-system-time
This option is only useful for testing; it sets the system time back or
forth to @var{epoch} which is the number of seconds elapsed since the year
1970. Alternatively @var{epoch} may be given as a full ISO time string
(e.g. "20070924T154812").
If you suffix @var{epoch} with an exclamation mark (!), the system time
will appear to be frozen at the specified time.
@item --enable-progress-filter
@opindex enable-progress-filter
Enable certain PROGRESS status outputs. This option allows frontends
to display a progress indicator while gpg is processing larger files.
There is a slight performance overhead using it.
@item --status-fd @var{n}
@opindex status-fd
Write special status strings to the file descriptor @var{n}.
See the file DETAILS in the documentation for a listing of them.
@item --status-file @var{file}
@opindex status-file
Same as @option{--status-fd}, except the status data is written to file
@var{file}.
@item --logger-fd @var{n}
@opindex logger-fd
Write log output to file descriptor @var{n} and not to STDERR.
@item --log-file @var{file}
@itemx --logger-file @var{file}
@opindex log-file
Same as @option{--logger-fd}, except the logger data is written to
file @var{file}. Use @file{socket://} to log to s socket.
@item --attribute-fd @var{n}
@opindex attribute-fd
Write attribute subpackets to the file descriptor @var{n}. This is most
useful for use with @option{--status-fd}, since the status messages are
needed to separate out the various subpackets from the stream delivered
to the file descriptor.
@item --attribute-file @var{file}
@opindex attribute-file
Same as @option{--attribute-fd}, except the attribute data is written to
file @var{file}.
@item --comment @var{string}
@itemx --no-comments
@opindex comment
Use @var{string} as a comment string in cleartext signatures and ASCII
armored messages or keys (see @option{--armor}). The default behavior is
not to use a comment string. @option{--comment} may be repeated multiple
times to get multiple comment strings. @option{--no-comments} removes
all comments. It is a good idea to keep the length of a single comment
below 60 characters to avoid problems with mail programs wrapping such
lines. Note that comment lines, like all other header lines, are not
protected by the signature.
@item --emit-version
@itemx --no-emit-version
@opindex emit-version
Force inclusion of the version string in ASCII armored output. If
given once only the name of the program and the major number is
emitted, given twice the minor is also emitted, given thrice
the micro is added, and given four times an operating system identification
is also emitted. @option{--no-emit-version} (default) disables the version
line.
@item --sig-notation @{@var{name}=@var{value}@}
@itemx --cert-notation @{@var{name}=@var{value}@}
@itemx -N, --set-notation @{@var{name}=@var{value}@}
@opindex sig-notation
@opindex cert-notation
@opindex set-notation
Put the name value pair into the signature as notation data.
@var{name} must consist only of printable characters or spaces, and
must contain a '@@' character in the form keyname@@domain.example.com
(substituting the appropriate keyname and domain name, of course). This
is to help prevent pollution of the IETF reserved notation
namespace. The @option{--expert} flag overrides the '@@'
check. @var{value} may be any printable string; it will be encoded in
UTF-8, so you should check that your @option{--display-charset} is set
correctly. If you prefix @var{name} with an exclamation mark (!), the
notation data will be flagged as critical
(rfc4880:5.2.3.16). @option{--sig-notation} sets a notation for data
signatures. @option{--cert-notation} sets a notation for key signatures
(certifications). @option{--set-notation} sets both.
There are special codes that may be used in notation names. "%k" will
be expanded into the key ID of the key being signed, "%K" into the
long key ID of the key being signed, "%f" into the fingerprint of the
key being signed, "%s" into the key ID of the key making the
signature, "%S" into the long key ID of the key making the signature,
"%g" into the fingerprint of the key making the signature (which might
be a subkey), "%p" into the fingerprint of the primary key of the key
making the signature, "%c" into the signature count from the OpenPGP
smartcard, and "%%" results in a single "%". %k, %K, and %f are only
meaningful when making a key signature (certification), and %c is only
meaningful when using the OpenPGP smartcard.
@item --sig-policy-url @var{string}
@itemx --cert-policy-url @var{string}
@itemx --set-policy-url @var{string}
@opindex sig-policy-url
@opindex cert-policy-url
@opindex set-policy-url
Use @var{string} as a Policy URL for signatures (rfc4880:5.2.3.20). If
you prefix it with an exclamation mark (!), the policy URL packet will
be flagged as critical. @option{--sig-policy-url} sets a policy url for
data signatures. @option{--cert-policy-url} sets a policy url for key
signatures (certifications). @option{--set-policy-url} sets both.
The same %-expandos used for notation data are available here as well.
@item --sig-keyserver-url @var{string}
@opindex sig-keyserver-url
Use @var{string} as a preferred keyserver URL for data signatures. If
you prefix it with an exclamation mark (!), the keyserver URL packet
will be flagged as critical.
The same %-expandos used for notation data are available here as well.
@item --set-filename @var{string}
@opindex set-filename
Use @var{string} as the filename which is stored inside messages.
This overrides the default, which is to use the actual filename of the
file being encrypted. Using the empty string for @var{string}
effectively removes the filename from the output.
@item --for-your-eyes-only
@itemx --no-for-your-eyes-only
@opindex for-your-eyes-only
Set the `for your eyes only' flag in the message. This causes GnuPG to
refuse to save the file unless the @option{--output} option is given,
and PGP to use a "secure viewer" with a claimed Tempest-resistant font
to display the message. This option overrides @option{--set-filename}.
@option{--no-for-your-eyes-only} disables this option.
@item --use-embedded-filename
@itemx --no-use-embedded-filename
@opindex use-embedded-filename
Try to create a file with a name as embedded in the data. This can be
a dangerous option as it enables overwriting files. Defaults to no.
@item --cipher-algo @var{name}
@opindex cipher-algo
Use @var{name} as cipher algorithm. Running the program with the
command @option{--version} yields a list of supported algorithms. If
this is not used the cipher algorithm is selected from the preferences
stored with the key. In general, you do not want to use this option as
it allows you to violate the OpenPGP standard.
@option{--personal-cipher-preferences} is the safe way to accomplish the
same thing.
@item --digest-algo @var{name}
@opindex digest-algo
Use @var{name} as the message digest algorithm. Running the program
with the command @option{--version} yields a list of supported algorithms. In
general, you do not want to use this option as it allows you to
violate the OpenPGP standard. @option{--personal-digest-preferences} is the
safe way to accomplish the same thing.
@item --compress-algo @var{name}
@opindex compress-algo
Use compression algorithm @var{name}. "zlib" is RFC-1950 ZLIB
compression. "zip" is RFC-1951 ZIP compression which is used by PGP.
"bzip2" is a more modern compression scheme that can compress some
things better than zip or zlib, but at the cost of more memory used
during compression and decompression. "uncompressed" or "none"
disables compression. If this option is not used, the default
behavior is to examine the recipient key preferences to see which
algorithms the recipient supports. If all else fails, ZIP is used for
maximum compatibility.
ZLIB may give better compression results than ZIP, as the compression
window size is not limited to 8k. BZIP2 may give even better
compression results than that, but will use a significantly larger
amount of memory while compressing and decompressing. This may be
significant in low memory situations. Note, however, that PGP (all
versions) only supports ZIP compression. Using any algorithm other
than ZIP or "none" will make the message unreadable with PGP. In
general, you do not want to use this option as it allows you to
violate the OpenPGP standard. @option{--personal-compress-preferences} is the
safe way to accomplish the same thing.
@item --cert-digest-algo @var{name}
@opindex cert-digest-algo
Use @var{name} as the message digest algorithm used when signing a
key. Running the program with the command @option{--version} yields a
list of supported algorithms. Be aware that if you choose an algorithm
that GnuPG supports but other OpenPGP implementations do not, then some
users will not be able to use the key signatures you make, or quite
possibly your entire key.
@item --disable-cipher-algo @var{name}
@opindex disable-cipher-algo
Never allow the use of @var{name} as cipher algorithm.
The given name will not be checked so that a later loaded algorithm
will still get disabled.
@item --disable-pubkey-algo @var{name}
@opindex disable-pubkey-algo
Never allow the use of @var{name} as public key algorithm.
The given name will not be checked so that a later loaded algorithm
will still get disabled.
@item --throw-keyids
@itemx --no-throw-keyids
@opindex throw-keyids
Do not put the recipient key IDs into encrypted messages. This helps to
hide the receivers of the message and is a limited countermeasure
against traffic analysis.@footnote{Using a little social engineering
anyone who is able to decrypt the message can check whether one of the
other recipients is the one he suspects.} On the receiving side, it may
slow down the decryption process because all available secret keys must
be tried. @option{--no-throw-keyids} disables this option. This option
is essentially the same as using @option{--hidden-recipient} for all
recipients.
@item --not-dash-escaped
@opindex not-dash-escaped
This option changes the behavior of cleartext signatures
so that they can be used for patch files. You should not
send such an armored file via email because all spaces
and line endings are hashed too. You can not use this
option for data which has 5 dashes at the beginning of a
line, patch files don't have this. A special armor header
line tells GnuPG about this cleartext signature option.
@item --escape-from-lines
@itemx --no-escape-from-lines
@opindex escape-from-lines
Because some mailers change lines starting with "From " to ">From " it
is good to handle such lines in a special way when creating cleartext
signatures to prevent the mail system from breaking the signature. Note
that all other PGP versions do it this way too. Enabled by
default. @option{--no-escape-from-lines} disables this option.
@item --passphrase-repeat @var{n}
@opindex passphrase-repeat
Specify how many times @command{@gpgname} will request a new
passphrase be repeated. This is useful for helping memorize a
passphrase. Defaults to 1 repetition.
@item --passphrase-fd @var{n}
@opindex passphrase-fd
Read the passphrase from file descriptor @var{n}. Only the first line
will be read from file descriptor @var{n}. If you use 0 for @var{n},
the passphrase will be read from STDIN. This can only be used if only
one passphrase is supplied.
Note that since Version 2.0 this passphrase is only used if the
option @option{--batch} has also been given. Since Version 2.1
the @option{--pinentry-mode} also needs to be set to @code{loopback}.
@item --passphrase-file @var{file}
@opindex passphrase-file
Read the passphrase from file @var{file}. Only the first line will
be read from file @var{file}. This can only be used if only one
passphrase is supplied. Obviously, a passphrase stored in a file is
of questionable security if other users can read this file. Don't use
this option if you can avoid it.
Note that since Version 2.0 this passphrase is only used if the
option @option{--batch} has also been given. Since Version 2.1
the @option{--pinentry-mode} also needs to be set to @code{loopback}.
@item --passphrase @var{string}
@opindex passphrase
Use @var{string} as the passphrase. This can only be used if only one
passphrase is supplied. Obviously, this is of very questionable
security on a multi-user system. Don't use this option if you can
avoid it.
Note that since Version 2.0 this passphrase is only used if the
option @option{--batch} has also been given. Since Version 2.1
the @option{--pinentry-mode} also needs to be set to @code{loopback}.
@item --pinentry-mode @var{mode}
@opindex pinentry-mode
Set the pinentry mode to @var{mode}. Allowed values for @var{mode}
are:
@table @asis
@item default
Use the default of the agent, which is @code{ask}.
@item ask
Force the use of the Pinentry.
@item cancel
Emulate use of Pinentry's cancel button.
@item error
Return a Pinentry error (``No Pinentry'').
@item loopback
Redirect Pinentry queries to the caller. Note that in contrast to
Pinentry the user is not prompted again if he enters a bad password.
@end table
@item --no-symkey-cache
@opindex no-symkey-cache
Disable the passphrase cache used for symmetrical en- and decryption.
This cache is based on the message specific salt value
(cf. @option{--s2k-mode}).
@item --request-origin @var{origin}
@opindex request-origin
Tell gpg to assume that the operation ultimately originated at
@var{origin}. Depending on the origin certain restrictions are applied
and the Pinentry may include an extra note on the origin. Supported
values for @var{origin} are: @code{local} which is the default,
@code{remote} to indicate a remote origin or @code{browser} for an
operation requested by a web browser.
@item --command-fd @var{n}
@opindex command-fd
This is a replacement for the deprecated shared-memory IPC mode.
If this option is enabled, user input on questions is not expected
from the TTY but from the given file descriptor. It should be used
together with @option{--status-fd}. See the file doc/DETAILS in the source
distribution for details on how to use it.
@item --command-file @var{file}
@opindex command-file
Same as @option{--command-fd}, except the commands are read out of file
@var{file}
@item --allow-non-selfsigned-uid
@itemx --no-allow-non-selfsigned-uid
@opindex allow-non-selfsigned-uid
Allow the import and use of keys with user IDs which are not
self-signed. This is not recommended, as a non self-signed user ID is
trivial to forge. @option{--no-allow-non-selfsigned-uid} disables.
@item --allow-freeform-uid
@opindex allow-freeform-uid
Disable all checks on the form of the user ID while generating a new
one. This option should only be used in very special environments as
it does not ensure the de-facto standard format of user IDs.
@item --ignore-time-conflict
@opindex ignore-time-conflict
GnuPG normally checks that the timestamps associated with keys and
signatures have plausible values. However, sometimes a signature
seems to be older than the key due to clock problems. This option
makes these checks just a warning. See also @option{--ignore-valid-from} for
timestamp issues on subkeys.
@item --ignore-valid-from
@opindex ignore-valid-from
GnuPG normally does not select and use subkeys created in the future.
This option allows the use of such keys and thus exhibits the
pre-1.0.7 behaviour. You should not use this option unless there
is some clock problem. See also @option{--ignore-time-conflict} for timestamp
issues with signatures.
@item --ignore-crc-error
@opindex ignore-crc-error
The ASCII armor used by OpenPGP is protected by a CRC checksum against
transmission errors. Occasionally the CRC gets mangled somewhere on
the transmission channel but the actual content (which is protected by
the OpenPGP protocol anyway) is still okay. This option allows GnuPG
to ignore CRC errors.
@item --ignore-mdc-error
@opindex ignore-mdc-error
This option changes a MDC integrity protection failure into a warning.
It is required to decrypt old messages which did not use an MDC. It
may also be useful if a message is partially garbled, but it is
necessary to get as much data as possible out of that garbled message.
Be aware that a missing or failed MDC can be an indication of an
attack. Use with great caution; see also option @option{--rfc2440}.
@item --allow-weak-digest-algos
@opindex allow-weak-digest-algos
Signatures made with known-weak digest algorithms are normally
rejected with an ``invalid digest algorithm'' message. This option
allows the verification of signatures made with such weak algorithms.
MD5 is the only digest algorithm considered weak by default. See also
@option{--weak-digest} to reject other digest algorithms.
@item --weak-digest @var{name}
@opindex weak-digest
Treat the specified digest algorithm as weak. Signatures made over
weak digests algorithms are normally rejected. This option can be
supplied multiple times if multiple algorithms should be considered
weak. See also @option{--allow-weak-digest-algos} to disable
rejection of weak digests. MD5 is always considered weak, and does
not need to be listed explicitly.
@item --no-default-keyring
@opindex no-default-keyring
Do not add the default keyrings to the list of keyrings. Note that
GnuPG will not operate without any keyrings, so if you use this option
and do not provide alternate keyrings via @option{--keyring} or
@option{--secret-keyring}, then GnuPG will still use the default public or
secret keyrings.
