Page MenuHome GnuPG

No OneTemporary

diff --git a/cipher/twofish-amd64.S b/cipher/twofish-amd64.S
index a7a60553..8998d296 100644
--- a/cipher/twofish-amd64.S
+++ b/cipher/twofish-amd64.S
@@ -1,1184 +1,1258 @@
/* twofish-amd64.S - AMD64 assembly implementation of Twofish cipher
*
* Copyright (C) 2013-2015 Jussi Kivilinna <jussi.kivilinna@iki.fi>
*
* This file is part of Libgcrypt.
*
* Libgcrypt is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* Libgcrypt is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#ifdef __x86_64
#include <config.h>
#if (defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) || \
defined(HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS)) && defined(USE_TWOFISH)
#include "asm-common-amd64.h"
.text
/* structure of TWOFISH_context: */
#define s0 0
#define s1 ((s0) + 4 * 256)
#define s2 ((s1) + 4 * 256)
#define s3 ((s2) + 4 * 256)
#define w ((s3) + 4 * 256)
#define k ((w) + 4 * 8)
/* register macros */
#define CTX %rdi
#define RA %rax
#define RB %rbx
#define RC %rcx
#define RD %rdx
#define RAd %eax
#define RBd %ebx
#define RCd %ecx
#define RDd %edx
#define RAbl %al
#define RBbl %bl
#define RCbl %cl
#define RDbl %dl
#define RAbh %ah
#define RBbh %bh
#define RCbh %ch
#define RDbh %dh
#define RX %r8
#define RY %r9
#define RXd %r8d
#define RYd %r9d
#define RT0 %rsi
#define RT1 %rbp
#define RT2 %r10
#define RT3 %r11
#define RT0d %esi
#define RT1d %ebp
#define RT2d %r10d
#define RT3d %r11d
/***********************************************************************
* AMD64 assembly implementation of the Twofish cipher
***********************************************************************/
#define enc_g1_2(a, b, x, y) \
movzbl b ## bl, RT3d; \
movzbl b ## bh, RT1d; \
movzbl a ## bl, RT2d; \
movzbl a ## bh, RT0d; \
rorl $16, b ## d; \
rorl $16, a ## d; \
movl s1(CTX, RT3, 4), RYd; \
movzbl b ## bl, RT3d; \
movl s0(CTX, RT2, 4), RXd; \
movzbl a ## bl, RT2d; \
xorl s2(CTX, RT1, 4), RYd; \
movzbl b ## bh, RT1d; \
xorl s1(CTX, RT0, 4), RXd; \
movzbl a ## bh, RT0d; \
rorl $16, b ## d; \
rorl $16, a ## d; \
xorl s3(CTX, RT3, 4), RYd; \
xorl s2(CTX, RT2, 4), RXd; \
xorl s0(CTX, RT1, 4), RYd; \
xorl s3(CTX, RT0, 4), RXd;
#define dec_g1_2(a, b, x, y) \
movzbl a ## bl, RT2d; \
movzbl a ## bh, RT0d; \
movzbl b ## bl, RT3d; \
movzbl b ## bh, RT1d; \
rorl $16, a ## d; \
rorl $16, b ## d; \
movl s0(CTX, RT2, 4), RXd; \
movzbl a ## bl, RT2d; \
movl s1(CTX, RT3, 4), RYd; \
movzbl b ## bl, RT3d; \
xorl s1(CTX, RT0, 4), RXd; \
movzbl a ## bh, RT0d; \
xorl s2(CTX, RT1, 4), RYd; \
movzbl b ## bh, RT1d; \
rorl $16, a ## d; \
rorl $16, b ## d; \
xorl s2(CTX, RT2, 4), RXd; \
xorl s3(CTX, RT3, 4), RYd; \
xorl s3(CTX, RT0, 4), RXd; \
xorl s0(CTX, RT1, 4), RYd;
#define encrypt_round(ra, rb, rc, rd, n) \
enc_g1_2(##ra, ##rb, RX, RY); \
\
leal (RXd, RYd, 2), RT0d; \
addl RYd, RXd; \
addl (k + 8 * (n) + 4)(CTX), RT0d; \
roll $1, rd ## d; \
addl (k + 8 * (n))(CTX), RXd; \
xorl RT0d, rd ## d; \
xorl RXd, rc ## d; \
rorl $1, rc ## d;
#define decrypt_round(ra, rb, rc, rd, n) \
dec_g1_2(##ra, ##rb, RX, RY); \
\
leal (RXd, RYd, 2), RT0d; \
addl RYd, RXd; \
addl (k + 8 * (n) + 4)(CTX), RT0d; \
roll $1, rc ## d; \
addl (k + 8 * (n))(CTX), RXd; \
xorl RXd, rc ## d; \
xorl RT0d, rd ## d; \
rorl $1, rd ## d;
#define encrypt_cycle(a, b, c, d, nc) \
encrypt_round(##a, ##b, ##c, ##d, (nc) * 2); \
encrypt_round(##c, ##d, ##a, ##b, (nc) * 2 + 1);
#define decrypt_cycle(a, b, c, d, nc) \
decrypt_round(##c, ##d, ##a, ##b, (nc) * 2 + 1); \
decrypt_round(##a, ##b, ##c, ##d, (nc) * 2);
#define inpack(in, n, x, m) \
movl (4 * (n))(in), x; \
xorl (w + 4 * (m))(CTX), x;
#define outunpack(out, n, x, m) \
xorl (w + 4 * (m))(CTX), x; \
movl x, (4 * (n))(out);
.align 8
.globl _gcry_twofish_amd64_encrypt_block
ELF(.type _gcry_twofish_amd64_encrypt_block,@function;)
_gcry_twofish_amd64_encrypt_block:
/* input:
* %rdi: context, CTX
* %rsi: dst
* %rdx: src
*/
CFI_STARTPROC();
ENTER_SYSV_FUNC_PARAMS_0_4
subq $(3 * 8), %rsp;
CFI_ADJUST_CFA_OFFSET(3 * 8);
movq %rsi, (0 * 8)(%rsp);
movq %rbp, (1 * 8)(%rsp);
movq %rbx, (2 * 8)(%rsp);
CFI_REL_OFFSET(%rbp, 1 * 8);
CFI_REL_OFFSET(%rbx, 2 * 8);
movq %rdx, RX;
inpack(RX, 0, RAd, 0);
inpack(RX, 1, RBd, 1);
inpack(RX, 2, RCd, 2);
inpack(RX, 3, RDd, 3);
encrypt_cycle(RA, RB, RC, RD, 0);
encrypt_cycle(RA, RB, RC, RD, 1);
encrypt_cycle(RA, RB, RC, RD, 2);
encrypt_cycle(RA, RB, RC, RD, 3);
encrypt_cycle(RA, RB, RC, RD, 4);
encrypt_cycle(RA, RB, RC, RD, 5);
encrypt_cycle(RA, RB, RC, RD, 6);
encrypt_cycle(RA, RB, RC, RD, 7);
movq (0 * 8)(%rsp), RX; /*dst*/
outunpack(RX, 0, RCd, 4);
outunpack(RX, 1, RDd, 5);
outunpack(RX, 2, RAd, 6);
outunpack(RX, 3, RBd, 7);
movq (2 * 8)(%rsp), %rbx;
movq (1 * 8)(%rsp), %rbp;
CFI_RESTORE(%rbx);
CFI_RESTORE(%rbp);
addq $(3 * 8), %rsp;
CFI_ADJUST_CFA_OFFSET(-3 * 8);
EXIT_SYSV_FUNC
ret_spec_stop;
CFI_ENDPROC();
ELF(.size _gcry_twofish_amd64_encrypt_block,.-_gcry_twofish_amd64_encrypt_block;)
.align 8
.globl _gcry_twofish_amd64_decrypt_block
ELF(.type _gcry_twofish_amd64_decrypt_block,@function;)
_gcry_twofish_amd64_decrypt_block:
/* input:
* %rdi: context, CTX
* %rsi: dst
* %rdx: src
*/
CFI_STARTPROC();
ENTER_SYSV_FUNC_PARAMS_0_4
subq $(3 * 8), %rsp;
CFI_ADJUST_CFA_OFFSET(3 * 8);
movq %rsi, (0 * 8)(%rsp);
movq %rbp, (1 * 8)(%rsp);
movq %rbx, (2 * 8)(%rsp);
CFI_REL_OFFSET(%rbp, 1 * 8);
CFI_REL_OFFSET(%rbx, 2 * 8);
movq %rdx, RX;
inpack(RX, 0, RCd, 4);
inpack(RX, 1, RDd, 5);
inpack(RX, 2, RAd, 6);
inpack(RX, 3, RBd, 7);
decrypt_cycle(RA, RB, RC, RD, 7);
decrypt_cycle(RA, RB, RC, RD, 6);
decrypt_cycle(RA, RB, RC, RD, 5);
decrypt_cycle(RA, RB, RC, RD, 4);
decrypt_cycle(RA, RB, RC, RD, 3);
decrypt_cycle(RA, RB, RC, RD, 2);
decrypt_cycle(RA, RB, RC, RD, 1);
decrypt_cycle(RA, RB, RC, RD, 0);
movq (0 * 8)(%rsp), RX; /*dst*/
outunpack(RX, 0, RAd, 0);
outunpack(RX, 1, RBd, 1);
outunpack(RX, 2, RCd, 2);
outunpack(RX, 3, RDd, 3);
movq (2 * 8)(%rsp), %rbx;
movq (1 * 8)(%rsp), %rbp;
CFI_RESTORE(%rbx);
CFI_RESTORE(%rbp);
addq $(3 * 8), %rsp;
CFI_ADJUST_CFA_OFFSET(-3 * 8);
EXIT_SYSV_FUNC
ret_spec_stop;
CFI_ENDPROC();
ELF(.size _gcry_twofish_amd64_encrypt_block,.-_gcry_twofish_amd64_encrypt_block;)
#undef CTX
#undef RA
#undef RB
#undef RC
#undef RD
#undef RAd
#undef RBd
#undef RCd
#undef RDd
#undef RAbl
#undef RBbl
#undef RCbl
#undef RDbl
#undef RAbh
#undef RBbh
#undef RCbh
#undef RDbh
#undef RX
#undef RY
#undef RXd
#undef RYd
#undef RT0
#undef RT1
#undef RT2
#undef RT3
#undef RT0d
#undef RT1d
#undef RT2d
#undef RT3d
/***********************************************************************
* AMD64 assembly implementation of the Twofish cipher, 3-way parallel
***********************************************************************/
#define CTX %rdi
#define RIO %rdx
#define RAB0 %rax
#define RAB1 %rbx
#define RAB2 %rcx
#define RAB0d %eax
#define RAB1d %ebx
#define RAB2d %ecx
#define RAB0bh %ah
#define RAB1bh %bh
#define RAB2bh %ch
#define RAB0bl %al
#define RAB1bl %bl
#define RAB2bl %cl
#define RCD0 %r8
#define RCD1 %r9
#define RCD2 %r10
#define RCD0d %r8d
#define RCD1d %r9d
#define RCD2d %r10d
#define RX0 %rbp
#define RX1 %r11
#define RX2 %r12
#define RX0d %ebp
#define RX1d %r11d
#define RX2d %r12d
#define RY0 %r13
#define RY1 %r14
#define RY2 %r15
#define RY0d %r13d
#define RY1d %r14d
#define RY2d %r15d
#define RT0 %rdx
#define RT1 %rsi
#define RT0d %edx
#define RT1d %esi
#define do16bit_ror(rot, op1, op2, T0, T1, tmp1, tmp2, ab, dst) \
movzbl ab ## bl, tmp2 ## d; \
movzbl ab ## bh, tmp1 ## d; \
rorq $(rot), ab; \
op1##l T0(CTX, tmp2, 4), dst ## d; \
op2##l T1(CTX, tmp1, 4), dst ## d;
/*
* Combined G1 & G2 function. Reordered with help of rotates to have moves
* at beginning.
*/
#define g1g2_3(ab, cd, Tx0, Tx1, Tx2, Tx3, Ty0, Ty1, Ty2, Ty3, x, y) \
/* G1,1 && G2,1 */ \
do16bit_ror(32, mov, xor, Tx0, Tx1, RT0, x ## 0, ab ## 0, x ## 0); \
do16bit_ror(48, mov, xor, Ty1, Ty2, RT0, y ## 0, ab ## 0, y ## 0); \
\
do16bit_ror(32, mov, xor, Tx0, Tx1, RT0, x ## 1, ab ## 1, x ## 1); \
do16bit_ror(48, mov, xor, Ty1, Ty2, RT0, y ## 1, ab ## 1, y ## 1); \
\
do16bit_ror(32, mov, xor, Tx0, Tx1, RT0, x ## 2, ab ## 2, x ## 2); \
do16bit_ror(48, mov, xor, Ty1, Ty2, RT0, y ## 2, ab ## 2, y ## 2); \
\
/* G1,2 && G2,2 */ \
do16bit_ror(32, xor, xor, Tx2, Tx3, RT0, RT1, ab ## 0, x ## 0); \
do16bit_ror(16, xor, xor, Ty3, Ty0, RT0, RT1, ab ## 0, y ## 0); \
movq ab ## 0, RT0; \
movq cd ## 0, ab ## 0; \
movq RT0, cd ## 0; \
\
do16bit_ror(32, xor, xor, Tx2, Tx3, RT0, RT1, ab ## 1, x ## 1); \
do16bit_ror(16, xor, xor, Ty3, Ty0, RT0, RT1, ab ## 1, y ## 1); \
movq ab ## 1, RT0; \
movq cd ## 1, ab ## 1; \
movq RT0, cd ## 1; \
\
do16bit_ror(32, xor, xor, Tx2, Tx3, RT0, RT1, ab ## 2, x ## 2); \
do16bit_ror(16, xor, xor, Ty3, Ty0, RT0, RT1, ab ## 2, y ## 2); \
movq ab ## 2, RT0; \
movq cd ## 2, ab ## 2; \
movq RT0, cd ## 2;
#define enc_round_end(ab, x, y, n) \
addl y ## d, x ## d; \
addl x ## d, y ## d; \
addl k+4*(2*(n))(CTX), x ## d; \
xorl ab ## d, x ## d; \
addl k+4*(2*(n)+1)(CTX), y ## d; \
shrq $32, ab; \
roll $1, ab ## d; \
xorl y ## d, ab ## d; \
shlq $32, ab; \
rorl $1, x ## d; \
orq x, ab;
#define dec_round_end(ba, x, y, n) \
addl y ## d, x ## d; \
addl x ## d, y ## d; \
addl k+4*(2*(n))(CTX), x ## d; \
addl k+4*(2*(n)+1)(CTX), y ## d; \
xorl ba ## d, y ## d; \
shrq $32, ba; \
roll $1, ba ## d; \
xorl x ## d, ba ## d; \
shlq $32, ba; \
rorl $1, y ## d; \
orq y, ba;
#define encrypt_round3(ab, cd, n) \
g1g2_3(ab, cd, s0, s1, s2, s3, s0, s1, s2, s3, RX, RY); \
\
enc_round_end(ab ## 0, RX0, RY0, n); \
enc_round_end(ab ## 1, RX1, RY1, n); \
enc_round_end(ab ## 2, RX2, RY2, n);
#define decrypt_round3(ba, dc, n) \
g1g2_3(ba, dc, s1, s2, s3, s0, s3, s0, s1, s2, RY, RX); \
\
dec_round_end(ba ## 0, RX0, RY0, n); \
dec_round_end(ba ## 1, RX1, RY1, n); \
dec_round_end(ba ## 2, RX2, RY2, n);
#define encrypt_cycle3(ab, cd, n) \
encrypt_round3(ab, cd, n*2); \
encrypt_round3(ab, cd, (n*2)+1);
#define decrypt_cycle3(ba, dc, n) \
decrypt_round3(ba, dc, (n*2)+1); \
decrypt_round3(ba, dc, (n*2));
#define inpack3(xy, m) \
xorq w+4*m(CTX), xy ## 0; \
xorq w+4*m(CTX), xy ## 1; \
xorq w+4*m(CTX), xy ## 2;
#define outunpack3(xy, m) \
xorq w+4*m(CTX), xy ## 0; \
xorq w+4*m(CTX), xy ## 1; \
xorq w+4*m(CTX), xy ## 2;
#define inpack_enc3() \
inpack3(RAB, 0); \
inpack3(RCD, 2);
#define outunpack_enc3() \
outunpack3(RAB, 6); \
outunpack3(RCD, 4);
#define inpack_dec3() \
inpack3(RAB, 4); \
rorq $32, RAB0; \
rorq $32, RAB1; \
rorq $32, RAB2; \
inpack3(RCD, 6); \
rorq $32, RCD0; \
rorq $32, RCD1; \
rorq $32, RCD2;
#define outunpack_dec3() \
rorq $32, RCD0; \
rorq $32, RCD1; \
rorq $32, RCD2; \
outunpack3(RCD, 0); \
rorq $32, RAB0; \
rorq $32, RAB1; \
rorq $32, RAB2; \
outunpack3(RAB, 2);
.align 8
ELF(.type __twofish_enc_blk3,@function;)
__twofish_enc_blk3:
/* input:
* %rdi: ctx, CTX
* RAB0,RCD0,RAB1,RCD1,RAB2,RCD2: three plaintext blocks
* output:
* RCD0,RAB0,RCD1,RAB1,RCD2,RAB2: three ciphertext blocks
*/
CFI_STARTPROC();
inpack_enc3();
encrypt_cycle3(RAB, RCD, 0);
encrypt_cycle3(RAB, RCD, 1);
encrypt_cycle3(RAB, RCD, 2);
encrypt_cycle3(RAB, RCD, 3);
encrypt_cycle3(RAB, RCD, 4);
encrypt_cycle3(RAB, RCD, 5);
encrypt_cycle3(RAB, RCD, 6);
encrypt_cycle3(RAB, RCD, 7);
outunpack_enc3();
ret_spec_stop;
CFI_ENDPROC();
ELF(.size __twofish_enc_blk3,.-__twofish_enc_blk3;)
.align 8
ELF(.type __twofish_dec_blk3,@function;)
__twofish_dec_blk3:
/* input:
* %rdi: ctx, CTX
* RAB0,RCD0,RAB1,RCD1,RAB2,RCD2: three ciphertext blocks
* output:
* RCD0,RAB0,RCD1,RAB1,RCD2,RAB2: three plaintext blocks
*/
CFI_STARTPROC();
inpack_dec3();
decrypt_cycle3(RAB, RCD, 7);
decrypt_cycle3(RAB, RCD, 6);
decrypt_cycle3(RAB, RCD, 5);
decrypt_cycle3(RAB, RCD, 4);
decrypt_cycle3(RAB, RCD, 3);
decrypt_cycle3(RAB, RCD, 2);
decrypt_cycle3(RAB, RCD, 1);
decrypt_cycle3(RAB, RCD, 0);
outunpack_dec3();
ret_spec_stop;
CFI_ENDPROC();
ELF(.size __twofish_dec_blk3,.-__twofish_dec_blk3;)
+.align 8
+.globl _gcry_twofish_amd64_blk3
+ELF(.type _gcry_twofish_amd64_blk3,@function;)
+_gcry_twofish_amd64_blk3:
+ /* input:
+ * %rdi: ctx, CTX
+ * %rsi: dst (3 blocks)
+ * %rdx: src (3 blocks)
+ * %ecx: encrypt (0 or 1)
+ */
+ CFI_STARTPROC();
+ ENTER_SYSV_FUNC_PARAMS_0_4
+
+ subq $(8 * 8), %rsp;
+ CFI_ADJUST_CFA_OFFSET(8 * 8);
+ movq %rbp, (0 * 8)(%rsp);
+ movq %rbx, (1 * 8)(%rsp);
+ movq %r12, (2 * 8)(%rsp);
+ movq %r13, (3 * 8)(%rsp);
+ movq %r14, (4 * 8)(%rsp);
+ movq %r15, (5 * 8)(%rsp);
+ CFI_REL_OFFSET(%rbp, 0 * 8);
+ CFI_REL_OFFSET(%rbx, 1 * 8);
+ CFI_REL_OFFSET(%r12, 2 * 8);
+ CFI_REL_OFFSET(%r13, 3 * 8);
+ CFI_REL_OFFSET(%r14, 4 * 8);
+ CFI_REL_OFFSET(%r15, 5 * 8);
+
+ testl %ecx, %ecx;
+ movq %rdx, RX0;
+ movq %rsi, (6 * 8)(%rsp);
+
+ movq (0 * 8)(RX0), RAB0;
+ movq (1 * 8)(RX0), RCD0;
+ movq (2 * 8)(RX0), RAB1;
+ movq (3 * 8)(RX0), RCD1;
+ movq (4 * 8)(RX0), RAB2;
+ movq (5 * 8)(RX0), RCD2;
+
+ jz .Lblk1_3_dec;
+ call __twofish_enc_blk3;
+ jmp .Lblk1_3_end;
+ .Lblk1_3_dec:
+ call __twofish_dec_blk3;
+
+.Lblk1_3_end:
+ movq (6 * 8)(%rsp), RX0;
+ movq RCD0, (0 * 8)(RX0);
+ movq RAB0, (1 * 8)(RX0);
+ movq RCD1, (2 * 8)(RX0);
+ movq RAB1, (3 * 8)(RX0);
+ movq RCD2, (4 * 8)(RX0);
+ movq RAB2, (5 * 8)(RX0);
+
+ movq (0 * 8)(%rsp), %rbp;
+ movq (1 * 8)(%rsp), %rbx;
+ movq (2 * 8)(%rsp), %r12;
+ movq (3 * 8)(%rsp), %r13;
+ movq (4 * 8)(%rsp), %r14;
+ movq (5 * 8)(%rsp), %r15;
+ CFI_RESTORE(%rbp);
+ CFI_RESTORE(%rbx);
+ CFI_RESTORE(%r12);
+ CFI_RESTORE(%r13);
+ CFI_RESTORE(%r14);
+ CFI_RESTORE(%r15);
+ addq $(8 * 8), %rsp;
+ CFI_ADJUST_CFA_OFFSET(-8 * 8);
+
+ EXIT_SYSV_FUNC
+ ret_spec_stop;
+ CFI_ENDPROC();
+ELF(.size _gcry_twofish_amd64_blk3,.-_gcry_twofish_amd64_blk3;)
+
.align 8
.globl _gcry_twofish_amd64_ctr_enc
ELF(.type _gcry_twofish_amd64_ctr_enc,@function;)
_gcry_twofish_amd64_ctr_enc:
/* input:
* %rdi: ctx, CTX
* %rsi: dst (3 blocks)
* %rdx: src (3 blocks)
* %rcx: iv (big endian, 128bit)
*/
