Page Menu
Home
GnuPG
Search
Configure Global Search
Log In
Files
F20064434
build-packet.c
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Size
50 KB
Subscribers
None
build-packet.c
View Options
/* build-packet.c - assemble packets and write them
* Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
* 2006, 2010, 2011 Free Software Foundation, Inc.
*
* This file is part of GnuPG.
*
* GnuPG is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* GnuPG is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <https://www.gnu.org/licenses/>.
*/
#include
<config.h>
#include
<stdio.h>
#include
<stdlib.h>
#include
<string.h>
#include
<ctype.h>
#include
"gpg.h"
#include
"../common/util.h"
#include
"packet.h"
#include
"../common/status.h"
#include
"../common/iobuf.h"
#include
"../common/i18n.h"
#include
"options.h"
#include
"../common/host2net.h"
static
gpg_error_t
do_ring_trust
(
iobuf_t
out
,
PKT_ring_trust
*
rt
);
static
int
do_user_id
(
IOBUF
out
,
int
ctb
,
PKT_user_id
*
uid
);
static
int
do_key
(
iobuf_t
out
,
int
ctb
,
PKT_public_key
*
pk
);
static
int
do_symkey_enc
(
IOBUF
out
,
int
ctb
,
PKT_symkey_enc
*
enc
);
static
int
do_pubkey_enc
(
IOBUF
out
,
int
ctb
,
PKT_pubkey_enc
*
enc
);
static
u32
calc_plaintext
(
PKT_plaintext
*
pt
);
static
int
do_plaintext
(
IOBUF
out
,
int
ctb
,
PKT_plaintext
*
pt
);
static
int
do_encrypted
(
IOBUF
out
,
int
ctb
,
PKT_encrypted
*
ed
);
static
int
do_encrypted_mdc
(
IOBUF
out
,
int
ctb
,
PKT_encrypted
*
ed
);
static
int
do_encrypted_aead
(
iobuf_t
out
,
int
ctb
,
PKT_encrypted
*
ed
);
static
int
do_compressed
(
IOBUF
out
,
int
ctb
,
PKT_compressed
*
cd
);
static
int
do_signature
(
IOBUF
out
,
int
ctb
,
PKT_signature
*
sig
);
static
int
do_onepass_sig
(
IOBUF
out
,
int
ctb
,
PKT_onepass_sig
*
ops
);
static
int
calc_header_length
(
u32
len
,
int
new_ctb
);
static
int
write_16
(
IOBUF
inp
,
u16
a
);
static
int
write_32
(
IOBUF
inp
,
u32
a
);
static
int
write_header
(
IOBUF
out
,
int
ctb
,
u32
len
);
static
int
write_sign_packet_header
(
IOBUF
out
,
int
ctb
,
u32
len
);
static
int
write_header2
(
IOBUF
out
,
int
ctb
,
u32
len
,
int
hdrlen
);
static
int
write_new_header
(
IOBUF
out
,
int
ctb
,
u32
len
,
int
hdrlen
);
/* Returns 1 if CTB is a new format ctb and 0 if CTB is an old format
ctb. */
static
int
ctb_new_format_p
(
int
ctb
)
{
/* Bit 7 must always be set. */
log_assert
((
ctb
&
(
1
<<
7
)));
/* Bit 6 indicates whether the packet is a new format packet. */
return
(
ctb
&
(
1
<<
6
));
}
/* Extract the packet type from a CTB. */
static
int
ctb_pkttype
(
int
ctb
)
{
if
(
ctb_new_format_p
(
ctb
))
/* Bits 0 through 5 are the packet type. */
return
(
ctb
&
((
1
<<
6
)
-
1
));
else
/* Bits 2 through 5 are the packet type. */
return
(
ctb
&
((
1
<<
6
)
-
1
))
>>
2
;
}
/* Build a packet and write it to the stream OUT.
* Returns: 0 on success or on an error code. */
int
build_packet
(
IOBUF
out
,
PACKET
*
pkt
)
{
int
rc
=
0
;
int
new_ctb
=
0
;
int
ctb
,
pkttype
;
if
(
DBG_PACKET
)
log_debug
(
"build_packet() type=%d
\n
"
,
pkt
->
pkttype
);
log_assert
(
pkt
->
pkt
.
generic
);
switch
((
pkttype
=
pkt
->
pkttype
))
{
case
PKT_PUBLIC_KEY
:
if
(
pkt
->
pkt
.
public_key
->
seckey_info
)
pkttype
=
PKT_SECRET_KEY
;
break
;
case
PKT_PUBLIC_SUBKEY
:
if
(
pkt
->
pkt
.
public_key
->
seckey_info
)
pkttype
=
PKT_SECRET_SUBKEY
;
break
;
case
PKT_PLAINTEXT
:
new_ctb
=
pkt
->
pkt
.
plaintext
->
new_ctb
;
break
;
case
PKT_ENCRYPTED
:
case
PKT_ENCRYPTED_MDC
:
case
PKT_ENCRYPTED_AEAD
:
new_ctb
=
pkt
->
pkt
.
encrypted
->
new_ctb
;
break
;
case
PKT_COMPRESSED
:
new_ctb
=
pkt
->
pkt
.
compressed
->
new_ctb
;
break
;
case
PKT_USER_ID
:
if
(
pkt
->
pkt
.
user_id
->
attrib_data
)
pkttype
=
PKT_ATTRIBUTE
;
break
;
default
:
break
;
}
if
(
new_ctb
||
pkttype
>
15
)
/* new format */
ctb
=
(
0xc0
|
(
pkttype
&
0x3f
));
else
ctb
=
(
0x80
|
((
pkttype
&
15
)
<<
2
));
switch
(
pkttype
)
{
case
PKT_ATTRIBUTE
:
case
PKT_USER_ID
:
rc
=
do_user_id
(
out
,
ctb
,
pkt
->
pkt
.
user_id
);
break
;
case
PKT_OLD_COMMENT
:
case
PKT_COMMENT
:
/* Ignore these. Theoretically, this will never be called as we
* have no way to output comment packets any longer, but just in
* case there is some code path that would end up outputting a
* comment that was written before comments were dropped (in the
* public key?) this is a no-op. */
break
;
case
PKT_PUBLIC_SUBKEY
:
case
PKT_PUBLIC_KEY
:
case
PKT_SECRET_SUBKEY
:
case
PKT_SECRET_KEY
:
rc
=
do_key
(
out
,
ctb
,
pkt
->
pkt
.
public_key
);
break
;
case
PKT_SYMKEY_ENC
:
rc
=
do_symkey_enc
(
out
,
ctb
,
pkt
->
pkt
.
symkey_enc
);
break
;
case
PKT_PUBKEY_ENC
:
rc
=
do_pubkey_enc
(
out
,
ctb
,
pkt
->
pkt
.
pubkey_enc
);
break
;
case
PKT_PLAINTEXT
:
rc
=
do_plaintext
(
out
,
ctb
,
pkt
->
pkt
.
plaintext
);
break
;
case
PKT_ENCRYPTED
:
rc
=
do_encrypted
(
out
,
ctb
,
pkt
->
pkt
.
encrypted
);
break
;
case
PKT_ENCRYPTED_MDC
:
rc
=
do_encrypted_mdc
(
out
,
ctb
,
pkt
->
pkt
.
encrypted
);
break
;
case
PKT_ENCRYPTED_AEAD
:
rc
=
do_encrypted_aead
(
out
,
ctb
,
pkt
->
pkt
.
encrypted
);
break
;
case
PKT_COMPRESSED
:
rc
=
do_compressed
(
out
,
ctb
,
pkt
->
pkt
.
compressed
);
break
;
case
PKT_SIGNATURE
:
rc
=
do_signature
(
out
,
ctb
,
pkt
->
pkt
.
signature
);
break
;
case
PKT_ONEPASS_SIG
:
rc
=
do_onepass_sig
(
out
,
ctb
,
pkt
->
pkt
.
onepass_sig
);
break
;
case
PKT_RING_TRUST
:
/* Ignore it (only written by build_packet_and_meta) */
break
;
case
PKT_MDC
:
/* We write it directly, so we should never see it here. */
default
:
log_bug
(
"invalid packet type in build_packet()
\n
"
);
break
;
}
return
rc
;
}
/* Build a packet and write it to the stream OUT. This variant also
* writes the meta data using ring trust packets. Returns: 0 on
* success or on error code. */
gpg_error_t
build_packet_and_meta
(
iobuf_t
out
,
PACKET
*
pkt
)
{
gpg_error_t
err
;
PKT_ring_trust
rt
=
{
0
};
err
=
build_packet
(
out
,
pkt
);
if
(
err
)
;
else
if
(
pkt
->
pkttype
==
PKT_SIGNATURE
)
{
PKT_signature
*
sig
=
pkt
->
pkt
.
signature
;
rt
.
