Page Menu
Home
GnuPG
Search
Configure Global Search
Log In
Files
F18826339
mpih-div.c
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Size
14 KB
Subscribers
None
mpih-div.c
View Options
/* mpih-div.c - MPI helper functions
* Copyright (C) 1994, 1996, 1998, 2000,
* 2001, 2002 Free Software Foundation, Inc.
*
* This file is part of Libgcrypt.
*
* Libgcrypt is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* Libgcrypt is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*
* Note: This code is heavily based on the GNU MP Library.
* Actually it's the same code with only minor changes in the
* way the data is stored; this is to support the abstraction
* of an optional secure memory allocation which may be used
* to avoid revealing of sensitive data due to paging etc.
*/
#include
<config.h>
#include
<stdio.h>
#include
<stdlib.h>
#include
"mpi-internal.h"
#include
"longlong.h"
#ifndef UMUL_TIME
#define UMUL_TIME 1
#endif
#ifndef UDIV_TIME
#define UDIV_TIME UMUL_TIME
#endif
/* FIXME: We should be using invert_limb (or invert_normalized_limb)
* here (not udiv_qrnnd).
*/
mpi_limb_t
_gcry_mpih_mod_1
(
mpi_ptr_t
dividend_ptr
,
mpi_size_t
dividend_size
,
mpi_limb_t
divisor_limb
)
{
mpi_size_t
i
;
mpi_limb_t
n1
,
n0
,
r
;
int
dummy
;
/* Botch: Should this be handled at all? Rely on callers? */
if
(
!
dividend_size
)
return
0
;
/* If multiplication is much faster than division, and the
* dividend is large, pre-invert the divisor, and use
* only multiplications in the inner loop.
*
* This test should be read:
* Does it ever help to use udiv_qrnnd_preinv?
* && Does what we save compensate for the inversion overhead?
*/
if
(
UDIV_TIME
>
(
2
*
UMUL_TIME
+
6
)
&&
(
UDIV_TIME
-
(
2
*
UMUL_TIME
+
6
))
*
dividend_size
>
UDIV_TIME
)
{
int
normalization_steps
;
count_leading_zeros
(
normalization_steps
,
divisor_limb
);
if
(
normalization_steps
)
{
mpi_limb_t
divisor_limb_inverted
;
divisor_limb
<<=
normalization_steps
;
/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The
* result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
* most significant bit (with weight 2**N) implicit.
*
* Special case for DIVISOR_LIMB == 100...000.
*/
if
(
!
(
divisor_limb
<<
1
)
)
divisor_limb_inverted
=
~
(
mpi_limb_t
)
0
;
else
udiv_qrnnd
(
divisor_limb_inverted
,
dummy
,
-
divisor_limb
,
0
,
divisor_limb
);
n1
=
dividend_ptr
[
dividend_size
-
1
];
r
=
n1
>>
(
BITS_PER_MPI_LIMB
-
normalization_steps
);
/* Possible optimization:
* if (r == 0
* && divisor_limb > ((n1 << normalization_steps)
* | (dividend_ptr[dividend_size - 2] >> ...)))
* ...one division less...
*/
for
(
i
=
dividend_size
-
2
;
i
>=
0
;
i
--
)
{
n0
=
dividend_ptr
[
i
];
UDIV_QRNND_PREINV
(
dummy
,
r
,
r
,
((
n1
<<
normalization_steps
)
|
(
n0
>>
(
BITS_PER_MPI_LIMB
-
normalization_steps
))),
divisor_limb
,
divisor_limb_inverted
);
n1
=
n0
;
}
UDIV_QRNND_PREINV
(
dummy
,
r
,
r
,
n1
<<
normalization_steps
,
divisor_limb
,
divisor_limb_inverted
);
return
r
>>
normalization_steps
;
}
else
{
mpi_limb_t
divisor_limb_inverted
;
/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The
* result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
* most significant bit (with weight 2**N) implicit.