CFI_STARTPROC();
ENTER_SYSV_FUNC_PARAMS_0_4
subq $(8 * 8), %rsp;
CFI_ADJUST_CFA_OFFSET(8 * 8);
movq %rbp, (0 * 8)(%rsp);
movq %rbx, (1 * 8)(%rsp);
movq %r12, (2 * 8)(%rsp);
movq %r13, (3 * 8)(%rsp);
movq %r14, (4 * 8)(%rsp);
movq %r15, (5 * 8)(%rsp);
CFI_REL_OFFSET(%rbp, 0 * 8);
CFI_REL_OFFSET(%rbx, 1 * 8);
CFI_REL_OFFSET(%r12, 2 * 8);
CFI_REL_OFFSET(%r13, 3 * 8);
CFI_REL_OFFSET(%r14, 4 * 8);
CFI_REL_OFFSET(%r15, 5 * 8);
movq %rsi, (6 * 8)(%rsp);
movq %rdx, (7 * 8)(%rsp);
movq %rcx, RX0;
/* load IV and byteswap */
movq 8(RX0), RT0;
movq 0(RX0), RT1;
movq RT0, RCD0;
movq RT1, RAB0;
bswapq RT0;
bswapq RT1;
/* construct IVs */
movq RT0, RCD1;
movq RT1, RAB1;
movq RT0, RCD2;
movq RT1, RAB2;
addq $1, RCD1;
adcq $0, RAB1;
bswapq RCD1;
bswapq RAB1;
addq $2, RCD2;
adcq $0, RAB2;
bswapq RCD2;
bswapq RAB2;
addq $3, RT0;
adcq $0, RT1;
bswapq RT0;
bswapq RT1;
/* store new IV */
movq RT0, 8(RX0);
movq RT1, 0(RX0);
call __twofish_enc_blk3;
movq (7 * 8)(%rsp), RX0; /*src*/
movq (6 * 8)(%rsp), RX1; /*dst*/
/* XOR key-stream with plaintext */
xorq (0 * 8)(RX0), RCD0;
xorq (1 * 8)(RX0), RAB0;
xorq (2 * 8)(RX0), RCD1;
xorq (3 * 8)(RX0), RAB1;
xorq (4 * 8)(RX0), RCD2;
xorq (5 * 8)(RX0), RAB2;
movq RCD0, (0 * 8)(RX1);
movq RAB0, (1 * 8)(RX1);
movq RCD1, (2 * 8)(RX1);
movq RAB1, (3 * 8)(RX1);
movq RCD2, (4 * 8)(RX1);
movq RAB2, (5 * 8)(RX1);
movq (0 * 8)(%rsp), %rbp;
movq (1 * 8)(%rsp), %rbx;
movq (2 * 8)(%rsp), %r12;
movq (3 * 8)(%rsp), %r13;
movq (4 * 8)(%rsp), %r14;
movq (5 * 8)(%rsp), %r15;
CFI_RESTORE(%rbp);
CFI_RESTORE(%rbx);
CFI_RESTORE(%r12);
CFI_RESTORE(%r13);
CFI_RESTORE(%r14);
CFI_RESTORE(%r15);
addq $(8 * 8), %rsp;
CFI_ADJUST_CFA_OFFSET(-8 * 8);
EXIT_SYSV_FUNC
ret_spec_stop;
CFI_ENDPROC();
ELF(.size _gcry_twofish_amd64_ctr_enc,.-_gcry_twofish_amd64_ctr_enc;)
.align 8
.globl _gcry_twofish_amd64_cbc_dec
ELF(.type _gcry_twofish_amd64_cbc_dec,@function;)
_gcry_twofish_amd64_cbc_dec:
/* input:
* %rdi: ctx, CTX
* %rsi: dst (3 blocks)
* %rdx: src (3 blocks)
* %rcx: iv (128bit)
*/
CFI_STARTPROC();
ENTER_SYSV_FUNC_PARAMS_0_4
subq $(9 * 8), %rsp;
CFI_ADJUST_CFA_OFFSET(9 * 8);
movq %rbp, (0 * 8)(%rsp);
movq %rbx, (1 * 8)(%rsp);
movq %r12, (2 * 8)(%rsp);
movq %r13, (3 * 8)(%rsp);
movq %r14, (4 * 8)(%rsp);
movq %r15, (5 * 8)(%rsp);
CFI_REL_OFFSET(%rbp, 0 * 8);
CFI_REL_OFFSET(%rbx, 1 * 8);
CFI_REL_OFFSET(%r12, 2 * 8);
CFI_REL_OFFSET(%r13, 3 * 8);
CFI_REL_OFFSET(%r14, 4 * 8);
CFI_REL_OFFSET(%r15, 5 * 8);
movq %rsi, (6 * 8)(%rsp);
movq %rdx, (7 * 8)(%rsp);
movq %rcx, (8 * 8)(%rsp);
movq %rdx, RX0;
/* load input */
movq (0 * 8)(RX0), RAB0;
movq (1 * 8)(RX0), RCD0;
movq (2 * 8)(RX0), RAB1;
movq (3 * 8)(RX0), RCD1;
movq (4 * 8)(RX0), RAB2;
movq (5 * 8)(RX0), RCD2;
call __twofish_dec_blk3;
movq (8 * 8)(%rsp), RT0; /*iv*/
movq (7 * 8)(%rsp), RX0; /*src*/
movq (6 * 8)(%rsp), RX1; /*dst*/
movq (4 * 8)(RX0), RY0;
movq (5 * 8)(RX0), RY1;
xorq (0 * 8)(RT0), RCD0;
xorq (1 * 8)(RT0), RAB0;
xorq (0 * 8)(RX0), RCD1;
xorq (1 * 8)(RX0), RAB1;
xorq (2 * 8)(RX0), RCD2;
xorq (3 * 8)(RX0), RAB2;
movq RY0, (0 * 8)(RT0);
movq RY1, (1 * 8)(RT0);
movq RCD0, (0 * 8)(RX1);
movq RAB0, (1 * 8)(RX1);
movq RCD1, (2 * 8)(RX1);
movq RAB1, (3 * 8)(RX1);
movq RCD2, (4 * 8)(RX1);
movq RAB2, (5 * 8)(RX1);
movq (0 * 8)(%rsp), %rbp;
movq (1 * 8)(%rsp), %rbx;
movq (2 * 8)(%rsp), %r12;
movq (3 * 8)(%rsp), %r13;
movq (4 * 8)(%rsp), %r14;
movq (5 * 8)(%rsp), %r15;
CFI_RESTORE(%rbp);
CFI_RESTORE(%rbx);
CFI_RESTORE(%r12);
CFI_RESTORE(%r13);
CFI_RESTORE(%r14);
CFI_RESTORE(%r15);
addq $(9 * 8), %rsp;
CFI_ADJUST_CFA_OFFSET(-9 * 8);
EXIT_SYSV_FUNC
ret_spec_stop;
CFI_ENDPROC();
ELF(.size _gcry_twofish_amd64_cbc_dec,.-_gcry_twofish_amd64_cbc_dec;)
.align 8
.globl _gcry_twofish_amd64_cfb_dec
ELF(.type _gcry_twofish_amd64_cfb_dec,@function;)
_gcry_twofish_amd64_cfb_dec:
/* input:
* %rdi: ctx, CTX
* %rsi: dst (3 blocks)
* %rdx: src (3 blocks)
* %rcx: iv (128bit)
*/
CFI_STARTPROC();
ENTER_SYSV_FUNC_PARAMS_0_4
subq $(8 * 8), %rsp;
CFI_ADJUST_CFA_OFFSET(8 * 8);
movq %rbp, (0 * 8)(%rsp);
movq %rbx, (1 * 8)(%rsp);
movq %r12, (2 * 8)(%rsp);
movq %r13, (3 * 8)(%rsp);
movq %r14, (4 * 8)(%rsp);
movq %r15, (5 * 8)(%rsp);
CFI_REL_OFFSET(%rbp, 0 * 8);
CFI_REL_OFFSET(%rbx, 1 * 8);
CFI_REL_OFFSET(%r12, 2 * 8);
CFI_REL_OFFSET(%r13, 3 * 8);
CFI_REL_OFFSET(%r14, 4 * 8);
CFI_REL_OFFSET(%r15, 5 * 8);
movq %rsi, (6 * 8)(%rsp);
movq %rdx, (7 * 8)(%rsp);
movq %rdx, RX0;
movq %rcx, RX1;
/* load input */
movq (0 * 8)(RX1), RAB0;
movq (1 * 8)(RX1), RCD0;
movq (0 * 8)(RX0), RAB1;
movq (1 * 8)(RX0), RCD1;
movq (2 * 8)(RX0), RAB2;
movq (3 * 8)(RX0), RCD2;
/* Update IV */
movq (4 * 8)(RX0), RY0;
movq (5 * 8)(RX0), RY1;
movq RY0, (0 * 8)(RX1);
movq RY1, (1 * 8)(RX1);
call __twofish_enc_blk3;
movq (7 * 8)(%rsp), RX0; /*src*/
movq (6 * 8)(%rsp), RX1; /*dst*/
xorq (0 * 8)(RX0), RCD0;
xorq (1 * 8)(RX0), RAB0;
xorq (2 * 8)(RX0), RCD1;
xorq (3 * 8)(RX0), RAB1;
xorq (4 * 8)(RX0), RCD2;
xorq (5 * 8)(RX0), RAB2;
movq RCD0, (0 * 8)(RX1);
movq RAB0, (1 * 8)(RX1);
movq RCD1, (2 * 8)(RX1);
movq RAB1, (3 * 8)(RX1);
movq RCD2, (4 * 8)(RX1);
movq RAB2, (5 * 8)(RX1);
movq (0 * 8)(%rsp), %rbp;
movq (1 * 8)(%rsp), %rbx;
movq (2 * 8)(%rsp), %r12;
movq (3 * 8)(%rsp), %r13;
movq (4 * 8)(%rsp), %r14;
movq (5 * 8)(%rsp), %r15;
CFI_RESTORE(%rbp);
CFI_RESTORE(%rbx);
CFI_RESTORE(%r12);
CFI_RESTORE(%r13);
CFI_RESTORE(%r14);
CFI_RESTORE(%r15);
addq $(8 * 8), %rsp;
CFI_ADJUST_CFA_OFFSET(-8 * 8);
EXIT_SYSV_FUNC
ret_spec_stop;
CFI_ENDPROC();
ELF(.size _gcry_twofish_amd64_cfb_dec,.-_gcry_twofish_amd64_cfb_dec;)
.align 8
.globl _gcry_twofish_amd64_ocb_enc
ELF(.type _gcry_twofish_amd64_ocb_enc,@function;)
_gcry_twofish_amd64_ocb_enc:
/* input:
* %rdi: ctx, CTX
* %rsi: dst (3 blocks)
* %rdx: src (3 blocks)
* %rcx: offset
* %r8 : checksum
* %r9 : L pointers (void *L[3])
*/
CFI_STARTPROC();
ENTER_SYSV_FUNC_PARAMS_6
subq $(8 * 8), %rsp;
CFI_ADJUST_CFA_OFFSET(8 * 8);
movq %rbp, (0 * 8)(%rsp);
movq %rbx, (1 * 8)(%rsp);
movq %r12, (2 * 8)(%rsp);
movq %r13, (3 * 8)(%rsp);
movq %r14, (4 * 8)(%rsp);
movq %r15, (5 * 8)(%rsp);
CFI_REL_OFFSET(%rbp, 0 * 8);
CFI_REL_OFFSET(%rbx, 1 * 8);
CFI_REL_OFFSET(%r12, 2 * 8);
CFI_REL_OFFSET(%r13, 3 * 8);
CFI_REL_OFFSET(%r14, 4 * 8);
CFI_REL_OFFSET(%r15, 5 * 8);
movq %rsi, (6 * 8)(%rsp);
movq %rdx, RX0;
movq %rcx, RX1;
movq %r8, RX2;
movq %r9, RY0;
movq %rsi, RY1;
/* Load offset */
movq (0 * 8)(RX1), RT0;
movq (1 * 8)(RX1), RT1;
/* Offset_i = Offset_{i-1} xor L_{ntz(i)} */
movq (RY0), RY2;
xorq (0 * 8)(RY2), RT0;
xorq (1 * 8)(RY2), RT1;
movq (0 * 8)(RX0), RAB0;
movq (1 * 8)(RX0), RCD0;
/* Store Offset_i */
movq RT0, (0 * 8)(RY1);
movq RT1, (1 * 8)(RY1);
/* Checksum_i = Checksum_{i-1} xor P_i */
xor RAB0, (0 * 8)(RX2);
xor RCD0, (1 * 8)(RX2);
/* PX_i = P_i xor Offset_i */
xorq RT0, RAB0;
xorq RT1, RCD0;
/* Offset_i = Offset_{i-1} xor L_{ntz(i)} */
movq 8(RY0), RY2;
xorq (0 * 8)(RY2), RT0;
xorq (1 * 8)(RY2), RT1;
movq (2 * 8)(RX0), RAB1;
movq (3 * 8)(RX0), RCD1;
/* Store Offset_i */
movq RT0, (2 * 8)(RY1);
movq RT1, (3 * 8)(RY1);
/* Checksum_i = Checksum_{i-1} xor P_i */
xor RAB1, (0 * 8)(RX2);
xor RCD1, (1 * 8)(RX2);
/* PX_i = P_i xor Offset_i */
xorq RT0, RAB1;
xorq RT1, RCD1;
/* Offset_i = Offset_{i-1} xor L_{ntz(i)} */
movq 16(RY0), RY2;
xorq (0 * 8)(RY2), RT0;
xorq (1 * 8)(RY2), RT1;
movq (4 * 8)(RX0), RAB2;
movq (5 * 8)(RX0), RCD2;
/* Store Offset_i */
movq RT0, (4 * 8)(RY1);
movq RT1, (5 * 8)(RY1);
/* Checksum_i = Checksum_{i-1} xor P_i */
xor RAB2, (0 * 8)(RX2);
xor RCD2, (1 * 8)(RX2);
/* PX_i = P_i xor Offset_i */
xorq RT0, RAB2;
xorq RT1, RCD2;
/* Store offset */
movq RT0, (0 * 8)(RX1);
movq RT1, (1 * 8)(RX1);
/* CX_i = ENCIPHER(K, PX_i) */
call __twofish_enc_blk3;
movq (6 * 8)(%rsp), RX1; /*dst*/
/* C_i = CX_i xor Offset_i */
xorq RCD0, (0 * 8)(RX1);
xorq RAB0, (1 * 8)(RX1);
xorq RCD1, (2 * 8)(RX1);
xorq RAB1, (3 * 8)(RX1);
xorq RCD2, (4 * 8)(RX1);
xorq RAB2, (5 * 8)(RX1);
movq (0 * 8)(%rsp), %rbp;
movq (1 * 8)(%rsp), %rbx;
movq (2 * 8)(%rsp), %r12;
movq (3 * 8)(%rsp), %r13;
movq (4 * 8)(%rsp), %r14;
movq (5 * 8)(%rsp), %r15;
CFI_RESTORE(%rbp);
CFI_RESTORE(%rbx);
CFI_RESTORE(%r12);
CFI_RESTORE(%r13);
CFI_RESTORE(%r14);
CFI_RESTORE(%r15);
addq $(8 * 8), %rsp;
CFI_ADJUST_CFA_OFFSET(-8 * 8);
EXIT_SYSV_FUNC
ret_spec_stop;
CFI_ENDPROC();
ELF(.size _gcry_twofish_amd64_ocb_enc,.-_gcry_twofish_amd64_ocb_enc;)
.align 8
.globl _gcry_twofish_amd64_ocb_dec
ELF(.type _gcry_twofish_amd64_ocb_dec,@function;)
_gcry_twofish_amd64_ocb_dec:
/* input:
* %rdi: ctx, CTX
* %rsi: dst (3 blocks)
* %rdx: src (3 blocks)
* %rcx: offset
* %r8 : checksum
* %r9 : L pointers (void *L[3])
*/
CFI_STARTPROC();
ENTER_SYSV_FUNC_PARAMS_6
subq $(8 * 8), %rsp;
CFI_ADJUST_CFA_OFFSET(8 * 8);
movq %rbp, (0 * 8)(%rsp);
movq %rbx, (1 * 8)(%rsp);
movq %r12, (2 * 8)(%rsp);
movq %r13, (3 * 8)(%rsp);
movq %r14, (4 * 8)(%rsp);
movq %r15, (5 * 8)(%rsp);
CFI_REL_OFFSET(%rbp, 0 * 8);
CFI_REL_OFFSET(%rbx, 1 * 8);
CFI_REL_OFFSET(%r12, 2 * 8);
CFI_REL_OFFSET(%r13, 3 * 8);
CFI_REL_OFFSET(%r14, 4 * 8);
CFI_REL_OFFSET(%r15, 5 * 8);
movq %rsi, (6 * 8)(%rsp);
movq %r8, (7 * 8)(%rsp);
movq %rdx, RX0;
movq %rcx, RX1;
movq %r9, RY0;
movq %rsi, RY1;
/* Load offset */
movq (0 * 8)(RX1), RT0;
movq (1 * 8)(RX1), RT1;
/* Offset_i = Offset_{i-1} xor L_{ntz(i)} */
movq (RY0), RY2;
xorq (0 * 8)(RY2), RT0;
xorq (1 * 8)(RY2), RT1;
movq (0 * 8)(RX0), RAB0;
movq (1 * 8)(RX0), RCD0;
/* Store Offset_i */
movq RT0, (0 * 8)(RY1);
movq RT1, (1 * 8)(RY1);
/* CX_i = C_i xor Offset_i */
xorq RT0, RAB0;
xorq RT1, RCD0;
/* Offset_i = Offset_{i-1} xor L_{ntz(i)} */
movq 8(RY0), RY2;
xorq (0 * 8)(RY2), RT0;
xorq (1 * 8)(RY2), RT1;
movq (2 * 8)(RX0), RAB1;
movq (3 * 8)(RX0), RCD1;
/* Store Offset_i */
movq RT0, (2 * 8)(RY1);
movq RT1, (3 * 8)(RY1);
/* PX_i = P_i xor Offset_i */
xorq RT0, RAB1;
xorq RT1, RCD1;
/* Offset_i = Offset_{i-1} xor L_{ntz(i)} */
movq 16(RY0), RY2;
xorq (0 * 8)(RY2), RT0;
xorq (1 * 8)(RY2), RT1;
movq (4 * 8)(RX0), RAB2;
movq (5 * 8)(RX0), RCD2;
/* Store Offset_i */
movq RT0, (4 * 8)(RY1);
movq RT1, (5 * 8)(RY1);
/* PX_i = P_i xor Offset_i */
xorq RT0, RAB2;
xorq RT1, RCD2;
/* Store offset */
movq RT0, (0 * 8)(RX1);
movq RT1, (1 * 8)(RX1);
/* PX_i = DECIPHER(K, CX_i) */
call __twofish_dec_blk3;
movq (7 * 8)(%rsp), RX2; /*checksum*/
movq (6 * 8)(%rsp), RX1; /*dst*/
/* Load checksum */
movq (0 * 8)(RX2), RT0;
movq (1 * 8)(RX2), RT1;
/* P_i = PX_i xor Offset_i */
xorq RCD0, (0 * 8)(RX1);
xorq RAB0, (1 * 8)(RX1);
xorq RCD1, (2 * 8)(RX1);
xorq RAB1, (3 * 8)(RX1);
xorq RCD2, (4 * 8)(RX1);
xorq RAB2, (5 * 8)(RX1);
/* Checksum_i = Checksum_{i-1} xor P_i */
xorq (0 * 8)(RX1), RT0;
xorq (1 * 8)(RX1), RT1;
xorq (2 * 8)(RX1), RT0;
xorq (3 * 8)(RX1), RT1;
xorq (4 * 8)(RX1), RT0;
xorq (5 * 8)(RX1), RT1;
/* Store checksum */
movq RT0, (0 * 8)(RX2);
movq RT1, (1 * 8)(RX2);
movq (0 * 8)(%rsp), %rbp;
movq (1 * 8)(%rsp), %rbx;
movq (2 * 8)(%rsp), %r12;
movq (3 * 8)(%rsp), %r13;
movq (4 * 8)(%rsp), %r14;
movq (5 * 8)(%rsp), %r15;
CFI_RESTORE(%rbp);
CFI_RESTORE(%rbx);
CFI_RESTORE(%r12);
CFI_RESTORE(%r13);
CFI_RESTORE(%r14);
CFI_RESTORE(%r15);
addq $(8 * 8), %rsp;
CFI_ADJUST_CFA_OFFSET(-8 * 8);
EXIT_SYSV_FUNC
ret_spec_stop;
CFI_ENDPROC();
ELF(.size _gcry_twofish_amd64_ocb_dec,.-_gcry_twofish_amd64_ocb_dec;)
.align 8
.globl _gcry_twofish_amd64_ocb_auth
ELF(.type _gcry_twofish_amd64_ocb_auth,@function;)
_gcry_twofish_amd64_ocb_auth:
/* input:
* %rdi: ctx, CTX
* %rsi: abuf (3 blocks)
* %rdx: offset
* %rcx: checksum
* %r8 : L pointers (void *L[3])
*/
CFI_STARTPROC();
ENTER_SYSV_FUNC_PARAMS_5
subq $(8 * 8), %rsp;
CFI_ADJUST_CFA_OFFSET(8 * 8);
movq %rbp, (0 * 8)(%rsp);
movq %rbx, (1 * 8)(%rsp);
movq %r12, (2 * 8)(%rsp);
movq %r13, (3 * 8)(%rsp);
movq %r14, (4 * 8)(%rsp);
movq %r15, (5 * 8)(%rsp);
CFI_REL_OFFSET(%rbp, 0 * 8);
CFI_REL_OFFSET(%rbx, 1 * 8);
CFI_REL_OFFSET(%r12, 2 * 8);
CFI_REL_OFFSET(%r13, 3 * 8);
CFI_REL_OFFSET(%r14, 4 * 8);
CFI_REL_OFFSET(%r15, 5 * 8);
movq %rcx, (6 * 8)(%rsp);
movq %rsi, RX0;
movq %rdx, RX1;
movq %r8, RY0;
/* Load offset */
movq (0 * 8)(RX1), RT0;
movq (1 * 8)(RX1), RT1;
/* Offset_i = Offset_{i-1} xor L_{ntz(i)} */
movq (RY0), RY2;
xorq (0 * 8)(RY2), RT0;
xorq (1 * 8)(RY2), RT1;
movq (0 * 8)(RX0), RAB0;
movq (1 * 8)(RX0), RCD0;
/* PX_i = P_i xor Offset_i */
xorq RT0, RAB0;
xorq RT1, RCD0;
/* Offset_i = Offset_{i-1} xor L_{ntz(i)} */
movq 8(RY0), RY2;
xorq (0 * 8)(RY2), RT0;
xorq (1 * 8)(RY2), RT1;
movq (2 * 8)(RX0), RAB1;
movq (3 * 8)(RX0), RCD1;
/* PX_i = P_i xor Offset_i */
xorq RT0, RAB1;
xorq RT1, RCD1;
/* Offset_i = Offset_{i-1} xor L_{ntz(i)} */
movq 16(RY0), RY2;
xorq (0 * 8)(RY2), RT0;
xorq (1 * 8)(RY2), RT1;
movq (4 * 8)(RX0), RAB2;
movq (5 * 8)(RX0), RCD2;
/* PX_i = P_i xor Offset_i */
xorq RT0, RAB2;
xorq RT1, RCD2;
/* Store offset */
movq RT0, (0 * 8)(RX1);
movq RT1, (1 * 8)(RX1);
/* C_i = ENCIPHER(K, PX_i) */
call __twofish_enc_blk3;
movq (6 * 8)(%rsp), RX1; /*checksum*/
/* Checksum_i = C_i xor Checksum_i */
xorq RCD0, RCD1;
xorq RAB0, RAB1;
xorq RCD1, RCD2;
xorq RAB1, RAB2;
xorq RCD2, (0 * 8)(RX1);
xorq RAB2, (1 * 8)(RX1);
movq (0 * 8)(%rsp), %rbp;
movq (1 * 8)(%rsp), %rbx;
movq (2 * 8)(%rsp), %r12;
movq (3 * 8)(%rsp), %r13;
movq (4 * 8)(%rsp), %r14;
movq (5 * 8)(%rsp), %r15;
CFI_RESTORE(%rbp);
CFI_RESTORE(%rbx);
CFI_RESTORE(%r12);
CFI_RESTORE(%r13);
CFI_RESTORE(%r14);
CFI_RESTORE(%r15);
addq $(8 * 8), %rsp;
CFI_ADJUST_CFA_OFFSET(-8 * 8);
EXIT_SYSV_FUNC
ret_spec_stop;
CFI_ENDPROC();
ELF(.size _gcry_twofish_amd64_ocb_auth,.-_gcry_twofish_amd64_ocb_auth;)
#endif /*USE_TWOFISH*/
#endif /*__x86_64*/
diff --git a/cipher/twofish-avx2-amd64.S b/cipher/twofish-avx2-amd64.S
index 930ac792..0cb9a64c 100644
--- a/cipher/twofish-avx2-amd64.S
+++ b/cipher/twofish-avx2-amd64.S
@@ -1,1048 +1,1094 @@
/* twofish-avx2-amd64.S - AMD64/AVX2 assembly implementation of Twofish cipher
*
* Copyright (C) 2013-2017 Jussi Kivilinna <jussi.kivilinna@iki.fi>
*
* This file is part of Libgcrypt.