@item --no-keyring
@opindex no-keyring
Do not add use any keyrings even if specified as options.
@item --skip-verify
@opindex skip-verify
Skip the signature verification step. This may be
used to make the decryption faster if the signature
verification is not needed.
@item --with-key-data
@opindex with-key-data
Print key listings delimited by colons (like @option{--with-colons}) and
print the public key data.
@item --list-signatures
@opindex list-signatures
@itemx --list-sigs
@opindex list-sigs
Same as @option{--list-keys}, but the signatures are listed too. This
command has the same effect as using @option{--list-keys} with
@option{--with-sig-list}. Note that in contrast to
@option{--check-signatures} the key signatures are not verified. This
command can be used to create a list of signing keys missing in the
lcoal keyring; for example:
@example
gpg --list-sigs --with-colons USERID | \
awk -F: '$1=="sig" && $2=="?" @{if($13)@{print $13@}else@{print $5@}@}'
@end example
@item --fast-list-mode
@opindex fast-list-mode
Changes the output of the list commands to work faster; this is achieved
by leaving some parts empty. Some applications don't need the user ID
and the trust information given in the listings. By using this options
they can get a faster listing. The exact behaviour of this option may
change in future versions. If you are missing some information, don't
use this option.
@item --no-literal
@opindex no-literal
This is not for normal use. Use the source to see for what it might be useful.
@item --set-filesize
@opindex set-filesize
This is not for normal use. Use the source to see for what it might be useful.
@item --show-session-key
@opindex show-session-key
Display the session key used for one message. See
@option{--override-session-key} for the counterpart of this option.
We think that Key Escrow is a Bad Thing; however the user should have
the freedom to decide whether to go to prison or to reveal the content
of one specific message without compromising all messages ever
encrypted for one secret key.
You can also use this option if you receive an encrypted message which
is abusive or offensive, to prove to the administrators of the
messaging system that the ciphertext transmitted corresponds to an
inappropriate plaintext so they can take action against the offending
user.
@item --override-session-key @var{string}
@itemx --override-session-key-fd @var{fd}
@opindex override-session-key
Don't use the public key but the session key @var{string} respective
the session key taken from the first line read from file descriptor
@var{fd}. The format of this string is the same as the one printed
by @option{--show-session-key}. This option is normally not used but
comes handy in case someone forces you to reveal the content of an
encrypted message; using this option you can do this without handing
out the secret key. Note that using @option{--override-session-key}
may reveal the session key to all local users via the global process
table.
@item --ask-sig-expire
@itemx --no-ask-sig-expire
@opindex ask-sig-expire
When making a data signature, prompt for an expiration time. If this
option is not specified, the expiration time set via
@option{--default-sig-expire} is used. @option{--no-ask-sig-expire}
disables this option.
@item --default-sig-expire
@opindex default-sig-expire
The default expiration time to use for signature expiration. Valid
values are "0" for no expiration, a number followed by the letter d
(for days), w (for weeks), m (for months), or y (for years) (for
example "2m" for two months, or "5y" for five years), or an absolute
date in the form YYYY-MM-DD. Defaults to "0".
@item --ask-cert-expire
@itemx --no-ask-cert-expire
@opindex ask-cert-expire
When making a key signature, prompt for an expiration time. If this
option is not specified, the expiration time set via
@option{--default-cert-expire} is used. @option{--no-ask-cert-expire}
disables this option.
@item --default-cert-expire
@opindex default-cert-expire
The default expiration time to use for key signature expiration.
Valid values are "0" for no expiration, a number followed by the
letter d (for days), w (for weeks), m (for months), or y (for years)
(for example "2m" for two months, or "5y" for five years), or an
absolute date in the form YYYY-MM-DD. Defaults to "0".
@item --default-new-key-algo @var{string}
@opindex default-new-key-algo @var{string}
This option can be used to change the default algorithms for key
generation. The @var{string} is similar to the arguments required for
-the command @option{--quick-add-key} but slighly different. For
+the command @option{--quick-add-key} but slightly different. For
example the current default of @code{"rsa2048/cert,sign+rsa2048/encr"}
(or @code{"rsa3072"}) can be changed to the value of what we currently
call future default, which is @code{"ed25519/cert,sign+cv25519/encr"}.
You need to consult the source code to learn the details. Note that
the advanced key generation commands can always be used to specify a
key algorithm directly.
@item --allow-secret-key-import
@opindex allow-secret-key-import
This is an obsolete option and is not used anywhere.
@item --allow-multiple-messages
@item --no-allow-multiple-messages
@opindex allow-multiple-messages
Allow processing of multiple OpenPGP messages contained in a single file
or stream. Some programs that call GPG are not prepared to deal with
multiple messages being processed together, so this option defaults to
no. Note that versions of GPG prior to 1.4.7 always allowed multiple
messages.
Warning: Do not use this option unless you need it as a temporary
workaround!
@item --enable-special-filenames
@opindex enable-special-filenames
This option enables a mode in which filenames of the form
@file{-&n}, where n is a non-negative decimal number,
refer to the file descriptor n and not to a file with that name.
@item --no-expensive-trust-checks
@opindex no-expensive-trust-checks
Experimental use only.
@item --preserve-permissions
@opindex preserve-permissions
Don't change the permissions of a secret keyring back to user
read/write only. Use this option only if you really know what you are doing.
@item --default-preference-list @var{string}
@opindex default-preference-list
Set the list of default preferences to @var{string}. This preference
list is used for new keys and becomes the default for "setpref" in the
edit menu.
@item --default-keyserver-url @var{name}
@opindex default-keyserver-url
Set the default keyserver URL to @var{name}. This keyserver will be
used as the keyserver URL when writing a new self-signature on a key,
which includes key generation and changing preferences.
@item --list-config
@opindex list-config
Display various internal configuration parameters of GnuPG. This option
is intended for external programs that call GnuPG to perform tasks, and
is thus not generally useful. See the file @file{doc/DETAILS} in the
source distribution for the details of which configuration items may be
listed. @option{--list-config} is only usable with
@option{--with-colons} set.
@item --list-gcrypt-config
@opindex list-gcrypt-config
Display various internal configuration parameters of Libgcrypt.
@item --gpgconf-list
@opindex gpgconf-list
This command is similar to @option{--list-config} but in general only
internally used by the @command{gpgconf} tool.
@item --gpgconf-test
@opindex gpgconf-test
This is more or less dummy action. However it parses the configuration
file and returns with failure if the configuration file would prevent
@command{@gpgname} from startup. Thus it may be used to run a syntax check
on the configuration file.
@end table
@c *******************************
@c ******* Deprecated ************
@c *******************************
@node Deprecated Options
@subsection Deprecated options
@table @gnupgtabopt
@item --show-photos
@itemx --no-show-photos
@opindex show-photos
Causes @option{--list-keys}, @option{--list-signatures},
@option{--list-public-keys}, @option{--list-secret-keys}, and verifying
a signature to also display the photo ID attached to the key, if
any. See also @option{--photo-viewer}. These options are deprecated. Use
@option{--list-options [no-]show-photos} and/or @option{--verify-options
[no-]show-photos} instead.
@item --show-keyring
@opindex show-keyring
Display the keyring name at the head of key listings to show which
keyring a given key resides on. This option is deprecated: use
@option{--list-options [no-]show-keyring} instead.
@item --always-trust
@opindex always-trust
Identical to @option{--trust-model always}. This option is deprecated.
@item --show-notation
@itemx --no-show-notation
@opindex show-notation
Show signature notations in the @option{--list-signatures} or @option{--check-signatures} listings
as well as when verifying a signature with a notation in it. These
options are deprecated. Use @option{--list-options [no-]show-notation}
and/or @option{--verify-options [no-]show-notation} instead.
@item --show-policy-url
@itemx --no-show-policy-url
@opindex show-policy-url
Show policy URLs in the @option{--list-signatures} or @option{--check-signatures}
listings as well as when verifying a signature with a policy URL in
it. These options are deprecated. Use @option{--list-options
[no-]show-policy-url} and/or @option{--verify-options
[no-]show-policy-url} instead.
@end table
@c *******************************************
@c *************** ****************
@c *************** FILES ****************
@c *************** ****************
@c *******************************************
@mansect files
@node GPG Configuration
@section Configuration files
There are a few configuration files to control certain aspects of
@command{@gpgname}'s operation. Unless noted, they are expected in the
current home directory (@pxref{option --homedir}).
@table @file
@item gpg.conf
@efindex gpg.conf
This is the standard configuration file read by @command{@gpgname} on
startup. It may contain any valid long option; the leading two dashes
may not be entered and the option may not be abbreviated. This default
name may be changed on the command line (@pxref{gpg-option --options}).
You should backup this file.
@end table
Note that on larger installations, it is useful to put predefined files
into the directory @file{@value{SYSCONFSKELDIR}} so that
newly created users start up with a working configuration.
For existing users a small
helper script is provided to create these files (@pxref{addgnupghome}).
For internal purposes @command{@gpgname} creates and maintains a few other
files; They all live in the current home directory (@pxref{option
--homedir}). Only the @command{@gpgname} program may modify these files.
@table @file
@item ~/.gnupg
@efindex ~/.gnupg
This is the default home directory which is used if neither the
environment variable @code{GNUPGHOME} nor the option
@option{--homedir} is given.
@item ~/.gnupg/pubring.gpg
@efindex pubring.gpg
The public keyring. You should backup this file.
@item ~/.gnupg/pubring.gpg.lock
The lock file for the public keyring.
@item ~/.gnupg/pubring.kbx
@efindex pubring.kbx
The public keyring using a different format. This file is shared
with @command{gpgsm}. You should backup this file.
@item ~/.gnupg/pubring.kbx.lock
The lock file for @file{pubring.kbx}.
@item ~/.gnupg/secring.gpg
@efindex secring.gpg
A secret keyring as used by GnuPG versions before 2.1. It is not
used by GnuPG 2.1 and later.
@item ~/.gnupg/secring.gpg.lock
The lock file for the secret keyring.
@item ~/.gnupg/.gpg-v21-migrated
@efindex .gpg-v21-migrated
File indicating that a migration to GnuPG 2.1 has been done.
@item ~/.gnupg/trustdb.gpg
@efindex trustdb.gpg
The trust database. There is no need to backup this file; it is better
to backup the ownertrust values (@pxref{option --export-ownertrust}).
@item ~/.gnupg/trustdb.gpg.lock
The lock file for the trust database.
@item ~/.gnupg/random_seed
@efindex random_seed
A file used to preserve the state of the internal random pool.
@item ~/.gnupg/openpgp-revocs.d/
@efindex openpgp-revocs.d
This is the directory where gpg stores pre-generated revocation
certificates. The file name corresponds to the OpenPGP fingerprint of
the respective key. It is suggested to backup those certificates and
if the primary private key is not stored on the disk to move them to
an external storage device. Anyone who can access theses files is
able to revoke the corresponding key. You may want to print them out.
You should backup all files in this directory and take care to keep
this backup closed away.
@end table
Operation is further controlled by a few environment variables:
@table @asis
@item HOME
@efindex HOME
Used to locate the default home directory.
@item GNUPGHOME
@efindex GNUPGHOME
If set directory used instead of "~/.gnupg".
@item GPG_AGENT_INFO
This variable is obsolete; it was used by GnuPG versions before 2.1.
@item PINENTRY_USER_DATA
@efindex PINENTRY_USER_DATA
This value is passed via gpg-agent to pinentry. It is useful to convey
extra information to a custom pinentry.
@item COLUMNS
@itemx LINES
@efindex COLUMNS
@efindex LINES
Used to size some displays to the full size of the screen.
@item LANGUAGE
@efindex LANGUAGE
Apart from its use by GNU, it is used in the W32 version to override the
language selection done through the Registry. If used and set to a
valid and available language name (@var{langid}), the file with the
translation is loaded from
@code{@var{gpgdir}/gnupg.nls/@var{langid}.mo}. Here @var{gpgdir} is the
directory out of which the gpg binary has been loaded. If it can't be
loaded the Registry is tried and as last resort the native Windows
locale system is used.
@end table
@c *******************************************
@c *************** ****************
@c *************** EXAMPLES ****************
@c *************** ****************
@c *******************************************
@mansect examples
@node GPG Examples
@section Examples
@table @asis
@item gpg -se -r @code{Bob} @code{file}
sign and encrypt for user Bob
@item gpg --clear-sign @code{file}
make a cleartext signature
@item gpg -sb @code{file}
make a detached signature
@item gpg -u 0x12345678 -sb @code{file}
make a detached signature with the key 0x12345678
@item gpg --list-keys @code{user_ID}
show keys
@item gpg --fingerprint @code{user_ID}
show fingerprint
@item gpg --verify @code{pgpfile}
@itemx gpg --verify @code{sigfile} [@code{datafile}]
Verify the signature of the file but do not output the data unless
requested. The second form is used for detached signatures, where
@code{sigfile} is the detached signature (either ASCII armored or
binary) and @code{datafile} are the signed data; if this is not given, the name of the
file holding the signed data is constructed by cutting off the
extension (".asc" or ".sig") of @code{sigfile} or by asking the user
for the filename. If the option @option{--output} is also used the
signed data is written to the file specified by that option; use
@code{-} to write the signed data to stdout.
@end table
@c *******************************************
@c *************** ****************
@c *************** USER ID ****************
@c *************** ****************
@c *******************************************
@mansect how to specify a user id
@ifset isman
@include specify-user-id.texi
@end ifset
@mansect filter expressions
@chapheading FILTER EXPRESSIONS
The options @option{--import-filter} and @option{--export-filter} use
expressions with this syntax (square brackets indicate an optional
part and curly braces a repetition, white space between the elements
are allowed):
@c man:.RS
@example
[lc] @{[@{flag@}] PROPNAME op VALUE [lc]@}
@end example
@c man:.RE
The name of a property (@var{PROPNAME}) may only consist of letters,
digits and underscores. The description for the filter type
describes which properties are defined. If an undefined property is
used it evaluates to the empty string. Unless otherwise noted, the
@var{VALUE} must always be given and may not be the empty string. No
quoting is defined for the value, thus the value may not contain the
strings @code{&&} or @code{||}, which are used as logical connection
operators. The flag @code{--} can be used to remove this restriction.
Numerical values are computed as long int; standard C notation
applies. @var{lc} is the logical connection operator; either
@code{&&} for a conjunction or @code{||} for a disjunction. A
conjunction is assumed at the begin of an expression. Conjunctions
have higher precedence than disjunctions. If @var{VALUE} starts with
one of the characters used in any @var{op} a space after the
@var{op} is required.
@noindent
The supported operators (@var{op}) are:
@table @asis
@item =~
Substring must match.
@item !~
Substring must not match.
@item =
The full string must match.
@item <>
The full string must not match.
@item ==
The numerical value must match.
@item !=
The numerical value must not match.
@item <=
The numerical value of the field must be LE than the value.
@item <
The numerical value of the field must be LT than the value.
@item >
The numerical value of the field must be GT than the value.
@item >=
The numerical value of the field must be GE than the value.
@item -le
The string value of the field must be less or equal than the value.
@item -lt
The string value of the field must be less than the value.
@item -gt
The string value of the field must be greater than the value.
@item -ge
The string value of the field must be greater or equal than the value.
@item -n
True if value is not empty (no value allowed).
@item -z
True if value is empty (no value allowed).
