Page Menu
Home
GnuPG
Search
Configure Global Search
Log In
Files
F18825192
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Size
166 KB
Subscribers
None
View Options
diff --git a/cipher/md.c b/cipher/md.c
index 1991c331..c2bd18c6 100644
--- a/cipher/md.c
+++ b/cipher/md.c
@@ -1,1699 +1,1713 @@
/* md.c - message digest dispatcher
* Copyright (C) 1998, 1999, 2002, 2003, 2006,
* 2008 Free Software Foundation, Inc.
* Copyright (C) 2013, 2014 g10 Code GmbH
*
* This file is part of Libgcrypt.
*
* Libgcrypt is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* Libgcrypt is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include "g10lib.h"
#include "cipher.h"
/* This is the list of the digest implementations included in
libgcrypt. */
static const gcry_md_spec_t * const digest_list[] =
{
#if USE_CRC
&_gcry_digest_spec_crc32,
&_gcry_digest_spec_crc32_rfc1510,
&_gcry_digest_spec_crc24_rfc2440,
#endif
#if USE_SHA1
&_gcry_digest_spec_sha1,
#endif
#if USE_SHA256
&_gcry_digest_spec_sha256,
&_gcry_digest_spec_sha224,
#endif
#if USE_SHA512
&_gcry_digest_spec_sha512,
&_gcry_digest_spec_sha384,
&_gcry_digest_spec_sha512_256,
&_gcry_digest_spec_sha512_224,
#endif
#if USE_SHA3
&_gcry_digest_spec_sha3_224,
&_gcry_digest_spec_sha3_256,
&_gcry_digest_spec_sha3_384,
&_gcry_digest_spec_sha3_512,
&_gcry_digest_spec_shake128,
&_gcry_digest_spec_shake256,
&_gcry_digest_spec_cshake128,
&_gcry_digest_spec_cshake256,
#endif
#if USE_GOST_R_3411_94
&_gcry_digest_spec_gost3411_94,
&_gcry_digest_spec_gost3411_cp,
#endif
#if USE_GOST_R_3411_12
&_gcry_digest_spec_stribog_256,
&_gcry_digest_spec_stribog_512,
#endif
#if USE_WHIRLPOOL
&_gcry_digest_spec_whirlpool,
#endif
#if USE_RMD160
&_gcry_digest_spec_rmd160,
#endif
#if USE_TIGER
&_gcry_digest_spec_tiger,
&_gcry_digest_spec_tiger1,
&_gcry_digest_spec_tiger2,
#endif
#if USE_MD5
&_gcry_digest_spec_md5,
#endif
#if USE_MD4
&_gcry_digest_spec_md4,
#endif
#if USE_MD2
&_gcry_digest_spec_md2,
#endif
#if USE_BLAKE2
&_gcry_digest_spec_blake2b_512,
&_gcry_digest_spec_blake2b_384,
&_gcry_digest_spec_blake2b_256,
&_gcry_digest_spec_blake2b_160,
&_gcry_digest_spec_blake2s_256,
&_gcry_digest_spec_blake2s_224,
&_gcry_digest_spec_blake2s_160,
&_gcry_digest_spec_blake2s_128,
#endif
#if USE_SM3
&_gcry_digest_spec_sm3,
#endif
NULL
};
/* Digest implementations starting with index 0 (enum gcry_md_algos) */
static const gcry_md_spec_t * const digest_list_algo0[] =
{
NULL, /* GCRY_MD_NONE */
#if USE_MD5
&_gcry_digest_spec_md5,
#else
NULL,
#endif
#if USE_SHA1
&_gcry_digest_spec_sha1,
#else
NULL,
#endif
#if USE_RMD160
&_gcry_digest_spec_rmd160,
#else
NULL,
#endif
NULL, /* Unused index 4 */
#if USE_MD2
&_gcry_digest_spec_md2,
#else
NULL,
#endif
#if USE_TIGER
&_gcry_digest_spec_tiger,
#else
NULL,
#endif
NULL, /* GCRY_MD_HAVAL */
#if USE_SHA256
&_gcry_digest_spec_sha256,
#else
NULL,
#endif
#if USE_SHA512
&_gcry_digest_spec_sha384,
&_gcry_digest_spec_sha512,
#else
NULL,
NULL,
#endif
#if USE_SHA256
&_gcry_digest_spec_sha224
#else
NULL
#endif
};
/* Digest implementations starting with index 301 (enum gcry_md_algos) */
static const gcry_md_spec_t * const digest_list_algo301[] =
{
#if USE_MD4
&_gcry_digest_spec_md4,
#else
NULL,
#endif
#if USE_CRC
&_gcry_digest_spec_crc32,
&_gcry_digest_spec_crc32_rfc1510,
&_gcry_digest_spec_crc24_rfc2440,
#else
NULL,
NULL,
NULL,
#endif
#if USE_WHIRLPOOL
&_gcry_digest_spec_whirlpool,
#else
NULL,
#endif
#if USE_TIGER
&_gcry_digest_spec_tiger1,
&_gcry_digest_spec_tiger2,
#else
NULL,
NULL,
#endif
#if USE_GOST_R_3411_94
&_gcry_digest_spec_gost3411_94,
#else
NULL,
#endif
#if USE_GOST_R_3411_12
&_gcry_digest_spec_stribog_256,
&_gcry_digest_spec_stribog_512,
#else
NULL,
NULL,
#endif
#if USE_GOST_R_3411_94
&_gcry_digest_spec_gost3411_cp,
#else
NULL,
#endif
#if USE_SHA3
&_gcry_digest_spec_sha3_224,
&_gcry_digest_spec_sha3_256,
&_gcry_digest_spec_sha3_384,
&_gcry_digest_spec_sha3_512,
&_gcry_digest_spec_shake128,
&_gcry_digest_spec_shake256,
#else
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
#endif
#if USE_BLAKE2
&_gcry_digest_spec_blake2b_512,
&_gcry_digest_spec_blake2b_384,
&_gcry_digest_spec_blake2b_256,
&_gcry_digest_spec_blake2b_160,
&_gcry_digest_spec_blake2s_256,
&_gcry_digest_spec_blake2s_224,
&_gcry_digest_spec_blake2s_160,
&_gcry_digest_spec_blake2s_128,
#else
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
#endif
#if USE_SM3
&_gcry_digest_spec_sm3,
#else
NULL,
#endif
#if USE_SHA512
&_gcry_digest_spec_sha512_256,
&_gcry_digest_spec_sha512_224,
#else
NULL,
NULL,
#endif
#if USE_SHA3
&_gcry_digest_spec_cshake128,
&_gcry_digest_spec_cshake256
#else
NULL,
NULL
#endif
};
typedef struct gcry_md_list
{
const gcry_md_spec_t *spec;
struct gcry_md_list *next;
size_t actual_struct_size; /* Allocated size of this structure. */
PROPERLY_ALIGNED_TYPE context[1];
} GcryDigestEntry;
/* This structure is put right after the gcry_md_hd_t buffer, so that
* only one memory block is needed. */
struct gcry_md_context
{
int magic;
struct {
unsigned int secure:1;
unsigned int finalized:1;
unsigned int bugemu1:1;
unsigned int hmac:1;
} flags;
size_t actual_handle_size; /* Allocated size of this handle. */
FILE *debug;
GcryDigestEntry *list;
};
#define CTX_MAGIC_NORMAL 0x11071961
#define CTX_MAGIC_SECURE 0x16917011
-static gcry_err_code_t md_enable (gcry_md_hd_t hd, int algo);
+static gcry_err_code_t md_enable (gcry_md_hd_t hd, int algo, int no_reject);
static void md_close (gcry_md_hd_t a);
static void md_write (gcry_md_hd_t a, const void *inbuf, size_t inlen);
static byte *md_read( gcry_md_hd_t a, int algo );
static int md_get_algo( gcry_md_hd_t a );
static int md_digest_length( int algo );
static void md_start_debug ( gcry_md_hd_t a, const char *suffix );
static void md_stop_debug ( gcry_md_hd_t a );
static int
map_algo (int algo)
{
return algo;
}
/* Return the spec structure for the hash algorithm ALGO. For an
unknown algorithm NULL is returned. */
static const gcry_md_spec_t *
spec_from_algo (int algo)
{
const gcry_md_spec_t *spec = NULL;
algo = map_algo (algo);
if (algo >= 0 && algo < DIM(digest_list_algo0))
spec = digest_list_algo0[algo];
else if (algo >= 301 && algo < 301 + DIM(digest_list_algo301))
spec = digest_list_algo301[algo - 301];
if (spec)
gcry_assert (spec->algo == algo);
return spec;
}
/* Lookup a hash's spec by its name. */
static const gcry_md_spec_t *
spec_from_name (const char *name)
{
const gcry_md_spec_t *spec;
int idx;
for (idx=0; (spec = digest_list[idx]); idx++)
{
if (!stricmp (name, spec->name))
return spec;
}
return NULL;
}
/* Lookup a hash's spec by its OID. */
static const gcry_md_spec_t *
spec_from_oid (const char *oid)
{
const gcry_md_spec_t *spec;
const gcry_md_oid_spec_t *oid_specs;
int idx, j;
for (idx=0; (spec = digest_list[idx]); idx++)
{
oid_specs = spec->oids;
if (oid_specs)
{
for (j = 0; oid_specs[j].oidstring; j++)
if (!stricmp (oid, oid_specs[j].oidstring))
return spec;
}
}
return NULL;
}
static const gcry_md_spec_t *
search_oid (const char *oid, gcry_md_oid_spec_t *oid_spec)
{
const gcry_md_spec_t *spec;
int i;
if (!oid)
return NULL;
if (!strncmp (oid, "oid.", 4) || !strncmp (oid, "OID.", 4))
oid += 4;
spec = spec_from_oid (oid);
if (spec && spec->oids)
{
for (i = 0; spec->oids[i].oidstring; i++)
if (!stricmp (oid, spec->oids[i].oidstring))
{
if (oid_spec)
*oid_spec = spec->oids[i];
return spec;
}
}
return NULL;
}
/****************
* Map a string to the digest algo
*/
int
_gcry_md_map_name (const char *string)
{
const gcry_md_spec_t *spec;
if (!string)
return 0;
/* If the string starts with a digit (optionally prefixed with
either "OID." or "oid."), we first look into our table of ASN.1
object identifiers to figure out the algorithm */
spec = search_oid (string, NULL);
if (spec)
return spec->algo;
/* Not found, search a matching digest name. */
spec = spec_from_name (string);
if (spec)
return spec->algo;
return 0;
}
/****************
* This function simply returns the name of the algorithm or some constant
* string when there is no algo. It will never return NULL.
* Use the macro gcry_md_test_algo() to check whether the algorithm
* is valid.
*/
const char *
_gcry_md_algo_name (int algorithm)
{
const gcry_md_spec_t *spec;
spec = spec_from_algo (algorithm);
return spec ? spec->name : "?";
}
static gcry_err_code_t
check_digest_algo (int algorithm)
{
const gcry_md_spec_t *spec;
spec = spec_from_algo (algorithm);
if (spec && !spec->flags.disabled && (spec->flags.fips || !fips_mode ()))
return 0;
return GPG_ERR_DIGEST_ALGO;
}
/****************
* Open a message digest handle for use with algorithm ALGO.
* More algorithms may be added by md_enable(). The initial algorithm
* may be 0.
*/
static gcry_err_code_t
md_open (gcry_md_hd_t *h, int algo, unsigned int flags)
{
gcry_err_code_t err = 0;
int secure = !!(flags & GCRY_MD_FLAG_SECURE);
int hmac = !!(flags & GCRY_MD_FLAG_HMAC);
int bufsize = secure ? 512 : 1024;
gcry_md_hd_t hd;
size_t n;
/* Allocate a memory area to hold the caller visible buffer with it's
* control information and the data required by this module. Set the
* context pointer at the beginning to this area.
* We have to use this strange scheme because we want to hide the
* internal data but have a variable sized buffer.
*
* +---+------+---........------+-------------+
* !ctx! bctl ! buffer ! private !
* +---+------+---........------+-------------+
* ! ^
* !---------------------------!
*
* We have to make sure that private is well aligned.
*/
n = offsetof (struct gcry_md_handle, buf) + bufsize;
n = ((n + sizeof (PROPERLY_ALIGNED_TYPE) - 1)
/ sizeof (PROPERLY_ALIGNED_TYPE)) * sizeof (PROPERLY_ALIGNED_TYPE);
/* Allocate and set the Context pointer to the private data */
if (secure)
hd = xtrymalloc_secure (n + sizeof (struct gcry_md_context));
else
hd = xtrymalloc (n + sizeof (struct gcry_md_context));
if (! hd)
err = gpg_err_code_from_errno (errno);
if (! err)
{
struct gcry_md_context *ctx;
ctx = (void *) (hd->buf - offsetof (struct gcry_md_handle, buf) + n);
/* Setup the globally visible data (bctl in the diagram).*/
hd->ctx = ctx;
hd->bufsize = n - offsetof (struct gcry_md_handle, buf);
hd->bufpos = 0;
/* Initialize the private data. */
wipememory2 (ctx, 0, sizeof *ctx);
ctx->magic = secure ? CTX_MAGIC_SECURE : CTX_MAGIC_NORMAL;
ctx->actual_handle_size = n + sizeof (struct gcry_md_context);
ctx->flags.secure = secure;
ctx->flags.hmac = hmac;
ctx->flags.bugemu1 = !!(flags & GCRY_MD_FLAG_BUGEMU1);
}
if (! err)
{
/* Hmmm, should we really do that? - yes [-wk] */
_gcry_fast_random_poll ();
if (algo)
{
- err = md_enable (hd, algo);
+ err = md_enable (hd, algo,
+ !!(flags & GCRY_MD_FLAG_FIPS_NO_REJECTION));
if (err)
md_close (hd);
}
}
if (! err)
*h = hd;
return err;
}
/* Create a message digest object for algorithm ALGO. FLAGS may be
given as an bitwise OR of the gcry_md_flags values. ALGO may be
given as 0 if the algorithms to be used are later set using
gcry_md_enable. H is guaranteed to be a valid handle or NULL on
error. */
gcry_err_code_t
_gcry_md_open (gcry_md_hd_t *h, int algo, unsigned int flags)
{
gcry_err_code_t rc;
gcry_md_hd_t hd;
if ((flags & ~(GCRY_MD_FLAG_SECURE
| GCRY_MD_FLAG_HMAC
| GCRY_MD_FLAG_BUGEMU1)))
rc = GPG_ERR_INV_ARG;
else
rc = md_open (&hd, algo, flags);
*h = rc? NULL : hd;
return rc;
}
static gcry_err_code_t
-md_enable (gcry_md_hd_t hd, int algorithm)
+md_enable (gcry_md_hd_t hd, int algorithm, int no_reject)
{
struct gcry_md_context *h = hd->ctx;
const gcry_md_spec_t *spec;
GcryDigestEntry *entry;
gcry_err_code_t err = 0;
for (entry = h->list; entry; entry = entry->next)
if (entry->spec->algo == algorithm)
return 0; /* Already enabled */
spec = spec_from_algo (algorithm);
if (!spec)
{
log_debug ("md_enable: algorithm %d not available\n", algorithm);
err = GPG_ERR_DIGEST_ALGO;
}
if (!err && spec->flags.disabled)
err = GPG_ERR_DIGEST_ALGO;
/* Any non-FIPS algorithm should go this way */
- if (!err && !spec->flags.fips && fips_mode ())
+ if (!err && !no_reject && !spec->flags.fips && fips_mode ())
err = GPG_ERR_DIGEST_ALGO;
if (!err && h->flags.hmac && spec->read == NULL)
{
/* Expandable output function cannot act as part of HMAC. */
err = GPG_ERR_DIGEST_ALGO;
}
if (!err)
{
size_t size = (sizeof (*entry)
+ spec->contextsize * (h->flags.hmac? 3 : 1)
- sizeof (entry->context));
/* And allocate a new list entry. */
if (h->flags.secure)
entry = xtrymalloc_secure (size);
else
entry = xtrymalloc (size);
if (! entry)
err = gpg_err_code_from_errno (errno);
else
{
entry->spec = spec;
entry->next = h->list;
entry->actual_struct_size = size;
h->list = entry;
/* And init this instance. */
entry->spec->init (entry->context,
h->flags.bugemu1? GCRY_MD_FLAG_BUGEMU1:0);
}
}
return err;
}
gcry_err_code_t
_gcry_md_enable (gcry_md_hd_t hd, int algorithm)
{
- return md_enable (hd, algorithm);
+ return md_enable (hd, algorithm, 0);
}
static gcry_err_code_t
md_copy (gcry_md_hd_t ahd, gcry_md_hd_t *b_hd)
{
gcry_err_code_t err = 0;
struct gcry_md_context *a = ahd->ctx;
struct gcry_md_context *b;
GcryDigestEntry *ar, *br;
gcry_md_hd_t bhd;
size_t n;
if (ahd->bufpos)
md_write (ahd, NULL, 0);
n = (char *) ahd->ctx - (char *) ahd;
if (a->flags.secure)
bhd = xtrymalloc_secure (n + sizeof (struct gcry_md_context));
else
bhd = xtrymalloc (n + sizeof (struct gcry_md_context));
if (!bhd)
{
err = gpg_err_code_from_syserror ();
goto leave;
}
bhd->ctx = b = (void *) ((char *) bhd + n);
/* No need to copy the buffer due to the write above. */
gcry_assert (ahd->bufsize == (n - offsetof (struct gcry_md_handle, buf)));
bhd->bufsize = ahd->bufsize;
bhd->bufpos = 0;
gcry_assert (! ahd->bufpos);
memcpy (b, a, sizeof *a);
b->list = NULL;
b->debug = NULL;
/* Copy the complete list of algorithms. The copied list is
reversed, but that doesn't matter. */
for (ar = a->list; ar; ar = ar->next)
{
if (a->flags.secure)
br = xtrymalloc_secure (ar->actual_struct_size);
else
br = xtrymalloc (ar->actual_struct_size);
if (!br)
{
err = gpg_err_code_from_syserror ();
md_close (bhd);
goto leave;
}
memcpy (br, ar, ar->actual_struct_size);
br->next = b->list;
b->list = br;
}
if (a->debug)
md_start_debug (bhd, "unknown");
*b_hd = bhd;
leave:
return err;
}
gcry_err_code_t
_gcry_md_copy (gcry_md_hd_t *handle, gcry_md_hd_t hd)
{
gcry_err_code_t rc;
rc = md_copy (hd, handle);
if (rc)
*handle = NULL;
return rc;
}
/*
* Reset all contexts and discard any buffered stuff. This may be used
* instead of a md_close(); md_open().