*
* Special case for DIVISOR_LIMB == 100...000.
*/
if
(
!
(
divisor_limb
<<
1
)
)
divisor_limb_inverted
=
~
(
mpi_limb_t
)
0
;
else
udiv_qrnnd
(
divisor_limb_inverted
,
dummy
,
-
divisor_limb
,
0
,
divisor_limb
);
i
=
dividend_size
-
1
;
r
=
dividend_ptr
[
i
];
if
(
r
>=
divisor_limb
)
r
=
0
;
else
i
--
;
for
(
;
i
>=
0
;
i
--
)
{
n0
=
dividend_ptr
[
i
];
UDIV_QRNND_PREINV
(
dummy
,
r
,
r
,
n0
,
divisor_limb
,
divisor_limb_inverted
);
}
return
r
;
}
}
else
{
if
(
UDIV_NEEDS_NORMALIZATION
)
{
int
normalization_steps
;
count_leading_zeros
(
normalization_steps
,
divisor_limb
);
if
(
normalization_steps
)
{
divisor_limb
<<=
normalization_steps
;
n1
=
dividend_ptr
[
dividend_size
-
1
];
r
=
n1
>>
(
BITS_PER_MPI_LIMB
-
normalization_steps
);
/* Possible optimization:
* if (r == 0
* && divisor_limb > ((n1 << normalization_steps)
* | (dividend_ptr[dividend_size - 2] >> ...)))
* ...one division less...
*/
for
(
i
=
dividend_size
-
2
;
i
>=
0
;
i
--
)
{
n0
=
dividend_ptr
[
i
];
udiv_qrnnd
(
dummy
,
r
,
r
,
((
n1
<<
normalization_steps
)
|
(
n0
>>
(
BITS_PER_MPI_LIMB
-
normalization_steps
))),
divisor_limb
);
n1
=
n0
;
}
udiv_qrnnd
(
dummy
,
r
,
r
,
n1
<<
normalization_steps
,
divisor_limb
);
return
r
>>
normalization_steps
;
}
}
/* No normalization needed, either because udiv_qrnnd doesn't require
* it, or because DIVISOR_LIMB is already normalized. */
i
=
dividend_size
-
1
;
r
=
dividend_ptr
[
i
];
if
(
r
>=
divisor_limb
)
r
=
0
;
else
i
--
;
for
(;
i
>=
0
;
i
--
)
{
n0
=
dividend_ptr
[
i
];
udiv_qrnnd
(
dummy
,
r
,
r
,
n0
,
divisor_limb
);
}
return
r
;
}
}
/* Divide num (NP/NSIZE) by den (DP/DSIZE) and write
* the NSIZE-DSIZE least significant quotient limbs at QP
* and the DSIZE long remainder at NP. If QEXTRA_LIMBS is
* non-zero, generate that many fraction bits and append them after the
* other quotient limbs.
* Return the most significant limb of the quotient, this is always 0 or 1.
*
* Preconditions:
* 0. NSIZE >= DSIZE.
* 1. The most significant bit of the divisor must be set.
* 2. QP must either not overlap with the input operands at all, or
* QP + DSIZE >= NP must hold true. (This means that it's
* possible to put the quotient in the high part of NUM, right after the
* remainder in NUM.
* 3. NSIZE >= DSIZE, even if QEXTRA_LIMBS is non-zero.