*
* Libgcrypt is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* Libgcrypt is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#ifdef __x86_64
#include <config.h>
#if (defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) || \
defined(HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS)) && defined(USE_TWOFISH) && \
defined(ENABLE_AVX2_SUPPORT)
#include "asm-common-amd64.h"
.text
/* structure of TWOFISH_context: */
#define s0 0
#define s1 ((s0) + 4 * 256)
#define s2 ((s1) + 4 * 256)
#define s3 ((s2) + 4 * 256)
#define w ((s3) + 4 * 256)
#define k ((w) + 4 * 8)
/* register macros */
#define CTX %rdi
#define RROUND %rbp
#define RROUNDd %ebp
#define RS0 CTX
#define RS1 %r8
#define RS2 %r9
#define RS3 %r10
#define RK %r11
#define RW %rax
#define RA0 %ymm8
#define RB0 %ymm9
#define RC0 %ymm10
#define RD0 %ymm11
#define RA1 %ymm12
#define RB1 %ymm13
#define RC1 %ymm14
#define RD1 %ymm15
/* temp regs */
#define RX0 %ymm0
#define RY0 %ymm1
#define RX1 %ymm2
#define RY1 %ymm3
#define RT0 %ymm4
#define RIDX %ymm5
#define RX0x %xmm0
#define RY0x %xmm1
#define RX1x %xmm2
#define RY1x %xmm3
#define RT0x %xmm4
#define RIDXx %xmm5
#define RTMP0 RX0
#define RTMP0x RX0x
#define RTMP1 RX1
#define RTMP1x RX1x
#define RTMP2 RY0
#define RTMP2x RY0x
#define RTMP3 RY1
#define RTMP3x RY1x
#define RTMP4 RIDX
#define RTMP4x RIDXx
/* vpgatherdd mask and '-1' */
#define RNOT %ymm6
#define RNOTx %xmm6
/* byte mask, (-1 >> 24) */
#define RBYTE %ymm7
/**********************************************************************
16-way AVX2 twofish
**********************************************************************/
#define init_round_constants() \
vpcmpeqd RNOT, RNOT, RNOT; \
leaq k(CTX), RK; \
leaq w(CTX), RW; \
vpsrld $24, RNOT, RBYTE; \
leaq s1(CTX), RS1; \
leaq s2(CTX), RS2; \
leaq s3(CTX), RS3; \
#define g16(ab, rs0, rs1, rs2, rs3, xy) \
vpand RBYTE, ab ## 0, RIDX; \
vpgatherdd RNOT, (rs0, RIDX, 4), xy ## 0; \
vpcmpeqd RNOT, RNOT, RNOT; \
\
vpand RBYTE, ab ## 1, RIDX; \
vpgatherdd RNOT, (rs0, RIDX, 4), xy ## 1; \
vpcmpeqd RNOT, RNOT, RNOT; \
\
vpsrld $8, ab ## 0, RIDX; \
vpand RBYTE, RIDX, RIDX; \
vpgatherdd RNOT, (rs1, RIDX, 4), RT0; \
vpcmpeqd RNOT, RNOT, RNOT; \
vpxor RT0, xy ## 0, xy ## 0; \
\
vpsrld $8, ab ## 1, RIDX; \
vpand RBYTE, RIDX, RIDX; \
vpgatherdd RNOT, (rs1, RIDX, 4), RT0; \
vpcmpeqd RNOT, RNOT, RNOT; \
vpxor RT0, xy ## 1, xy ## 1; \
\
vpsrld $16, ab ## 0, RIDX; \
vpand RBYTE, RIDX, RIDX; \
vpgatherdd RNOT, (rs2, RIDX, 4), RT0; \
vpcmpeqd RNOT, RNOT, RNOT; \
vpxor RT0, xy ## 0, xy ## 0; \
\
vpsrld $16, ab ## 1, RIDX; \
vpand RBYTE, RIDX, RIDX; \
vpgatherdd RNOT, (rs2, RIDX, 4), RT0; \
vpcmpeqd RNOT, RNOT, RNOT; \
vpxor RT0, xy ## 1, xy ## 1; \
\
vpsrld $24, ab ## 0, RIDX; \
vpgatherdd RNOT, (rs3, RIDX, 4), RT0; \
vpcmpeqd RNOT, RNOT, RNOT; \
vpxor RT0, xy ## 0, xy ## 0; \
\
vpsrld $24, ab ## 1, RIDX; \
vpgatherdd RNOT, (rs3, RIDX, 4), RT0; \
vpcmpeqd RNOT, RNOT, RNOT; \
vpxor RT0, xy ## 1, xy ## 1;
#define g1_16(a, x) \
g16(a, RS0, RS1, RS2, RS3, x);
#define g2_16(b, y) \
g16(b, RS1, RS2, RS3, RS0, y);
#define encrypt_round_end16(a, b, c, d, nk, r) \
vpaddd RY0, RX0, RX0; \
vpaddd RX0, RY0, RY0; \
vpbroadcastd ((nk)+((r)*8))(RK), RT0; \
vpaddd RT0, RX0, RX0; \
vpbroadcastd 4+((nk)+((r)*8))(RK), RT0; \
vpaddd RT0, RY0, RY0; \
\
vpxor RY0, d ## 0, d ## 0; \
\
vpxor RX0, c ## 0, c ## 0; \
vpsrld $1, c ## 0, RT0; \
vpslld $31, c ## 0, c ## 0; \
vpor RT0, c ## 0, c ## 0; \
\
vpaddd RY1, RX1, RX1; \
vpaddd RX1, RY1, RY1; \
vpbroadcastd ((nk)+((r)*8))(RK), RT0; \
vpaddd RT0, RX1, RX1; \
vpbroadcastd 4+((nk)+((r)*8))(RK), RT0; \
vpaddd RT0, RY1, RY1; \
\
vpxor RY1, d ## 1, d ## 1; \
\
vpxor RX1, c ## 1, c ## 1; \
vpsrld $1, c ## 1, RT0; \
vpslld $31, c ## 1, c ## 1; \
vpor RT0, c ## 1, c ## 1; \
#define encrypt_round16(a, b, c, d, nk, r) \
g2_16(b, RY); \
\
vpslld $1, b ## 0, RT0; \
vpsrld $31, b ## 0, b ## 0; \
vpor RT0, b ## 0, b ## 0; \
\
vpslld $1, b ## 1, RT0; \
vpsrld $31, b ## 1, b ## 1; \
vpor RT0, b ## 1, b ## 1; \
\
g1_16(a, RX); \
\
encrypt_round_end16(a, b, c, d, nk, r);
#define encrypt_round_first16(a, b, c, d, nk, r) \
vpslld $1, d ## 0, RT0; \
vpsrld $31, d ## 0, d ## 0; \
vpor RT0, d ## 0, d ## 0; \
\
vpslld $1, d ## 1, RT0; \
vpsrld $31, d ## 1, d ## 1; \
vpor RT0, d ## 1, d ## 1; \
\
encrypt_round16(a, b, c, d, nk, r);
#define encrypt_round_last16(a, b, c, d, nk, r) \
g2_16(b, RY); \
\
g1_16(a, RX); \
\
encrypt_round_end16(a, b, c, d, nk, r);
#define decrypt_round_end16(a, b, c, d, nk, r) \
vpaddd RY0, RX0, RX0; \
vpaddd RX0, RY0, RY0; \
vpbroadcastd ((nk)+((r)*8))(RK), RT0; \
vpaddd RT0, RX0, RX0; \
vpbroadcastd 4+((nk)+((r)*8))(RK), RT0; \
vpaddd RT0, RY0, RY0; \
\
vpxor RX0, c ## 0, c ## 0; \
\
vpxor RY0, d ## 0, d ## 0; \
vpsrld $1, d ## 0, RT0; \
vpslld $31, d ## 0, d ## 0; \
vpor RT0, d ## 0, d ## 0; \
\
vpaddd RY1, RX1, RX1; \
vpaddd RX1, RY1, RY1; \
vpbroadcastd ((nk)+((r)*8))(RK), RT0; \
vpaddd RT0, RX1, RX1; \
vpbroadcastd 4+((nk)+((r)*8))(RK), RT0; \
vpaddd RT0, RY1, RY1; \
\
vpxor RX1, c ## 1, c ## 1; \
\
vpxor RY1, d ## 1, d ## 1; \
vpsrld $1, d ## 1, RT0; \
vpslld $31, d ## 1, d ## 1; \
vpor RT0, d ## 1, d ## 1;
#define decrypt_round16(a, b, c, d, nk, r) \
g1_16(a, RX); \
\
vpslld $1, a ## 0, RT0; \
vpsrld $31, a ## 0, a ## 0; \
vpor RT0, a ## 0, a ## 0; \
\
vpslld $1, a ## 1, RT0; \
vpsrld $31, a ## 1, a ## 1; \
vpor RT0, a ## 1, a ## 1; \
\
g2_16(b, RY); \
\
decrypt_round_end16(a, b, c, d, nk, r);
#define decrypt_round_first16(a, b, c, d, nk, r) \
vpslld $1, c ## 0, RT0; \
vpsrld $31, c ## 0, c ## 0; \
vpor RT0, c ## 0, c ## 0; \
\
vpslld $1, c ## 1, RT0; \
vpsrld $31, c ## 1, c ## 1; \
vpor RT0, c ## 1, c ## 1; \
\
decrypt_round16(a, b, c, d, nk, r)
#define decrypt_round_last16(a, b, c, d, nk, r) \
g1_16(a, RX); \
\
g2_16(b, RY); \
\
decrypt_round_end16(a, b, c, d, nk, r);
#define encrypt_cycle16(r) \
encrypt_round16(RA, RB, RC, RD, 0, r); \
encrypt_round16(RC, RD, RA, RB, 8, r);
#define encrypt_cycle_first16(r) \
encrypt_round_first16(RA, RB, RC, RD, 0, r); \
encrypt_round16(RC, RD, RA, RB, 8, r);
#define encrypt_cycle_last16(r) \
encrypt_round16(RA, RB, RC, RD, 0, r); \
encrypt_round_last16(RC, RD, RA, RB, 8, r);
#define decrypt_cycle16(r) \
decrypt_round16(RC, RD, RA, RB, 8, r); \
decrypt_round16(RA, RB, RC, RD, 0, r);
#define decrypt_cycle_first16(r) \
decrypt_round_first16(RC, RD, RA, RB, 8, r); \
decrypt_round16(RA, RB, RC, RD, 0, r);
#define decrypt_cycle_last16(r) \
decrypt_round16(RC, RD, RA, RB, 8, r); \
decrypt_round_last16(RA, RB, RC, RD, 0, r);
#define transpose_4x4(x0,x1,x2,x3,t1,t2) \
vpunpckhdq x1, x0, t2; \
vpunpckldq x1, x0, x0; \
\
vpunpckldq x3, x2, t1; \
vpunpckhdq x3, x2, x2; \
\
vpunpckhqdq t1, x0, x1; \
vpunpcklqdq t1, x0, x0; \
\
vpunpckhqdq x2, t2, x3; \
vpunpcklqdq x2, t2, x2;
#define read_blocks8(offs,a,b,c,d) \
vmovdqu 16*offs(RIO), a; \
vmovdqu 16*offs+32(RIO), b; \
vmovdqu 16*offs+64(RIO), c; \
vmovdqu 16*offs+96(RIO), d; \
\
transpose_4x4(a, b, c, d, RX0, RY0);
#define write_blocks8(offs,a,b,c,d) \
transpose_4x4(a, b, c, d, RX0, RY0); \
\
vmovdqu a, 16*offs(RIO); \
vmovdqu b, 16*offs+32(RIO); \
vmovdqu c, 16*offs+64(RIO); \
vmovdqu d, 16*offs+96(RIO);
#define inpack_enc8(a,b,c,d) \
vpbroadcastd 4*0(RW), RT0; \
vpxor RT0, a, a; \
\
vpbroadcastd 4*1(RW), RT0; \
vpxor RT0, b, b; \
\
vpbroadcastd 4*2(RW), RT0; \
vpxor RT0, c, c; \
\
vpbroadcastd 4*3(RW), RT0; \
vpxor RT0, d, d;
#define outunpack_enc8(a,b,c,d) \
vpbroadcastd 4*4(RW), RX0; \
vpbroadcastd 4*5(RW), RY0; \
vpxor RX0, c, RX0; \
vpxor RY0, d, RY0; \
\
vpbroadcastd 4*6(RW), RT0; \
vpxor RT0, a, c; \
vpbroadcastd 4*7(RW), RT0; \
vpxor RT0, b, d; \
\
vmovdqa RX0, a; \
vmovdqa RY0, b;
#define inpack_dec8(a,b,c,d) \
vpbroadcastd 4*4(RW), RX0; \
vpbroadcastd 4*5(RW), RY0; \
vpxor RX0, a, RX0; \
vpxor RY0, b, RY0; \
\
vpbroadcastd 4*6(RW), RT0; \
vpxor RT0, c, a; \
vpbroadcastd 4*7(RW), RT0; \
vpxor RT0, d, b; \
\
vmovdqa RX0, c; \
vmovdqa RY0, d;
#define outunpack_dec8(a,b,c,d) \
vpbroadcastd 4*0(RW), RT0; \
vpxor RT0, a, a; \
\
vpbroadcastd 4*1(RW), RT0; \
vpxor RT0, b, b; \
\
vpbroadcastd 4*2(RW), RT0; \
vpxor RT0, c, c; \
\
vpbroadcastd 4*3(RW), RT0; \
vpxor RT0, d, d;
#define transpose4x4_16(a,b,c,d) \
transpose_4x4(a ## 0, b ## 0, c ## 0, d ## 0, RX0, RY0); \
transpose_4x4(a ## 1, b ## 1, c ## 1, d ## 1, RX0, RY0);
#define inpack_enc16(a,b,c,d) \
inpack_enc8(a ## 0, b ## 0, c ## 0, d ## 0); \
inpack_enc8(a ## 1, b ## 1, c ## 1, d ## 1);
#define outunpack_enc16(a,b,c,d) \
outunpack_enc8(a ## 0, b ## 0, c ## 0, d ## 0); \
outunpack_enc8(a ## 1, b ## 1, c ## 1, d ## 1);
#define inpack_dec16(a,b,c,d) \
inpack_dec8(a ## 0, b ## 0, c ## 0, d ## 0); \
inpack_dec8(a ## 1, b ## 1, c ## 1, d ## 1);
#define outunpack_dec16(a,b,c,d) \
outunpack_dec8(a ## 0, b ## 0, c ## 0, d ## 0); \
outunpack_dec8(a ## 1, b ## 1, c ## 1, d ## 1);
.align 8
ELF(.type __twofish_enc_blk16,@function;)
__twofish_enc_blk16:
/* input:
* %rdi: ctx, CTX
* RA0, RB0, RC0, RD0, RA1, RB1, RC1, RD1: sixteen parallel
* plaintext blocks
* output:
* RA0, RB0, RC0, RD0, RA1, RB1, RC1, RD1: sixteen parallel
* ciphertext blocks
*/
CFI_STARTPROC();
init_round_constants();
transpose4x4_16(RA, RB, RC, RD);
inpack_enc16(RA, RB, RC, RD);
encrypt_cycle_first16(0);
encrypt_cycle16(2);
encrypt_cycle16(4);
encrypt_cycle16(6);
encrypt_cycle16(8);
encrypt_cycle16(10);
encrypt_cycle16(12);
encrypt_cycle_last16(14);
outunpack_enc16(RA, RB, RC, RD);
transpose4x4_16(RA, RB, RC, RD);
ret_spec_stop;
CFI_ENDPROC();
ELF(.size __twofish_enc_blk16,.-__twofish_enc_blk16;)
.align 8
ELF(.type __twofish_dec_blk16,@function;)
__twofish_dec_blk16:
/* input:
* %rdi: ctx, CTX
* RA0, RB0, RC0, RD0, RA1, RB1, RC1, RD1: sixteen parallel
* plaintext blocks
* output:
* RA0, RB0, RC0, RD0, RA1, RB1, RC1, RD1: sixteen parallel
* ciphertext blocks
*/
CFI_STARTPROC();
init_round_constants();
transpose4x4_16(RA, RB, RC, RD);
inpack_dec16(RA, RB, RC, RD);
decrypt_cycle_first16(14);
decrypt_cycle16(12);
decrypt_cycle16(10);
decrypt_cycle16(8);
decrypt_cycle16(6);
decrypt_cycle16(4);
decrypt_cycle16(2);
decrypt_cycle_last16(0);
outunpack_dec16(RA, RB, RC, RD);
transpose4x4_16(RA, RB, RC, RD);
ret_spec_stop;
CFI_ENDPROC();
ELF(.size __twofish_dec_blk16,.-__twofish_dec_blk16;)
+.align 8
+.globl _gcry_twofish_avx2_blk16
+ELF(.type _gcry_twofish_avx2_blk16,@function;)
+_gcry_twofish_avx2_blk16:
+ /* input:
+ * %rdi: ctx, CTX
+ * %rsi: dst (16 blocks)
+ * %rdx: src (16 blocks)
+ * %ecx: encrypt
+ */
+ CFI_STARTPROC();
+
+ vzeroupper;
+
+ vmovdqu (0 * 32)(%rdx), RA0;
+ vmovdqu (1 * 32)(%rdx), RB0;
+ vmovdqu (2 * 32)(%rdx), RC0;
+ vmovdqu (3 * 32)(%rdx), RD0;
+ vmovdqu (4 * 32)(%rdx), RA1;
+ vmovdqu (5 * 32)(%rdx), RB1;
+ vmovdqu (6 * 32)(%rdx), RC1;
+ vmovdqu (7 * 32)(%rdx), RD1;
+
+ testl %ecx, %ecx;
+ jz .Lblk16_dec;
+ call __twofish_enc_blk16;
+ jmp .Lblk16_end;
+ .Lblk16_dec:
+ call __twofish_dec_blk16;
+
+.Lblk16_end:
+ vmovdqu RA0, (0 * 32)(%rsi);
+ vmovdqu RB0, (1 * 32)(%rsi);
+ vmovdqu RC0, (2 * 32)(%rsi);
+ vmovdqu RD0, (3 * 32)(%rsi);
+ vmovdqu RA1, (4 * 32)(%rsi);
+ vmovdqu RB1, (5 * 32)(%rsi);
+ vmovdqu RC1, (6 * 32)(%rsi);
+ vmovdqu RD1, (7 * 32)(%rsi);
+
+ vzeroall;
+
+ ret_spec_stop;
+ CFI_ENDPROC();
+ELF(.size _gcry_twofish_avx2_blk16,.-_gcry_twofish_avx2_blk16;)
+
#define inc_le128(x, minus_one, tmp) \
vpcmpeqq minus_one, x, tmp; \
vpsubq minus_one, x, x; \
vpslldq $8, tmp, tmp; \
vpsubq tmp, x, x;
.align 8
.globl _gcry_twofish_avx2_ctr_enc
ELF(.type _gcry_twofish_avx2_ctr_enc,@function;)
_gcry_twofish_avx2_ctr_enc:
/* input:
* %rdi: ctx, CTX
* %rsi: dst (16 blocks)
* %rdx: src (16 blocks)
* %rcx: iv (big endian, 128bit)
*/
CFI_STARTPROC();
movq 8(%rcx), %rax;
bswapq %rax;
vzeroupper;
vbroadcasti128 .Lbswap128_mask rRIP, RTMP3;
vpcmpeqd RNOT, RNOT, RNOT;
vpsrldq $8, RNOT, RNOT; /* ab: -1:0 ; cd: -1:0 */
vpaddq RNOT, RNOT, RTMP2; /* ab: -2:0 ; cd: -2:0 */
/* load IV and byteswap */
vmovdqu (%rcx), RTMP4x;
vpshufb RTMP3x, RTMP4x, RTMP4x;
vmovdqa RTMP4x, RTMP0x;
inc_le128(RTMP4x, RNOTx, RTMP1x);
vinserti128 $1, RTMP4x, RTMP0, RTMP0;
vpshufb RTMP3, RTMP0, RA0; /* +1 ; +0 */
/* check need for handling 64-bit overflow and carry */
cmpq $(0xffffffffffffffff - 16), %rax;
ja .Lhandle_ctr_carry;
/* construct IVs */
vpsubq RTMP2, RTMP0, RTMP0; /* +3 ; +2 */
vpshufb RTMP3, RTMP0, RB0;
vpsubq RTMP2, RTMP0, RTMP0; /* +5 ; +4 */
vpshufb RTMP3, RTMP0, RC0;
vpsubq RTMP2, RTMP0, RTMP0; /* +7 ; +6 */
vpshufb RTMP3, RTMP0, RD0;
vpsubq RTMP2, RTMP0, RTMP0; /* +9 ; +8 */
vpshufb RTMP3, RTMP0, RA1;
vpsubq RTMP2, RTMP0, RTMP0; /* +11 ; +10 */
vpshufb RTMP3, RTMP0, RB1;
vpsubq RTMP2, RTMP0, RTMP0; /* +13 ; +12 */
vpshufb RTMP3, RTMP0, RC1;
vpsubq RTMP2, RTMP0, RTMP0; /* +15 ; +14 */
vpshufb RTMP3, RTMP0, RD1;
vpsubq RTMP2, RTMP0, RTMP0; /* +16 */
vpshufb RTMP3x, RTMP0x, RTMP0x;
jmp .Lctr_carry_done;
.Lhandle_ctr_carry:
/* construct IVs */
inc_le128(RTMP0, RNOT, RTMP1);
inc_le128(RTMP0, RNOT, RTMP1);
vpshufb RTMP3, RTMP0, RB0; /* +3 ; +2 */
inc_le128(RTMP0, RNOT, RTMP1);
inc_le128(RTMP0, RNOT, RTMP1);