subtype
=
RING_TRUST_SIG
;
/* Note: trustval is not yet used. */
if
(
sig
->
flags
.
checked
)
{
rt
.
sigcache
=
1
;
if
(
sig
->
flags
.
valid
)
rt
.
sigcache
|=
2
;
}
err
=
do_ring_trust
(
out
,
&
rt
);
}
else
if
(
pkt
->
pkttype
==
PKT_USER_ID
||
pkt
->
pkttype
==
PKT_ATTRIBUTE
)
{
PKT_user_id
*
uid
=
pkt
->
pkt
.
user_id
;
rt
.
subtype
=
RING_TRUST_UID
;
rt
.
keyorg
=
uid
->
keyorg
;
rt
.
keyupdate
=
uid
->
keyupdate
;
rt
.
url
=
uid
->
updateurl
;
err
=
do_ring_trust
(
out
,
&
rt
);
rt
.
url
=
NULL
;
}
else
if
(
pkt
->
pkttype
==
PKT_PUBLIC_KEY
||
pkt
->
pkttype
==
PKT_SECRET_KEY
)
{
PKT_public_key
*
pk
=
pkt
->
pkt
.
public_key
;
rt
.
subtype
=
RING_TRUST_KEY
;
rt
.
keyorg
=
pk
->
keyorg
;
rt
.
keyupdate
=
pk
->
keyupdate
;
rt
.
url
=
pk
->
updateurl
;
err
=
do_ring_trust
(
out
,
&
rt
);
rt
.
url
=
NULL
;
}
return
err
;
}
/*
* Write the mpi A to OUT. If R_NWRITTEN is not NULL the number of
* bytes written is stored there. To only get the number of bytes
* which would be written NULL may be passed for OUT.
*/
gpg_error_t
gpg_mpi_write
(
iobuf_t
out
,
gcry_mpi_t
a
,
unsigned
int
*
r_nwritten
)
{
gpg_error_t
err
;
unsigned
int
nwritten
=
0
;
if
(
gcry_mpi_get_flag
(
a
,
GCRYMPI_FLAG_OPAQUE
))
{
unsigned
int
nbits
;
const
unsigned
char
*
p
;
unsigned
char
lenhdr
[
2
];
/* gcry_log_debugmpi ("a", a); */
p
=
gcry_mpi_get_opaque
(
a
,
&
nbits
);
if
(
p
)
{
/* Strip leading zero bits. */
for
(;
nbits
>=
8
&&
!*
p
;
p
++
,
nbits
-=
8
)
;
if
(
nbits
>=
8
&&
!
(
*
p
&
0x80
))
if
(
--
nbits
>=
7
&&
!
(
*
p
&
0x40
))
if
(
--
nbits
>=
6
&&
!
(
*
p
&
0x20
))
if
(
--
nbits
>=
5
&&
!
(
*
p
&
0x10
))
if
(
--
nbits
>=
4
&&
!
(
*
p
&
0x08
))
if
(
--
nbits
>=
3
&&
!
(
*
p
&
0x04
))
if
(
--
nbits
>=
2
&&
!
(
*
p
&
0x02
))
if
(
--
nbits
>=
1
&&
!
(
*
p
&
0x01
))
--
nbits
;
}
/* gcry_log_debug (" [%u bit]\n", nbits); */
/* gcry_log_debughex (" ", p, (nbits+7)/8); */
lenhdr
[
0
]
=
nbits
>>
8
;
lenhdr
[
1
]
=
nbits
;
err
=
out
?
iobuf_write
(
out
,
lenhdr
,
2
)
:
0
;
if
(
!
err
)
{
nwritten
+=
2
;
if
(
p
)
{
err
=
out
?
iobuf_write
(
out
,
p
,
(
nbits
+
7
)
/
8
)
:
0
;
if
(
!
err
)
nwritten
+=
(
nbits
+
7
)
/
8
;
}
}
}
else
{
char
buffer
[(
MAX_EXTERN_MPI_BITS
+
7
)
/
8
+
2
];
/* 2 is for the mpi length. */
size_t
nbytes
;
nbytes
=
DIM
(
buffer
);
err
=
gcry_mpi_print
(
GCRYMPI_FMT_PGP
,
buffer
,
nbytes
,
&
nbytes
,
a
);
if
(
!
err
)
{
err
=
out
?
iobuf_write
(
out
,
buffer
,
nbytes
)
:
0
;
if
(
!
err
)
nwritten
+=
nbytes
;
}
else
if
(
gpg_err_code
(
err
)
==
GPG_ERR_TOO_SHORT
)
{
log_info
(
"mpi too large (%u bits)
\n
"
,
gcry_mpi_get_nbits
(
a
));
/* The buffer was too small. We better tell the user about
* the MPI. */
err
=
gpg_error
(
GPG_ERR_TOO_LARGE
);
}
}
if
(
r_nwritten
)
*
r_nwritten
=
nwritten
;
return
err
;
}
/*
* Write an opaque MPI to the output stream without length info.
*/
gpg_error_t
gpg_mpi_write_nohdr
(
iobuf_t
out
,
gcry_mpi_t
a
)
{
int
rc
;
if
(
gcry_mpi_get_flag
(
a
,
GCRYMPI_FLAG_OPAQUE
))
{
unsigned
int
nbits
;
const
void
*
p
;
p
=
gcry_mpi_get_opaque
(
a
,
&
nbits
);
rc
=
p
?
iobuf_write
(
out
,
p
,
(
nbits
+
7
)
/
8
)
:
0
;
}
else
rc
=
gpg_error
(
GPG_ERR_BAD_MPI
);
return
rc
;
}
/* Calculate the length of a packet described by PKT. */
u32
calc_packet_length
(
PACKET
*
pkt
)
{
u32
n
=
0
;
int
new_ctb
=
0
;
log_assert
(
pkt
->
pkt
.
generic
);
switch
(
pkt
->
pkttype
)
{
case
PKT_PLAINTEXT
:
n
=
calc_plaintext
(
pkt
->
pkt
.
plaintext
);
new_ctb
=
pkt
->
pkt
.
plaintext
->
new_ctb
;
break
;
case
PKT_ATTRIBUTE
:
case
PKT_USER_ID
:
case
PKT_COMMENT
:
case
PKT_PUBLIC_KEY
:
case
PKT_SECRET_KEY
:
case
PKT_SYMKEY_ENC
:
case
PKT_PUBKEY_ENC
:
case
PKT_ENCRYPTED
:
case
PKT_SIGNATURE
:
case
PKT_ONEPASS_SIG
:
case
PKT_RING_TRUST
:
case
PKT_COMPRESSED
:
default
:
log_bug
(
"invalid packet type in calc_packet_length()"
);
break
;
}
n
+=
calc_header_length
(
n
,
new_ctb
);
return
n
;
}
static
gpg_error_t
write_fake_data
(
IOBUF
out
,
gcry_mpi_t
a
)
{
unsigned
int
n
;
void
*
p
;
if
(
!
a
)
return
0
;
if
(
!
gcry_mpi_get_flag
(
a
,
GCRYMPI_FLAG_OPAQUE
))
return
0
;
/* e.g. due to generating a key with wrong usage. */
p
=
gcry_mpi_get_opaque
(
a
,
&
n
);
if
(
!
p
)
return
0
;
/* For example due to a read error in
parse-packet.c:read_rest. */
return
iobuf_write
(
out
,
p
,
(
n
+
7
)
/
8
);
}
/* Write a ring trust meta packet. */
static
gpg_error_t
do_ring_trust
(
iobuf_t
out
,
PKT_ring_trust
*
rt
)
{
unsigned
int
namelen
=
0
;
unsigned
int
pktlen
=
6
;
if
(
rt
->
subtype
==
RING_TRUST_KEY
||
rt
->
subtype
==
RING_TRUST_UID
)
{
if
(
rt
->
url
)
namelen
=
strlen
(
rt
->
url
);
pktlen
+=
1
+
4
+
1
+
namelen
;
}
write_header
(
out
,
(
0x80
|
((
PKT_RING_TRUST
&
15
)
<<
2
)),
pktlen
);
iobuf_put
(
out
,
rt
->
trustval
);
iobuf_put
(
out
,
rt
->
sigcache
);
iobuf_write
(
out
,
"gpg"
,
3
);
iobuf_put
(
out
,
rt
->
subtype
);
if
(
rt
->
subtype
==
RING_TRUST_KEY
||
rt
->
subtype
==
RING_TRUST_UID
)
{
iobuf_put
(
out
,
rt
->
keyorg
);
write_32
(
out
,
rt
->
keyupdate
);
iobuf_put
(
out
,
namelen
);
if
(
namelen
)
iobuf_write
(
out
,
rt
->
url
,
namelen
);
}
return
0
;
}
/* Serialize the user id (RFC 4880, Section 5.11) or the user
* attribute UID (Section 5.12) and write it to OUT.