@item -t
Alias for "PROPNAME != 0" (no value allowed).
@item -f
Alias for "PROPNAME == 0" (no value allowed).
@end table
@noindent
Values for @var{flag} must be space separated. The supported flags
are:
@table @asis
@item --
@var{VALUE} spans to the end of the expression.
@item -c
The string match in this part is done case-sensitive.
@end table
The filter options concatenate several specifications for a filter of
the same type. For example the four options in this example:
@c man:.RS
@example
--import-option keep-uid="uid =~ Alfa"
--import-option keep-uid="&& uid !~ Test"
--import-option keep-uid="|| uid =~ Alpha"
--import-option keep-uid="uid !~ Test"
@end example
@c man:.RE
@noindent
which is equivalent to
@c man:.RS
@example
--import-option \
keep-uid="uid =~ Alfa" && uid !~ Test" || uid =~ Alpha" && "uid !~ Test"
@end example
@c man:.RE
imports only the user ids of a key containing the strings "Alfa"
or "Alpha" but not the string "test".
@mansect trust values
@ifset isman
@include trust-values.texi
@end ifset
@mansect return value
@chapheading RETURN VALUE
The program returns 0 if everything was fine, 1 if at least
a signature was bad, and other error codes for fatal errors.
@mansect warnings
@chapheading WARNINGS
Use a *good* password for your user account and a *good* passphrase
to protect your secret key. This passphrase is the weakest part of the
whole system. Programs to do dictionary attacks on your secret keyring
are very easy to write and so you should protect your "~/.gnupg/"
directory very well.
Keep in mind that, if this program is used over a network (telnet), it
is *very* easy to spy out your passphrase!
If you are going to verify detached signatures, make sure that the
program knows about it; either give both filenames on the command line
or use @samp{-} to specify STDIN.
For scripted or other unattended use of @command{gpg} make sure to use
the machine-parseable interface and not the default interface which is
intended for direct use by humans. The machine-parseable interface
provides a stable and well documented API independent of the locale or
future changes of @command{gpg}. To enable this interface use the
options @option{--with-colons} and @option{--status-fd}. For certain
operations the option @option{--command-fd} may come handy too. See
this man page and the file @file{DETAILS} for the specification of the
interface. Note that the GnuPG ``info'' pages as well as the PDF
version of the GnuPG manual features a chapter on unattended use of
GnuPG. As an alternative the library @command{GPGME} can be used as a
high-level abstraction on top of that interface.
@mansect interoperability
@chapheading INTEROPERABILITY WITH OTHER OPENPGP PROGRAMS
GnuPG tries to be a very flexible implementation of the OpenPGP
standard. In particular, GnuPG implements many of the optional parts
of the standard, such as the SHA-512 hash, and the ZLIB and BZIP2
compression algorithms. It is important to be aware that not all
OpenPGP programs implement these optional algorithms and that by
forcing their use via the @option{--cipher-algo},
@option{--digest-algo}, @option{--cert-digest-algo}, or
@option{--compress-algo} options in GnuPG, it is possible to create a
perfectly valid OpenPGP message, but one that cannot be read by the
intended recipient.
There are dozens of variations of OpenPGP programs available, and each
supports a slightly different subset of these optional algorithms.
For example, until recently, no (unhacked) version of PGP supported
the BLOWFISH cipher algorithm. A message using BLOWFISH simply could
not be read by a PGP user. By default, GnuPG uses the standard
OpenPGP preferences system that will always do the right thing and
create messages that are usable by all recipients, regardless of which
OpenPGP program they use. Only override this safe default if you
really know what you are doing.
If you absolutely must override the safe default, or if the preferences
on a given key are invalid for some reason, you are far better off using
the @option{--pgp6}, @option{--pgp7}, or @option{--pgp8} options. These
options are safe as they do not force any particular algorithms in
violation of OpenPGP, but rather reduce the available algorithms to a
"PGP-safe" list.
@mansect bugs
@chapheading BUGS
On older systems this program should be installed as setuid(root). This
is necessary to lock memory pages. Locking memory pages prevents the
operating system from writing memory pages (which may contain
passphrases or other sensitive material) to disk. If you get no
warning message about insecure memory your operating system supports
locking without being root. The program drops root privileges as soon
as locked memory is allocated.
Note also that some systems (especially laptops) have the ability to
``suspend to disk'' (also known as ``safe sleep'' or ``hibernate'').
This writes all memory to disk before going into a low power or even
powered off mode. Unless measures are taken in the operating system
to protect the saved memory, passphrases or other sensitive material
may be recoverable from it later.
Before you report a bug you should first search the mailing list
archives for similar problems and second check whether such a bug has
already been reported to our bug tracker at @url{https://bugs.gnupg.org}.
@c *******************************************
@c *************** **************
@c *************** UNATTENDED **************
@c *************** **************
@c *******************************************
@manpause
@node Unattended Usage of GPG
@section Unattended Usage
@command{@gpgname} is often used as a backend engine by other software. To help
with this a machine interface has been defined to have an unambiguous
way to do this. The options @option{--status-fd} and @option{--batch}
are almost always required for this.
@menu
* Programmatic use of GnuPG:: Programmatic use of GnuPG
* Ephemeral home directories:: Ephemeral home directories
* The quick key manipulation interface:: The quick key manipulation interface
* Unattended GPG key generation:: Unattended key generation
@end menu
@node Programmatic use of GnuPG
@subsection Programmatic use of GnuPG
Please consider using GPGME instead of calling @command{@gpgname}
directly. GPGME offers a stable, backend-independent interface for
many cryptographic operations. It supports OpenPGP and S/MIME, and
also allows interaction with various GnuPG components.
GPGME provides a C-API, and comes with bindings for C++, Qt, and
Python. Bindings for other languages are available.
@node Ephemeral home directories
@subsection Ephemeral home directories
Sometimes you want to contain effects of some operation, for example
you want to import a key to inspect it, but you do not want this key
to be added to your keyring. In earlier versions of GnuPG, it was
possible to specify alternate keyring files for both public and secret
keys. In modern GnuPG versions, however, we changed how secret keys
are stored in order to better protect secret key material, and it was
not possible to preserve this interface.
The preferred way to do this is to use ephemeral home directories.
This technique works across all versions of GnuPG.
Create a temporary directory, create (or copy) a configuration that
meets your needs, make @command{@gpgname} use this directory either
using the environment variable @var{GNUPGHOME}, or the option
@option{--homedir}. GPGME supports this too on a per-context basis,
by modifying the engine info of contexts. Now execute whatever
operation you like, import and export key material as necessary. Once
finished, you can delete the directory. All GnuPG backend services
that were started will detect this and shut down.
@node The quick key manipulation interface
@subsection The quick key manipulation interface
Recent versions of GnuPG have an interface to manipulate keys without
using the interactive command @option{--edit-key}. This interface was
added mainly for the benefit of GPGME (please consider using GPGME,
see the manual subsection ``Programmatic use of GnuPG''). This
interface is described in the subsection ``How to manage your keys''.
@node Unattended GPG key generation
@subsection Unattended key generation
The command @option{--generate-key} may be used along with the option
@option{--batch} for unattended key generation. This is the most
flexible way of generating keys, but it is also the most complex one.
Consider using the quick key manipulation interface described in the
previous subsection ``The quick key manipulation interface''.
The parameters for the key are either read from stdin or given as a
file on the command line. The format of the parameter file is as
follows:
@itemize @bullet
@item Text only, line length is limited to about 1000 characters.
@item UTF-8 encoding must be used to specify non-ASCII characters.
@item Empty lines are ignored.
@item Leading and trailing white space is ignored.
@item A hash sign as the first non white space character indicates
a comment line.
@item Control statements are indicated by a leading percent sign, the
arguments are separated by white space from the keyword.
@item Parameters are specified by a keyword, followed by a colon. Arguments
are separated by white space.
@item
The first parameter must be @samp{Key-Type}; control statements may be
placed anywhere.
@item
The order of the parameters does not matter except for @samp{Key-Type}
which must be the first parameter. The parameters are only used for
the generated keyblock (primary and subkeys); parameters from previous
sets are not used. Some syntactically checks may be performed.
@item
Key generation takes place when either the end of the parameter file
is reached, the next @samp{Key-Type} parameter is encountered or at the
control statement @samp{%commit} is encountered.
@end itemize
@noindent
Control statements:
@table @asis
@item %echo @var{text}
Print @var{text} as diagnostic.
@item %dry-run
Suppress actual key generation (useful for syntax checking).
@item %commit
Perform the key generation. Note that an implicit commit is done at
the next @asis{Key-Type} parameter.
@item %pubring @var{filename}
Do not write the key to the default or commandline given keyring but
to @var{filename}. This must be given before the first commit to take
place, duplicate specification of the same filename is ignored, the
last filename before a commit is used. The filename is used until a
new filename is used (at commit points) and all keys are written to
that file. If a new filename is given, this file is created (and
overwrites an existing one).
See the previous subsection ``Ephemeral home directories'' for a more
robust way to contain side-effects.
@item %secring @var{filename}
This option is a no-op for GnuPG 2.1 and later.
See the previous subsection ``Ephemeral home directories''.
@item %ask-passphrase
@itemx %no-ask-passphrase
This option is a no-op for GnuPG 2.1 and later.
@item %no-protection
Using this option allows the creation of keys without any passphrase
protection. This option is mainly intended for regression tests.
@item %transient-key
If given the keys are created using a faster and a somewhat less
secure random number generator. This option may be used for keys
which are only used for a short time and do not require full
cryptographic strength. It takes only effect if used together with
the control statement @samp{%no-protection}.
@end table
@noindent
General Parameters:
@table @asis
@item Key-Type: @var{algo}
Starts a new parameter block by giving the type of the primary
key. The algorithm must be capable of signing. This is a required
parameter. @var{algo} may either be an OpenPGP algorithm number or a
string with the algorithm name. The special value @samp{default} may
be used for @var{algo} to create the default key type; in this case a
@samp{Key-Usage} shall not be given and @samp{default} also be used
for @samp{Subkey-Type}.
@item Key-Length: @var{nbits}
The requested length of the generated key in bits. The default is
returned by running the command @samp{@gpgname --gpgconf-list}.
@item Key-Grip: @var{hexstring}
This is optional and used to generate a CSR or certificate for an
already existing key. Key-Length will be ignored when given.
@item Key-Usage: @var{usage-list}
Space or comma delimited list of key usages. Allowed values are
@samp{encrypt}, @samp{sign}, and @samp{auth}. This is used to
generate the key flags. Please make sure that the algorithm is
capable of this usage. Note that OpenPGP requires that all primary
keys are capable of certification, so no matter what usage is given
here, the @samp{cert} flag will be on. If no @samp{Key-Usage} is
specified and the @samp{Key-Type} is not @samp{default}, all allowed
usages for that particular algorithm are used; if it is not given but
@samp{default} is used the usage will be @samp{sign}.
@item Subkey-Type: @var{algo}
This generates a secondary key (subkey). Currently only one subkey
can be handled. See also @samp{Key-Type} above.
@item Subkey-Length: @var{nbits}
Length of the secondary key (subkey) in bits. The default is returned
by running the command @samp{@gpgname --gpgconf-list}.
@item Subkey-Usage: @var{usage-list}
Key usage lists for a subkey; similar to @samp{Key-Usage}.
@item Passphrase: @var{string}
If you want to specify a passphrase for the secret key, enter it here.
Default is to use the Pinentry dialog to ask for a passphrase.
@item Name-Real: @var{name}
@itemx Name-Comment: @var{comment}
@itemx Name-Email: @var{email}
The three parts of a user name. Remember to use UTF-8 encoding here.
If you don't give any of them, no user ID is created.
@item Expire-Date: @var{iso-date}|(@var{number}[d|w|m|y])
Set the expiration date for the key (and the subkey). It may either
be entered in ISO date format (e.g. "20000815T145012") or as number of
days, weeks, month or years after the creation date. The special
notation "seconds=N" is also allowed to specify a number of seconds
since creation. Without a letter days are assumed. Note that there
is no check done on the overflow of the type used by OpenPGP for
timestamps. Thus you better make sure that the given value make
sense. Although OpenPGP works with time intervals, GnuPG uses an
absolute value internally and thus the last year we can represent is
2105.
@item Creation-Date: @var{iso-date}
Set the creation date of the key as stored in the key information and
which is also part of the fingerprint calculation. Either a date like
"1986-04-26" or a full timestamp like "19860426T042640" may be used.
The time is considered to be UTC. The special notation "seconds=N"
may be used to directly specify a the number of seconds since Epoch
(Unix time). If it is not given the current time is used.
@item Preferences: @var{string}
Set the cipher, hash, and compression preference values for this key.
This expects the same type of string as the sub-command @samp{setpref}
in the @option{--edit-key} menu.
@item Revoker: @var{algo}:@var{fpr} [sensitive]
Add a designated revoker to the generated key. Algo is the public key
algorithm of the designated revoker (i.e. RSA=1, DSA=17, etc.)
@var{fpr} is the fingerprint of the designated revoker. The optional
@samp{sensitive} flag marks the designated revoker as sensitive
information. Only v4 keys may be designated revokers.
@item Keyserver: @var{string}
This is an optional parameter that specifies the preferred keyserver
URL for the key.
@item Handle: @var{string}
This is an optional parameter only used with the status lines
KEY_CREATED and KEY_NOT_CREATED. @var{string} may be up to 100
characters and should not contain spaces. It is useful for batch key
generation to associate a key parameter block with a status line.
@end table
@noindent
Here is an example on how to create a key in an ephemeral home directory:
@smallexample
$ export GNUPGHOME="$(mktemp -d)"
$ cat >foo <<EOF
%echo Generating a basic OpenPGP key
Key-Type: DSA
Key-Length: 1024
Subkey-Type: ELG-E
Subkey-Length: 1024
Name-Real: Joe Tester
Name-Comment: with stupid passphrase
Name-Email: joe@@foo.bar
Expire-Date: 0
Passphrase: abc
# Do a commit here, so that we can later print "done" :-)
%commit
%echo done
EOF
$ @gpgname --batch --generate-key foo
[...]
$ @gpgname --list-secret-keys
/tmp/tmp.0NQxB74PEf/pubring.kbx
-------------------------------
sec dsa1024 2016-12-16 [SCA]
768E895903FC1C44045C8CB95EEBDB71E9E849D0
uid [ultimate] Joe Tester (with stupid passphrase) <joe@@foo.bar>
ssb elg1024 2016-12-16 [E]
@end smallexample
@noindent
If you want to create a key with the default algorithms you would use
these parameters:
@smallexample
%echo Generating a default key
Key-Type: default
Subkey-Type: default
Name-Real: Joe Tester
Name-Comment: with stupid passphrase
Name-Email: joe@@foo.bar
Expire-Date: 0
Passphrase: abc
# Do a commit here, so that we can later print "done" :-)
%commit
%echo done
@end smallexample
@mansect see also
@ifset isman
@command{gpgv}(1),
@command{gpgsm}(1),
@command{gpg-agent}(1)
@end ifset
@include see-also-note.texi
diff --git a/doc/scdaemon.texi b/doc/scdaemon.texi
index a9e6d1e7a..81af28105 100644
--- a/doc/scdaemon.texi
+++ b/doc/scdaemon.texi
@@ -1,770 +1,770 @@
@c Copyright (C) 2002 Free Software Foundation, Inc.