vpshufb RTMP3, RTMP0, RC0; /* +5 ; +4 */
inc_le128(RTMP0, RNOT, RTMP1);
inc_le128(RTMP0, RNOT, RTMP1);
vpshufb RTMP3, RTMP0, RD0; /* +7 ; +6 */
inc_le128(RTMP0, RNOT, RTMP1);
inc_le128(RTMP0, RNOT, RTMP1);
vpshufb RTMP3, RTMP0, RA1; /* +9 ; +8 */
inc_le128(RTMP0, RNOT, RTMP1);
inc_le128(RTMP0, RNOT, RTMP1);
vpshufb RTMP3, RTMP0, RB1; /* +11 ; +10 */
inc_le128(RTMP0, RNOT, RTMP1);
inc_le128(RTMP0, RNOT, RTMP1);
vpshufb RTMP3, RTMP0, RC1; /* +13 ; +12 */
inc_le128(RTMP0, RNOT, RTMP1);
inc_le128(RTMP0, RNOT, RTMP1);
vpshufb RTMP3, RTMP0, RD1; /* +15 ; +14 */
inc_le128(RTMP0, RNOT, RTMP1);
vextracti128 $1, RTMP0, RTMP0x;
vpshufb RTMP3x, RTMP0x, RTMP0x; /* +16 */
.align 4
.Lctr_carry_done:
/* store new IV */
vmovdqu RTMP0x, (%rcx);
call __twofish_enc_blk16;
vpxor (0 * 32)(%rdx), RA0, RA0;
vpxor (1 * 32)(%rdx), RB0, RB0;
vpxor (2 * 32)(%rdx), RC0, RC0;
vpxor (3 * 32)(%rdx), RD0, RD0;
vpxor (4 * 32)(%rdx), RA1, RA1;
vpxor (5 * 32)(%rdx), RB1, RB1;
vpxor (6 * 32)(%rdx), RC1, RC1;
vpxor (7 * 32)(%rdx), RD1, RD1;
vmovdqu RA0, (0 * 32)(%rsi);
vmovdqu RB0, (1 * 32)(%rsi);
vmovdqu RC0, (2 * 32)(%rsi);
vmovdqu RD0, (3 * 32)(%rsi);
vmovdqu RA1, (4 * 32)(%rsi);
vmovdqu RB1, (5 * 32)(%rsi);
vmovdqu RC1, (6 * 32)(%rsi);
vmovdqu RD1, (7 * 32)(%rsi);
vzeroall;
ret_spec_stop;
CFI_ENDPROC();
ELF(.size _gcry_twofish_avx2_ctr_enc,.-_gcry_twofish_avx2_ctr_enc;)
.align 8
.globl _gcry_twofish_avx2_cbc_dec
ELF(.type _gcry_twofish_avx2_cbc_dec,@function;)
_gcry_twofish_avx2_cbc_dec:
/* input:
* %rdi: ctx, CTX
* %rsi: dst (16 blocks)
* %rdx: src (16 blocks)
* %rcx: iv
*/
CFI_STARTPROC();
vzeroupper;
vmovdqu (0 * 32)(%rdx), RA0;
vmovdqu (1 * 32)(%rdx), RB0;
vmovdqu (2 * 32)(%rdx), RC0;
vmovdqu (3 * 32)(%rdx), RD0;
vmovdqu (4 * 32)(%rdx), RA1;
vmovdqu (5 * 32)(%rdx), RB1;
vmovdqu (6 * 32)(%rdx), RC1;
vmovdqu (7 * 32)(%rdx), RD1;
call __twofish_dec_blk16;
vmovdqu (%rcx), RNOTx;
vinserti128 $1, (%rdx), RNOT, RNOT;
vpxor RNOT, RA0, RA0;
vpxor (0 * 32 + 16)(%rdx), RB0, RB0;
vpxor (1 * 32 + 16)(%rdx), RC0, RC0;
vpxor (2 * 32 + 16)(%rdx), RD0, RD0;
vpxor (3 * 32 + 16)(%rdx), RA1, RA1;
vpxor (4 * 32 + 16)(%rdx), RB1, RB1;
vpxor (5 * 32 + 16)(%rdx), RC1, RC1;
vpxor (6 * 32 + 16)(%rdx), RD1, RD1;
vmovdqu (7 * 32 + 16)(%rdx), RNOTx;
vmovdqu RNOTx, (%rcx); /* store new IV */
vmovdqu RA0, (0 * 32)(%rsi);
vmovdqu RB0, (1 * 32)(%rsi);
vmovdqu RC0, (2 * 32)(%rsi);
vmovdqu RD0, (3 * 32)(%rsi);
vmovdqu RA1, (4 * 32)(%rsi);
vmovdqu RB1, (5 * 32)(%rsi);
vmovdqu RC1, (6 * 32)(%rsi);
vmovdqu RD1, (7 * 32)(%rsi);
vzeroall;
ret_spec_stop;
CFI_ENDPROC();
ELF(.size _gcry_twofish_avx2_cbc_dec,.-_gcry_twofish_avx2_cbc_dec;)
.align 8
.globl _gcry_twofish_avx2_cfb_dec
ELF(.type _gcry_twofish_avx2_cfb_dec,@function;)
_gcry_twofish_avx2_cfb_dec:
/* input:
* %rdi: ctx, CTX
* %rsi: dst (16 blocks)
* %rdx: src (16 blocks)
* %rcx: iv
*/
CFI_STARTPROC();
vzeroupper;
/* Load input */
vmovdqu (%rcx), RNOTx;
vinserti128 $1, (%rdx), RNOT, RA0;
vmovdqu (0 * 32 + 16)(%rdx), RB0;
vmovdqu (1 * 32 + 16)(%rdx), RC0;
vmovdqu (2 * 32 + 16)(%rdx), RD0;
vmovdqu (3 * 32 + 16)(%rdx), RA1;
vmovdqu (4 * 32 + 16)(%rdx), RB1;
vmovdqu (5 * 32 + 16)(%rdx), RC1;
vmovdqu (6 * 32 + 16)(%rdx), RD1;
/* Update IV */
vmovdqu (7 * 32 + 16)(%rdx), RNOTx;
vmovdqu RNOTx, (%rcx);
call __twofish_enc_blk16;
vpxor (0 * 32)(%rdx), RA0, RA0;
vpxor (1 * 32)(%rdx), RB0, RB0;
vpxor (2 * 32)(%rdx), RC0, RC0;
vpxor (3 * 32)(%rdx), RD0, RD0;
vpxor (4 * 32)(%rdx), RA1, RA1;
vpxor (5 * 32)(%rdx), RB1, RB1;
vpxor (6 * 32)(%rdx), RC1, RC1;
vpxor (7 * 32)(%rdx), RD1, RD1;
vmovdqu RA0, (0 * 32)(%rsi);
vmovdqu RB0, (1 * 32)(%rsi);
vmovdqu RC0, (2 * 32)(%rsi);
vmovdqu RD0, (3 * 32)(%rsi);
vmovdqu RA1, (4 * 32)(%rsi);
vmovdqu RB1, (5 * 32)(%rsi);
vmovdqu RC1, (6 * 32)(%rsi);
vmovdqu RD1, (7 * 32)(%rsi);
vzeroall;
ret_spec_stop;
CFI_ENDPROC();
ELF(.size _gcry_twofish_avx2_cfb_dec,.-_gcry_twofish_avx2_cfb_dec;)
.align 8
.globl _gcry_twofish_avx2_ocb_enc
ELF(.type _gcry_twofish_avx2_ocb_enc,@function;)
_gcry_twofish_avx2_ocb_enc:
/* input:
* %rdi: ctx, CTX
* %rsi: dst (16 blocks)
* %rdx: src (16 blocks)
* %rcx: offset
* %r8 : checksum
* %r9 : L pointers (void *L[16])
*/
CFI_STARTPROC();
vzeroupper;
subq $(4 * 8), %rsp;
CFI_ADJUST_CFA_OFFSET(4 * 8);
movq %r10, (0 * 8)(%rsp);
movq %r11, (1 * 8)(%rsp);
movq %r12, (2 * 8)(%rsp);
movq %r13, (3 * 8)(%rsp);
CFI_REL_OFFSET(%r10, 0 * 8);
CFI_REL_OFFSET(%r11, 1 * 8);
CFI_REL_OFFSET(%r12, 2 * 8);
CFI_REL_OFFSET(%r13, 3 * 8);
vmovdqu (%rcx), RTMP0x;
vmovdqu (%r8), RTMP1x;
/* Offset_i = Offset_{i-1} xor L_{ntz(i)} */
/* Checksum_i = Checksum_{i-1} xor P_i */
/* C_i = Offset_i xor ENCIPHER(K, P_i xor Offset_i) */
#define OCB_INPUT(n, l0reg, l1reg, yreg) \
vmovdqu (n * 32)(%rdx), yreg; \
vpxor (l0reg), RTMP0x, RNOTx; \
vpxor (l1reg), RNOTx, RTMP0x; \
vinserti128 $1, RTMP0x, RNOT, RNOT; \
vpxor yreg, RTMP1, RTMP1; \
vpxor yreg, RNOT, yreg; \
vmovdqu RNOT, (n * 32)(%rsi);
movq (0 * 8)(%r9), %r10;
movq (1 * 8)(%r9), %r11;
movq (2 * 8)(%r9), %r12;
movq (3 * 8)(%r9), %r13;
OCB_INPUT(0, %r10, %r11, RA0);
OCB_INPUT(1, %r12, %r13, RB0);
movq (4 * 8)(%r9), %r10;
movq (5 * 8)(%r9), %r11;
movq (6 * 8)(%r9), %r12;
movq (7 * 8)(%r9), %r13;
OCB_INPUT(2, %r10, %r11, RC0);
OCB_INPUT(3, %r12, %r13, RD0);
movq (8 * 8)(%r9), %r10;
movq (9 * 8)(%r9), %r11;
movq (10 * 8)(%r9), %r12;
movq (11 * 8)(%r9), %r13;
OCB_INPUT(4, %r10, %r11, RA1);
OCB_INPUT(5, %r12, %r13, RB1);
movq (12 * 8)(%r9), %r10;
movq (13 * 8)(%r9), %r11;
movq (14 * 8)(%r9), %r12;
movq (15 * 8)(%r9), %r13;
OCB_INPUT(6, %r10, %r11, RC1);
OCB_INPUT(7, %r12, %r13, RD1);
#undef OCB_INPUT
vextracti128 $1, RTMP1, RNOTx;
vmovdqu RTMP0x, (%rcx);
vpxor RNOTx, RTMP1x, RTMP1x;
vmovdqu RTMP1x, (%r8);
movq (0 * 8)(%rsp), %r10;
movq (1 * 8)(%rsp), %r11;
movq (2 * 8)(%rsp), %r12;
movq (3 * 8)(%rsp), %r13;
CFI_RESTORE(%r10);
CFI_RESTORE(%r11);
CFI_RESTORE(%r12);
CFI_RESTORE(%r13);
call __twofish_enc_blk16;
addq $(4 * 8), %rsp;
CFI_ADJUST_CFA_OFFSET(-4 * 8);
vpxor (0 * 32)(%rsi), RA0, RA0;
vpxor (1 * 32)(%rsi), RB0, RB0;
vpxor (2 * 32)(%rsi), RC0, RC0;
vpxor (3 * 32)(%rsi), RD0, RD0;
vpxor (4 * 32)(%rsi), RA1, RA1;
vpxor (5 * 32)(%rsi), RB1, RB1;
vpxor (6 * 32)(%rsi), RC1, RC1;
vpxor (7 * 32)(%rsi), RD1, RD1;
vmovdqu RA0, (0 * 32)(%rsi);
vmovdqu RB0, (1 * 32)(%rsi);
vmovdqu RC0, (2 * 32)(%rsi);
vmovdqu RD0, (3 * 32)(%rsi);
vmovdqu RA1, (4 * 32)(%rsi);
vmovdqu RB1, (5 * 32)(%rsi);
vmovdqu RC1, (6 * 32)(%rsi);
vmovdqu RD1, (7 * 32)(%rsi);
vzeroall;
ret_spec_stop;
CFI_ENDPROC();
ELF(.size _gcry_twofish_avx2_ocb_enc,.-_gcry_twofish_avx2_ocb_enc;)
.align 8
.globl _gcry_twofish_avx2_ocb_dec
ELF(.type _gcry_twofish_avx2_ocb_dec,@function;)
_gcry_twofish_avx2_ocb_dec:
/* input:
* %rdi: ctx, CTX
* %rsi: dst (16 blocks)
* %rdx: src (16 blocks)
* %rcx: offset
* %r8 : checksum
* %r9 : L pointers (void *L[16])
*/
CFI_STARTPROC();
vzeroupper;
subq $(4 * 8), %rsp;
CFI_ADJUST_CFA_OFFSET(4 * 8);
movq %r10, (0 * 8)(%rsp);
movq %r11, (1 * 8)(%rsp);
movq %r12, (2 * 8)(%rsp);
movq %r13, (3 * 8)(%rsp);
CFI_REL_OFFSET(%r10, 0 * 8);
CFI_REL_OFFSET(%r11, 1 * 8);
CFI_REL_OFFSET(%r12, 2 * 8);
CFI_REL_OFFSET(%r13, 3 * 8);
vmovdqu (%rcx), RTMP0x;
/* Offset_i = Offset_{i-1} xor L_{ntz(i)} */
/* C_i = Offset_i xor ENCIPHER(K, P_i xor Offset_i) */
#define OCB_INPUT(n, l0reg, l1reg, yreg) \
vmovdqu (n * 32)(%rdx), yreg; \
vpxor (l0reg), RTMP0x, RNOTx; \
vpxor (l1reg), RNOTx, RTMP0x; \
vinserti128 $1, RTMP0x, RNOT, RNOT; \
vpxor yreg, RNOT, yreg; \
vmovdqu RNOT, (n * 32)(%rsi);
movq (0 * 8)(%r9), %r10;
movq (1 * 8)(%r9), %r11;
movq (2 * 8)(%r9), %r12;
movq (3 * 8)(%r9), %r13;
OCB_INPUT(0, %r10, %r11, RA0);
OCB_INPUT(1, %r12, %r13, RB0);
movq (4 * 8)(%r9), %r10;
movq (5 * 8)(%r9), %r11;
movq (6 * 8)(%r9), %r12;
movq (7 * 8)(%r9), %r13;
OCB_INPUT(2, %r10, %r11, RC0);
OCB_INPUT(3, %r12, %r13, RD0);
movq (8 * 8)(%r9), %r10;
movq (9 * 8)(%r9), %r11;
movq (10 * 8)(%r9), %r12;
movq (11 * 8)(%r9), %r13;
OCB_INPUT(4, %r10, %r11, RA1);
OCB_INPUT(5, %r12, %r13, RB1);
movq (12 * 8)(%r9), %r10;
movq (13 * 8)(%r9), %r11;
movq (14 * 8)(%r9), %r12;
movq (15 * 8)(%r9), %r13;
OCB_INPUT(6, %r10, %r11, RC1);
OCB_INPUT(7, %r12, %r13, RD1);
#undef OCB_INPUT
vmovdqu RTMP0x, (%rcx);
mov %r8, %rcx
movq (0 * 8)(%rsp), %r10;
movq (1 * 8)(%rsp), %r11;
movq (2 * 8)(%rsp), %r12;
movq (3 * 8)(%rsp), %r13;
CFI_RESTORE(%r10);
CFI_RESTORE(%r11);
CFI_RESTORE(%r12);
CFI_RESTORE(%r13);
call __twofish_dec_blk16;
vmovdqu (%rcx), RTMP1x;
vpxor (0 * 32)(%rsi), RA0, RA0;
vpxor (1 * 32)(%rsi), RB0, RB0;
vpxor (2 * 32)(%rsi), RC0, RC0;
vpxor (3 * 32)(%rsi), RD0, RD0;
vpxor (4 * 32)(%rsi), RA1, RA1;
vpxor (5 * 32)(%rsi), RB1, RB1;
vpxor (6 * 32)(%rsi), RC1, RC1;
vpxor (7 * 32)(%rsi), RD1, RD1;
addq $(4 * 8), %rsp;
CFI_ADJUST_CFA_OFFSET(-4 * 8);
/* Checksum_i = Checksum_{i-1} xor P_i */
vmovdqu RA0, (0 * 32)(%rsi);
vpxor RA0, RTMP1, RTMP1;
vmovdqu RB0, (1 * 32)(%rsi);
vpxor RB0, RTMP1, RTMP1;
vmovdqu RC0, (2 * 32)(%rsi);
vpxor RC0, RTMP1, RTMP1;
vmovdqu RD0, (3 * 32)(%rsi);
vpxor RD0, RTMP1, RTMP1;
vmovdqu RA1, (4 * 32)(%rsi);
vpxor RA1, RTMP1, RTMP1;
vmovdqu RB1, (5 * 32)(%rsi);
vpxor RB1, RTMP1, RTMP1;
vmovdqu RC1, (6 * 32)(%rsi);
vpxor RC1, RTMP1, RTMP1;
vmovdqu RD1, (7 * 32)(%rsi);
vpxor RD1, RTMP1, RTMP1;
vextracti128 $1, RTMP1, RNOTx;
vpxor RNOTx, RTMP1x, RTMP1x;
vmovdqu RTMP1x, (%rcx);
vzeroall;
ret_spec_stop;
CFI_ENDPROC();
ELF(.size _gcry_twofish_avx2_ocb_dec,.-_gcry_twofish_avx2_ocb_dec;)
.align 8
.globl _gcry_twofish_avx2_ocb_auth
ELF(.type _gcry_twofish_avx2_ocb_auth,@function;)
_gcry_twofish_avx2_ocb_auth:
/* input:
* %rdi: ctx, CTX
* %rsi: abuf (16 blocks)
* %rdx: offset
* %rcx: checksum
* %r8 : L pointers (void *L[16])
*/
CFI_STARTPROC();
vzeroupper;
subq $(4 * 8), %rsp;
CFI_ADJUST_CFA_OFFSET(4 * 8);
movq %r10, (0 * 8)(%rsp);
movq %r11, (1 * 8)(%rsp);
movq %r12, (2 * 8)(%rsp);
movq %r13, (3 * 8)(%rsp);
CFI_REL_OFFSET(%r10, 0 * 8);
CFI_REL_OFFSET(%r11, 1 * 8);
CFI_REL_OFFSET(%r12, 2 * 8);
CFI_REL_OFFSET(%r13, 3 * 8);
vmovdqu (%rdx), RTMP0x;
/* Offset_i = Offset_{i-1} xor L_{ntz(i)} */
/* Sum_i = Sum_{i-1} xor ENCIPHER(K, A_i xor Offset_i) */
#define OCB_INPUT(n, l0reg, l1reg, yreg) \
vmovdqu (n * 32)(%rsi), yreg; \
vpxor (l0reg), RTMP0x, RNOTx; \
vpxor (l1reg), RNOTx, RTMP0x; \
vinserti128 $1, RTMP0x, RNOT, RNOT; \
vpxor yreg, RNOT, yreg;
movq (0 * 8)(%r8), %r10;
movq (1 * 8)(%r8), %r11;
movq (2 * 8)(%r8), %r12;
movq (3 * 8)(%r8), %r13;
OCB_INPUT(0, %r10, %r11, RA0);
OCB_INPUT(1, %r12, %r13, RB0);
movq (4 * 8)(%r8), %r10;
movq (5 * 8)(%r8), %r11;
movq (6 * 8)(%r8), %r12;
movq (7 * 8)(%r8), %r13;
OCB_INPUT(2, %r10, %r11, RC0);
OCB_INPUT(3, %r12, %r13, RD0);
movq (8 * 8)(%r8), %r10;
movq (9 * 8)(%r8), %r11;
movq (10 * 8)(%r8), %r12;
movq (11 * 8)(%r8), %r13;
OCB_INPUT(4, %r10, %r11, RA1);
OCB_INPUT(5, %r12, %r13, RB1);
movq (12 * 8)(%r8), %r10;
movq (13 * 8)(%r8), %r11;
movq (14 * 8)(%r8), %r12;
movq (15 * 8)(%r8), %r13;
OCB_INPUT(6, %r10, %r11, RC1);
OCB_INPUT(7, %r12, %r13, RD1);
#undef OCB_INPUT
vmovdqu RTMP0x, (%rdx);
movq (0 * 8)(%rsp), %r10;
movq (1 * 8)(%rsp), %r11;
movq (2 * 8)(%rsp), %r12;
movq (3 * 8)(%rsp), %r13;
CFI_RESTORE(%r10);
CFI_RESTORE(%r11);
CFI_RESTORE(%r12);
CFI_RESTORE(%r13);
call __twofish_enc_blk16;
vpxor RA0, RB0, RA0;
vpxor RC0, RD0, RC0;
vpxor RA1, RB1, RA1;
vpxor RC1, RD1, RC1;
vpxor RA0, RC0, RA0;
vpxor RA1, RC1, RA1;
addq $(4 * 8), %rsp;
CFI_ADJUST_CFA_OFFSET(-4 * 8);
vpxor RA1, RA0, RTMP1;
vextracti128 $1, RTMP1, RNOTx;
vpxor (%rcx), RTMP1x, RTMP1x;
vpxor RNOTx, RTMP1x, RTMP1x;
vmovdqu RTMP1x, (%rcx);
vzeroall;
ret_spec_stop;
CFI_ENDPROC();
ELF(.size _gcry_twofish_avx2_ocb_auth,.-_gcry_twofish_avx2_ocb_auth;)
.align 16
/* For CTR-mode IV byteswap */
_gcry_twofish_bswap128_mask:
.Lbswap128_mask:
.byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
ELF(.size _gcry_twofish_bswap128_mask,.-_gcry_twofish_bswap128_mask;)
#endif /*defined(USE_TWOFISH) && defined(ENABLE_AVX2_SUPPORT)*/
#endif /*__x86_64*/
diff --git a/cipher/twofish.c b/cipher/twofish.c
index b300715b..92c463fc 100644
--- a/cipher/twofish.c
+++ b/cipher/twofish.c
@@ -1,1713 +1,1854 @@
/* Twofish for GPG
* Copyright (C) 1998, 2002, 2003 Free Software Foundation, Inc.
* Written by Matthew Skala <mskala@ansuz.sooke.bc.ca>, July 26, 1998
* 256-bit key length added March 20, 1999
* Some modifications to reduce the text size by Werner Koch, April, 1998
*
* This file is part of Libgcrypt.
*
* Libgcrypt is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* Libgcrypt is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
********************************************************************
*
* This code is a "clean room" implementation, written from the paper
* _Twofish: A 128-Bit Block Cipher_ by Bruce Schneier, John Kelsey,
* Doug Whiting, David Wagner, Chris Hall, and Niels Ferguson, available
* through http://www.counterpane.com/twofish.html
*
* For background information on multiplication in finite fields, used for
* the matrix operations in the key schedule, see the book _Contemporary
* Abstract Algebra_ by Joseph A. Gallian, especially chapter 22 in the
* Third Edition.
