Page Menu
Home
GnuPG
Search
Configure Global Search
Log In
Files
F35155818
cipher.c
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Size
59 KB
Subscribers
None
cipher.c
View Options
/* cipher.c - cipher dispatcher
* Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003
* 2005, 2007, 2008, 2009 Free Software Foundation, Inc.
*
* This file is part of Libgcrypt.
*
* Libgcrypt is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser general Public License as
* published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* Libgcrypt is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include
<config.h>
#include
<stdio.h>
#include
<stdlib.h>
#include
<string.h>
#include
<errno.h>
#include
"g10lib.h"
#include
"cipher.h"
#include
"ath.h"
#define MAX_BLOCKSIZE 16
#define TABLE_SIZE 14
#define CTX_MAGIC_NORMAL 0x24091964
#define CTX_MAGIC_SECURE 0x46919042
/* Try to use 16 byte aligned cipher context for better performance.
We use the aligned attribute, thus it is only possible to implement
this with gcc. */
#undef NEED_16BYTE_ALIGNED_CONTEXT
#if defined (__GNUC__)
# define NEED_16BYTE_ALIGNED_CONTEXT 1
#endif
/* A dummy extraspec so that we do not need to tests the extraspec
field from the module specification against NULL and instead
directly test the respective fields of extraspecs. */
static
cipher_extra_spec_t
dummy_extra_spec
;
/* This is the list of the default ciphers, which are included in
libgcrypt. */
static
struct
cipher_table_entry
{
gcry_cipher_spec_t
*
cipher
;
cipher_extra_spec_t
*
extraspec
;
unsigned
int
algorithm
;
int
fips_allowed
;
}
cipher_table
[]
=
{
#if USE_BLOWFISH
{
&
_gcry_cipher_spec_blowfish
,
&
dummy_extra_spec
,
GCRY_CIPHER_BLOWFISH
},
#endif
#if USE_DES
{
&
_gcry_cipher_spec_des
,
&
dummy_extra_spec
,
GCRY_CIPHER_DES
},
{
&
_gcry_cipher_spec_tripledes
,
&
_gcry_cipher_extraspec_tripledes
,
GCRY_CIPHER_3DES
,
1
},
#endif
#if USE_ARCFOUR
{
&
_gcry_cipher_spec_arcfour
,
&
dummy_extra_spec
,
GCRY_CIPHER_ARCFOUR
},
#endif
#if USE_CAST5
{
&
_gcry_cipher_spec_cast5
,
&
dummy_extra_spec
,
GCRY_CIPHER_CAST5
},
#endif
#if USE_AES
{
&
_gcry_cipher_spec_aes
,
&
_gcry_cipher_extraspec_aes
,
GCRY_CIPHER_AES
,
1
},
{
&
_gcry_cipher_spec_aes192
,
&
_gcry_cipher_extraspec_aes192
,
GCRY_CIPHER_AES192
,
1
},
{
&
_gcry_cipher_spec_aes256
,
&
_gcry_cipher_extraspec_aes256
,
GCRY_CIPHER_AES256
,
1
},
#endif
#if USE_TWOFISH
{
&
_gcry_cipher_spec_twofish
,
&
dummy_extra_spec
,
GCRY_CIPHER_TWOFISH
},
{
&
_gcry_cipher_spec_twofish128
,
&
dummy_extra_spec
,
GCRY_CIPHER_TWOFISH128
},
#endif
#if USE_SERPENT
{
&
_gcry_cipher_spec_serpent128
,
&
dummy_extra_spec
,
GCRY_CIPHER_SERPENT128
},
{
&
_gcry_cipher_spec_serpent192
,
&
dummy_extra_spec
,
GCRY_CIPHER_SERPENT192
},
{
&
_gcry_cipher_spec_serpent256
,
&
dummy_extra_spec
,
GCRY_CIPHER_SERPENT256
},
#endif
#if USE_RFC2268
{
&
_gcry_cipher_spec_rfc2268_40
,
&
dummy_extra_spec
,
GCRY_CIPHER_RFC2268_40
},
#endif
#if USE_SEED
{
&
_gcry_cipher_spec_seed
,
&
dummy_extra_spec
,
GCRY_CIPHER_SEED
},
#endif
#if USE_CAMELLIA
{
&
_gcry_cipher_spec_camellia128
,
&
dummy_extra_spec
,
GCRY_CIPHER_CAMELLIA128
},
{
&
_gcry_cipher_spec_camellia192
,
&
dummy_extra_spec
,
GCRY_CIPHER_CAMELLIA192
},
{
&
_gcry_cipher_spec_camellia256
,
&
dummy_extra_spec
,
GCRY_CIPHER_CAMELLIA256
},
#endif
{
NULL
}
};
/* List of registered ciphers. */
static
gcry_module_t
ciphers_registered
;
/* This is the lock protecting CIPHERS_REGISTERED. */
static
ath_mutex_t
ciphers_registered_lock
=
ATH_MUTEX_INITIALIZER
;
/* Flag to check whether the default ciphers have already been
registered. */
static
int
default_ciphers_registered
;
/* Convenient macro for registering the default ciphers. */
#define REGISTER_DEFAULT_CIPHERS \
do \
{ \
ath_mutex_lock (&ciphers_registered_lock); \
if (! default_ciphers_registered) \
{ \
cipher_register_default (); \
default_ciphers_registered = 1; \
} \
ath_mutex_unlock (&ciphers_registered_lock); \
} \
while (0)
/* A VIA processor with the Padlock engine as well as the Intel AES_NI
instructions require an alignment of most data on a 16 byte
boundary. Because we trick out the compiler while allocating the
context, the align attribute as used in rijndael.c does not work on
its own. Thus we need to make sure that the entire context
structure is a aligned on that boundary. We achieve this by
defining a new type and use that instead of our usual alignment
type. */
typedef
union
{
PROPERLY_ALIGNED_TYPE
foo
;
#ifdef NEED_16BYTE_ALIGNED_CONTEXT
char
bar
[
16
]
__attribute__
((
aligned
(
16
)));
#endif
char
c
[
1
];
}
cipher_context_alignment_t
;
/* The handle structure. */
struct
gcry_cipher_handle
{
int
magic
;
size_t
actual_handle_size
;
/* Allocated size of this handle. */
size_t
handle_offset
;
/* Offset to the malloced block. */
gcry_cipher_spec_t
*
cipher
;
cipher_extra_spec_t
*
extraspec
;
gcry_module_t
module
;
/* The algorithm id. This is a hack required because the module
interface does not easily allow to retrieve this value. */
int
algo
;
/* A structure with function pointers for bulk operations. Due to
limitations of the module system (we don't want to change the
API) we need to keep these function pointers here. The cipher
open function intializes them and the actual encryption routines
use them if they are not NULL. */
struct
{
void
(
*
cfb_enc
)(
void
*
context
,
unsigned
char
*
iv
,
void
*
outbuf_arg
,
const
void
*
inbuf_arg
,
unsigned
int
nblocks
);
void
(
*
cfb_dec
)(
void
*
context
,
unsigned
char
*
iv
,
void
*
outbuf_arg
,
const
void
*
inbuf_arg
,
unsigned
int
nblocks
);
void
(
*
cbc_enc
)(
void
*
context
,
unsigned
char
*
iv
,
void
*
outbuf_arg
,
const
void
*
inbuf_arg
,
unsigned
int
nblocks
,
int
cbc_mac
);
void
(
*
cbc_dec
)(
void
*
context
,
unsigned
char
*
iv
,
void
*
outbuf_arg
,
const
void
*
inbuf_arg
,
unsigned
int
nblocks
);
}
bulk
;
int
mode
;
unsigned
int
flags
;
struct
{
unsigned
int
key
:
1
;
/* Set to 1 if a key has been set. */
unsigned
int
iv
:
1
;
/* Set to 1 if a IV has been set. */
}
marks
;
/* The initialization vector. For best performance we make sure
that it is properly aligned. In particular some implementations
of bulk operations expect an 16 byte aligned IV. */
union
{
cipher_context_alignment_t
iv_align
;
unsigned
char
iv
[
MAX_BLOCKSIZE
];
}
u_iv
;
unsigned
char
lastiv
[
MAX_BLOCKSIZE
];
int
unused
;
/* Number of unused bytes in the IV. */
unsigned
char
ctr
[
MAX_BLOCKSIZE
];
/* For Counter (CTR) mode. */
/* What follows are two contexts of the cipher in use. The first
one needs to be aligned well enough for the cipher operation
whereas the second one is a copy created by cipher_setkey and
used by cipher_reset. That second copy has no need for proper
aligment because it is only accessed by memcpy. */
cipher_context_alignment_t
context
;
};
/* These dummy functions are used in case a cipher implementation
refuses to provide it's own functions. */
static
gcry_err_code_t
dummy_setkey
(
void
*
c
,
const
unsigned
char
*
key
,
unsigned
int
keylen
)
{
(
void
)
c
;
(
void
)
key
;
(
void
)
keylen
;
return
GPG_ERR_NO_ERROR
;
}
static
void
dummy_encrypt_block
(
void
*
c
,
unsigned
char
*
outbuf
,
const
unsigned
char
*
inbuf
)
{
(
void
)
c
;
(
void
)
outbuf
;
(
void
)
inbuf
;
BUG
();
}
static
void
dummy_decrypt_block
(
void
*
c
,
unsigned
char
*
outbuf
,
const
unsigned
char
*
inbuf
)
{
(
void
)
c
;
(
void
)
outbuf
;
(
void
)
inbuf
;
BUG
();
}
static
void
dummy_encrypt_stream
(
void
*
c
,
unsigned
char
*
outbuf
,
const
unsigned
char
*
inbuf
,
unsigned
int
n
)
{
(
void
)
c
;
(
void
)
outbuf
;
(
void
)
inbuf
;
(
void
)
n
;
BUG
();
}
static
void
dummy_decrypt_stream
(
void
*
c
,
unsigned
char
*
outbuf
,
const
unsigned
char
*
inbuf
,
unsigned
int
n
)
{
(
void
)
c
;
(
void
)
outbuf
;
(
void
)
inbuf
;
(
void
)
n
;
BUG
();
}
/* Internal function. Register all the ciphers included in
CIPHER_TABLE. Note, that this function gets only used by the macro
REGISTER_DEFAULT_CIPHERS which protects it using a mutex. */
static
void
cipher_register_default
(
void
)
{
gcry_err_code_t
err
=
GPG_ERR_NO_ERROR
;
int
i
;
for
(
i
=
0
;
!
err
&&
cipher_table
[
i
].
cipher
;
i
++
)
{
if
(
!