@c This is part of the GnuPG manual.
@c For copying conditions, see the file gnupg.texi.
@include defs.inc
@node Invoking SCDAEMON
@chapter Invoking the SCDAEMON
@cindex SCDAEMON command options
@cindex command options
@cindex options, SCDAEMON command
@manpage scdaemon.1
@ifset manverb
.B scdaemon
\- Smartcard daemon for the GnuPG system
@end ifset
@mansect synopsis
@ifset manverb
.B scdaemon
.RB [ \-\-homedir
.IR dir ]
.RB [ \-\-options
.IR file ]
.RI [ options ]
.B \-\-server
.br
.B scdaemon
.RB [ \-\-homedir
.IR dir ]
.RB [ \-\-options
.IR file ]
.RI [ options ]
.B \-\-daemon
.RI [ command_line ]
@end ifset
@mansect description
The @command{scdaemon} is a daemon to manage smartcards. It is usually
invoked by @command{gpg-agent} and in general not used directly.
@manpause
@xref{Option Index}, for an index to @command{scdaemon}'s commands and
options.
@mancont
@menu
* Scdaemon Commands:: List of all commands.
* Scdaemon Options:: List of all options.
* Card applications:: Description of card applications.
* Scdaemon Configuration:: Configuration files.
* Scdaemon Examples:: Some usage examples.
* Scdaemon Protocol:: The protocol the daemon uses.
@end menu
@mansect commands
@node Scdaemon Commands
@section Commands
Commands are not distinguished from options except for the fact that
only one command is allowed.
@table @gnupgtabopt
@item --version
@opindex version
Print the program version and licensing information. Note that you cannot
abbreviate this command.
@item --help, -h
@opindex help
Print a usage message summarizing the most useful command-line options.
Note that you cannot abbreviate this command.
@item --dump-options
@opindex dump-options
Print a list of all available options and commands. Note that you cannot
abbreviate this command.
@item --server
@opindex server
Run in server mode and wait for commands on the @code{stdin}. The
default mode is to create a socket and listen for commands there.
@item --multi-server
@opindex multi-server
Run in server mode and wait for commands on the @code{stdin} as well as
on an additional Unix Domain socket. The server command @code{GETINFO}
may be used to get the name of that extra socket.
@item --daemon
@opindex daemon
Run the program in the background. This option is required to prevent
it from being accidentally running in the background.
@end table
@mansect options
@node Scdaemon Options
@section Option Summary
@table @gnupgtabopt
@item --options @var{file}
@opindex options
Reads configuration from @var{file} instead of from the default
per-user configuration file. The default configuration file is named
@file{scdaemon.conf} and expected in the @file{.gnupg} directory directly
below the home directory of the user.
@include opt-homedir.texi
@item -v
@item --verbose
@opindex v
@opindex verbose
Outputs additional information while running.
You can increase the verbosity by giving several
verbose commands to @command{gpgsm}, such as @samp{-vv}.
@item --debug-level @var{level}
@opindex debug-level
Select the debug level for investigating problems. @var{level} may be
a numeric value or a keyword:
@table @code
@item none
No debugging at all. A value of less than 1 may be used instead of
the keyword.
@item basic
Some basic debug messages. A value between 1 and 2 may be used
instead of the keyword.
@item advanced
More verbose debug messages. A value between 3 and 5 may be used
instead of the keyword.
@item expert
Even more detailed messages. A value between 6 and 8 may be used
instead of the keyword.
@item guru
All of the debug messages you can get. A value greater than 8 may be
used instead of the keyword. The creation of hash tracing files is
only enabled if the keyword is used.
@end table
How these messages are mapped to the actual debugging flags is not
specified and may change with newer releases of this program. They are
however carefully selected to best aid in debugging.
@quotation Note
All debugging options are subject to change and thus should not be used
by any application program. As the name says, they are only used as
helpers to debug problems.
@end quotation
@item --debug @var{flags}
@opindex debug
This option is only useful for debugging and the behavior may change at
any time without notice. FLAGS are bit encoded and may be given in
usual C-Syntax. The currently defined bits are:
@table @code
@item 0 (1)
command I/O
@item 1 (2)
values of big number integers
@item 2 (4)
low level crypto operations
@item 5 (32)
memory allocation
@item 6 (64)
caching
@item 7 (128)
show memory statistics
@item 9 (512)
write hashed data to files named @code{dbgmd-000*}
@item 10 (1024)
trace Assuan protocol.
See also option @option{--debug-assuan-log-cats}.
@item 11 (2048)
trace APDU I/O to the card. This may reveal sensitive data.
@item 12 (4096)
trace some card reader related function calls.
@end table
@item --debug-all
@opindex debug-all
Same as @code{--debug=0xffffffff}
@item --debug-wait @var{n}
@opindex debug-wait
When running in server mode, wait @var{n} seconds before entering the
actual processing loop and print the pid. This gives time to attach a
debugger.
@item --debug-ccid-driver
@opindex debug-wait
Enable debug output from the included CCID driver for smartcards.
Using this option twice will also enable some tracing of the T=1
protocol. Note that this option may reveal sensitive data.
@item --debug-disable-ticker
@opindex debug-disable-ticker
This option disables all ticker functions like checking for card
insertions.
@item --debug-allow-core-dump
@opindex debug-allow-core-dump
For security reasons we won't create a core dump when the process
aborts. For debugging purposes it is sometimes better to allow core
dump. This option enables it and also changes the working directory to
@file{/tmp} when running in @option{--server} mode.
@item --debug-log-tid
@opindex debug-log-tid
This option appends a thread ID to the PID in the log output.
@item --debug-assuan-log-cats @var{cats}
@opindex debug-assuan-log-cats
@efindex ASSUAN_DEBUG
Changes the active Libassuan logging categories to @var{cats}. The
value for @var{cats} is an unsigned integer given in usual C-Syntax.
A value of 0 switches to a default category. If this option is not
used the categories are taken from the environment variable
@code{ASSUAN_DEBUG}. Note that this option has only an effect if the
Assuan debug flag has also been with the option @option{--debug}. For
a list of categories see the Libassuan manual.
@item --no-detach
@opindex no-detach
Don't detach the process from the console. This is mainly useful for
debugging.
@item --listen-backlog @var{n}
@opindex listen-backlog
Set the size of the queue for pending connections. The default is 64.
This option has an effect only if @option{--multi-server} is also
used.
@item --log-file @var{file}
@opindex log-file
Append all logging output to @var{file}. This is very helpful in
seeing what the agent actually does. Use @file{socket://} to log to
socket.
@item --pcsc-driver @var{library}
@opindex pcsc-driver
Use @var{library} to access the smartcard reader. The current default
is @file{libpcsclite.so}. Instead of using this option you might also
want to install a symbolic link to the default file name
(e.g. from @file{libpcsclite.so.1}).
@item --ctapi-driver @var{library}
@opindex ctapi-driver
Use @var{library} to access the smartcard reader. The current default
is @file{libtowitoko.so}. Note that the use of this interface is
deprecated; it may be removed in future releases.
@item --disable-ccid
@opindex disable-ccid
Disable the integrated support for CCID compliant readers. This
allows falling back to one of the other drivers even if the internal
CCID driver can handle the reader. Note, that CCID support is only
available if libusb was available at build time.
@item --reader-port @var{number_or_string}
@opindex reader-port
This option may be used to specify the port of the card terminal. A
value of 0 refers to the first serial device; add 32768 to access USB
devices. The default is 32768 (first USB device). PC/SC or CCID
readers might need a string here; run the program in verbose mode to get
a list of available readers. The default is then the first reader
found.
To get a list of available CCID readers you may use this command:
@cartouche
@smallexample
echo scd getinfo reader_list \
| gpg-connect-agent --decode | awk '/^D/ @{print $2@}'
@end smallexample
@end cartouche
@item --card-timeout @var{n}
@opindex card-timeout
If @var{n} is not 0 and no client is actively using the card, the card
will be powered down after @var{n} seconds. Powering down the card
avoids a potential risk of damaging a card when used with certain
cheap readers. This also allows applications that are not aware of
Scdaemon to access the card. The disadvantage of using a card timeout
is that accessing the card takes longer and that the user needs to
enter the PIN again after the next power up.
Note that with the current version of Scdaemon the card is powered
down immediately at the next timer tick for any value of @var{n} other
than 0.
@item --enable-pinpad-varlen
@opindex enable-pinpad-varlen
Please specify this option when the card reader supports variable
length input for pinpad (default is no). For known readers (listed in
ccid-driver.c and apdu.c), this option is not needed. Note that if
your card reader doesn't supports variable length input but you want
to use it, you need to specify your pinpad request on your card.
@item --disable-pinpad
@opindex disable-pinpad
Even if a card reader features a pinpad, do not try to use it.
@item --deny-admin
@opindex deny-admin
@opindex allow-admin
This option disables the use of admin class commands for card
applications where this is supported. Currently we support it for the
OpenPGP card. This option is useful to inhibit accidental access to
admin class command which could ultimately lock the card through wrong
PIN numbers. Note that GnuPG versions older than 2.0.11 featured an
@option{--allow-admin} option which was required to use such admin
commands. This option has no more effect today because the default is
now to allow admin commands.
@item --disable-application @var{name}
@opindex disable-application
This option disables the use of the card application named
@var{name}. This is mainly useful for debugging or if a application
with lower priority should be used by default.
@end table
All the long options may also be given in the configuration file after
stripping off the two leading dashes.
@mansect card applications
@node Card applications
@section Description of card applications
@command{scdaemon} supports the card applications as described below.
@menu
* OpenPGP Card:: The OpenPGP card application
* NKS Card:: The Telesec NetKey card application
* DINSIG Card:: The DINSIG card application
* PKCS#15 Card:: The PKCS#15 card application
* Geldkarte Card:: The Geldkarte application
* SmartCard-HSM:: The SmartCard-HSM application
* Undefined Card:: The Undefined stub application
@end menu
@node OpenPGP Card
@subsection The OpenPGP card application ``openpgp''
This application is currently only used by @command{gpg} but may in
future also be useful with @command{gpgsm}. Version 1 and version 2 of
the card is supported.
@noindent
The specifications for these cards are available at@*
@uref{http://g10code.com/docs/openpgp-card-1.0.pdf} and@*
@uref{http://g10code.com/docs/openpgp-card-2.0.pdf}.
@node NKS Card
@subsection The Telesec NetKey card ``nks''
This is the main application of the Telesec cards as available in
Germany. It is a superset of the German DINSIG card. The card is
used by @command{gpgsm}.
@node DINSIG Card
@subsection The DINSIG card application ``dinsig''
This is an application as described in the German draft standard
@emph{DIN V 66291-1}. It is intended to be used by cards supporting
the German signature law and its bylaws (SigG and SigV).
@node PKCS#15 Card
@subsection The PKCS#15 card application ``p15''
This is common framework for smart card applications. It is used by
@command{gpgsm}.
@node Geldkarte Card
@subsection The Geldkarte card application ``geldkarte''
This is a simple application to display information of a German
Geldkarte. The Geldkarte is a small amount debit card application which
comes with almost all German banking cards.
@node SmartCard-HSM
@subsection The SmartCard-HSM card application ``sc-hsm''
This application adds read-only support for keys and certificates
stored on a @uref{http://www.smartcard-hsm.com, SmartCard-HSM}.
-To generate keys and store certifiates you may use
+To generate keys and store certificates you may use
@uref{https://github.com/OpenSC/OpenSC/wiki/SmartCardHSM, OpenSC} or
the tools from @uref{http://www.openscdp.org, OpenSCDP}.
The SmartCard-HSM cards requires a card reader that supports Extended
Length APDUs.
@node Undefined Card
@subsection The Undefined card application ``undefined''
This is a stub application to allow the use of the APDU command even
if no supported application is found on the card. This application is
not used automatically but must be explicitly requested using the
SERIALNO command.
@c *******************************************
@c *************** ****************
@c *************** FILES ****************
@c *************** ****************
@c *******************************************
@mansect files
@node Scdaemon Configuration
@section Configuration files
There are a few configuration files to control certain aspects of
@command{scdaemons}'s operation. Unless noted, they are expected in the
current home directory (@pxref{option --homedir}).
@table @file
@item scdaemon.conf
@cindex scdaemon.conf
This is the standard configuration file read by @command{scdaemon} on
startup. It may contain any valid long option; the leading two dashes
may not be entered and the option may not be abbreviated. This default
name may be changed on the command line (@pxref{option --options}).
@item scd-event
@cindex scd-event
If this file is present and executable, it will be called on every card
reader's status change. An example of this script is provided with the
distribution
@item reader_@var{n}.status
This file is created by @command{scdaemon} to let other applications now
about reader status changes. Its use is now deprecated in favor of
@file{scd-event}.
@end table
@c
@c Examples
@c
@mansect examples
@node Scdaemon Examples
@section Examples
@c man begin EXAMPLES
@example
$ scdaemon --server -v
@end example
@c man end
@c
@c Assuan Protocol
@c
@manpause
@node Scdaemon Protocol
@section Scdaemon's Assuan Protocol
The SC-Daemon should be started by the system to provide access to
external tokens. Using Smartcards on a multi-user system does not
make much sense except for system services, but in this case no
regular user accounts are hosted on the machine.
A client connects to the SC-Daemon by connecting to the socket named
@file{@value{LOCALRUNDIR}/scdaemon/socket}, configuration information
is read from @var{@value{SYSCONFDIR}/scdaemon.conf}
Each connection acts as one session, SC-Daemon takes care of
synchronizing access to a token between sessions.
@menu
* Scdaemon SERIALNO:: Return the serial number.
* Scdaemon LEARN:: Read all useful information from the card.
* Scdaemon READCERT:: Return a certificate.
* Scdaemon READKEY:: Return a public key.
* Scdaemon PKSIGN:: Signing data with a Smartcard.
* Scdaemon PKDECRYPT:: Decrypting data with a Smartcard.
* Scdaemon GETATTR:: Read an attribute's value.
* Scdaemon SETATTR:: Update an attribute's value.
* Scdaemon WRITEKEY:: Write a key to a card.
* Scdaemon GENKEY:: Generate a new key on-card.
* Scdaemon RANDOM:: Return random bytes generated on-card.
* Scdaemon PASSWD:: Change PINs.
* Scdaemon CHECKPIN:: Perform a VERIFY operation.
* Scdaemon RESTART:: Restart connection
* Scdaemon APDU:: Send a verbatim APDU to the card
@end menu
@node Scdaemon SERIALNO
@subsection Return the serial number
This command should be used to check for the presence of a card. It is
special in that it can be used to reset the card. Most other commands
will return an error when a card change has been detected and the use of
this function is therefore required.
Background: We want to keep the client clear of handling card changes
between operations; i.e. the client can assume that all operations are
done on the same card unless he call this function.
@example
SERIALNO
@end example
Return the serial number of the card using a status response like:
@example
S SERIALNO D27600000000000000000000
@end example
The serial number is the hex encoded value identified by
the @code{0x5A} tag in the GDO file (FIX=0x2F02).