*
* Only the 128- and 256-bit key sizes are supported. This code is intended
* for GNU C on a 32-bit system, but it should work almost anywhere. Loops
* are unrolled, precomputation tables are used, etc., for maximum speed at
* some cost in memory consumption. */
#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h> /* for memcmp() */
#include "types.h" /* for byte and u32 typedefs */
#include "g10lib.h"
#include "cipher.h"
#include "bufhelp.h"
#include "cipher-internal.h"
#include "bulkhelp.h"
#define TWOFISH_BLOCKSIZE 16
/* USE_AMD64_ASM indicates whether to use AMD64 assembly code. */
#undef USE_AMD64_ASM
#if defined(__x86_64__) && (defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) || \
defined(HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS))
# define USE_AMD64_ASM 1
#endif
/* USE_ARM_ASM indicates whether to use ARM assembly code. */
#undef USE_ARM_ASM
#if defined(__ARMEL__)
# if defined(HAVE_COMPATIBLE_GCC_ARM_PLATFORM_AS)
# define USE_ARM_ASM 1
# endif
#endif
# if defined(__AARCH64EL__)
# ifdef HAVE_COMPATIBLE_GCC_AARCH64_PLATFORM_AS
# define USE_ARM_ASM 1
# endif
# endif
/* USE_AVX2 indicates whether to compile with AMD64 AVX2 code. */
#undef USE_AVX2
#if defined(__x86_64__) && (defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) || \
defined(HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS))
# if defined(ENABLE_AVX2_SUPPORT)
# define USE_AVX2 1
# endif
#endif
/* Prototype for the self-test function. */
static const char *selftest(void);
/* Prototypes for the bulk functions. */
static void _gcry_twofish_ctr_enc (void *context, unsigned char *ctr,
void *outbuf_arg, const void *inbuf_arg,
size_t nblocks);
static void _gcry_twofish_cbc_dec (void *context, unsigned char *iv,
void *outbuf_arg, const void *inbuf_arg,
size_t nblocks);
static void _gcry_twofish_cfb_dec (void *context, unsigned char *iv,
void *outbuf_arg, const void *inbuf_arg,
size_t nblocks);
static size_t _gcry_twofish_ocb_crypt (gcry_cipher_hd_t c, void *outbuf_arg,
const void *inbuf_arg, size_t nblocks,
int encrypt);
static size_t _gcry_twofish_ocb_auth (gcry_cipher_hd_t c, const void *abuf_arg,
size_t nblocks);
-
+static void _gcry_twofish_xts_crypt (void *context, unsigned char *tweak,
+ void *outbuf_arg, const void *inbuf_arg,
+ size_t nblocks, int encrypt);
+static void _gcry_twofish_ecb_crypt (void *context, void *outbuf_arg,
+ const void *inbuf_arg, size_t nblocks,
+ int encrypt);
/* Structure for an expanded Twofish key. s contains the key-dependent
* S-boxes composed with the MDS matrix; w contains the eight "whitening"
* subkeys, K[0] through K[7]. k holds the remaining, "round" subkeys. Note
* that k[i] corresponds to what the Twofish paper calls K[i+8]. */
typedef struct {
u32 s[4][256], w[8], k[32];
#ifdef USE_AVX2
int use_avx2;
#endif
} TWOFISH_context;
/* Assembly implementations use SystemV ABI, ABI conversion and additional
* stack to store XMM6-XMM15 needed on Win64. */
#undef ASM_FUNC_ABI
#if defined(USE_AVX2)
# ifdef HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS
# define ASM_FUNC_ABI __attribute__((sysv_abi))
# else
# define ASM_FUNC_ABI
# endif
#endif
/* These two tables are the q0 and q1 permutations, exactly as described in
* the Twofish paper. */
static const byte q0[256] = {
0xA9, 0x67, 0xB3, 0xE8, 0x04, 0xFD, 0xA3, 0x76, 0x9A, 0x92, 0x80, 0x78,
0xE4, 0xDD, 0xD1, 0x38, 0x0D, 0xC6, 0x35, 0x98, 0x18, 0xF7, 0xEC, 0x6C,
0x43, 0x75, 0x37, 0x26, 0xFA, 0x13, 0x94, 0x48, 0xF2, 0xD0, 0x8B, 0x30,
0x84, 0x54, 0xDF, 0x23, 0x19, 0x5B, 0x3D, 0x59, 0xF3, 0xAE, 0xA2, 0x82,
0x63, 0x01, 0x83, 0x2E, 0xD9, 0x51, 0x9B, 0x7C, 0xA6, 0xEB, 0xA5, 0xBE,
0x16, 0x0C, 0xE3, 0x61, 0xC0, 0x8C, 0x3A, 0xF5, 0x73, 0x2C, 0x25, 0x0B,
0xBB, 0x4E, 0x89, 0x6B, 0x53, 0x6A, 0xB4, 0xF1, 0xE1, 0xE6, 0xBD, 0x45,
0xE2, 0xF4, 0xB6, 0x66, 0xCC, 0x95, 0x03, 0x56, 0xD4, 0x1C, 0x1E, 0xD7,
0xFB, 0xC3, 0x8E, 0xB5, 0xE9, 0xCF, 0xBF, 0xBA, 0xEA, 0x77, 0x39, 0xAF,
0x33, 0xC9, 0x62, 0x71, 0x81, 0x79, 0x09, 0xAD, 0x24, 0xCD, 0xF9, 0xD8,
0xE5, 0xC5, 0xB9, 0x4D, 0x44, 0x08, 0x86, 0xE7, 0xA1, 0x1D, 0xAA, 0xED,
0x06, 0x70, 0xB2, 0xD2, 0x41, 0x7B, 0xA0, 0x11, 0x31, 0xC2, 0x27, 0x90,
0x20, 0xF6, 0x60, 0xFF, 0x96, 0x5C, 0xB1, 0xAB, 0x9E, 0x9C, 0x52, 0x1B,
0x5F, 0x93, 0x0A, 0xEF, 0x91, 0x85, 0x49, 0xEE, 0x2D, 0x4F, 0x8F, 0x3B,
0x47, 0x87, 0x6D, 0x46, 0xD6, 0x3E, 0x69, 0x64, 0x2A, 0xCE, 0xCB, 0x2F,
0xFC, 0x97, 0x05, 0x7A, 0xAC, 0x7F, 0xD5, 0x1A, 0x4B, 0x0E, 0xA7, 0x5A,
0x28, 0x14, 0x3F, 0x29, 0x88, 0x3C, 0x4C, 0x02, 0xB8, 0xDA, 0xB0, 0x17,
0x55, 0x1F, 0x8A, 0x7D, 0x57, 0xC7, 0x8D, 0x74, 0xB7, 0xC4, 0x9F, 0x72,
0x7E, 0x15, 0x22, 0x12, 0x58, 0x07, 0x99, 0x34, 0x6E, 0x50, 0xDE, 0x68,
0x65, 0xBC, 0xDB, 0xF8, 0xC8, 0xA8, 0x2B, 0x40, 0xDC, 0xFE, 0x32, 0xA4,
0xCA, 0x10, 0x21, 0xF0, 0xD3, 0x5D, 0x0F, 0x00, 0x6F, 0x9D, 0x36, 0x42,
0x4A, 0x5E, 0xC1, 0xE0
};
static const byte q1[256] = {
0x75, 0xF3, 0xC6, 0xF4, 0xDB, 0x7B, 0xFB, 0xC8, 0x4A, 0xD3, 0xE6, 0x6B,
0x45, 0x7D, 0xE8, 0x4B, 0xD6, 0x32, 0xD8, 0xFD, 0x37, 0x71, 0xF1, 0xE1,
0x30, 0x0F, 0xF8, 0x1B, 0x87, 0xFA, 0x06, 0x3F, 0x5E, 0xBA, 0xAE, 0x5B,
0x8A, 0x00, 0xBC, 0x9D, 0x6D, 0xC1, 0xB1, 0x0E, 0x80, 0x5D, 0xD2, 0xD5,
0xA0, 0x84, 0x07, 0x14, 0xB5, 0x90, 0x2C, 0xA3, 0xB2, 0x73, 0x4C, 0x54,
0x92, 0x74, 0x36, 0x51, 0x38, 0xB0, 0xBD, 0x5A, 0xFC, 0x60, 0x62, 0x96,
0x6C, 0x42, 0xF7, 0x10, 0x7C, 0x28, 0x27, 0x8C, 0x13, 0x95, 0x9C, 0xC7,
0x24, 0x46, 0x3B, 0x70, 0xCA, 0xE3, 0x85, 0xCB, 0x11, 0xD0, 0x93, 0xB8,
0xA6, 0x83, 0x20, 0xFF, 0x9F, 0x77, 0xC3, 0xCC, 0x03, 0x6F, 0x08, 0xBF,
0x40, 0xE7, 0x2B, 0xE2, 0x79, 0x0C, 0xAA, 0x82, 0x41, 0x3A, 0xEA, 0xB9,
0xE4, 0x9A, 0xA4, 0x97, 0x7E, 0xDA, 0x7A, 0x17, 0x66, 0x94, 0xA1, 0x1D,
0x3D, 0xF0, 0xDE, 0xB3, 0x0B, 0x72, 0xA7, 0x1C, 0xEF, 0xD1, 0x53, 0x3E,
0x8F, 0x33, 0x26, 0x5F, 0xEC, 0x76, 0x2A, 0x49, 0x81, 0x88, 0xEE, 0x21,
0xC4, 0x1A, 0xEB, 0xD9, 0xC5, 0x39, 0x99, 0xCD, 0xAD, 0x31, 0x8B, 0x01,
0x18, 0x23, 0xDD, 0x1F, 0x4E, 0x2D, 0xF9, 0x48, 0x4F, 0xF2, 0x65, 0x8E,
0x78, 0x5C, 0x58, 0x19, 0x8D, 0xE5, 0x98, 0x57, 0x67, 0x7F, 0x05, 0x64,
0xAF, 0x63, 0xB6, 0xFE, 0xF5, 0xB7, 0x3C, 0xA5, 0xCE, 0xE9, 0x68, 0x44,
0xE0, 0x4D, 0x43, 0x69, 0x29, 0x2E, 0xAC, 0x15, 0x59, 0xA8, 0x0A, 0x9E,
0x6E, 0x47, 0xDF, 0x34, 0x35, 0x6A, 0xCF, 0xDC, 0x22, 0xC9, 0xC0, 0x9B,
0x89, 0xD4, 0xED, 0xAB, 0x12, 0xA2, 0x0D, 0x52, 0xBB, 0x02, 0x2F, 0xA9,
0xD7, 0x61, 0x1E, 0xB4, 0x50, 0x04, 0xF6, 0xC2, 0x16, 0x25, 0x86, 0x56,
0x55, 0x09, 0xBE, 0x91
};
/* These MDS tables are actually tables of MDS composed with q0 and q1,
* because it is only ever used that way and we can save some time by
* precomputing. Of course the main saving comes from precomputing the
* GF(2^8) multiplication involved in the MDS matrix multiply; by looking
* things up in these tables we reduce the matrix multiply to four lookups
* and three XORs. Semi-formally, the definition of these tables is:
* mds[0][i] = MDS (q1[i] 0 0 0)^T mds[1][i] = MDS (0 q0[i] 0 0)^T
* mds[2][i] = MDS (0 0 q1[i] 0)^T mds[3][i] = MDS (0 0 0 q0[i])^T
* where ^T means "transpose", the matrix multiply is performed in GF(2^8)
* represented as GF(2)[x]/v(x) where v(x)=x^8+x^6+x^5+x^3+1 as described
* by Schneier et al, and I'm casually glossing over the byte/word
* conversion issues. */
static const u32 mds[4][256] = {
{0xBCBC3275, 0xECEC21F3, 0x202043C6, 0xB3B3C9F4, 0xDADA03DB, 0x02028B7B,
0xE2E22BFB, 0x9E9EFAC8, 0xC9C9EC4A, 0xD4D409D3, 0x18186BE6, 0x1E1E9F6B,
0x98980E45, 0xB2B2387D, 0xA6A6D2E8, 0x2626B74B, 0x3C3C57D6, 0x93938A32,
0x8282EED8, 0x525298FD, 0x7B7BD437, 0xBBBB3771, 0x5B5B97F1, 0x474783E1,
0x24243C30, 0x5151E20F, 0xBABAC6F8, 0x4A4AF31B, 0xBFBF4887, 0x0D0D70FA,
0xB0B0B306, 0x7575DE3F, 0xD2D2FD5E, 0x7D7D20BA, 0x666631AE, 0x3A3AA35B,
0x59591C8A, 0x00000000, 0xCDCD93BC, 0x1A1AE09D, 0xAEAE2C6D, 0x7F7FABC1,
0x2B2BC7B1, 0xBEBEB90E, 0xE0E0A080, 0x8A8A105D, 0x3B3B52D2, 0x6464BAD5,
0xD8D888A0, 0xE7E7A584, 0x5F5FE807, 0x1B1B1114, 0x2C2CC2B5, 0xFCFCB490,
0x3131272C, 0x808065A3, 0x73732AB2, 0x0C0C8173, 0x79795F4C, 0x6B6B4154,
0x4B4B0292, 0x53536974, 0x94948F36, 0x83831F51, 0x2A2A3638, 0xC4C49CB0,
0x2222C8BD, 0xD5D5F85A, 0xBDBDC3FC, 0x48487860, 0xFFFFCE62, 0x4C4C0796,
0x4141776C, 0xC7C7E642, 0xEBEB24F7, 0x1C1C1410, 0x5D5D637C, 0x36362228,
0x6767C027, 0xE9E9AF8C, 0x4444F913, 0x1414EA95, 0xF5F5BB9C, 0xCFCF18C7,
0x3F3F2D24, 0xC0C0E346, 0x7272DB3B, 0x54546C70, 0x29294CCA, 0xF0F035E3,
0x0808FE85, 0xC6C617CB, 0xF3F34F11, 0x8C8CE4D0, 0xA4A45993, 0xCACA96B8,
0x68683BA6, 0xB8B84D83, 0x38382820, 0xE5E52EFF, 0xADAD569F, 0x0B0B8477,
0xC8C81DC3, 0x9999FFCC, 0x5858ED03, 0x19199A6F, 0x0E0E0A08, 0x95957EBF,
0x70705040, 0xF7F730E7, 0x6E6ECF2B, 0x1F1F6EE2, 0xB5B53D79, 0x09090F0C,
0x616134AA, 0x57571682, 0x9F9F0B41, 0x9D9D803A, 0x111164EA, 0x2525CDB9,
0xAFAFDDE4, 0x4545089A, 0xDFDF8DA4, 0xA3A35C97, 0xEAEAD57E, 0x353558DA,
0xEDEDD07A, 0x4343FC17, 0xF8F8CB66, 0xFBFBB194, 0x3737D3A1, 0xFAFA401D,
0xC2C2683D, 0xB4B4CCF0, 0x32325DDE, 0x9C9C71B3, 0x5656E70B, 0xE3E3DA72,
0x878760A7, 0x15151B1C, 0xF9F93AEF, 0x6363BFD1, 0x3434A953, 0x9A9A853E,
0xB1B1428F, 0x7C7CD133, 0x88889B26, 0x3D3DA65F, 0xA1A1D7EC, 0xE4E4DF76,
0x8181942A, 0x91910149, 0x0F0FFB81, 0xEEEEAA88, 0x161661EE, 0xD7D77321,
0x9797F5C4, 0xA5A5A81A, 0xFEFE3FEB, 0x6D6DB5D9, 0x7878AEC5, 0xC5C56D39,
0x1D1DE599, 0x7676A4CD, 0x3E3EDCAD, 0xCBCB6731, 0xB6B6478B, 0xEFEF5B01,
0x12121E18, 0x6060C523, 0x6A6AB0DD, 0x4D4DF61F, 0xCECEE94E, 0xDEDE7C2D,
0x55559DF9, 0x7E7E5A48, 0x2121B24F, 0x03037AF2, 0xA0A02665, 0x5E5E198E,
0x5A5A6678, 0x65654B5C, 0x62624E58, 0xFDFD4519, 0x0606F48D, 0x404086E5,
0xF2F2BE98, 0x3333AC57, 0x17179067, 0x05058E7F, 0xE8E85E05, 0x4F4F7D64,
0x89896AAF, 0x10109563, 0x74742FB6, 0x0A0A75FE, 0x5C5C92F5, 0x9B9B74B7,
0x2D2D333C, 0x3030D6A5, 0x2E2E49CE, 0x494989E9, 0x46467268, 0x77775544,
0xA8A8D8E0, 0x9696044D, 0x2828BD43, 0xA9A92969, 0xD9D97929, 0x8686912E,
0xD1D187AC, 0xF4F44A15, 0x8D8D1559, 0xD6D682A8, 0xB9B9BC0A, 0x42420D9E,
0xF6F6C16E, 0x2F2FB847, 0xDDDD06DF, 0x23233934, 0xCCCC6235, 0xF1F1C46A,
0xC1C112CF, 0x8585EBDC, 0x8F8F9E22, 0x7171A1C9, 0x9090F0C0, 0xAAAA539B,
0x0101F189, 0x8B8BE1D4, 0x4E4E8CED, 0x8E8E6FAB, 0xABABA212, 0x6F6F3EA2,
0xE6E6540D, 0xDBDBF252, 0x92927BBB, 0xB7B7B602, 0x6969CA2F, 0x3939D9A9,
0xD3D30CD7, 0xA7A72361, 0xA2A2AD1E, 0xC3C399B4, 0x6C6C4450, 0x07070504,
0x04047FF6, 0x272746C2, 0xACACA716, 0xD0D07625, 0x50501386, 0xDCDCF756,
0x84841A55, 0xE1E15109, 0x7A7A25BE, 0x1313EF91},
{0xA9D93939, 0x67901717, 0xB3719C9C, 0xE8D2A6A6, 0x04050707, 0xFD985252,
0xA3658080, 0x76DFE4E4, 0x9A084545, 0x92024B4B, 0x80A0E0E0, 0x78665A5A,
0xE4DDAFAF, 0xDDB06A6A, 0xD1BF6363, 0x38362A2A, 0x0D54E6E6, 0xC6432020,
0x3562CCCC, 0x98BEF2F2, 0x181E1212, 0xF724EBEB, 0xECD7A1A1, 0x6C774141,
0x43BD2828, 0x7532BCBC, 0x37D47B7B, 0x269B8888, 0xFA700D0D, 0x13F94444,
0x94B1FBFB, 0x485A7E7E, 0xF27A0303, 0xD0E48C8C, 0x8B47B6B6, 0x303C2424,
0x84A5E7E7, 0x54416B6B, 0xDF06DDDD, 0x23C56060, 0x1945FDFD, 0x5BA33A3A,
0x3D68C2C2, 0x59158D8D, 0xF321ECEC, 0xAE316666, 0xA23E6F6F, 0x82165757,
0x63951010, 0x015BEFEF, 0x834DB8B8, 0x2E918686, 0xD9B56D6D, 0x511F8383,
0x9B53AAAA, 0x7C635D5D, 0xA63B6868, 0xEB3FFEFE, 0xA5D63030, 0xBE257A7A,
0x16A7ACAC, 0x0C0F0909, 0xE335F0F0, 0x6123A7A7, 0xC0F09090, 0x8CAFE9E9,
0x3A809D9D, 0xF5925C5C, 0x73810C0C, 0x2C273131, 0x2576D0D0, 0x0BE75656,
0xBB7B9292, 0x4EE9CECE, 0x89F10101, 0x6B9F1E1E, 0x53A93434, 0x6AC4F1F1,
0xB499C3C3, 0xF1975B5B, 0xE1834747, 0xE66B1818, 0xBDC82222, 0x450E9898,
0xE26E1F1F, 0xF4C9B3B3, 0xB62F7474, 0x66CBF8F8, 0xCCFF9999, 0x95EA1414,
0x03ED5858, 0x56F7DCDC, 0xD4E18B8B, 0x1C1B1515, 0x1EADA2A2, 0xD70CD3D3,
0xFB2BE2E2, 0xC31DC8C8, 0x8E195E5E, 0xB5C22C2C, 0xE9894949, 0xCF12C1C1,
0xBF7E9595, 0xBA207D7D, 0xEA641111, 0x77840B0B, 0x396DC5C5, 0xAF6A8989,
0x33D17C7C, 0xC9A17171, 0x62CEFFFF, 0x7137BBBB, 0x81FB0F0F, 0x793DB5B5,
0x0951E1E1, 0xADDC3E3E, 0x242D3F3F, 0xCDA47676, 0xF99D5555, 0xD8EE8282,
0xE5864040, 0xC5AE7878, 0xB9CD2525, 0x4D049696, 0x44557777, 0x080A0E0E,
0x86135050, 0xE730F7F7, 0xA1D33737, 0x1D40FAFA, 0xAA346161, 0xED8C4E4E,
0x06B3B0B0, 0x706C5454, 0xB22A7373, 0xD2523B3B, 0x410B9F9F, 0x7B8B0202,
0xA088D8D8, 0x114FF3F3, 0x3167CBCB, 0xC2462727, 0x27C06767, 0x90B4FCFC,
0x20283838, 0xF67F0404, 0x60784848, 0xFF2EE5E5, 0x96074C4C, 0x5C4B6565,
0xB1C72B2B, 0xAB6F8E8E, 0x9E0D4242, 0x9CBBF5F5, 0x52F2DBDB, 0x1BF34A4A,
0x5FA63D3D, 0x9359A4A4, 0x0ABCB9B9, 0xEF3AF9F9, 0x91EF1313, 0x85FE0808,
0x49019191, 0xEE611616, 0x2D7CDEDE, 0x4FB22121, 0x8F42B1B1, 0x3BDB7272,
0x47B82F2F, 0x8748BFBF, 0x6D2CAEAE, 0x46E3C0C0, 0xD6573C3C, 0x3E859A9A,
0x6929A9A9, 0x647D4F4F, 0x2A948181, 0xCE492E2E, 0xCB17C6C6, 0x2FCA6969,
0xFCC3BDBD, 0x975CA3A3, 0x055EE8E8, 0x7AD0EDED, 0xAC87D1D1, 0x7F8E0505,
0xD5BA6464, 0x1AA8A5A5, 0x4BB72626, 0x0EB9BEBE, 0xA7608787, 0x5AF8D5D5,
0x28223636, 0x14111B1B, 0x3FDE7575, 0x2979D9D9, 0x88AAEEEE, 0x3C332D2D,
0x4C5F7979, 0x02B6B7B7, 0xB896CACA, 0xDA583535, 0xB09CC4C4, 0x17FC4343,
0x551A8484, 0x1FF64D4D, 0x8A1C5959, 0x7D38B2B2, 0x57AC3333, 0xC718CFCF,
0x8DF40606, 0x74695353, 0xB7749B9B, 0xC4F59797, 0x9F56ADAD, 0x72DAE3E3,
0x7ED5EAEA, 0x154AF4F4, 0x229E8F8F, 0x12A2ABAB, 0x584E6262, 0x07E85F5F,
0x99E51D1D, 0x34392323, 0x6EC1F6F6, 0x50446C6C, 0xDE5D3232, 0x68724646,
0x6526A0A0, 0xBC93CDCD, 0xDB03DADA, 0xF8C6BABA, 0xC8FA9E9E, 0xA882D6D6,
0x2BCF6E6E, 0x40507070, 0xDCEB8585, 0xFE750A0A, 0x328A9393, 0xA48DDFDF,
0xCA4C2929, 0x10141C1C, 0x2173D7D7, 0xF0CCB4B4, 0xD309D4D4, 0x5D108A8A,
0x0FE25151, 0x00000000, 0x6F9A1919, 0x9DE01A1A, 0x368F9494, 0x42E6C7C7,
0x4AECC9C9, 0x5EFDD2D2, 0xC1AB7F7F, 0xE0D8A8A8},
{0xBC75BC32, 0xECF3EC21, 0x20C62043, 0xB3F4B3C9, 0xDADBDA03, 0x027B028B,
0xE2FBE22B, 0x9EC89EFA, 0xC94AC9EC, 0xD4D3D409, 0x18E6186B, 0x1E6B1E9F,
0x9845980E, 0xB27DB238, 0xA6E8A6D2, 0x264B26B7, 0x3CD63C57, 0x9332938A,
0x82D882EE, 0x52FD5298, 0x7B377BD4, 0xBB71BB37, 0x5BF15B97, 0x47E14783,
0x2430243C, 0x510F51E2, 0xBAF8BAC6, 0x4A1B4AF3, 0xBF87BF48, 0x0DFA0D70,
0xB006B0B3, 0x753F75DE, 0xD25ED2FD, 0x7DBA7D20, 0x66AE6631, 0x3A5B3AA3,
0x598A591C, 0x00000000, 0xCDBCCD93, 0x1A9D1AE0, 0xAE6DAE2C, 0x7FC17FAB,
0x2BB12BC7, 0xBE0EBEB9, 0xE080E0A0, 0x8A5D8A10, 0x3BD23B52, 0x64D564BA,
0xD8A0D888, 0xE784E7A5, 0x5F075FE8, 0x1B141B11, 0x2CB52CC2, 0xFC90FCB4,
0x312C3127, 0x80A38065, 0x73B2732A, 0x0C730C81, 0x794C795F, 0x6B546B41,
0x4B924B02, 0x53745369, 0x9436948F, 0x8351831F, 0x2A382A36, 0xC4B0C49C,
0x22BD22C8, 0xD55AD5F8, 0xBDFCBDC3, 0x48604878, 0xFF62FFCE, 0x4C964C07,
0x416C4177, 0xC742C7E6, 0xEBF7EB24, 0x1C101C14, 0x5D7C5D63, 0x36283622,
0x672767C0, 0xE98CE9AF, 0x441344F9, 0x149514EA, 0xF59CF5BB, 0xCFC7CF18,
0x3F243F2D, 0xC046C0E3, 0x723B72DB, 0x5470546C, 0x29CA294C, 0xF0E3F035,
0x088508FE, 0xC6CBC617, 0xF311F34F, 0x8CD08CE4, 0xA493A459, 0xCAB8CA96,
0x68A6683B, 0xB883B84D, 0x38203828, 0xE5FFE52E, 0xAD9FAD56, 0x0B770B84,
0xC8C3C81D, 0x99CC99FF, 0x580358ED, 0x196F199A, 0x0E080E0A, 0x95BF957E,
0x70407050, 0xF7E7F730, 0x6E2B6ECF, 0x1FE21F6E, 0xB579B53D, 0x090C090F,
0x61AA6134, 0x57825716, 0x9F419F0B, 0x9D3A9D80, 0x11EA1164, 0x25B925CD,
0xAFE4AFDD, 0x459A4508, 0xDFA4DF8D, 0xA397A35C, 0xEA7EEAD5, 0x35DA3558,
0xED7AEDD0, 0x431743FC, 0xF866F8CB, 0xFB94FBB1, 0x37A137D3, 0xFA1DFA40,
0xC23DC268, 0xB4F0B4CC, 0x32DE325D, 0x9CB39C71, 0x560B56E7, 0xE372E3DA,
0x87A78760, 0x151C151B, 0xF9EFF93A, 0x63D163BF, 0x345334A9, 0x9A3E9A85,
0xB18FB142, 0x7C337CD1, 0x8826889B, 0x3D5F3DA6, 0xA1ECA1D7, 0xE476E4DF,
0x812A8194, 0x91499101, 0x0F810FFB, 0xEE88EEAA, 0x16EE1661, 0xD721D773,
0x97C497F5, 0xA51AA5A8, 0xFEEBFE3F, 0x6DD96DB5, 0x78C578AE, 0xC539C56D,
0x1D991DE5, 0x76CD76A4, 0x3EAD3EDC, 0xCB31CB67, 0xB68BB647, 0xEF01EF5B,
0x1218121E, 0x602360C5, 0x6ADD6AB0, 0x4D1F4DF6, 0xCE4ECEE9, 0xDE2DDE7C,
0x55F9559D, 0x7E487E5A, 0x214F21B2, 0x03F2037A, 0xA065A026, 0x5E8E5E19,
0x5A785A66, 0x655C654B, 0x6258624E, 0xFD19FD45, 0x068D06F4, 0x40E54086,
0xF298F2BE, 0x335733AC, 0x17671790, 0x057F058E, 0xE805E85E, 0x4F644F7D,
0x89AF896A, 0x10631095, 0x74B6742F, 0x0AFE0A75, 0x5CF55C92, 0x9BB79B74,
0x2D3C2D33, 0x30A530D6, 0x2ECE2E49, 0x49E94989, 0x46684672, 0x77447755,
0xA8E0A8D8, 0x964D9604, 0x284328BD, 0xA969A929, 0xD929D979, 0x862E8691,
0xD1ACD187, 0xF415F44A, 0x8D598D15, 0xD6A8D682, 0xB90AB9BC, 0x429E420D,
0xF66EF6C1, 0x2F472FB8, 0xDDDFDD06, 0x23342339, 0xCC35CC62, 0xF16AF1C4,
0xC1CFC112, 0x85DC85EB, 0x8F228F9E, 0x71C971A1, 0x90C090F0, 0xAA9BAA53,
0x018901F1, 0x8BD48BE1, 0x4EED4E8C, 0x8EAB8E6F, 0xAB12ABA2, 0x6FA26F3E,
0xE60DE654, 0xDB52DBF2, 0x92BB927B, 0xB702B7B6, 0x692F69CA, 0x39A939D9,
0xD3D7D30C, 0xA761A723, 0xA21EA2AD, 0xC3B4C399, 0x6C506C44, 0x07040705,
0x04F6047F, 0x27C22746, 0xAC16ACA7, 0xD025D076, 0x50865013, 0xDC56DCF7,
0x8455841A, 0xE109E151, 0x7ABE7A25, 0x139113EF},
{0xD939A9D9, 0x90176790, 0x719CB371, 0xD2A6E8D2, 0x05070405, 0x9852FD98,
0x6580A365, 0xDFE476DF, 0x08459A08, 0x024B9202, 0xA0E080A0, 0x665A7866,
0xDDAFE4DD, 0xB06ADDB0, 0xBF63D1BF, 0x362A3836, 0x54E60D54, 0x4320C643,
0x62CC3562, 0xBEF298BE, 0x1E12181E, 0x24EBF724, 0xD7A1ECD7, 0x77416C77,
0xBD2843BD, 0x32BC7532, 0xD47B37D4, 0x9B88269B, 0x700DFA70, 0xF94413F9,
0xB1FB94B1, 0x5A7E485A, 0x7A03F27A, 0xE48CD0E4, 0x47B68B47, 0x3C24303C,
0xA5E784A5, 0x416B5441, 0x06DDDF06, 0xC56023C5, 0x45FD1945, 0xA33A5BA3,
0x68C23D68, 0x158D5915, 0x21ECF321, 0x3166AE31, 0x3E6FA23E, 0x16578216,
0x95106395, 0x5BEF015B, 0x4DB8834D, 0x91862E91, 0xB56DD9B5, 0x1F83511F,
0x53AA9B53, 0x635D7C63, 0x3B68A63B, 0x3FFEEB3F, 0xD630A5D6, 0x257ABE25,
0xA7AC16A7, 0x0F090C0F, 0x35F0E335, 0x23A76123, 0xF090C0F0, 0xAFE98CAF,
0x809D3A80, 0x925CF592, 0x810C7381, 0x27312C27, 0x76D02576, 0xE7560BE7,
0x7B92BB7B, 0xE9CE4EE9, 0xF10189F1, 0x9F1E6B9F, 0xA93453A9, 0xC4F16AC4,
0x99C3B499, 0x975BF197, 0x8347E183, 0x6B18E66B, 0xC822BDC8, 0x0E98450E,
0x6E1FE26E, 0xC9B3F4C9, 0x2F74B62F, 0xCBF866CB, 0xFF99CCFF, 0xEA1495EA,
0xED5803ED, 0xF7DC56F7, 0xE18BD4E1, 0x1B151C1B, 0xADA21EAD, 0x0CD3D70C,
0x2BE2FB2B, 0x1DC8C31D, 0x195E8E19, 0xC22CB5C2, 0x8949E989, 0x12C1CF12,
0x7E95BF7E, 0x207DBA20, 0x6411EA64, 0x840B7784, 0x6DC5396D, 0x6A89AF6A,
0xD17C33D1, 0xA171C9A1, 0xCEFF62CE, 0x37BB7137, 0xFB0F81FB, 0x3DB5793D,
0x51E10951, 0xDC3EADDC, 0x2D3F242D, 0xA476CDA4, 0x9D55F99D, 0xEE82D8EE,
0x8640E586, 0xAE78C5AE, 0xCD25B9CD, 0x04964D04, 0x55774455, 0x0A0E080A,
0x13508613, 0x30F7E730, 0xD337A1D3, 0x40FA1D40, 0x3461AA34, 0x8C4EED8C,
0xB3B006B3, 0x6C54706C, 0x2A73B22A, 0x523BD252, 0x0B9F410B, 0x8B027B8B,
0x88D8A088, 0x4FF3114F, 0x67CB3167, 0x4627C246, 0xC06727C0, 0xB4FC90B4,
0x28382028, 0x7F04F67F, 0x78486078, 0x2EE5FF2E, 0x074C9607, 0x4B655C4B,
0xC72BB1C7, 0x6F8EAB6F, 0x0D429E0D, 0xBBF59CBB, 0xF2DB52F2, 0xF34A1BF3,
0xA63D5FA6, 0x59A49359, 0xBCB90ABC, 0x3AF9EF3A, 0xEF1391EF, 0xFE0885FE,
0x01914901, 0x6116EE61, 0x7CDE2D7C, 0xB2214FB2, 0x42B18F42, 0xDB723BDB,
0xB82F47B8, 0x48BF8748, 0x2CAE6D2C, 0xE3C046E3, 0x573CD657, 0x859A3E85,
0x29A96929, 0x7D4F647D, 0x94812A94, 0x492ECE49, 0x17C6CB17, 0xCA692FCA,
0xC3BDFCC3, 0x5CA3975C, 0x5EE8055E, 0xD0ED7AD0, 0x87D1AC87, 0x8E057F8E,
0xBA64D5BA, 0xA8A51AA8, 0xB7264BB7, 0xB9BE0EB9, 0x6087A760, 0xF8D55AF8,
0x22362822, 0x111B1411, 0xDE753FDE, 0x79D92979, 0xAAEE88AA, 0x332D3C33,
0x5F794C5F, 0xB6B702B6, 0x96CAB896, 0x5835DA58, 0x9CC4B09C, 0xFC4317FC,
0x1A84551A, 0xF64D1FF6, 0x1C598A1C, 0x38B27D38, 0xAC3357AC, 0x18CFC718,
0xF4068DF4, 0x69537469, 0x749BB774, 0xF597C4F5, 0x56AD9F56, 0xDAE372DA,
0xD5EA7ED5, 0x4AF4154A, 0x9E8F229E, 0xA2AB12A2, 0x4E62584E, 0xE85F07E8,
0xE51D99E5, 0x39233439, 0xC1F66EC1, 0x446C5044, 0x5D32DE5D, 0x72466872,
0x26A06526, 0x93CDBC93, 0x03DADB03, 0xC6BAF8C6, 0xFA9EC8FA, 0x82D6A882,
0xCF6E2BCF, 0x50704050, 0xEB85DCEB, 0x750AFE75, 0x8A93328A, 0x8DDFA48D,
0x4C29CA4C, 0x141C1014, 0x73D72173, 0xCCB4F0CC, 0x09D4D309, 0x108A5D10,
0xE2510FE2, 0x00000000, 0x9A196F9A, 0xE01A9DE0, 0x8F94368F, 0xE6C742E6,
0xECC94AEC, 0xFDD25EFD, 0xAB7FC1AB, 0xD8A8E0D8}
};
/* The exp_to_poly and poly_to_exp tables are used to perform efficient
* operations in GF(2^8) represented as GF(2)[x]/w(x) where
* w(x)=x^8+x^6+x^3+x^2+1. We care about doing that because it's part of the
* definition of the RS matrix in the key schedule. Elements of that field
* are polynomials of degree not greater than 7 and all coefficients 0 or 1,
* which can be represented naturally by bytes (just substitute x=2). In that
* form, GF(2^8) addition is the same as bitwise XOR, but GF(2^8)
* multiplication is inefficient without hardware support. To multiply
* faster, I make use of the fact x is a generator for the nonzero elements,
* so that every element p of GF(2)[x]/w(x) is either 0 or equal to (x)^n for
* some n in 0..254. Note that that caret is exponentiation in GF(2^8),
* *not* polynomial notation. So if I want to compute pq where p and q are
* in GF(2^8), I can just say:
* 1. if p=0 or q=0 then pq=0
* 2. otherwise, find m and n such that p=x^m and q=x^n
* 3. pq=(x^m)(x^n)=x^(m+n), so add m and n and find pq
* The translations in steps 2 and 3 are looked up in the tables
* poly_to_exp (for step 2) and exp_to_poly (for step 3). To see this
* in action, look at the CALC_S macro. As additional wrinkles, note that
* one of my operands is always a constant, so the poly_to_exp lookup on it
* is done in advance; I included the original values in the comments so
* readers can have some chance of recognizing that this *is* the RS matrix
* from the Twofish paper. I've only included the table entries I actually
* need; I never do a lookup on a variable input of zero and the biggest
* exponents I'll ever see are 254 (variable) and 237 (constant), so they'll
* never sum to more than 491. I'm repeating part of the exp_to_poly table
* so that I don't have to do mod-255 reduction in the exponent arithmetic.