cipher_table
[
i
].
cipher
->
setkey
)
cipher_table
[
i
].
cipher
->
setkey
=
dummy_setkey
;
if
(
!
cipher_table
[
i
].
cipher
->
encrypt
)
cipher_table
[
i
].
cipher
->
encrypt
=
dummy_encrypt_block
;
if
(
!
cipher_table
[
i
].
cipher
->
decrypt
)
cipher_table
[
i
].
cipher
->
decrypt
=
dummy_decrypt_block
;
if
(
!
cipher_table
[
i
].
cipher
->
stencrypt
)
cipher_table
[
i
].
cipher
->
stencrypt
=
dummy_encrypt_stream
;
if
(
!
cipher_table
[
i
].
cipher
->
stdecrypt
)
cipher_table
[
i
].
cipher
->
stdecrypt
=
dummy_decrypt_stream
;
if
(
fips_mode
()
&&
!
cipher_table
[
i
].
fips_allowed
)
continue
;
err
=
_gcry_module_add
(
&
ciphers_registered
,
cipher_table
[
i
].
algorithm
,
(
void
*
)
cipher_table
[
i
].
cipher
,
(
void
*
)
cipher_table
[
i
].
extraspec
,
NULL
);
}
if
(
err
)
BUG
();
}
/* Internal callback function. Used via _gcry_module_lookup. */
static
int
gcry_cipher_lookup_func_name
(
void
*
spec
,
void
*
data
)
{
gcry_cipher_spec_t
*
cipher
=
(
gcry_cipher_spec_t
*
)
spec
;
char
*
name
=
(
char
*
)
data
;
const
char
**
aliases
=
cipher
->
aliases
;
int
i
,
ret
=
!
stricmp
(
name
,
cipher
->
name
);
if
(
aliases
)
for
(
i
=
0
;
aliases
[
i
]
&&
(
!
ret
);
i
++
)
ret
=
!
stricmp
(
name
,
aliases
[
i
]);
return
ret
;
}
/* Internal callback function. Used via _gcry_module_lookup. */
static
int
gcry_cipher_lookup_func_oid
(
void
*
spec
,
void
*
data
)
{
gcry_cipher_spec_t
*
cipher
=
(
gcry_cipher_spec_t
*
)
spec
;
char
*
oid
=
(
char
*
)
data
;
gcry_cipher_oid_spec_t
*
oid_specs
=
cipher
->
oids
;
int
ret
=
0
,
i
;
if
(
oid_specs
)
for
(
i
=
0
;
oid_specs
[
i
].
oid
&&
(
!
ret
);
i
++
)
if
(
!
stricmp
(
oid
,
oid_specs
[
i
].
oid
))
ret
=
1
;
return
ret
;
}
/* Internal function. Lookup a cipher entry by it's name. */
static
gcry_module_t
gcry_cipher_lookup_name
(
const
char
*
name
)
{
gcry_module_t
cipher
;
cipher
=
_gcry_module_lookup
(
ciphers_registered
,
(
void
*
)
name
,
gcry_cipher_lookup_func_name
);
return
cipher
;
}
/* Internal function. Lookup a cipher entry by it's oid. */
static
gcry_module_t
gcry_cipher_lookup_oid
(
const
char
*
oid
)
{
gcry_module_t
cipher
;
cipher
=
_gcry_module_lookup
(
ciphers_registered
,
(
void
*
)
oid
,
gcry_cipher_lookup_func_oid
);
return
cipher
;
}
/* Register a new cipher module whose specification can be found in
CIPHER. On success, a new algorithm ID is stored in ALGORITHM_ID
and a pointer representhing this module is stored in MODULE. */
gcry_error_t
_gcry_cipher_register
(
gcry_cipher_spec_t
*
cipher
,
cipher_extra_spec_t
*
extraspec
,
int
*
algorithm_id
,
gcry_module_t
*
module
)
{
gcry_err_code_t
err
=
0
;
gcry_module_t
mod
;
/* We do not support module loading in fips mode. */
if
(
fips_mode
())
return
gpg_error
(
GPG_ERR_NOT_SUPPORTED
);
ath_mutex_lock
(
&
ciphers_registered_lock
);
err
=
_gcry_module_add
(
&
ciphers_registered
,
0
,
(
void
*
)
cipher
,
(
void
*
)(
extraspec
?
extraspec
:
&
dummy_extra_spec
),
&
mod
);
ath_mutex_unlock
(
&
ciphers_registered_lock
);
if
(
!
err
)
{
*
module
=
mod
;
*
algorithm_id
=
mod
->
mod_id
;
}
return
gcry_error
(
err
);
}
/* Unregister the cipher identified by MODULE, which must have been
registered with gcry_cipher_register. */
void
gcry_cipher_unregister
(
gcry_module_t
module
)
{
ath_mutex_lock
(
&
ciphers_registered_lock
);
_gcry_module_release
(
module
);
ath_mutex_unlock
(
&
ciphers_registered_lock
);
}
/* Locate the OID in the oid table and return the index or -1 when not
found. An opitonal "oid." or "OID." prefix in OID is ignored, the
OID is expected to be in standard IETF dotted notation. The
internal algorithm number is returned in ALGORITHM unless it
ispassed as NULL. A pointer to the specification of the module
implementing this algorithm is return in OID_SPEC unless passed as
NULL.*/
static
int
search_oid
(
const
char
*
oid
,
int
*
algorithm
,
gcry_cipher_oid_spec_t
*
oid_spec
)
{
gcry_module_t
module
;
int
ret
=
0
;
if
(
oid
&&
((
!
strncmp
(
oid
,
"oid."
,
4
))
||
(
!
strncmp
(
oid
,
"OID."
,
4
))))
oid
+=
4
;
module
=
gcry_cipher_lookup_oid
(
oid
);
if
(
module
)
{
gcry_cipher_spec_t
*
cipher
=
module
->
spec
;
int
i
;
for
(
i
=
0
;
cipher
->
oids
[
i
].
oid
&&
!
ret
;
i
++
)
if
(
!
stricmp
(
oid
,
cipher
->
oids
[
i
].
oid
))
{
if
(
algorithm
)
*
algorithm
=
module
->
mod_id
;
if
(
oid_spec
)
*
oid_spec
=
cipher
->
oids
[
i
];
ret
=
1
;
}
_gcry_module_release
(
module
);
}
return
ret
;
}
/* Map STRING to the cipher algorithm identifier. Returns the
algorithm ID of the cipher for the given name or 0 if the name is
not known. It is valid to pass NULL for STRING which results in a
return value of 0. */
int
gcry_cipher_map_name
(
const
char
*
string
)
{
gcry_module_t
cipher
;
int
ret
,
algorithm
=
0
;
if
(
!
string
)
return
0
;
REGISTER_DEFAULT_CIPHERS
;
/* If the string starts with a digit (optionally prefixed with
either "OID." or "oid."), we first look into our table of ASN.1
object identifiers to figure out the algorithm */
ath_mutex_lock
(
&
ciphers_registered_lock
);
ret
=
search_oid
(
string
,
&
algorithm
,
NULL
);
if
(
!
ret
)
{
cipher
=
gcry_cipher_lookup_name
(
string
);
if
(
cipher
)
{
algorithm
=
cipher
->
mod_id
;
_gcry_module_release
(
cipher
);
}
}
ath_mutex_unlock
(
&
ciphers_registered_lock
);
return
algorithm
;
}
/* Given a STRING with an OID in dotted decimal notation, this
function returns the cipher mode (GCRY_CIPHER_MODE_*) associated
with that OID or 0 if no mode is known. Passing NULL for string
yields a return value of 0. */
int
gcry_cipher_mode_from_oid
(
const
char
*
string
)
{
gcry_cipher_oid_spec_t
oid_spec
;
int
ret
=
0
,
mode
=
0
;
if
(
!
string
)
return
0
;
ath_mutex_lock
(
&
ciphers_registered_lock
);
ret
=
search_oid
(
string
,
NULL
,
&
oid_spec
);
if
(
ret
)
mode
=
oid_spec
.
mode
;
ath_mutex_unlock
(
&
ciphers_registered_lock
);
return
mode
;
}
/* Map the cipher algorithm whose ID is contained in ALGORITHM to a
string representation of the algorithm name. For unknown algorithm
IDs this function returns "?". */
static
const
char
*
cipher_algo_to_string
(
int
algorithm
)
{
gcry_module_t
cipher
;
const
char
*
name
;
REGISTER_DEFAULT_CIPHERS
;
ath_mutex_lock
(
&
ciphers_registered_lock
);
cipher
=
_gcry_module_lookup_id
(
ciphers_registered
,
algorithm
);
if
(
cipher
)
{
name
=
((
gcry_cipher_spec_t
*
)
cipher
->
spec
)
->
name
;
_gcry_module_release
(
cipher
);
}
else
name
=
"?"
;
ath_mutex_unlock
(
&
ciphers_registered_lock
);
return
name
;
}
/* Map the cipher algorithm identifier ALGORITHM to a string
representing this algorithm. This string is the default name as
used by Libgcrypt. An pointer to an empty string is returned for
an unknown algorithm. NULL is never returned. */
const
char
*
gcry_cipher_algo_name
(
int
algorithm
)
{
return
cipher_algo_to_string
(
algorithm
);
}
/* Flag the cipher algorithm with the identifier ALGORITHM as
disabled. There is no error return, the function does nothing for
unknown algorithms. Disabled algorithms are vitually not available
in Libgcrypt. */
static
void
disable_cipher_algo
(
int
algorithm
)
{
gcry_module_t
cipher
;
REGISTER_DEFAULT_CIPHERS
;
ath_mutex_lock
(
&
ciphers_registered_lock
);
cipher
=
_gcry_module_lookup_id
(
ciphers_registered
,
algorithm
);
if
(
cipher
)
{
if
(
!
