Page Menu
Home
GnuPG
Search
Configure Global Search
Log In
Files
F35444197
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Size
28 KB
Subscribers
None
View Options
diff --git a/g10/ecdh.c b/g10/ecdh.c
index 6587cc4b4..661841686 100644
--- a/g10/ecdh.c
+++ b/g10/ecdh.c
@@ -1,495 +1,475 @@
/* ecdh.c - ECDH public key operations used in public key glue code
* Copyright (C) 2010, 2011 Free Software Foundation, Inc.
*
* This file is part of GnuPG.
*
* GnuPG is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* GnuPG is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <https://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include "gpg.h"
#include "../common/util.h"
#include "pkglue.h"
#include "main.h"
#include "options.h"
/* A table with the default KEK parameters used by GnuPG. */
static const struct
{
unsigned int qbits;
int openpgp_hash_id; /* KEK digest algorithm. */
int openpgp_cipher_id; /* KEK cipher algorithm. */
} kek_params_table[] =
/* Note: Must be sorted by ascending values for QBITS. */
{
{ 256, DIGEST_ALGO_SHA256, CIPHER_ALGO_AES },
{ 384, DIGEST_ALGO_SHA384, CIPHER_ALGO_AES256 },
/* Note: 528 is 521 rounded to the 8 bit boundary */
{ 528, DIGEST_ALGO_SHA512, CIPHER_ALGO_AES256 }
};
/* Return KEK parameters as an opaque MPI The caller must free the
returned value. Returns NULL and sets ERRNO on error. */
gcry_mpi_t
pk_ecdh_default_params (unsigned int qbits)
{
byte *kek_params;
int i;
kek_params = xtrymalloc (4);
if (!kek_params)
return NULL;
kek_params[0] = 3; /* Number of bytes to follow. */
kek_params[1] = 1; /* Version for KDF+AESWRAP. */
/* Search for matching KEK parameter. Defaults to the strongest
possible choices. Performance is not an issue here, only
interoperability. */
for (i=0; i < DIM (kek_params_table); i++)
{
if (kek_params_table[i].qbits >= qbits
|| i+1 == DIM (kek_params_table))
{
kek_params[2] = kek_params_table[i].openpgp_hash_id;
kek_params[3] = kek_params_table[i].openpgp_cipher_id;
break;
}
}
log_assert (i < DIM (kek_params_table));
if (DBG_CRYPTO)
log_printhex (kek_params, sizeof(kek_params), "ECDH KEK params are");
return gcry_mpi_set_opaque (NULL, kek_params, 4 * 8);
}
/* Encrypts/decrypts DATA using a key derived from the ECC shared
point SHARED_MPI using the FIPS SP 800-56A compliant method
key_derivation+key_wrapping. If IS_ENCRYPT is true the function
encrypts; if false, it decrypts. PKEY is the public key and PK_FP
the fingerprint of this public key. On success the result is
stored at R_RESULT; on failure NULL is stored at R_RESULT and an
error code returned. */
gpg_error_t
pk_ecdh_encrypt_with_shared_point (int is_encrypt, gcry_mpi_t shared_mpi,
const byte pk_fp[MAX_FINGERPRINT_LEN],
gcry_mpi_t data, gcry_mpi_t *pkey,
gcry_mpi_t *r_result)
{
gpg_error_t err;
byte *secret_x;
int secret_x_size;
- unsigned int nbits;
+ unsigned int nbits, nbits1;
const unsigned char *kek_params;
size_t kek_params_size;
int kdf_hash_algo;
int kdf_encr_algo;
unsigned char message[256];
size_t message_size;
*r_result = NULL;
nbits = pubkey_nbits (PUBKEY_ALGO_ECDH, pkey);
if (!nbits)
return gpg_error (GPG_ERR_TOO_SHORT);
{
size_t nbytes;
/* Extract x component of the shared point: this is the actual
shared secret. */
nbytes = (mpi_get_nbits (pkey[1] /* public point */)+7)/8;