*/
void
_gcry_md_reset (gcry_md_hd_t a)
{
GcryDigestEntry *r;
/* Note: We allow this even in fips non operational mode. */
a->bufpos = a->ctx->flags.finalized = 0;
if (a->ctx->flags.hmac)
for (r = a->ctx->list; r; r = r->next)
{
memcpy (r->context, (char *)r->context + r->spec->contextsize,
r->spec->contextsize);
}
else
for (r = a->ctx->list; r; r = r->next)
{
memset (r->context, 0, r->spec->contextsize);
(*r->spec->init) (r->context,
a->ctx->flags.bugemu1? GCRY_MD_FLAG_BUGEMU1:0);
}
}
static void
md_close (gcry_md_hd_t a)
{
GcryDigestEntry *r, *r2;
if (! a)
return;
if (a->ctx->debug)
md_stop_debug (a);
for (r = a->ctx->list; r; r = r2)
{
r2 = r->next;
wipememory (r, r->actual_struct_size);
xfree (r);
}
wipememory (a, a->ctx->actual_handle_size);
xfree(a);
}
void
_gcry_md_close (gcry_md_hd_t hd)
{
/* Note: We allow this even in fips non operational mode. */
md_close (hd);
}
static void
md_write (gcry_md_hd_t a, const void *inbuf, size_t inlen)
{
GcryDigestEntry *r;
if (a->ctx->debug)
{
if (a->bufpos && fwrite (a->buf, a->bufpos, 1, a->ctx->debug) != 1)
BUG();
if (inlen && fwrite (inbuf, inlen, 1, a->ctx->debug) != 1)
BUG();
}
for (r = a->ctx->list; r; r = r->next)
{
if (a->bufpos)
(*r->spec->write) (r->context, a->buf, a->bufpos);
(*r->spec->write) (r->context, inbuf, inlen);
}
a->bufpos = 0;
}
/* Note that this function may be used after finalize and read to keep
on writing to the transform function so to mitigate timing
attacks. */
void
_gcry_md_write (gcry_md_hd_t hd, const void *inbuf, size_t inlen)
{
md_write (hd, inbuf, inlen);
}
static void
md_final (gcry_md_hd_t a)
{
GcryDigestEntry *r;
if (a->ctx->flags.finalized)
return;
if (a->bufpos)
md_write (a, NULL, 0);
for (r = a->ctx->list; r; r = r->next)
(*r->spec->final) (r->context);
a->ctx->flags.finalized = 1;
if (!a->ctx->flags.hmac)
return;
for (r = a->ctx->list; r; r = r->next)
{
byte *p;
size_t dlen = r->spec->mdlen;
byte *hash;
gcry_err_code_t err;
if (r->spec->read == NULL)
continue;
p = r->spec->read (r->context);
if (a->ctx->flags.secure)
hash = xtrymalloc_secure (dlen);
else
hash = xtrymalloc (dlen);
if (!hash)
{
err = gpg_err_code_from_errno (errno);
_gcry_fatal_error (err, NULL);
}
memcpy (hash, p, dlen);
memcpy (r->context, (char *)r->context + r->spec->contextsize * 2,
r->spec->contextsize);
(*r->spec->write) (r->context, hash, dlen);
(*r->spec->final) (r->context);
xfree (hash);
}
}
static gcry_err_code_t
md_setkey (gcry_md_hd_t h, const unsigned char *key, size_t keylen)
{
gcry_err_code_t rc = 0;
GcryDigestEntry *r;
int algo_had_setkey = 0;
if (!h->ctx->list)
return GPG_ERR_DIGEST_ALGO; /* Might happen if no algo is enabled. */
if (h->ctx->flags.hmac)
return GPG_ERR_DIGEST_ALGO; /* Tried md_setkey for HMAC md. */
for (r = h->ctx->list; r; r = r->next)
{
switch (r->spec->algo)
{
#if USE_BLAKE2
/* TODO? add spec->init_with_key? */
case GCRY_MD_BLAKE2B_512:
case GCRY_MD_BLAKE2B_384:
case GCRY_MD_BLAKE2B_256:
case GCRY_MD_BLAKE2B_160:
case GCRY_MD_BLAKE2S_256:
case GCRY_MD_BLAKE2S_224:
case GCRY_MD_BLAKE2S_160:
case GCRY_MD_BLAKE2S_128:
algo_had_setkey = 1;
memset (r->context, 0, r->spec->contextsize);
rc = _gcry_blake2_init_with_key (r->context,
h->ctx->flags.bugemu1
? GCRY_MD_FLAG_BUGEMU1:0,
key, keylen, r->spec->algo);
break;
#endif
default:
rc = GPG_ERR_DIGEST_ALGO;
break;
}
if (rc)
break;
}
if (rc && !algo_had_setkey)
{
/* None of algorithms had setkey implementation, so contexts were not
* modified. Just return error. */
return rc;
}
else if (rc && algo_had_setkey)
{
/* Some of the contexts have been modified, but got error. Reset
* all contexts. */
_gcry_md_reset (h);
return rc;
}
/* Successful md_setkey implies reset. */
h->bufpos = h->ctx->flags.finalized = 0;
return 0;
}
static gcry_err_code_t
prepare_macpads (gcry_md_hd_t a, const unsigned char *key, size_t keylen)
{
GcryDigestEntry *r;
if (!a->ctx->list)
return GPG_ERR_DIGEST_ALGO; /* Might happen if no algo is enabled. */
if (!a->ctx->flags.hmac)
return GPG_ERR_DIGEST_ALGO; /* Tried prepare_macpads for non-HMAC md. */
for (r = a->ctx->list; r; r = r->next)
{
const unsigned char *k;
size_t k_len;
unsigned char *key_allocated = NULL;
int macpad_Bsize;
int i;
switch (r->spec->algo)
{
/* TODO: add spec->blocksize */
case GCRY_MD_SHA3_224:
macpad_Bsize = 1152 / 8;
break;
case GCRY_MD_SHA3_256:
macpad_Bsize = 1088 / 8;
break;
case GCRY_MD_SHA3_384:
macpad_Bsize = 832 / 8;
break;
case GCRY_MD_SHA3_512:
macpad_Bsize = 576 / 8;
break;
case GCRY_MD_SHA384:
case GCRY_MD_SHA512:
case GCRY_MD_SHA512_256:
case GCRY_MD_SHA512_224:
case GCRY_MD_BLAKE2B_512:
case GCRY_MD_BLAKE2B_384:
case GCRY_MD_BLAKE2B_256:
case GCRY_MD_BLAKE2B_160:
macpad_Bsize = 128;
break;
case GCRY_MD_GOSTR3411_94:
case GCRY_MD_GOSTR3411_CP:
macpad_Bsize = 32;
break;
default:
macpad_Bsize = 64;
break;
}
if ( keylen > macpad_Bsize )
{
k = key_allocated = xtrymalloc_secure (r->spec->mdlen);
if (!k)
return gpg_err_code_from_errno (errno);
_gcry_md_hash_buffer (r->spec->algo, key_allocated, key, keylen);
k_len = r->spec->mdlen;
gcry_assert ( k_len <= macpad_Bsize );
}
else
{
k = key;
k_len = keylen;
}
(*r->spec->init) (r->context,
a->ctx->flags.bugemu1? GCRY_MD_FLAG_BUGEMU1:0);
a->bufpos = 0;
for (i=0; i < k_len; i++ )
_gcry_md_putc (a, k[i] ^ 0x36);
for (; i < macpad_Bsize; i++ )
_gcry_md_putc (a, 0x36);
(*r->spec->write) (r->context, a->buf, a->bufpos);
memcpy ((char *)r->context + r->spec->contextsize, r->context,
r->spec->contextsize);
(*r->spec->init) (r->context,
a->ctx->flags.bugemu1? GCRY_MD_FLAG_BUGEMU1:0);
a->bufpos = 0;
for (i=0; i < k_len; i++ )
_gcry_md_putc (a, k[i] ^ 0x5c);
for (; i < macpad_Bsize; i++ )
_gcry_md_putc (a, 0x5c);
(*r->spec->write) (r->context, a->buf, a->bufpos);
memcpy ((char *)r->context + r->spec->contextsize*2, r->context,
r->spec->contextsize);
xfree (key_allocated);
}
a->bufpos = 0;
return 0;
}
static gcry_err_code_t
md_customize (gcry_md_hd_t h, void *buffer, size_t buflen)
{
gcry_err_code_t rc = 0;
GcryDigestEntry *r;
int algo_had_customize = 0;
if (!h->ctx->list)
return GPG_ERR_DIGEST_ALGO; /* Might happen if no algo is enabled. */
for (r = h->ctx->list; r; r = r->next)
{
switch (r->spec->algo)
{
case GCRY_MD_CSHAKE128:
case GCRY_MD_CSHAKE256:
algo_had_customize = 1;
if (buflen != sizeof (struct gcry_cshake_customization))
rc = GPG_ERR_INV_ARG;
else
rc = _gcry_cshake_customize (r->context, buffer);
break;
default:
rc = GPG_ERR_DIGEST_ALGO;
break;
}
if (rc)
break;
}
if (rc && !algo_had_customize)
{
/* None of algorithms had customize implementation, so contexts were not
* modified. Just return error. */
return rc;
}
else if (rc && algo_had_customize)
{
/* Some of the contexts have been modified, but got error. Reset
* all contexts. */
_gcry_md_reset (h);
return rc;
}
return 0;
}
gcry_err_code_t
_gcry_md_ctl (gcry_md_hd_t hd, int cmd, void *buffer, size_t buflen)
{
gcry_err_code_t rc = 0;
(void)buflen; /* Currently not used. */
switch (cmd)
{
case GCRYCTL_FINALIZE:
md_final (hd);
break;
case GCRYCTL_START_DUMP:
md_start_debug (hd, buffer);
break;
case GCRYCTL_STOP_DUMP:
md_stop_debug ( hd );
break;
case GCRYCTL_MD_CUSTOMIZE:
rc = md_customize (hd, buffer, buflen);
break;
default:
rc = GPG_ERR_INV_OP;
}
return rc;
}
gcry_err_code_t
_gcry_md_setkey (gcry_md_hd_t hd, const void *key, size_t keylen)
{
gcry_err_code_t rc;
if (hd->ctx->flags.hmac)
{
rc = prepare_macpads (hd, key, keylen);
if (!rc)
_gcry_md_reset (hd);
}
else
{
rc = md_setkey (hd, key, keylen);
}
return rc;
}
/* The new debug interface. If SUFFIX is a string it creates an debug
file for the context HD. IF suffix is NULL, the file is closed and
debugging is stopped. */
void
_gcry_md_debug (gcry_md_hd_t hd, const char *suffix)
{
if (suffix)
md_start_debug (hd, suffix);
else
md_stop_debug (hd);
}
/****************
* If ALGO is null get the digest for the used algo (which should be
* only one)
*/
static byte *
md_read( gcry_md_hd_t a, int algo )
{
GcryDigestEntry *r = a->ctx->list;
if (! algo)
{
/* Return the first algorithm */
if (r)
{
if (r->next)
log_debug ("more than one algorithm in md_read(0)\n");
if (r->spec->read)
return r->spec->read (r->context);
}
}
else
{
for (r = a->ctx->list; r; r = r->next)
if (r->spec->algo == algo)
{
if (r->spec->read)
return r->spec->read (r->context);
break;
}
}
if (r && !r->spec->read)
_gcry_fatal_error (GPG_ERR_DIGEST_ALGO,
"requested algo has no fixed digest length");
else
_gcry_fatal_error (GPG_ERR_DIGEST_ALGO, "requested algo not in md context");
return NULL;
}
/*
* Read out the complete digest, this function implictly finalizes
* the hash.
*/
byte *
_gcry_md_read (gcry_md_hd_t hd, int algo)
{
/* This function is expected to always return a digest, thus we
can't return an error which we actually should do in
non-operational state. */
_gcry_md_ctl (hd, GCRYCTL_FINALIZE, NULL, 0);
return md_read (hd, algo);
}
/****************
* If ALGO is null get the digest for the used algo (which should be
* only one)
*/
static gcry_err_code_t
md_extract(gcry_md_hd_t a, int algo, void *out, size_t outlen)
{
GcryDigestEntry *r = a->ctx->list;
if (!algo)
{
/* Return the first algorithm */
if (r && r->spec->extract)
{
if (r->next)
log_debug ("more than one algorithm in md_extract(0)\n");
return r->spec->extract (r->context, out, outlen);
}
}
else
{
for (r = a->ctx->list; r; r = r->next)
if (r->spec->algo == algo && r->spec->extract)
{
return r->spec->extract (r->context, out, outlen);
}
}
return GPG_ERR_DIGEST_ALGO;
}
/*
* Expand the output from XOF class digest, this function implictly finalizes
* the hash.
*/
gcry_err_code_t
_gcry_md_extract (gcry_md_hd_t hd, int algo, void *out, size_t outlen)
{
_gcry_md_ctl (hd, GCRYCTL_FINALIZE, NULL, 0);
return md_extract (hd, algo, out, outlen);
}
/*
* Read out an intermediate digest. Not yet functional.
*/
gcry_err_code_t
_gcry_md_get (gcry_md_hd_t hd, int algo, byte *buffer, int buflen)
{
(void)hd;
(void)algo;
(void)buffer;
(void)buflen;
/*md_digest ... */
fips_signal_error ("unimplemented function called");
return GPG_ERR_INTERNAL;
}
/*
* Shortcut function to hash a buffer with a given algo. The only
* guaranteed supported algorithms are RIPE-MD160 and SHA-1. The
* supplied digest buffer must be large enough to store the resulting
* hash. No error is returned, the function will abort on an invalid
* algo. DISABLED_ALGOS are ignored here. */
void
_gcry_md_hash_buffer (int algo, void *digest,
const void *buffer, size_t length)
{
const gcry_md_spec_t *spec;
spec = spec_from_algo (algo);
if (!spec)
{
log_debug ("md_hash_buffer: algorithm %d not available\n", algo);
return;
}
if (spec->hash_buffers != NULL)
{
gcry_buffer_t iov;
iov.size = 0;
iov.data = (void *)buffer;
iov.off = 0;
iov.len = length;
- if (spec->flags.disabled || (!spec->flags.fips && fips_mode ()))
+ if (spec->flags.disabled)
log_bug ("gcry_md_hash_buffer failed for algo %d: %s",
algo, gpg_strerror (gcry_error (GPG_ERR_DIGEST_ALGO)));
spec->hash_buffers (digest, spec->mdlen, &iov, 1);
}
else
{
/* For the others we do not have a fast function, so we use the
normal functions. */
gcry_md_hd_t h;
gpg_err_code_t err;
- err = md_open (&h, algo, 0);
+ err = md_open (&h, algo, GCRY_MD_FLAG_FIPS_NO_REJECTION);
if (err)
log_bug ("gcry_md_open failed for algo %d: %s",
algo, gpg_strerror (gcry_error(err)));
md_write (h, (byte *) buffer, length);
md_final (h);
memcpy (digest, md_read (h, algo), md_digest_length (algo));
md_close (h);
}
+
+ if (fips_mode ())
+ {
+ int is_compliant = spec->flags.fips;
+ fips_service_indicator_mark_success (is_compliant);
+ }
}
/* Shortcut function to hash multiple buffers with a given algo. In
contrast to gcry_md_hash_buffer, this function returns an error on
invalid arguments or on other problems; disabled algorithms are
_not_ ignored but flagged as an error.
The data to sign is taken from the array IOV which has IOVCNT items.
The only supported flag in FLAGS is GCRY_MD_FLAG_HMAC which turns
this function into a HMAC function; the first item in IOV is then
used as the key.
On success 0 is returned and resulting hash or HMAC is stored at
DIGEST. DIGESTLEN may be given as -1, in which case DIGEST must
have been provided by the caller with an appropriate length.
DIGESTLEN may also be the appropriate length or, in case of XOF
algorithms, DIGESTLEN indicates number bytes to extract from XOF
to DIGEST. */
gpg_err_code_t
_gcry_md_hash_buffers_extract (int algo, unsigned int flags, void *digest,
int digestlen, const gcry_buffer_t *iov,
int iovcnt)
{
const gcry_md_spec_t *spec;
int is_xof;
int hmac;
if (!iov || iovcnt < 0)
return GPG_ERR_INV_ARG;
if (flags & ~(GCRY_MD_FLAG_HMAC))
return GPG_ERR_INV_ARG;
hmac = !!(flags & GCRY_MD_FLAG_HMAC);
if (hmac && iovcnt < 1)
return GPG_ERR_INV_ARG;
spec = spec_from_algo (algo);
if (!spec)
{
log_debug ("md_hash_buffers: algorithm %d not available\n", algo);
return GPG_ERR_DIGEST_ALGO;
}
is_xof = spec->extract != NULL;
if (!is_xof && digestlen != -1 && digestlen != spec->mdlen)
return GPG_ERR_DIGEST_ALGO;
if (digestlen == -1)
digestlen = spec->mdlen;
if (!hmac && spec->hash_buffers)
{
- if (spec->flags.disabled || (!spec->flags.fips && fips_mode ()))
+ if (spec->flags.disabled)
return GPG_ERR_DIGEST_ALGO;
spec->hash_buffers (digest, digestlen, iov, iovcnt);
}
else
{
/* For the others we do not have a fast function, so we use the
normal functions. */
gcry_md_hd_t h;
gpg_err_code_t rc;
- rc = md_open (&h, algo, (hmac? GCRY_MD_FLAG_HMAC:0));
+ rc = md_open (&h, algo, ((hmac? GCRY_MD_FLAG_HMAC:0)
+ | GCRY_MD_FLAG_FIPS_NO_REJECTION));
if (rc)
return rc;
if (hmac)
{
rc = _gcry_md_setkey (h,
(const char*)iov[0].data + iov[0].off,
iov[0].len);
if (rc)
{
md_close (h);
return rc;
}
iov++; iovcnt--;
}
for (;iovcnt; iov++, iovcnt--)
md_write (h, (const char*)iov[0].data + iov[0].off, iov[0].len);
md_final (h);
if (digestlen == spec->mdlen)
memcpy (digest, md_read (h, algo), spec->mdlen);
else if (digestlen > 0)
md_extract (h, algo, digest, digestlen);
md_close (h);
}
+ if (fips_mode ())
+ {
+ int is_compliant = spec->flags.fips;
+ fips_service_indicator_mark_success (is_compliant);
+ }
+
return 0;
}
/* Shortcut function to hash multiple buffers with a given algo. In
contrast to gcry_md_hash_buffer, this function returns an error on
invalid arguments or on other problems; disabled algorithms are
_not_ ignored but flagged as an error.
The data to sign is taken from the array IOV which has IOVCNT items.
The only supported flag in FLAGS is GCRY_MD_FLAG_HMAC which turns
this function into a HMAC function; the first item in IOV is then
used as the key.
On success 0 is returned and resulting hash or HMAC is stored at
DIGEST which must have been provided by the caller with an
appropriate length. */
gpg_err_code_t
_gcry_md_hash_buffers (int algo, unsigned int flags, void *digest,
const gcry_buffer_t *iov, int iovcnt)
{
return _gcry_md_hash_buffers_extract(algo, flags, digest, -1, iov, iovcnt);
}
static int
md_get_algo (gcry_md_hd_t a)
{
GcryDigestEntry *r = a->ctx->list;
if (r && r->next)
{
fips_signal_error ("possible usage error");
log_error ("WARNING: more than one algorithm in md_get_algo()\n");
}
return r ? r->spec->algo : 0;
}
int
_gcry_md_get_algo (gcry_md_hd_t hd)
{
return md_get_algo (hd);
}
/****************
* Return the length of the digest
*/
static int
md_digest_length (int algorithm)
{
const gcry_md_spec_t *spec;
spec = spec_from_algo (algorithm);
return spec? spec->mdlen : 0;
}
/****************
* Return the length of the digest in bytes.
* This function will return 0 in case of errors.
*/
unsigned int
_gcry_md_get_algo_dlen (int algorithm)
{
return md_digest_length (algorithm);
}
/* Hmmm: add a mode to enumerate the OIDs
* to make g10/sig-check.c more portable */
static const byte *
md_asn_oid (int algorithm, size_t *asnlen, size_t *mdlen)
{
const gcry_md_spec_t *spec;
const byte *asnoid = NULL;
spec = spec_from_algo (algorithm);
if (spec)
{
if (asnlen)
*asnlen = spec->asnlen;
if (mdlen)
*mdlen = spec->mdlen;
asnoid = spec->asnoid;
}
else
log_bug ("no ASN.1 OID for md algo %d\n", algorithm);
return asnoid;
}
/****************
* Return information about the given cipher algorithm
* WHAT select the kind of information returned:
* GCRYCTL_TEST_ALGO:
* Returns 0 when the specified algorithm is available for use.
* buffer and nbytes must be zero.
* GCRYCTL_GET_ASNOID:
* Return the ASNOID of the algorithm in buffer. if buffer is NULL, only
* the required length is returned.
* GCRYCTL_SELFTEST
* Helper for the regression tests - shall not be used by applications.
*
* Note: Because this function is in most cases used to return an
* integer value, we can make it easier for the caller to just look at
* the return value. The caller will in all cases consult the value
* and thereby detecting whether a error occurred or not (i.e. while checking
* the block size)
*/
gcry_err_code_t
_gcry_md_algo_info (int algo, int what, void *buffer, size_t *nbytes)
{
gcry_err_code_t rc;
switch (what)
{
case GCRYCTL_TEST_ALGO:
if (buffer || nbytes)
rc = GPG_ERR_INV_ARG;
else
rc = check_digest_algo (algo);
break;
case GCRYCTL_GET_ASNOID:
/* We need to check that the algo is available because
md_asn_oid would otherwise raise an assertion. */
rc = check_digest_algo (algo);
if (!rc)
{
const char unsigned *asn;
size_t asnlen;
asn = md_asn_oid (algo, &asnlen, NULL);
if (buffer && (*nbytes >= asnlen))
{
memcpy (buffer, asn, asnlen);
*nbytes = asnlen;
}
else if (!buffer && nbytes)
*nbytes = asnlen;
else
{
if (buffer)
rc = GPG_ERR_TOO_SHORT;
else
rc = GPG_ERR_INV_ARG;
}
}
break;
case GCRYCTL_SELFTEST:
/* Helper function for the regression tests. */
rc = gpg_err_code (_gcry_md_selftest (algo, nbytes? (int)*nbytes : 0,
NULL));
break;
default:
rc = GPG_ERR_INV_OP;
break;
}
return rc;
}
static void
md_start_debug ( gcry_md_hd_t md, const char *suffix )
{
static int idx=0;
char buf[50];
if (fips_mode ())
return;
if ( md->ctx->debug )
{
log_debug("Oops: md debug already started\n");
return;
}
idx++;
snprintf (buf, DIM(buf)-1, "dbgmd-%05d.%.10s", idx, suffix );
md->ctx->debug = fopen(buf, "w");
if ( !md->ctx->debug )
log_debug("md debug: can't open %s\n", buf );
}
static void
md_stop_debug( gcry_md_hd_t md )
{
if ( md->ctx->debug )
{
if ( md->bufpos )
md_write ( md, NULL, 0 );
fclose (md->ctx->debug);
md->ctx->debug = NULL;
}
{ /* a kludge to pull in the __muldi3 for Solaris */
volatile u32 a = (u32)(uintptr_t)md;
volatile u64 b = 42;
volatile u64 c;
c = a * b;
(void)c;
}
}
/*
* Return information about the digest handle.
* GCRYCTL_IS_SECURE:
* Returns 1 when the handle works on secured memory
* otherwise 0 is returned. There is no error return.
* GCRYCTL_IS_ALGO_ENABLED:
* Returns 1 if the algo is enabled for that handle.
* The algo must be passed as the address of an int.
*/
gcry_err_code_t
_gcry_md_info (gcry_md_hd_t h, int cmd, void *buffer, size_t *nbytes)
{
gcry_err_code_t rc = 0;
switch (cmd)
{
case GCRYCTL_IS_SECURE:
*nbytes = h->ctx->flags.secure;
break;
case GCRYCTL_IS_ALGO_ENABLED:
{
GcryDigestEntry *r;
int algo;
if ( !buffer || !nbytes || *nbytes != sizeof (int))
rc = GPG_ERR_INV_ARG;
else
{
algo = *(int*)buffer;
*nbytes = 0;
for(r=h->ctx->list; r; r = r->next ) {
if (r->spec->algo == algo)
{
*nbytes = 1;
break;
}
}
}
break;
}
default:
rc = GPG_ERR_INV_OP;
}
return rc;
}
/* Explicitly initialize this module. */
gcry_err_code_t
_gcry_md_init (void)
{
return 0;
}
int
_gcry_md_is_secure (gcry_md_hd_t a)
{
size_t value;
if (_gcry_md_info (a, GCRYCTL_IS_SECURE, NULL, &value))
value = 1; /* It seems to be better to assume secure memory on
error. */
return value;
}
int
_gcry_md_is_enabled (gcry_md_hd_t a, int algo)
{
size_t value;
value = sizeof algo;
if (_gcry_md_info (a, GCRYCTL_IS_ALGO_ENABLED, &algo, &value))
value = 0;
return value;
}
/* Run the selftests for digest algorithm ALGO with optional reporting
function REPORT. */
gpg_error_t
_gcry_md_selftest (int algo, int extended, selftest_report_func_t report)
{
gcry_err_code_t ec = 0;
const gcry_md_spec_t *spec;
spec = spec_from_algo (algo);
if (spec && !spec->flags.disabled
&& (spec->flags.fips || !fips_mode ())
&& spec->selftest)
ec = spec->selftest (algo, extended, report);
else
{
ec = (spec && spec->selftest) ? GPG_ERR_DIGEST_ALGO
/* */ : GPG_ERR_NOT_IMPLEMENTED;
if (report)
report ("digest", algo, "module",
spec && !spec->flags.disabled
&& (spec->flags.fips || !fips_mode ())?
"no selftest available" :
spec? "algorithm disabled" : "algorithm not found");
}
return gpg_error (ec);
}
diff --git a/src/gcrypt.h.in b/src/gcrypt.h.in
index 2f61a0bc..18d04a38 100644
--- a/src/gcrypt.h.in
+++ b/src/gcrypt.h.in
@@ -1,2106 +1,2107 @@
/* gcrypt.h - GNU Cryptographic Library Interface -*- c -*-
* Copyright (C) 1998-2018 Free Software Foundation, Inc.
* Copyright (C) 2012-2024 g10 Code GmbH
*
* This file is part of Libgcrypt.
*
* Libgcrypt is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* Libgcrypt is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, see <https://www.gnu.org/licenses/>.