(
cipher
->
flags
&
FLAG_MODULE_DISABLED
))
cipher
->
flags
|=
FLAG_MODULE_DISABLED
;
_gcry_module_release
(
cipher
);
}
ath_mutex_unlock
(
&
ciphers_registered_lock
);
}
/* Return 0 if the cipher algorithm with identifier ALGORITHM is
available. Returns a basic error code value if it is not
available. */
static
gcry_err_code_t
check_cipher_algo
(
int
algorithm
)
{
gcry_err_code_t
err
=
GPG_ERR_NO_ERROR
;
gcry_module_t
cipher
;
REGISTER_DEFAULT_CIPHERS
;
ath_mutex_lock
(
&
ciphers_registered_lock
);
cipher
=
_gcry_module_lookup_id
(
ciphers_registered
,
algorithm
);
if
(
cipher
)
{
if
(
cipher
->
flags
&
FLAG_MODULE_DISABLED
)
err
=
GPG_ERR_CIPHER_ALGO
;
_gcry_module_release
(
cipher
);
}
else
err
=
GPG_ERR_CIPHER_ALGO
;
ath_mutex_unlock
(
&
ciphers_registered_lock
);
return
err
;
}
/* Return the standard length of the key for the cipher algorithm with
the identifier ALGORITHM. This function expects a valid algorithm
and will abort if the algorithm is not available or the length of
the key is not known. */
static
unsigned
int
cipher_get_keylen
(
int
algorithm
)
{
gcry_module_t
cipher
;
unsigned
len
=
0
;
REGISTER_DEFAULT_CIPHERS
;
ath_mutex_lock
(
&
ciphers_registered_lock
);
cipher
=
_gcry_module_lookup_id
(
ciphers_registered
,
algorithm
);
if
(
cipher
)
{
len
=
((
gcry_cipher_spec_t
*
)
cipher
->
spec
)
->
keylen
;
if
(
!
len
)
log_bug
(
"cipher %d w/o key length
\n
"
,
algorithm
);
_gcry_module_release
(
cipher
);
}
else
log_bug
(
"cipher %d not found
\n
"
,
algorithm
);
ath_mutex_unlock
(
&
ciphers_registered_lock
);
return
len
;
}
/* Return the block length of the cipher algorithm with the identifier
ALGORITHM. This function expects a valid algorithm and will abort
if the algorithm is not available or the length of the key is not
known. */
static
unsigned
int
cipher_get_blocksize
(
int
algorithm
)
{
gcry_module_t
cipher
;
unsigned
len
=
0
;
REGISTER_DEFAULT_CIPHERS
;
ath_mutex_lock
(
&
ciphers_registered_lock
);
cipher
=
_gcry_module_lookup_id
(
ciphers_registered
,
algorithm
);
if
(
cipher
)
{
len
=
((
gcry_cipher_spec_t
*
)
cipher
->
spec
)
->
blocksize
;
if
(
!
len
)
log_bug
(
"cipher %d w/o blocksize
\n
"
,
algorithm
);
_gcry_module_release
(
cipher
);
}
else
log_bug
(
"cipher %d not found
\n
"
,
algorithm
);
ath_mutex_unlock
(
&
ciphers_registered_lock
);
return
len
;
}
/*
Open a cipher handle for use with cipher algorithm ALGORITHM, using
the cipher mode MODE (one of the GCRY_CIPHER_MODE_*) and return a
handle in HANDLE. Put NULL into HANDLE and return an error code if
something goes wrong. FLAGS may be used to modify the
operation. The defined flags are:
GCRY_CIPHER_SECURE: allocate all internal buffers in secure memory.
GCRY_CIPHER_ENABLE_SYNC: Enable the sync operation as used in OpenPGP.
GCRY_CIPHER_CBC_CTS: Enable CTS mode.
GCRY_CIPHER_CBC_MAC: Enable MAC mode.
Values for these flags may be combined using OR.
*/
gcry_error_t
gcry_cipher_open
(
gcry_cipher_hd_t
*
handle
,
int
algo
,
int
mode
,
unsigned
int
flags
)
{
int
secure
=
(
flags
&
GCRY_CIPHER_SECURE
);
gcry_cipher_spec_t
*
cipher
=
NULL
;
cipher_extra_spec_t
*
extraspec
=
NULL
;
gcry_module_t
module
=
NULL
;
gcry_cipher_hd_t
h
=
NULL
;
gcry_err_code_t
err
=
0
;
/* If the application missed to call the random poll function, we do
it here to ensure that it is used once in a while. */
_gcry_fast_random_poll
();
REGISTER_DEFAULT_CIPHERS
;
/* Fetch the according module and check whether the cipher is marked
available for use. */
ath_mutex_lock
(
&
ciphers_registered_lock
);
module
=
_gcry_module_lookup_id
(
ciphers_registered
,
algo
);
if
(
module
)
{
/* Found module. */
if
(
module
->
flags
&
FLAG_MODULE_DISABLED
)
{
/* Not available for use. */
err
=
GPG_ERR_CIPHER_ALGO
;
}
else
{
cipher
=
(
gcry_cipher_spec_t
*
)
module
->
spec
;
extraspec
=
module
->
extraspec
;
}
}
else
err
=
GPG_ERR_CIPHER_ALGO
;
ath_mutex_unlock
(
&
ciphers_registered_lock
);
/* check flags */
if
((
!
err
)
&&
((
flags
&
~
(
0
|
GCRY_CIPHER_SECURE
|
GCRY_CIPHER_ENABLE_SYNC
|
GCRY_CIPHER_CBC_CTS
|
GCRY_CIPHER_CBC_MAC
))
||
(
flags
&
GCRY_CIPHER_CBC_CTS
&
GCRY_CIPHER_CBC_MAC
)))
err
=
GPG_ERR_CIPHER_ALGO
;
/* check that a valid mode has been requested */
if
(
!
err
)
switch
(
mode
)
{
case
GCRY_CIPHER_MODE_ECB
:
case
GCRY_CIPHER_MODE_CBC
:
case
GCRY_CIPHER_MODE_CFB
:
case
GCRY_CIPHER_MODE_OFB
:
case
GCRY_CIPHER_MODE_CTR
:
case
GCRY_CIPHER_MODE_AESWRAP
:
if
((
cipher
->
encrypt
==
dummy_encrypt_block
)
||
(
cipher
->
decrypt
==
dummy_decrypt_block
))
err
=
GPG_ERR_INV_CIPHER_MODE
;
break
;
case
GCRY_CIPHER_MODE_STREAM
:
if
((
cipher
->
stencrypt
==
dummy_encrypt_stream
)
||
(
cipher
->
stdecrypt
==
dummy_decrypt_stream
))
err
=
GPG_ERR_INV_CIPHER_MODE
;
break
;
case
GCRY_CIPHER_MODE_NONE
:
/* This mode may be used for debugging. It copies the main
text verbatim to the ciphertext. We do not allow this in
fips mode or if no debug flag has been set. */
if
(
fips_mode
()
||
!
_gcry_get_debug_flag
(
0
))
err
=
GPG_ERR_INV_CIPHER_MODE
;
break
;
default
:
err
=
GPG_ERR_INV_CIPHER_MODE
;
}
/* Perform selftest here and mark this with a flag in cipher_table?
No, we should not do this as it takes too long. Further it does
not make sense to exclude algorithms with failing selftests at
runtime: If a selftest fails there is something seriously wrong
with the system and thus we better die immediately. */
if
(
!
err
)
{
size_t
size
=
(
sizeof
(
*
h
)
+
2
*
cipher
->
contextsize
-
sizeof
(
cipher_context_alignment_t
)
#ifdef NEED_16BYTE_ALIGNED_CONTEXT
+
15
/* Space for leading alignment gap. */
#endif
/*NEED_16BYTE_ALIGNED_CONTEXT*/
);
if
(
secure
)
h
=
gcry_calloc_secure
(
1
,
size
);
else
h
=
gcry_calloc
(
1
,
size
);
if
(
!
h
)
err
=
gpg_err_code_from_errno
(
errno
);
else
{
size_t
off
=
0
;
#ifdef NEED_16BYTE_ALIGNED_CONTEXT
if
(
((
unsigned
long
)
h
&
0x0f
)
)
{
/* The malloced block is not aligned on a 16 byte
boundary. Correct for this. */
off
=
16
-
((
unsigned
long
)
h
&
0x0f
);
h
=
(
void
*
)((
char
*
)
h
+
off
);
}
#endif
/*NEED_16BYTE_ALIGNED_CONTEXT*/
h
->
magic
=
secure
?
CTX_MAGIC_SECURE
:
CTX_MAGIC_NORMAL
;
h
->
actual_handle_size
=
size
-
off
;
h
->
handle_offset
=
off
;
h
->
cipher
=
cipher
;
h
->
extraspec
=
extraspec
;
h
->
module
=
module
;
h
->
algo
=
algo
;
h
->
mode
=
mode
;
h
->
flags
=
flags
;
/* Setup bulk encryption routines. */
switch
(
algo
)
{
#ifdef USE_AES
case
GCRY_CIPHER_AES128
:
case
GCRY_CIPHER_AES192
:
case
GCRY_CIPHER_AES256
:
h
->
bulk
.
cfb_enc
=
_gcry_aes_cfb_enc
;
h
->
bulk
.
cfb_dec
=
_gcry_aes_cfb_dec
;
h
->
bulk
.
cbc_enc
=
_gcry_aes_cbc_enc
;
h
->
bulk
.
cbc_dec
=
_gcry_aes_cbc_dec
;
break
;
#endif
/*USE_AES*/
default
:
break
;
}
}
}
/* Done. */
if
(
err
)
{
if
(
module
)
{
/* Release module. */
ath_mutex_lock
(
&
ciphers_registered_lock
);
_gcry_module_release
(
module
);
ath_mutex_unlock
(
&
ciphers_registered_lock
);
}
}
*
handle
=
err
?