- secret_x = xtrymalloc_secure (nbytes);
- if (!secret_x)
- return gpg_error_from_syserror ();
-
- err = gcry_mpi_print (GCRYMPI_FMT_USG, secret_x, nbytes,
- &nbytes, shared_mpi);
- if (err)
- {
- xfree (secret_x);
- log_error ("ECDH ephemeral export of shared point failed: %s\n",
- gpg_strerror (err));
- return err;
- }
+ secret_x = gcry_mpi_get_opaque (shared_mpi, &nbits1);
/* Expected size of the x component */
secret_x_size = (nbits+7)/8;
/* Extract X from the result. It must be in the format of:
04 || X || Y
40 || X
41 || X
Since it always comes with the prefix, it's larger than X. In
old experimental version of libgcrypt, there is a case where it
returns X with no prefix of 40, so, nbytes == secret_x_size
is allowed. */
if (nbytes < secret_x_size)
{
xfree (secret_x);
return gpg_error (GPG_ERR_BAD_DATA);
}
/* Remove the prefix. */
if ((nbytes & 1))
memmove (secret_x, secret_x+1, secret_x_size);
/* Clear the rest of data. */
if (nbytes - secret_x_size)
memset (secret_x+secret_x_size, 0, nbytes-secret_x_size);
if (DBG_CRYPTO)
log_printhex (secret_x, secret_x_size, "ECDH shared secret X is:");
}
/*** We have now the shared secret bytes in secret_x. ***/
/* At this point we are done with PK encryption and the rest of the
* function uses symmetric key encryption techniques to protect the
* input DATA. The following two sections will simply replace
* current secret_x with a value derived from it. This will become
* a KEK.
*/
if (!gcry_mpi_get_flag (pkey[2], GCRYMPI_FLAG_OPAQUE))
{
xfree (secret_x);
return gpg_error (GPG_ERR_BUG);
}
kek_params = gcry_mpi_get_opaque (pkey[2], &nbits);
kek_params_size = (nbits+7)/8;
if (DBG_CRYPTO)
log_printhex (kek_params, kek_params_size, "ecdh KDF params:");
/* Expect 4 bytes 03 01 hash_alg symm_alg. */
if (kek_params_size != 4 || kek_params[0] != 3 || kek_params[1] != 1)
{
- xfree (secret_x);
return gpg_error (GPG_ERR_BAD_PUBKEY);
}
kdf_hash_algo = kek_params[2];
kdf_encr_algo = kek_params[3];
if (DBG_CRYPTO)
log_debug ("ecdh KDF algorithms %s+%s with aeswrap\n",
openpgp_md_algo_name (kdf_hash_algo),
openpgp_cipher_algo_name (kdf_encr_algo));
if (kdf_hash_algo != GCRY_MD_SHA256
&& kdf_hash_algo != GCRY_MD_SHA384
&& kdf_hash_algo != GCRY_MD_SHA512)
{
- xfree (secret_x);
return gpg_error (GPG_ERR_BAD_PUBKEY);
}
if (kdf_encr_algo != CIPHER_ALGO_AES
&& kdf_encr_algo != CIPHER_ALGO_AES192
&& kdf_encr_algo != CIPHER_ALGO_AES256)
{
- xfree (secret_x);
return gpg_error (GPG_ERR_BAD_PUBKEY);
}
/* Build kdf_params. */
{
IOBUF obuf;
obuf = iobuf_temp();
/* variable-length field 1, curve name OID */
err = gpg_mpi_write_nohdr (obuf, pkey[0]);
/* fixed-length field 2 */
iobuf_put (obuf, PUBKEY_ALGO_ECDH);
/* variable-length field 3, KDF params */
err = (err ? err : gpg_mpi_write_nohdr (obuf, pkey[2]));
/* fixed-length field 4 */
iobuf_write (obuf, "Anonymous Sender ", 20);
/* fixed-length field 5, recipient fp */
iobuf_write (obuf, pk_fp, 20);
message_size = iobuf_temp_to_buffer (obuf, message, sizeof message);
iobuf_close (obuf);
if (err)
{
- xfree (secret_x);
return err;
}
if(DBG_CRYPTO)
log_printhex (message, message_size, "ecdh KDF message params are:");
}
/* Derive a KEK (key wrapping key) using MESSAGE and SECRET_X. */
{
gcry_md_hd_t h;