* SPDX-License-Identifier: LGPL-2.1-or-later
*
* File: @configure_input@
*/
#ifndef _GCRYPT_H
#define _GCRYPT_H
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <gpg-error.h>
#include <sys/types.h>
#if defined _WIN32 || defined __WIN32__
# ifndef __GNUC__
typedef long ssize_t;
typedef int pid_t;
# endif /*!__GNUC__*/
#endif /*_WIN32*/
/* This is required for error code compatibility. */
#define _GCRY_ERR_SOURCE_DEFAULT GPG_ERR_SOURCE_GCRYPT
#ifdef __cplusplus
extern "C" {
#if 0 /* (Keep Emacsens' auto-indent happy.) */
}
#endif
#endif
/* The version of this header should match the one of the library. It
should not be used by a program because gcry_check_version() should
return the same version. The purpose of this macro is to let
autoconf (using the AM_PATH_GCRYPT macro) check that this header
matches the installed library. */
#define GCRYPT_VERSION "@VERSION@"
/* The version number of this header. It may be used to handle minor
API incompatibilities. */
#define GCRYPT_VERSION_NUMBER @VERSION_NUMBER@
/* Internal: We can't use the convenience macros for the multi
precision integer functions when building this library. */
#ifdef _GCRYPT_IN_LIBGCRYPT
#ifndef GCRYPT_NO_MPI_MACROS
#define GCRYPT_NO_MPI_MACROS 1
#endif
#endif
/* We want to use gcc attributes when possible. Warning: Don't use
these macros in your programs: As indicated by the leading
underscore they are subject to change without notice. */
#ifdef __GNUC__
#define _GCRY_GCC_VERSION (__GNUC__ * 10000 \
+ __GNUC_MINOR__ * 100 \
+ __GNUC_PATCHLEVEL__)
#if _GCRY_GCC_VERSION >= 30100
#define _GCRY_GCC_ATTR_DEPRECATED __attribute__ ((__deprecated__))
#endif
#if _GCRY_GCC_VERSION >= 29600
#define _GCRY_GCC_ATTR_PURE __attribute__ ((__pure__))
#endif
#if _GCRY_GCC_VERSION >= 30200
#define _GCRY_GCC_ATTR_MALLOC __attribute__ ((__malloc__))
#endif
#define _GCRY_GCC_ATTR_PRINTF(f,a) __attribute__ ((format (printf,f,a)))
#if _GCRY_GCC_VERSION >= 40000
#define _GCRY_GCC_ATTR_SENTINEL(a) __attribute__ ((sentinel(a)))
#endif
#endif /*__GNUC__*/
#ifndef _GCRY_GCC_ATTR_DEPRECATED
#define _GCRY_GCC_ATTR_DEPRECATED
#endif
#ifndef _GCRY_GCC_ATTR_PURE
#define _GCRY_GCC_ATTR_PURE
#endif
#ifndef _GCRY_GCC_ATTR_MALLOC
#define _GCRY_GCC_ATTR_MALLOC
#endif
#ifndef _GCRY_GCC_ATTR_PRINTF
#define _GCRY_GCC_ATTR_PRINTF(f,a)
#endif
#ifndef _GCRY_GCC_ATTR_SENTINEL
#define _GCRY_GCC_ATTR_SENTINEL(a)
#endif
/* Make up an attribute to mark functions and types as deprecated but
allow internal use by Libgcrypt. */
#ifdef _GCRYPT_IN_LIBGCRYPT
#define _GCRY_ATTR_INTERNAL
#else
#define _GCRY_ATTR_INTERNAL _GCRY_GCC_ATTR_DEPRECATED
#endif
/* Wrappers for the libgpg-error library. */
typedef gpg_error_t gcry_error_t;
typedef gpg_err_code_t gcry_err_code_t;
typedef gpg_err_source_t gcry_err_source_t;
static GPG_ERR_INLINE gcry_error_t
gcry_err_make (gcry_err_source_t source, gcry_err_code_t code)
{
return gpg_err_make (source, code);
}
/* The user can define GPG_ERR_SOURCE_DEFAULT before including this
file to specify a default source for gpg_error. */
#ifndef GCRY_ERR_SOURCE_DEFAULT
#define GCRY_ERR_SOURCE_DEFAULT GPG_ERR_SOURCE_USER_1
#endif
static GPG_ERR_INLINE gcry_error_t
gcry_error (gcry_err_code_t code)
{
return gcry_err_make (GCRY_ERR_SOURCE_DEFAULT, code);
}
static GPG_ERR_INLINE gcry_err_code_t
gcry_err_code (gcry_error_t err)
{
return gpg_err_code (err);
}
static GPG_ERR_INLINE gcry_err_source_t
gcry_err_source (gcry_error_t err)
{
return gpg_err_source (err);
}
/* Return a pointer to a string containing a description of the error
code in the error value ERR. */
const char *gcry_strerror (gcry_error_t err);
/* Return a pointer to a string containing a description of the error
source in the error value ERR. */
const char *gcry_strsource (gcry_error_t err);
/* Retrieve the error code for the system error ERR. This returns
GPG_ERR_UNKNOWN_ERRNO if the system error is not mapped (report
this). */
gcry_err_code_t gcry_err_code_from_errno (int err);
/* Retrieve the system error for the error code CODE. This returns 0
if CODE is not a system error code. */
int gcry_err_code_to_errno (gcry_err_code_t code);
/* Return an error value with the error source SOURCE and the system
error ERR. */
gcry_error_t gcry_err_make_from_errno (gcry_err_source_t source, int err);
/* Return an error value with the system error ERR. */
gcry_error_t gcry_error_from_errno (int err);
/* NOTE: Since Libgcrypt 1.6 the thread callbacks are not anymore
used. However we keep it to allow for some source code
compatibility if used in the standard way. */
/* Constants defining the thread model to use. Used with the OPTION
field of the struct gcry_thread_cbs. */
#define GCRY_THREAD_OPTION_DEFAULT 0
#define GCRY_THREAD_OPTION_USER 1
#define GCRY_THREAD_OPTION_PTH 2
#define GCRY_THREAD_OPTION_PTHREAD 3
/* The version number encoded in the OPTION field of the struct
gcry_thread_cbs. */
#define GCRY_THREAD_OPTION_VERSION 1
/* Wrapper for struct ath_ops. */
struct gcry_thread_cbs
{
/* The OPTION field encodes the thread model and the version number
of this structure.
Bits 7 - 0 are used for the thread model
Bits 15 - 8 are used for the version number. */
unsigned int option;
} _GCRY_GCC_ATTR_DEPRECATED;
#define GCRY_THREAD_OPTION_PTH_IMPL \
static struct gcry_thread_cbs gcry_threads_pth = { \
(GCRY_THREAD_OPTION_PTH | (GCRY_THREAD_OPTION_VERSION << 8))}
#define GCRY_THREAD_OPTION_PTHREAD_IMPL \
static struct gcry_thread_cbs gcry_threads_pthread = { \
(GCRY_THREAD_OPTION_PTHREAD | (GCRY_THREAD_OPTION_VERSION << 8))}
/* A generic context object as used by some functions. */
struct gcry_context;
typedef struct gcry_context *gcry_ctx_t;
/* The data objects used to hold multi precision integers. */
struct gcry_mpi;
typedef struct gcry_mpi *gcry_mpi_t;
struct gcry_mpi_point;
typedef struct gcry_mpi_point *gcry_mpi_point_t;
#ifndef GCRYPT_NO_DEPRECATED
typedef struct gcry_mpi *GCRY_MPI _GCRY_GCC_ATTR_DEPRECATED;
typedef struct gcry_mpi *GcryMPI _GCRY_GCC_ATTR_DEPRECATED;
#endif
/* A structure used for scatter gather hashing. */
typedef struct
{
size_t size; /* The allocated size of the buffer or 0. */
size_t off; /* Offset into the buffer. */
size_t len; /* The used length of the buffer. */
void *data; /* The buffer. */
} gcry_buffer_t;
/* Check that the library fulfills the version requirement. */
const char *gcry_check_version (const char *req_version);
/* Codes for function dispatchers. */
/* Codes used with the gcry_control function. */
enum gcry_ctl_cmds
{
/* Note: 1 .. 2 are not anymore used. */
GCRYCTL_CFB_SYNC = 3,
GCRYCTL_RESET = 4, /* e.g. for MDs */
GCRYCTL_FINALIZE = 5,
GCRYCTL_GET_KEYLEN = 6,
GCRYCTL_GET_BLKLEN = 7,
GCRYCTL_TEST_ALGO = 8,
GCRYCTL_IS_SECURE = 9,
GCRYCTL_GET_ASNOID = 10,
GCRYCTL_ENABLE_ALGO = 11,
GCRYCTL_DISABLE_ALGO = 12,
GCRYCTL_DUMP_RANDOM_STATS = 13,
GCRYCTL_DUMP_SECMEM_STATS = 14,
GCRYCTL_GET_ALGO_NPKEY = 15,
GCRYCTL_GET_ALGO_NSKEY = 16,
GCRYCTL_GET_ALGO_NSIGN = 17,
GCRYCTL_GET_ALGO_NENCR = 18,
GCRYCTL_SET_VERBOSITY = 19,
GCRYCTL_SET_DEBUG_FLAGS = 20,
GCRYCTL_CLEAR_DEBUG_FLAGS = 21,
GCRYCTL_USE_SECURE_RNDPOOL= 22,
GCRYCTL_DUMP_MEMORY_STATS = 23,
GCRYCTL_INIT_SECMEM = 24,
GCRYCTL_TERM_SECMEM = 25,
GCRYCTL_DISABLE_SECMEM_WARN = 27,
GCRYCTL_SUSPEND_SECMEM_WARN = 28,
GCRYCTL_RESUME_SECMEM_WARN = 29,
GCRYCTL_DROP_PRIVS = 30,
GCRYCTL_ENABLE_M_GUARD = 31,
GCRYCTL_START_DUMP = 32,
GCRYCTL_STOP_DUMP = 33,
GCRYCTL_GET_ALGO_USAGE = 34,
GCRYCTL_IS_ALGO_ENABLED = 35,
GCRYCTL_DISABLE_INTERNAL_LOCKING = 36,
GCRYCTL_DISABLE_SECMEM = 37,
GCRYCTL_INITIALIZATION_FINISHED = 38,
GCRYCTL_INITIALIZATION_FINISHED_P = 39,
GCRYCTL_ANY_INITIALIZATION_P = 40,
GCRYCTL_SET_CBC_CTS = 41,
GCRYCTL_SET_CBC_MAC = 42,
/* Note: 43 is not anymore used. */
GCRYCTL_ENABLE_QUICK_RANDOM = 44,
GCRYCTL_SET_RANDOM_SEED_FILE = 45,
GCRYCTL_UPDATE_RANDOM_SEED_FILE = 46,
GCRYCTL_SET_THREAD_CBS = 47,
GCRYCTL_FAST_POLL = 48,
GCRYCTL_SET_RANDOM_DAEMON_SOCKET = 49,
GCRYCTL_USE_RANDOM_DAEMON = 50,
GCRYCTL_FAKED_RANDOM_P = 51,
GCRYCTL_SET_RNDEGD_SOCKET = 52,
GCRYCTL_PRINT_CONFIG = 53,
GCRYCTL_OPERATIONAL_P = 54,
GCRYCTL_FIPS_MODE_P = 55,
GCRYCTL_FORCE_FIPS_MODE = 56,
GCRYCTL_SELFTEST = 57,
/* Note: 58 .. 62 are used internally. */
GCRYCTL_DISABLE_HWF = 63,
GCRYCTL_SET_ENFORCED_FIPS_FLAG = 64,
GCRYCTL_SET_PREFERRED_RNG_TYPE = 65,
GCRYCTL_GET_CURRENT_RNG_TYPE = 66,
GCRYCTL_DISABLE_LOCKED_SECMEM = 67,
GCRYCTL_DISABLE_PRIV_DROP = 68,
GCRYCTL_SET_CCM_LENGTHS = 69,
GCRYCTL_CLOSE_RANDOM_DEVICE = 70,
GCRYCTL_INACTIVATE_FIPS_FLAG = 71,
GCRYCTL_REACTIVATE_FIPS_FLAG = 72,
GCRYCTL_SET_SBOX = 73,
GCRYCTL_DRBG_REINIT = 74,
GCRYCTL_SET_TAGLEN = 75,
GCRYCTL_GET_TAGLEN = 76,
GCRYCTL_REINIT_SYSCALL_CLAMP = 77,
GCRYCTL_AUTO_EXPAND_SECMEM = 78,
GCRYCTL_SET_ALLOW_WEAK_KEY = 79,
GCRYCTL_SET_DECRYPTION_TAG = 80,
GCRYCTL_FIPS_SERVICE_INDICATOR_CIPHER = 81,
GCRYCTL_FIPS_SERVICE_INDICATOR_KDF = 82,
GCRYCTL_NO_FIPS_MODE = 83,
GCRYCTL_FIPS_SERVICE_INDICATOR_FUNCTION = 84,
GCRYCTL_FIPS_SERVICE_INDICATOR_MAC = 85,
GCRYCTL_FIPS_SERVICE_INDICATOR_MD = 86,
GCRYCTL_FIPS_SERVICE_INDICATOR_PK_FLAGS = 87,
GCRYCTL_MD_CUSTOMIZE = 88,
GCRYCTL_FIPS_SERVICE_INDICATOR = 89
};
/* Perform various operations defined by CMD. */
gcry_error_t gcry_control (enum gcry_ctl_cmds CMD, ...);
/* S-expression management. */
/* The object to represent an S-expression as used with the public key
functions. */
struct gcry_sexp;
typedef struct gcry_sexp *gcry_sexp_t;
#ifndef GCRYPT_NO_DEPRECATED
typedef struct gcry_sexp *GCRY_SEXP _GCRY_GCC_ATTR_DEPRECATED;
typedef struct gcry_sexp *GcrySexp _GCRY_GCC_ATTR_DEPRECATED;
#endif
/* The possible values for the S-expression format. */
enum gcry_sexp_format
{
GCRYSEXP_FMT_DEFAULT = 0,
GCRYSEXP_FMT_CANON = 1,
GCRYSEXP_FMT_BASE64 = 2,
GCRYSEXP_FMT_ADVANCED = 3
};
/* Create an new S-expression object from BUFFER of size LENGTH and
return it in RETSEXP. With AUTODETECT set to 0 the data in BUFFER
is expected to be in canonized format. */
gcry_error_t gcry_sexp_new (gcry_sexp_t *retsexp,
const void *buffer, size_t length,
int autodetect);
/* Same as gcry_sexp_new but allows to pass a FREEFNC which has the
effect to transfer ownership of BUFFER to the created object. */
gcry_error_t gcry_sexp_create (gcry_sexp_t *retsexp,
void *buffer, size_t length,
int autodetect, void (*freefnc) (void *));
/* Scan BUFFER and return a new S-expression object in RETSEXP. This
function expects a printf like string in BUFFER. */
gcry_error_t gcry_sexp_sscan (gcry_sexp_t *retsexp, size_t *erroff,
const char *buffer, size_t length);
/* Same as gcry_sexp_sscan but expects a string in FORMAT and can thus
only be used for certain encodings. */
gcry_error_t gcry_sexp_build (gcry_sexp_t *retsexp, size_t *erroff,
const char *format, ...);
/* Like gcry_sexp_build, but uses an array instead of variable
function arguments. */
gcry_error_t gcry_sexp_build_array (gcry_sexp_t *retsexp, size_t *erroff,
const char *format, void **arg_list);
/* Release the S-expression object SEXP */
void gcry_sexp_release (gcry_sexp_t sexp);
/* Calculate the length of an canonized S-expression in BUFFER and
check for a valid encoding. */
size_t gcry_sexp_canon_len (const unsigned char *buffer, size_t length,
size_t *erroff, gcry_error_t *errcode);
/* Copies the S-expression object SEXP into BUFFER using the format
specified in MODE. */
size_t gcry_sexp_sprint (gcry_sexp_t sexp, int mode, void *buffer,
size_t maxlength);
/* Dumps the S-expression object A in a format suitable for debugging
to Libgcrypt's logging stream. */
void gcry_sexp_dump (const gcry_sexp_t a);
gcry_sexp_t gcry_sexp_cons (const gcry_sexp_t a, const gcry_sexp_t b);
gcry_sexp_t gcry_sexp_alist (const gcry_sexp_t *array);
gcry_sexp_t gcry_sexp_vlist (const gcry_sexp_t a, ...);
gcry_sexp_t gcry_sexp_append (const gcry_sexp_t a, const gcry_sexp_t n);
gcry_sexp_t gcry_sexp_prepend (const gcry_sexp_t a, const gcry_sexp_t n);
/* Scan the S-expression for a sublist with a type (the car of the
list) matching the string TOKEN. If TOKLEN is not 0, the token is
assumed to be raw memory of this length. The function returns a
newly allocated S-expression consisting of the found sublist or
`NULL' when not found. */
gcry_sexp_t gcry_sexp_find_token (gcry_sexp_t list,
const char *tok, size_t toklen);
/* Return the length of the LIST. For a valid S-expression this
should be at least 1. */
int gcry_sexp_length (const gcry_sexp_t list);
/* Create and return a new S-expression from the element with index
NUMBER in LIST. Note that the first element has the index 0. If
there is no such element, `NULL' is returned. */
gcry_sexp_t gcry_sexp_nth (const gcry_sexp_t list, int number);
/* Create and return a new S-expression from the first element in
LIST; this called the "type" and should always exist and be a
string. `NULL' is returned in case of a problem. */
gcry_sexp_t gcry_sexp_car (const gcry_sexp_t list);
/* Create and return a new list form all elements except for the first
one. Note, that this function may return an invalid S-expression
because it is not guaranteed, that the type exists and is a string.
However, for parsing a complex S-expression it might be useful for
intermediate lists. Returns `NULL' on error. */
gcry_sexp_t gcry_sexp_cdr (const gcry_sexp_t list);
gcry_sexp_t gcry_sexp_cadr (const gcry_sexp_t list);
/* This function is used to get data from a LIST. A pointer to the
actual data with index NUMBER is returned and the length of this
data will be stored to DATALEN. If there is no data at the given
index or the index represents another list, `NULL' is returned.
*Note:* The returned pointer is valid as long as LIST is not
modified or released. */
const char *gcry_sexp_nth_data (const gcry_sexp_t list, int number,
size_t *datalen);
/* This function is used to get data from a LIST. A malloced buffer to the
data with index NUMBER is returned and the length of this
data will be stored to RLENGTH. If there is no data at the given
index or the index represents another list, `NULL' is returned. */
void *gcry_sexp_nth_buffer (const gcry_sexp_t list, int number,
size_t *rlength);
/* This function is used to get and convert data from a LIST. The
data is assumed to be a Nul terminated string. The caller must
release the returned value using `gcry_free'. If there is no data
at the given index, the index represents a list or the value can't
be converted to a string, `NULL' is returned. */
char *gcry_sexp_nth_string (gcry_sexp_t list, int number);
/* This function is used to get and convert data from a LIST. This
data is assumed to be an MPI stored in the format described by
MPIFMT and returned as a standard Libgcrypt MPI. The caller must
release this returned value using `gcry_mpi_release'. If there is
no data at the given index, the index represents a list or the
value can't be converted to an MPI, `NULL' is returned. */
gcry_mpi_t gcry_sexp_nth_mpi (gcry_sexp_t list, int number, int mpifmt);
/* Extract MPIs from an s-expression using a list of parameters. The
* names of these parameters are given by the string LIST. Some
* special characters may be given to control the conversion:
*
* + :: Switch to unsigned integer format (default).
* - :: Switch to standard signed format.
* / :: Switch to opaque format.
* & :: Switch to buffer descriptor mode - see below.
* ? :: The previous parameter is optional.
*
* In general parameter names are single letters. To use a string for
* a parameter name, enclose the name in single quotes.
*
* Unless in gcry_buffer_t mode for each parameter name a pointer to
* an MPI variable is expected that must be set to NULL prior to
* invoking this function, and finally a NULL is expected. Example:
*
* _gcry_sexp_extract_param (key, NULL, "n/x+ed",
* &mpi_n, &mpi_x, &mpi_e, NULL)
*
* This stores the parameter "N" from KEY as an unsigned MPI into
* MPI_N, the parameter "X" as an opaque MPI into MPI_X, and the
* parameter "E" again as an unsigned MPI into MPI_E.
*
* If in buffer descriptor mode a pointer to gcry_buffer_t descriptor
* is expected instead of a pointer to an MPI. The caller may use two
* different operation modes: If the DATA field of the provided buffer
* descriptor is NULL, the function allocates a new buffer and stores
* it at DATA; the other fields are set accordingly with OFF being 0.
* If DATA is not NULL, the function assumes that DATA, SIZE, and OFF
* describe a buffer where to but the data; on return the LEN field
* receives the number of bytes copied to that buffer; if the buffer
* is too small, the function immediately returns with an error code
* (and LEN set to 0).
*
* PATH is an optional string used to locate a token. The exclamation
* mark separated tokens are used to via gcry_sexp_find_token to find
* a start point inside SEXP.
*
* The function returns 0 on success. On error an error code is
* returned, all passed MPIs that might have been allocated up to this
* point are deallocated and set to NULL, and all passed buffers are
* either truncated if the caller supplied the buffer, or deallocated
* if the function allocated the buffer.
*/
gpg_error_t gcry_sexp_extract_param (gcry_sexp_t sexp,
const char *path,
const char *list,
...) _GCRY_GCC_ATTR_SENTINEL(0);
/*******************************************
* *
* Multi Precision Integer Functions *
* *
*******************************************/
/* Different formats of external big integer representation. */
enum gcry_mpi_format
{
GCRYMPI_FMT_NONE= 0,
GCRYMPI_FMT_STD = 1, /* Twos complement stored without length. */
GCRYMPI_FMT_PGP = 2, /* As used by OpenPGP (unsigned only). */
GCRYMPI_FMT_SSH = 3, /* As used by SSH (like STD but with length). */
GCRYMPI_FMT_HEX = 4, /* Hex format. */
GCRYMPI_FMT_USG = 5, /* Like STD but unsigned. */
GCRYMPI_FMT_OPAQUE = 8 /* Opaque format (some functions only). */
};
/* Flags used for creating big integers. */
enum gcry_mpi_flag
{
GCRYMPI_FLAG_SECURE = 1, /* Allocate the number in "secure" memory. */
GCRYMPI_FLAG_OPAQUE = 2, /* The number is not a real one but just
a way to store some bytes. This is
useful for encrypted big integers. */
GCRYMPI_FLAG_IMMUTABLE = 4, /* Mark the MPI as immutable. */
GCRYMPI_FLAG_CONST = 8, /* Mark the MPI as a constant. */
GCRYMPI_FLAG_USER1 = 0x0100,/* User flag 1. */
GCRYMPI_FLAG_USER2 = 0x0200,/* User flag 2. */
GCRYMPI_FLAG_USER3 = 0x0400,/* User flag 3. */
GCRYMPI_FLAG_USER4 = 0x0800 /* User flag 4. */
};
/* Macros to return pre-defined MPI constants. */
#define GCRYMPI_CONST_ONE (_gcry_mpi_get_const (1))
#define GCRYMPI_CONST_TWO (_gcry_mpi_get_const (2))
#define GCRYMPI_CONST_THREE (_gcry_mpi_get_const (3))
#define GCRYMPI_CONST_FOUR (_gcry_mpi_get_const (4))
#define GCRYMPI_CONST_EIGHT (_gcry_mpi_get_const (8))
/* Allocate a new big integer object, initialize it with 0 and
initially allocate memory for a number of at least NBITS. */
gcry_mpi_t gcry_mpi_new (unsigned int nbits);
/* Same as gcry_mpi_new() but allocate in "secure" memory. */
gcry_mpi_t gcry_mpi_snew (unsigned int nbits);
/* Release the number A and free all associated resources. */
void gcry_mpi_release (gcry_mpi_t a);
/* Create a new number with the same value as A. */
gcry_mpi_t gcry_mpi_copy (const gcry_mpi_t a);
/* Store the big integer value U in W and release U. */
void gcry_mpi_snatch (gcry_mpi_t w, gcry_mpi_t u);
/* Store the big integer value U in W. */
gcry_mpi_t gcry_mpi_set (gcry_mpi_t w, const gcry_mpi_t u);
/* Store the unsigned integer value U in W. */
gcry_mpi_t gcry_mpi_set_ui (gcry_mpi_t w, unsigned long u);
/* Store U as an unsigned int at W or return GPG_ERR_ERANGE. */
gpg_error_t gcry_mpi_get_ui (unsigned int *w, gcry_mpi_t u);
/* Swap the values of A and B. */
void gcry_mpi_swap (gcry_mpi_t a, gcry_mpi_t b);
/* Return 1 if A is negative; 0 if zero or positive. */
int gcry_mpi_is_neg (gcry_mpi_t a);
/* W = - U */
void gcry_mpi_neg (gcry_mpi_t w, gcry_mpi_t u);
/* W = [W] */
void gcry_mpi_abs (gcry_mpi_t w);
/* Compare the big integer number U and V returning 0 for equality, a
positive value for U > V and a negative for U < V. */
int gcry_mpi_cmp (const gcry_mpi_t u, const gcry_mpi_t v);
/* Compare the big integer number U with the unsigned integer V
returning 0 for equality, a positive value for U > V and a negative
for U < V. */
int gcry_mpi_cmp_ui (const gcry_mpi_t u, unsigned long v);
/* Convert the external representation of an integer stored in BUFFER
with a length of BUFLEN into a newly create MPI returned in
RET_MPI. If NSCANNED is not NULL, it will receive the number of
bytes actually scanned after a successful operation. */
gcry_error_t gcry_mpi_scan (gcry_mpi_t *ret_mpi, enum gcry_mpi_format format,
const void *buffer, size_t buflen,
size_t *nscanned);
/* Convert the big integer A into the external representation
described by FORMAT and store it in the provided BUFFER which has
been allocated by the user with a size of BUFLEN bytes. NWRITTEN
receives the actual length of the external representation unless it
has been passed as NULL. */
gcry_error_t gcry_mpi_print (enum gcry_mpi_format format,
unsigned char *buffer, size_t buflen,
size_t *nwritten,
const gcry_mpi_t a);
/* Convert the big integer A into the external representation described
by FORMAT and store it in a newly allocated buffer which address
will be put into BUFFER. NWRITTEN receives the actual lengths of the
external representation. */
gcry_error_t gcry_mpi_aprint (enum gcry_mpi_format format,
unsigned char **buffer, size_t *nwritten,
const gcry_mpi_t a);
/* Dump the value of A in a format suitable for debugging to
Libgcrypt's logging stream. Note that one leading space but no
trailing space or linefeed will be printed. It is okay to pass
NULL for A. */
void gcry_mpi_dump (const gcry_mpi_t a);
/* W = U + V. */
void gcry_mpi_add (gcry_mpi_t w, gcry_mpi_t u, gcry_mpi_t v);
/* W = U + V. V is an unsigned integer. */
void gcry_mpi_add_ui (gcry_mpi_t w, gcry_mpi_t u, unsigned long v);
/* W = U + V mod M. */
void gcry_mpi_addm (gcry_mpi_t w, gcry_mpi_t u, gcry_mpi_t v, gcry_mpi_t m);
/* W = U - V. */
void gcry_mpi_sub (gcry_mpi_t w, gcry_mpi_t u, gcry_mpi_t v);
/* W = U - V. V is an unsigned integer. */
void gcry_mpi_sub_ui (gcry_mpi_t w, gcry_mpi_t u, unsigned long v );
/* W = U - V mod M */
void gcry_mpi_subm (gcry_mpi_t w, gcry_mpi_t u, gcry_mpi_t v, gcry_mpi_t m);
/* W = U * V. */
void gcry_mpi_mul (gcry_mpi_t w, gcry_mpi_t u, gcry_mpi_t v);
/* W = U * V. V is an unsigned integer. */
void gcry_mpi_mul_ui (gcry_mpi_t w, gcry_mpi_t u, unsigned long v );
/* W = U * V mod M. */
void gcry_mpi_mulm (gcry_mpi_t w, gcry_mpi_t u, gcry_mpi_t v, gcry_mpi_t m);
/* W = U * (2 ^ CNT). */
void gcry_mpi_mul_2exp (gcry_mpi_t w, gcry_mpi_t u, unsigned long cnt);
/* Q = DIVIDEND / DIVISOR, R = DIVIDEND % DIVISOR,
Q or R may be passed as NULL. ROUND should be negative or 0. */
void gcry_mpi_div (gcry_mpi_t q, gcry_mpi_t r,
gcry_mpi_t dividend, gcry_mpi_t divisor, int round);
/* R = DIVIDEND % DIVISOR */
void gcry_mpi_mod (gcry_mpi_t r, gcry_mpi_t dividend, gcry_mpi_t divisor);
/* W = B ^ E mod M. */
void gcry_mpi_powm (gcry_mpi_t w,
const gcry_mpi_t b, const gcry_mpi_t e,
const gcry_mpi_t m);
/* Set G to the greatest common divisor of A and B.