NULL
:
h
;
return
gcry_error
(
err
);
}
/* Release all resources associated with the cipher handle H. H may be
NULL in which case this is a no-operation. */
void
gcry_cipher_close
(
gcry_cipher_hd_t
h
)
{
size_t
off
;
if
(
!
h
)
return
;
if
((
h
->
magic
!=
CTX_MAGIC_SECURE
)
&&
(
h
->
magic
!=
CTX_MAGIC_NORMAL
))
_gcry_fatal_error
(
GPG_ERR_INTERNAL
,
"gcry_cipher_close: already closed/invalid handle"
);
else
h
->
magic
=
0
;
/* Release module. */
ath_mutex_lock
(
&
ciphers_registered_lock
);
_gcry_module_release
(
h
->
module
);
ath_mutex_unlock
(
&
ciphers_registered_lock
);
/* We always want to wipe out the memory even when the context has
been allocated in secure memory. The user might have disabled
secure memory or is using his own implementation which does not
do the wiping. To accomplish this we need to keep track of the
actual size of this structure because we have no way to known
how large the allocated area was when using a standard malloc. */
off
=
h
->
handle_offset
;
wipememory
(
h
,
h
->
actual_handle_size
);
gcry_free
((
char
*
)
h
-
off
);
}
/* Set the key to be used for the encryption context C to KEY with
length KEYLEN. The length should match the required length. */
static
gcry_error_t
cipher_setkey
(
gcry_cipher_hd_t
c
,
byte
*
key
,
unsigned
int
keylen
)
{
gcry_err_code_t
ret
;
ret
=
(
*
c
->
cipher
->
setkey
)
(
&
c
->
context
.
c
,
key
,
keylen
);
if
(
!
ret
)
{
/* Duplicate initial context. */
memcpy
((
void
*
)
((
char
*
)
&
c
->
context
.
c
+
c
->
cipher
->
contextsize
),
(
void
*
)
&
c
->
context
.
c
,
c
->
cipher
->
contextsize
);
c
->
marks
.
key
=
1
;
}
else
c
->
marks
.
key
=
0
;
return
gcry_error
(
ret
);
}
/* Set the IV to be used for the encryption context C to IV with
length IVLEN. The length should match the required length. */
static
void
cipher_setiv
(
gcry_cipher_hd_t
c
,
const
byte
*
iv
,
unsigned
ivlen
)
{
memset
(
c
->
u_iv
.
iv
,
0
,
c
->
cipher
->
blocksize
);
if
(
iv
)
{
if
(
ivlen
!=
c
->
cipher
->
blocksize
)
{
log_info
(
"WARNING: cipher_setiv: ivlen=%u blklen=%u
\n
"
,
ivlen
,
(
unsigned
int
)
c
->
cipher
->
blocksize
);
fips_signal_error
(
"IV length does not match blocklength"
);
}
if
(
ivlen
>
c
->
cipher
->
blocksize
)
ivlen
=
c
->
cipher
->
blocksize
;
memcpy
(
c
->
u_iv
.
iv
,
iv
,
ivlen
);
c
->
marks
.
iv
=
1
;
}
else
c
->
marks
.
iv
=
0
;
c
->
unused
=
0
;
}
/* Reset the cipher context to the initial context. This is basically
the same as an release followed by a new. */
static
void
cipher_reset
(
gcry_cipher_hd_t
c
)
{
memcpy
(
&
c
->
context
.
c
,
(
char
*
)
&
c
->
context
.
c
+
c
->
cipher
->
contextsize
,
c
->
cipher
->
contextsize
);
memset
(
&
c
->
marks
,
0
,
sizeof
c
->
marks
);
memset
(
c
->
u_iv
.
iv
,
0
,
c
->
cipher
->
blocksize
);
memset
(
c
->
lastiv
,
0
,
c
->
cipher
->
blocksize
);
memset
(
c
->
ctr
,
0
,
c
->
cipher
->
blocksize
);
}
static
gcry_err_code_t
do_ecb_encrypt
(
gcry_cipher_hd_t
c
,
unsigned
char
*
outbuf
,
unsigned
int
outbuflen
,
const
unsigned
char
*
inbuf
,
unsigned
int
inbuflen
)
{
unsigned
int
blocksize
=
c
->
cipher
->
blocksize
;
unsigned
int
n
,
nblocks
;
if
(
outbuflen
<
inbuflen
)
return
GPG_ERR_BUFFER_TOO_SHORT
;
if
((
inbuflen
%
blocksize
))
return
GPG_ERR_INV_LENGTH
;
nblocks
=
inbuflen
/
c
->
cipher
->
blocksize
;
for
(
n
=
0
;
n
<
nblocks
;
n
++
)
{
c
->
cipher
->
encrypt
(
&
c
->
context
.
c
,
outbuf
,
(
byte
*
)
/*arggg*/
inbuf
);
inbuf
+=
blocksize
;
outbuf
+=
blocksize
;
}
return
0
;
}
static
gcry_err_code_t
do_ecb_decrypt
(
gcry_cipher_hd_t
c
,
unsigned
char
*
outbuf
,
unsigned
int
outbuflen
,
const
unsigned
char
*
inbuf
,
unsigned
int
inbuflen
)
{
unsigned
int
blocksize
=
c
->
cipher
->
blocksize
;
unsigned
int
n
,
nblocks
;
if
(
outbuflen
<
inbuflen
)
return
GPG_ERR_BUFFER_TOO_SHORT
;
if
((
inbuflen
%
blocksize
))
return
GPG_ERR_INV_LENGTH
;
nblocks
=
inbuflen
/
c
->
cipher
->
blocksize
;
for
(
n
=
0
;
n
<
nblocks
;
n
++
)
{
c
->
cipher
->
decrypt
(
&
c
->
context
.
c
,
outbuf
,
(
byte
*
)
/*arggg*/
inbuf
);
inbuf
+=
blocksize
;
outbuf
+=
blocksize
;
}
return
0
;
}
static
gcry_err_code_t
do_cbc_encrypt
(
gcry_cipher_hd_t
c
,
unsigned
char
*
outbuf
,
unsigned
int
outbuflen
,
const
unsigned
char
*
inbuf
,
unsigned
int
inbuflen
)
{
unsigned
int
n
;
unsigned
char
*
ivp
;
int
i
;
size_t
blocksize
=
c
->
cipher
->
blocksize
;
unsigned
nblocks
=
inbuflen
/
blocksize
;
if
(
outbuflen
<
((
c
->
flags
&
GCRY_CIPHER_CBC_MAC
)
?
blocksize
:
inbuflen
))
return
GPG_ERR_BUFFER_TOO_SHORT
;
if
((
inbuflen
%
c
->
cipher
->
blocksize
)
&&
!
(
inbuflen
>
c
->
cipher
->
blocksize
&&
(
c
->
flags
&
GCRY_CIPHER_CBC_CTS
)))
return
GPG_ERR_INV_LENGTH
;
if
((
c
->
flags
&
GCRY_CIPHER_CBC_CTS
)
&&
inbuflen
>
blocksize
)
{
if
((
inbuflen
%
blocksize
)
==
0
)
nblocks
--
;
}
if
(
c
->
bulk
.
cbc_enc
)
{
c
->
bulk
.
cbc_enc
(
&
c
->
context
.
c
,
c
->
u_iv
.
iv
,
outbuf
,
inbuf
,
nblocks
,
(
c
->
flags
&
GCRY_CIPHER_CBC_MAC
));
inbuf
+=
nblocks
*
blocksize
;
if
(
!
(
c
->
flags
&
GCRY_CIPHER_CBC_MAC
))
outbuf
+=
nblocks
*
blocksize
;
}
else
{
for
(
n
=
0
;
n
<
nblocks
;
n
++
)
{
for
(
ivp
=
c
->
u_iv
.
iv
,
i
=
0
;
i
<
blocksize
;
i
++
)
outbuf
[
i
]
=
inbuf
[
i
]
^
*
ivp
++
;
c
->
cipher
->
encrypt
(
&
c
->
context
.
c
,
outbuf
,
outbuf
);
memcpy
(
c
->
u_iv
.
iv
,
outbuf
,
blocksize
);
inbuf
+=
blocksize
;
if
(
!
(
c
->
flags
&
GCRY_CIPHER_CBC_MAC
))
outbuf
+=
blocksize
;
}
}
if
((
c
->
flags
&
GCRY_CIPHER_CBC_CTS
)
&&
inbuflen
>
blocksize
)
{
/* We have to be careful here, since outbuf might be equal to
inbuf. */
int
restbytes
;
unsigned
char
b
;
if
((
inbuflen
%
blocksize
)
==
0
)
restbytes
=
blocksize
;
else
restbytes
=
inbuflen
%
blocksize
;
outbuf
-=
blocksize
;
for
(
ivp
=
c
->
u_iv
.
iv
,
i
=
0
;
i
<
restbytes
;
i
++
)
{
b
=
inbuf
[
i
];
outbuf
[
blocksize
+
i
]
=
outbuf
[
i
];
outbuf
[
i
]
=
b
^
*
ivp
++
;
}
for
(;
i
<
blocksize
;
i
++
)
outbuf
[
i
]
=
0
^
*
ivp
++
;
c
->
cipher
->
encrypt
(
&
c
->
context
.
c
,
outbuf
,
outbuf
);
memcpy
(
c
->
u_iv
.
iv
,
outbuf
,
blocksize
);
}
return
0
;
}
static
gcry_err_code_t
do_cbc_decrypt
(
gcry_cipher_hd_t
c
,
unsigned
char
*
outbuf
,
unsigned
int
outbuflen
,
const
unsigned
char
*
inbuf
,
unsigned
int
inbuflen
)
{
unsigned
int
n
;
unsigned
char
*
ivp
;
int
i
;
size_t
blocksize
=
c
->
cipher
->
blocksize
;
unsigned
int
nblocks
=
inbuflen
/
blocksize
;
if
(
outbuflen
<
inbuflen
)
return
GPG_ERR_BUFFER_TOO_SHORT
;
if
((
inbuflen
%
c
->
cipher
->
blocksize
)
&&
!
(
inbuflen
>
c
->
cipher
->
blocksize
&&
(
c
->
flags
&
GCRY_CIPHER_CBC_CTS
)))
return
GPG_ERR_INV_LENGTH
;
if
((
c
->
flags
&
GCRY_CIPHER_CBC_CTS
)
&&
inbuflen
>
blocksize
)
{
nblocks
--
;
if
((
inbuflen
%
blocksize
)
==
0
)
nblocks
--
;
memcpy
(
c
->
lastiv
,
c
->
u_iv
.
iv
,
blocksize
);
}
if
(
c
->
bulk
.
cbc_dec
)
{
c
->
bulk
.
cbc_dec
(
&
c
->
context
.
c
,
c
->
u_iv
.
iv
,
outbuf
,
inbuf
,
nblocks
);
inbuf
+=
nblocks
*
blocksize
;
outbuf
+=
nblocks
*
blocksize
;
}
else
{
for
(
n
=
0
;
n
<
nblocks
;
n
++
)
{
/* Because outbuf and inbuf might be the same, we have to
* save the original ciphertext block. We use LASTIV for
* this here because it is not used otherwise. */
memcpy
(
c
->
lastiv
,
inbuf
,
blocksize
);
c
->
cipher
->
decrypt
(
&
c
->
context
.
c
,
outbuf
,
inbuf
);
for
(
ivp
=
c
->
u_iv
.
iv
,
i
=
0
;
i
<
blocksize
;
i
++
)
outbuf
[
i
]
^=
*
ivp
++
;
memcpy
(
c
->
u_iv
.
iv
,
c
->
lastiv
,
blocksize
);
inbuf
+=
c
->
cipher
->
blocksize
;
outbuf
+=
c
->
cipher
->
blocksize
;
}
}
if
((
c
->
flags
&
GCRY_CIPHER_CBC_CTS
)
&&
inbuflen
>
blocksize
)
{
int
restbytes
;
if
((
inbuflen
%
blocksize
)
==
0
)
restbytes
=
blocksize
;
else
restbytes
=
inbuflen
%
blocksize
;
memcpy
(
c
->
lastiv
,
c
->
u_iv
.