@node Scdaemon LEARN
@subsection Read all useful information from the card
@example
LEARN [--force]
@end example
Learn all useful information of the currently inserted card. When
used without the @option{--force} option, the command might do an INQUIRE
like this:
@example
INQUIRE KNOWNCARDP <hexstring_with_serialNumber>
@end example
The client should just send an @code{END} if the processing should go on
or a @code{CANCEL} to force the function to terminate with a cancel
error message. The response of this command is a list of status lines
formatted as this:
@example
S KEYPAIRINFO @var{hexstring_with_keygrip} @var{hexstring_with_id}
@end example
If there is no certificate yet stored on the card a single "X" is
returned in @var{hexstring_with_keygrip}.
@node Scdaemon READCERT
@subsection Return a certificate
@example
READCERT @var{hexified_certid}|@var{keyid}
@end example
This function is used to read a certificate identified by
@var{hexified_certid} from the card. With OpenPGP cards the keyid
@code{OpenPGP.3} may be used to read the certificate of version 2 cards.
@node Scdaemon READKEY
@subsection Return a public key
@example
READKEY @var{hexified_certid}
@end example
Return the public key for the given cert or key ID as an standard
S-Expression.
@node Scdaemon PKSIGN
@subsection Signing data with a Smartcard
To sign some data the caller should use the command
@example
SETDATA @var{hexstring}
@end example
to tell @command{scdaemon} about the data to be signed. The data must be given in
hex notation. The actual signing is done using the command
@example
PKSIGN @var{keyid}
@end example
where @var{keyid} is the hexified ID of the key to be used. The key id
may have been retrieved using the command @code{LEARN}. If another
hash algorithm than SHA-1 is used, that algorithm may be given like:
@example
PKSIGN --hash=@var{algoname} @var{keyid}
@end example
With @var{algoname} are one of @code{sha1}, @code{rmd160} or @code{md5}.
@node Scdaemon PKDECRYPT
@subsection Decrypting data with a Smartcard
To decrypt some data the caller should use the command
@example
SETDATA @var{hexstring}
@end example
to tell @command{scdaemon} about the data to be decrypted. The data
must be given in hex notation. The actual decryption is then done
using the command
@example
PKDECRYPT @var{keyid}
@end example
where @var{keyid} is the hexified ID of the key to be used.
If the card is aware of the apdding format a status line with padding
information is send before the plaintext data. The key for this
status line is @code{PADDING} with the only defined value being 0 and
meaning padding has been removed.
@node Scdaemon GETATTR
@subsection Read an attribute's value
TO BE WRITTEN.
@node Scdaemon SETATTR
@subsection Update an attribute's value
TO BE WRITTEN.
@node Scdaemon WRITEKEY
@subsection Write a key to a card
@example
WRITEKEY [--force] @var{keyid}
@end example
This command is used to store a secret key on a smartcard. The
allowed keyids depend on the currently selected smartcard
application. The actual keydata is requested using the inquiry
@code{KEYDATA} and need to be provided without any protection. With
@option{--force} set an existing key under this @var{keyid} will get
overwritten. The key data is expected to be the usual canonical encoded
S-expression.
A PIN will be requested in most cases. This however depends on the
actual card application.
@node Scdaemon GENKEY
@subsection Generate a new key on-card
TO BE WRITTEN.
@node Scdaemon RANDOM
@subsection Return random bytes generated on-card
TO BE WRITTEN.
@node Scdaemon PASSWD
@subsection Change PINs
@example
PASSWD [--reset] [--nullpin] @var{chvno}
@end example
Change the PIN or reset the retry counter of the card holder
verification vector number @var{chvno}. The option @option{--nullpin}
is used to initialize the PIN of TCOS cards (6 byte NullPIN only).
@node Scdaemon CHECKPIN
@subsection Perform a VERIFY operation
@example
CHECKPIN @var{idstr}
@end example
Perform a VERIFY operation without doing anything else. This may be
used to initialize a the PIN cache earlier to long lasting
operations. Its use is highly application dependent:
@table @strong
@item OpenPGP
Perform a simple verify operation for CHV1 and CHV2, so that further
operations won't ask for CHV2 and it is possible to do a cheap check on
the PIN: If there is something wrong with the PIN entry system, only the
regular CHV will get blocked and not the dangerous CHV3. @var{idstr} is
the usual card's serial number in hex notation; an optional fingerprint
part will get ignored.
There is however a special mode if @var{idstr} is suffixed with the
literal string @code{[CHV3]}: In this case the Admin PIN is checked if
and only if the retry counter is still at 3.
@end table
@node Scdaemon RESTART
@subsection Perform a RESTART operation
@example
RESTART
@end example
Restart the current connection; this is a kind of warm reset. It
deletes the context used by this connection but does not actually
reset the card.
This is used by gpg-agent to reuse a primary pipe connection and
may be used by clients to backup from a conflict in the serial
command; i.e. to select another application.
@node Scdaemon APDU
@subsection Send a verbatim APDU to the card
@example
APDU [--atr] [--more] [--exlen[=@var{n}]] [@var{hexstring}]
@end example
Send an APDU to the current reader. This command bypasses the high
level functions and sends the data directly to the card.
@var{hexstring} is expected to be a proper APDU. If @var{hexstring} is
not given no commands are send to the card; However the command will
implicitly check whether the card is ready for use.
Using the option @code{--atr} returns the ATR of the card as a status
message before any data like this:
@example
S CARD-ATR 3BFA1300FF813180450031C173C00100009000B1
@end example
Using the option @code{--more} handles the card status word MORE_DATA
(61xx) and concatenate all responses to one block.
Using the option @code{--exlen} the returned APDU may use extended
length up to N bytes. If N is not given a default value is used
(currently 4096).
@mansect see also
@ifset isman
@command{gpg-agent}(1),
@command{gpgsm}(1),
@command{gpg2}(1)
@end ifset
@include see-also-note.texi
diff --git a/doc/tools.texi b/doc/tools.texi
index 9301334c7..7becf67e2 100644
--- a/doc/tools.texi
+++ b/doc/tools.texi
@@ -1,2108 +1,2108 @@
@c Copyright (C) 2004, 2008 Free Software Foundation, Inc.
@c This is part of the GnuPG manual.
@c For copying conditions, see the file GnuPG.texi.
@include defs.inc
@node Helper Tools
@chapter Helper Tools
GnuPG comes with a couple of smaller tools:
@menu
* watchgnupg:: Read logs from a socket.
* gpgv:: Verify OpenPGP signatures.
* addgnupghome:: Create .gnupg home directories.
* gpgconf:: Modify .gnupg home directories.
* applygnupgdefaults:: Run gpgconf for all users.
* gpg-preset-passphrase:: Put a passphrase into the cache.
* gpg-connect-agent:: Communicate with a running agent.
* dirmngr-client:: How to use the Dirmngr client tool.
* gpgparsemail:: Parse a mail message into an annotated format
* symcryptrun:: Call a simple symmetric encryption tool.
* gpgtar:: Encrypt or sign files into an archive.
@end menu
@c
@c WATCHGNUPG
@c
@manpage watchgnupg.1
@node watchgnupg
@section Read logs from a socket
@ifset manverb
.B watchgnupg
\- Read and print logs from a socket
@end ifset
@mansect synopsis
@ifset manverb
.B watchgnupg
.RB [ \-\-force ]
.RB [ \-\-verbose ]
.I socketname
@end ifset
@mansect description
Most of the main utilities are able to write their log files to a Unix
Domain socket if configured that way. @command{watchgnupg} is a simple
listener for such a socket. It ameliorates the output with a time stamp
and makes sure that long lines are not interspersed with log output from
other utilities. This tool is not available for Windows.
@noindent
@command{watchgnupg} is commonly invoked as
@example
watchgnupg --force $(gpgconf --list-dirs socketdir)/S.log
@end example
@manpause
@noindent
This starts it on the current terminal for listening on the standard
logging socket (which is either @file{~/.gnupg/S.log} or
@file{/var/run/user/UID/gnupg/S.log}).
@mansect options
@noindent
@command{watchgnupg} understands these options:
@table @gnupgtabopt
@item --force
@opindex force
Delete an already existing socket file.
@anchor{option watchgnupg --tcp}
@item --tcp @var{n}
Instead of reading from a local socket, listen for connects on TCP port
@var{n}.
@item --time-only
@opindex time-only
Do not print the date part of the timestamp.
@item --verbose
@opindex verbose
Enable extra informational output.
@item --version
@opindex version
Print version of the program and exit.
@item --help
@opindex help
Display a brief help page and exit.
@end table
@noindent
@mansect examples
@chapheading Examples
@example
$ watchgnupg --force --time-only $(gpgconf --list-dirs socketdir)/S.log
@end example
This waits for connections on the local socket
(e.g. @file{/home/foo/.gnupg/S.log}) and shows all log entries. To
make this work the option @option{log-file} needs to be used with all
modules which logs are to be shown. The suggested entry for the
configuration files is:
@example
log-file socket://
@end example
If the default socket as given above and returned by "echo $(gpgconf
--list-dirs socketdir)/S.log" is not desired an arbitrary socket name
can be specified, for example @file{socket:///home/foo/bar/mysocket}.
For debugging purposes it is also possible to do remote logging. Take
care if you use this feature because the information is send in the
clear over the network. Use this syntax in the conf files:
@example
log-file tcp://192.168.1.1:4711
@end example
You may use any port and not just 4711 as shown above; only IP
addresses are supported (v4 and v6) and no host names. You need to
start @command{watchgnupg} with the @option{tcp} option. Note that
under Windows the registry entry
@var{HKCU\Software\GNU\GnuPG:DefaultLogFile} can be used to change the
default log output from @code{stderr} to whatever is given by that
entry. However the only useful entry is a TCP name for remote
debugging.
@mansect see also
@ifset isman
@command{gpg}(1),
@command{gpgsm}(1),
@command{gpg-agent}(1),
@command{scdaemon}(1)
@end ifset
@include see-also-note.texi
@c
@c GPGV
@c
@include gpgv.texi
@c
@c ADDGNUPGHOME
@c
@manpage addgnupghome.8
@node addgnupghome
@section Create .gnupg home directories
@ifset manverb
.B addgnupghome
\- Create .gnupg home directories
@end ifset
@mansect synopsis
@ifset manverb
.B addgnupghome
.I account_1
.IR account_2 ... account_n
@end ifset
@mansect description
If GnuPG is installed on a system with existing user accounts, it is
sometimes required to populate the GnuPG home directory with existing
files. Especially a @file{trustlist.txt} and a keybox with some
initial certificates are often desired. This script helps to do this
by copying all files from @file{/etc/skel/.gnupg} to the home
directories of the accounts given on the command line. It takes care
not to overwrite existing GnuPG home directories.
@noindent
@command{addgnupghome} is invoked by root as:
@example
addgnupghome account1 account2 ... accountn
@end example
@c
@c GPGCONF
@c
@manpage gpgconf.1
@node gpgconf
@section Modify .gnupg home directories
@ifset manverb
.B gpgconf
\- Modify .gnupg home directories
@end ifset
@mansect synopsis
@ifset manverb
.B gpgconf
.RI [ options ]
.B \-\-list-components
.br
.B gpgconf
.RI [ options ]
.B \-\-list-options
.I component
.br
.B gpgconf
.RI [ options ]
.B \-\-change-options
.I component
@end ifset
@mansect description
The @command{gpgconf} is a utility to automatically and reasonable
safely query and modify configuration files in the @file{.gnupg} home
directory. It is designed not to be invoked manually by the user, but
automatically by graphical user interfaces (GUI).@footnote{Please note
that currently no locking is done, so concurrent access should be
avoided. There are some precautions to avoid corruption with
concurrent usage, but results may be inconsistent and some changes may
get lost. The stateless design makes it difficult to provide more
guarantees.}
@command{gpgconf} provides access to the configuration of one or more
components of the GnuPG system. These components correspond more or
less to the programs that exist in the GnuPG framework, like GPG,
GPGSM, DirMngr, etc. But this is not a strict one-to-one
relationship. Not all configuration options are available through
@command{gpgconf}. @command{gpgconf} provides a generic and abstract
method to access the most important configuration options that can
feasibly be controlled via such a mechanism.
@command{gpgconf} can be used to gather and change the options
available in each component, and can also provide their default
values. @command{gpgconf} will give detailed type information that
can be used to restrict the user's input without making an attempt to
commit the changes.
@command{gpgconf} provides the backend of a configuration editor. The
configuration editor would usually be a graphical user interface
program that displays the current options, their default
values, and allows the user to make changes to the options. These
changes can then be made active with @command{gpgconf} again. Such a
program that uses @command{gpgconf} in this way will be called GUI
throughout this section.
@menu
* Invoking gpgconf:: List of all commands and options.
* Format conventions:: Formatting conventions relevant for all commands.
* Listing components:: List all gpgconf components.
* Checking programs:: Check all programs known to gpgconf.
* Listing options:: List all options of a component.
* Changing options:: Changing options of a component.
* Listing global options:: List all global options.
* Querying versions:: Get and compare software versions.
* Files used by gpgconf:: What files are used by gpgconf.
@end menu
@manpause
@node Invoking gpgconf
@subsection Invoking gpgconf
@mansect commands
One of the following commands must be given:
@table @gnupgtabopt
@item --list-components
List all components. This is the default command used if none is
specified.
@item --check-programs
List all available backend programs and test whether they are runnable.
@item --list-options @var{component}
List all options of the component @var{component}.
@item --change-options @var{component}
Change the options of the component @var{component}.
@item --check-options @var{component}
Check the options for the component @var{component}.
@item --apply-profile @var{file}
Apply the configuration settings listed in @var{file} to the
configuration files. If @var{file} has no suffix and no slashes the
command first tries to read a file with the suffix @code{.prf} from
-the the data directory (@code{gpgconf --list-dirs datadir}) before it
+the data directory (@code{gpgconf --list-dirs datadir}) before it
reads the file verbatim. A profile is divided into sections using the
bracketed component name. Each section then lists the option which
shall go into the respective configuration file.
@item --apply-defaults
Update all configuration files with values taken from the global
configuration file (usually @file{/etc/gnupg/gpgconf.conf}).
@item --list-dirs [@var{names}]
Lists the directories used by @command{gpgconf}. One directory is
listed per line, and each line consists of a colon-separated list where
the first field names the directory type (for example @code{sysconfdir})
and the second field contains the percent-escaped directory. Although
they are not directories, the socket file names used by
@command{gpg-agent} and @command{dirmngr} are printed as well. Note
that the socket file names and the @code{homedir} lines are the default
names and they may be overridden by command line switches. If
@var{names} are given only the directories or file names specified by
the list names are printed without any escaping.
@item --list-config [@var{filename}]
List the global configuration file in a colon separated format. If
@var{filename} is given, check that file instead.
@item --check-config [@var{filename}]
Run a syntax check on the global configuration file. If @var{filename}
is given, check that file instead.
@item --query-swdb @var{package_name} [@var{version_string}]
Returns the current version for @var{package_name} and if
@var{version_string} is given also an indicator on whether an update
is available. The actual file with the software version is
automatically downloaded and checked by @command{dirmngr}.
@command{dirmngr} uses a thresholds to avoid download the file too
often and it does this by default only if it can be done via Tor. To
force an update of that file this command can be used:
@example
gpg-connect-agent --dirmngr 'loadswdb --force' /bye
@end example
@item --reload [@var{component}]
@opindex reload
Reload all or the given component. This is basically the same as
sending a SIGHUP to the component. Components which don't support
reloading are ignored. Without @var{component} or by using "all" for
@var{component} all components which are daemons are reloaded.