*/
mpi_limb_t
_gcry_mpih_divrem
(
mpi_ptr_t
qp
,
mpi_size_t
qextra_limbs
,
mpi_ptr_t
np
,
mpi_size_t
nsize
,
mpi_ptr_t
dp
,
mpi_size_t
dsize
)
{
mpi_limb_t
most_significant_q_limb
=
0
;
switch
(
dsize
)
{
case
0
:
/* We are asked to divide by zero, so go ahead and do it! (To make
the compiler not remove this statement, return the value.) */
return
1
/
dsize
;
case
1
:
{
mpi_size_t
i
;
mpi_limb_t
n1
;
mpi_limb_t
d
;
d
=
dp
[
0
];
n1
=
np
[
nsize
-
1
];
if
(
n1
>=
d
)
{
n1
-=
d
;
most_significant_q_limb
=
1
;
}
qp
+=
qextra_limbs
;
for
(
i
=
nsize
-
2
;
i
>=
0
;
i
--
)
udiv_qrnnd
(
qp
[
i
],
n1
,
n1
,
np
[
i
],
d
);
qp
-=
qextra_limbs
;
for
(
i
=
qextra_limbs
-
1
;
i
>=
0
;
i
--
)
udiv_qrnnd
(
qp
[
i
],
n1
,
n1
,
0
,
d
);
np
[
0
]
=
n1
;
}
break
;
case
2
:
{
mpi_size_t
i
;
mpi_limb_t
n1
,
n0
,
n2
;
mpi_limb_t
d1
,
d0
;
np
+=
nsize
-
2
;
d1
=
dp
[
1
];
d0
=
dp
[
0
];
n1
=
np
[
1
];
n0
=
np
[
0
];
if
(
n1
>=
d1
&&
(
n1
>
d1
||
n0
>=
d0
)
)
{
sub_ddmmss
(
n1
,
n0
,
n1
,
n0
,
d1
,
d0
);
most_significant_q_limb
=
1
;
}
for
(
i
=
qextra_limbs
+
nsize
-
2
-
1
;
i
>=
0
;
i
--
)
{
mpi_limb_t
q
;
mpi_limb_t
r
;
if
(
i
>=
qextra_limbs
)
np
--
;
else
np
[
0
]
=
0
;
if
(
n1
==
d1
)
{
/* Q should be either 111..111 or 111..110. Need special
* treatment of this rare case as normal division would
* give overflow. */
q
=
~
(
mpi_limb_t
)
0
;
r
=
n0
+
d1
;
if
(
r
<
d1
)
{
/* Carry in the addition? */
add_ssaaaa
(
n1
,
n0
,
r
-
d0
,
np
[
0
],
0
,
d0
);
qp
[
i
]
=
q
;
continue
;
}
n1
=
d0
-
(
d0
!=
0
?
1
:
0
);
n0
=
-
d0
;
}
else
{
udiv_qrnnd
(
q
,
r
,
n1
,
n0
,
d1
);
umul_ppmm
(
n1
,
n0
,
d0
,
q
);
}
n2
=
np
[
0
];
q_test
:
if
(
n1
>
r
||
(
n1
==
r
&&
n0
>
n2
)
)
{
/* The estimated Q was too large. */
q
--
;
sub_ddmmss
(
n1
,
n0
,
n1
,
n0
,
0
,
d0
);
r
+=
d1
;
if
(
r
>=
d1
)
/* If not carry, test Q again. */
goto
q_test
;
}
qp
[
i
]
=
q
;
sub_ddmmss
(
n1
,
n0
,
r
,
n2
,
n1
,
n0
);
}
np
[
1
]
=
n1
;
np
[
0
]
=
n0
;
}
break
;
default
:
{
mpi_size_t
i
;
mpi_limb_t
dX
,
d1
,
n0
;
np
+=
nsize
-
dsize
;
dX
=
dp
[
dsize
-
1
];
d1
=
dp
[
dsize
-
2
];
n0
=
np
[
dsize
-
1
];
if
(
n0
>=
dX
)
{
if
(
n0
>
dX
||
_gcry_mpih_cmp
(
np
,
dp
,
dsize
-
1
)
>=
0
)
{
_gcry_mpih_sub_n
(
np
,
np
,
dp
,
dsize
);
n0
=
np
[
dsize
-
1
];
most_significant_q_limb
=
1
;
}
}
for
(
i
=
qextra_limbs
+
nsize
-
dsize
-
1
;
i
>=
0
;
i
--
)
{
mpi_limb_t
q
;
mpi_limb_t
n1
,
n2
;
mpi_limb_t
cy_limb
;
if
(
i
>=
qextra_limbs
)
{
np
--
;
n2
=
np
[
dsize
];
}
else
{
n2
=
np
[
dsize
-
1
];
MPN_COPY_DECR
(
np
+
1
,
np
,
dsize
-
1
);
np
[
0
]