*
* CTB is the serialization's CTB. It specifies the header format and
* the packet's type. The header length must not be set. */
static
int
do_user_id
(
IOBUF
out
,
int
ctb
,
PKT_user_id
*
uid
)
{
int
rc
;
int
hdrlen
;
log_assert
(
ctb_pkttype
(
ctb
)
==
PKT_USER_ID
||
ctb_pkttype
(
ctb
)
==
PKT_ATTRIBUTE
);
/* We need to take special care of a user ID with a length of 0:
* Without forcing HDRLEN to 2 in this case an indeterminate length
* packet would be written which is not allowed. Note that we are
* always called with a CTB indicating an old packet header format,
* so that forcing a 2 octet header works. We also check for the
* maximum allowed packet size by the parser using an arbitrary
* extra 10 bytes for header data. */
if
(
uid
->
attrib_data
)
{
if
(
uid
->
attrib_len
>
MAX_ATTR_PACKET_LENGTH
-
10
)
return
gpg_error
(
GPG_ERR_TOO_LARGE
);
hdrlen
=
uid
->
attrib_len
?
0
:
2
;
write_header2
(
out
,
ctb
,
uid
->
attrib_len
,
hdrlen
);
rc
=
iobuf_write
(
out
,
uid
->
attrib_data
,
uid
->
attrib_len
);
}
else
{
if
(
uid
->
len
>
MAX_UID_PACKET_LENGTH
-
10
)
return
gpg_error
(
GPG_ERR_TOO_LARGE
);
hdrlen
=
uid
->
len
?
0
:
2
;
write_header2
(
out
,
ctb
,
uid
->
len
,
hdrlen
);
rc
=
iobuf_write
(
out
,
uid
->
name
,
uid
->
len
);
}
return
rc
;
}
/* Serialize the key (RFC 4880, Section 5.5) described by PK and write
* it to OUT.
*
* This function serializes both primary keys and subkeys with or
* without a secret part.
*
* CTB is the serialization's CTB. It specifies the header format and
* the packet's type. The header length must not be set.
*
* PK->VERSION specifies the serialization format. A value of 0 means
* to use the default version. Currently, only version 4 packets are
* supported.
*/
static
int
do_key
(
iobuf_t
out
,
int
ctb
,
PKT_public_key
*
pk
)
{
gpg_error_t
err
=
0
;
iobuf_t
a
;
int
i
,
nskey
,
npkey
;
u32
pkbytes
=
0
;
int
is_v5
;
log_assert
(
pk
->
version
==
0
||
pk
->
version
==
4
||
pk
->
version
==
5
);
log_assert
(
ctb_pkttype
(
ctb
)
==
PKT_PUBLIC_KEY
||
ctb_pkttype
(
ctb
)
==
PKT_PUBLIC_SUBKEY
||
ctb_pkttype
(
ctb
)
==
PKT_SECRET_KEY
||
ctb_pkttype
(
ctb
)
==
PKT_SECRET_SUBKEY
);
/* The length of the body is stored in the packet's header, which
* occurs before the body. Unfortunately, we don't know the length
* of the packet's body until we've written all of the data! To
* work around this, we first write the data into this temporary
* buffer, then generate the header, and finally copy the content
* of this buffer to OUT. */
a
=
iobuf_temp
();
/* Note that the Version number, Timestamp, Algo, and the v5 Key
* material count are written at the end of the function. */
is_v5
=
(
pk
->
version
==
5
);
/* Get number of secret and public parameters. They are held in one
array: the public ones followed by the secret ones. */
nskey
=
pubkey_get_nskey
(
pk
->
pubkey_algo
);
npkey
=
pubkey_get_npkey
(
pk
->
pubkey_algo
);
/* If we don't have any public parameters - which is for example the
case if we don't know the algorithm used - the parameters are
stored as one blob in a faked (opaque) MPI. */
if
(
!
npkey
)
{
write_fake_data
(
a
,
pk
->
pkey
[
0
]);
goto
leave
;
}
log_assert
(
npkey
<
nskey
);
for
(
i
=
0
;
i
<
npkey
;
i
++
)
{
if
(
(
pk
->
pubkey_algo
==
PUBKEY_ALGO_ECDSA
&&
(
i
==
0
))
||
(
pk
->
pubkey_algo
==
PUBKEY_ALGO_EDDSA
&&
(
i
==
0
))
||
(
pk
->
pubkey_algo
==
PUBKEY_ALGO_ECDH
&&
(
i
==
0
||
i
==
2
)))
err
=
gpg_mpi_write_nohdr
(
a
,
pk
->
pkey
[
i
]);
else
err
=
gpg_mpi_write
(
a
,
pk
->
pkey
[
i
],
NULL
);
if
(
err
)
goto
leave
;
}
/* Record the length of the public key part. */
pkbytes
=
iobuf_get_temp_length
(
a
);
if
(
pk
->
seckey_info
)
{
/* This is a secret key packet. */
struct
seckey_info
*
ski
=
pk
->
seckey_info
;
/* Build the header for protected (encrypted) secret parameters. */
if
(
ski
->
is_protected
)
{
iobuf_put
(
a
,
ski
->
sha1chk
?
0xfe
:
0xff
);
/* S2k usage. */
if
(
is_v5
)
{
/* For a v5 key determine the count of the following
* key-protection material and write it. */
int
count
=
1
;
/* Pubkey algo octet. */
if
(
ski
->
s2k
.
mode
>=
1000
)
count
+=
6
;
/* GNU specific mode descriptor. */
else
count
+=
2
;
/* Mode and hash algo. */
if
(
ski
->
s2k
.
mode
==
1
||
ski
->
s2k
.
mode
==
3
)
count
+=
8
;
/* Salt. */
if
(
ski
->
s2k
.
mode
==
3
)
count
++
;
/* S2K.COUNT */
if
(
ski
->
s2k
.
mode
!=
1001
&&
ski
->
s2k
.
mode
!=
1002
)
count
+=
ski
->
ivlen
;
iobuf_put
(
a
,
count
);
}
iobuf_put
(
a
,
ski
->
algo
);
/* Pubkey algo octet. */
if
(
ski
->
s2k
.
mode
>=
1000
)
{
/* These modes are not possible in OpenPGP, we use them
to implement our extensions, 101 can be viewed as a
private/experimental extension (this is not specified
in rfc2440 but the same scheme is used for all other
algorithm identifiers). */
iobuf_put
(
a
,
101
);
iobuf_put
(
a
,
ski
->
s2k
.
hash_algo
);
iobuf_write
(
a
,
"GNU"
,
3
);
iobuf_put
(
a
,
ski
->
s2k
.
mode
-
1000
);
}
else
{
iobuf_put
(
a
,
ski
->
s2k
.
mode
);
iobuf_put
(
a
,
ski
->
s2k
.
hash_algo
);
}
if
(
ski
->
s2k
.
mode
==
1
||
ski
->
s2k
.
mode
==
3
)
iobuf_write
(
a
,
ski
->
s2k
.
salt
,
8
);
if
(
ski
->
s2k
.
mode
==
3
)
iobuf_put
(
a
,
ski
->
s2k
.
count
);
/* For our special modes 1001, 1002 we do not need an IV. */
if
(
ski
->
s2k
.
mode
!=
1001
&&
ski
->
s2k
.
mode
!=
1002
)
iobuf_write
(
a
,
ski
->
iv
,
ski
->
ivlen
);
}
else
/* Not protected. */
{
iobuf_put
(
a
,
0
);
/* S2K usage = not protected. */
if
(
is_v5
)
iobuf_put
(
a
,
0
);
/* Zero octets of key-protection
* material follows. */
}
if
(
ski
->
s2k
.
mode
==
1001
)
{
/* GnuPG extension - don't write a secret key at all. */
if
(
is_v5
)
write_32
(
a
,
0
);
/* Zero octets of key material. */
}
else
if
(
ski
->
s2k
.
mode
==
1002
)
{
/* GnuPG extension - divert to OpenPGP smartcard. */
if
(
is_v5
)
write_32
(
a
,
1
+
ski
->
ivlen
);
/* Length of the serial number or 0 for no serial number. */
iobuf_put
(
a
,
ski
->
ivlen
);
/* The serial number gets stored in the IV field. */
iobuf_write
(
a
,
ski
->
iv
,
ski
->
ivlen
);
}
else
if
(
ski
->
is_protected
)
{
/* The secret key is protected - write it out as it is. */
byte
*
p
;
unsigned
int
ndatabits
;
log_assert
(
gcry_mpi_get_flag
(
pk
->
pkey
[
npkey
],
GCRYMPI_FLAG_OPAQUE
));
p
=
gcry_mpi_get_opaque
(
pk
->
pkey
[
npkey
],
&
ndatabits
);
/* For v5 keys we first write the number of octets of the
* following encrypted key material. */
if
(
is_v5
)
write_32
(
a
,
p
?