Return true if the G is 1. */
int gcry_mpi_gcd (gcry_mpi_t g, gcry_mpi_t a, gcry_mpi_t b);
/* Set X to the multiplicative inverse of A mod M.
Return true if the value exists. */
int gcry_mpi_invm (gcry_mpi_t x, gcry_mpi_t a, gcry_mpi_t m);
/* Create a new point object. NBITS is usually 0. */
gcry_mpi_point_t gcry_mpi_point_new (unsigned int nbits);
/* Release the object POINT. POINT may be NULL. */
void gcry_mpi_point_release (gcry_mpi_point_t point);
/* Return a copy of POINT. */
gcry_mpi_point_t gcry_mpi_point_copy (gcry_mpi_point_t point);
/* Store the projective coordinates from POINT into X, Y, and Z. */
void gcry_mpi_point_get (gcry_mpi_t x, gcry_mpi_t y, gcry_mpi_t z,
gcry_mpi_point_t point);
/* Store the projective coordinates from POINT into X, Y, and Z and
release POINT. */
void gcry_mpi_point_snatch_get (gcry_mpi_t x, gcry_mpi_t y, gcry_mpi_t z,
gcry_mpi_point_t point);
/* Store the projective coordinates X, Y, and Z into POINT. */
gcry_mpi_point_t gcry_mpi_point_set (gcry_mpi_point_t point,
gcry_mpi_t x, gcry_mpi_t y, gcry_mpi_t z);
/* Store the projective coordinates X, Y, and Z into POINT and release
X, Y, and Z. */
gcry_mpi_point_t gcry_mpi_point_snatch_set (gcry_mpi_point_t point,
gcry_mpi_t x, gcry_mpi_t y,
gcry_mpi_t z);
/* Allocate a new context for elliptic curve operations based on the
parameters given by KEYPARAM or using CURVENAME. */
gpg_error_t gcry_mpi_ec_new (gcry_ctx_t *r_ctx,
gcry_sexp_t keyparam, const char *curvename);
/* Get a named MPI from an elliptic curve context. */
gcry_mpi_t gcry_mpi_ec_get_mpi (const char *name, gcry_ctx_t ctx, int copy);
/* Get a named point from an elliptic curve context. */
gcry_mpi_point_t gcry_mpi_ec_get_point (const char *name,
gcry_ctx_t ctx, int copy);
/* Store a named MPI into an elliptic curve context. */
gpg_error_t gcry_mpi_ec_set_mpi (const char *name, gcry_mpi_t newvalue,
gcry_ctx_t ctx);
/* Store a named point into an elliptic curve context. */
gpg_error_t gcry_mpi_ec_set_point (const char *name, gcry_mpi_point_t newvalue,
gcry_ctx_t ctx);
/* Decode and store VALUE into RESULT. */
gpg_error_t gcry_mpi_ec_decode_point (gcry_mpi_point_t result,
gcry_mpi_t value, gcry_ctx_t ctx);
/* Store the affine coordinates of POINT into X and Y. */
int gcry_mpi_ec_get_affine (gcry_mpi_t x, gcry_mpi_t y, gcry_mpi_point_t point,
gcry_ctx_t ctx);
/* W = 2 * U. */
void gcry_mpi_ec_dup (gcry_mpi_point_t w, gcry_mpi_point_t u, gcry_ctx_t ctx);
/* W = U + V. */
void gcry_mpi_ec_add (gcry_mpi_point_t w,
gcry_mpi_point_t u, gcry_mpi_point_t v, gcry_ctx_t ctx);
/* W = U - V. */
void gcry_mpi_ec_sub (gcry_mpi_point_t w,
gcry_mpi_point_t u, gcry_mpi_point_t v, gcry_ctx_t ctx);
/* W = N * U. */
void gcry_mpi_ec_mul (gcry_mpi_point_t w, gcry_mpi_t n, gcry_mpi_point_t u,
gcry_ctx_t ctx);
/* Return true if POINT is on the curve described by CTX. */
int gcry_mpi_ec_curve_point (gcry_mpi_point_t w, gcry_ctx_t ctx);
/* Return the number of bits required to represent A. */
unsigned int gcry_mpi_get_nbits (gcry_mpi_t a);
/* Return true when bit number N (counting from 0) is set in A. */
int gcry_mpi_test_bit (gcry_mpi_t a, unsigned int n);
/* Set bit number N in A. */
void gcry_mpi_set_bit (gcry_mpi_t a, unsigned int n);
/* Clear bit number N in A. */
void gcry_mpi_clear_bit (gcry_mpi_t a, unsigned int n);
/* Set bit number N in A and clear all bits greater than N. */
void gcry_mpi_set_highbit (gcry_mpi_t a, unsigned int n);
/* Clear bit number N in A and all bits greater than N. */
void gcry_mpi_clear_highbit (gcry_mpi_t a, unsigned int n);
/* Shift the value of A by N bits to the right and store the result in X. */
void gcry_mpi_rshift (gcry_mpi_t x, gcry_mpi_t a, unsigned int n);
/* Shift the value of A by N bits to the left and store the result in X. */
void gcry_mpi_lshift (gcry_mpi_t x, gcry_mpi_t a, unsigned int n);
/* Store NBITS of the value P points to in A and mark A as an opaque
value. On success A received the the ownership of the value P.
WARNING: Never use an opaque MPI for anything thing else than
gcry_mpi_release, gcry_mpi_get_opaque. */
gcry_mpi_t gcry_mpi_set_opaque (gcry_mpi_t a, void *p, unsigned int nbits);
/* Store NBITS of the value P points to in A and mark A as an opaque
value. The function takes a copy of the provided value P.
WARNING: Never use an opaque MPI for anything thing else than
gcry_mpi_release, gcry_mpi_get_opaque. */
gcry_mpi_t gcry_mpi_set_opaque_copy (gcry_mpi_t a,
const void *p, unsigned int nbits);
/* Return a pointer to an opaque value stored in A and return its size
in NBITS. Note that the returned pointer is still owned by A and
that the function should never be used for an non-opaque MPI. */
void *gcry_mpi_get_opaque (gcry_mpi_t a, unsigned int *nbits);
/* Set the FLAG for the big integer A. Currently only the flag
GCRYMPI_FLAG_SECURE is allowed to convert A into an big intger
stored in "secure" memory. */
void gcry_mpi_set_flag (gcry_mpi_t a, enum gcry_mpi_flag flag);
/* Clear FLAG for the big integer A. Note that this function is
currently useless as no flags are allowed. */
void gcry_mpi_clear_flag (gcry_mpi_t a, enum gcry_mpi_flag flag);
/* Return true if the FLAG is set for A. */
int gcry_mpi_get_flag (gcry_mpi_t a, enum gcry_mpi_flag flag);
/* Private function - do not use. */
gcry_mpi_t _gcry_mpi_get_const (int no);
/* Unless the GCRYPT_NO_MPI_MACROS is used, provide a couple of
convenience macros for the big integer functions. */
#ifndef GCRYPT_NO_MPI_MACROS
#define mpi_new(n) gcry_mpi_new( (n) )
#define mpi_secure_new( n ) gcry_mpi_snew( (n) )
#define mpi_release(a) \
do \
{ \
gcry_mpi_release ((a)); \
(a) = NULL; \
} \
while (0)
#define mpi_copy( a ) gcry_mpi_copy( (a) )
#define mpi_snatch( w, u) gcry_mpi_snatch( (w), (u) )
#define mpi_set( w, u) gcry_mpi_set( (w), (u) )
#define mpi_set_ui( w, u) gcry_mpi_set_ui( (w), (u) )
#define mpi_get_ui( w, u) gcry_mpi_get_ui( (w), (u) )
#define mpi_abs( w ) gcry_mpi_abs( (w) )
#define mpi_neg( w, u) gcry_mpi_neg( (w), (u) )
#define mpi_cmp( u, v ) gcry_mpi_cmp( (u), (v) )
#define mpi_cmp_ui( u, v ) gcry_mpi_cmp_ui( (u), (v) )
#define mpi_is_neg( a ) gcry_mpi_is_neg ((a))
#define mpi_add_ui(w,u,v) gcry_mpi_add_ui((w),(u),(v))
#define mpi_add(w,u,v) gcry_mpi_add ((w),(u),(v))
#define mpi_addm(w,u,v,m) gcry_mpi_addm ((w),(u),(v),(m))
#define mpi_sub_ui(w,u,v) gcry_mpi_sub_ui ((w),(u),(v))
#define mpi_sub(w,u,v) gcry_mpi_sub ((w),(u),(v))
#define mpi_subm(w,u,v,m) gcry_mpi_subm ((w),(u),(v),(m))
#define mpi_mul_ui(w,u,v) gcry_mpi_mul_ui ((w),(u),(v))
#define mpi_mul_2exp(w,u,v) gcry_mpi_mul_2exp ((w),(u),(v))
#define mpi_mul(w,u,v) gcry_mpi_mul ((w),(u),(v))
#define mpi_mulm(w,u,v,m) gcry_mpi_mulm ((w),(u),(v),(m))
#define mpi_powm(w,b,e,m) gcry_mpi_powm ( (w), (b), (e), (m) )
#define mpi_tdiv(q,r,a,m) gcry_mpi_div ( (q), (r), (a), (m), 0)
#define mpi_fdiv(q,r,a,m) gcry_mpi_div ( (q), (r), (a), (m), -1)
#define mpi_mod(r,a,m) gcry_mpi_mod ((r), (a), (m))
#define mpi_gcd(g,a,b) gcry_mpi_gcd ( (g), (a), (b) )
#define mpi_invm(g,a,b) gcry_mpi_invm ( (g), (a), (b) )
#define mpi_point_new(n) gcry_mpi_point_new((n))
#define mpi_point_release(p) \
do \
{ \
gcry_mpi_point_release ((p)); \
(p) = NULL; \
} \
while (0)
#define mpi_point_copy(p) gcry_mpi_point_copy((p))
#define mpi_point_get(x,y,z,p) gcry_mpi_point_get((x),(y),(z),(p))
#define mpi_point_snatch_get(x,y,z,p) gcry_mpi_point_snatch_get((x),(y),(z),(p))
#define mpi_point_set(p,x,y,z) gcry_mpi_point_set((p),(x),(y),(z))
#define mpi_point_snatch_set(p,x,y,z) gcry_mpi_point_snatch_set((p),(x),(y),(z))
#define mpi_get_nbits(a) gcry_mpi_get_nbits ((a))
#define mpi_test_bit(a,b) gcry_mpi_test_bit ((a),(b))
#define mpi_set_bit(a,b) gcry_mpi_set_bit ((a),(b))
#define mpi_set_highbit(a,b) gcry_mpi_set_highbit ((a),(b))
#define mpi_clear_bit(a,b) gcry_mpi_clear_bit ((a),(b))
#define mpi_clear_highbit(a,b) gcry_mpi_clear_highbit ((a),(b))
#define mpi_rshift(a,b,c) gcry_mpi_rshift ((a),(b),(c))
#define mpi_lshift(a,b,c) gcry_mpi_lshift ((a),(b),(c))
#define mpi_set_opaque(a,b,c) gcry_mpi_set_opaque( (a), (b), (c) )
#define mpi_get_opaque(a,b) gcry_mpi_get_opaque( (a), (b) )
#endif /* GCRYPT_NO_MPI_MACROS */
/************************************
* *
* Symmetric Cipher Functions *
* *
************************************/
/* The data object used to hold a handle to an encryption object. */
struct gcry_cipher_handle;
typedef struct gcry_cipher_handle *gcry_cipher_hd_t;
#ifndef GCRYPT_NO_DEPRECATED
typedef struct gcry_cipher_handle *GCRY_CIPHER_HD _GCRY_GCC_ATTR_DEPRECATED;
typedef struct gcry_cipher_handle *GcryCipherHd _GCRY_GCC_ATTR_DEPRECATED;
#endif
/* All symmetric encryption algorithms are identified by their IDs.
More IDs may be registered at runtime. */
enum gcry_cipher_algos
{
GCRY_CIPHER_NONE = 0,
GCRY_CIPHER_IDEA = 1,
GCRY_CIPHER_3DES = 2,
GCRY_CIPHER_CAST5 = 3,
GCRY_CIPHER_BLOWFISH = 4,
GCRY_CIPHER_SAFER_SK128 = 5,
GCRY_CIPHER_DES_SK = 6,
GCRY_CIPHER_AES = 7,
GCRY_CIPHER_AES192 = 8,
GCRY_CIPHER_AES256 = 9,
GCRY_CIPHER_TWOFISH = 10,
/* Other cipher numbers are above 300 for OpenPGP reasons. */
GCRY_CIPHER_ARCFOUR = 301, /* Fully compatible with RSA's RC4 (tm). */
GCRY_CIPHER_DES = 302, /* Yes, this is single key 56 bit DES. */
GCRY_CIPHER_TWOFISH128 = 303,
GCRY_CIPHER_SERPENT128 = 304,
GCRY_CIPHER_SERPENT192 = 305,
GCRY_CIPHER_SERPENT256 = 306,
GCRY_CIPHER_RFC2268_40 = 307, /* Ron's Cipher 2 (40 bit). */
GCRY_CIPHER_RFC2268_128 = 308, /* Ron's Cipher 2 (128 bit). */
GCRY_CIPHER_SEED = 309, /* 128 bit cipher described in RFC4269. */
GCRY_CIPHER_CAMELLIA128 = 310,
GCRY_CIPHER_CAMELLIA192 = 311,
GCRY_CIPHER_CAMELLIA256 = 312,
GCRY_CIPHER_SALSA20 = 313,
GCRY_CIPHER_SALSA20R12 = 314,
GCRY_CIPHER_GOST28147 = 315,
GCRY_CIPHER_CHACHA20 = 316,
GCRY_CIPHER_GOST28147_MESH = 317, /* With CryptoPro key meshing. */
GCRY_CIPHER_SM4 = 318,
GCRY_CIPHER_ARIA128 = 319,
GCRY_CIPHER_ARIA192 = 320,
GCRY_CIPHER_ARIA256 = 321
};
/* The Rijndael algorithm is basically AES, so provide some macros. */
#define GCRY_CIPHER_AES128 GCRY_CIPHER_AES
#define GCRY_CIPHER_RIJNDAEL GCRY_CIPHER_AES
#define GCRY_CIPHER_RIJNDAEL128 GCRY_CIPHER_AES128
#define GCRY_CIPHER_RIJNDAEL192 GCRY_CIPHER_AES192
#define GCRY_CIPHER_RIJNDAEL256 GCRY_CIPHER_AES256
/* The supported encryption modes. Note that not all of them are
supported for each algorithm. */
enum gcry_cipher_modes
{
GCRY_CIPHER_MODE_NONE = 0, /* Not yet specified. */
GCRY_CIPHER_MODE_ECB = 1, /* Electronic codebook. */
GCRY_CIPHER_MODE_CFB = 2, /* Cipher feedback. */
GCRY_CIPHER_MODE_CBC = 3, /* Cipher block chaining. */
GCRY_CIPHER_MODE_STREAM = 4, /* Used with stream ciphers. */
GCRY_CIPHER_MODE_OFB = 5, /* Outer feedback. */
GCRY_CIPHER_MODE_CTR = 6, /* Counter. */
GCRY_CIPHER_MODE_AESWRAP = 7, /* AES-WRAP algorithm. */
GCRY_CIPHER_MODE_CCM = 8, /* Counter with CBC-MAC. */
GCRY_CIPHER_MODE_GCM = 9, /* Galois Counter Mode. */
GCRY_CIPHER_MODE_POLY1305 = 10, /* Poly1305 based AEAD mode. */
GCRY_CIPHER_MODE_OCB = 11, /* OCB3 mode. */
GCRY_CIPHER_MODE_CFB8 = 12, /* Cipher feedback (8 bit mode). */
GCRY_CIPHER_MODE_XTS = 13, /* XTS mode. */
GCRY_CIPHER_MODE_EAX = 14, /* EAX mode. */
GCRY_CIPHER_MODE_SIV = 15, /* SIV mode. */
GCRY_CIPHER_MODE_GCM_SIV = 16 /* GCM-SIV mode. */
};
/* Flags used with the open function. */
enum gcry_cipher_flags
{
GCRY_CIPHER_SECURE = 1, /* Allocate in secure memory. */
GCRY_CIPHER_ENABLE_SYNC = 2, /* Enable CFB sync mode. */
GCRY_CIPHER_CBC_CTS = 4, /* Enable CBC cipher text stealing (CTS). */
GCRY_CIPHER_CBC_MAC = 8, /* Enable CBC message auth. code (MAC). */
GCRY_CIPHER_EXTENDED = 16 /* Enable extended AES-WRAP. */
};
/* Methods used for AEAD IV generation. */
enum gcry_cipher_geniv_methods
{
GCRY_CIPHER_GENIV_METHOD_CONCAT = 1,
GCRY_CIPHER_GENIV_METHOD_XOR = 2
};
/* GCM works only with blocks of 128 bits */
#define GCRY_GCM_BLOCK_LEN (128 / 8)
/* CCM works only with blocks of 128 bits. */
#define GCRY_CCM_BLOCK_LEN (128 / 8)
/* OCB works only with blocks of 128 bits. */
#define GCRY_OCB_BLOCK_LEN (128 / 8)
/* XTS works only with blocks of 128 bits. */
#define GCRY_XTS_BLOCK_LEN (128 / 8)
/* SIV and GCM-SIV works only with blocks of 128 bits */
#define GCRY_SIV_BLOCK_LEN (128 / 8)
/* Create a handle for algorithm ALGO to be used in MODE. FLAGS may
be given as an bitwise OR of the gcry_cipher_flags values. */
gcry_error_t gcry_cipher_open (gcry_cipher_hd_t *handle,
int algo, int mode, unsigned int flags);
/* Close the cipher handle H and release all resource. */
void gcry_cipher_close (gcry_cipher_hd_t h);
/* Perform various operations on the cipher object H. */
gcry_error_t gcry_cipher_ctl (gcry_cipher_hd_t h, int cmd, void *buffer,
size_t buflen);
/* Retrieve various information about the cipher object H. */
gcry_error_t gcry_cipher_info (gcry_cipher_hd_t h, int what, void *buffer,
size_t *nbytes);
/* Retrieve various information about the cipher algorithm ALGO. */
gcry_error_t gcry_cipher_algo_info (int algo, int what, void *buffer,
size_t *nbytes);
/* Map the cipher algorithm whose ID is contained in ALGORITHM to a
string representation of the algorithm name. For unknown algorithm
IDs this function returns "?". */
const char *gcry_cipher_algo_name (int algorithm) _GCRY_GCC_ATTR_PURE;
/* Map the algorithm name NAME to an cipher algorithm ID. Return 0 if
the algorithm name is not known. */
int gcry_cipher_map_name (const char *name) _GCRY_GCC_ATTR_PURE;
/* Given an ASN.1 object identifier in standard IETF dotted decimal
format in STRING, return the encryption mode associated with that
OID or 0 if not known or applicable. */
int gcry_cipher_mode_from_oid (const char *string) _GCRY_GCC_ATTR_PURE;
/* Encrypt the plaintext of size INLEN in IN using the cipher handle H
into the buffer OUT which has an allocated length of OUTSIZE. For
most algorithms it is possible to pass NULL for in and 0 for INLEN
and do a in-place decryption of the data provided in OUT. */
gcry_error_t gcry_cipher_encrypt (gcry_cipher_hd_t h,
void *out, size_t outsize,
const void *in, size_t inlen);
/* The counterpart to gcry_cipher_encrypt. */
gcry_error_t gcry_cipher_decrypt (gcry_cipher_hd_t h,
void *out, size_t outsize,
const void *in, size_t inlen);
/* Set KEY of length KEYLEN bytes for the cipher handle HD. */
gcry_error_t gcry_cipher_setkey (gcry_cipher_hd_t hd,
const void *key, size_t keylen);
/* Set initialization vector IV of length IVLEN for the cipher handle HD. */
gcry_error_t gcry_cipher_setiv (gcry_cipher_hd_t hd,
const void *iv, size_t ivlen);
/* Initialization vector generation setup for AEAD modes/ciphers. */
gcry_error_t gcry_cipher_setup_geniv (gcry_cipher_hd_t hd, int method,
const void *fixed_iv, size_t fixed_ivlen,
const void *dyn_iv, size_t dyn_ivlen);
/* Initialization vector generation for AEAD modes/ciphers. */
gcry_error_t gcry_cipher_geniv (gcry_cipher_hd_t hd,
void *iv, size_t ivlen);
/* Provide additional authentication data for AEAD modes/ciphers. */
gcry_error_t gcry_cipher_authenticate (gcry_cipher_hd_t hd, const void *abuf,
size_t abuflen);
/* Get authentication tag for AEAD modes/ciphers. */
gcry_error_t gcry_cipher_gettag (gcry_cipher_hd_t hd, void *outtag,
size_t taglen);
/* Check authentication tag for AEAD modes/ciphers. */
gcry_error_t gcry_cipher_checktag (gcry_cipher_hd_t hd, const void *intag,
size_t taglen);
/* Reset the handle to the state after open. */
#define gcry_cipher_reset(h) gcry_cipher_ctl ((h), GCRYCTL_RESET, NULL, 0)
/* Perform the OpenPGP sync operation if this is enabled for the
cipher handle H. */
#define gcry_cipher_sync(h) gcry_cipher_ctl( (h), GCRYCTL_CFB_SYNC, NULL, 0)
/* Enable or disable CTS in future calls to gcry_cipher_encrypt().