* Since I know my constant operands are never zero, I only have to worry
* about zero values in the variable operand, and I do it with a simple
* conditional branch. I know conditionals are expensive, but I couldn't
* see a non-horrible way of avoiding them, and I did manage to group the
* statements so that each if covers four group multiplications. */
static const u16 poly_to_exp[256] = {
492,
0x00, 0x01, 0x17, 0x02, 0x2E, 0x18, 0x53, 0x03, 0x6A, 0x2F, 0x93, 0x19,
0x34, 0x54, 0x45, 0x04, 0x5C, 0x6B, 0xB6, 0x30, 0xA6, 0x94, 0x4B, 0x1A,
0x8C, 0x35, 0x81, 0x55, 0xAA, 0x46, 0x0D, 0x05, 0x24, 0x5D, 0x87, 0x6C,
0x9B, 0xB7, 0xC1, 0x31, 0x2B, 0xA7, 0xA3, 0x95, 0x98, 0x4C, 0xCA, 0x1B,
0xE6, 0x8D, 0x73, 0x36, 0xCD, 0x82, 0x12, 0x56, 0x62, 0xAB, 0xF0, 0x47,
0x4F, 0x0E, 0xBD, 0x06, 0xD4, 0x25, 0xD2, 0x5E, 0x27, 0x88, 0x66, 0x6D,
0xD6, 0x9C, 0x79, 0xB8, 0x08, 0xC2, 0xDF, 0x32, 0x68, 0x2C, 0xFD, 0xA8,
0x8A, 0xA4, 0x5A, 0x96, 0x29, 0x99, 0x22, 0x4D, 0x60, 0xCB, 0xE4, 0x1C,
0x7B, 0xE7, 0x3B, 0x8E, 0x9E, 0x74, 0xF4, 0x37, 0xD8, 0xCE, 0xF9, 0x83,
0x6F, 0x13, 0xB2, 0x57, 0xE1, 0x63, 0xDC, 0xAC, 0xC4, 0xF1, 0xAF, 0x48,
0x0A, 0x50, 0x42, 0x0F, 0xBA, 0xBE, 0xC7, 0x07, 0xDE, 0xD5, 0x78, 0x26,
0x65, 0xD3, 0xD1, 0x5F, 0xE3, 0x28, 0x21, 0x89, 0x59, 0x67, 0xFC, 0x6E,
0xB1, 0xD7, 0xF8, 0x9D, 0xF3, 0x7A, 0x3A, 0xB9, 0xC6, 0x09, 0x41, 0xC3,
0xAE, 0xE0, 0xDB, 0x33, 0x44, 0x69, 0x92, 0x2D, 0x52, 0xFE, 0x16, 0xA9,
0x0C, 0x8B, 0x80, 0xA5, 0x4A, 0x5B, 0xB5, 0x97, 0xC9, 0x2A, 0xA2, 0x9A,
0xC0, 0x23, 0x86, 0x4E, 0xBC, 0x61, 0xEF, 0xCC, 0x11, 0xE5, 0x72, 0x1D,
0x3D, 0x7C, 0xEB, 0xE8, 0xE9, 0x3C, 0xEA, 0x8F, 0x7D, 0x9F, 0xEC, 0x75,
0x1E, 0xF5, 0x3E, 0x38, 0xF6, 0xD9, 0x3F, 0xCF, 0x76, 0xFA, 0x1F, 0x84,
0xA0, 0x70, 0xED, 0x14, 0x90, 0xB3, 0x7E, 0x58, 0xFB, 0xE2, 0x20, 0x64,
0xD0, 0xDD, 0x77, 0xAD, 0xDA, 0xC5, 0x40, 0xF2, 0x39, 0xB0, 0xF7, 0x49,
0xB4, 0x0B, 0x7F, 0x51, 0x15, 0x43, 0x91, 0x10, 0x71, 0xBB, 0xEE, 0xBF,
0x85, 0xC8, 0xA1
};
static const byte exp_to_poly[492 + 256] = {
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x4D, 0x9A, 0x79, 0xF2,
0xA9, 0x1F, 0x3E, 0x7C, 0xF8, 0xBD, 0x37, 0x6E, 0xDC, 0xF5, 0xA7, 0x03,
0x06, 0x0C, 0x18, 0x30, 0x60, 0xC0, 0xCD, 0xD7, 0xE3, 0x8B, 0x5B, 0xB6,
0x21, 0x42, 0x84, 0x45, 0x8A, 0x59, 0xB2, 0x29, 0x52, 0xA4, 0x05, 0x0A,
0x14, 0x28, 0x50, 0xA0, 0x0D, 0x1A, 0x34, 0x68, 0xD0, 0xED, 0x97, 0x63,
0xC6, 0xC1, 0xCF, 0xD3, 0xEB, 0x9B, 0x7B, 0xF6, 0xA1, 0x0F, 0x1E, 0x3C,
0x78, 0xF0, 0xAD, 0x17, 0x2E, 0x5C, 0xB8, 0x3D, 0x7A, 0xF4, 0xA5, 0x07,
0x0E, 0x1C, 0x38, 0x70, 0xE0, 0x8D, 0x57, 0xAE, 0x11, 0x22, 0x44, 0x88,
0x5D, 0xBA, 0x39, 0x72, 0xE4, 0x85, 0x47, 0x8E, 0x51, 0xA2, 0x09, 0x12,
0x24, 0x48, 0x90, 0x6D, 0xDA, 0xF9, 0xBF, 0x33, 0x66, 0xCC, 0xD5, 0xE7,
0x83, 0x4B, 0x96, 0x61, 0xC2, 0xC9, 0xDF, 0xF3, 0xAB, 0x1B, 0x36, 0x6C,
0xD8, 0xFD, 0xB7, 0x23, 0x46, 0x8C, 0x55, 0xAA, 0x19, 0x32, 0x64, 0xC8,
0xDD, 0xF7, 0xA3, 0x0B, 0x16, 0x2C, 0x58, 0xB0, 0x2D, 0x5A, 0xB4, 0x25,
0x4A, 0x94, 0x65, 0xCA, 0xD9, 0xFF, 0xB3, 0x2B, 0x56, 0xAC, 0x15, 0x2A,
0x54, 0xA8, 0x1D, 0x3A, 0x74, 0xE8, 0x9D, 0x77, 0xEE, 0x91, 0x6F, 0xDE,
0xF1, 0xAF, 0x13, 0x26, 0x4C, 0x98, 0x7D, 0xFA, 0xB9, 0x3F, 0x7E, 0xFC,
0xB5, 0x27, 0x4E, 0x9C, 0x75, 0xEA, 0x99, 0x7F, 0xFE, 0xB1, 0x2F, 0x5E,
0xBC, 0x35, 0x6A, 0xD4, 0xE5, 0x87, 0x43, 0x86, 0x41, 0x82, 0x49, 0x92,
0x69, 0xD2, 0xE9, 0x9F, 0x73, 0xE6, 0x81, 0x4F, 0x9E, 0x71, 0xE2, 0x89,
0x5F, 0xBE, 0x31, 0x62, 0xC4, 0xC5, 0xC7, 0xC3, 0xCB, 0xDB, 0xFB, 0xBB,
0x3B, 0x76, 0xEC, 0x95, 0x67, 0xCE, 0xD1, 0xEF, 0x93, 0x6B, 0xD6, 0xE1,
0x8F, 0x53, 0xA6, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x4D,
0x9A, 0x79, 0xF2, 0xA9, 0x1F, 0x3E, 0x7C, 0xF8, 0xBD, 0x37, 0x6E, 0xDC,
0xF5, 0xA7, 0x03, 0x06, 0x0C, 0x18, 0x30, 0x60, 0xC0, 0xCD, 0xD7, 0xE3,
0x8B, 0x5B, 0xB6, 0x21, 0x42, 0x84, 0x45, 0x8A, 0x59, 0xB2, 0x29, 0x52,
0xA4, 0x05, 0x0A, 0x14, 0x28, 0x50, 0xA0, 0x0D, 0x1A, 0x34, 0x68, 0xD0,
0xED, 0x97, 0x63, 0xC6, 0xC1, 0xCF, 0xD3, 0xEB, 0x9B, 0x7B, 0xF6, 0xA1,
0x0F, 0x1E, 0x3C, 0x78, 0xF0, 0xAD, 0x17, 0x2E, 0x5C, 0xB8, 0x3D, 0x7A,
0xF4, 0xA5, 0x07, 0x0E, 0x1C, 0x38, 0x70, 0xE0, 0x8D, 0x57, 0xAE, 0x11,
0x22, 0x44, 0x88, 0x5D, 0xBA, 0x39, 0x72, 0xE4, 0x85, 0x47, 0x8E, 0x51,
0xA2, 0x09, 0x12, 0x24, 0x48, 0x90, 0x6D, 0xDA, 0xF9, 0xBF, 0x33, 0x66,
0xCC, 0xD5, 0xE7, 0x83, 0x4B, 0x96, 0x61, 0xC2, 0xC9, 0xDF, 0xF3, 0xAB,
0x1B, 0x36, 0x6C, 0xD8, 0xFD, 0xB7, 0x23, 0x46, 0x8C, 0x55, 0xAA, 0x19,
0x32, 0x64, 0xC8, 0xDD, 0xF7, 0xA3, 0x0B, 0x16, 0x2C, 0x58, 0xB0, 0x2D,
0x5A, 0xB4, 0x25, 0x4A, 0x94, 0x65, 0xCA, 0xD9, 0xFF, 0xB3, 0x2B, 0x56,
0xAC, 0x15, 0x2A, 0x54, 0xA8, 0x1D, 0x3A, 0x74, 0xE8, 0x9D, 0x77, 0xEE,
0x91, 0x6F, 0xDE, 0xF1, 0xAF, 0x13, 0x26, 0x4C, 0x98, 0x7D, 0xFA, 0xB9,
0x3F, 0x7E, 0xFC, 0xB5, 0x27, 0x4E, 0x9C, 0x75, 0xEA, 0x99, 0x7F, 0xFE,
0xB1, 0x2F, 0x5E, 0xBC, 0x35, 0x6A, 0xD4, 0xE5, 0x87, 0x43, 0x86, 0x41,
0x82, 0x49, 0x92, 0x69, 0xD2, 0xE9, 0x9F, 0x73, 0xE6, 0x81, 0x4F, 0x9E,
0x71, 0xE2, 0x89, 0x5F, 0xBE, 0x31, 0x62, 0xC4, 0xC5, 0xC7, 0xC3, 0xCB,
};
/* The table constants are indices of
* S-box entries, preprocessed through q0 and q1. */
static byte calc_sb_tbl[512] = {
0xA9, 0x75, 0x67, 0xF3, 0xB3, 0xC6, 0xE8, 0xF4,
0x04, 0xDB, 0xFD, 0x7B, 0xA3, 0xFB, 0x76, 0xC8,
0x9A, 0x4A, 0x92, 0xD3, 0x80, 0xE6, 0x78, 0x6B,
0xE4, 0x45, 0xDD, 0x7D, 0xD1, 0xE8, 0x38, 0x4B,
0x0D, 0xD6, 0xC6, 0x32, 0x35, 0xD8, 0x98, 0xFD,
0x18, 0x37, 0xF7, 0x71, 0xEC, 0xF1, 0x6C, 0xE1,
0x43, 0x30, 0x75, 0x0F, 0x37, 0xF8, 0x26, 0x1B,
0xFA, 0x87, 0x13, 0xFA, 0x94, 0x06, 0x48, 0x3F,
0xF2, 0x5E, 0xD0, 0xBA, 0x8B, 0xAE, 0x30, 0x5B,
0x84, 0x8A, 0x54, 0x00, 0xDF, 0xBC, 0x23, 0x9D,
0x19, 0x6D, 0x5B, 0xC1, 0x3D, 0xB1, 0x59, 0x0E,
0xF3, 0x80, 0xAE, 0x5D, 0xA2, 0xD2, 0x82, 0xD5,
0x63, 0xA0, 0x01, 0x84, 0x83, 0x07, 0x2E, 0x14,
0xD9, 0xB5, 0x51, 0x90, 0x9B, 0x2C, 0x7C, 0xA3,
0xA6, 0xB2, 0xEB, 0x73, 0xA5, 0x4C, 0xBE, 0x54,
0x16, 0x92, 0x0C, 0x74, 0xE3, 0x36, 0x61, 0x51,
0xC0, 0x38, 0x8C, 0xB0, 0x3A, 0xBD, 0xF5, 0x5A,
0x73, 0xFC, 0x2C, 0x60, 0x25, 0x62, 0x0B, 0x96,
0xBB, 0x6C, 0x4E, 0x42, 0x89, 0xF7, 0x6B, 0x10,
0x53, 0x7C, 0x6A, 0x28, 0xB4, 0x27, 0xF1, 0x8C,
0xE1, 0x13, 0xE6, 0x95, 0xBD, 0x9C, 0x45, 0xC7,
0xE2, 0x24, 0xF4, 0x46, 0xB6, 0x3B, 0x66, 0x70,
0xCC, 0xCA, 0x95, 0xE3, 0x03, 0x85, 0x56, 0xCB,
0xD4, 0x11, 0x1C, 0xD0, 0x1E, 0x93, 0xD7, 0xB8,
0xFB, 0xA6, 0xC3, 0x83, 0x8E, 0x20, 0xB5, 0xFF,
0xE9, 0x9F, 0xCF, 0x77, 0xBF, 0xC3, 0xBA, 0xCC,
0xEA, 0x03, 0x77, 0x6F, 0x39, 0x08, 0xAF, 0xBF,
0x33, 0x40, 0xC9, 0xE7, 0x62, 0x2B, 0x71, 0xE2,
0x81, 0x79, 0x79, 0x0C, 0x09, 0xAA, 0xAD, 0x82,
0x24, 0x41, 0xCD, 0x3A, 0xF9, 0xEA, 0xD8, 0xB9,
0xE5, 0xE4, 0xC5, 0x9A, 0xB9, 0xA4, 0x4D, 0x97,
0x44, 0x7E, 0x08, 0xDA, 0x86, 0x7A, 0xE7, 0x17,
0xA1, 0x66, 0x1D, 0x94, 0xAA, 0xA1, 0xED, 0x1D,
0x06, 0x3D, 0x70, 0xF0, 0xB2, 0xDE, 0xD2, 0xB3,
0x41, 0x0B, 0x7B, 0x72, 0xA0, 0xA7, 0x11, 0x1C,
0x31, 0xEF, 0xC2, 0xD1, 0x27, 0x53, 0x90, 0x3E,
0x20, 0x8F, 0xF6, 0x33, 0x60, 0x26, 0xFF, 0x5F,
0x96, 0xEC, 0x5C, 0x76, 0xB1, 0x2A, 0xAB, 0x49,
0x9E, 0x81, 0x9C, 0x88, 0x52, 0xEE, 0x1B, 0x21,
0x5F, 0xC4, 0x93, 0x1A, 0x0A, 0xEB, 0xEF, 0xD9,
0x91, 0xC5, 0x85, 0x39, 0x49, 0x99, 0xEE, 0xCD,
0x2D, 0xAD, 0x4F, 0x31, 0x8F, 0x8B, 0x3B, 0x01,
0x47, 0x18, 0x87, 0x23, 0x6D, 0xDD, 0x46, 0x1F,
0xD6, 0x4E, 0x3E, 0x2D, 0x69, 0xF9, 0x64, 0x48,
0x2A, 0x4F, 0xCE, 0xF2, 0xCB, 0x65, 0x2F, 0x8E,
0xFC, 0x78, 0x97, 0x5C, 0x05, 0x58, 0x7A, 0x19,
0xAC, 0x8D, 0x7F, 0xE5, 0xD5, 0x98, 0x1A, 0x57,
0x4B, 0x67, 0x0E, 0x7F, 0xA7, 0x05, 0x5A, 0x64,
0x28, 0xAF, 0x14, 0x63, 0x3F, 0xB6, 0x29, 0xFE,
0x88, 0xF5, 0x3C, 0xB7, 0x4C, 0x3C, 0x02, 0xA5,
0xB8, 0xCE, 0xDA, 0xE9, 0xB0, 0x68, 0x17, 0x44,
0x55, 0xE0, 0x1F, 0x4D, 0x8A, 0x43, 0x7D, 0x69,
0x57, 0x29, 0xC7, 0x2E, 0x8D, 0xAC, 0x74, 0x15,
0xB7, 0x59, 0xC4, 0xA8, 0x9F, 0x0A, 0x72, 0x9E,
0x7E, 0x6E, 0x15, 0x47, 0x22, 0xDF, 0x12, 0x34,
0x58, 0x35, 0x07, 0x6A, 0x99, 0xCF, 0x34, 0xDC,
0x6E, 0x22, 0x50, 0xC9, 0xDE, 0xC0, 0x68, 0x9B,
0x65, 0x89, 0xBC, 0xD4, 0xDB, 0xED, 0xF8, 0xAB,
0xC8, 0x12, 0xA8, 0xA2, 0x2B, 0x0D, 0x40, 0x52,
0xDC, 0xBB, 0xFE, 0x02, 0x32, 0x2F, 0xA4, 0xA9,
0xCA, 0xD7, 0x10, 0x61, 0x21, 0x1E, 0xF0, 0xB4,
0xD3, 0x50, 0x5D, 0x04, 0x0F, 0xF6, 0x00, 0xC2,
0x6F, 0x16, 0x9D, 0x25, 0x36, 0x86, 0x42, 0x56,
0x4A, 0x55, 0x5E, 0x09, 0xC1, 0xBE, 0xE0, 0x91
};
/* Macro to perform one column of the RS matrix multiplication. The
* parameters a, b, c, and d are the four bytes of output; i is the index
* of the key bytes, and w, x, y, and z, are the column of constants from
* the RS matrix, preprocessed through the poly_to_exp table. */
#define CALC_S(a, b, c, d, i, w, x, y, z) \
{ \
tmp = poly_to_exp[key[i]]; \
(a) ^= exp_to_poly[tmp + (w)]; \
(b) ^= exp_to_poly[tmp + (x)]; \
(c) ^= exp_to_poly[tmp + (y)]; \
(d) ^= exp_to_poly[tmp + (z)]; \
}
/* Macros to calculate the key-dependent S-boxes for a 128-bit key using
* the S vector from CALC_S. CALC_SB_2 computes a single entry in all
* four S-boxes, where i is the index of the entry to compute, and a and b
* are the index numbers preprocessed through the q0 and q1 tables
* respectively. CALC_SB is simply a convenience to make the code shorter;
* it calls CALC_SB_2 four times with consecutive indices from i to i+3,
* using the remaining parameters two by two. */
#define CALC_SB_2(i, a, b) \
ctx->s[0][i] = mds[0][q0[(a) ^ sa] ^ se]; \
ctx->s[1][i] = mds[1][q0[(b) ^ sb] ^ sf]; \
ctx->s[2][i] = mds[2][q1[(a) ^ sc] ^ sg]; \
ctx->s[3][i] = mds[3][q1[(b) ^ sd] ^ sh]
#define CALC_SB(i, a, b, c, d, e, f, g, h) \
CALC_SB_2 (i, a, b); CALC_SB_2 ((i)+1, c, d); \
CALC_SB_2 ((i)+2, e, f); CALC_SB_2 ((i)+3, g, h)
/* Macros exactly like CALC_SB and CALC_SB_2, but for 256-bit keys. */
#define CALC_SB256_2(i, a, b) \
ctx->s[0][i] = mds[0][q0[q0[q1[(b) ^ sa] ^ se] ^ si] ^ sm]; \
ctx->s[1][i] = mds[1][q0[q1[q1[(a) ^ sb] ^ sf] ^ sj] ^ sn]; \
ctx->s[2][i] = mds[2][q1[q0[q0[(a) ^ sc] ^ sg] ^ sk] ^ so]; \
ctx->s[3][i] = mds[3][q1[q1[q0[(b) ^ sd] ^ sh] ^ sl] ^ sp];
#define CALC_SB256(i, a, b, c, d, e, f, g, h) \
CALC_SB256_2 (i, a, b); CALC_SB256_2 ((i)+1, c, d); \
CALC_SB256_2 ((i)+2, e, f); CALC_SB256_2 ((i)+3, g, h)
/* Macros to calculate the whitening and round subkeys. CALC_K_2 computes the
* last two stages of the h() function for a given index (either 2i or 2i+1).