iv
,
blocksize
);
/* Save Cn-2. */
memcpy
(
c
->
u_iv
.
iv
,
inbuf
+
blocksize
,
restbytes
);
/* Save Cn. */
c
->
cipher
->
decrypt
(
&
c
->
context
.
c
,
outbuf
,
inbuf
);
for
(
ivp
=
c
->
u_iv
.
iv
,
i
=
0
;
i
<
restbytes
;
i
++
)
outbuf
[
i
]
^=
*
ivp
++
;
memcpy
(
outbuf
+
blocksize
,
outbuf
,
restbytes
);
for
(
i
=
restbytes
;
i
<
blocksize
;
i
++
)
c
->
u_iv
.
iv
[
i
]
=
outbuf
[
i
];
c
->
cipher
->
decrypt
(
&
c
->
context
.
c
,
outbuf
,
c
->
u_iv
.
iv
);
for
(
ivp
=
c
->
lastiv
,
i
=
0
;
i
<
blocksize
;
i
++
)
outbuf
[
i
]
^=
*
ivp
++
;
/* c->lastiv is now really lastlastiv, does this matter? */
}
return
0
;
}
static
gcry_err_code_t
do_cfb_encrypt
(
gcry_cipher_hd_t
c
,
unsigned
char
*
outbuf
,
unsigned
int
outbuflen
,
const
unsigned
char
*
inbuf
,
unsigned
int
inbuflen
)
{
unsigned
char
*
ivp
;
size_t
blocksize
=
c
->
cipher
->
blocksize
;
size_t
blocksize_x_2
=
blocksize
+
blocksize
;
if
(
outbuflen
<
inbuflen
)
return
GPG_ERR_BUFFER_TOO_SHORT
;
if
(
inbuflen
<=
c
->
unused
)
{
/* Short enough to be encoded by the remaining XOR mask. */
/* XOR the input with the IV and store input into IV. */
for
(
ivp
=
c
->
u_iv
.
iv
+
c
->
cipher
->
blocksize
-
c
->
unused
;
inbuflen
;
inbuflen
--
,
c
->
unused
--
)
*
outbuf
++
=
(
*
ivp
++
^=
*
inbuf
++
);
return
0
;
}
if
(
c
->
unused
)
{
/* XOR the input with the IV and store input into IV */
inbuflen
-=
c
->
unused
;
for
(
ivp
=
c
->
u_iv
.
iv
+
blocksize
-
c
->
unused
;
c
->
unused
;
c
->
unused
--
)
*
outbuf
++
=
(
*
ivp
++
^=
*
inbuf
++
);
}
/* Now we can process complete blocks. We use a loop as long as we
have at least 2 blocks and use conditions for the rest. This
also allows to use a bulk encryption function if available. */
if
(
inbuflen
>=
blocksize_x_2
&&
c
->
bulk
.
cfb_enc
)
{
unsigned
int
nblocks
=
inbuflen
/
blocksize
;
c
->
bulk
.
cfb_enc
(
&
c
->
context
.
c
,
c
->
u_iv
.
iv
,
outbuf
,
inbuf
,
nblocks
);
outbuf
+=
nblocks
*
blocksize
;
inbuf
+=
nblocks
*
blocksize
;
inbuflen
-=
nblocks
*
blocksize
;
}
else
{
while
(
inbuflen
>=
blocksize_x_2
)
{
int
i
;
/* Encrypt the IV. */
c
->
cipher
->
encrypt
(
&
c
->
context
.
c
,
c
->
u_iv
.
iv
,
c
->
u_iv
.
iv
);
/* XOR the input with the IV and store input into IV. */
for
(
ivp
=
c
->
u_iv
.
iv
,
i
=
0
;
i
<
blocksize
;
i
++
)
*
outbuf
++
=
(
*
ivp
++
^=
*
inbuf
++
);
inbuflen
-=
blocksize
;
}
}
if
(
inbuflen
>=
blocksize
)
{
int
i
;
/* Save the current IV and then encrypt the IV. */
memcpy
(
c
->
lastiv
,
c
->
u_iv
.
iv
,
blocksize
);
c
->
cipher
->
encrypt
(
&
c
->
context
.
c
,
c
->
u_iv
.
iv
,
c
->
u_iv
.
iv
);
/* XOR the input with the IV and store input into IV */
for
(
ivp
=
c
->
u_iv
.
iv
,
i
=
0
;
i
<
blocksize
;
i
++
)
*
outbuf
++
=
(
*
ivp
++
^=
*
inbuf
++
);
inbuflen
-=
blocksize
;
}
if
(
inbuflen
)
{
/* Save the current IV and then encrypt the IV. */
memcpy
(
c
->
lastiv
,
c
->
u_iv
.
iv
,
blocksize
);
c
->
cipher
->
encrypt
(
&
c
->
context
.
c
,
c
->
u_iv
.
iv
,
c
->
u_iv
.
iv
);
c
->
unused
=
blocksize
;
/* Apply the XOR. */
c
->
unused
-=
inbuflen
;
for
(
ivp
=
c
->
u_iv
.
iv
;
inbuflen
;
inbuflen
--
)
*
outbuf
++
=
(
*
ivp
++
^=
*
inbuf
++
);
}
return
0
;
}
static
gcry_err_code_t
do_cfb_decrypt
(
gcry_cipher_hd_t
c
,
unsigned
char
*
outbuf
,
unsigned
int
outbuflen
,
const
unsigned
char
*
inbuf
,
unsigned
int
inbuflen
)
{
unsigned
char
*
ivp
;
unsigned
long
temp
;
int
i
;
size_t
blocksize
=
c
->
cipher
->
blocksize
;
size_t
blocksize_x_2
=
blocksize
+
blocksize
;
if
(
outbuflen
<
inbuflen
)
return
GPG_ERR_BUFFER_TOO_SHORT
;
if
(
inbuflen
<=
c
->
unused
)
{
/* Short enough to be encoded by the remaining XOR mask. */
/* XOR the input with the IV and store input into IV. */
for
(
ivp
=
c
->
u_iv
.
iv
+
blocksize
-
c
->
unused
;
inbuflen
;
inbuflen
--
,
c
->
unused
--
)
{
temp
=
*
inbuf
++
;
*
outbuf
++
=
*
ivp
^
temp
;
*
ivp
++
=
temp
;
}
return
0
;
}
if
(
c
->
unused
)
{
/* XOR the input with the IV and store input into IV. */
inbuflen
-=
c
->
unused
;
for
(
ivp
=
c
->
u_iv
.
iv
+
blocksize
-
c
->
unused
;
c
->
unused
;
c
->
unused
--
)
{
temp
=
*
inbuf
++
;
*
outbuf
++
=
*
ivp
^
temp
;
*
ivp
++
=
temp
;
}
}
/* Now we can process complete blocks. We use a loop as long as we
have at least 2 blocks and use conditions for the rest. This
also allows to use a bulk encryption function if available. */
if
(
inbuflen
>=
blocksize_x_2
&&
c
->
bulk
.
cfb_dec
)
{
unsigned
int
nblocks
=
inbuflen
/
blocksize
;
c
->
bulk
.
cfb_dec
(
&
c
->
context
.
c
,
c
->
u_iv
.
iv
,
outbuf
,
inbuf
,
nblocks
);
outbuf
+=
nblocks
*
blocksize
;
inbuf
+=
nblocks
*
blocksize
;
inbuflen
-=
nblocks
*
blocksize
;
}
else
{
while
(
inbuflen
>=
blocksize_x_2
)
{
/* Encrypt the IV. */
c
->
cipher
->
encrypt
(
&
c
->
context
.
c
,
c
->
u_iv
.
iv
,
c
->
u_iv
.
iv
);
/* XOR the input with the IV and store input into IV. */
for
(
ivp
=
c
->
u_iv
.
iv
,
i
=
0
;
i
<
blocksize
;
i
++
)
{
temp
=
*
inbuf
++
;
*
outbuf
++
=
*
ivp
^
temp
;
*
ivp
++
=
temp
;
}
inbuflen
-=
blocksize
;
}
}
if
(
inbuflen
>=
blocksize
)
{
/* Save the current IV and then encrypt the IV. */
memcpy
(
c
->
lastiv
,
c
->
u_iv
.
iv
,
blocksize
);
c
->
cipher
->
encrypt
(
&
c
->
context
.
c
,
c
->
u_iv
.
iv
,
c
->
u_iv
.
iv
);
/* XOR the input with the IV and store input into IV */
for
(
ivp
=
c
->
u_iv
.
iv
,
i
=
0
;
i
<
blocksize
;
i
++
)
{
temp
=
*
inbuf
++
;
*
outbuf
++
=
*
ivp
^
temp
;
*
ivp
++
=
temp
;
}
inbuflen
-=
blocksize
;
}
if
(
inbuflen
)
{
/* Save the current IV and then encrypt the IV. */
memcpy
(
c
->
lastiv
,
c
->
u_iv
.
iv
,
blocksize
);
c
->
cipher
->
encrypt
(
&
c
->
context
.
c
,
c
->
u_iv
.
iv
,
c
->
u_iv
.
iv
);
c
->
unused
=
blocksize
;
/* Apply the XOR. */
c
->
unused
-=
inbuflen
;
for
(
ivp
=
c
->
u_iv
.
iv
;
inbuflen
;
inbuflen
--
)
{
temp
=
*
inbuf
++
;
*
outbuf
++
=
*
ivp
^
temp
;
*
ivp
++
=
temp
;
}
}
return
0
;
}
static
gcry_err_code_t
do_ofb_encrypt
(
gcry_cipher_hd_t
c
,
unsigned
char
*
outbuf
,
unsigned
int
outbuflen
,
const
unsigned
char
*
inbuf
,
unsigned
int
inbuflen
)
{
unsigned
char
*
ivp
;
size_t
blocksize
=
c
->
cipher
->
blocksize
;
if
(
outbuflen
<
inbuflen
)
return
GPG_ERR_BUFFER_TOO_SHORT
;
if
(
inbuflen
<=
c
->
unused
)
{
/* Short enough to be encoded by the remaining XOR mask. */
/* XOR the input with the IV */
for
(
ivp
=
c
->
u_iv
.
iv
+
c
->
cipher
->
blocksize
-
c
->
unused
;
inbuflen
;
inbuflen
--
,
c
->
unused
--
)
*
outbuf
++
=
(
*
ivp
++
^
*
inbuf
++
);
return
0
;
}
if
(
c
->
unused
)
{
inbuflen
-=
c
->
unused
;
for
(
ivp
=
c
->
u_iv
.