(
ndatabits
+
7
)
/
8
:
0
);
if
(
p
)
iobuf_write
(
a
,
p
,
(
ndatabits
+
7
)
/
8
);
}
else
{
/* Non-protected key. */
if
(
is_v5
)
{
unsigned
int
skbytes
=
0
;
unsigned
int
n
;
int
j
;
for
(
j
=
i
;
j
<
nskey
;
j
++
)
{
if
((
err
=
gpg_mpi_write
(
NULL
,
pk
->
pkey
[
j
],
&
n
)))
goto
leave
;
skbytes
+=
n
;
}
write_32
(
a
,
skbytes
);
}
for
(
;
i
<
nskey
;
i
++
)
if
(
(
err
=
gpg_mpi_write
(
a
,
pk
->
pkey
[
i
],
NULL
)))
goto
leave
;
write_16
(
a
,
ski
->
csum
);
}
}
leave
:
if
(
!
err
)
{
/* Build the header of the packet - which we must do after
* writing all the other stuff, so that we know the length of
* the packet */
u32
len
=
iobuf_get_temp_length
(
a
);
len
+=
1
;
/* version number */
len
+=
4
;
/* timestamp */
len
+=
1
;
/* algo */
if
(
is_v5
)
len
+=
4
;
/* public key material count */
write_header2
(
out
,
ctb
,
len
,
0
);
/* And finally write it out to the real stream. */
iobuf_put
(
out
,
pk
->
version
?
pk
->
version
:
4
);
/* version number */
write_32
(
out
,
pk
->
timestamp
);
iobuf_put
(
out
,
pk
->
pubkey_algo
);
/* algo */
if
(
is_v5
)
write_32
(
out
,
pkbytes
);
/* public key material count */
err
=
iobuf_write_temp
(
out
,
a
);
/* pub and sec key material */
}
iobuf_close
(
a
);
/* Close the temporary buffer */
return
err
;
}
/* Serialize the symmetric-key encrypted session key packet (RFC 4880,
* 5.3) described by ENC and write it to OUT.
*
* CTB is the serialization's CTB. It specifies the header format and
* the packet's type. The header length must not be set. */
static
int
do_symkey_enc
(
IOBUF
out
,
int
ctb
,
PKT_symkey_enc
*
enc
)
{
int
rc
=
0
;
IOBUF
a
=
iobuf_temp
();
log_assert
(
ctb_pkttype
(
ctb
)
==
PKT_SYMKEY_ENC
);
log_assert
(
enc
->
version
==
4
||
enc
->
version
==
5
);
switch
(
enc
->
s2k
.
mode
)
{
case
0
:
/* Simple S2K. */
case
1
:
/* Salted S2K. */
case
3
:
/* Iterated and salted S2K. */
break
;
/* Reasonable values. */
default
:
log_bug
(
"do_symkey_enc: s2k=%d
\n
"
,
enc
->
s2k
.
mode
);
}
iobuf_put
(
a
,
enc
->
version
);
iobuf_put
(
a
,
enc
->
cipher_algo
);
if
(
enc
->
version
==
5
)
iobuf_put
(
a
,
enc
->
aead_algo
);
iobuf_put
(
a
,
enc
->
s2k
.
mode
);
iobuf_put
(
a
,
enc
->
s2k
.
hash_algo
);
if
(
enc
->
s2k
.
mode
==
1
||
enc
->
s2k
.
mode
==
3
)
{
iobuf_write
(
a
,
enc
->
s2k
.
salt
,
8
);
if
(
enc
->
s2k
.
mode
==
3
)
iobuf_put
(
a
,
enc
->
s2k
.
count
);
}
if
(
enc
->
seskeylen
)
iobuf_write
(
a
,
enc
->
seskey
,
enc
->
seskeylen
);
write_header
(
out
,
ctb
,
iobuf_get_temp_length
(
a
));
rc
=
iobuf_write_temp
(
out
,
a
);
iobuf_close
(
a
);
return
rc
;
}
/* Serialize the public-key encrypted session key packet (RFC 4880,
5.1) described by ENC and write it to OUT.
CTB is the serialization's CTB. It specifies the header format and
the packet's type. The header length must not be set. */
static
int
do_pubkey_enc
(
IOBUF
out
,
int
ctb
,
PKT_pubkey_enc
*
enc
)
{
int
rc
=
0
;
int
n
,
i
;
IOBUF
a
=
iobuf_temp
();
log_assert
(
ctb_pkttype
(
ctb
)
==
PKT_PUBKEY_ENC
);
iobuf_put
(
a
,
3
);
/* Version. */
if
(
enc
->
throw_keyid
)
{
write_32
(
a
,
0
);
/* Don't tell Eve who can decrypt the message. */
write_32
(
a
,
0
);
}
else
{
write_32
(
a
,
enc
->
keyid
[
0
]
);
write_32
(
a
,
enc
->
keyid
[
1
]
);
}
iobuf_put
(
a
,
enc
->
pubkey_algo
);
n
=
pubkey_get_nenc
(
enc
->
pubkey_algo
);
if
(
!
n
)
write_fake_data
(
a
,
enc
->
data
[
0
]
);
for
(
i
=
0
;
i
<
n
&&
!
rc
;
i
++
)
{
if
(
enc
->
pubkey_algo
==
PUBKEY_ALGO_ECDH
&&
i
==
1
)
rc
=
gpg_mpi_write_nohdr
(
a
,
enc
->
data
[
i
]);
else
rc
=
gpg_mpi_write
(
a
,
enc
->
data
[
i
],
NULL
);
}
if
(
!
rc
)
{
write_header
(
out
,
ctb
,
iobuf_get_temp_length
(
a
)
);
rc
=
iobuf_write_temp
(
out
,
a
);
}
iobuf_close
(
a
);
return
rc
;
}
/* Calculate the length of the serialized plaintext packet PT (RFC
4480, Section 5.9). */
static
u32
calc_plaintext
(
PKT_plaintext
*
pt
)
{
/* Truncate namelen to the maximum 255 characters. Note this means
that a function that calls build_packet with an illegal literal
packet will get it back legalized. */
if
(
pt
->
namelen
>
255
)
pt
->
namelen
=
255
;
return
pt
->
len
?
(
1
+
1
+
pt
->
namelen
+
4
+
pt
->
len
)
:
0
;
}
/* Serialize the plaintext packet (RFC 4880, 5.9) described by PT and
write it to OUT.
The body of the message is stored in PT->BUF. The amount of data
to write is PT->LEN. (PT->BUF should be configured to return EOF
after this much data has been read.) If PT->LEN is 0 and CTB
indicates that this is a new format packet, then partial block mode
is assumed to have been enabled on OUT. On success, partial block
mode is disabled.
If PT->BUF is NULL, the caller must write out the data. In
this case, if PT->LEN was 0, then partial body length mode was
enabled and the caller must disable it by calling
iobuf_set_partial_body_length_mode (out, 0). */
static
int
do_plaintext
(
IOBUF
out
,
int
ctb
,
PKT_plaintext
*
pt
)
{
int
rc
=
0
;
size_t
nbytes
;
log_assert
(
ctb_pkttype
(
ctb
)
==
PKT_PLAINTEXT
);
write_header
(
out
,
ctb
,
calc_plaintext
(
pt
)
);
log_assert
(
pt
->
mode
==
'b'
||
pt
->
mode
==
't'
||
pt
->
mode
==
'u'
||
pt
->
mode
==
'm'
||
pt
->
mode
==
'l'
||
pt
->
mode
==
'1'
);
iobuf_put
(
out
,
pt
->
mode
);
iobuf_put
(
out
,
pt
->
namelen
);
iobuf_write
(
out
,
pt
->
name
,
pt
->
namelen
);
rc
=
write_32
(
out
,
pt
->
timestamp
);
if
(
rc
)
return
rc
;
if
(
pt
->
buf
)
{
nbytes
=
iobuf_copy
(
out
,
pt
->
buf
);
if
(
ctb_new_format_p
(
ctb
)
&&
!
pt
->
len
)
/* Turn off partial body length mode. */
iobuf_set_partial_body_length_mode
(
out
,
0
);
if
(
pt
->
len
&&
nbytes
!=
pt
->
len
)
log_error
(
"do_plaintext(): wrote %lu bytes but expected %lu bytes
\n
"
,
(
ulong
)
nbytes
,
(
ulong
)
pt
->
len
);
}
return
rc
;
}
/* Serialize the symmetrically encrypted data packet (RFC 4880,
Section 5.7) described by ED and write it to OUT.
Note: this only writes the packets header! The call must then
follow up and write the initial random data and the body to OUT.