* CBC mode only. */
#define gcry_cipher_cts(h,on) gcry_cipher_ctl( (h), GCRYCTL_SET_CBC_CTS, \
NULL, on )
#define gcry_cipher_set_sbox(h,oid) gcry_cipher_ctl( (h), GCRYCTL_SET_SBOX, \
(void *) oid, 0);
/* Indicate to the encrypt and decrypt functions that the next call
provides the final data. Only used with some modes. */
#define gcry_cipher_final(a) \
gcry_cipher_ctl ((a), GCRYCTL_FINALIZE, NULL, 0)
/* Set counter for CTR mode. (CTR,CTRLEN) must denote a buffer of
block size length, or (NULL,0) to set the CTR to the all-zero block. */
gpg_error_t gcry_cipher_setctr (gcry_cipher_hd_t hd,
const void *ctr, size_t ctrlen);
/* Retrieve the key length in bytes used with algorithm A. */
size_t gcry_cipher_get_algo_keylen (int algo);
/* Retrieve the block length in bytes used with algorithm A. */
size_t gcry_cipher_get_algo_blklen (int algo);
/* Return 0 if the algorithm A is available for use. */
#define gcry_cipher_test_algo(a) \
gcry_cipher_algo_info( (a), GCRYCTL_TEST_ALGO, NULL, NULL )
/* Setup tag for decryption (for SIV and GCM-SIV mode). */
#define gcry_cipher_set_decryption_tag(a, tag, taglen) \
gcry_cipher_ctl ((a), GCRYCTL_SET_DECRYPTION_TAG, \
(void *)(tag), (taglen))
/************************************
* *
* Asymmetric Cipher Functions *
* *
************************************/
/* The algorithms and their IDs we support. */
enum gcry_pk_algos
{
GCRY_PK_RSA = 1, /* RSA */
GCRY_PK_RSA_E = 2, /* (deprecated: use 1). */
GCRY_PK_RSA_S = 3, /* (deprecated: use 1). */
GCRY_PK_ELG_E = 16, /* (deprecated: use 20). */
GCRY_PK_DSA = 17, /* Digital Signature Algorithm. */
GCRY_PK_ECC = 18, /* Generic ECC. */
GCRY_PK_ELG = 20, /* Elgamal */
GCRY_PK_ECDSA = 301, /* (only for external use). */
GCRY_PK_ECDH = 302, /* (only for external use). */
GCRY_PK_EDDSA = 303, /* (only for external use). */
GCRY_PK_KEM = 333 /* Pseudo ID for KEM algos. */
};
/* Flags describing usage capabilities of a PK algorithm. */
#define GCRY_PK_USAGE_SIGN 1 /* Good for signatures. */
#define GCRY_PK_USAGE_ENCR 2 /* Good for encryption. */
#define GCRY_PK_USAGE_CERT 4 /* Good to certify other keys. */
#define GCRY_PK_USAGE_AUTH 8 /* Good for authentication. */
#define GCRY_PK_USAGE_UNKN 128 /* Unknown usage flag. */
/* Modes used with gcry_pubkey_get_sexp. */
#define GCRY_PK_GET_PUBKEY 1
#define GCRY_PK_GET_SECKEY 2
/* Encrypt the DATA using the public key PKEY and store the result as
a newly created S-expression at RESULT. */
gcry_error_t gcry_pk_encrypt (gcry_sexp_t *result,
gcry_sexp_t data, gcry_sexp_t pkey);
/* Decrypt the DATA using the private key SKEY and store the result as
a newly created S-expression at RESULT. */
gcry_error_t gcry_pk_decrypt (gcry_sexp_t *result,
gcry_sexp_t data, gcry_sexp_t skey);
/* Sign the DATA using the private key SKEY and store the result as
a newly created S-expression at RESULT. */
gcry_error_t gcry_pk_sign (gcry_sexp_t *result,
gcry_sexp_t data, gcry_sexp_t skey);
/* Check the signature SIGVAL on DATA using the public key PKEY. */
gcry_error_t gcry_pk_verify (gcry_sexp_t sigval,
gcry_sexp_t data, gcry_sexp_t pkey);
/* Check that private KEY is sane. */
gcry_error_t gcry_pk_testkey (gcry_sexp_t key);
/* Generate a new key pair according to the parameters given in
S_PARMS. The new key pair is returned in as an S-expression in
R_KEY. */
gcry_error_t gcry_pk_genkey (gcry_sexp_t *r_key, gcry_sexp_t s_parms);
/* Catch all function for miscellaneous operations. */
gcry_error_t gcry_pk_ctl (int cmd, void *buffer, size_t buflen);
/* Retrieve information about the public key algorithm ALGO. */
gcry_error_t gcry_pk_algo_info (int algo, int what,
void *buffer, size_t *nbytes);
/* Map the public key algorithm whose ID is contained in ALGORITHM to
a string representation of the algorithm name. For unknown
algorithm IDs this functions returns "?". */
const char *gcry_pk_algo_name (int algorithm) _GCRY_GCC_ATTR_PURE;
/* Map the algorithm NAME to a public key algorithm Id. Return 0 if
the algorithm name is not known. */
int gcry_pk_map_name (const char* name) _GCRY_GCC_ATTR_PURE;
/* Return what is commonly referred as the key length for the given
public or private KEY. */
unsigned int gcry_pk_get_nbits (gcry_sexp_t key) _GCRY_GCC_ATTR_PURE;
/* Return the so called KEYGRIP which is the SHA-1 hash of the public
key parameters expressed in a way depending on the algorithm. */
unsigned char *gcry_pk_get_keygrip (gcry_sexp_t key, unsigned char *array);
/* Return the name of the curve matching KEY. */
const char *gcry_pk_get_curve (gcry_sexp_t key, int iterator,
unsigned int *r_nbits);
/* Return an S-expression with the parameters of the named ECC curve
NAME. ALGO must be set to an ECC algorithm. */
gcry_sexp_t gcry_pk_get_param (int algo, const char *name);
/* Return 0 if the public key algorithm A is available for use. */
#define gcry_pk_test_algo(a) \
gcry_pk_algo_info( (a), GCRYCTL_TEST_ALGO, NULL, NULL )
/* Return an S-expression representing the context CTX. */
gcry_error_t gcry_pubkey_get_sexp (gcry_sexp_t *r_sexp,
int mode, gcry_ctx_t ctx);
/************************************
* *
* Modern ECC Functions *
* *
************************************/
/* The curves we support. */
enum gcry_ecc_curves
{
GCRY_ECC_CURVE25519 = 1,
GCRY_ECC_CURVE448 = 2
};
/* Get the length of point to prepare buffer for the result. */
unsigned int gcry_ecc_get_algo_keylen (int curveid);
/* Convenience function to compute scalar multiplication of the
* Montgomery form of curve. */
gpg_error_t gcry_ecc_mul_point (int curveid, unsigned char *result,
const unsigned char *scalar,
const unsigned char *point);
/************************************
* *
* Cryptograhic Hash Functions *
* *
************************************/
/* Algorithm IDs for the hash functions we know about. Not all of them
are implemented. */
enum gcry_md_algos
{
GCRY_MD_NONE = 0,
GCRY_MD_MD5 = 1,
GCRY_MD_SHA1 = 2,
GCRY_MD_RMD160 = 3,
GCRY_MD_MD2 = 5,
GCRY_MD_TIGER = 6, /* TIGER/192 as used by gpg <= 1.3.2. */
GCRY_MD_HAVAL = 7, /* HAVAL, 5 pass, 160 bit. */
GCRY_MD_SHA256 = 8,
GCRY_MD_SHA384 = 9,
GCRY_MD_SHA512 = 10,
GCRY_MD_SHA224 = 11,
GCRY_MD_MD4 = 301,
GCRY_MD_CRC32 = 302,
GCRY_MD_CRC32_RFC1510 = 303,
GCRY_MD_CRC24_RFC2440 = 304,
GCRY_MD_WHIRLPOOL = 305,
GCRY_MD_TIGER1 = 306, /* TIGER fixed. */
GCRY_MD_TIGER2 = 307, /* TIGER2 variant. */
GCRY_MD_GOSTR3411_94 = 308, /* GOST R 34.11-94. */
GCRY_MD_STRIBOG256 = 309, /* GOST R 34.11-2012, 256 bit. */
GCRY_MD_STRIBOG512 = 310, /* GOST R 34.11-2012, 512 bit. */
GCRY_MD_GOSTR3411_CP = 311, /* GOST R 34.11-94 with CryptoPro-A S-Box. */
GCRY_MD_SHA3_224 = 312,
GCRY_MD_SHA3_256 = 313,
GCRY_MD_SHA3_384 = 314,
GCRY_MD_SHA3_512 = 315,
GCRY_MD_SHAKE128 = 316,
GCRY_MD_SHAKE256 = 317,
GCRY_MD_BLAKE2B_512 = 318,
GCRY_MD_BLAKE2B_384 = 319,
GCRY_MD_BLAKE2B_256 = 320,
GCRY_MD_BLAKE2B_160 = 321,
GCRY_MD_BLAKE2S_256 = 322,
GCRY_MD_BLAKE2S_224 = 323,
GCRY_MD_BLAKE2S_160 = 324,
GCRY_MD_BLAKE2S_128 = 325,
GCRY_MD_SM3 = 326,
GCRY_MD_SHA512_256 = 327,
GCRY_MD_SHA512_224 = 328,
GCRY_MD_CSHAKE128 = 329,
GCRY_MD_CSHAKE256 = 330
};
/* Flags used with the open function. */
enum gcry_md_flags
{
GCRY_MD_FLAG_SECURE = 1, /* Allocate all buffers in "secure" memory. */
GCRY_MD_FLAG_HMAC = 2, /* Make an HMAC out of this algorithm. */
+ GCRY_MD_FLAG_FIPS_NO_REJECTION = 4, /* Don't reject for FIPS. */
GCRY_MD_FLAG_BUGEMU1 = 0x0100
};
/* (Forward declaration.) */
struct gcry_md_context;
/* This object is used to hold a handle to a message digest object.
This structure is private - only to be used by the public gcry_md_*
macros. */
typedef struct gcry_md_handle
{
/* Actual context. */
struct gcry_md_context *ctx;
/* Buffer management. */
int bufpos;
int bufsize;
unsigned char buf[1];
} *gcry_md_hd_t;
/* Compatibility types, do not use them. */
#ifndef GCRYPT_NO_DEPRECATED
typedef struct gcry_md_handle *GCRY_MD_HD _GCRY_GCC_ATTR_DEPRECATED;
typedef struct gcry_md_handle *GcryMDHd _GCRY_GCC_ATTR_DEPRECATED;
#endif
/* Create a message digest object for algorithm ALGO. FLAGS may be
given as an bitwise OR of the gcry_md_flags values. ALGO may be
given as 0 if the algorithms to be used are later set using
gcry_md_enable. */
gcry_error_t gcry_md_open (gcry_md_hd_t *h, int algo, unsigned int flags);
/* Release the message digest object HD. */
void gcry_md_close (gcry_md_hd_t hd);
/* Add the message digest algorithm ALGO to the digest object HD. */
gcry_error_t gcry_md_enable (gcry_md_hd_t hd, int algo);
/* Create a new digest object as an exact copy of the object HD. */
gcry_error_t gcry_md_copy (gcry_md_hd_t *bhd, gcry_md_hd_t ahd);
/* Reset the digest object HD to its initial state. */
void gcry_md_reset (gcry_md_hd_t hd);
/* Perform various operations on the digest object HD. */
gcry_error_t gcry_md_ctl (gcry_md_hd_t hd, int cmd,
void *buffer, size_t buflen);
/* Pass LENGTH bytes of data in BUFFER to the digest object HD so that
it can update the digest values. This is the actual hash
function. */
void gcry_md_write (gcry_md_hd_t hd, const void *buffer, size_t length);
/* Read out the final digest from HD return the digest value for
algorithm ALGO. */
unsigned char *gcry_md_read (gcry_md_hd_t hd, int algo);
/* Read more output from algorithm ALGO to BUFFER of size LENGTH from
* digest object HD. Algorithm needs to be 'expendable-output function'. */
gpg_error_t gcry_md_extract (gcry_md_hd_t hd, int algo, void *buffer,
size_t length);
/* Convenience function to calculate the hash from the data in BUFFER
of size LENGTH using the algorithm ALGO avoiding the creation of a
hash object. The hash is returned in the caller provided buffer
DIGEST which must be large enough to hold the digest of the given
algorithm. */
void gcry_md_hash_buffer (int algo, void *digest,
const void *buffer, size_t length);
/* Convenience function to hash multiple buffers. */
gpg_error_t gcry_md_hash_buffers (int algo, unsigned int flags, void *digest,
const gcry_buffer_t *iov, int iovcnt);
/* Convenience function to hash multiple buffers.
Algorithm can be 'expendable-output function'. */
gpg_error_t gcry_md_hash_buffers_ext (int algo, unsigned int flags,
void *digest, int digestlen,
const gcry_buffer_t *iov, int iovcnt);
/* Retrieve the algorithm used with HD. This does not work reliable
if more than one algorithm is enabled in HD. */
int gcry_md_get_algo (gcry_md_hd_t hd);
/* Retrieve the length in bytes of the digest yielded by algorithm
ALGO. */
unsigned int gcry_md_get_algo_dlen (int algo);
/* Return true if the the algorithm ALGO is enabled in the digest
object A. */
int gcry_md_is_enabled (gcry_md_hd_t a, int algo);
/* Return true if the digest object A is allocated in "secure" memory. */
int gcry_md_is_secure (gcry_md_hd_t a);
/* Deprecated: Use gcry_md_is_enabled or gcry_md_is_secure. */
gcry_error_t gcry_md_info (gcry_md_hd_t h, int what, void *buffer,
size_t *nbytes) _GCRY_ATTR_INTERNAL;
/* Retrieve various information about the algorithm ALGO. */
gcry_error_t gcry_md_algo_info (int algo, int what, void *buffer,
size_t *nbytes);
/* Map the digest algorithm id ALGO to a string representation of the
algorithm name. For unknown algorithms this function returns
"?". */
const char *gcry_md_algo_name (int algo) _GCRY_GCC_ATTR_PURE;
/* Map the algorithm NAME to a digest algorithm Id. Return 0 if
the algorithm name is not known. */
int gcry_md_map_name (const char* name) _GCRY_GCC_ATTR_PURE;
/* For use with the HMAC feature, the set MAC key to the KEY of
KEYLEN bytes. */
gcry_error_t gcry_md_setkey (gcry_md_hd_t hd, const void *key, size_t keylen);
/* Start or stop debugging for digest handle HD; i.e. create a file
named dbgmd-<n>.<suffix> while hashing. If SUFFIX is NULL,
debugging stops and the file will be closed. */
void gcry_md_debug (gcry_md_hd_t hd, const char *suffix);
/* Update the hash(s) of H with the character C. This is a buffered
version of the gcry_md_write function. */
#define gcry_md_putc(h,c) \
do { \
gcry_md_hd_t h__ = (h); \
if( (h__)->bufpos == (h__)->bufsize ) \
gcry_md_write( (h__), NULL, 0 ); \
(h__)->buf[(h__)->bufpos++] = (c) & 0xff; \
} while(0)
/* Finalize the digest calculation. This is not really needed because
gcry_md_read() does this implicitly. */
#define gcry_md_final(a) \
gcry_md_ctl ((a), GCRYCTL_FINALIZE, NULL, 0)
/* Return 0 if the algorithm A is available for use. */
#define gcry_md_test_algo(a) \
gcry_md_algo_info( (a), GCRYCTL_TEST_ALGO, NULL, NULL )
/* Return an DER encoded ASN.1 OID for the algorithm A in buffer B. N
must point to size_t variable with the available size of buffer B.
After return it will receive the actual size of the returned
OID. */
#define gcry_md_get_asnoid(a,b,n) \
gcry_md_algo_info((a), GCRYCTL_GET_ASNOID, (b), (n))
struct gcry_cshake_customization
{
const void *n;
unsigned int n_len;
const void *s;
unsigned int s_len;
};
/**********************************************
* *
* Message Authentication Code Functions *
* *
**********************************************/
/* The data object used to hold a handle to an encryption object. */
struct gcry_mac_handle;
typedef struct gcry_mac_handle *gcry_mac_hd_t;
/* Algorithm IDs for the hash functions we know about. Not all of them
are implemented. */
enum gcry_mac_algos
{
GCRY_MAC_NONE = 0,
GCRY_MAC_GOST28147_IMIT = 1,
GCRY_MAC_HMAC_SHA256 = 101,
GCRY_MAC_HMAC_SHA224 = 102,
GCRY_MAC_HMAC_SHA512 = 103,
GCRY_MAC_HMAC_SHA384 = 104,
GCRY_MAC_HMAC_SHA1 = 105,
GCRY_MAC_HMAC_MD5 = 106,
GCRY_MAC_HMAC_MD4 = 107,
GCRY_MAC_HMAC_RMD160 = 108,
GCRY_MAC_HMAC_TIGER1 = 109, /* The fixed TIGER variant */
GCRY_MAC_HMAC_WHIRLPOOL = 110,
GCRY_MAC_HMAC_GOSTR3411_94 = 111,
GCRY_MAC_HMAC_STRIBOG256 = 112,
GCRY_MAC_HMAC_STRIBOG512 = 113,
GCRY_MAC_HMAC_MD2 = 114,
GCRY_MAC_HMAC_SHA3_224 = 115,
GCRY_MAC_HMAC_SHA3_256 = 116,
GCRY_MAC_HMAC_SHA3_384 = 117,
GCRY_MAC_HMAC_SHA3_512 = 118,
GCRY_MAC_HMAC_GOSTR3411_CP = 119,
GCRY_MAC_HMAC_BLAKE2B_512 = 120,
GCRY_MAC_HMAC_BLAKE2B_384 = 121,
GCRY_MAC_HMAC_BLAKE2B_256 = 122,
GCRY_MAC_HMAC_BLAKE2B_160 = 123,
GCRY_MAC_HMAC_BLAKE2S_256 = 124,
GCRY_MAC_HMAC_BLAKE2S_224 = 125,
GCRY_MAC_HMAC_BLAKE2S_160 = 126,
GCRY_MAC_HMAC_BLAKE2S_128 = 127,
GCRY_MAC_HMAC_SM3 = 128,
GCRY_MAC_HMAC_SHA512_256 = 129,
GCRY_MAC_HMAC_SHA512_224 = 130,
GCRY_MAC_CMAC_AES = 201,
GCRY_MAC_CMAC_3DES = 202,
GCRY_MAC_CMAC_CAMELLIA = 203,
GCRY_MAC_CMAC_CAST5 = 204,
GCRY_MAC_CMAC_BLOWFISH = 205,
GCRY_MAC_CMAC_TWOFISH = 206,
GCRY_MAC_CMAC_SERPENT = 207,
GCRY_MAC_CMAC_SEED = 208,
GCRY_MAC_CMAC_RFC2268 = 209,
GCRY_MAC_CMAC_IDEA = 210,
GCRY_MAC_CMAC_GOST28147 = 211,
GCRY_MAC_CMAC_SM4 = 212,
GCRY_MAC_CMAC_ARIA = 213,
GCRY_MAC_GMAC_AES = 401,
GCRY_MAC_GMAC_CAMELLIA = 402,
GCRY_MAC_GMAC_TWOFISH = 403,
GCRY_MAC_GMAC_SERPENT = 404,
GCRY_MAC_GMAC_SEED = 405,
GCRY_MAC_GMAC_SM4 = 406,
GCRY_MAC_GMAC_ARIA = 407,
GCRY_MAC_POLY1305 = 501,
GCRY_MAC_POLY1305_AES = 502,
GCRY_MAC_POLY1305_CAMELLIA = 503,
GCRY_MAC_POLY1305_TWOFISH = 504,
GCRY_MAC_POLY1305_SERPENT = 505,
GCRY_MAC_POLY1305_SEED = 506,
GCRY_MAC_POLY1305_SM4 = 507,
GCRY_MAC_POLY1305_ARIA = 508
};
/* Flags used with the open function. */
enum gcry_mac_flags
{
GCRY_MAC_FLAG_SECURE = 1 /* Allocate all buffers in "secure" memory. */
};
/* Create a MAC handle for algorithm ALGO. FLAGS may be given as an bitwise OR
of the gcry_mac_flags values. CTX maybe NULL or gcry_ctx_t object to be
associated with HANDLE. */
gcry_error_t gcry_mac_open (gcry_mac_hd_t *handle, int algo,
unsigned int flags, gcry_ctx_t ctx);
/* Close the MAC handle H and release all resource. */
void gcry_mac_close (gcry_mac_hd_t h);
/* Perform various operations on the MAC object H. */
gcry_error_t gcry_mac_ctl (gcry_mac_hd_t h, int cmd, void *buffer,
size_t buflen);
/* Retrieve various information about the MAC algorithm ALGO. */
gcry_error_t gcry_mac_algo_info (int algo, int what, void *buffer,
size_t *nbytes);
/* Set KEY of length KEYLEN bytes for the MAC handle HD. */
gcry_error_t gcry_mac_setkey (gcry_mac_hd_t hd, const void *key,
size_t keylen);
/* Set initialization vector IV of length IVLEN for the MAC handle HD. */
gcry_error_t gcry_mac_setiv (gcry_mac_hd_t hd, const void *iv,
size_t ivlen);
/* Pass LENGTH bytes of data in BUFFER to the MAC object HD so that
it can update the MAC values. */
gcry_error_t gcry_mac_write (gcry_mac_hd_t hd, const void *buffer,
size_t length);
/* Read out the final authentication code from the MAC object HD to BUFFER. */
gcry_error_t gcry_mac_read (gcry_mac_hd_t hd, void *buffer, size_t *buflen);
/* Verify the final authentication code from the MAC object HD with BUFFER. */
gcry_error_t gcry_mac_verify (gcry_mac_hd_t hd, const void *buffer,
size_t buflen);
/* Retrieve the algorithm used with MAC. */
int gcry_mac_get_algo (gcry_mac_hd_t hd);
/* Retrieve the length in bytes of the MAC yielded by algorithm ALGO. */
unsigned int gcry_mac_get_algo_maclen (int algo);
/* Retrieve the default key length in bytes used with algorithm A. */
unsigned int gcry_mac_get_algo_keylen (int algo);
/* Map the MAC algorithm whose ID is contained in ALGORITHM to a
string representation of the algorithm name. For unknown algorithm
IDs this function returns "?". */
const char *gcry_mac_algo_name (int algorithm) _GCRY_GCC_ATTR_PURE;
/* Map the algorithm name NAME to an MAC algorithm ID. Return 0 if
the algorithm name is not known. */
int gcry_mac_map_name (const char *name) _GCRY_GCC_ATTR_PURE;
/* Reset the handle to the state after open/setkey. */
#define gcry_mac_reset(h) gcry_mac_ctl ((h), GCRYCTL_RESET, NULL, 0)
/* Return 0 if the algorithm A is available for use. */
#define gcry_mac_test_algo(a) \
gcry_mac_algo_info( (a), GCRYCTL_TEST_ALGO, NULL, NULL )
/******************************
* *
* Key Derivation Functions *
* *
******************************/
/* Algorithm IDs for the KDFs. */
enum gcry_kdf_algos
{
GCRY_KDF_NONE = 0,
GCRY_KDF_SIMPLE_S2K = 16,
GCRY_KDF_SALTED_S2K = 17,
GCRY_KDF_ITERSALTED_S2K = 19,
GCRY_KDF_PBKDF1 = 33,
GCRY_KDF_PBKDF2 = 34,
GCRY_KDF_SCRYPT = 48,
/**/
GCRY_KDF_ARGON2 = 64,
GCRY_KDF_BALLOON = 65,
/**/
/* In the original SP 800-56A, it's called
* "Concatenation Key Derivation Function".