iv
+
blocksize
-
c
->
unused
;
c
->
unused
;
c
->
unused
--
)
*
outbuf
++
=
(
*
ivp
++
^
*
inbuf
++
);
}
/* Now we can process complete blocks. */
while
(
inbuflen
>=
blocksize
)
{
int
i
;
/* Encrypt the IV (and save the current one). */
memcpy
(
c
->
lastiv
,
c
->
u_iv
.
iv
,
blocksize
);
c
->
cipher
->
encrypt
(
&
c
->
context
.
c
,
c
->
u_iv
.
iv
,
c
->
u_iv
.
iv
);
for
(
ivp
=
c
->
u_iv
.
iv
,
i
=
0
;
i
<
blocksize
;
i
++
)
*
outbuf
++
=
(
*
ivp
++
^
*
inbuf
++
);
inbuflen
-=
blocksize
;
}
if
(
inbuflen
)
{
/* process the remaining bytes */
memcpy
(
c
->
lastiv
,
c
->
u_iv
.
iv
,
blocksize
);
c
->
cipher
->
encrypt
(
&
c
->
context
.
c
,
c
->
u_iv
.
iv
,
c
->
u_iv
.
iv
);
c
->
unused
=
blocksize
;
c
->
unused
-=
inbuflen
;
for
(
ivp
=
c
->
u_iv
.
iv
;
inbuflen
;
inbuflen
--
)
*
outbuf
++
=
(
*
ivp
++
^
*
inbuf
++
);
}
return
0
;
}
static
gcry_err_code_t
do_ofb_decrypt
(
gcry_cipher_hd_t
c
,
unsigned
char
*
outbuf
,
unsigned
int
outbuflen
,
const
unsigned
char
*
inbuf
,
unsigned
int
inbuflen
)
{
unsigned
char
*
ivp
;
size_t
blocksize
=
c
->
cipher
->
blocksize
;
if
(
outbuflen
<
inbuflen
)
return
GPG_ERR_BUFFER_TOO_SHORT
;
if
(
inbuflen
<=
c
->
unused
)
{
/* Short enough to be encoded by the remaining XOR mask. */
for
(
ivp
=
c
->
u_iv
.
iv
+
blocksize
-
c
->
unused
;
inbuflen
;
inbuflen
--
,
c
->
unused
--
)
*
outbuf
++
=
*
ivp
++
^
*
inbuf
++
;
return
0
;
}
if
(
c
->
unused
)
{
inbuflen
-=
c
->
unused
;
for
(
ivp
=
c
->
u_iv
.
iv
+
blocksize
-
c
->
unused
;
c
->
unused
;
c
->
unused
--
)
*
outbuf
++
=
*
ivp
++
^
*
inbuf
++
;
}
/* Now we can process complete blocks. */
while
(
inbuflen
>=
blocksize
)
{
int
i
;
/* Encrypt the IV (and save the current one). */
memcpy
(
c
->
lastiv
,
c
->
u_iv
.
iv
,
blocksize
);
c
->
cipher
->
encrypt
(
&
c
->
context
.
c
,
c
->
u_iv
.
iv
,
c
->
u_iv
.
iv
);
for
(
ivp
=
c
->
u_iv
.
iv
,
i
=
0
;
i
<
blocksize
;
i
++
)
*
outbuf
++
=
*
ivp
++
^
*
inbuf
++
;
inbuflen
-=
blocksize
;
}
if
(
inbuflen
)
{
/* Process the remaining bytes. */
/* Encrypt the IV (and save the current one). */
memcpy
(
c
->
lastiv
,
c
->
u_iv
.
iv
,
blocksize
);
c
->
cipher
->
encrypt
(
&
c
->
context
.
c
,
c
->
u_iv
.
iv
,
c
->
u_iv
.
iv
);
c
->
unused
=
blocksize
;
c
->
unused
-=
inbuflen
;
for
(
ivp
=
c
->
u_iv
.
iv
;
inbuflen
;
inbuflen
--
)
*
outbuf
++
=
*
ivp
++
^
*
inbuf
++
;
}
return
0
;
}
static
gcry_err_code_t
do_ctr_encrypt
(
gcry_cipher_hd_t
c
,
unsigned
char
*
outbuf
,
unsigned
int
outbuflen
,
const
unsigned
char
*
inbuf
,
unsigned
int
inbuflen
)
{
unsigned
int
n
;
unsigned
char
tmp
[
MAX_BLOCKSIZE
];
int
i
;
unsigned
int
blocksize
=
c
->
cipher
->
blocksize
;
if
(
outbuflen
<
inbuflen
)
return
GPG_ERR_BUFFER_TOO_SHORT
;
if
((
inbuflen
%
blocksize
))
return
GPG_ERR_INV_LENGTH
;
for
(
n
=
0
;
n
<
inbuflen
;
n
++
)
{
if
((
n
%
blocksize
)
==
0
)
{
c
->
cipher
->
encrypt
(
&
c
->
context
.
c
,
tmp
,
c
->
ctr
);
for
(
i
=
blocksize
;
i
>
0
;
i
--
)
{
c
->
ctr
[
i
-1
]
++
;
if
(
c
->
ctr
[
i
-1
]
!=
0
)
break
;
}
}
/* XOR input with encrypted counter and store in output. */
outbuf
[
n
]
=
inbuf
[
n
]
^
tmp
[
n
%
blocksize
];
}
wipememory
(
tmp
,
sizeof
tmp
);
return
0
;
}
static
gcry_err_code_t
do_ctr_decrypt
(
gcry_cipher_hd_t
c
,
unsigned
char
*
outbuf
,
unsigned
int
outbuflen
,
const
unsigned
char
*
inbuf
,
unsigned
int
inbuflen
)
{
return
do_ctr_encrypt
(
c
,
outbuf
,
outbuflen
,
inbuf
,
inbuflen
);
}
/* Perform the AES-Wrap algorithm as specified by RFC3394. We
implement this as a mode usable with any cipher algorithm of
blocksize 128. */
static
gcry_err_code_t
do_aeswrap_encrypt
(
gcry_cipher_hd_t
c
,
byte
*
outbuf
,
unsigned
int
outbuflen
,
const
byte
*
inbuf
,
unsigned
int
inbuflen
)
{
int
j
,
x
;
unsigned
int
n
,
i
;
unsigned
char
*
r
,
*
a
,
*
b
;
unsigned
char
t
[
8
];
#if MAX_BLOCKSIZE < 8
#error Invalid block size
#endif
/* We require a cipher with a 128 bit block length. */
if
(
c
->
cipher
->
blocksize
!=
16
)
return
GPG_ERR_INV_LENGTH
;
/* The output buffer must be able to hold the input data plus one
additional block. */
if
(
outbuflen
<
inbuflen
+
8
)
return
GPG_ERR_BUFFER_TOO_SHORT
;
/* Input data must be multiple of 64 bits. */
if
(
inbuflen
%
8
)
return
GPG_ERR_INV_ARG
;
n
=
inbuflen
/
8
;
/* We need at least two 64 bit blocks. */
if
(
n
<
2
)
return
GPG_ERR_INV_ARG
;
r
=
outbuf
;
a
=
outbuf
;
/* We store A directly in OUTBUF. */
b
=
c
->
ctr
;
/* B is also used to concatenate stuff. */
/* If an IV has been set we use that IV as the Alternative Initial
Value; if it has not been set we use the standard value. */
if
(
c
->
marks
.
iv
)
memcpy
(
a
,
c
->
u_iv
.
iv
,
8
);
else
memset
(
a
,
0xa6
,
8
);
/* Copy the inbuf to the outbuf. */
memmove
(
r
+
8
,
inbuf
,
inbuflen
);
memset
(
t
,
0
,
sizeof
t
);
/* t := 0. */
for
(
j
=
0
;
j
<=
5
;
j
++
)
{
for
(
i
=
1
;
i
<=
n
;
i
++
)
{
/* B := AES_k( A | R[i] ) */
memcpy
(
b
,
a
,
8
);
memcpy
(
b
+
8
,
r
+
i
*
8
,
8
);
c
->
cipher
->
encrypt
(
&
c
->
context
.
c
,
b
,
b
);
/* t := t + 1 */
for
(
x
=
7
;
x
>=
0
;
x
--
)
{
t
[
x
]
++
;
if
(
t
[
x
])
break
;
}
/* A := MSB_64(B) ^ t */
for
(
x
=
0
;
x
<
8
;
x
++
)
a
[
x
]
=
b
[
x
]
^
t
[
x
];
/* R[i] := LSB_64(B) */
memcpy
(
r
+
i
*
8
,
b
+
8
,
8
);
}
}
return
0
;
}
/* Perform the AES-Unwrap algorithm as specified by RFC3394. We
implement this as a mode usable with any cipher algorithm of
blocksize 128. */
static
gcry_err_code_t
do_aeswrap_decrypt
(
gcry_cipher_hd_t
c
,
byte
*
outbuf
,
unsigned
int
outbuflen
,
const
byte
*
inbuf
,
unsigned
int
inbuflen
)
{
int
j
,
x
;
unsigned
int
n
,
i
;
unsigned
char
*
r
,
*
a
,
*
b
;
unsigned
char
t
[
8
];
#if MAX_BLOCKSIZE < 8
#error Invalid block size
#endif
/* We require a cipher with a 128 bit block length. */
if
(
c
->
cipher
->
blocksize
!=
16
)
return
GPG_ERR_INV_LENGTH
;
/* The output buffer must be able to hold the input data minus one
additional block. Fixme: The caller has more restrictive checks
- we may want to fix them for this mode. */
if
(
outbuflen
+
8
<
inbuflen
)
return
GPG_ERR_BUFFER_TOO_SHORT
;
/* Input data must be multiple of 64 bits. */
if
(
inbuflen
%
8
)
return
GPG_ERR_INV_ARG
;
n
=
inbuflen
/
8
;
/* We need at least three 64 bit blocks. */
if
(
n
<
3
)
return
GPG_ERR_INV_ARG
;
r
=
outbuf
;
a
=
c
->
lastiv
;
/* We use c->LASTIV as buffer for A. */
b
=
c
->
ctr
;
/* B is also used to concatenate stuff. */
/* Copy the inbuf to the outbuf and save A. */
memcpy
(
a
,
inbuf
,
8
);
memmove
(
r
,
inbuf
+
8
,
inbuflen
-8
);
n
--
;
/* Reduce to actual number of data blocks. */
/* t := 6 * n */
i
=
n
*
6
;
/* The range is valid because: n = inbuflen / 8 - 1. */
for
(
x
=
0
;
x
<
8
&&
x
<
sizeof
(
i
);
x
++
)
t
[
7
-
x
]
=
i
>>
(
8
*
x
);
for
(;
x
<
8
;
x
++
)
t
[
7
-
x
]
=
0
;
for
(
j
=
5
;
j
>=
0
;
j
--
)
{
for
(
i
=
n
;
i
>=
1
;
i
--
)
{
/* B := AES_k^1( (A ^ t)| R[i] ) */
for
(
x
=
0
;
x
<
8
;
x
++
)
b
[
x
]
=
a
[
x
]
^
t
[
x
];
memcpy
(
b
+
8
,
r
+
(
i
-1
)
*
8
,
8
);
c
->
cipher
->
decrypt
(
&
c
->
context
.