int old_size;
err = gcry_md_open (&h, kdf_hash_algo, 0);
if (err)
{
log_error ("gcry_md_open failed for kdf_hash_algo %d: %s",
kdf_hash_algo, gpg_strerror (err));
- xfree (secret_x);
return err;
}
gcry_md_write(h, "\x00\x00\x00\x01", 4); /* counter = 1 */
gcry_md_write(h, secret_x, secret_x_size); /* x of the point X */
gcry_md_write(h, message, message_size); /* KDF parameters */
gcry_md_final (h);
log_assert( gcry_md_get_algo_dlen (kdf_hash_algo) >= 32 );
memcpy (secret_x, gcry_md_read (h, kdf_hash_algo),
gcry_md_get_algo_dlen (kdf_hash_algo));
gcry_md_close (h);
old_size = secret_x_size;
log_assert( old_size >= gcry_cipher_get_algo_keylen( kdf_encr_algo ) );
secret_x_size = gcry_cipher_get_algo_keylen( kdf_encr_algo );
log_assert( secret_x_size <= gcry_md_get_algo_dlen (kdf_hash_algo) );
/* We could have allocated more, so clean the tail before returning. */
memset (secret_x+secret_x_size, 0, old_size - secret_x_size);
if (DBG_CRYPTO)
log_printhex (secret_x, secret_x_size, "ecdh KEK is:");
}
/* And, finally, aeswrap with key secret_x. */
{
gcry_cipher_hd_t hd;
size_t nbytes;
byte *data_buf;
int data_buf_size;
gcry_mpi_t result;
err = gcry_cipher_open (&hd, kdf_encr_algo, GCRY_CIPHER_MODE_AESWRAP, 0);
if (err)
{
log_error ("ecdh failed to initialize AESWRAP: %s\n",
gpg_strerror (err));
- xfree (secret_x);
return err;
}
err = gcry_cipher_setkey (hd, secret_x, secret_x_size);
- xfree (secret_x);
- secret_x = NULL;
if (err)
{
gcry_cipher_close (hd);
log_error ("ecdh failed in gcry_cipher_setkey: %s\n",
gpg_strerror (err));
return err;
}
data_buf_size = (gcry_mpi_get_nbits(data)+7)/8;
if ((data_buf_size & 7) != (is_encrypt ? 0 : 1))
{
log_error ("can't use a shared secret of %d bytes for ecdh\n",
data_buf_size);
return gpg_error (GPG_ERR_BAD_DATA);
}
data_buf = xtrymalloc_secure( 1 + 2*data_buf_size + 8);
if (!data_buf)
{
err = gpg_error_from_syserror ();
gcry_cipher_close (hd);
return err;
}
if (is_encrypt)
{
byte *in = data_buf+1+data_buf_size+8;
/* Write data MPI into the end of data_buf. data_buf is size
aeswrap data. */
err = gcry_mpi_print (GCRYMPI_FMT_USG, in,
data_buf_size, &nbytes, data/*in*/);
if (err)
{
log_error ("ecdh failed to export DEK: %s\n", gpg_strerror (err));
gcry_cipher_close (hd);
xfree (data_buf);
return err;
}
if (DBG_CRYPTO)
log_printhex (in, data_buf_size, "ecdh encrypting :");
err = gcry_cipher_encrypt (hd, data_buf+1, data_buf_size+8,
in, data_buf_size);
memset (in, 0, data_buf_size);
gcry_cipher_close (hd);
if (err)
{
log_error ("ecdh failed in gcry_cipher_encrypt: %s\n",
gpg_strerror (err));
xfree (data_buf);
return err;
}
data_buf[0] = data_buf_size+8;
if (DBG_CRYPTO)
log_printhex (data_buf+1, data_buf[0], "ecdh encrypted to:");
result = gcry_mpi_set_opaque (NULL, data_buf, 8 * (1+data_buf[0]));
if (!result)
{
err = gpg_error_from_syserror ();
xfree (data_buf);
log_error ("ecdh failed to create an MPI: %s\n",
gpg_strerror (err));
return err;
}
*r_result = result;
}
else
{
byte *in;
const void *p;
p = gcry_mpi_get_opaque (data, &nbits);
nbytes = (nbits+7)/8;
if (!p || nbytes > data_buf_size || !nbytes)
{
xfree (data_buf);
return gpg_error (GPG_ERR_BAD_MPI);
}
memcpy (data_buf, p, nbytes);
if (data_buf[0] != nbytes-1)
{
log_error ("ecdh inconsistent size\n");