@item --launch [@var{component}]
@opindex launch
If the @var{component} is not already running, start it.
@command{component} must be a daemon. This is in general not required
because the system starts these daemons as needed. However, external
software making direct use of @command{gpg-agent} or @command{dirmngr}
may use this command to ensure that they are started. Using "all" for
@var{component} launches all components which are daemons.
@item --kill [@var{component}]
@opindex kill
Kill the given component. Components which support killing are
@command{gpg-agent} and @command{scdaemon}. Components which don't
support reloading are ignored. Using "all" for @var{component} kills
all components running as daemons. Note that as of now reload and
kill have the same effect for @command{scdaemon}.
@item --create-socketdir
@opindex create-socketdir
Create a directory for sockets below /run/user or /var/run/user. This
is command is only required if a non default home directory is used
and the /run based sockets shall be used. For the default home
directory GnUPG creates a directory on the fly.
@item --remove-socketdir
@opindex remove-socketdir
Remove a directory created with command @option{--create-socketdir}.
@end table
@mansect options
The following options may be used:
@table @gnupgtabopt
@item -o @var{file}
@itemx --output @var{file}
Write output to @var{file}. Default is to write to stdout.
@item -v
@itemx --verbose
Outputs additional information while running. Specifically, this
extends numerical field values by human-readable descriptions.
@item -q
@itemx --quiet
@opindex quiet
Try to be as quiet as possible.
@item -n
@itemx --dry-run
Do not actually change anything. This is currently only implemented
for @code{--change-options} and can be used for testing purposes.
@item -r
@itemx --runtime
Only used together with @code{--change-options}. If one of the
modified options can be changed in a running daemon process, signal
the running daemon to ask it to reparse its configuration file after
changing.
This means that the changes will take effect at run-time, as far as
this is possible. Otherwise, they will take effect at the next start
of the respective backend programs.
@item --status-fd @var{n}
@opindex status-fd
Write special status strings to the file descriptor @var{n}. This
program returns the status messages SUCCESS or FAILURE which are
helpful when the caller uses a double fork approach and can't easily
get the return code of the process.
@manpause
@end table
@node Format conventions
@subsection Format conventions
Some lines in the output of @command{gpgconf} contain a list of
colon-separated fields. The following conventions apply:
@itemize @bullet
@item
The GUI program is required to strip off trailing newline and/or
carriage return characters from the output.
@item
@command{gpgconf} will never leave out fields. If a certain version
provides a certain field, this field will always be present in all
@command{gpgconf} versions from that time on.
@item
Future versions of @command{gpgconf} might append fields to the list.
New fields will always be separated from the previously last field by
a colon separator. The GUI should be prepared to parse the last field
it knows about up until a colon or end of line.
@item
Not all fields are defined under all conditions. You are required to
ignore the content of undefined fields.
@end itemize
There are several standard types for the content of a field:
@table @asis
@item verbatim
Some fields contain strings that are not escaped in any way. Such
fields are described to be used @emph{verbatim}. These fields will
never contain a colon character (for obvious reasons). No de-escaping
or other formatting is required to use the field content. This is for
easy parsing of the output, when it is known that the content can
never contain any special characters.
@item percent-escaped
Some fields contain strings that are described to be
@emph{percent-escaped}. Such strings need to be de-escaped before
their content can be presented to the user. A percent-escaped string
is de-escaped by replacing all occurrences of @code{%XY} by the byte
that has the hexadecimal value @code{XY}. @code{X} and @code{Y} are
from the set @code{0-9a-f}.
@item localized
Some fields contain strings that are described to be @emph{localized}.
Such strings are translated to the active language and formatted in
the active character set.
@item @w{unsigned number}
Some fields contain an @emph{unsigned number}. This number will
always fit into a 32-bit unsigned integer variable. The number may be
followed by a space, followed by a human readable description of that
value (if the verbose option is used). You should ignore everything
in the field that follows the number.
@item @w{signed number}
Some fields contain a @emph{signed number}. This number will always
fit into a 32-bit signed integer variable. The number may be followed
by a space, followed by a human readable description of that value (if
the verbose option is used). You should ignore everything in the
field that follows the number.
@item @w{boolean value}
Some fields contain a @emph{boolean value}. This is a number with
either the value 0 or 1. The number may be followed by a space,
followed by a human readable description of that value (if the verbose
option is used). You should ignore everything in the field that follows
the number; checking just the first character is sufficient in this
case.
@item option
Some fields contain an @emph{option} argument. The format of an
option argument depends on the type of the option and on some flags:
@table @asis
@item no argument
The simplest case is that the option does not take an argument at all
(@var{type} @code{0}). Then the option argument is an unsigned number
that specifies how often the option occurs. If the @code{list} flag
is not set, then the only valid number is @code{1}. Options that do
not take an argument never have the @code{default} or @code{optional
arg} flag set.
@item number
If the option takes a number argument (@var{alt-type} is @code{2} or
@code{3}), and it can only occur once (@code{list} flag is not set),
then the option argument is either empty (only allowed if the argument
is optional), or it is a number. A number is a string that begins
with an optional minus character, followed by one or more digits. The
number must fit into an integer variable (unsigned or signed,
depending on @var{alt-type}).
@item number list
If the option takes a number argument and it can occur more than once,
then the option argument is either empty, or it is a comma-separated
list of numbers as described above.
@item string
If the option takes a string argument (@var{alt-type} is 1), and it
can only occur once (@code{list} flag is not set) then the option
argument is either empty (only allowed if the argument is optional),
or it starts with a double quote character (@code{"}) followed by a
percent-escaped string that is the argument value. Note that there is
only a leading double quote character, no trailing one. The double
quote character is only needed to be able to differentiate between no
value and the empty string as value.
@item string list
If the option takes a string argument and it can occur more than once,
then the option argument is either empty, or it is a comma-separated
list of string arguments as described above.
@end table
@end table
The active language and character set are currently determined from
the locale environment of the @command{gpgconf} program.
@c FIXME: Document the active language and active character set. Allow
@c to change it via the command line?
@mansect usage
@node Listing components
@subsection Listing components
The command @code{--list-components} will list all components that can
be configured with @command{gpgconf}. Usually, one component will
correspond to one GnuPG-related program and contain the options of
that program's configuration file that can be modified using
@command{gpgconf}. However, this is not necessarily the case. A
component might also be a group of selected options from several
programs, or contain entirely virtual options that have a special
effect rather than changing exactly one option in one configuration
file.
A component is a set of configuration options that semantically belong
together. Furthermore, several changes to a component can be made in
an atomic way with a single operation. The GUI could for example
provide a menu with one entry for each component, or a window with one
tabulator sheet per component.
The command @code{--list-components} lists all available
components, one per line. The format of each line is:
@code{@var{name}:@var{description}:@var{pgmname}:}
@table @var
@item name
This field contains a name tag of the component. The name tag is used
to specify the component in all communication with @command{gpgconf}.
The name tag is to be used @emph{verbatim}. It is thus not in any
escaped format.
@item description
The @emph{string} in this field contains a human-readable description
of the component. It can be displayed to the user of the GUI for
informational purposes. It is @emph{percent-escaped} and
@emph{localized}.
@item pgmname
The @emph{string} in this field contains the absolute name of the
program's file. It can be used to unambiguously invoke that program.
It is @emph{percent-escaped}.
@end table
Example:
@example
$ gpgconf --list-components
gpg:GPG for OpenPGP:/usr/local/bin/gpg2:
gpg-agent:GPG Agent:/usr/local/bin/gpg-agent:
scdaemon:Smartcard Daemon:/usr/local/bin/scdaemon:
gpgsm:GPG for S/MIME:/usr/local/bin/gpgsm:
dirmngr:Directory Manager:/usr/local/bin/dirmngr:
@end example
@node Checking programs
@subsection Checking programs
The command @code{--check-programs} is similar to
@code{--list-components} but works on backend programs and not on
components. It runs each program to test whether it is installed and
runnable. This also includes a syntax check of all config file options
of the program.
The command @code{--check-programs} lists all available
programs, one per line. The format of each line is:
@code{@var{name}:@var{description}:@var{pgmname}:@var{avail}:@var{okay}:@var{cfgfile}:@var{line}:@var{error}:}
@table @var
@item name
This field contains a name tag of the program which is identical to the
name of the component. The name tag is to be used @emph{verbatim}. It
is thus not in any escaped format. This field may be empty to indicate
a continuation of error descriptions for the last name. The description
and pgmname fields are then also empty.
@item description
The @emph{string} in this field contains a human-readable description
of the component. It can be displayed to the user of the GUI for
informational purposes. It is @emph{percent-escaped} and
@emph{localized}.
@item pgmname
The @emph{string} in this field contains the absolute name of the
program's file. It can be used to unambiguously invoke that program.
It is @emph{percent-escaped}.
@item avail
The @emph{boolean value} in this field indicates whether the program is
installed and runnable.
@item okay
The @emph{boolean value} in this field indicates whether the program's
config file is syntactically okay.
@item cfgfile
If an error occurred in the configuration file (as indicated by a false
value in the field @code{okay}), this field has the name of the failing
configuration file. It is @emph{percent-escaped}.
@item line
If an error occurred in the configuration file, this field has the line
number of the failing statement in the configuration file.
It is an @emph{unsigned number}.
@item error
If an error occurred in the configuration file, this field has the error
text of the failing statement in the configuration file. It is
@emph{percent-escaped} and @emph{localized}.
@end table
@noindent
In the following example the @command{dirmngr} is not runnable and the
configuration file of @command{scdaemon} is not okay.
@example
$ gpgconf --check-programs
gpg:GPG for OpenPGP:/usr/local/bin/gpg2:1:1:
gpg-agent:GPG Agent:/usr/local/bin/gpg-agent:1:1:
scdaemon:Smartcard Daemon:/usr/local/bin/scdaemon:1:0:
gpgsm:GPG for S/MIME:/usr/local/bin/gpgsm:1:1:
dirmngr:Directory Manager:/usr/local/bin/dirmngr:0:0:
@end example
@noindent
The command @w{@code{--check-options @var{component}}} will verify the
configuration file in the same manner as @code{--check-programs}, but
only for the component @var{component}.
@node Listing options
@subsection Listing options
Every component contains one or more options. Options may be gathered
into option groups to allow the GUI to give visual hints to the user
about which options are related.
The command @code{@w{--list-options @var{component}}} lists
all options (and the groups they belong to) in the component
@var{component}, one per line. @var{component} must be the string in
the field @var{name} in the output of the @code{--list-components}
command.
There is one line for each option and each group. First come all
options that are not in any group. Then comes a line describing a
group. Then come all options that belong into each group. Then comes
the next group and so on. There does not need to be any group (and in
this case the output will stop after the last non-grouped option).
The format of each line is:
@code{@var{name}:@var{flags}:@var{level}:@var{description}:@var{type}:@var{alt-type}:@var{argname}:@var{default}:@var{argdef}:@var{value}}
@table @var
@item name
This field contains a name tag for the group or option. The name tag
is used to specify the group or option in all communication with
@command{gpgconf}. The name tag is to be used @emph{verbatim}. It is
thus not in any escaped format.
@item flags
The flags field contains an @emph{unsigned number}. Its value is the
OR-wise combination of the following flag values:
@table @code
@item group (1)
If this flag is set, this is a line describing a group and not an
option.
@end table
The following flag values are only defined for options (that is, if
the @code{group} flag is not used).
@table @code
@item optional arg (2)
If this flag is set, the argument is optional. This is never set for
@var{type} @code{0} (none) options.
@item list (4)
If this flag is set, the option can be given multiple times.
@item runtime (8)
If this flag is set, the option can be changed at runtime.
@item default (16)
If this flag is set, a default value is available.
@item default desc (32)
If this flag is set, a (runtime) default is available. This and the
@code{default} flag are mutually exclusive.
@item no arg desc (64)
If this flag is set, and the @code{optional arg} flag is set, then the
option has a special meaning if no argument is given.
@item no change (128)
If this flag is set, @command{gpgconf} ignores requests to change the
value. GUI frontends should grey out this option. Note, that manual
changes of the configuration files are still possible.
@end table
@item level
This field is defined for options and for groups. It contains an
@emph{unsigned number} that specifies the expert level under which
this group or option should be displayed. The following expert levels
are defined for options (they have analogous meaning for groups):
@table @code
@item basic (0)
This option should always be offered to the user.
@item advanced (1)
This option may be offered to advanced users.
@item expert (2)
This option should only be offered to expert users.
@item invisible (3)
This option should normally never be displayed, not even to expert
users.
@item internal (4)
This option is for internal use only. Ignore it.
@end table
The level of a group will always be the lowest level of all options it
contains.
@item description
This field is defined for options and groups. The @emph{string} in
this field contains a human-readable description of the option or
group. It can be displayed to the user of the GUI for informational
purposes. It is @emph{percent-escaped} and @emph{localized}.
@item type
This field is only defined for options. It contains an @emph{unsigned
number} that specifies the type of the option's argument, if any. The
following types are defined:
Basic types:
@table @code
@item none (0)
No argument allowed.
@item string (1)
An @emph{unformatted string}.
@item int32 (2)
A @emph{signed number}.
@item uint32 (3)
An @emph{unsigned number}.
@end table
Complex types:
@table @code
@item pathname (32)
A @emph{string} that describes the pathname of a file. The file does
not necessarily need to exist.
@item ldap server (33)
A @emph{string} that describes an LDAP server in the format:
@code{@var{hostname}:@var{port}:@var{username}:@var{password}:@var{base_dn}}
@item key fingerprint (34)
A @emph{string} with a 40 digit fingerprint specifying a certificate.
@item pub key (35)
A @emph{string} that describes a certificate by user ID, key ID or
fingerprint.
@item sec key (36)
A @emph{string} that describes a certificate with a key by user ID,
key ID or fingerprint.
@item alias list (37)
A @emph{string} that describes an alias list, like the one used with
gpg's group option. The list consists of a key, an equal sign and space
separated values.
@end table
More types will be added in the future. Please see the @var{alt-type}
field for information on how to cope with unknown types.
@item alt-type
This field is identical to @var{type}, except that only the types
@code{0} to @code{31} are allowed. The GUI is expected to present the
user the option in the format specified by @var{type}. But if the
argument type @var{type} is not supported by the GUI, it can still
display the option in the more generic basic type @var{alt-type}. The
GUI must support all the defined basic types to be able to display all
options. More basic types may be added in future versions. If the
GUI encounters a basic type it doesn't support, it should report an
error and abort the operation.
@item argname
This field is only defined for options with an argument type
@var{type} that is not @code{0}. In this case it may contain a
@emph{percent-escaped} and @emph{localized string} that gives a short
name for the argument. The field may also be empty, though, in which
case a short name is not known.
@item default
This field is defined only for options for which the @code{default} or
@code{default desc} flag is set. If the @code{default} flag is set,
its format is that of an @emph{option argument} (@pxref{Format
conventions}, for details). If the default value is empty, then no
default is known. Otherwise, the value specifies the default value
for this option. If the @code{default desc} flag is set, the field is
either empty or contains a description of the effect if the option is
not given.