c
,
b
,
b
);
/* t := t - 1 */
for
(
x
=
7
;
x
>=
0
;
x
--
)
{
t
[
x
]
--
;
if
(
t
[
x
]
!=
0xff
)
break
;
}
/* A := MSB_64(B) */
memcpy
(
a
,
b
,
8
);
/* R[i] := LSB_64(B) */
memcpy
(
r
+
(
i
-1
)
*
8
,
b
+
8
,
8
);
}
}
/* If an IV has been set we compare against this Alternative Initial
Value; if it has not been set we compare against the standard IV. */
if
(
c
->
marks
.
iv
)
j
=
memcmp
(
a
,
c
->
u_iv
.
iv
,
8
);
else
{
for
(
j
=
0
,
x
=
0
;
x
<
8
;
x
++
)
if
(
a
[
x
]
!=
0xa6
)
{
j
=
1
;
break
;
}
}
return
j
?
GPG_ERR_CHECKSUM
:
0
;
}
/****************
* Encrypt INBUF to OUTBUF with the mode selected at open.
* inbuf and outbuf may overlap or be the same.
* Depending on the mode some constraints apply to INBUFLEN.
*/
static
gcry_err_code_t
cipher_encrypt
(
gcry_cipher_hd_t
c
,
byte
*
outbuf
,
unsigned
int
outbuflen
,
const
byte
*
inbuf
,
unsigned
int
inbuflen
)
{
gcry_err_code_t
rc
;
switch
(
c
->
mode
)
{
case
GCRY_CIPHER_MODE_ECB
:
rc
=
do_ecb_encrypt
(
c
,
outbuf
,
outbuflen
,
inbuf
,
inbuflen
);
break
;
case
GCRY_CIPHER_MODE_CBC
:
rc
=
do_cbc_encrypt
(
c
,
outbuf
,
outbuflen
,
inbuf
,
inbuflen
);
break
;
case
GCRY_CIPHER_MODE_CFB
:
rc
=
do_cfb_encrypt
(
c
,
outbuf
,
outbuflen
,
inbuf
,
inbuflen
);
break
;
case
GCRY_CIPHER_MODE_OFB
:
rc
=
do_ofb_encrypt
(
c
,
outbuf
,
outbuflen
,
inbuf
,
inbuflen
);
break
;
case
GCRY_CIPHER_MODE_CTR
:
rc
=
do_ctr_encrypt
(
c
,
outbuf
,
outbuflen
,
inbuf
,
inbuflen
);
break
;
case
GCRY_CIPHER_MODE_AESWRAP
:
rc
=
do_aeswrap_encrypt
(
c
,
outbuf
,
outbuflen
,
inbuf
,
inbuflen
);
break
;
case
GCRY_CIPHER_MODE_STREAM
:
c
->
cipher
->
stencrypt
(
&
c
->
context
.
c
,
outbuf
,
(
byte
*
)
/*arggg*/
inbuf
,
inbuflen
);
rc
=
0
;
break
;
case
GCRY_CIPHER_MODE_NONE
:
if
(
fips_mode
()
||
!
_gcry_get_debug_flag
(
0
))
{
fips_signal_error
(
"cipher mode NONE used"
);
rc
=
GPG_ERR_INV_CIPHER_MODE
;
}
else
{
if
(
inbuf
!=
outbuf
)
memmove
(
outbuf
,
inbuf
,
inbuflen
);
rc
=
0
;
}
break
;
default
:
log_fatal
(
"cipher_encrypt: invalid mode %d
\n
"
,
c
->
mode
);
rc
=
GPG_ERR_INV_CIPHER_MODE
;
break
;
}
return
rc
;
}
/****************
* Encrypt IN and write it to OUT. If IN is NULL, in-place encryption has
* been requested.
*/
gcry_error_t
gcry_cipher_encrypt
(
gcry_cipher_hd_t
h
,
void
*
out
,
size_t
outsize
,
const
void
*
in
,
size_t
inlen
)
{
gcry_err_code_t
err
;
if
(
!
in
)
/* Caller requested in-place encryption. */
err
=
cipher_encrypt
(
h
,
out
,
outsize
,
out
,
outsize
);
else
err
=
cipher_encrypt
(
h
,
out
,
outsize
,
in
,
inlen
);
/* Failsafe: Make sure that the plaintext will never make it into
OUT if the encryption returned an error. */
if
(
err
&&
out
)
memset
(
out
,
0x42
,
outsize
);
return
gcry_error
(
err
);
}
/****************
* Decrypt INBUF to OUTBUF with the mode selected at open.
* inbuf and outbuf may overlap or be the same.
* Depending on the mode some some contraints apply to INBUFLEN.
*/
static
gcry_err_code_t
cipher_decrypt
(
gcry_cipher_hd_t
c
,
byte
*
outbuf
,
unsigned
int
outbuflen
,
const
byte
*
inbuf
,
unsigned
int
inbuflen
)
{
gcry_err_code_t
rc
;
switch
(
c
->
mode
)
{
case
GCRY_CIPHER_MODE_ECB
:
rc
=
do_ecb_decrypt
(
c
,
outbuf
,
outbuflen
,
inbuf
,
inbuflen
);
break
;
case
GCRY_CIPHER_MODE_CBC
:
rc
=
do_cbc_decrypt
(
c
,
outbuf
,
outbuflen
,
inbuf
,
inbuflen
);
break
;
case
GCRY_CIPHER_MODE_CFB
:
rc
=
do_cfb_decrypt
(
c
,
outbuf
,
outbuflen
,
inbuf
,
inbuflen
);
break
;
case
GCRY_CIPHER_MODE_OFB
:
rc
=
do_ofb_decrypt
(
c
,
outbuf
,
outbuflen
,
inbuf
,
inbuflen
);
break
;
case
GCRY_CIPHER_MODE_CTR
:
rc
=
do_ctr_decrypt
(
c
,
outbuf
,
outbuflen
,
inbuf
,
inbuflen
);
break
;
case
GCRY_CIPHER_MODE_AESWRAP
:
rc
=
do_aeswrap_decrypt
(
c
,
outbuf
,
outbuflen
,
inbuf
,
inbuflen
);
break
;
case
GCRY_CIPHER_MODE_STREAM
:
c
->
cipher
->
stdecrypt
(
&
c
->
context
.
c
,
outbuf
,
(
byte
*
)
/*arggg*/
inbuf
,
inbuflen
);
rc
=
0
;
break
;
case
GCRY_CIPHER_MODE_NONE
:
if
(
fips_mode
()
||
!
_gcry_get_debug_flag
(
0
))
{
fips_signal_error
(
"cipher mode NONE used"
);
rc
=
GPG_ERR_INV_CIPHER_MODE
;
}
else
{
if
(
inbuf
!=
outbuf
)
memmove
(
outbuf
,
inbuf
,
inbuflen
);
rc
=
0
;
}
break
;
default
:
log_fatal
(
"cipher_decrypt: invalid mode %d
\n
"
,
c
->
mode
);
rc
=
GPG_ERR_INV_CIPHER_MODE
;
break
;
}
return
rc
;
}
gcry_error_t
gcry_cipher_decrypt
(
gcry_cipher_hd_t
h
,
void
*
out
,
size_t
outsize
,
const
void
*
in
,
size_t
inlen
)
{
gcry_err_code_t
err
;
if
(
!
in
)
/* Caller requested in-place encryption. */
err
=
cipher_decrypt
(
h
,
out
,
outsize
,
out
,
outsize
);
else
err
=
cipher_decrypt
(
h
,
out
,
outsize
,
in
,
inlen
);
return
gcry_error
(
err
);
}
/****************
* Used for PGP's somewhat strange CFB mode. Only works if
* the corresponding flag is set.
*/
static
void
cipher_sync
(
gcry_cipher_hd_t
c
)
{
if
((
c
->
flags
&
GCRY_CIPHER_ENABLE_SYNC
)
&&
c
->
unused
)
{
memmove
(
c
->
u_iv
.
iv
+
c
->
unused
,
c
->
u_iv
.
iv
,
c
->
cipher
->
blocksize
-
c
->
unused
);
memcpy
(
c
->
u_iv
.
iv
,
c
->
lastiv
+
c
->
cipher
->
blocksize
-
c
->
unused
,
c
->
unused
);
c
->
unused
=
0
;
}
}
gcry_error_t
_gcry_cipher_setkey
(
gcry_cipher_hd_t
hd
,
const
void
*
key
,
size_t
keylen
)
{
return
cipher_setkey
(
hd
,
(
void
*
)
key
,
keylen
);
}
gcry_error_t
_gcry_cipher_setiv
(
gcry_cipher_hd_t
hd
,
const
void
*
iv
,
size_t
ivlen
)
{
cipher_setiv
(
hd
,
iv
,
ivlen
);
return
0
;
}
/* Set counter for CTR mode. (CTR,CTRLEN) must denote a buffer of
block size length, or (NULL,0) to set the CTR to the all-zero
block. */
gpg_error_t
_gcry_cipher_setctr
(
gcry_cipher_hd_t
hd
,
const
void
*
ctr
,
size_t
ctrlen
)
{
if
(
ctr
&&
ctrlen
==
hd
->
cipher
->
blocksize
)
memcpy
(
hd
->
ctr
,
ctr
,
hd
->
cipher
->
blocksize
);
else
if
(
!
ctr
||
!