(If you use the encryption iobuf filter (cipher_filter), then this
is done automatically.) */
static
int
do_encrypted
(
IOBUF
out
,
int
ctb
,
PKT_encrypted
*
ed
)
{
int
rc
=
0
;
u32
n
;
log_assert
(
!
ed
->
mdc_method
);
log_assert
(
ctb_pkttype
(
ctb
)
==
PKT_ENCRYPTED
);
n
=
ed
->
len
?
(
ed
->
len
+
ed
->
extralen
)
:
0
;
write_header
(
out
,
ctb
,
n
);
/* This is all. The caller has to write the real data */
return
rc
;
}
/* Serialize the symmetrically encrypted integrity protected data
packet (RFC 4880, Section 5.13) described by ED and write it to
OUT.
Note: this only writes the packet's header! The caller must then
follow up and write the initial random data, the body and the MDC
packet to OUT. (If you use the encryption iobuf filter
(cipher_filter), then this is done automatically.) */
static
int
do_encrypted_mdc
(
IOBUF
out
,
int
ctb
,
PKT_encrypted
*
ed
)
{
int
rc
=
0
;
u32
n
;
log_assert
(
ed
->
mdc_method
);
log_assert
(
ctb_pkttype
(
ctb
)
==
PKT_ENCRYPTED_MDC
);
/* Take version number and the following MDC packet in account. */
n
=
ed
->
len
?
(
ed
->
len
+
ed
->
extralen
+
1
+
22
)
:
0
;
write_header
(
out
,
ctb
,
n
);
iobuf_put
(
out
,
1
);
/* version */
/* This is all. The caller has to write the real data */
return
rc
;
}
/* Serialize the symmetrically AEAD encrypted data packet
* (rfc4880bis-03, Section 5.16) described by ED and write it to OUT.
*
* Note: this only writes only packet's header. The caller must then
* follow up and write the actual encrypted data. This should be done
* by pushing the the cipher_filter_aead. */
static
int
do_encrypted_aead
(
iobuf_t
out
,
int
ctb
,
PKT_encrypted
*
ed
)
{
u32
n
;
log_assert
(
ctb_pkttype
(
ctb
)
==
PKT_ENCRYPTED_AEAD
);
n
=
ed
->
len
?
(
ed
->
len
+
ed
->
extralen
+
4
)
:
0
;
write_header
(
out
,
ctb
,
n
);
iobuf_writebyte
(
out
,
1
);
/* Version. */
iobuf_writebyte
(
out
,
ed
->
cipher_algo
);
iobuf_writebyte
(
out
,
ed
->
aead_algo
);
iobuf_writebyte
(
out
,
ed
->
chunkbyte
);
/* This is all. The caller has to write the encrypted data */
return
0
;
}
/* Serialize the compressed packet (RFC 4880, Section 5.6) described
by CD and write it to OUT.
Note: this only writes the packet's header! The caller must then
follow up and write the body to OUT. */
static
int
do_compressed
(
IOBUF
out
,
int
ctb
,
PKT_compressed
*
cd
)
{
int
rc
=
0
;
log_assert
(
ctb_pkttype
(
ctb
)
==
PKT_COMPRESSED
);
/* We must use the old convention and don't use blockmode for the
sake of PGP 2 compatibility. However if the new_ctb flag was
set, CTB is already formatted as new style and write_header2
does create a partial length encoding using new the new
style. */
write_header2
(
out
,
ctb
,
0
,
0
);
iobuf_put
(
out
,
cd
->
algorithm
);
/* This is all. The caller has to write the real data */
return
rc
;
}
/****************
* Delete all subpackets of type REQTYPE and return a bool whether a packet
* was deleted.
*/
int
delete_sig_subpkt
(
subpktarea_t
*
area
,
sigsubpkttype_t
reqtype
)
{
int
buflen
;
sigsubpkttype_t
type
;
byte
*
buffer
,
*
bufstart
;
size_t
n
;
size_t
unused
=
0
;
int
okay
=
0
;
if
(
!
area
)
return
0
;
buflen
=
area
->
len
;
buffer
=
area
->
data
;
for
(;;)
{
if
(
!
buflen
)
{
okay
=
1
;
break
;
}
bufstart
=
buffer
;
n
=
*
buffer
++
;
buflen
--
;
if
(
n
==
255
)
{
if
(
buflen
<
4
)
break
;
n
=
buf32_to_size_t
(
buffer
);
buffer
+=
4
;
buflen
-=
4
;
}
else
if
(
n
>=
192
)
{
if
(
buflen
<
2
)
break
;
n
=
((
n
-
192
)
<<
8
)
+
*
buffer
+
192
;
buffer
++
;
buflen
--
;
}
if
(
buflen
<
n
)
break
;
type
=
*
buffer
&
0x7f
;
if
(
type
==
reqtype
)
{
buffer
++
;
buflen
--
;
n
--
;
if
(
n
>
buflen
)
break
;
buffer
+=
n
;
/* point to next subpkt */
buflen
-=
n
;
memmove
(
bufstart
,
buffer
,
buflen
);
/* shift */
unused
+=
buffer
-
bufstart
;
buffer
=
bufstart
;
}
else
{
buffer
+=
n
;
buflen
-=
n
;
}
}
if
(
!
okay
)
log_error
(
"delete_subpkt: buffer shorter than subpacket
\n
"
);
log_assert
(
unused
<=
area
->
len
);
area
->
len
-=
unused
;
return
!!
unused
;
}
/****************
* Create or update a signature subpacket for SIG of TYPE. This
* functions knows where to put the data (hashed or unhashed). The
* function may move data from the unhashed part to the hashed one.
* Note: All pointers into sig->[un]hashed (e.g. returned by
* parse_sig_subpkt) are not valid after a call to this function. The
* data to put into the subpaket should be in a buffer with a length
* of buflen.
*/
void
build_sig_subpkt
(
PKT_signature
*
sig
,
sigsubpkttype_t
type
,
const
byte
*
buffer
,
size_t
buflen
)
{
byte
*
p
;
int
critical
,
hashed
;
subpktarea_t
*
oldarea
,
*
newarea
;
size_t
nlen
,
n
,
n0
;
critical
=
(
type
&
SIGSUBPKT_FLAG_CRITICAL
);
type
&=
~
SIGSUBPKT_FLAG_CRITICAL
;
/* Sanity check buffer sizes */
if
(
parse_one_sig_subpkt
(
buffer
,
buflen
,
type
)
<
0
)
BUG
();
switch
(
type
)
{
case
SIGSUBPKT_NOTATION
:
case
SIGSUBPKT_POLICY
:
case
SIGSUBPKT_REV_KEY
:
case
SIGSUBPKT_SIGNATURE
:
/* we do allow multiple subpackets */
break
;
default
:
/* we don't allow multiple subpackets */
delete_sig_subpkt
(
sig
->
hashed
,
type
);
delete_sig_subpkt
(
sig
->
unhashed
,
type
);
break
;
}
/* Any special magic that needs to be done for this type so the
packet doesn't need to be reparsed? */
switch
(
type
)
{
case
SIGSUBPKT_NOTATION
:
sig
->
flags
.
notation
=
1
;
break
;
case
SIGSUBPKT_POLICY
:
sig
->
flags
.
policy_url
=
1
;
break
;
case
SIGSUBPKT_PREF_KS
:
sig
->
flags
.
pref_ks
=
1
;
break
;
case
SIGSUBPKT_EXPORTABLE
:
if
(
buffer
[
0
])
sig
->
flags
.
exportable
=
1
;
else
sig
->
flags
.
exportable
=
0
;
break
;
case
SIGSUBPKT_REVOCABLE
:
if
(
buffer
[
0
])
sig
->
flags
.
revocable
=
1
;
else
sig
->
flags
.
revocable
=
0
;
break
;
case
SIGSUBPKT_TRUST
:
sig
->
trust_depth
=
buffer
[
0
];
sig
->
trust_value
=
buffer
[
1
];
break
;
case
SIGSUBPKT_REGEXP
:
sig
->
trust_regexp
=
buffer
;
break
;
/* This should never happen since we don't currently allow
creating such a subpacket, but just in case... */
case
SIGSUBPKT_SIG_EXPIRE
:
if
(
buf32_to_u32
(
buffer
)
+
sig
->
timestamp
<=
make_timestamp
())
sig
->
flags
.
expired
=
1
;
else
sig
->
flags
.
expired
=
0
;
break
;
default
:
break
;
}
if
(
(
buflen
+
1
)
>=
8384
)
nlen
=
5
;
/* write 5 byte length header */
else
if
(
(
buflen
+
1
)
>=
192
)
nlen
=
2
;
/* write 2 byte length header */
else
nlen
=
1
;
/* just a 1 byte length header */
switch
(
type
)
{
/* The issuer being unhashed is a historical oddity. It
should work equally as well hashed. Of course, if even an
unhashed issuer is tampered with, it makes it awfully hard
to verify the sig... */
case
SIGSUBPKT_ISSUER
:
case
SIGSUBPKT_SIGNATURE
:
hashed
=
0
;
break
;
default
:
hashed
=
1
;
break
;
}
if
(
critical
)
type
|=
SIGSUBPKT_FLAG_CRITICAL
;
oldarea
=
hashed
?