@item argdef
This field is defined only for options for which the @code{optional
arg} flag is set. If the @code{no arg desc} flag is not set, its
format is that of an @emph{option argument} (@pxref{Format
conventions}, for details). If the default value is empty, then no
default is known. Otherwise, the value specifies the default argument
for this option. If the @code{no arg desc} flag is set, the field is
either empty or contains a description of the effect of this option if
no argument is given.
@item value
This field is defined only for options. Its format is that of an
@emph{option argument}. If it is empty, then the option is not
explicitly set in the current configuration, and the default applies
(if any). Otherwise, it contains the current value of the option.
Note that this field is also meaningful if the option itself does not
take a real argument (in this case, it contains the number of times
the option appears).
@end table
@node Changing options
@subsection Changing options
The command @w{@code{--change-options @var{component}}} will attempt
to change the options of the component @var{component} to the
specified values. @var{component} must be the string in the field
@var{name} in the output of the @code{--list-components} command. You
have to provide the options that shall be changed in the following
format on standard input:
@code{@var{name}:@var{flags}:@var{new-value}}
@table @var
@item name
This is the name of the option to change. @var{name} must be the
string in the field @var{name} in the output of the
@code{--list-options} command.
@item flags
The flags field contains an @emph{unsigned number}. Its value is the
OR-wise combination of the following flag values:
@table @code
@item default (16)
If this flag is set, the option is deleted and the default value is
used instead (if applicable).
@end table
@item new-value
The new value for the option. This field is only defined if the
@code{default} flag is not set. The format is that of an @emph{option
argument}. If it is empty (or the field is omitted), the default
argument is used (only allowed if the argument is optional for this
option). Otherwise, the option will be set to the specified value.
@end table
@noindent
The output of the command is the same as that of
@code{--check-options} for the modified configuration file.
Examples:
To set the force option, which is of basic type @code{none (0)}:
@example
$ echo 'force:0:1' | gpgconf --change-options dirmngr
@end example
To delete the force option:
@example
$ echo 'force:16:' | gpgconf --change-options dirmngr
@end example
The @code{--runtime} option can influence when the changes take
effect.
@node Listing global options
@subsection Listing global options
Sometimes it is useful for applications to look at the global options
file @file{gpgconf.conf}.
The colon separated listing format is record oriented and uses the first
field to identify the record type:
@table @code
@item k
This describes a key record to start the definition of a new ruleset for
a user/group. The format of a key record is:
@code{k:@var{user}:@var{group}:}
@table @var
@item user
This is the user field of the key. It is percent escaped. See the
definition of the gpgconf.conf format for details.
@item group
This is the group field of the key. It is percent escaped.
@end table
@item r
This describes a rule record. All rule records up to the next key record
make up a rule set for that key. The format of a rule record is:
@code{r:::@var{component}:@var{option}:@var{flag}:@var{value}:}
@table @var
@item component
This is the component part of a rule. It is a plain string.
@item option
This is the option part of a rule. It is a plain string.
@item flag
This is the flags part of a rule. There may be only one flag per rule
but by using the same component and option, several flags may be
assigned to an option. It is a plain string.
@item value
This is the optional value for the option. It is a percent escaped
string with a single quotation mark to indicate a string. The quotation
mark is only required to distinguish between no value specified and an
empty string.
@end table
@end table
@noindent
Unknown record types should be ignored. Note that there is intentionally
no feature to change the global option file through @command{gpgconf}.
@node Querying versions
@subsection Get and compare software versions.
The GnuPG Project operates a server to query the current versions of
software packages related to GnuPG. @command{gpgconf} can be used to
access this online database. To allow for offline operations, this
feature works by having @command{dirmngr} download a file from
@code{https://versions.gnupg.org}, checking the signature of that file
and storing the file in the GnuPG home directory. If
@command{gpgconf} is used and @command{dirmngr} is running, it may ask
@command{dirmngr} to refresh that file before itself uses the file.
The command @option{--query-swdb} returns information for the given
package in a colon delimited format:
@table @var
@item name
This is the name of the package as requested. Note that "gnupg" is a
special name which is replaced by the actual package implementing this
version of GnuPG. For this name it is also not required to specify a
version because @command{gpgconf} takes its own version in this case.
@item iversion
The currently installed version or an empty string. The value is
taken from the command line argument but may be provided by gpg
if not given.
@item status
The status of the software package according to this table:
@table @code
@item -
No information available. This is either because no current version
has been specified or due to an error.
@item ?
The given name is not known in the online database.
@item u
An update of the software is available.
@item c
The installed version of the software is current.
@item n
The installed version is already newer than the released version.
@end table
@item urgency
If the value (the empty string should be considered as zero) is
greater than zero an important update is available.
@item error
This returns an @command{gpg-error} error code to distinguish between
various failure modes.
@item filedate
This gives the date of the file with the version numbers in standard
ISO format (@code{yyyymmddThhmmss}). The date has been extracted by
@command{dirmngr} from the signature of the file.
@item verified
This gives the date in ISO format the file was downloaded. This value
can be used to evaluate the freshness of the information.
@item version
This returns the version string for the requested software from the
file.
@item reldate
This returns the release date in ISO format.
@item size
This returns the size of the package as decimal number of bytes.
@item hash
This returns a hexified SHA-2 hash of the package.
@end table
@noindent
More fields may be added in future to the output.
@mansect files
@node Files used by gpgconf
@subsection Files used by gpgconf
@table @file
@item /etc/gnupg/gpgconf.conf
@cindex gpgconf.conf
If this file exists, it is processed as a global configuration file.
A commented example can be found in the @file{examples} directory of
the distribution.
@item @var{GNUPGHOME}/swdb.lst
@cindex swdb.lst
A file with current software versions. @command{dirmngr} creates
this file on demand from an online resource.
@end table
@mansect see also
@ifset isman
@command{gpg}(1),
@command{gpgsm}(1),
@command{gpg-agent}(1),
@command{scdaemon}(1),
@command{dirmngr}(1)
@end ifset
@include see-also-note.texi
@c
@c APPLYGNUPGDEFAULTS
@c
@manpage applygnupgdefaults.8
@node applygnupgdefaults
@section Run gpgconf for all users
@ifset manverb
.B applygnupgdefaults
\- Run gpgconf --apply-defaults for all users.
@end ifset
@mansect synopsis
@ifset manverb
.B applygnupgdefaults
@end ifset
@mansect description
This script is a wrapper around @command{gpgconf} to run it with the
command @code{--apply-defaults} for all real users with an existing
GnuPG home directory. Admins might want to use this script to update he
GnuPG configuration files for all users after
@file{/etc/gnupg/gpgconf.conf} has been changed. This allows enforcing
certain policies for all users. Note, that this is not a bulletproof way to
force a user to use certain options. A user may always directly edit
the configuration files and bypass gpgconf.
@noindent
@command{applygnupgdefaults} is invoked by root as:
@example
applygnupgdefaults
@end example
@c
@c GPG-PRESET-PASSPHRASE
@c
@node gpg-preset-passphrase
@section Put a passphrase into the cache
@manpage gpg-preset-passphrase.1
@ifset manverb
.B gpg-preset-passphrase
\- Put a passphrase into gpg-agent's cache
@end ifset
@mansect synopsis
@ifset manverb
.B gpg-preset-passphrase
.RI [ options ]
.RI [ command ]
.I cache-id
@end ifset
@mansect description
The @command{gpg-preset-passphrase} is a utility to seed the internal
cache of a running @command{gpg-agent} with passphrases. It is mainly
useful for unattended machines, where the usual @command{pinentry} tool
may not be used and the passphrases for the to be used keys are given at
machine startup.
This program works with GnuPG 2 and later. GnuPG 1.x is not supported.
Passphrases set with this utility don't expire unless the
@option{--forget} option is used to explicitly clear them from the
cache --- or @command{gpg-agent} is either restarted or reloaded (by
sending a SIGHUP to it). Note that the maximum cache time as set with
@option{--max-cache-ttl} is still honored. It is necessary to allow
this passphrase presetting by starting @command{gpg-agent} with the
@option{--allow-preset-passphrase}.
@menu
* Invoking gpg-preset-passphrase:: List of all commands and options.
@end menu
@manpause
@node Invoking gpg-preset-passphrase
@subsection List of all commands and options
@mancont
@noindent
@command{gpg-preset-passphrase} is invoked this way:
@example
gpg-preset-passphrase [options] [command] @var{cacheid}
@end example
@var{cacheid} is either a 40 character keygrip of hexadecimal
characters identifying the key for which the passphrase should be set
or cleared. The keygrip is listed along with the key when running the
command: @code{gpgsm --with-keygrip --list-secret-keys}.
Alternatively an arbitrary string may be used to identify a
passphrase; it is suggested that such a string is prefixed with the
name of the application (e.g @code{foo:12346}). Scripts should always
use the option @option{--with-colons}, which provides the keygrip in a
"grp" line (cf. @file{doc/DETAILS})/
@noindent
One of the following command options must be given:
@table @gnupgtabopt
@item --preset
@opindex preset
Preset a passphrase. This is what you usually will
use. @command{gpg-preset-passphrase} will then read the passphrase from
@code{stdin}.
@item --forget
@opindex forget
Flush the passphrase for the given cache ID from the cache.
@end table
@noindent
The following additional options may be used:
@table @gnupgtabopt
@item -v
@itemx --verbose
@opindex verbose
Output additional information while running.
@item -P @var{string}
@itemx --passphrase @var{string}
@opindex passphrase
Instead of reading the passphrase from @code{stdin}, use the supplied
@var{string} as passphrase. Note that this makes the passphrase visible
for other users.
@end table
@mansect see also
@ifset isman
@command{gpg}(1),
@command{gpgsm}(1),
@command{gpg-agent}(1),
@command{scdaemon}(1)
@end ifset
@include see-also-note.texi
@c
@c GPG-CONNECT-AGENT
@c
@node gpg-connect-agent
@section Communicate with a running agent
@manpage gpg-connect-agent.1
@ifset manverb
.B gpg-connect-agent
\- Communicate with a running agent
@end ifset
@mansect synopsis
@ifset manverb
.B gpg-connect-agent
.RI [ options ] [commands]
@end ifset
@mansect description
The @command{gpg-connect-agent} is a utility to communicate with a
running @command{gpg-agent}. It is useful to check out the commands
@command{gpg-agent} provides using the Assuan interface. It might
also be useful for scripting simple applications. Input is expected
at stdin and output gets printed to stdout.
It is very similar to running @command{gpg-agent} in server mode; but
here we connect to a running instance.
@menu
* Invoking gpg-connect-agent:: List of all options.
* Controlling gpg-connect-agent:: Control commands.
@end menu
@manpause
@node Invoking gpg-connect-agent
@subsection List of all options
@noindent
@command{gpg-connect-agent} is invoked this way:
@example
gpg-connect-agent [options] [commands]
@end example
@mancont
@noindent
The following options may be used:
@table @gnupgtabopt
@item -v
@itemx --verbose
@opindex verbose
Output additional information while running.
@item -q
@item --quiet
@opindex q
@opindex quiet
Try to be as quiet as possible.
@include opt-homedir.texi
@item --agent-program @var{file}
@opindex agent-program
Specify the agent program to be started if none is running. The
default value is determined by running @command{gpgconf} with the
option @option{--list-dirs}. Note that the pipe symbol (@code{|}) is
used for a regression test suite hack and may thus not be used in the
file name.
@item --dirmngr-program @var{file}
@opindex dirmngr-program
Specify the directory manager (keyserver client) program to be started
if none is running. This has only an effect if used together with the
option @option{--dirmngr}.
@item --dirmngr
@opindex dirmngr
Connect to a running directory manager (keyserver client) instead of
to the gpg-agent. If a dirmngr is not running, start it.
@item -S
@itemx --raw-socket @var{name}
@opindex raw-socket
Connect to socket @var{name} assuming this is an Assuan style server.
Do not run any special initializations or environment checks. This may
be used to directly connect to any Assuan style socket server.
@item -E
@itemx --exec
@opindex exec
Take the rest of the command line as a program and it's arguments and
execute it as an Assuan server. Here is how you would run @command{gpgsm}:
@smallexample
gpg-connect-agent --exec gpgsm --server
@end smallexample
Note that you may not use options on the command line in this case.
@item --no-ext-connect
@opindex no-ext-connect
When using @option{-S} or @option{--exec}, @command{gpg-connect-agent}
connects to the Assuan server in extended mode to allow descriptor
passing. This option makes it use the old mode.
@item --no-autostart
@opindex no-autostart
Do not start the gpg-agent or the dirmngr if it has not yet been
started.
@item -r @var{file}
@itemx --run @var{file}
@opindex run
Run the commands from @var{file} at startup and then continue with the
regular input method. Note, that commands given on the command line are
executed after this file.
@item -s
@itemx --subst
@opindex subst
Run the command @code{/subst} at startup.
@item --hex
@opindex hex
Print data lines in a hex format and the ASCII representation of
non-control characters.
@item --decode
@opindex decode
Decode data lines. That is to remove percent escapes but make sure that
a new line always starts with a D and a space.
@end table
@mansect control commands
@node Controlling gpg-connect-agent
@subsection Control commands
While reading Assuan commands, gpg-agent also allows a few special
commands to control its operation. These control commands all start
with a slash (@code{/}).
@table @code
@item /echo @var{args}
Just print @var{args}.
@item /let @var{name} @var{value}
Set the variable @var{name} to @var{value}. Variables are only
substituted on the input if the @command{/subst} has been used.
Variables are referenced by prefixing the name with a dollar sign and
optionally include the name in curly braces. The rules for a valid name
are identically to those of the standard bourne shell. This is not yet
enforced but may be in the future. When used with curly braces no
leading or trailing white space is allowed.
If a variable is not found, it is searched in the environment and if
found copied to the table of variables.
Variable functions are available: The name of the function must be
followed by at least one space and the at least one argument. The
following functions are available:
@table @code
@item get
Return a value described by the argument. Available arguments are:
@table @code
@item cwd
The current working directory.
@item homedir
The gnupg homedir.
@item sysconfdir
GnuPG's system configuration directory.
@item bindir
GnuPG's binary directory.
@item libdir
GnuPG's library directory.
@item libexecdir
GnuPG's library directory for executable files.
@item datadir
GnuPG's data directory.
@item serverpid
The PID of the current server. Command @command{/serverpid} must
have been given to return a useful value.
@end table
@item unescape @var{args}
Remove C-style escapes from @var{args}. Note that @code{\0} and
@code{\x00} terminate the returned string implicitly. The string to be
converted are the entire arguments right behind the delimiting space of
the function name.
@item unpercent @var{args}
@itemx unpercent+ @var{args}
Remove percent style escaping from @var{args}. Note that @code{%00}
terminates the string implicitly. The string to be converted are the
entire arguments right behind the delimiting space of the function
name. @code{unpercent+} also maps plus signs to a spaces.
@item percent @var{args}
@itemx percent+ @var{args}
Escape the @var{args} using percent style escaping. Tabs, formfeeds,
linefeeds, carriage returns and colons are escaped. @code{percent+} also
maps spaces to plus signs.
@item errcode @var{arg}
@itemx errsource @var{arg}
@itemx errstring @var{arg}
Assume @var{arg} is an integer and evaluate it using @code{strtol}. Return
the gpg-error error code, error source or a formatted string with the
error code and error source.
@item +
@itemx -
@itemx *
@itemx /
@itemx %
Evaluate all arguments as long integers using @code{strtol} and apply
this operator. A division by zero yields an empty string.