* Now (as of 2022), it's defined in SP 800-56C rev.2, as
* "One-Step Key Derivation".
*/
GCRY_KDF_ONESTEP_KDF = 96, /* One-Step Key Derivation with hash */
GCRY_KDF_ONESTEP_KDF_MAC = 97, /* One-Step Key Derivation with MAC */
GCRY_KDF_HKDF = 98,
/* Two-Step Key Derivation with HMAC */
/* Two-Step Key Derivation with CMAC */
/* KDF PRF in SP 800-108r1 */
GCRY_KDF_X963_KDF = 101
};
enum gcry_kdf_subalgo_argon2
{
GCRY_KDF_ARGON2D = 0,
GCRY_KDF_ARGON2I = 1,
GCRY_KDF_ARGON2ID = 2
};
/* Derive a key from a passphrase. */
gpg_error_t gcry_kdf_derive (const void *passphrase, size_t passphraselen,
int algo, int subalgo,
const void *salt, size_t saltlen,
unsigned long iterations,
size_t keysize, void *keybuffer);
/* Another API to derive a key from a passphrase. */
typedef struct gcry_kdf_handle *gcry_kdf_hd_t;
typedef void (*gcry_kdf_job_fn_t) (void *priv);
typedef int (*gcry_kdf_dispatch_job_fn_t) (void *jobs_context,
gcry_kdf_job_fn_t job_fn,
void *job_priv);
typedef int (*gcry_kdf_wait_all_jobs_fn_t) (void *jobs_context);
/* Exposed structure for KDF computation to decouple thread functionality. */
typedef struct gcry_kdf_thread_ops
{
void *jobs_context;
gcry_kdf_dispatch_job_fn_t dispatch_job;
gcry_kdf_wait_all_jobs_fn_t wait_all_jobs;
} gcry_kdf_thread_ops_t;
gcry_error_t gcry_kdf_open (gcry_kdf_hd_t *hd, int algo, int subalgo,
const unsigned long *param, unsigned int paramlen,
const void *passphrase, size_t passphraselen,
const void *salt, size_t saltlen,
const void *key, size_t keylen,
const void *ad, size_t adlen);
gcry_error_t gcry_kdf_compute (gcry_kdf_hd_t h,
const gcry_kdf_thread_ops_t *ops);
gcry_error_t gcry_kdf_final (gcry_kdf_hd_t h, size_t resultlen, void *result);
void gcry_kdf_close (gcry_kdf_hd_t h);
/**********************************
* *
* Key Encapsulation Mechanisms *
* *
**********************************/
/* Algorithm IDs for the KEMs. */
enum gcry_kem_algos
{
GCRY_KEM_NONE = 0,
GCRY_KEM_SNTRUP761 = 1,
GCRY_KEM_CM6688128F = 2, /* Classic McEliece */
GCRY_KEM_MLKEM512 = 3, /* aka Kyber512 */
GCRY_KEM_MLKEM768 = 4, /* aka Kyber768 */
GCRY_KEM_MLKEM1024 = 5, /* aka Kyber1024 */
/* From here, ECC KEMs */
GCRY_KEM_RAW_X25519 =31, /* Using X25519 with Identity KDF */
GCRY_KEM_RAW_X448 =32, /* Using X448 with Identity KDF */
GCRY_KEM_RAW_BP256 =33,
GCRY_KEM_RAW_BP384 =34,
GCRY_KEM_RAW_BP512 =35,
GCRY_KEM_RAW_P256R1 =36,
GCRY_KEM_RAW_P384R1 =37,
GCRY_KEM_RAW_P521R1 =38,
GCRY_KEM_DHKEM25519 =41, /* DHKEM with X25519, HKDF, and SHA256 */
GCRY_KEM_DHKEM448 = 42, /* DHKEM with X448, HKDF, and SHA512 */
GCRY_KEM_DHKEMP256R1=43,
GCRY_KEM_DHKEMP384R1=44,
GCRY_KEM_DHKEMP521R1=45
};
/*
* Before C99, limitation is 31 significant initial characters in a
* macro name
*
* 1 ... 31
* | |
* v v
* _______________________________
*/
#define GCRY_KEM_SNTRUP761_SECKEY_LEN 1763
#define GCRY_KEM_SNTRUP761_PUBKEY_LEN 1158
#define GCRY_KEM_SNTRUP761_ENCAPS_LEN 1039
#define GCRY_KEM_SNTRUP761_CIPHER_LEN GCRY_KEM_SNTRUP761_ENCAPS_LEN
#define GCRY_KEM_SNTRUP761_SHARED_LEN 32
#define GCRY_KEM_CM6688128F_SECKEY_LEN 13932
#define GCRY_KEM_CM6688128F_PUBKEY_LEN 1044992
#define GCRY_KEM_CM6688128F_ENCAPS_LEN 208
#define GCRY_KEM_CM6688128F_CIPHER_LEN GCRY_KEM_CM6688128F_ENCAPS_LEN
#define GCRY_KEM_CM6688128F_SHARED_LEN 32
#define GCRY_KEM_MLKEM_RANDOM_LEN 32
#define GCRY_KEM_MLKEM512_RANDOM_LEN GCRY_KEM_MLKEM_RANDOM_LEN
#define GCRY_KEM_MLKEM768_RANDOM_LEN GCRY_KEM_MLKEM_RANDOM_LEN
#define GCRY_KEM_MLKEM1024_RANDOM_LEN GCRY_KEM_MLKEM_RANDOM_LEN
#define GCRY_KEM_MLKEM512_SECKEY_LEN (2*384+2*384+32+2*32) /* 1632 */
#define GCRY_KEM_MLKEM512_PUBKEY_LEN (2*384+32) /* 800 */
#define GCRY_KEM_MLKEM512_ENCAPS_LEN (128+2*320) /* 768 */
#define GCRY_KEM_MLKEM512_CIPHER_LEN GCRY_KEM_MLKEM512_ENCAPS_LEN
#define GCRY_KEM_MLKEM512_SHARED_LEN 32
#define GCRY_KEM_MLKEM768_SECKEY_LEN (3*384+3*384+32+2*32) /* 2400 */
#define GCRY_KEM_MLKEM768_PUBKEY_LEN (3*384+32) /* 1184 */
#define GCRY_KEM_MLKEM768_ENCAPS_LEN (128+3*320) /* 1088 */
#define GCRY_KEM_MLKEM768_CIPHER_LEN GCRY_KEM_MLKEM768_ENCAPS_LEN
#define GCRY_KEM_MLKEM768_SHARED_LEN 32
#define GCRY_KEM_MLKEM1024_SECKEY_LEN (4*384+4*384+32+2*32) /* 3168 */
#define GCRY_KEM_MLKEM1024_PUBKEY_LEN (4*384+32) /* 1568 */
#define GCRY_KEM_MLKEM1024_ENCAPS_LEN (160+4*352) /* 1568 */
#define GCRY_KEM_MLKEM1024_CIPHER_LEN GCRY_KEM_MLKEM1024_ENCAPS_LEN
#define GCRY_KEM_MLKEM1024_SHARED_LEN 32
/* For ECC, seckey, pubkey, and ciphertext is defined by the curve. */
#define GCRY_KEM_ECC_X25519_SECKEY_LEN 32
#define GCRY_KEM_ECC_X25519_PUBKEY_LEN 32
#define GCRY_KEM_ECC_X25519_ENCAPS_LEN 32
#define GCRY_KEM_ECC_X25519_CIPHER_LEN GCRY_KEM_ECC_X25519_ENCAPS_LEN
/* And shared secret is specific to the protocol. */
#define GCRY_KEM_RAW_X25519_SHARED_LEN 32
#define GCRY_KEM_DHKEM25519_SECKEY_LEN GCRY_KEM_ECC_X25519_SECKEY_LEN
#define GCRY_KEM_DHKEM25519_PUBKEY_LEN GCRY_KEM_ECC_X25519_PUBKEY_LEN
#define GCRY_KEM_DHKEM25519_ENCAPS_LEN GCRY_KEM_ECC_X25519_ENCAPS_LEN
#define GCRY_KEM_DHKEM25519_CIPHER_LEN GCRY_KEM_DHKEM25519_ENCAPS_LEN
#define GCRY_KEM_DHKEM25519_SHARED_LEN 32
#define GCRY_KEM_ECC_BP256_SECKEY_LEN 32
#define GCRY_KEM_ECC_BP256_PUBKEY_LEN (1+32+32)
#define GCRY_KEM_ECC_BP256_ENCAPS_LEN (1+32+32)
#define GCRY_KEM_ECC_BP256_CIPHER_LEN GCRY_KEM_ECC_BP256_ENCAPS_LEN
#define GCRY_KEM_RAW_BP256_SHARED_LEN (1+32+32)
#define GCRY_KEM_ECC_BP384_SECKEY_LEN 48
#define GCRY_KEM_ECC_BP384_PUBKEY_LEN (1+48+48)
#define GCRY_KEM_ECC_BP384_ENCAPS_LEN (1+48+48)
#define GCRY_KEM_ECC_BP384_CIPHER_LEN GCRY_KEM_ECC_BP384_ENCAPS_LEN
#define GCRY_KEM_RAW_BP384_SHARED_LEN (1+48+48)
/* Generate a new key pair with ALGO. */
gcry_error_t gcry_kem_genkey (int algo,
void *pubkey, size_t pubkey_len,
void *seckey, size_t seckey_len,
const void *optional, size_t optional_len);
gcry_error_t gcry_kem_keypair (int algo,
void *pubkey, size_t pubkey_len,
void *seckey, size_t seckey_len);
/* With ALGO, for a PUBKEY, generate SHARED secret and encapsulate
it into CIPHERTEXT. */
gcry_error_t gcry_kem_encap (int algo,
const void *pubkey, size_t pubkey_len,
void *ciphertext, size_t ciphertext_len,
void *shared, size_t shared_len,
const void *optional, size_t optional_len);
/* With ALGO, for a SECKEY and CIPHERTEXT, compute its SHARED secret. */
gcry_error_t gcry_kem_decap (int algo,
const void *seckey, size_t seckey_len,
const void *ciphertext, size_t ciphertext_len,
void *shared, size_t shared_len,
const void *optional, size_t optional_len);
/************************************
* *
* Random Generating Functions *
* *
************************************/
/* The type of the random number generator. */
enum gcry_rng_types
{
GCRY_RNG_TYPE_STANDARD = 1, /* The default CSPRNG generator. */
GCRY_RNG_TYPE_FIPS = 2, /* The FIPS X9.31 AES generator. */
GCRY_RNG_TYPE_SYSTEM = 3 /* The system's native generator. */
};
/* The possible values for the random quality. The rule of thumb is
to use STRONG for session keys and VERY_STRONG for key material.
WEAK is usually an alias for STRONG and should not be used anymore
(except with gcry_mpi_randomize); use gcry_create_nonce instead. */
typedef enum gcry_random_level
{
GCRY_WEAK_RANDOM = 0,
GCRY_STRONG_RANDOM = 1,
GCRY_VERY_STRONG_RANDOM = 2
}
gcry_random_level_t;
/* Fill BUFFER with LENGTH bytes of random, using random numbers of
quality LEVEL. */
void gcry_randomize (void *buffer, size_t length,
enum gcry_random_level level);
/* Add the external random from BUFFER with LENGTH bytes into the
pool. QUALITY should either be -1 for unknown or in the range of 0
to 100 */
gcry_error_t gcry_random_add_bytes (const void *buffer, size_t length,
int quality);
/* If random numbers are used in an application, this macro should be
called from time to time so that new stuff gets added to the
internal pool of the RNG. */
#define gcry_fast_random_poll() gcry_control (GCRYCTL_FAST_POLL, NULL)
/* Return NBYTES of allocated random using a random numbers of quality
LEVEL. */
void *gcry_random_bytes (size_t nbytes, enum gcry_random_level level)
_GCRY_GCC_ATTR_MALLOC;
/* Return NBYTES of allocated random using a random numbers of quality
LEVEL. The random is returned in "secure" memory. */
void *gcry_random_bytes_secure (size_t nbytes, enum gcry_random_level level)
_GCRY_GCC_ATTR_MALLOC;
/* Set the big integer W to a random value of NBITS using a random
generator with quality LEVEL. Note that by using a level of
GCRY_WEAK_RANDOM gcry_create_nonce is used internally. */
void gcry_mpi_randomize (gcry_mpi_t w,
unsigned int nbits, enum gcry_random_level level);
/* Create an unpredicable nonce of LENGTH bytes in BUFFER. */
void gcry_create_nonce (void *buffer, size_t length);
/*******************************/
/* */
/* Prime Number Functions */
/* */
/*******************************/
/* Mode values passed to a gcry_prime_check_func_t. */
#define GCRY_PRIME_CHECK_AT_FINISH 0
#define GCRY_PRIME_CHECK_AT_GOT_PRIME 1
#define GCRY_PRIME_CHECK_AT_MAYBE_PRIME 2
/* The function should return 1 if the operation shall continue, 0 to
reject the prime candidate. */
typedef int (*gcry_prime_check_func_t) (void *arg, int mode,
gcry_mpi_t candidate);
/* Flags for gcry_prime_generate(): */
/* Allocate prime numbers and factors in secure memory. */
#define GCRY_PRIME_FLAG_SECRET (1 << 0)
/* Make sure that at least one prime factor is of size
`FACTOR_BITS'. */
#define GCRY_PRIME_FLAG_SPECIAL_FACTOR (1 << 1)
/* Generate a new prime number of PRIME_BITS bits and store it in
PRIME. If FACTOR_BITS is non-zero, one of the prime factors of
(prime - 1) / 2 must be FACTOR_BITS bits long. If FACTORS is
non-zero, allocate a new, NULL-terminated array holding the prime
factors and store it in FACTORS. FLAGS might be used to influence
the prime number generation process. */
gcry_error_t gcry_prime_generate (gcry_mpi_t *prime,
unsigned int prime_bits,
unsigned int factor_bits,
gcry_mpi_t **factors,
gcry_prime_check_func_t cb_func,
void *cb_arg,
gcry_random_level_t random_level,
unsigned int flags);
/* Find a generator for PRIME where the factorization of (prime-1) is
in the NULL terminated array FACTORS. Return the generator as a
newly allocated MPI in R_G. If START_G is not NULL, use this as
the start for the search. */
gcry_error_t gcry_prime_group_generator (gcry_mpi_t *r_g,
gcry_mpi_t prime,
gcry_mpi_t *factors,
gcry_mpi_t start_g);
/* Convenience function to release the FACTORS array. */
void gcry_prime_release_factors (gcry_mpi_t *factors);
/* Check whether the number X is prime. */
gcry_error_t gcry_prime_check (gcry_mpi_t x, unsigned int flags);
/************************************
* *
* Miscellaneous Stuff *
* *
************************************/
/* Release the context object CTX. */
void gcry_ctx_release (gcry_ctx_t ctx);
/* Log data using Libgcrypt's own log interface. */
void gcry_log_debug (const char *fmt, ...) _GCRY_GCC_ATTR_PRINTF(1,2);
void gcry_log_debughex (const char *text, const void *buffer, size_t length);
void gcry_log_debugmpi (const char *text, gcry_mpi_t mpi);
void gcry_log_debugpnt (const char *text,
gcry_mpi_point_t point, gcry_ctx_t ctx);
void gcry_log_debugsxp (const char *text, gcry_sexp_t sexp);
char *gcry_get_config (int mode, const char *what);
/* Convinience macro to access the FIPS service indicator. */
#define gcry_get_fips_service_indicator() gcry_control (GCRYCTL_FIPS_SERVICE_INDICATOR)
/* Log levels used by the internal logging facility. */
enum gcry_log_levels
{
GCRY_LOG_CONT = 0, /* (Continue the last log line.) */
GCRY_LOG_INFO = 10,
GCRY_LOG_WARN = 20,
GCRY_LOG_ERROR = 30,
GCRY_LOG_FATAL = 40,
GCRY_LOG_BUG = 50,
GCRY_LOG_DEBUG = 100
};
/* Type for progress handlers. */
typedef void (*gcry_handler_progress_t) (void *, const char *, int, int, int);
/* Type for memory allocation handlers. */
typedef void *(*gcry_handler_alloc_t) (size_t n);
/* Type for secure memory check handlers. */
typedef int (*gcry_handler_secure_check_t) (const void *);
/* Type for memory reallocation handlers. */
typedef void *(*gcry_handler_realloc_t) (void *p, size_t n);
/* Type for memory free handlers. */
typedef void (*gcry_handler_free_t) (void *);
/* Type for out-of-memory handlers. */
typedef int (*gcry_handler_no_mem_t) (void *, size_t, unsigned int);
/* Type for fatal error handlers. */
typedef void (*gcry_handler_error_t) (void *, int, const char *);
/* Type for the deprecated log handler. */
typedef void (*gcry_handler_log_t) (void *, int, const char *, va_list);
/* Certain operations can provide progress information. This function
is used to register a handler for retrieving these information. */
void gcry_set_progress_handler (gcry_handler_progress_t cb, void *cb_data);
/* Register a custom memory allocation functions. */
void gcry_set_allocation_handler (
gcry_handler_alloc_t func_alloc,
gcry_handler_alloc_t func_alloc_secure,
gcry_handler_secure_check_t func_secure_check,
gcry_handler_realloc_t func_realloc,
gcry_handler_free_t func_free);
/* Register a function used instead of the internal out of memory
handler. */
void gcry_set_outofcore_handler (gcry_handler_no_mem_t h, void *opaque);
/* Register a function used instead of the internal fatal error
handler. */
void gcry_set_fatalerror_handler (gcry_handler_error_t fnc, void *opaque);
/* This function has no more effect. */
void gcry_set_log_handler (gcry_handler_log_t f,
void *opaque) _GCRY_ATTR_INTERNAL;
/* Reserved for future use. */
void gcry_set_gettext_handler (const char *(*f)(const char*));
/* Libgcrypt uses its own memory allocation. It is important to use
gcry_free () to release memory allocated by libgcrypt. */
void *gcry_malloc (size_t n) _GCRY_GCC_ATTR_MALLOC;
void *gcry_calloc (size_t n, size_t m) _GCRY_GCC_ATTR_MALLOC;
void *gcry_malloc_secure (size_t n) _GCRY_GCC_ATTR_MALLOC;
void *gcry_calloc_secure (size_t n, size_t m) _GCRY_GCC_ATTR_MALLOC;
void *gcry_realloc (void *a, size_t n);
char *gcry_strdup (const char *string) _GCRY_GCC_ATTR_MALLOC;
void *gcry_xmalloc (size_t n) _GCRY_GCC_ATTR_MALLOC;
void *gcry_xcalloc (size_t n, size_t m) _GCRY_GCC_ATTR_MALLOC;
void *gcry_xmalloc_secure (size_t n) _GCRY_GCC_ATTR_MALLOC;
void *gcry_xcalloc_secure (size_t n, size_t m) _GCRY_GCC_ATTR_MALLOC;
void *gcry_xrealloc (void *a, size_t n);
char *gcry_xstrdup (const char * a) _GCRY_GCC_ATTR_MALLOC;
void gcry_free (void *a);
/* Return true if A is allocated in "secure" memory. */
int gcry_is_secure (const void *a) _GCRY_GCC_ATTR_PURE;
/* Return true if Libgcrypt is in FIPS mode. */
#define gcry_fips_mode_active() !!gcry_control (GCRYCTL_FIPS_MODE_P, 0)
/* Variant of gcry_pk_sign which takes as additional parameter a HD
* handle for hash and an optional context. The hash algorithm used by the
* handle needs to be enabled and input needs to be supplied beforehand.
* DATA-TMPL specifies a template to compose an S-expression to be signed.
* A template should include '(hash %s %b)' or '(hash ALGONAME %b)'.
* For the former case, '%s' is substituted by the string of algorithm
* of gcry_md_get_algo (HD) and when gcry_md_read is called, ALGO=0 is
* used internally. For the latter case, hash algorithm by ALGONAME
* is used when gcry_md_read is called internally.
* The hash handle must not yet been finalized; the function
* takes a copy of the state and does a finalize on the copy. This
* function shall be used if a policy requires that hashing and signing
* is done by the same function. CTX is currently not used and should
* be passed as NULL. */
gcry_error_t gcry_pk_hash_sign (gcry_sexp_t *result,
const char *data_tmpl, gcry_sexp_t skey,
gcry_md_hd_t hd, gcry_ctx_t ctx);
/* Variant of gcry_pk_verify which takes as additional parameter a HD
* handle for hash and an optional context. Similar to gcry_pk_hash_sign. */
gcry_error_t gcry_pk_hash_verify (gcry_sexp_t sigval,
const char *data_tmpl, gcry_sexp_t pkey,
gcry_md_hd_t hd, gcry_ctx_t ctx);
gcry_error_t gcry_pk_random_override_new (gcry_ctx_t *r_ctx,
const unsigned char *p, size_t len);
#define gcry_pk_input_data_push gcry_pk_random_override_new
#if 0 /* (Keep Emacsens' auto-indent happy.) */
{
#endif
#ifdef __cplusplus
}
#endif
#endif /* _GCRYPT_H */
/*
@emacs_local_vars_begin@
@emacs_local_vars_read_only@
@emacs_local_vars_end@
*/
diff --git a/src/visibility.c b/src/visibility.c
index 8f76b854..be5deda1 100644
--- a/src/visibility.c
+++ b/src/visibility.c
@@ -1,1779 +1,1782 @@
/* visibility.c - Wrapper for all public functions.
* Copyright (C) 2007, 2008, 2011 Free Software Foundation, Inc.
* Copyright (C) 2013 g10 Code GmbH
*
* This file is part of Libgcrypt.