sig
->
hashed
:
sig
->
unhashed
;
/* Calculate new size of the area and allocate */
n0
=
oldarea
?
oldarea
->
len
:
0
;
n
=
n0
+
nlen
+
1
+
buflen
;
/* length, type, buffer */
if
(
oldarea
&&
n
<=
oldarea
->
size
)
{
/* fits into the unused space */
newarea
=
oldarea
;
/*log_debug ("updating area for type %d\n", type );*/
}
else
if
(
oldarea
)
{
newarea
=
xrealloc
(
oldarea
,
sizeof
(
*
newarea
)
+
n
-
1
);
newarea
->
size
=
n
;
/*log_debug ("reallocating area for type %d\n", type );*/
}
else
{
newarea
=
xmalloc
(
sizeof
(
*
newarea
)
+
n
-
1
);
newarea
->
size
=
n
;
/*log_debug ("allocating area for type %d\n", type );*/
}
newarea
->
len
=
n
;
p
=
newarea
->
data
+
n0
;
if
(
nlen
==
5
)
{
*
p
++
=
255
;
*
p
++
=
(
buflen
+
1
)
>>
24
;
*
p
++
=
(
buflen
+
1
)
>>
16
;
*
p
++
=
(
buflen
+
1
)
>>
8
;
*
p
++
=
(
buflen
+
1
);
*
p
++
=
type
;
memcpy
(
p
,
buffer
,
buflen
);
}
else
if
(
nlen
==
2
)
{
*
p
++
=
(
buflen
+
1-192
)
/
256
+
192
;
*
p
++
=
(
buflen
+
1-192
)
%
256
;
*
p
++
=
type
;
memcpy
(
p
,
buffer
,
buflen
);
}
else
{
*
p
++
=
buflen
+
1
;
*
p
++
=
type
;
memcpy
(
p
,
buffer
,
buflen
);
}
if
(
hashed
)
sig
->
hashed
=
newarea
;
else
sig
->
unhashed
=
newarea
;
}
/*
* Put all the required stuff from SIG into subpackets of sig.
* PKSK is the signing key.
* Hmmm, should we delete those subpackets which are in a wrong area?
*/
void
build_sig_subpkt_from_sig
(
PKT_signature
*
sig
,
PKT_public_key
*
pksk
)
{
u32
u
;
byte
buf
[
1
+
MAX_FINGERPRINT_LEN
];
size_t
fprlen
;
/* For v4 keys we need to write the ISSUER subpacket. We do not
* want that for a future v5 format. */
if
(
pksk
->
version
<
5
)
{
u
=
sig
->
keyid
[
0
];
buf
[
0
]
=
(
u
>>
24
)
&
0xff
;
buf
[
1
]
=
(
u
>>
16
)
&
0xff
;
buf
[
2
]
=
(
u
>>
8
)
&
0xff
;
buf
[
3
]
=
u
&
0xff
;
u
=
sig
->
keyid
[
1
];
buf
[
4
]
=
(
u
>>
24
)
&
0xff
;
buf
[
5
]
=
(
u
>>
16
)
&
0xff
;
buf
[
6
]
=
(
u
>>
8
)
&
0xff
;
buf
[
7
]
=
u
&
0xff
;
build_sig_subpkt
(
sig
,
SIGSUBPKT_ISSUER
,
buf
,
8
);
}
/* Write the new ISSUER_FPR subpacket. */
fingerprint_from_pk
(
pksk
,
buf
+
1
,
&
fprlen
);
if
(
fprlen
==
20
||
fprlen
==
32
)
{
buf
[
0
]
=
pksk
->
version
;
build_sig_subpkt
(
sig
,
SIGSUBPKT_ISSUER_FPR
,
buf
,
fprlen
+
1
);
}
/* Write the timestamp. */
u
=
sig
->
timestamp
;
buf
[
0
]
=
(
u
>>
24
)
&
0xff
;
buf
[
1
]
=
(
u
>>
16
)
&
0xff
;
buf
[
2
]
=
(
u
>>
8
)
&
0xff
;
buf
[
3
]
=
u
&
0xff
;
build_sig_subpkt
(
sig
,
SIGSUBPKT_SIG_CREATED
,
buf
,
4
);
if
(
sig
->
expiredate
)
{
if
(
sig
->
expiredate
>
sig
->
timestamp
)
u
=
sig
->
expiredate
-
sig
->
timestamp
;
else
u
=
1
;
/* A 1-second expiration time is the shortest one
OpenPGP has */
buf
[
0
]
=
(
u
>>
24
)
&
0xff
;
buf
[
1
]
=
(
u
>>
16
)
&
0xff
;
buf
[
2
]
=
(
u
>>
8
)
&
0xff
;
buf
[
3
]
=
u
&
0xff
;
/* Mark this CRITICAL, so if any implementation doesn't
understand sigs that can expire, it'll just disregard this
sig altogether. */
build_sig_subpkt
(
sig
,
SIGSUBPKT_SIG_EXPIRE
|
SIGSUBPKT_FLAG_CRITICAL
,
buf
,
4
);
}
}
void
build_attribute_subpkt
(
PKT_user_id
*
uid
,
byte
type
,
const
void
*
buf
,
u32
buflen
,
const
void
*
header
,
u32
headerlen
)
{
byte
*
attrib
;
int
idx
;
if
(
1
+
headerlen
+
buflen
>
8383
)
idx
=
5
;
else
if
(
1
+
headerlen
+
buflen
>
191
)
idx
=
2
;
else
idx
=
1
;
/* realloc uid->attrib_data to the right size */
uid
->
attrib_data
=
xrealloc
(
uid
->
attrib_data
,
uid
->
attrib_len
+
idx
+
1
+
headerlen
+
buflen
);
attrib
=&
uid
->
attrib_data
[
uid
->
attrib_len
];
if
(
idx
==
5
)
{
attrib
[
0
]
=
255
;
attrib
[
1
]
=
(
1
+
headerlen
+
buflen
)
>>
24
;
attrib
[
2
]
=
(
1
+
headerlen
+
buflen
)
>>
16
;
attrib
[
3
]
=
(
1
+
headerlen
+
buflen
)
>>
8
;
attrib
[
4
]
=
1
+
headerlen
+
buflen
;
}
else
if
(
idx
==
2
)
{
attrib
[
0
]
=
(
1
+
headerlen
+
buflen
-192
)
/
256
+
192
;
attrib
[
1
]
=
(
1
+
headerlen
+
buflen
-192
)
%
256
;
}
else
attrib
[
0
]
=
1
+
headerlen
+
buflen
;
/* Good luck finding a JPEG this small! */
attrib
[
idx
++
]
=
type
;
/* Tack on our data at the end */
if
(
headerlen
>
0
)
memcpy
(
&
attrib
[
idx
],
header
,
headerlen
);
memcpy
(
&
attrib
[
idx
+
headerlen
],
buf
,
buflen
);
uid
->
attrib_len
+=
idx
+
headerlen
+
buflen
;
}
/* Returns a human-readable string corresponding to the notation.
This ignores notation->value. The caller must free the result. */
static
char
*
notation_value_to_human_readable_string
(
struct
notation
*
notation
)
{
if
(
notation
->
bdat
)
/* Binary data. */
{
size_t
len
=
notation
->
blen
;
int
i
;
char
preview
[
20
];
for
(
i
=
0
;
i
<
len
&&
i
<
sizeof
(
preview
)
-
1
;
i
++
)
if
(
isprint
(
notation
->
bdat
[
i
]))
preview
[
i
]
=
notation
->
bdat
[
i
];
else
preview
[
i
]
=
'?'
;
preview
[
i
]
=
0
;
return
xasprintf
(
_
(
"[ not human readable (%zu bytes: %s%s)
]
"),
len
,
preview
,
i
<
len
?
"..."
:
""
);
}
else
/* The value is human-readable. */
return
xstrdup
(
notation
->
value
);
}
/* Turn the notation described by the string STRING into a notation.
STRING has the form:
- -name - Delete the notation.
- name@domain.name=value - Normal notation
- !name@domain.name=value - Notation with critical bit set.
The caller must free the result using free_notation(). */
struct
notation
*
string_to_notation
(
const
char
*
string
,
int
is_utf8
)
{
const
char
*
s
;
int
saw_at
=
0
;
struct
notation
*
notation
;
notation
=
xmalloc_clear
(
sizeof
(
*
notation
));
if
(
*
string
==
'-'
)
{
notation
->
flags
.
ignore
=
1
;
string
++
;
}
if
(
*
string
==
'!'