@item !
@itemx |
@itemx &
Evaluate all arguments as long integers using @code{strtol} and apply
the logical operators NOT, OR or AND. The NOT operator works on the
last argument only.
@end table
@item /definq @var{name} @var{var}
Use content of the variable @var{var} for inquiries with @var{name}.
@var{name} may be an asterisk (@code{*}) to match any inquiry.
@item /definqfile @var{name} @var{file}
Use content of @var{file} for inquiries with @var{name}.
@var{name} may be an asterisk (@code{*}) to match any inquiry.
@item /definqprog @var{name} @var{prog}
Run @var{prog} for inquiries matching @var{name} and pass the
entire line to it as command line arguments.
@item /datafile @var{name}
Write all data lines from the server to the file @var{name}. The file
is opened for writing and created if it does not exists. An existing
file is first truncated to 0. The data written to the file fully
decoded. Using a single dash for @var{name} writes to stdout. The
file is kept open until a new file is set using this command or this
command is used without an argument.
@item /showdef
Print all definitions
@item /cleardef
Delete all definitions
@item /sendfd @var{file} @var{mode}
Open @var{file} in @var{mode} (which needs to be a valid @code{fopen}
mode string) and send the file descriptor to the server. This is
usually followed by a command like @code{INPUT FD} to set the
input source for other commands.
@item /recvfd
Not yet implemented.
@item /open @var{var} @var{file} [@var{mode}]
Open @var{file} and assign the file descriptor to @var{var}. Warning:
This command is experimental and might change in future versions.
@item /close @var{fd}
Close the file descriptor @var{fd}. Warning: This command is
experimental and might change in future versions.
@item /showopen
Show a list of open files.
@item /serverpid
Send the Assuan command @command{GETINFO pid} to the server and store
the returned PID for internal purposes.
@item /sleep
Sleep for a second.
@item /hex
@itemx /nohex
Same as the command line option @option{--hex}.
@item /decode
@itemx /nodecode
Same as the command line option @option{--decode}.
@item /subst
@itemx /nosubst
Enable and disable variable substitution. It defaults to disabled
unless the command line option @option{--subst} has been used.
If /subst as been enabled once, leading whitespace is removed from
input lines which makes scripts easier to read.
@item /while @var{condition}
@itemx /end
These commands provide a way for executing loops. All lines between
the @code{while} and the corresponding @code{end} are executed as long
as the evaluation of @var{condition} yields a non-zero value or is the
string @code{true} or @code{yes}. The evaluation is done by passing
@var{condition} to the @code{strtol} function. Example:
@smallexample
/subst
/let i 3
/while $i
/echo loop couter is $i
/let i $@{- $i 1@}
/end
@end smallexample
@item /if @var{condition}
@itemx /end
These commands provide a way for conditional execution. All lines between
the @code{if} and the corresponding @code{end} are executed only if
the evaluation of @var{condition} yields a non-zero value or is the
string @code{true} or @code{yes}. The evaluation is done by passing
@var{condition} to the @code{strtol} function.
@item /run @var{file}
Run commands from @var{file}.
@item /bye
Terminate the connection and the program.
@item /help
Print a list of available control commands.
@end table
@ifset isman
@mansect see also
@command{gpg-agent}(1),
@command{scdaemon}(1)
@include see-also-note.texi
@end ifset
@c
@c DIRMNGR-CLIENT
@c
@node dirmngr-client
@section The Dirmngr Client Tool
@manpage dirmngr-client.1
@ifset manverb
.B dirmngr-client
\- Tool to access the Dirmngr services
@end ifset
@mansect synopsis
@ifset manverb
.B dirmngr-client
.RI [ options ]
.RI [ certfile | pattern ]
@end ifset
@mansect description
The @command{dirmngr-client} is a simple tool to contact a running
dirmngr and test whether a certificate has been revoked --- either by
being listed in the corresponding CRL or by running the OCSP protocol.
If no dirmngr is running, a new instances will be started but this is
in general not a good idea due to the huge performance overhead.
@noindent
The usual way to run this tool is either:
@example
dirmngr-client @var{acert}
@end example
@noindent
or
@example
dirmngr-client <@var{acert}
@end example
Where @var{acert} is one DER encoded (binary) X.509 certificates to be
tested.
@ifclear isman
The return value of this command is
@end ifclear
@mansect return value
@ifset isman
@command{dirmngr-client} returns these values:
@end ifset
@table @code
@item 0
The certificate under question is valid; i.e. there is a valid CRL
available and it is not listed there or the OCSP request returned that
that certificate is valid.
@item 1
The certificate has been revoked
@item 2 (and other values)
There was a problem checking the revocation state of the certificate.
A message to stderr has given more detailed information. Most likely
this is due to a missing or expired CRL or due to a network problem.
@end table
@mansect options
@noindent
@command{dirmngr-client} may be called with the following options:
@table @gnupgtabopt
@item --version
@opindex version
Print the program version and licensing information. Note that you cannot
abbreviate this command.
@item --help, -h
@opindex help
Print a usage message summarizing the most useful command-line options.
Note that you cannot abbreviate this command.
@item --quiet, -q
@opindex quiet
Make the output extra brief by suppressing any informational messages.
@item -v
@item --verbose
@opindex v
@opindex verbose
Outputs additional information while running.
You can increase the verbosity by giving several
verbose commands to @sc{dirmngr}, such as @samp{-vv}.
@item --pem
@opindex pem
Assume that the given certificate is in PEM (armored) format.
@item --ocsp
@opindex ocsp
Do the check using the OCSP protocol and ignore any CRLs.
@item --force-default-responder
@opindex force-default-responder
When checking using the OCSP protocol, force the use of the default OCSP
responder. That is not to use the Reponder as given by the certificate.
@item --ping
@opindex ping
Check whether the dirmngr daemon is up and running.
@item --cache-cert
@opindex cache-cert
Put the given certificate into the cache of a running dirmngr. This is
mainly useful for debugging.
@item --validate
@opindex validate
Validate the given certificate using dirmngr's internal validation code.
This is mainly useful for debugging.
@item --load-crl
@opindex load-crl
This command expects a list of filenames with DER encoded CRL files.
With the option @option{--url} URLs are expected in place of filenames
and they are loaded directly from the given location. All CRLs will be
validated and then loaded into dirmngr's cache.
@item --lookup
@opindex lookup
Take the remaining arguments and run a lookup command on each of them.
The results are Base-64 encoded outputs (without header lines). This
may be used to retrieve certificates from a server. However the output
format is not very well suited if more than one certificate is returned.
@item --url
@itemx -u
@opindex url
Modify the @command{lookup} and @command{load-crl} commands to take an URL.
@item --local
@itemx -l
@opindex url
Let the @command{lookup} command only search the local cache.
@item --squid-mode
@opindex squid-mode
Run @sc{dirmngr-client} in a mode suitable as a helper program for
Squid's @option{external_acl_type} option.
@end table
@ifset isman
@mansect see also
@command{dirmngr}(8),
@command{gpgsm}(1)
@include see-also-note.texi
@end ifset
@c
@c GPGPARSEMAIL
@c
@node gpgparsemail
@section Parse a mail message into an annotated format
@manpage gpgparsemail.1
@ifset manverb
.B gpgparsemail
\- Parse a mail message into an annotated format
@end ifset
@mansect synopsis
@ifset manverb
.B gpgparsemail
.RI [ options ]
.RI [ file ]
@end ifset
@mansect description
The @command{gpgparsemail} is a utility currently only useful for
debugging. Run it with @code{--help} for usage information.
@c
@c SYMCRYPTRUN
@c
@node symcryptrun
@section Call a simple symmetric encryption tool
@manpage symcryptrun.1
@ifset manverb
.B symcryptrun
\- Call a simple symmetric encryption tool
@end ifset
@mansect synopsis
@ifset manverb
.B symcryptrun
.B \-\-class
.I class
.B \-\-program
.I program
.B \-\-keyfile
.I keyfile
.RB [ --decrypt | --encrypt ]
.RI [ inputfile ]
@end ifset
@mansect description
Sometimes simple encryption tools are already in use for a long time
and there might be a desire to integrate them into the GnuPG
framework. The protocols and encryption methods might be non-standard
or not even properly documented, so that a full-fledged encryption
tool with an interface like @command{gpg} is not doable.
@command{symcryptrun} provides a solution: It operates by calling the
external encryption/decryption module and provides a passphrase for a
key using the standard @command{pinentry} based mechanism through
@command{gpg-agent}.
Note, that @command{symcryptrun} is only available if GnuPG has been
configured with @samp{--enable-symcryptrun} at build time.
@menu
* Invoking symcryptrun:: List of all commands and options.
@end menu
@manpause
@node Invoking symcryptrun
@subsection List of all commands and options
@noindent
@command{symcryptrun} is invoked this way:
@example
symcryptrun --class CLASS --program PROGRAM --keyfile KEYFILE
[--decrypt | --encrypt] [inputfile]
@end example
@mancont
For encryption, the plain text must be provided on STDIN or as the
argument @var{inputfile}, and the ciphertext will be output to STDOUT.
For decryption vice versa.
@var{CLASS} describes the calling conventions of the external tool.
Currently it must be given as @samp{confucius}. @var{PROGRAM} is
the full filename of that external tool.
For the class @samp{confucius} the option @option{--keyfile} is
required; @var{keyfile} is the name of a file containing the secret key,
which may be protected by a passphrase. For detailed calling
conventions, see the source code.
@noindent
Note, that @command{gpg-agent} must be running before starting
@command{symcryptrun}.
@noindent
The following additional options may be used:
@table @gnupgtabopt
@item -v
@itemx --verbose
@opindex verbose
Output additional information while running.
@item -q
@item --quiet
@opindex q
@opindex quiet
Try to be as quiet as possible.
@include opt-homedir.texi
@item --log-file @var{file}
@opindex log-file
Append all logging output to @var{file}. Use @file{socket://} to log
to socket. Default is to write logging information to STDERR.
@end table
@noindent
The possible exit status codes of @command{symcryptrun} are:
@table @code
@item 0
Success.
@item 1
Some error occurred.
@item 2
No valid passphrase was provided.
@item 3
The operation was canceled by the user.
@end table
@mansect see also
@ifset isman
@command{gpg}(1),
@command{gpgsm}(1),
@command{gpg-agent}(1),
@end ifset
@include see-also-note.texi
@c
@c GPGTAR
@c
@manpage gpgtar.1
@node gpgtar
@section Encrypt or sign files into an archive
@ifset manverb
.B gpgtar
\- Encrypt or sign files into an archive
@end ifset
@mansect synopsis
@ifset manverb
.B gpgtar
.RI [ options ]
.I filename1
.I [ filename2, ... ]
.I directory1
.I [ directory2, ... ]
@end ifset
@mansect description
@command{gpgtar} encrypts or signs files into an archive. It is an
gpg-ized tar using the same format as used by PGP's PGP Zip.
@manpause
@noindent
@command{gpgtar} is invoked this way:
@example
gpgtar [options] @var{filename1} [@var{filename2}, ...] @var{directory} [@var{directory2}, ...]
@end example
@mansect options
@noindent
@command{gpgtar} understands these options:
@table @gnupgtabopt
@item --create
@opindex create
Put given files and directories into a vanilla ``ustar'' archive.
@item --extract
@opindex extract
Extract all files from a vanilla ``ustar'' archive.
@item --encrypt
@itemx -e
@opindex encrypt
Encrypt given files and directories into an archive. This option may
be combined with option @option{--symmetric} for an archive that may
be decrypted via a secret key or a passphrase.
@item --decrypt
@itemx -d
@opindex decrypt
Extract all files from an encrypted archive.
@item --sign
@itemx -s
Make a signed archive from the given files and directories. Thsi can
be combined with option @option{--encrypt} to create a signed and then
encrypted archive.
@item --list-archive
@itemx -t
@opindex list-archive
List the contents of the specified archive.
@item --symmetric
@itemx -c
Encrypt with a symmetric cipher using a passphrase. The default
symmetric cipher used is @value{GPGSYMENCALGO}, but may be chosen with the
@option{--cipher-algo} option to @command{gpg}.
@item --recipient @var{user}
@itemx -r @var{user}
@opindex recipient
Encrypt for user id @var{user}. For details see @command{gpg}.
@item --local-user @var{user}
@itemx -u @var{user}
@opindex local-user
Use @var{user} as the key to sign with. For details see @command{gpg}.
@item --output @var{file}
@itemx -o @var{file}
@opindex output
Write the archive to the specified file @var{file}.
@item --verbose
@itemx -v
@opindex verbose
Enable extra informational output.
@item --quiet
@itemx -q
@opindex quiet
Try to be as quiet as possible.
@item --skip-crypto
@opindex skip-crypto
Skip all crypto operations and create or extract vanilla ``ustar''
archives.
@item --dry-run
@opindex dry-run
Do not actually output the extracted files.
@item --directory @var{dir}
@itemx -C @var{dir}
@opindex directory
Extract the files into the directory @var{dir}. The
default is to take the directory name from
the input filename. If no input filename is known a directory named
@file{GPGARCH} is used.
@item --files-from @var{file}
@itemx -T @var{file}
Take the file names to work from the file @var{file}; one file per
line.
@item --null
@opindex null
Modify option @option{--files-from} to use a binary nul instead of a
linefeed to separate file names.
@item --openpgp
@opindex openpgp
This option has no effect becuase OpenPGP encryption and signing is
the default.
@item --cms
@opindex cms
This option is reserved and shall not be used. It will eventually be
used to encrypt or sign using the CMS protocol; but that is not yet
implemented.
@item --set-filename @var{file}
@opindex set-filename
Use the last component of @var{file} as the output directory. The
default is to take the directory name from the input filename. If no
input filename is known a directory named @file{GPGARCH} is used.
This option is deprecated in favor of option @option{--directory}.
@item --gpg @var{gpgcmd}
@opindex gpg
Use the specified command @var{gpgcmd} instead of @command{gpg}.
@item --gpg-args @var{args}
@opindex gpg-args
Pass the specified extra options to @command{gpg}.
@item --tar-args @var{args}
@opindex tar-args
Assume @var{args} are standard options of the command @command{tar}
and parse them. The only supported tar options are "--directory",
"--files-from", and "--null" This is an obsolete options because those
supported tar options can also be given directly.
@item --version
@opindex version
Print version of the program and exit.
@item --help
@opindex help
Display a brief help page and exit.
@end table
@mansect diagnostics
@noindent
The program returns 0 if everything was fine, 1 otherwise.
@mansect examples
@ifclear isman
@noindent
Some examples:
@end ifclear
@noindent
Encrypt the contents of directory @file{mydocs} for user Bob to file
@file{test1}:
@example
gpgtar --encrypt --output test1 -r Bob mydocs
@end example
@noindent
List the contents of archive @file{test1}:
@example
gpgtar --list-archive test1
@end example
@mansect see also
@ifset isman
@command{gpg}(1),
@command{tar}(1),
@end ifset
@include see-also-note.texi
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Thu, Feb 5, 9:36 PM (23 h, 59 m)
Storage Engine
local-disk
Storage Format
Raw Data
Storage Handle
73/eb/d3441197304f6cc79fbf0715399b
Attached To
rG GnuPG
Event Timeline
Log In to Comment