* a, b, c, and d are the four bytes going into the last two stages. For
* 128-bit keys, this is the entire h() function and a and c are the index
* preprocessed through q0 and q1 respectively; for longer keys they are the
* output of previous stages. j is the index of the first key byte to use.
* CALC_K computes a pair of subkeys for 128-bit Twofish, by calling CALC_K_2
* twice, doing the Pseudo-Hadamard Transform, and doing the necessary
* rotations. Its parameters are: a, the array to write the results into,
* j, the index of the first output entry, k and l, the preprocessed indices
* for index 2i, and m and n, the preprocessed indices for index 2i+1.
* CALC_K256_2 expands CALC_K_2 to handle 256-bit keys, by doing two
* additional lookup-and-XOR stages. The parameters a and b are the index
* preprocessed through q0 and q1 respectively; j is the index of the first
* key byte to use. CALC_K256 is identical to CALC_K but for using the
* CALC_K256_2 macro instead of CALC_K_2. */
#define CALC_K_2(a, b, c, d, j) \
mds[0][q0[a ^ key[(j) + 8]] ^ key[j]] \
^ mds[1][q0[b ^ key[(j) + 9]] ^ key[(j) + 1]] \
^ mds[2][q1[c ^ key[(j) + 10]] ^ key[(j) + 2]] \
^ mds[3][q1[d ^ key[(j) + 11]] ^ key[(j) + 3]]
#define CALC_K(a, j, k, l, m, n) \
x = CALC_K_2 (k, l, k, l, 0); \
y = CALC_K_2 (m, n, m, n, 4); \
y = (y << 8) + (y >> 24); \
x += y; y += x; ctx->a[j] = x; \
ctx->a[(j) + 1] = (y << 9) + (y >> 23)
#define CALC_K256_2(a, b, j) \
CALC_K_2 (q0[q1[b ^ key[(j) + 24]] ^ key[(j) + 16]], \
q1[q1[a ^ key[(j) + 25]] ^ key[(j) + 17]], \
q0[q0[a ^ key[(j) + 26]] ^ key[(j) + 18]], \
q1[q0[b ^ key[(j) + 27]] ^ key[(j) + 19]], j)
#define CALC_K256(a, j, k, l, m, n) \
x = CALC_K256_2 (k, l, 0); \
y = CALC_K256_2 (m, n, 4); \
y = (y << 8) + (y >> 24); \
x += y; y += x; ctx->a[j] = x; \
ctx->a[(j) + 1] = (y << 9) + (y >> 23)
/* Perform the key setup. Note that this works only with 128- and 256-bit
* keys, despite the API that looks like it might support other sizes. */
static gcry_err_code_t
do_twofish_setkey (TWOFISH_context *ctx, const byte *key, const unsigned keylen)
{
int i, j, k;
/* Temporaries for CALC_K. */
u32 x, y;
/* The S vector used to key the S-boxes, split up into individual bytes.
* 128-bit keys use only sa through sh; 256-bit use all of them. */
byte sa = 0, sb = 0, sc = 0, sd = 0, se = 0, sf = 0, sg = 0, sh = 0;
byte si = 0, sj = 0, sk = 0, sl = 0, sm = 0, sn = 0, so = 0, sp = 0;
/* Temporary for CALC_S. */
unsigned int tmp;
/* Flags for self-test. */
static int initialized = 0;
static const char *selftest_failed=0;
/* Check key length. */
if( ( ( keylen - 16 ) | 16 ) != 16 )
return GPG_ERR_INV_KEYLEN;
/* Do self-test if necessary. */
if (!initialized)
{
initialized = 1;
selftest_failed = selftest ();
if( selftest_failed )
log_error("%s\n", selftest_failed );
}
if( selftest_failed )
return GPG_ERR_SELFTEST_FAILED;
/* Compute the first two words of the S vector. The magic numbers are
* the entries of the RS matrix, preprocessed through poly_to_exp. The
* numbers in the comments are the original (polynomial form) matrix
* entries. */
CALC_S (sa, sb, sc, sd, 0, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */
CALC_S (sa, sb, sc, sd, 1, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */
CALC_S (sa, sb, sc, sd, 2, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */
CALC_S (sa, sb, sc, sd, 3, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */
CALC_S (sa, sb, sc, sd, 4, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */
CALC_S (sa, sb, sc, sd, 5, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */
CALC_S (sa, sb, sc, sd, 6, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */
CALC_S (sa, sb, sc, sd, 7, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */
CALC_S (se, sf, sg, sh, 8, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */
CALC_S (se, sf, sg, sh, 9, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */
CALC_S (se, sf, sg, sh, 10, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */
CALC_S (se, sf, sg, sh, 11, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */
CALC_S (se, sf, sg, sh, 12, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */
CALC_S (se, sf, sg, sh, 13, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */
CALC_S (se, sf, sg, sh, 14, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */
CALC_S (se, sf, sg, sh, 15, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */
if (keylen == 32) /* 256-bit key */
{
/* Calculate the remaining two words of the S vector */
CALC_S (si, sj, sk, sl, 16, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */
CALC_S (si, sj, sk, sl, 17, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */
CALC_S (si, sj, sk, sl, 18, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */
CALC_S (si, sj, sk, sl, 19, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */
CALC_S (si, sj, sk, sl, 20, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */
CALC_S (si, sj, sk, sl, 21, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */
CALC_S (si, sj, sk, sl, 22, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */
CALC_S (si, sj, sk, sl, 23, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */
CALC_S (sm, sn, so, sp, 24, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */
CALC_S (sm, sn, so, sp, 25, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */
CALC_S (sm, sn, so, sp, 26, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */
CALC_S (sm, sn, so, sp, 27, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */
CALC_S (sm, sn, so, sp, 28, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */
CALC_S (sm, sn, so, sp, 29, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */
CALC_S (sm, sn, so, sp, 30, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */
CALC_S (sm, sn, so, sp, 31, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */
/* Compute the S-boxes. */
for(i=j=0,k=1; i < 256; i++, j += 2, k += 2 )
{
CALC_SB256_2( i, calc_sb_tbl[j], calc_sb_tbl[k] );
}
/* Calculate whitening and round subkeys. */
for (i = 0; i < 8; i += 2)
{
CALC_K256 ( w, i, q0[i], q1[i], q0[i + 1], q1[i + 1] );
}
for (j = 0; j < 32; j += 2, i += 2)
{
CALC_K256 ( k, j, q0[i], q1[i], q0[i + 1], q1[i + 1] );
}
}
else
{
/* Compute the S-boxes. */
for(i=j=0,k=1; i < 256; i++, j += 2, k += 2 )
{
CALC_SB_2( i, calc_sb_tbl[j], calc_sb_tbl[k] );
}
/* Calculate whitening and round subkeys. */
for (i = 0; i < 8; i += 2)
{
CALC_K ( w, i, q0[i], q1[i], q0[i + 1], q1[i + 1] );
}
for (j = 0; j < 32; j += 2, i += 2)
{
CALC_K ( k, j, q0[i], q1[i], q0[i + 1], q1[i + 1] );
}
}
return 0;
}
static gcry_err_code_t
twofish_setkey (void *context, const byte *key, unsigned int keylen,
cipher_bulk_ops_t *bulk_ops)
{
TWOFISH_context *ctx = context;
unsigned int hwfeatures = _gcry_get_hw_features ();
int rc;
rc = do_twofish_setkey (ctx, key, keylen);
#ifdef USE_AVX2
ctx->use_avx2 = 0;
if ((hwfeatures & HWF_INTEL_AVX2) && (hwfeatures & HWF_INTEL_FAST_VPGATHER))
{
ctx->use_avx2 = 1;
}
#endif
/* Setup bulk encryption routines. */
memset (bulk_ops, 0, sizeof(*bulk_ops));
bulk_ops->cbc_dec = _gcry_twofish_cbc_dec;
bulk_ops->cfb_dec = _gcry_twofish_cfb_dec;
bulk_ops->ctr_enc = _gcry_twofish_ctr_enc;
bulk_ops->ocb_crypt = _gcry_twofish_ocb_crypt;
- bulk_ops->ocb_auth = _gcry_twofish_ocb_auth;
+ bulk_ops->ocb_auth = _gcry_twofish_ocb_auth;
+ bulk_ops->xts_crypt = _gcry_twofish_xts_crypt;
+ bulk_ops->ecb_crypt = _gcry_twofish_ecb_crypt;
(void)hwfeatures;
_gcry_burn_stack (23+6*sizeof(void*));
return rc;
}
#ifdef USE_AVX2
/* Assembler implementations of Twofish using AVX2. Process 16 block in
parallel.
*/
+extern void _gcry_twofish_avx2_blk16 (const TWOFISH_context *c, byte *out,
+ const byte *in, int encrypt) ASM_FUNC_ABI;
+
extern void _gcry_twofish_avx2_ctr_enc(const TWOFISH_context *ctx,
unsigned char *out,
const unsigned char *in,
unsigned char *ctr) ASM_FUNC_ABI;
extern void _gcry_twofish_avx2_cbc_dec(const TWOFISH_context *ctx,
unsigned char *out,
const unsigned char *in,
unsigned char *iv) ASM_FUNC_ABI;
extern void _gcry_twofish_avx2_cfb_dec(const TWOFISH_context *ctx,
unsigned char *out,
const unsigned char *in,
unsigned char *iv) ASM_FUNC_ABI;
extern void _gcry_twofish_avx2_ocb_enc(const TWOFISH_context *ctx,
unsigned char *out,
const unsigned char *in,
unsigned char *offset,
unsigned char *checksum,
const u64 Ls[16]) ASM_FUNC_ABI;
extern void _gcry_twofish_avx2_ocb_dec(const TWOFISH_context *ctx,
unsigned char *out,
const unsigned char *in,
unsigned char *offset,
unsigned char *checksum,
const u64 Ls[16]) ASM_FUNC_ABI;
extern void _gcry_twofish_avx2_ocb_auth(const TWOFISH_context *ctx,
const unsigned char *abuf,
unsigned char *offset,
unsigned char *checksum,
const u64 Ls[16]) ASM_FUNC_ABI;
#endif
#ifdef USE_AMD64_ASM
/* Assembly implementations of Twofish. */
extern void _gcry_twofish_amd64_encrypt_block(const TWOFISH_context *c,
byte *out, const byte *in);
extern void _gcry_twofish_amd64_decrypt_block(const TWOFISH_context *c,
byte *out, const byte *in);
/* These assembly implementations process three blocks in parallel. */
+extern void _gcry_twofish_amd64_blk3(const TWOFISH_context *c, byte *out,
+ const byte *in, int encrypt);
+
extern void _gcry_twofish_amd64_ctr_enc(const TWOFISH_context *c, byte *out,
const byte *in, byte *ctr);
extern void _gcry_twofish_amd64_cbc_dec(const TWOFISH_context *c, byte *out,
const byte *in, byte *iv);
extern void _gcry_twofish_amd64_cfb_dec(const TWOFISH_context *c, byte *out,
const byte *in, byte *iv);
extern void _gcry_twofish_amd64_ocb_enc(const TWOFISH_context *ctx, byte *out,
const byte *in, byte *offset,
byte *checksum, const u64 Ls[3]);
extern void _gcry_twofish_amd64_ocb_dec(const TWOFISH_context *ctx, byte *out,
const byte *in, byte *offset,
byte *checksum, const u64 Ls[3]);
extern void _gcry_twofish_amd64_ocb_auth(const TWOFISH_context *ctx,
const byte *abuf, byte *offset,
byte *checksum, const u64 Ls[3]);
static inline void
twofish_amd64_encrypt_block(const TWOFISH_context *c, byte *out, const byte *in)
{
_gcry_twofish_amd64_encrypt_block(c, out, in);
}
static inline void
twofish_amd64_decrypt_block(const TWOFISH_context *c, byte *out, const byte *in)
{
_gcry_twofish_amd64_decrypt_block(c, out, in);
}
static inline void
twofish_amd64_ctr_enc(const TWOFISH_context *c, byte *out, const byte *in,
byte *ctr)
{
_gcry_twofish_amd64_ctr_enc(c, out, in, ctr);
}
static inline void
twofish_amd64_cbc_dec(const TWOFISH_context *c, byte *out, const byte *in,
byte *iv)
{
_gcry_twofish_amd64_cbc_dec(c, out, in, iv);
}
static inline void
twofish_amd64_cfb_dec(const TWOFISH_context *c, byte *out, const byte *in,
byte *iv)
{
_gcry_twofish_amd64_cfb_dec(c, out, in, iv);
}
static inline void
twofish_amd64_ocb_enc(const TWOFISH_context *ctx, byte *out, const byte *in,
byte *offset, byte *checksum, const u64 Ls[3])
{
_gcry_twofish_amd64_ocb_enc(ctx, out, in, offset, checksum, Ls);
}
static inline void
twofish_amd64_ocb_dec(const TWOFISH_context *ctx, byte *out, const byte *in,
byte *offset, byte *checksum, const u64 Ls[3])
{
_gcry_twofish_amd64_ocb_dec(ctx, out, in, offset, checksum, Ls);
}
static inline void
twofish_amd64_ocb_auth(const TWOFISH_context *ctx, const byte *abuf,
byte *offset, byte *checksum, const u64 Ls[3])
{
_gcry_twofish_amd64_ocb_auth(ctx, abuf, offset, checksum, Ls);
}
#elif defined(USE_ARM_ASM)
/* Assembly implementations of Twofish. */
extern void _gcry_twofish_arm_encrypt_block(const TWOFISH_context *c,
byte *out, const byte *in);
extern void _gcry_twofish_arm_decrypt_block(const TWOFISH_context *c,
byte *out, const byte *in);
#else /*!USE_AMD64_ASM && !USE_ARM_ASM*/
/* Macros to compute the g() function in the encryption and decryption
* rounds. G1 is the straight g() function; G2 includes the 8-bit
* rotation for the high 32-bit word. */
#define G1(a) \
(ctx->s[0][(a) & 0xFF]) ^ (ctx->s[1][((a) >> 8) & 0xFF]) \
^ (ctx->s[2][((a) >> 16) & 0xFF]) ^ (ctx->s[3][(a) >> 24])
#define G2(b) \
(ctx->s[1][(b) & 0xFF]) ^ (ctx->s[2][((b) >> 8) & 0xFF]) \
^ (ctx->s[3][((b) >> 16) & 0xFF]) ^ (ctx->s[0][(b) >> 24])
/* Encryption and decryption Feistel rounds. Each one calls the two g()
* macros, does the PHT, and performs the XOR and the appropriate bit
* rotations. The parameters are the round number (used to select subkeys),
* and the four 32-bit chunks of the text. */
#define ENCROUND(n, a, b, c, d) \
x = G1 (a); y = G2 (b); \
x += y; y += x + ctx->k[2 * (n) + 1]; \
(c) ^= x + ctx->k[2 * (n)]; \
(c) = ((c) >> 1) + ((c) << 31); \
(d) = (((d) << 1)+((d) >> 31)) ^ y
#define DECROUND(n, a, b, c, d) \
x = G1 (a); y = G2 (b); \
x += y; y += x; \
(d) ^= y + ctx->k[2 * (n) + 1]; \
(d) = ((d) >> 1) + ((d) << 31); \
(c) = (((c) << 1)+((c) >> 31)); \
(c) ^= (x + ctx->k[2 * (n)])
/* Encryption and decryption cycles; each one is simply two Feistel rounds
* with the 32-bit chunks re-ordered to simulate the "swap" */
#define ENCCYCLE(n) \
ENCROUND (2 * (n), a, b, c, d); \
ENCROUND (2 * (n) + 1, c, d, a, b)
#define DECCYCLE(n) \
DECROUND (2 * (n) + 1, c, d, a, b); \
DECROUND (2 * (n), a, b, c, d)
/* Macros to convert the input and output bytes into 32-bit words,
* and simultaneously perform the whitening step. INPACK packs word
* number n into the variable named by x, using whitening subkey number m.