*
* Libgcrypt is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* Libgcrypt is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <stdarg.h>
#define _GCRY_INCLUDED_BY_VISIBILITY_C
#include "g10lib.h"
#include "cipher-proto.h"
#include "context.h"
#include "mpi.h"
#include "ec-context.h"
const char *
gcry_strerror (gcry_error_t err)
{
return _gcry_strerror (err);
}
const char *
gcry_strsource (gcry_error_t err)
{
return _gcry_strsource (err);
}
gcry_err_code_t
gcry_err_code_from_errno (int err)
{
return _gcry_err_code_from_errno (err);
}
int
gcry_err_code_to_errno (gcry_err_code_t code)
{
return _gcry_err_code_to_errno (code);
}
gcry_error_t
gcry_err_make_from_errno (gcry_err_source_t source, int err)
{
return _gcry_err_make_from_errno (source, err);
}
gcry_error_t
gcry_error_from_errno (int err)
{
return _gcry_error_from_errno (err);
}
const char *
gcry_check_version (const char *req_version)
{
return _gcry_check_version (req_version);
}
gcry_error_t
gcry_control (enum gcry_ctl_cmds cmd, ...)
{
gcry_error_t err;
va_list arg_ptr;
va_start (arg_ptr, cmd);
err = gpg_error (_gcry_vcontrol (cmd, arg_ptr));
va_end(arg_ptr);
return err;
}
gcry_error_t
gcry_sexp_new (gcry_sexp_t *retsexp,
const void *buffer, size_t length,
int autodetect)
{
return gpg_error (_gcry_sexp_new (retsexp, buffer, length, autodetect));
}
gcry_error_t
gcry_sexp_create (gcry_sexp_t *retsexp,
void *buffer, size_t length,
int autodetect, void (*freefnc) (void *))
{
return gpg_error (_gcry_sexp_create (retsexp, buffer, length,
autodetect, freefnc));
}
gcry_error_t
gcry_sexp_sscan (gcry_sexp_t *retsexp, size_t *erroff,
const char *buffer, size_t length)
{
return gpg_error (_gcry_sexp_sscan (retsexp, erroff, buffer, length));
}
gcry_error_t
gcry_sexp_build (gcry_sexp_t *retsexp, size_t *erroff,
const char *format, ...)
{
gcry_err_code_t rc;
va_list arg_ptr;
va_start (arg_ptr, format);
rc = _gcry_sexp_vbuild (retsexp, erroff, format, arg_ptr);
va_end (arg_ptr);
return gpg_error (rc);
}
gcry_error_t
gcry_sexp_build_array (gcry_sexp_t *retsexp, size_t *erroff,
const char *format, void **arg_list)
{
return gpg_error (_gcry_sexp_build_array (retsexp, erroff, format, arg_list));
}
void
gcry_sexp_release (gcry_sexp_t sexp)
{
_gcry_sexp_release (sexp);
}
size_t
gcry_sexp_canon_len (const unsigned char *buffer, size_t length,
size_t *erroff, gcry_error_t *errcode)
{
size_t n;
gpg_err_code_t rc;
n = _gcry_sexp_canon_len (buffer, length, erroff, &rc);
if (errcode)
*errcode = gpg_error (rc);
return n;
}
size_t
gcry_sexp_sprint (gcry_sexp_t sexp, int mode, void *buffer, size_t maxlength)
{
return _gcry_sexp_sprint (sexp, mode, buffer, maxlength);
}
void
gcry_sexp_dump (const gcry_sexp_t a)
{
_gcry_sexp_dump (a);
}
gcry_sexp_t
gcry_sexp_cons (const gcry_sexp_t a, const gcry_sexp_t b)
{
return _gcry_sexp_cons (a, b);
}
gcry_sexp_t
gcry_sexp_alist (const gcry_sexp_t *array)
{
return _gcry_sexp_alist (array);
}
gcry_sexp_t
gcry_sexp_vlist (const gcry_sexp_t a, ...)
{
/* This is not yet implemented in sexp.c. */
(void)a;
BUG ();
return NULL;
}
gcry_sexp_t
gcry_sexp_append (const gcry_sexp_t a, const gcry_sexp_t n)
{
return _gcry_sexp_append (a, n);
}
gcry_sexp_t
gcry_sexp_prepend (const gcry_sexp_t a, const gcry_sexp_t n)
{
return _gcry_sexp_prepend (a, n);
}
gcry_sexp_t
gcry_sexp_find_token (gcry_sexp_t list, const char *tok, size_t toklen)
{
return _gcry_sexp_find_token (list, tok, toklen);
}
int
gcry_sexp_length (const gcry_sexp_t list)
{
return _gcry_sexp_length (list);
}
gcry_sexp_t
gcry_sexp_nth (const gcry_sexp_t list, int number)
{
return _gcry_sexp_nth (list, number);
}
gcry_sexp_t
gcry_sexp_car (const gcry_sexp_t list)
{
return _gcry_sexp_car (list);
}
gcry_sexp_t
gcry_sexp_cdr (const gcry_sexp_t list)
{
return _gcry_sexp_cdr (list);
}
gcry_sexp_t
gcry_sexp_cadr (const gcry_sexp_t list)
{
return _gcry_sexp_cadr (list);
}
const char *
gcry_sexp_nth_data (const gcry_sexp_t list, int number, size_t *datalen)
{
return _gcry_sexp_nth_data (list, number, datalen);
}
void *
gcry_sexp_nth_buffer (const gcry_sexp_t list, int number, size_t *rlength)
{
return _gcry_sexp_nth_buffer (list, number, rlength);
}
char *
gcry_sexp_nth_string (gcry_sexp_t list, int number)
{
return _gcry_sexp_nth_string (list, number);
}
gcry_mpi_t
gcry_sexp_nth_mpi (gcry_sexp_t list, int number, int mpifmt)
{
return _gcry_sexp_nth_mpi (list, number, mpifmt);
}
gpg_error_t
gcry_sexp_extract_param (gcry_sexp_t sexp, const char *path,
const char *list, ...)
{
gcry_err_code_t rc;
va_list arg_ptr;
va_start (arg_ptr, list);
rc = _gcry_sexp_vextract_param (sexp, path, list, arg_ptr);
va_end (arg_ptr);
return gpg_error (rc);
}
gcry_mpi_t
gcry_mpi_new (unsigned int nbits)
{
return _gcry_mpi_new (nbits);
}
gcry_mpi_t
gcry_mpi_snew (unsigned int nbits)
{
return _gcry_mpi_snew (nbits);
}
void
gcry_mpi_release (gcry_mpi_t a)
{
_gcry_mpi_release (a);
}
gcry_mpi_t
gcry_mpi_copy (const gcry_mpi_t a)
{
return _gcry_mpi_copy (a);
}
void
gcry_mpi_snatch (gcry_mpi_t w, const gcry_mpi_t u)
{
_gcry_mpi_snatch (w, u);
}
gcry_mpi_t
gcry_mpi_set (gcry_mpi_t w, const gcry_mpi_t u)
{
return _gcry_mpi_set (w, u);
}
gcry_mpi_t
gcry_mpi_set_ui (gcry_mpi_t w, unsigned long u)
{
return _gcry_mpi_set_ui (w, u);
}
gcry_error_t
gcry_mpi_get_ui (unsigned int *w, gcry_mpi_t u)
{
return gpg_error (_gcry_mpi_get_ui (w, u));
}
void
gcry_mpi_swap (gcry_mpi_t a, gcry_mpi_t b)
{
_gcry_mpi_swap (a, b);
}
int
gcry_mpi_is_neg (gcry_mpi_t a)
{
return _gcry_mpi_is_neg (a);
}
void
gcry_mpi_neg (gcry_mpi_t w, gcry_mpi_t u)
{
_gcry_mpi_neg (w, u);
}
void
gcry_mpi_abs (gcry_mpi_t w)
{
_gcry_mpi_abs (w);
}
int
gcry_mpi_cmp (const gcry_mpi_t u, const gcry_mpi_t v)
{
return _gcry_mpi_cmp (u, v);
}
int
gcry_mpi_cmp_ui (const gcry_mpi_t u, unsigned long v)
{
return _gcry_mpi_cmp_ui (u, v);
}
gcry_error_t
gcry_mpi_scan (gcry_mpi_t *ret_mpi, enum gcry_mpi_format format,
const void *buffer, size_t buflen,
size_t *nscanned)
{
return gpg_error (_gcry_mpi_scan (ret_mpi, format, buffer, buflen, nscanned));
}
gcry_error_t
gcry_mpi_print (enum gcry_mpi_format format,
unsigned char *buffer, size_t buflen,
size_t *nwritten,
const gcry_mpi_t a)
{
return gpg_error (_gcry_mpi_print (format, buffer, buflen, nwritten, a));
}
gcry_error_t
gcry_mpi_aprint (enum gcry_mpi_format format,
unsigned char **buffer, size_t *nwritten,
const gcry_mpi_t a)
{
return gpg_error (_gcry_mpi_aprint (format, buffer, nwritten, a));
}
void
gcry_mpi_dump (const gcry_mpi_t a)
{
_gcry_log_printmpi (NULL, a);
}
void
gcry_mpi_add (gcry_mpi_t w, gcry_mpi_t u, gcry_mpi_t v)
{
_gcry_mpi_add (w, u, v);
}
void
gcry_mpi_add_ui (gcry_mpi_t w, gcry_mpi_t u, unsigned long v)
{
_gcry_mpi_add_ui (w, u, v);
}
void
gcry_mpi_addm (gcry_mpi_t w, gcry_mpi_t u, gcry_mpi_t v, gcry_mpi_t m)
{
_gcry_mpi_addm (w, u, v, m);
}
void
gcry_mpi_sub (gcry_mpi_t w, gcry_mpi_t u, gcry_mpi_t v)
{
_gcry_mpi_sub (w, u, v);
}
void
gcry_mpi_sub_ui (gcry_mpi_t w, gcry_mpi_t u, unsigned long v )
{
_gcry_mpi_sub_ui (w, u, v);
}
void
gcry_mpi_subm (gcry_mpi_t w, gcry_mpi_t u, gcry_mpi_t v, gcry_mpi_t m)
{
_gcry_mpi_subm (w, u, v, m);
}
void
gcry_mpi_mul (gcry_mpi_t w, gcry_mpi_t u, gcry_mpi_t v)
{
_gcry_mpi_mul (w, u, v);
}
void
gcry_mpi_mul_ui (gcry_mpi_t w, gcry_mpi_t u, unsigned long v )
{
_gcry_mpi_mul_ui (w, u, v);
}
void
gcry_mpi_mulm (gcry_mpi_t w, gcry_mpi_t u, gcry_mpi_t v, gcry_mpi_t m)
{
_gcry_mpi_mulm (w, u, v, m);
}
void
gcry_mpi_mul_2exp (gcry_mpi_t w, gcry_mpi_t u, unsigned long cnt)
{
_gcry_mpi_mul_2exp (w, u, cnt);
}
void
gcry_mpi_div (gcry_mpi_t q, gcry_mpi_t r,
gcry_mpi_t dividend, gcry_mpi_t divisor, int round)
{
_gcry_mpi_div (q, r, dividend, divisor, round);
}
void
gcry_mpi_mod (gcry_mpi_t r, gcry_mpi_t dividend, gcry_mpi_t divisor)
{
_gcry_mpi_mod (r, dividend, divisor);
}
void
gcry_mpi_powm (gcry_mpi_t w, const gcry_mpi_t b, const gcry_mpi_t e,
const gcry_mpi_t m)
{
_gcry_mpi_powm (w, b, e, m);
}
int
gcry_mpi_gcd (gcry_mpi_t g, gcry_mpi_t a, gcry_mpi_t b)
{
return _gcry_mpi_gcd (g, a, b);
}
int
gcry_mpi_invm (gcry_mpi_t x, gcry_mpi_t a, gcry_mpi_t m)
{
return _gcry_mpi_invm (x, a, m);
}
gcry_mpi_point_t
gcry_mpi_point_new (unsigned int nbits)
{
return _gcry_mpi_point_new (nbits);
}
void
gcry_mpi_point_release (gcry_mpi_point_t point)
{
_gcry_mpi_point_release (point);
}
gcry_mpi_point_t
gcry_mpi_point_copy (gcry_mpi_point_t point)
{
return _gcry_mpi_point_copy (point);
}
void
gcry_mpi_point_get (gcry_mpi_t x, gcry_mpi_t y, gcry_mpi_t z,
gcry_mpi_point_t point)
{
_gcry_mpi_point_get (x, y, z, point);
}
void
gcry_mpi_point_snatch_get (gcry_mpi_t x, gcry_mpi_t y, gcry_mpi_t z,
gcry_mpi_point_t point)
{
_gcry_mpi_point_snatch_get (x, y, z, point);
}
gcry_mpi_point_t
gcry_mpi_point_set (gcry_mpi_point_t point,
gcry_mpi_t x, gcry_mpi_t y, gcry_mpi_t z)
{
return _gcry_mpi_point_set (point, x, y, z);
}
gcry_mpi_point_t
gcry_mpi_point_snatch_set (gcry_mpi_point_t point,
gcry_mpi_t x, gcry_mpi_t y, gcry_mpi_t z)
{
return _gcry_mpi_point_snatch_set (point, x, y, z);
}
gpg_error_t
gcry_mpi_ec_new (gcry_ctx_t *r_ctx,
gcry_sexp_t keyparam, const char *curvename)
{
return gpg_error (_gcry_mpi_ec_new (r_ctx, keyparam, curvename));
}
gcry_mpi_t
gcry_mpi_ec_get_mpi (const char *name, gcry_ctx_t ctx, int copy)
{
return _gcry_mpi_ec_get_mpi (name, ctx, copy);
}
gcry_mpi_point_t
gcry_mpi_ec_get_point (const char *name, gcry_ctx_t ctx, int copy)
{
return _gcry_mpi_ec_get_point (name, ctx, copy);
}
gpg_error_t
gcry_mpi_ec_set_mpi (const char *name, gcry_mpi_t newvalue, gcry_ctx_t ctx)
{
return gpg_error (_gcry_mpi_ec_set_mpi (name, newvalue, ctx));
}
gpg_error_t
gcry_mpi_ec_set_point (const char *name, gcry_mpi_point_t newvalue,
gcry_ctx_t ctx)
{
return gpg_error (_gcry_mpi_ec_set_point (name, newvalue, ctx));
}
gpg_error_t
gcry_mpi_ec_decode_point (gcry_mpi_point_t result, gcry_mpi_t value,
gcry_ctx_t ctx)
{
return gpg_error (_gcry_mpi_ec_decode_point
(result, value,
ctx? _gcry_ctx_get_pointer (ctx, CONTEXT_TYPE_EC) : NULL));
}
int
gcry_mpi_ec_get_affine (gcry_mpi_t x, gcry_mpi_t y, gcry_mpi_point_t point,
gcry_ctx_t ctx)
{
return _gcry_mpi_ec_get_affine (x, y, point,
_gcry_ctx_get_pointer (ctx, CONTEXT_TYPE_EC));
}
void
gcry_mpi_ec_dup (gcry_mpi_point_t w, gcry_mpi_point_t u, gcry_ctx_t ctx)
{
mpi_ec_t ec = _gcry_ctx_get_pointer (ctx, CONTEXT_TYPE_EC);
if (ec->model == MPI_EC_EDWARDS || ec->model == MPI_EC_MONTGOMERY)
{
mpi_point_resize (w, ec);
mpi_point_resize (u, ec);
}
_gcry_mpi_ec_dup_point (w, u, ec);
}
void
gcry_mpi_ec_add (gcry_mpi_point_t w,
gcry_mpi_point_t u, gcry_mpi_point_t v, gcry_ctx_t ctx)
{
mpi_ec_t ec = _gcry_ctx_get_pointer (ctx, CONTEXT_TYPE_EC);
if (ec->model == MPI_EC_EDWARDS || ec->model == MPI_EC_MONTGOMERY)
{
mpi_point_resize (w, ec);
mpi_point_resize (u, ec);
mpi_point_resize (v, ec);
}
_gcry_mpi_ec_add_points (w, u, v, ec);
}
void
gcry_mpi_ec_sub (gcry_mpi_point_t w,
gcry_mpi_point_t u, gcry_mpi_point_t v, gcry_ctx_t ctx)
{
mpi_ec_t ec = _gcry_ctx_get_pointer (ctx, CONTEXT_TYPE_EC);
if (ec->model == MPI_EC_EDWARDS || ec->model == MPI_EC_MONTGOMERY)
{
mpi_point_resize (w, ec);
mpi_point_resize (u, ec);
mpi_point_resize (v, ec);
}
_gcry_mpi_ec_sub_points (w, u, v, ec);
}
void
gcry_mpi_ec_mul (gcry_mpi_point_t w, gcry_mpi_t n, gcry_mpi_point_t u,
gcry_ctx_t ctx)
{
_gcry_mpi_ec_mul_point (w, n, u,
_gcry_ctx_get_pointer (ctx, CONTEXT_TYPE_EC));
}
int
gcry_mpi_ec_curve_point (gcry_mpi_point_t point, gcry_ctx_t ctx)
{
return _gcry_mpi_ec_curve_point
(point, _gcry_ctx_get_pointer (ctx, CONTEXT_TYPE_EC));
}
unsigned int
gcry_mpi_get_nbits (gcry_mpi_t a)
{
return _gcry_mpi_get_nbits (a);
}
int
gcry_mpi_test_bit (gcry_mpi_t a, unsigned int n)
{
return _gcry_mpi_test_bit (a, n);
}
void
gcry_mpi_set_bit (gcry_mpi_t a, unsigned int n)
{
_gcry_mpi_set_bit (a, n);
}
void
gcry_mpi_clear_bit (gcry_mpi_t a, unsigned int n)
{
_gcry_mpi_clear_bit (a, n);
}
void
gcry_mpi_set_highbit (gcry_mpi_t a, unsigned int n)
{
_gcry_mpi_set_highbit (a, n);
}
void
gcry_mpi_clear_highbit (gcry_mpi_t a, unsigned int n)
{
_gcry_mpi_clear_highbit (a, n);
}
void
gcry_mpi_rshift (gcry_mpi_t x, gcry_mpi_t a, unsigned int n)
{
_gcry_mpi_rshift (x, a, n);
}
void
gcry_mpi_lshift (gcry_mpi_t x, gcry_mpi_t a, unsigned int n)
{
_gcry_mpi_lshift (x, a, n);
}
gcry_mpi_t
gcry_mpi_set_opaque (gcry_mpi_t a, void *p, unsigned int nbits)
{
return _gcry_mpi_set_opaque (a, p, nbits);
}
gcry_mpi_t
gcry_mpi_set_opaque_copy (gcry_mpi_t a, const void *p, unsigned int nbits)
{
return _gcry_mpi_set_opaque_copy (a, p, nbits);
}
void *
gcry_mpi_get_opaque (gcry_mpi_t a, unsigned int *nbits)
{
return _gcry_mpi_get_opaque (a, nbits);
}
void
gcry_mpi_set_flag (gcry_mpi_t a, enum gcry_mpi_flag flag)
{
_gcry_mpi_set_flag (a, flag);
}
void
gcry_mpi_clear_flag (gcry_mpi_t a, enum gcry_mpi_flag flag)
{
_gcry_mpi_clear_flag (a, flag);
}
int
gcry_mpi_get_flag (gcry_mpi_t a, enum gcry_mpi_flag flag)
{
return _gcry_mpi_get_flag (a, flag);
}
gcry_mpi_t
_gcry_mpi_get_const (int no)
{
switch (no)
{
case 1: return _gcry_mpi_const (MPI_C_ONE);
case 2: return _gcry_mpi_const (MPI_C_TWO);
case 3: return _gcry_mpi_const (MPI_C_THREE);
case 4: return _gcry_mpi_const (MPI_C_FOUR);
case 8: return _gcry_mpi_const (MPI_C_EIGHT);
default: log_bug("unsupported GCRYMPI_CONST_ macro used\n");
}
}
gcry_error_t
gcry_cipher_open (gcry_cipher_hd_t *handle,
int algo, int mode, unsigned int flags)
{
if (!fips_is_operational ())
{
*handle = NULL;
return gpg_error (fips_not_operational ());
}
return gpg_error (_gcry_cipher_open (handle, algo, mode, flags));
}
void
gcry_cipher_close (gcry_cipher_hd_t h)
{
_gcry_cipher_close (h);
}
gcry_error_t
gcry_cipher_setkey (gcry_cipher_hd_t hd, const void *key, size_t keylen)
{
if (!fips_is_operational ())
return gpg_error (fips_not_operational ());
return gcry_error (_gcry_cipher_setkey (hd, key, keylen));
}
gcry_error_t
gcry_cipher_setiv (gcry_cipher_hd_t hd, const void *iv, size_t ivlen)
{
if (!fips_is_operational ())
return gpg_error (fips_not_operational ());
return gcry_error (_gcry_cipher_setiv (hd, iv, ivlen));
}
gpg_error_t
gcry_cipher_setctr (gcry_cipher_hd_t hd, const void *ctr, size_t ctrlen)
{
if (!fips_is_operational ())
return gpg_error (fips_not_operational ());
return gcry_error (_gcry_cipher_setctr (hd, ctr, ctrlen));
}
gcry_error_t
gcry_cipher_setup_geniv (gcry_cipher_hd_t hd, int method,
const void *fixed_iv, size_t fixed_iv_len,
const void *dyn_iv, size_t dyn_iv_len)
{
return gcry_error (_gcry_cipher_setup_geniv (hd, method,
fixed_iv, fixed_iv_len,
dyn_iv, dyn_iv_len));
}
gcry_error_t
gcry_cipher_geniv (gcry_cipher_hd_t hd, void *iv, size_t iv_len)
{
return gcry_error (_gcry_cipher_geniv (hd, iv, iv_len));
}
gcry_error_t
gcry_cipher_authenticate (gcry_cipher_hd_t hd, const void *abuf, size_t abuflen)
{
if (!fips_is_operational ())
return gpg_error (fips_not_operational ());
return gpg_error (_gcry_cipher_authenticate (hd, abuf, abuflen));
}
gcry_error_t
gcry_cipher_gettag (gcry_cipher_hd_t hd, void *outtag, size_t taglen)
{
if (!fips_is_operational ())
return gpg_error (fips_not_operational ());
return gpg_error (_gcry_cipher_gettag (hd, outtag, taglen));
}
gcry_error_t
gcry_cipher_checktag (gcry_cipher_hd_t hd, const void *intag, size_t taglen)
{
if (!fips_is_operational ())
return gpg_error (fips_not_operational ());
return gpg_error (_gcry_cipher_checktag (hd, intag, taglen));
}
gcry_error_t
gcry_cipher_ctl (gcry_cipher_hd_t h, int cmd, void *buffer, size_t buflen)
{
if (!fips_is_operational ())
return gpg_error (fips_not_operational ());
return gpg_error (_gcry_cipher_ctl (h, cmd, buffer, buflen));
}
gcry_error_t
gcry_cipher_info (gcry_cipher_hd_t h, int what, void *buffer, size_t *nbytes)
{
return gpg_error (_gcry_cipher_info (h, what, buffer, nbytes));
}
gcry_error_t
gcry_cipher_algo_info (int algo, int what, void *buffer, size_t *nbytes)
{
if (!fips_is_operational ())
return gpg_error (fips_not_operational ());
return gpg_error (_gcry_cipher_algo_info (algo, what, buffer, nbytes));
}
const char *
gcry_cipher_algo_name (int algorithm)
{
return _gcry_cipher_algo_name (algorithm);
}
int
gcry_cipher_map_name (const char *name)
{
return _gcry_cipher_map_name (name);
}
int
gcry_cipher_mode_from_oid (const char *string)
{
return _gcry_cipher_mode_from_oid (string);
}
gcry_error_t
gcry_cipher_encrypt (gcry_cipher_hd_t h,
void *out, size_t outsize,
const void *in, size_t inlen)
{
if (!fips_is_operational ())
{
/* Make sure that the plaintext will never make it to OUT. */
if (out)
memset (out, 0x42, outsize);
return gpg_error (fips_not_operational ());
}
return gpg_error (_gcry_cipher_encrypt (h, out, outsize, in, inlen));
}
gcry_error_t
gcry_cipher_decrypt (gcry_cipher_hd_t h,
void *out, size_t outsize,
const void *in, size_t inlen)
{
if (!fips_is_operational ())
return gpg_error (fips_not_operational ());
return gpg_error (_gcry_cipher_decrypt (h, out, outsize, in, inlen));
}
size_t
gcry_cipher_get_algo_keylen (int algo)
{
return _gcry_cipher_get_algo_keylen (algo);
}
size_t
gcry_cipher_get_algo_blklen (int algo)
{
return _gcry_cipher_get_algo_blklen (algo);
}
gcry_error_t
gcry_mac_algo_info (int algo, int what, void *buffer, size_t *nbytes)
{
if (!fips_is_operational ())
return gpg_error (fips_not_operational ());
return gpg_error (_gcry_mac_algo_info (algo, what, buffer, nbytes));
}
const char *
gcry_mac_algo_name (int algorithm)
{
return _gcry_mac_algo_name (algorithm);
}
int
gcry_mac_map_name (const char *string)
{
return _gcry_mac_map_name (string);
}
int
gcry_mac_get_algo (gcry_mac_hd_t hd)
{
return _gcry_mac_get_algo (hd);
}
unsigned int
gcry_mac_get_algo_maclen (int algo)
{