=
0
;
}
if
(
n0
==
dX
)
{
/* This might over-estimate q, but it's probably not worth
* the extra code here to find out. */
q
=
~
(
mpi_limb_t
)
0
;
}
else
{
mpi_limb_t
r
;
udiv_qrnnd
(
q
,
r
,
n0
,
np
[
dsize
-
1
],
dX
);
umul_ppmm
(
n1
,
n0
,
d1
,
q
);
while
(
n1
>
r
||
(
n1
==
r
&&
n0
>
np
[
dsize
-
2
]))
{
q
--
;
r
+=
dX
;
if
(
r
<
dX
)
/* I.e. "carry in previous addition?" */
break
;
n1
-=
n0
<
d1
;
n0
-=
d1
;
}
}
/* Possible optimization: We already have (q * n0) and (1 * n1)
* after the calculation of q. Taking advantage of that, we
* could make this loop make two iterations less. */
cy_limb
=
_gcry_mpih_submul_1
(
np
,
dp
,
dsize
,
q
);
if
(
n2
!=
cy_limb
)
{
_gcry_mpih_add_n
(
np
,
np
,
dp
,
dsize
);
q
--
;
}
qp
[
i
]
=
q
;
n0
=
np
[
dsize
-
1
];
}
}
}
return
most_significant_q_limb
;
}
/****************
* Divide (DIVIDEND_PTR,,DIVIDEND_SIZE) by DIVISOR_LIMB.
* Write DIVIDEND_SIZE limbs of quotient at QUOT_PTR.
* Return the single-limb remainder.
* There are no constraints on the value of the divisor.
*
* QUOT_PTR and DIVIDEND_PTR might point to the same limb.
*/
mpi_limb_t
_gcry_mpih_divmod_1
(
mpi_ptr_t
quot_ptr
,
mpi_ptr_t
dividend_ptr
,
mpi_size_t
dividend_size
,
mpi_limb_t
divisor_limb
)
{
mpi_size_t
i
;
mpi_limb_t
n1
,
n0
,
r
;
int
dummy
;
if
(
!
dividend_size
)
return
0
;
/* If multiplication is much faster than division, and the
* dividend is large, pre-invert the divisor, and use
* only multiplications in the inner loop.
*
* This test should be read:
* Does it ever help to use udiv_qrnnd_preinv?
* && Does what we save compensate for the inversion overhead?
*/
if
(
UDIV_TIME
>
(
2
*
UMUL_TIME
+
6
)
&&
(
UDIV_TIME
-
(
2
*
UMUL_TIME
+
6
))
*
dividend_size
>
UDIV_TIME
)
{
int
normalization_steps
;
count_leading_zeros
(
normalization_steps
,
divisor_limb
);
if
(
normalization_steps
)
{
mpi_limb_t
divisor_limb_inverted
;
divisor_limb
<<=
normalization_steps
;
/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The
* result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
* most significant bit (with weight 2**N) implicit.
*/
/* Special case for DIVISOR_LIMB == 100...000. */
if
(
!
(
divisor_limb
<<
1
)
)
divisor_limb_inverted
=
~
(
mpi_limb_t
)
0
;
else
udiv_qrnnd
(
divisor_limb_inverted
,
dummy
,
-
divisor_limb
,
0
,
divisor_limb
);
n1
=
dividend_ptr
[
dividend_size
-
1
];
r
=
n1
>>
(
BITS_PER_MPI_LIMB
-
normalization_steps
);
/* Possible optimization:
* if (r == 0
* && divisor_limb > ((n1 << normalization_steps)
* | (dividend_ptr[dividend_size - 2] >> ...)))