)
{
notation
->
flags
.
critical
=
1
;
string
++
;
}
/* If and when the IETF assigns some official name tags, we'll have
to add them here. */
for
(
s
=
string
;
*
s
!=
'='
;
s
++
)
{
if
(
*
s
==
'@'
)
saw_at
++
;
/* -notationname is legal without an = sign */
if
(
!*
s
&&
notation
->
flags
.
ignore
)
break
;
if
(
!*
s
||
!
isascii
(
*
s
)
||
(
!
isgraph
(
*
s
)
&&
!
isspace
(
*
s
))
)
{
log_error
(
_
(
"a notation name must have only printable characters"
" or spaces, and end with an '='
\n
"
)
);
goto
fail
;
}
}
notation
->
name
=
xmalloc
((
s
-
string
)
+
1
);
memcpy
(
notation
->
name
,
string
,
s
-
string
);
notation
->
name
[
s
-
string
]
=
'\0'
;
if
(
!
saw_at
&&
!
opt
.
expert
)
{
log_error
(
_
(
"a user notation name must contain the '@' character
\n
"
));
goto
fail
;
}
if
(
saw_at
>
1
)
{
log_error
(
_
(
"a notation name must not contain more than"
" one '@' character
\n
"
));
goto
fail
;
}
if
(
*
s
)
{
const
char
*
i
=
s
+
1
;
int
highbit
=
0
;
/* we only support printable text - therefore we enforce the use
of only printable characters (an empty value is valid) */
for
(
s
++
;
*
s
;
s
++
)
{
if
(
!
isascii
(
*
s
)
)
highbit
=
1
;
else
if
(
iscntrl
(
*
s
))
{
log_error
(
_
(
"a notation value must not use any"
" control characters
\n
"
));
goto
fail
;
}
}
if
(
!
highbit
||
is_utf8
)
notation
->
value
=
xstrdup
(
i
);
else
notation
->
value
=
native_to_utf8
(
i
);
}
return
notation
;
fail
:
free_notation
(
notation
);
return
NULL
;
}
/* Like string_to_notation, but store opaque data rather than human
readable data. */
struct
notation
*
blob_to_notation
(
const
char
*
name
,
const
char
*
data
,
size_t
len
)
{
const
char
*
s
;
int
saw_at
=
0
;
struct
notation
*
notation
;
notation
=
xmalloc_clear
(
sizeof
(
*
notation
));
if
(
*
name
==
'-'
)
{
notation
->
flags
.
ignore
=
1
;
name
++
;
}
if
(
*
name
==
'!'
)
{
notation
->
flags
.
critical
=
1
;
name
++
;
}
/* If and when the IETF assigns some official name tags, we'll have
to add them here. */
for
(
s
=
name
;
*
s
;
s
++
)
{
if
(
*
s
==
'@'
)
saw_at
++
;
/* -notationname is legal without an = sign */
if
(
!*
s
&&
notation
->
flags
.
ignore
)
break
;
if
(
*
s
==
'='
)
{
log_error
(
_
(
"a notation name may not contain an '=' character
\n
"
));
goto
fail
;
}
if
(
!
isascii
(
*
s
)
||
(
!
isgraph
(
*
s
)
&&
!
isspace
(
*
s
)))
{
log_error
(
_
(
"a notation name must have only printable characters"
" or spaces
\n
"
)
);
goto
fail
;
}
}
notation
->
name
=
xstrdup
(
name
);
if
(
!
saw_at
&&
!
opt
.
expert
)
{
log_error
(
_
(
"a user notation name must contain the '@' character
\n
"
));
goto
fail
;
}
if
(
saw_at
>
1
)
{
log_error
(
_
(
"a notation name must not contain more than"
" one '@' character
\n
"
));
goto
fail
;
}
notation
->
bdat
=
xmalloc
(
len
);
memcpy
(
notation
->
bdat
,
data
,
len
);
notation
->
blen
=
len
;
notation
->
value
=
notation_value_to_human_readable_string
(
notation
);
return
notation
;
fail
:
free_notation
(
notation
);
return
NULL
;
}
struct
notation
*
sig_to_notation
(
PKT_signature
*
sig
)
{
const
byte
*
p
;
size_t
len
;
int
seq
=
0
;
int
crit
;
notation_t
list
=
NULL
;
/* See RFC 4880, 5.2.3.16 for the format of notation data. In
short, a notation has:
- 4 bytes of flags
- 2 byte name length (n1)
- 2 byte value length (n2)
- n1 bytes of name data
- n2 bytes of value data
*/
while
((
p
=
enum_sig_subpkt
(
sig
->
hashed
,
SIGSUBPKT_NOTATION
,
&
len
,
&
seq
,
&
crit
)))
{
int
n1
,
n2
;
struct
notation
*
n
=
NULL
;
if
(
len
<
8
)
{
log_info
(
_
(
"WARNING: invalid notation data found
\n
"
));
continue
;
}
/* name length. */
n1
=
(
p
[
4
]
<<
8
)
|
p
[
5
];
/* value length. */
n2
=
(
p
[
6
]
<<
8
)
|
p
[
7
];
if
(
8
+
n1
+
n2
!=
len
)
{
log_info
(
_
(
"WARNING: invalid notation data found
\n
"
));
continue
;
}
n
=
xmalloc_clear
(
sizeof
(
*
n
));
n
->
name
=
xmalloc
(
n1
+
1
);
memcpy
(
n
->
name
,
&
p
[
8
],
n1
);
n
->
name
[
n1
]
=
'\0'
;
if
(
p
[
0
]
&
0x80
)
/* The value is human-readable. */
{
n
->
value
=
xmalloc
(
n2
+
1
);
memcpy
(
n
->
value
,
&
p
[
8
+
n1
],
n2
);
n
->
value
[
n2
]
=
'\0'
;
n
->
flags
.
human
=
1
;
}
else
/* Binary data. */
{
n
->
bdat
=
xmalloc
(
n2
);
n
->
blen
=
n2
;
memcpy
(
n
->
bdat
,
&
p
[
8
+
n1
],
n2
);
n
->
value
=
notation_value_to_human_readable_string
(
n
);
}
n
->
flags
.
critical
=
crit
;
n
->
next
=
list
;
list
=
n
;
}
return
list
;
}
/* Release the resources associated with the *list* of notations. To
release a single notation, make sure that notation->next is
NULL. */
void
free_notation
(
struct
notation
*
notation
)
{
while
(
notation
)
{
struct
notation
*
n
=
notation
;
xfree
(
n
->
name
);
xfree
(
n
->
value
);
xfree
(
n
->
altvalue
);
xfree
(
n
->
bdat
);
notation
=
n
->
next
;
xfree
(
n
);
}
}
/* Serialize the signature packet (RFC 4880, Section 5.2) described by
SIG and write it to OUT. */
static
int
do_signature
(
IOBUF
out
,
int
ctb
,
PKT_signature
*
sig
)
{
int
rc
=
0
;
int
n
,
i
;
IOBUF
a
=
iobuf_temp
();
log_assert
(
ctb_pkttype
(
ctb
)
==
PKT_SIGNATURE
);
if
(
!
sig
->
version
||
sig
->
version
==
3
)
{
iobuf_put
(
a
,
3
);
/* Version 3 packets don't support subpackets. */
log_assert
(
!
sig
->
hashed
);
log_assert
(
!
sig
->
unhashed
);
}
else
iobuf_put
(
a
,
sig
->
version
);
if
(
sig
->
version
<
4
)
iobuf_put
(
a
,
5
);
/* Constant used by pre-v4 signatures. */
iobuf_put
(
a
,
sig
->
sig_class
);
if
(
sig
->
version
<
4
)
{
write_32
(
a
,
sig
->
timestamp
);
write_32
(
a
,
sig
->
keyid
[
0
]
);
write_32
(
a
,
sig
->
keyid
[
1
]
);
}
iobuf_put
(
a
,
sig
->
pubkey_algo
);
iobuf_put
(
a
,
sig
->
digest_algo
);
if
(
sig
->
version
>=
4
)
{
size_t
nn
;
/* Timestamp and keyid must have been packed into the subpackets
prior to the call of this function, because these subpackets
are hashed. */
nn
=
sig
->
hashed
?
sig
->
hashed
->
len
:
0
;
write_16
(
a
,
nn
);
if
(
nn
)
iobuf_write
(
a
,
sig
->
hashed
->
data
,
nn
);
nn
=
sig
->
unhashed
?
sig
->
unhashed
->
len
:
0
;
write_16
(
a
,
nn
);
if
(
nn
)
iobuf_write
(
a
,
sig
->
unhashed
->
data
,
nn
);
}
iobuf_put
(
a
,
sig
->
digest_start
[
0
]
);
iobuf_put
(
a
,
sig
->
digest_start
[
1
]
);
n
=
pubkey_get_nsig
(
sig
->
pubkey_algo
);
if
(
!