ctrlen
)
memset
(
hd
->
ctr
,
0
,
hd
->
cipher
->
blocksize
);
else
return
gpg_error
(
GPG_ERR_INV_ARG
);
return
0
;
}
gcry_error_t
gcry_cipher_ctl
(
gcry_cipher_hd_t
h
,
int
cmd
,
void
*
buffer
,
size_t
buflen
)
{
gcry_err_code_t
rc
=
GPG_ERR_NO_ERROR
;
switch
(
cmd
)
{
case
GCRYCTL_SET_KEY
:
/* Deprecated; use gcry_cipher_setkey. */
rc
=
cipher_setkey
(
h
,
buffer
,
buflen
);
break
;
case
GCRYCTL_SET_IV
:
/* Deprecated; use gcry_cipher_setiv. */
cipher_setiv
(
h
,
buffer
,
buflen
);
break
;
case
GCRYCTL_RESET
:
cipher_reset
(
h
);
break
;
case
GCRYCTL_CFB_SYNC
:
cipher_sync
(
h
);
break
;
case
GCRYCTL_SET_CBC_CTS
:
if
(
buflen
)
if
(
h
->
flags
&
GCRY_CIPHER_CBC_MAC
)
rc
=
GPG_ERR_INV_FLAG
;
else
h
->
flags
|=
GCRY_CIPHER_CBC_CTS
;
else
h
->
flags
&=
~
GCRY_CIPHER_CBC_CTS
;
break
;
case
GCRYCTL_SET_CBC_MAC
:
if
(
buflen
)
if
(
h
->
flags
&
GCRY_CIPHER_CBC_CTS
)
rc
=
GPG_ERR_INV_FLAG
;
else
h
->
flags
|=
GCRY_CIPHER_CBC_MAC
;
else
h
->
flags
&=
~
GCRY_CIPHER_CBC_MAC
;
break
;
case
GCRYCTL_DISABLE_ALGO
:
/* This command expects NULL for H and BUFFER to point to an
integer with the algo number. */
if
(
h
||
!
buffer
||
buflen
!=
sizeof
(
int
)
)
return
gcry_error
(
GPG_ERR_CIPHER_ALGO
);
disable_cipher_algo
(
*
(
int
*
)
buffer
);
break
;
case
GCRYCTL_SET_CTR
:
/* Deprecated; use gcry_cipher_setctr. */
if
(
buffer
&&
buflen
==
h
->
cipher
->
blocksize
)
memcpy
(
h
->
ctr
,
buffer
,
h
->
cipher
->
blocksize
);
else
if
(
buffer
==
NULL
||
buflen
==
0
)
memset
(
h
->
ctr
,
0
,
h
->
cipher
->
blocksize
);
else
rc
=
GPG_ERR_INV_ARG
;
break
;
case
61
:
/* Disable weak key detection (private). */
if
(
h
->
extraspec
->
set_extra_info
)
rc
=
h
->
extraspec
->
set_extra_info
(
&
h
->
context
.
c
,
CIPHER_INFO_NO_WEAK_KEY
,
NULL
,
0
);
else
rc
=
GPG_ERR_NOT_SUPPORTED
;
break
;
case
62
:
/* Return current input vector (private). */
/* This is the input block as used in CFB and OFB mode which has
initially been set as IV. The returned format is:
1 byte Actual length of the block in bytes.
n byte The block.
If the provided buffer is too short, an error is returned. */
if
(
buflen
<
(
1
+
h
->
cipher
->
blocksize
))
rc
=
GPG_ERR_TOO_SHORT
;
else
{
unsigned
char
*
ivp
;
unsigned
char
*
dst
=
buffer
;
int
n
=
h
->
unused
;
if
(
!
n
)
n
=
h
->
cipher
->
blocksize
;
gcry_assert
(
n
<=
h
->
cipher
->
blocksize
);
*
dst
++
=
n
;
ivp
=
h
->
u_iv
.
iv
+
h
->
cipher
->
blocksize
-
n
;
while
(
n
--
)
*
dst
++
=
*
ivp
++
;
}
break
;
default
:
rc
=
GPG_ERR_INV_OP
;
}
return
gcry_error
(
rc
);
}
/* Return information about the cipher handle H. CMD is the kind of
information requested. BUFFER and NBYTES are reserved for now.
There are no values for CMD yet defined.
The function always returns GPG_ERR_INV_OP.
*/
gcry_error_t
gcry_cipher_info
(
gcry_cipher_hd_t
h
,
int
cmd
,
void
*
buffer
,
size_t
*
nbytes
)
{
gcry_err_code_t
err
=
GPG_ERR_NO_ERROR
;
(
void
)
h
;
(
void
)
buffer
;
(
void
)
nbytes
;
switch
(
cmd
)
{
default
:
err
=
GPG_ERR_INV_OP
;
}
return
gcry_error
(
err
);
}
/* Return information about the given cipher algorithm ALGO.
WHAT select the kind of information returned:
GCRYCTL_GET_KEYLEN:
Return the length of the key. If the algorithm ALGO
supports multiple key lengths, the maximum supported key length
is returned. The key length is returned as number of octets.
BUFFER and NBYTES must be zero.
GCRYCTL_GET_BLKLEN:
Return the blocklength of the algorithm ALGO counted in octets.
BUFFER and NBYTES must be zero.
GCRYCTL_TEST_ALGO:
Returns 0 if the specified algorithm ALGO is available for use.
BUFFER and NBYTES must be zero.
Note: Because this function is in most cases used to return an
integer value, we can make it easier for the caller to just look at
the return value. The caller will in all cases consult the value
and thereby detecting whether a error occurred or not (i.e. while
checking the block size)
*/
gcry_error_t
gcry_cipher_algo_info
(
int
algo
,
int
what
,
void
*
buffer
,
size_t
*
nbytes
)
{
gcry_err_code_t
err
=
GPG_ERR_NO_ERROR
;
unsigned
int
ui
;
switch
(
what
)
{
case
GCRYCTL_GET_KEYLEN
:
if
(
buffer
||
(
!
nbytes
))
err
=
GPG_ERR_CIPHER_ALGO
;
else
{
ui
=
cipher_get_keylen
(
algo
);
if
((
ui
>
0
)
&&
(
ui
<=
512
))
*
nbytes
=
(
size_t
)
ui
/
8
;
else
/* The only reason is an invalid algo or a strange
blocksize. */
err
=
GPG_ERR_CIPHER_ALGO
;
}
break
;
case
GCRYCTL_GET_BLKLEN
:
if
(
buffer
||
(
!
nbytes
))
err
=
GPG_ERR_CIPHER_ALGO
;
else
{
ui
=
cipher_get_blocksize
(
algo
);
if
((
ui
>
0
)
&&
(
ui
<
10000
))
*
nbytes
=
ui
;
else
/* The only reason is an invalid algo or a strange
blocksize. */
err
=
GPG_ERR_CIPHER_ALGO
;
}
break
;
case
GCRYCTL_TEST_ALGO
:
if
(
buffer
||
nbytes
)
err
=
GPG_ERR_INV_ARG
;
else
err
=
check_cipher_algo
(
algo
);
break
;
default
:
err
=
GPG_ERR_INV_OP
;
}
return
gcry_error
(
err
);
}
/* This function returns length of the key for algorithm ALGO. If the
algorithm supports multiple key lengths, the maximum supported key
length is returned. On error 0 is returned. The key length is
returned as number of octets.
This is a convenience functions which should be preferred over
gcry_cipher_algo_info because it allows for proper type
checking. */
size_t
gcry_cipher_get_algo_keylen
(
int
algo
)
{
size_t
n
;
if
(
gcry_cipher_algo_info
(
algo
,
GCRYCTL_GET_KEYLEN
,
NULL
,
&
n
))
n
=
0
;
return
n
;
}
/* This functions returns the blocklength of the algorithm ALGO
counted in octets. On error 0 is returned.
This is a convenience functions which should be preferred over
gcry_cipher_algo_info because it allows for proper type
checking. */
size_t
gcry_cipher_get_algo_blklen
(
int
algo
)
{
size_t
n
;
if
(
gcry_cipher_algo_info
(
algo
,
GCRYCTL_GET_BLKLEN
,
NULL
,
&
n
))
n
=
0
;
return
n
;
}
/* Explicitly initialize this module. */
gcry_err_code_t
_gcry_cipher_init
(
void
)
{
gcry_err_code_t
err
=
GPG_ERR_NO_ERROR
;
REGISTER_DEFAULT_CIPHERS
;
return
err
;
}
/* Get a list consisting of the IDs of the loaded cipher modules. If
LIST is zero, write the number of loaded cipher modules to
LIST_LENGTH and return. If LIST is non-zero, the first
*LIST_LENGTH algorithm IDs are stored in LIST, which must be of
according size. In case there are less cipher modules than
*LIST_LENGTH, *LIST_LENGTH is updated to the correct number. */
gcry_error_t
gcry_cipher_list
(
int
*
list
,
int
*
list_length
)
{
gcry_err_code_t
err
=
GPG_ERR_NO_ERROR
;
ath_mutex_lock
(
&
ciphers_registered_lock
);
err
=
_gcry_module_list
(
ciphers_registered
,
list
,
list_length
);
ath_mutex_unlock
(
&
ciphers_registered_lock
);
return
err
;
}
/* Run the selftests for cipher algorithm ALGO with optional reporting
function REPORT. */
gpg_error_t
_gcry_cipher_selftest
(
int
algo
,
int
extended
,
selftest_report_func_t
report
)
{
gcry_module_t
module
=
NULL
;
cipher_extra_spec_t
*
extraspec
=
NULL
;
gcry_err_code_t
ec
=
0
;
REGISTER_DEFAULT_CIPHERS
;
ath_mutex_lock
(
&
ciphers_registered_lock
);
module
=
_gcry_module_lookup_id
(
ciphers_registered
,
algo
);
if
(
module
&&
!
(
module
->
flags
&
FLAG_MODULE_DISABLED
))
extraspec
=
module
->
extraspec
;
ath_mutex_unlock
(
&
ciphers_registered_lock
);
if
(
extraspec
&&
extraspec
->
selftest
)
ec
=
extraspec
->
selftest
(
algo
,
extended
,
report
);
else
{
ec
=
GPG_ERR_CIPHER_ALGO
;
if
(
report
)
report
(
"cipher"
,
algo
,
"module"
,
module
&&
!
(
module
->
flags
&
FLAG_MODULE_DISABLED
)
?
"no selftest available"
:
module
?
"algorithm disabled"
:
"algorithm not found"
);
}
if
(
module
)
{
ath_mutex_lock
(
&
ciphers_registered_lock
);
_gcry_module_release
(
module
);
ath_mutex_unlock
(
&
ciphers_registered_lock
);
}
return
gpg_error
(
ec
);
}
File Metadata
Details
Attached
Mime Type
text/x-c
Expires
Mon, Feb 2, 8:07 AM (10 h, 3 m)
Storage Engine
local-disk
Storage Format
Raw Data
Storage Handle
ff/c9/ce59945c4c9fa3a0aa655a270cd5
Attached To
rC libgcrypt
Event Timeline
Log In to Comment