* ...one division less...
*/
for
(
i
=
dividend_size
-
2
;
i
>=
0
;
i
--
)
{
n0
=
dividend_ptr
[
i
];
UDIV_QRNND_PREINV
(
quot_ptr
[
i
+
1
],
r
,
r
,
((
n1
<<
normalization_steps
)
|
(
n0
>>
(
BITS_PER_MPI_LIMB
-
normalization_steps
))),
divisor_limb
,
divisor_limb_inverted
);
n1
=
n0
;
}
UDIV_QRNND_PREINV
(
quot_ptr
[
0
],
r
,
r
,
n1
<<
normalization_steps
,
divisor_limb
,
divisor_limb_inverted
);
return
r
>>
normalization_steps
;
}
else
{
mpi_limb_t
divisor_limb_inverted
;
/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The
* result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
* most significant bit (with weight 2**N) implicit.
*/
/* Special case for DIVISOR_LIMB == 100...000. */
if
(
!
(
divisor_limb
<<
1
)
)
divisor_limb_inverted
=
~
(
mpi_limb_t
)
0
;
else
udiv_qrnnd
(
divisor_limb_inverted
,
dummy
,
-
divisor_limb
,
0
,
divisor_limb
);
i
=
dividend_size
-
1
;
r
=
dividend_ptr
[
i
];
if
(
r
>=
divisor_limb
)
r
=
0
;
else
quot_ptr
[
i
--
]
=
0
;
for
(
;
i
>=
0
;
i
--
)
{
n0
=
dividend_ptr
[
i
];
UDIV_QRNND_PREINV
(
quot_ptr
[
i
],
r
,
r
,
n0
,
divisor_limb
,
divisor_limb_inverted
);
}
return
r
;
}
}
else
{
if
(
UDIV_NEEDS_NORMALIZATION
)
{
int
normalization_steps
;
count_leading_zeros
(
normalization_steps
,
divisor_limb
);
if
(
normalization_steps
)
{
divisor_limb
<<=
normalization_steps
;
n1
=
dividend_ptr
[
dividend_size
-
1
];
r
=
n1
>>
(
BITS_PER_MPI_LIMB
-
normalization_steps
);
/* Possible optimization:
* if (r == 0
* && divisor_limb > ((n1 << normalization_steps)
* | (dividend_ptr[dividend_size - 2] >> ...)))
* ...one division less...
*/
for
(
i
=
dividend_size
-
2
;
i
>=
0
;
i
--
)
{
n0
=
dividend_ptr
[
i
];
udiv_qrnnd
(
quot_ptr
[
i
+
1
],
r
,
r
,
((
n1
<<
normalization_steps
)
|
(
n0
>>
(
BITS_PER_MPI_LIMB
-
normalization_steps
))),
divisor_limb
);
n1
=
n0
;
}
udiv_qrnnd
(
quot_ptr
[
0
],
r
,
r
,
n1
<<
normalization_steps
,
divisor_limb
);
return
r
>>
normalization_steps
;
}
}
/* No normalization needed, either because udiv_qrnnd doesn't require
* it, or because DIVISOR_LIMB is already normalized. */
i
=
dividend_size
-
1
;
r
=
dividend_ptr
[
i
];
if
(
r
>=
divisor_limb
)
r
=
0
;
else
quot_ptr
[
i
--
]
=
0
;
for
(;
i
>=
0
;
i
--
)
{
n0
=
dividend_ptr
[
i
];
udiv_qrnnd
(
quot_ptr
[
i
],
r
,
r
,
n0
,
divisor_limb
);
}
return
r
;
}
}
File Metadata
Details
Attached
Mime Type
text/x-c
Expires
Mon, Dec 23, 5:06 PM (10 h, 17 m)
Storage Engine
local-disk
Storage Format
Raw Data
Storage Handle
86/08/5f7ace8261d01f2a68908ee3050f
Attached To
rC libgcrypt
Event Timeline
Log In to Comment