* OUTUNPACK unpacks word number n from the variable named by x, using
* whitening subkey number m. */
#define INPACK(n, x, m) \
x = buf_get_le32(in + (n) * 4); \
x ^= ctx->w[m]
#define OUTUNPACK(n, x, m) \
x ^= ctx->w[m]; \
buf_put_le32(out + (n) * 4, x)
#endif /*!USE_AMD64_ASM*/
/* Encrypt one block. in and out may be the same. */
#ifdef USE_AMD64_ASM
static unsigned int
twofish_encrypt (void *context, byte *out, const byte *in)
{
TWOFISH_context *ctx = context;
twofish_amd64_encrypt_block(ctx, out, in);
return /*burn_stack*/ (4*sizeof (void*));
}
#elif defined(USE_ARM_ASM)
static unsigned int
twofish_encrypt (void *context, byte *out, const byte *in)
{
TWOFISH_context *ctx = context;
_gcry_twofish_arm_encrypt_block(ctx, out, in);
return /*burn_stack*/ (4*sizeof (void*));
}
#else /*!USE_AMD64_ASM && !USE_ARM_ASM*/
static void
do_twofish_encrypt (const TWOFISH_context *ctx, byte *out, const byte *in)
{
/* The four 32-bit chunks of the text. */
u32 a, b, c, d;
/* Temporaries used by the round function. */
u32 x, y;
/* Input whitening and packing. */
INPACK (0, a, 0);
INPACK (1, b, 1);
INPACK (2, c, 2);
INPACK (3, d, 3);
/* Encryption Feistel cycles. */
ENCCYCLE (0);
ENCCYCLE (1);
ENCCYCLE (2);
ENCCYCLE (3);
ENCCYCLE (4);
ENCCYCLE (5);
ENCCYCLE (6);
ENCCYCLE (7);
/* Output whitening and unpacking. */
OUTUNPACK (0, c, 4);
OUTUNPACK (1, d, 5);
OUTUNPACK (2, a, 6);
OUTUNPACK (3, b, 7);
}
static unsigned int
twofish_encrypt (void *context, byte *out, const byte *in)
{
TWOFISH_context *ctx = context;
do_twofish_encrypt (ctx, out, in);
return /*burn_stack*/ (24+3*sizeof (void*));
}
#endif /*!USE_AMD64_ASM && !USE_ARM_ASM*/
/* Decrypt one block. in and out may be the same. */
#ifdef USE_AMD64_ASM
static unsigned int
twofish_decrypt (void *context, byte *out, const byte *in)
{
TWOFISH_context *ctx = context;
twofish_amd64_decrypt_block(ctx, out, in);
return /*burn_stack*/ (4*sizeof (void*));
}
#elif defined(USE_ARM_ASM)
static unsigned int
twofish_decrypt (void *context, byte *out, const byte *in)
{
TWOFISH_context *ctx = context;
_gcry_twofish_arm_decrypt_block(ctx, out, in);
return /*burn_stack*/ (4*sizeof (void*));
}
#else /*!USE_AMD64_ASM && !USE_ARM_ASM*/
static void
do_twofish_decrypt (const TWOFISH_context *ctx, byte *out, const byte *in)
{
/* The four 32-bit chunks of the text. */
u32 a, b, c, d;
/* Temporaries used by the round function. */
u32 x, y;
/* Input whitening and packing. */
INPACK (0, c, 4);
INPACK (1, d, 5);
INPACK (2, a, 6);
INPACK (3, b, 7);
/* Encryption Feistel cycles. */
DECCYCLE (7);
DECCYCLE (6);
DECCYCLE (5);
DECCYCLE (4);
DECCYCLE (3);
DECCYCLE (2);
DECCYCLE (1);
DECCYCLE (0);
/* Output whitening and unpacking. */
OUTUNPACK (0, a, 0);
OUTUNPACK (1, b, 1);
OUTUNPACK (2, c, 2);
OUTUNPACK (3, d, 3);
}
static unsigned int
twofish_decrypt (void *context, byte *out, const byte *in)
{
TWOFISH_context *ctx = context;
do_twofish_decrypt (ctx, out, in);
return /*burn_stack*/ (24+3*sizeof (void*));
}
#endif /*!USE_AMD64_ASM && !USE_ARM_ASM*/
/* Bulk encryption of complete blocks in CTR mode. This function is only
intended for the bulk encryption feature of cipher.c. CTR is expected to be
of size TWOFISH_BLOCKSIZE. */
static void
_gcry_twofish_ctr_enc(void *context, unsigned char *ctr, void *outbuf_arg,
const void *inbuf_arg, size_t nblocks)
{
TWOFISH_context *ctx = context;
unsigned char *outbuf = outbuf_arg;
const unsigned char *inbuf = inbuf_arg;
unsigned char tmpbuf[TWOFISH_BLOCKSIZE];
unsigned int burn, burn_stack_depth = 0;
#ifdef USE_AVX2
if (ctx->use_avx2)
{
int did_use_avx2 = 0;
/* Process data in 16 block chunks. */
while (nblocks >= 16)
{
_gcry_twofish_avx2_ctr_enc(ctx, outbuf, inbuf, ctr);
nblocks -= 16;
outbuf += 16 * TWOFISH_BLOCKSIZE;
inbuf += 16 * TWOFISH_BLOCKSIZE;
did_use_avx2 = 1;
}
if (did_use_avx2)
{
/* twofish-avx2 assembly code does not use stack */
if (nblocks == 0)
burn_stack_depth = 0;
}
}
#endif
#ifdef USE_AMD64_ASM
{
/* Process data in 3 block chunks. */
while (nblocks >= 3)
{
twofish_amd64_ctr_enc(ctx, outbuf, inbuf, ctr);
nblocks -= 3;
outbuf += 3 * TWOFISH_BLOCKSIZE;
inbuf += 3 * TWOFISH_BLOCKSIZE;
burn = 8 * sizeof(void*);
if (burn > burn_stack_depth)
burn_stack_depth = burn;
}
/* Use generic code to handle smaller chunks... */
/* TODO: use caching instead? */
}
#endif
for ( ;nblocks; nblocks-- )
{
/* Encrypt the counter. */
burn = twofish_encrypt(ctx, tmpbuf, ctr);
if (burn > burn_stack_depth)
burn_stack_depth = burn;
/* XOR the input with the encrypted counter and store in output. */
cipher_block_xor(outbuf, tmpbuf, inbuf, TWOFISH_BLOCKSIZE);
outbuf += TWOFISH_BLOCKSIZE;
inbuf += TWOFISH_BLOCKSIZE;
/* Increment the counter. */
cipher_block_add(ctr, 1, TWOFISH_BLOCKSIZE);
}
wipememory(tmpbuf, sizeof(tmpbuf));
_gcry_burn_stack(burn_stack_depth);
}
/* Bulk decryption of complete blocks in CBC mode. This function is only
intended for the bulk encryption feature of cipher.c. */
static void
_gcry_twofish_cbc_dec(void *context, unsigned char *iv, void *outbuf_arg,
const void *inbuf_arg, size_t nblocks)
{
TWOFISH_context *ctx = context;
unsigned char *outbuf = outbuf_arg;
const unsigned char *inbuf = inbuf_arg;
unsigned char savebuf[TWOFISH_BLOCKSIZE];
unsigned int burn, burn_stack_depth = 0;
#ifdef USE_AVX2
if (ctx->use_avx2)
{
int did_use_avx2 = 0;
/* Process data in 16 block chunks. */
while (nblocks >= 16)
{
_gcry_twofish_avx2_cbc_dec(ctx, outbuf, inbuf, iv);
nblocks -= 16;
outbuf += 16 * TWOFISH_BLOCKSIZE;
inbuf += 16 * TWOFISH_BLOCKSIZE;
did_use_avx2 = 1;
}
if (did_use_avx2)
{
/* twofish-avx2 assembly code does not use stack */
if (nblocks == 0)
burn_stack_depth = 0;
}
}
#endif
#ifdef USE_AMD64_ASM
{
/* Process data in 3 block chunks. */
while (nblocks >= 3)
{
twofish_amd64_cbc_dec(ctx, outbuf, inbuf, iv);
nblocks -= 3;
outbuf += 3 * TWOFISH_BLOCKSIZE;
inbuf += 3 * TWOFISH_BLOCKSIZE;
burn = 9 * sizeof(void*);
if (burn > burn_stack_depth)
burn_stack_depth = burn;
}
/* Use generic code to handle smaller chunks... */
}
#endif
for ( ;nblocks; nblocks-- )
{
/* INBUF is needed later and it may be identical to OUTBUF, so store
the intermediate result to SAVEBUF. */
burn = twofish_decrypt (ctx, savebuf, inbuf);
if (burn > burn_stack_depth)
burn_stack_depth = burn;
cipher_block_xor_n_copy_2(outbuf, savebuf, iv, inbuf, TWOFISH_BLOCKSIZE);
inbuf += TWOFISH_BLOCKSIZE;
outbuf += TWOFISH_BLOCKSIZE;
}
wipememory(savebuf, sizeof(savebuf));
_gcry_burn_stack(burn_stack_depth);
}
/* Bulk decryption of complete blocks in CFB mode. This function is only
intended for the bulk encryption feature of cipher.c. */
static void
_gcry_twofish_cfb_dec(void *context, unsigned char *iv, void *outbuf_arg,
const void *inbuf_arg, size_t nblocks)
{
TWOFISH_context *ctx = context;
unsigned char *outbuf = outbuf_arg;
const unsigned char *inbuf = inbuf_arg;
unsigned int burn, burn_stack_depth = 0;
#ifdef USE_AVX2
if (ctx->use_avx2)
{
int did_use_avx2 = 0;
/* Process data in 16 block chunks. */
while (nblocks >= 16)
{
_gcry_twofish_avx2_cfb_dec(ctx, outbuf, inbuf, iv);
nblocks -= 16;
outbuf += 16 * TWOFISH_BLOCKSIZE;
inbuf += 16 * TWOFISH_BLOCKSIZE;
did_use_avx2 = 1;
}
if (did_use_avx2)
{
/* twofish-avx2 assembly code does not use stack */
if (nblocks == 0)
burn_stack_depth = 0;
}
}
#endif
#ifdef USE_AMD64_ASM
{
/* Process data in 3 block chunks. */
while (nblocks >= 3)
{
twofish_amd64_cfb_dec(ctx, outbuf, inbuf, iv);
nblocks -= 3;
outbuf += 3 * TWOFISH_BLOCKSIZE;
inbuf += 3 * TWOFISH_BLOCKSIZE;
burn = 8 * sizeof(void*);
if (burn > burn_stack_depth)
burn_stack_depth = burn;
}
/* Use generic code to handle smaller chunks... */
}
#endif
for ( ;nblocks; nblocks-- )
{
burn = twofish_encrypt(ctx, iv, iv);
if (burn > burn_stack_depth)
burn_stack_depth = burn;
cipher_block_xor_n_copy(outbuf, iv, inbuf, TWOFISH_BLOCKSIZE);
outbuf += TWOFISH_BLOCKSIZE;
inbuf += TWOFISH_BLOCKSIZE;
}
_gcry_burn_stack(burn_stack_depth);
}
/* Bulk encryption/decryption of complete blocks in OCB mode. */
static size_t
_gcry_twofish_ocb_crypt (gcry_cipher_hd_t c, void *outbuf_arg,
const void *inbuf_arg, size_t nblocks, int encrypt)
{
#ifdef USE_AMD64_ASM
TWOFISH_context *ctx = (void *)&c->context.c;
unsigned char *outbuf = outbuf_arg;
const unsigned char *inbuf = inbuf_arg;
unsigned int burn, burn_stack_depth = 0;
u64 blkn = c->u_mode.ocb.data_nblocks;
#ifdef USE_AVX2
if (ctx->use_avx2)
{
int did_use_avx2 = 0;
u64 Ls[16];
u64 *l;
if (nblocks >= 16)
{
l = bulk_ocb_prepare_L_pointers_array_blk16 (c, Ls, blkn);
/* Process data in 16 block chunks. */
while (nblocks >= 16)
{
blkn += 16;
*l = (uintptr_t)(void *)ocb_get_l(c, blkn - blkn % 16);
if (encrypt)
_gcry_twofish_avx2_ocb_enc(ctx, outbuf, inbuf, c->u_iv.iv,
c->u_ctr.ctr, Ls);
else
_gcry_twofish_avx2_ocb_dec(ctx, outbuf, inbuf, c->u_iv.iv,
c->u_ctr.ctr, Ls);
nblocks -= 16;
outbuf += 16 * TWOFISH_BLOCKSIZE;
inbuf += 16 * TWOFISH_BLOCKSIZE;
did_use_avx2 = 1;
}
}
if (did_use_avx2)
{
/* twofish-avx2 assembly code does not use stack */
if (nblocks == 0)
burn_stack_depth = 0;
}
}
#endif
{
/* Use u64 to store pointers for x32 support (assembly function
* assumes 64-bit pointers). */
u64 Ls[3];
/* Process data in 3 block chunks. */
while (nblocks >= 3)
{
Ls[0] = (uintptr_t)(const void *)ocb_get_l(c, blkn + 1);
Ls[1] = (uintptr_t)(const void *)ocb_get_l(c, blkn + 2);
Ls[2] = (uintptr_t)(const void *)ocb_get_l(c, blkn + 3);
blkn += 3;
if (encrypt)
twofish_amd64_ocb_enc(ctx, outbuf, inbuf, c->u_iv.iv, c->u_ctr.ctr,
Ls);
else
twofish_amd64_ocb_dec(ctx, outbuf, inbuf, c->u_iv.iv, c->u_ctr.ctr,
Ls);
nblocks -= 3;
outbuf += 3 * TWOFISH_BLOCKSIZE;
inbuf += 3 * TWOFISH_BLOCKSIZE;
burn = 8 * sizeof(void*);
if (burn > burn_stack_depth)
burn_stack_depth = burn;
}
/* Use generic code to handle smaller chunks... */
}
c->u_mode.ocb.data_nblocks = blkn;
if (burn_stack_depth)
_gcry_burn_stack (burn_stack_depth + 4 * sizeof(void *));
#else
(void)c;
(void)outbuf_arg;
(void)inbuf_arg;
(void)encrypt;
#endif
return nblocks;
}
/* Bulk authentication of complete blocks in OCB mode. */
static size_t
_gcry_twofish_ocb_auth (gcry_cipher_hd_t c, const void *abuf_arg,
size_t nblocks)
{
#ifdef USE_AMD64_ASM
TWOFISH_context *ctx = (void *)&c->context.c;
const unsigned char *abuf = abuf_arg;
unsigned int burn, burn_stack_depth = 0;
u64 blkn = c->u_mode.ocb.aad_nblocks;
#ifdef USE_AVX2
if (ctx->use_avx2)
{
int did_use_avx2 = 0;
u64 Ls[16];
u64 *l;
if (nblocks >= 16)
{
l = bulk_ocb_prepare_L_pointers_array_blk16 (c, Ls, blkn);
/* Process data in 16 block chunks. */
while (nblocks >= 16)
{
blkn += 16;
*l = (uintptr_t)(void *)ocb_get_l(c, blkn - blkn % 16);
_gcry_twofish_avx2_ocb_auth(ctx, abuf, c->u_mode.ocb.aad_offset,
c->u_mode.ocb.aad_sum, Ls);
nblocks -= 16;
abuf += 16 * TWOFISH_BLOCKSIZE;
did_use_avx2 = 1;
}
}
if (did_use_avx2)
{
/* twofish-avx2 assembly code does not use stack */
if (nblocks == 0)
burn_stack_depth = 0;
}
/* Use generic code to handle smaller chunks... */
}
#endif
{
/* Use u64 to store pointers for x32 support (assembly function
* assumes 64-bit pointers). */
u64 Ls[3];
/* Process data in 3 block chunks. */
while (nblocks >= 3)
{
Ls[0] = (uintptr_t)(const void *)ocb_get_l(c, blkn + 1);
Ls[1] = (uintptr_t)(const void *)ocb_get_l(c, blkn + 2);
Ls[2] = (uintptr_t)(const void *)ocb_get_l(c, blkn + 3);
blkn += 3;
twofish_amd64_ocb_auth(ctx, abuf, c->u_mode.ocb.aad_offset,
- c->u_mode.ocb.aad_sum, Ls);
+ c->u_mode.ocb.aad_sum, Ls);
nblocks -= 3;
abuf += 3 * TWOFISH_BLOCKSIZE;
burn = 8 * sizeof(void*);
if (burn > burn_stack_depth)
burn_stack_depth = burn;
}
/* Use generic code to handle smaller chunks... */
}
c->u_mode.ocb.aad_nblocks = blkn;
if (burn_stack_depth)
_gcry_burn_stack (burn_stack_depth + 4 * sizeof(void *));
#else
(void)c;
(void)abuf_arg;
#endif
return nblocks;
}
+static unsigned int
+twofish_crypt_blk1_16(const void *context, byte *out, const byte *in,
+ unsigned int num_blks, int encrypt)
+{
+ const TWOFISH_context *ctx = context;
+ unsigned int burn, burn_stack_depth = 0;
+
+#ifdef USE_AVX2
+ if (num_blks == 16 && ctx->use_avx2)
+ {
+ _gcry_twofish_avx2_blk16 (ctx, out, in, encrypt);
+ return 0;
+ }
+#endif
+
+#ifdef USE_AMD64_ASM
+ while (num_blks >= 3)
+ {
+ _gcry_twofish_amd64_blk3 (ctx, out, in, encrypt);
+ burn = 8 * sizeof(void *);
+ burn_stack_depth = (burn > burn_stack_depth) ? burn : burn_stack_depth;
+ out += 3 * TWOFISH_BLOCKSIZE;
+ in += 3 * TWOFISH_BLOCKSIZE;
+ num_blks -= 3;
+ }
+#endif
+
+ while (num_blks >= 1)
+ {
+ if (encrypt)
+ burn = twofish_encrypt((void *)ctx, out, in);
+ else
+ burn = twofish_decrypt((void *)ctx, out, in);
+
+ burn_stack_depth = (burn > burn_stack_depth) ? burn : burn_stack_depth;
+ out += TWOFISH_BLOCKSIZE;
+ in += TWOFISH_BLOCKSIZE;
+ num_blks--;
+ }
+
+ return burn_stack_depth;
+}
+
+static unsigned int
+twofish_encrypt_blk1_16(const void *ctx, byte *out, const byte *in,
+ unsigned int num_blks)
+{
+ return twofish_crypt_blk1_16 (ctx, out, in, num_blks, 1);
+}
+
+static unsigned int
+twofish_decrypt_blk1_16(const void *ctx, byte *out, const byte *in,
+ unsigned int num_blks)
+{
+ return twofish_crypt_blk1_16 (ctx, out, in, num_blks, 0);
+}
+
+
+/* Bulk encryption/decryption of complete blocks in XTS mode. */
+static void
+_gcry_twofish_xts_crypt (void *context, unsigned char *tweak, void *outbuf_arg,
+ const void *inbuf_arg, size_t nblocks, int encrypt)
+{
+ TWOFISH_context *ctx = context;
+ unsigned char *outbuf = outbuf_arg;
+ const unsigned char *inbuf = inbuf_arg;
+ int burn_stack_depth = 0;
+
+ /* Process remaining blocks. */
+ if (nblocks)
+ {
+ unsigned char tmpbuf[16 * 16];
+ unsigned int tmp_used = 16;
+ size_t tmpbufsize = 15 * 16;
+ size_t nburn;
+
+#ifdef USE_AVX2
+ if (ctx->use_avx2)
+ tmpbufsize = 16 * 16;
+#endif
+
+ nburn = bulk_xts_crypt_128(ctx, encrypt ? twofish_encrypt_blk1_16
+ : twofish_decrypt_blk1_16,
+ outbuf, inbuf, nblocks,
+ tweak, tmpbuf, tmpbufsize / 16,
+ &tmp_used);
+ burn_stack_depth = nburn > burn_stack_depth ? nburn : burn_stack_depth;
+
+ wipememory(tmpbuf, tmp_used);
+ }
+
+ if (burn_stack_depth)
+ _gcry_burn_stack(burn_stack_depth);
+}
+
+
+/* Bulk encryption/decryption in ECB mode. */
+static void
+_gcry_twofish_ecb_crypt (void *context, void *outbuf_arg, const void *inbuf_arg,
+ size_t nblocks, int encrypt)
+{
+ TWOFISH_context *ctx = context;
+ unsigned char *outbuf = outbuf_arg;
+ const unsigned char *inbuf = inbuf_arg;
+ int burn_stack_depth = 0;
+
+ /* Process remaining blocks. */
+ if (nblocks)
+ {
+ size_t fn_maxblocks = 15;
+ size_t nburn;
+
+#ifdef USE_AVX2
+ if (ctx->use_avx2)
+ fn_maxblocks = 16;
+#endif
+
+ nburn = bulk_ecb_crypt_128(ctx, encrypt ? twofish_encrypt_blk1_16
+ : twofish_decrypt_blk1_16,
+ outbuf, inbuf, nblocks, fn_maxblocks);
+ burn_stack_depth = nburn > burn_stack_depth ? nburn : burn_stack_depth;
+ }
+
+ if (burn_stack_depth)
+ _gcry_burn_stack(burn_stack_depth);
+}
+
+
/* Test a single encryption and decryption with each key size. */
static const char*
selftest (void)
{
TWOFISH_context ctx; /* Expanded key. */
byte scratch[16]; /* Encryption/decryption result buffer. */
cipher_bulk_ops_t bulk_ops;
/* Test vectors for single encryption/decryption. Note that I am using
* the vectors from the Twofish paper's "known answer test", I=3 for
* 128-bit and I=4 for 256-bit, instead of the all-0 vectors from the
* "intermediate value test", because an all-0 key would trigger all the
* special cases in the RS matrix multiply, leaving the math untested. */
static byte plaintext[16] = {
0xD4, 0x91, 0xDB, 0x16, 0xE7, 0xB1, 0xC3, 0x9E,
0x86, 0xCB, 0x08, 0x6B, 0x78, 0x9F, 0x54, 0x19
};
static byte key[16] = {
0x9F, 0x58, 0x9F, 0x5C, 0xF6, 0x12, 0x2C, 0x32,
0xB6, 0xBF, 0xEC, 0x2F, 0x2A, 0xE8, 0xC3, 0x5A
};
static const byte ciphertext[16] = {
0x01, 0x9F, 0x98, 0x09, 0xDE, 0x17, 0x11, 0x85,
0x8F, 0xAA, 0xC3, 0xA3, 0xBA, 0x20, 0xFB, 0xC3
};
static byte plaintext_256[16] = {
0x90, 0xAF, 0xE9, 0x1B, 0xB2, 0x88, 0x54, 0x4F,
0x2C, 0x32, 0xDC, 0x23, 0x9B, 0x26, 0x35, 0xE6
};
static byte key_256[32] = {
0xD4, 0x3B, 0xB7, 0x55, 0x6E, 0xA3, 0x2E, 0x46,
0xF2, 0xA2, 0x82, 0xB7, 0xD4, 0x5B, 0x4E, 0x0D,
0x57, 0xFF, 0x73, 0x9D, 0x4D, 0xC9, 0x2C, 0x1B,
0xD7, 0xFC, 0x01, 0x70, 0x0C, 0xC8, 0x21, 0x6F
};
static const byte ciphertext_256[16] = {
0x6C, 0xB4, 0x56, 0x1C, 0x40, 0xBF, 0x0A, 0x97,
0x05, 0x93, 0x1C, 0xB6, 0xD4, 0x08, 0xE7, 0xFA
};
twofish_setkey (&ctx, key, sizeof(key), &bulk_ops);
twofish_encrypt (&ctx, scratch, plaintext);
if (memcmp (scratch, ciphertext, sizeof (ciphertext)))
return "Twofish-128 test encryption failed.";
twofish_decrypt (&ctx, scratch, scratch);
if (memcmp (scratch, plaintext, sizeof (plaintext)))
return "Twofish-128 test decryption failed.";
twofish_setkey (&ctx, key_256, sizeof(key_256), &bulk_ops);
twofish_encrypt (&ctx, scratch, plaintext_256);
if (memcmp (scratch, ciphertext_256, sizeof (ciphertext_256)))
return "Twofish-256 test encryption failed.";
twofish_decrypt (&ctx, scratch, scratch);
if (memcmp (scratch, plaintext_256, sizeof (plaintext_256)))
return "Twofish-256 test decryption failed.";
return NULL;
}
/* More complete test program. This does 1000 encryptions and decryptions
* with each of 250 128-bit keys and 2000 encryptions and decryptions with
* each of 125 256-bit keys, using a feedback scheme similar to a Feistel
* cipher, so as to be sure of testing all the table entries pretty
* thoroughly. We keep changing the keys so as to get a more meaningful
* performance number, since the key setup is non-trivial for Twofish. */
#ifdef TEST
#include <stdio.h>
#include <string.h>
#include <time.h>
int
main()
{
TWOFISH_context ctx; /* Expanded key. */
int i, j; /* Loop counters. */
cipher_bulk_ops_t bulk_ops;
const char *encrypt_msg; /* Message to print regarding encryption test;
* the printf is done outside the loop to avoid
* stuffing up the timing. */
clock_t timer; /* For computing elapsed time. */
/* Test buffer. */
byte buffer[4][16] = {
{0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF},
{0x0F, 0x1E, 0x2D, 0x3C, 0x4B, 0x5A, 0x69, 0x78,
0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2 ,0xE1, 0xF0},
{0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF,
0xFE, 0xDC, 0xBA, 0x98, 0x76, 0x54 ,0x32, 0x10},
{0x01, 0x23, 0x45, 0x67, 0x76, 0x54 ,0x32, 0x10,
0x89, 0xAB, 0xCD, 0xEF, 0xFE, 0xDC, 0xBA, 0x98}
};
/* Expected outputs for the million-operation test */
static const byte test_encrypt[4][16] = {
{0xC8, 0x23, 0xB8, 0xB7, 0x6B, 0xFE, 0x91, 0x13,
0x2F, 0xA7, 0x5E, 0xE6, 0x94, 0x77, 0x6F, 0x6B},
{0x90, 0x36, 0xD8, 0x29, 0xD5, 0x96, 0xC2, 0x8E,
0xE4, 0xFF, 0x76, 0xBC, 0xE5, 0x77, 0x88, 0x27},
{0xB8, 0x78, 0x69, 0xAF, 0x42, 0x8B, 0x48, 0x64,
0xF7, 0xE9, 0xF3, 0x9C, 0x42, 0x18, 0x7B, 0x73},
{0x7A, 0x88, 0xFB, 0xEB, 0x90, 0xA4, 0xB4, 0xA8,
0x43, 0xA3, 0x1D, 0xF1, 0x26, 0xC4, 0x53, 0x57}
};
static const byte test_decrypt[4][16] = {
{0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF},
{0x0F, 0x1E, 0x2D, 0x3C, 0x4B, 0x5A, 0x69, 0x78,
0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2 ,0xE1, 0xF0},
{0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF,
0xFE, 0xDC, 0xBA, 0x98, 0x76, 0x54 ,0x32, 0x10},
{0x01, 0x23, 0x45, 0x67, 0x76, 0x54 ,0x32, 0x10,
0x89, 0xAB, 0xCD, 0xEF, 0xFE, 0xDC, 0xBA, 0x98}
};
/* Start the timer ticking. */
timer = clock ();
/* Encryption test. */
for (i = 0; i < 125; i++)
{
twofish_setkey (&ctx, buffer[0], sizeof (buffer[0]), &bulk_ops);
for (j = 0; j < 1000; j++)
twofish_encrypt (&ctx, buffer[2], buffer[2]);
twofish_setkey (&ctx, buffer[1], sizeof (buffer[1]), &bulk_ops);
for (j = 0; j < 1000; j++)
twofish_encrypt (&ctx, buffer[3], buffer[3]);
twofish_setkey (&ctx, buffer[2], sizeof (buffer[2])*2, &bulk_ops);
for (j = 0; j < 1000; j++) {
twofish_encrypt (&ctx, buffer[0], buffer[0]);
twofish_encrypt (&ctx, buffer[1], buffer[1]);
}
}
encrypt_msg = memcmp (buffer, test_encrypt, sizeof (test_encrypt)) ?
"encryption failure!\n" : "encryption OK!\n";
/* Decryption test. */
for (i = 0; i < 125; i++)
{
twofish_setkey (&ctx, buffer[2], sizeof (buffer[2])*2, &bulk_ops);
for (j = 0; j < 1000; j++) {
twofish_decrypt (&ctx, buffer[0], buffer[0]);
twofish_decrypt (&ctx, buffer[1], buffer[1]);
}
twofish_setkey (&ctx, buffer[1], sizeof (buffer[1]), &bulk_ops);
for (j = 0; j < 1000; j++)
twofish_decrypt (&ctx, buffer[3], buffer[3]);
twofish_setkey (&ctx, buffer[0], sizeof (buffer[0]), &bulk_ops);
for (j = 0; j < 1000; j++)
twofish_decrypt (&ctx, buffer[2], buffer[2]);
}
/* Stop the timer, and print results. */
timer = clock () - timer;
printf (encrypt_msg);
printf (memcmp (buffer, test_decrypt, sizeof (test_decrypt)) ?
"decryption failure!\n" : "decryption OK!\n");
printf ("elapsed time: %.1f s.\n", (float) timer / CLOCKS_PER_SEC);
return 0;
}
#endif /* TEST */
gcry_cipher_spec_t _gcry_cipher_spec_twofish =
{
GCRY_CIPHER_TWOFISH, {0, 0},
"TWOFISH", NULL, NULL, 16, 256, sizeof (TWOFISH_context),
twofish_setkey, twofish_encrypt, twofish_decrypt
};
gcry_cipher_spec_t _gcry_cipher_spec_twofish128 =
{
GCRY_CIPHER_TWOFISH128, {0, 0},
"TWOFISH128", NULL, NULL, 16, 128, sizeof (TWOFISH_context),
twofish_setkey, twofish_encrypt, twofish_decrypt
};

File Metadata

Mime Type
text/x-diff
Expires
Sun, Jan 18, 4:36 PM (1 d, 18 h)
Storage Engine
local-disk
Storage Format
Raw Data
Storage Handle
c5/86/db6afea3691b1ab2ee724416641a

Event Timeline