n
)
write_fake_data
(
a
,
sig
->
data
[
0
]
);
for
(
i
=
0
;
i
<
n
&&
!
rc
;
i
++
)
rc
=
gpg_mpi_write
(
a
,
sig
->
data
[
i
],
NULL
);
if
(
!
rc
)
{
if
(
is_RSA
(
sig
->
pubkey_algo
)
&&
sig
->
version
<
4
)
write_sign_packet_header
(
out
,
ctb
,
iobuf_get_temp_length
(
a
)
);
else
write_header
(
out
,
ctb
,
iobuf_get_temp_length
(
a
)
);
rc
=
iobuf_write_temp
(
out
,
a
);
}
iobuf_close
(
a
);
return
rc
;
}
/* Serialize the one-pass signature packet (RFC 4880, Section 5.4)
described by OPS and write it to OUT. */
static
int
do_onepass_sig
(
IOBUF
out
,
int
ctb
,
PKT_onepass_sig
*
ops
)
{
log_assert
(
ctb_pkttype
(
ctb
)
==
PKT_ONEPASS_SIG
);
write_header
(
out
,
ctb
,
4
+
8
+
1
);
iobuf_put
(
out
,
3
);
/* Version. */
iobuf_put
(
out
,
ops
->
sig_class
);
iobuf_put
(
out
,
ops
->
digest_algo
);
iobuf_put
(
out
,
ops
->
pubkey_algo
);
write_32
(
out
,
ops
->
keyid
[
0
]
);
write_32
(
out
,
ops
->
keyid
[
1
]
);
iobuf_put
(
out
,
ops
->
last
);
return
0
;
}
/* Write a 16-bit quantity to OUT in big endian order. */
static
int
write_16
(
IOBUF
out
,
u16
a
)
{
iobuf_put
(
out
,
a
>>
8
);
if
(
iobuf_put
(
out
,
a
)
)
return
-1
;
return
0
;
}
/* Write a 32-bit quantity to OUT in big endian order. */
static
int
write_32
(
IOBUF
out
,
u32
a
)
{
iobuf_put
(
out
,
a
>>
24
);
iobuf_put
(
out
,
a
>>
16
);
iobuf_put
(
out
,
a
>>
8
);
return
iobuf_put
(
out
,
a
);
}
/****************
* calculate the length of a header.
*
* LEN is the length of the packet's body. NEW_CTB is whether we are
* using a new or old format packet.
*
* This function does not handle indeterminate lengths or partial body
* lengths. (If you pass LEN as 0, then this function assumes you
* really mean an empty body.)
*/
static
int
calc_header_length
(
u32
len
,
int
new_ctb
)
{
if
(
new_ctb
)
{
if
(
len
<
192
)
return
2
;
if
(
len
<
8384
)
return
3
;
else
return
6
;
}
if
(
len
<
256
)
return
2
;
if
(
len
<
65536
)
return
3
;
return
5
;
}
/****************
* Write the CTB and the packet length
*/
static
int
write_header
(
IOBUF
out
,
int
ctb
,
u32
len
)
{
return
write_header2
(
out
,
ctb
,
len
,
0
);
}
static
int
write_sign_packet_header
(
IOBUF
out
,
int
ctb
,
u32
len
)
{
(
void
)
ctb
;
/* Work around a bug in the pgp read function for signature packets,
which are not correctly coded and silently assume at some point 2
byte length headers.*/
iobuf_put
(
out
,
0x89
);
iobuf_put
(
out
,
len
>>
8
);
return
iobuf_put
(
out
,
len
)
==
-1
?
-1
:
0
;
}
/****************
* Write a packet header to OUT.
*
* CTB is the ctb. It determines whether a new or old format packet
* header should be written. The length field is adjusted, but the
* CTB is otherwise written out as is.
*
* LEN is the length of the packet's body.
*
* If HDRLEN is set, then we don't necessarily use the most efficient
* encoding to store LEN, but the specified length. (If this is not
* possible, this is a bug.) In this case, LEN=0 means a 0 length
* packet. Note: setting HDRLEN is only supported for old format
* packets!
*
* If HDRLEN is not set, then the shortest encoding is used. In this
* case, LEN=0 means the body has an indeterminate length and a
* partial body length header (if a new format packet) or an
* indeterminate length header (if an old format packet) is written
* out. Further, if using partial body lengths, this enables partial
* body length mode on OUT.
*/
static
int
write_header2
(
IOBUF
out
,
int
ctb
,
u32
len
,
int
hdrlen
)
{
if
(
ctb_new_format_p
(
ctb
))
return
write_new_header
(
out
,
ctb
,
len
,
hdrlen
);
/* An old format packet. Refer to RFC 4880, Section 4.2.1 to
understand how lengths are encoded in this case. */
/* The length encoding is stored in the two least significant bits.
Make sure they are cleared. */
log_assert
((
ctb
&
3
)
==
0
);
log_assert
(
hdrlen
==
0
||
hdrlen
==
2
||
hdrlen
==
3
||
hdrlen
==
5
);
if
(
hdrlen
)
/* Header length is given. */
{
if
(
hdrlen
==
2
&&
len
<
256
)
/* 00 => 1 byte length. */
;
else
if
(
hdrlen
==
3
&&
len
<
65536
)
/* 01 => 2 byte length. If len < 256, this is not the most
compact encoding, but it is a correct encoding. */
ctb
|=
1
;
else
if
(
hdrlen
==
5
)
/* 10 => 4 byte length. If len < 65536, this is not the most
compact encoding, but it is a correct encoding. */
ctb
|=
2
;
else
log_bug
(
"Can't encode length=%d in a %d byte header!
\n
"
,
len
,
hdrlen
);
}
else
{
if
(
!
len
)
/* 11 => Indeterminate length. */
ctb
|=
3
;
else
if
(
len
<
256
)
/* 00 => 1 byte length. */
;
else
if
(
len
<
65536
)
/* 01 => 2 byte length. */
ctb
|=
1
;
else
/* 10 => 4 byte length. */
ctb
|=
2
;
}
if
(
iobuf_put
(
out
,
ctb
)
)
return
-1
;
if
(
len
||
hdrlen
)
{
if
(
ctb
&
2
)
{
if
(
iobuf_put
(
out
,
len
>>
24
))
return
-1
;
if
(
iobuf_put
(
out
,
len
>>
16
))
return
-1
;
}
if
(
ctb
&
3
)
if
(
iobuf_put
(
out
,
len
>>
8
))
return
-1
;
if
(
iobuf_put
(
out
,
len
)
)
return
-1
;
}
return
0
;
}
/* Write a new format header to OUT.
CTB is the ctb.
LEN is the length of the packet's body. If LEN is 0, then enables
partial body length mode (i.e., the body is of an indeterminant
length) on OUT. Note: this function cannot be used to generate a
header for a zero length packet.
HDRLEN is the length of the packet's header. If HDRLEN is 0, the
shortest encoding is chosen based on the length of the packet's
body. Currently, values other than 0 are not supported.
Returns 0 on success. */
static
int
write_new_header
(
IOBUF
out
,
int
ctb
,
u32
len
,
int
hdrlen
)
{
if
(
hdrlen
)
log_bug
(
"can't cope with hdrlen yet
\n
"
);
if
(
iobuf_put
(
out
,
ctb
)
)
return
-1
;
if
(
!
len
)
{
iobuf_set_partial_body_length_mode
(
out
,
512
);
}
else
{
if
(
len
<
192
)
{
if
(
iobuf_put
(
out
,
len
)
)
return
-1
;
}
else
if
(
len
<
8384
)
{
len
-=
192
;
if
(
iobuf_put
(
out
,
(
len
/
256
)
+
192
)
)
return
-1
;
if
(
iobuf_put
(
out
,
(
len
%
256
)
)
)
return
-1
;
}
else
{
if
(
iobuf_put
(
out
,
0xff
)
)
return
-1
;
if
(
iobuf_put
(
out
,
(
len
>>
24
)
&
0xff
)
)
return
-1
;
if
(
iobuf_put
(
out
,
(
len
>>
16
)
&
0xff
)
)
return
-1
;
if
(
iobuf_put
(
out
,
(
len
>>
8
)
&
0xff
)
)
return
-1
;
if
(
iobuf_put
(
out
,
len
&
0xff
)
)
return
-1
;
}
}
return
0
;
}
File Metadata
Details
Attached
Mime Type
text/x-c
Expires
Sun, Feb 23, 7:12 PM (22 m, 41 s)
Storage Engine
local-disk
Storage Format
Raw Data
Storage Handle
3e/34/91fdfb70710257bd9938bcfa631e
Attached To
rG GnuPG
Event Timeline
Log In to Comment