return _gcry_mac_get_algo_maclen (algo);
}
unsigned int
gcry_mac_get_algo_keylen (int algo)
{
return _gcry_mac_get_algo_keylen (algo);
}
gcry_error_t
gcry_mac_open (gcry_mac_hd_t *handle, int algo, unsigned int flags,
gcry_ctx_t ctx)
{
if (!fips_is_operational ())
{
*handle = NULL;
return gpg_error (fips_not_operational ());
}
return gpg_error (_gcry_mac_open (handle, algo, flags, ctx));
}
void
gcry_mac_close (gcry_mac_hd_t hd)
{
_gcry_mac_close (hd);
}
gcry_error_t
gcry_mac_setkey (gcry_mac_hd_t hd, const void *key, size_t keylen)
{
if (!fips_is_operational ())
return gpg_error (fips_not_operational ());
if (fips_mode () && keylen < 14)
return GPG_ERR_INV_VALUE;
return gpg_error (_gcry_mac_setkey (hd, key, keylen));
}
gcry_error_t
gcry_mac_setiv (gcry_mac_hd_t hd, const void *iv, size_t ivlen)
{
if (!fips_is_operational ())
return gpg_error (fips_not_operational ());
return gpg_error (_gcry_mac_setiv (hd, iv, ivlen));
}
gcry_error_t
gcry_mac_write (gcry_mac_hd_t hd, const void *buf, size_t buflen)
{
if (!fips_is_operational ())
return gpg_error (fips_not_operational ());
return gpg_error (_gcry_mac_write (hd, buf, buflen));
}
gcry_error_t
gcry_mac_read (gcry_mac_hd_t hd, void *outbuf, size_t *outlen)
{
if (!fips_is_operational ())
return gpg_error (fips_not_operational ());
return gpg_error (_gcry_mac_read (hd, outbuf, outlen));
}
gcry_error_t
gcry_mac_verify (gcry_mac_hd_t hd, const void *buf, size_t buflen)
{
if (!fips_is_operational ())
return gpg_error (fips_not_operational ());
return gpg_error (_gcry_mac_verify (hd, buf, buflen));
}
gcry_error_t
gcry_mac_ctl (gcry_mac_hd_t h, int cmd, void *buffer, size_t buflen)
{
if (!fips_is_operational ())
return gpg_error (fips_not_operational ());
return gpg_error (_gcry_mac_ctl (h, cmd, buffer, buflen));
}
gcry_error_t
gcry_pk_encrypt (gcry_sexp_t *result, gcry_sexp_t data, gcry_sexp_t pkey)
{
if (!fips_is_operational ())
{
*result = NULL;
return gpg_error (fips_not_operational ());
}
return gpg_error (_gcry_pk_encrypt (result, data, pkey));
}
gcry_error_t
gcry_pk_decrypt (gcry_sexp_t *result, gcry_sexp_t data, gcry_sexp_t skey)
{
if (!fips_is_operational ())
{
*result = NULL;
return gpg_error (fips_not_operational ());
}
return gpg_error (_gcry_pk_decrypt (result, data, skey));
}
gcry_error_t
gcry_pk_sign (gcry_sexp_t *result, gcry_sexp_t data, gcry_sexp_t skey)
{
if (!fips_is_operational ())
{
*result = NULL;
return gpg_error (fips_not_operational ());
}
return gpg_error (_gcry_pk_sign (result, data, skey));
}
gcry_error_t
gcry_pk_hash_sign (gcry_sexp_t *result, const char *data_tmpl, gcry_sexp_t skey,
gcry_md_hd_t hd, gcry_ctx_t ctx)
{
if (!fips_is_operational ())
{
*result = NULL;
return gpg_error (fips_not_operational ());
}
return gpg_error (_gcry_pk_sign_md (result, data_tmpl, hd, skey, ctx));
}
gcry_error_t
gcry_pk_verify (gcry_sexp_t sigval, gcry_sexp_t data, gcry_sexp_t pkey)
{
if (!fips_is_operational ())
return gpg_error (fips_not_operational ());
return gpg_error (_gcry_pk_verify (sigval, data, pkey));
}
gcry_error_t
gcry_pk_hash_verify (gcry_sexp_t sigval, const char *data_tmpl, gcry_sexp_t pkey,
gcry_md_hd_t hd, gcry_ctx_t ctx)
{
if (!fips_is_operational ())
return gpg_error (fips_not_operational ());
return gpg_error (_gcry_pk_verify_md (sigval, data_tmpl, hd, pkey, ctx));
}
gcry_error_t
gcry_pk_random_override_new (gcry_ctx_t *r_ctx, const unsigned char *p, size_t len)
{
return gpg_error (_gcry_pk_single_data_push (r_ctx, p, len));
}
gcry_error_t
gcry_pk_testkey (gcry_sexp_t key)
{
if (!fips_is_operational ())
return gpg_error (fips_not_operational ());
return gpg_error (_gcry_pk_testkey (key));
}
gcry_error_t
gcry_pk_genkey (gcry_sexp_t *r_key, gcry_sexp_t s_parms)
{
if (!fips_is_operational ())
{
*r_key = NULL;
return gpg_error (fips_not_operational ());
}
return gpg_error (_gcry_pk_genkey (r_key, s_parms));
}
gcry_error_t
gcry_pk_ctl (int cmd, void *buffer, size_t buflen)
{
return gpg_error (_gcry_pk_ctl (cmd, buffer, buflen));
}
gcry_error_t
gcry_pk_algo_info (int algo, int what, void *buffer, size_t *nbytes)
{
if (!fips_is_operational ())
return gpg_error (fips_not_operational ());
return gpg_error (_gcry_pk_algo_info (algo, what, buffer, nbytes));
}
const char *
gcry_pk_algo_name (int algorithm)
{
return _gcry_pk_algo_name (algorithm);
}
int
gcry_pk_map_name (const char *name)
{
return _gcry_pk_map_name (name);
}
unsigned int
gcry_pk_get_nbits (gcry_sexp_t key)
{
if (!fips_is_operational ())
{
(void)fips_not_operational ();
return 0;
}
return _gcry_pk_get_nbits (key);
}
unsigned char *
gcry_pk_get_keygrip (gcry_sexp_t key, unsigned char *array)
{
if (!fips_is_operational ())
{
(void)fips_not_operational ();
return NULL;
}
return _gcry_pk_get_keygrip (key, array);
}
const char *
gcry_pk_get_curve (gcry_sexp_t key, int iterator, unsigned int *r_nbits)
{
if (!fips_is_operational ())
{
(void)fips_not_operational ();
return NULL;
}
return _gcry_pk_get_curve (key, iterator, r_nbits);
}
gcry_sexp_t
gcry_pk_get_param (int algo, const char *name)
{
if (!fips_is_operational ())
{
(void)fips_not_operational ();
return NULL;
}
return _gcry_pk_get_param (algo, name);
}
gcry_error_t
gcry_pubkey_get_sexp (gcry_sexp_t *r_sexp, int mode, gcry_ctx_t ctx)
{
if (!fips_is_operational ())
{
*r_sexp = NULL;
return gpg_error (fips_not_operational ());
}
return gpg_error (_gcry_pubkey_get_sexp (r_sexp, mode, ctx));
}
unsigned int
gcry_ecc_get_algo_keylen (int curveid)
{
return _gcry_ecc_get_algo_keylen (curveid);
}
gpg_error_t
gcry_ecc_mul_point (int curveid, unsigned char *result,
const unsigned char *scalar, const unsigned char *point)
{
return gpg_error (_gcry_ecc_mul_point (curveid, result, scalar, point));
}
gcry_error_t
gcry_md_open (gcry_md_hd_t *h, int algo, unsigned int flags)
{
if (!fips_is_operational ())
{
*h = NULL;
return gpg_error (fips_not_operational ());
}
return gpg_error (_gcry_md_open (h, algo, flags));
}
void
gcry_md_close (gcry_md_hd_t hd)
{
_gcry_md_close (hd);
}
gcry_error_t
gcry_md_enable (gcry_md_hd_t hd, int algo)
{
if (!fips_is_operational ())
return gpg_error (fips_not_operational ());
return gpg_error (_gcry_md_enable (hd, algo));
}
gcry_error_t
gcry_md_copy (gcry_md_hd_t *bhd, gcry_md_hd_t ahd)
{
if (!fips_is_operational ())
{
*bhd = NULL;
return gpg_error (fips_not_operational ());
}
return gpg_error (_gcry_md_copy (bhd, ahd));
}
void
gcry_md_reset (gcry_md_hd_t hd)
{
_gcry_md_reset (hd);
}
gcry_error_t
gcry_md_ctl (gcry_md_hd_t hd, int cmd, void *buffer, size_t buflen)
{
if (!fips_is_operational ())
return gpg_error (fips_not_operational ());
return gpg_error (_gcry_md_ctl (hd, cmd, buffer, buflen));
}
void
gcry_md_write (gcry_md_hd_t hd, const void *buffer, size_t length)
{
if (!fips_is_operational ())
{
(void)fips_not_operational ();
return;
}
_gcry_md_write (hd, buffer, length);
}
unsigned char *
gcry_md_read (gcry_md_hd_t hd, int algo)
{
return _gcry_md_read (hd, algo);
}
gcry_error_t
gcry_md_extract (gcry_md_hd_t hd, int algo, void *buffer, size_t length)
{
if (!fips_is_operational ())
return gpg_error (fips_not_operational ());
return gpg_error (_gcry_md_extract (hd, algo, buffer, length));
}
void
gcry_md_hash_buffer (int algo, void *digest,
const void *buffer, size_t length)
{
if (!fips_is_operational ())
{
(void)fips_not_operational ();
fips_signal_error ("called in non-operational state");
}
+ fips_service_indicator_init ();
_gcry_md_hash_buffer (algo, digest, buffer, length);
}
gpg_error_t
gcry_md_hash_buffers (int algo, unsigned int flags, void *digest,
const gcry_buffer_t *iov, int iovcnt)
{
if (!fips_is_operational ())
{
(void)fips_not_operational ();
fips_signal_error ("called in non-operational state");
}
+ fips_service_indicator_init ();
return gpg_error (_gcry_md_hash_buffers (algo, flags, digest, iov, iovcnt));
}
gpg_error_t
gcry_md_hash_buffers_ext (int algo, unsigned int flags, void *digest,
int digestlen, const gcry_buffer_t *iov,
int iovcnt)
{
if (!fips_is_operational ())
{
(void)fips_not_operational ();
fips_signal_error ("called in non-operational state");
}
+ fips_service_indicator_init ();
return gpg_error (_gcry_md_hash_buffers_extract (algo, flags, digest,
digestlen, iov, iovcnt));
}
int
gcry_md_get_algo (gcry_md_hd_t hd)
{
if (!fips_is_operational ())
{
(void)fips_not_operational ();
fips_signal_error ("used in non-operational state");
return 0;
}
return _gcry_md_get_algo (hd);
}
unsigned int
gcry_md_get_algo_dlen (int algo)
{
return _gcry_md_get_algo_dlen (algo);
}
int
gcry_md_is_enabled (gcry_md_hd_t a, int algo)
{
if (!fips_is_operational ())
{
(void)fips_not_operational ();
return 0;
}
return _gcry_md_is_enabled (a, algo);
}
int
gcry_md_is_secure (gcry_md_hd_t a)
{
return _gcry_md_is_secure (a);
}
gcry_error_t
gcry_md_info (gcry_md_hd_t h, int what, void *buffer, size_t *nbytes)
{
if (!fips_is_operational ())
return gpg_error (fips_not_operational ());
return gpg_error (_gcry_md_info (h, what, buffer, nbytes));
}
gcry_error_t
gcry_md_algo_info (int algo, int what, void *buffer, size_t *nbytes)
{
return gpg_error (_gcry_md_algo_info (algo, what, buffer, nbytes));
}
const char *
gcry_md_algo_name (int algo)
{
return _gcry_md_algo_name (algo);
}
int
gcry_md_map_name (const char* name)
{
return _gcry_md_map_name (name);
}
gcry_error_t
gcry_md_setkey (gcry_md_hd_t hd, const void *key, size_t keylen)
{
if (!fips_is_operational ())
return gpg_error (fips_not_operational ());
if (fips_mode () && keylen < 14)
return GPG_ERR_INV_VALUE;
return gpg_error (_gcry_md_setkey (hd, key, keylen));
}
void
gcry_md_debug (gcry_md_hd_t hd, const char *suffix)
{
_gcry_md_debug (hd, suffix);
}
gpg_error_t
gcry_kdf_derive (const void *passphrase, size_t passphraselen,
int algo, int hashalgo,
const void *salt, size_t saltlen,
unsigned long iterations,
size_t keysize, void *keybuffer)
{
if (!fips_is_operational ())
return gpg_error (fips_not_operational ());
fips_service_indicator_init ();
return gpg_error (_gcry_kdf_derive (passphrase, passphraselen, algo, hashalgo,
salt, saltlen, iterations,
keysize, keybuffer));
}
gpg_error_t
gcry_kdf_open (gcry_kdf_hd_t *hd, int algo, int subalgo,
const unsigned long *param, unsigned int paramlen,
const void *passphrase, size_t passphraselen,
const void *salt, size_t saltlen,
const void *key, size_t keylen,
const void *ad, size_t adlen)
{
if (!fips_is_operational ())
return gpg_error (fips_not_operational ());
return gpg_error (_gcry_kdf_open (hd, algo, subalgo, param, paramlen,
passphrase, passphraselen, salt, saltlen,
key, keylen, ad, adlen));
}
gcry_error_t
gcry_kdf_compute (gcry_kdf_hd_t h, const struct gcry_kdf_thread_ops *ops)
{
if (!fips_is_operational ())
return gpg_error (fips_not_operational ());
return gpg_error (_gcry_kdf_compute (h, ops));
}
gcry_error_t
gcry_kdf_final (gcry_kdf_hd_t h, size_t resultlen, void *result)
{
if (!fips_is_operational ())
return gpg_error (fips_not_operational ());
return gpg_error (_gcry_kdf_final (h, resultlen, result));
}
void
gcry_kdf_close (gcry_kdf_hd_t h)
{
_gcry_kdf_close (h);
}
gcry_error_t
gcry_kem_genkey (int algo,
void *pubkey, size_t pubkey_len,
void *seckey, size_t seckey_len,
const void *optional, size_t optional_len)
{
return gpg_error (_gcry_kem_genkey (algo,
pubkey, pubkey_len,
seckey, seckey_len,
optional, optional_len));
}
gcry_error_t
gcry_kem_keypair (int algo,
void *pubkey, size_t pubkey_len,
void *seckey, size_t seckey_len)
{
return gpg_error (_gcry_kem_genkey (algo,
pubkey, pubkey_len,
seckey, seckey_len,
NULL, 0));
}
gcry_error_t
gcry_kem_encap (int algo,
const void *pubkey, size_t pubkey_len,
void *ciphertext, size_t ciphertext_len,
void *shared, size_t shared_len,
const void *optional, size_t optional_len)
{
return gpg_error (_gcry_kem_encap (algo,
pubkey, pubkey_len,
ciphertext, ciphertext_len,
shared, shared_len,
optional, optional_len));
}
gcry_error_t
gcry_kem_decap (int algo,
const void *seckey, size_t seckey_len,
const void *ciphertext, size_t ciphertext_len,
void *shared, size_t shared_len,
const void *optional, size_t optional_len)
{
return gpg_error (_gcry_kem_decap (algo,
seckey, seckey_len,
ciphertext, ciphertext_len,
shared, shared_len,
optional, optional_len));
}
void
gcry_randomize (void *buffer, size_t length, enum gcry_random_level level)
{
if (!fips_is_operational ())
{
(void)fips_not_operational ();
fips_signal_fatal_error ("called in non-operational state");
fips_noreturn ();
}
_gcry_randomize (buffer, length, level);
}
gcry_error_t
gcry_random_add_bytes (const void *buffer, size_t length, int quality)
{
if (!fips_is_operational ())
return gpg_error (fips_not_operational ());
return gpg_error (_gcry_random_add_bytes (buffer, length, quality));
}
void *
gcry_random_bytes (size_t nbytes, enum gcry_random_level level)
{
if (!fips_is_operational ())
{
(void)fips_not_operational ();
fips_signal_fatal_error ("called in non-operational state");
fips_noreturn ();
}
return _gcry_random_bytes (nbytes,level);
}
void *
gcry_random_bytes_secure (size_t nbytes, enum gcry_random_level level)
{
if (!fips_is_operational ())
{
(void)fips_not_operational ();
fips_signal_fatal_error ("called in non-operational state");
fips_noreturn ();
}
return _gcry_random_bytes_secure (nbytes, level);
}
void
gcry_mpi_randomize (gcry_mpi_t w,
unsigned int nbits, enum gcry_random_level level)
{
if (!fips_is_operational ())
{
(void)fips_not_operational ();
fips_signal_fatal_error ("called in non-operational state");
fips_noreturn ();
}
_gcry_mpi_randomize (w, nbits, level);
}
void
gcry_create_nonce (void *buffer, size_t length)
{
if (!fips_is_operational ())
{
(void)fips_not_operational ();
fips_signal_fatal_error ("called in non-operational state");
fips_noreturn ();
}
_gcry_create_nonce (buffer, length);
}
gcry_error_t
gcry_prime_generate (gcry_mpi_t *prime,
unsigned int prime_bits,
unsigned int factor_bits,
gcry_mpi_t **factors,
gcry_prime_check_func_t cb_func,
void *cb_arg,
gcry_random_level_t random_level,
unsigned int flags)
{
if (!fips_is_operational ())
return gpg_error (fips_not_operational ());
return gpg_error (_gcry_prime_generate (prime, prime_bits, factor_bits,
factors, cb_func, cb_arg,
random_level, flags));
}
gcry_error_t
gcry_prime_group_generator (gcry_mpi_t *r_g,
gcry_mpi_t prime, gcry_mpi_t *factors,
gcry_mpi_t start_g)
{
if (!fips_is_operational ())
return gpg_error (fips_not_operational ());
return gpg_error (_gcry_prime_group_generator (r_g, prime, factors, start_g));
}
void
gcry_prime_release_factors (gcry_mpi_t *factors)
{
_gcry_prime_release_factors (factors);
}
gcry_error_t
gcry_prime_check (gcry_mpi_t x, unsigned int flags)
{
return gpg_error (_gcry_prime_check (x, flags));
}
void
gcry_ctx_release (gcry_ctx_t ctx)
{
_gcry_ctx_release (ctx);
}
void
gcry_log_debug (const char *fmt, ...)
{
va_list arg_ptr ;
va_start( arg_ptr, fmt ) ;
_gcry_logv (GCRY_LOG_DEBUG, fmt, arg_ptr);
va_end (arg_ptr);
}
void
gcry_log_debughex (const char *text, const void *buffer, size_t length)
{
_gcry_log_printhex (text, buffer, length);
}
void
gcry_log_debugmpi (const char *text, gcry_mpi_t mpi)
{
_gcry_log_printmpi (text, mpi);
}
void
gcry_log_debugpnt (const char *text, mpi_point_t point, gcry_ctx_t ctx)
{
mpi_ec_t ec = ctx? _gcry_ctx_get_pointer (ctx, CONTEXT_TYPE_EC) : NULL;
_gcry_mpi_point_log (text, point, ec);
}
void
gcry_log_debugsxp (const char *text, gcry_sexp_t sexp)
{
_gcry_log_printsxp (text, sexp);
}
char *
gcry_get_config (int mode, const char *what)
{
return _gcry_get_config (mode, what);
}
void
gcry_set_progress_handler (gcry_handler_progress_t cb, void *cb_data)
{
_gcry_set_progress_handler (cb, cb_data);
}
void
gcry_set_allocation_handler (gcry_handler_alloc_t func_alloc,
gcry_handler_alloc_t func_alloc_secure,
gcry_handler_secure_check_t func_secure_check,
gcry_handler_realloc_t func_realloc,
gcry_handler_free_t func_free)
{
_gcry_set_allocation_handler (func_alloc, func_alloc_secure,
func_secure_check, func_realloc, func_free);
}
void
gcry_set_outofcore_handler (gcry_handler_no_mem_t h, void *opaque)
{
_gcry_set_outofcore_handler (h, opaque);
}
void
gcry_set_fatalerror_handler (gcry_handler_error_t fnc, void *opaque)
{
_gcry_set_fatalerror_handler (fnc, opaque);
}
void
gcry_set_log_handler (gcry_handler_log_t f, void *opaque)
{
_gcry_set_log_handler (f, opaque);
}
void
gcry_set_gettext_handler (const char *(*f)(const char*))
{
_gcry_set_gettext_handler (f);
}
void *
gcry_malloc (size_t n)
{
return _gcry_malloc (n);
}
void *
gcry_calloc (size_t n, size_t m)
{
return _gcry_calloc (n, m);
}
void *
gcry_malloc_secure (size_t n)
{
return _gcry_malloc_secure (n);
}
void *
gcry_calloc_secure (size_t n, size_t m)
{
return _gcry_calloc_secure (n,m);
}
void *
gcry_realloc (void *a, size_t n)
{
return _gcry_realloc (a, n);
}
char *
gcry_strdup (const char *string)
{
return _gcry_strdup (string);
}
void *
gcry_xmalloc (size_t n)
{
return _gcry_xmalloc (n);
}
void *
gcry_xcalloc (size_t n, size_t m)
{
return _gcry_xcalloc (n, m);
}
void *
gcry_xmalloc_secure (size_t n)
{
return _gcry_xmalloc_secure (n);
}
void *
gcry_xcalloc_secure (size_t n, size_t m)
{
return _gcry_xcalloc_secure (n, m);
}
void *
gcry_xrealloc (void *a, size_t n)
{
return _gcry_xrealloc (a, n);
}
char *
gcry_xstrdup (const char *a)
{
return _gcry_xstrdup (a);
}
void
gcry_free (void *a)
{
_gcry_free (a);
}
int
gcry_is_secure (const void *a)
{
return _gcry_is_secure (a);
}
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Mon, Dec 23, 2:09 PM (22 h, 38 s)
Storage Engine
local-disk
Storage Format
Raw Data
Storage Handle
f1/71/a654b6f1feca3c7a1659292d017c
Attached To
rC libgcrypt
Event Timeline
Log In to Comment