xfree (data_buf);
return gpg_error (GPG_ERR_BAD_MPI);
}
in = data_buf+data_buf_size;
data_buf_size = data_buf[0];
if (DBG_CRYPTO)
log_printhex (data_buf+1, data_buf_size, "ecdh decrypting :");
err = gcry_cipher_decrypt (hd, in, data_buf_size, data_buf+1,
data_buf_size);
gcry_cipher_close (hd);
if (err)
{
log_error ("ecdh failed in gcry_cipher_decrypt: %s\n",
gpg_strerror (err));
xfree (data_buf);
return err;
}
data_buf_size -= 8;
if (DBG_CRYPTO)
log_printhex (in, data_buf_size, "ecdh decrypted to :");
/* Padding is removed later. */
/* if (in[data_buf_size-1] > 8 ) */
/* { */
/* log_error ("ecdh failed at decryption: invalid padding." */
/* " 0x%02x > 8\n", in[data_buf_size-1] ); */
/* return gpg_error (GPG_ERR_BAD_KEY); */
/* } */
err = gcry_mpi_scan (&result, GCRYMPI_FMT_USG, in, data_buf_size, NULL);
xfree (data_buf);
if (err)
{
log_error ("ecdh failed to create a plain text MPI: %s\n",
gpg_strerror (err));
return err;
}
*r_result = result;
}
}
return err;
}
static gcry_mpi_t
gen_k (unsigned nbits)
{
gcry_mpi_t k;
k = gcry_mpi_snew (nbits);
if (DBG_CRYPTO)
log_debug ("choosing a random k of %u bits\n", nbits);
gcry_mpi_randomize (k, nbits-1, GCRY_STRONG_RANDOM);
if (DBG_CRYPTO)
{
unsigned char *buffer;
if (gcry_mpi_aprint (GCRYMPI_FMT_HEX, &buffer, NULL, k))
BUG ();
log_debug ("ephemeral scalar MPI #0: %s\n", buffer);
gcry_free (buffer);
}
return k;
}
/* Generate an ephemeral key for the public ECDH key in PKEY. On
success the generated key is stored at R_K; on failure NULL is
stored at R_K and an error code returned. */
gpg_error_t
pk_ecdh_generate_ephemeral_key (gcry_mpi_t *pkey, gcry_mpi_t *r_k)
{
unsigned int nbits;
gcry_mpi_t k;
*r_k = NULL;
nbits = pubkey_nbits (PUBKEY_ALGO_ECDH, pkey);
if (!nbits)
return gpg_error (GPG_ERR_TOO_SHORT);
k = gen_k (nbits);
if (!k)
BUG ();
*r_k = k;
return 0;
}
/* Perform ECDH decryption. */
int
pk_ecdh_decrypt (gcry_mpi_t * result, const byte sk_fp[MAX_FINGERPRINT_LEN],
gcry_mpi_t data, gcry_mpi_t shared, gcry_mpi_t * skey)
{
if (!data)
return gpg_error (GPG_ERR_BAD_MPI);
return pk_ecdh_encrypt_with_shared_point (0 /*=decryption*/, shared,
sk_fp, data/*encr data as an MPI*/,
skey, result);
}
diff --git a/g10/pkglue.c b/g10/pkglue.c
index 8021a94db..339db67f3 100644
--- a/g10/pkglue.c
+++ b/g10/pkglue.c
@@ -1,422 +1,422 @@
/* pkglue.c - public key operations glue code
* Copyright (C) 2000, 2003, 2010 Free Software Foundation, Inc.
* Copyright (C) 2014 Werner Koch
*
* This file is part of GnuPG.
*
* GnuPG is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* GnuPG is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <https://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include "gpg.h"
#include "../common/util.h"
#include "pkglue.h"
#include "main.h"
#include "options.h"
/* FIXME: Better change the function name because mpi_ is used by
gcrypt macros. */
gcry_mpi_t
get_mpi_from_sexp (gcry_sexp_t sexp, const char *item, int mpifmt)
{
gcry_sexp_t list;
gcry_mpi_t data;
list = gcry_sexp_find_token (sexp, item, 0);
log_assert (list);
data = gcry_sexp_nth_mpi (list, 1, mpifmt);
log_assert (data);
gcry_sexp_release (list);
return data;
}
/****************
* Emulate our old PK interface here - sometime in the future we might
* change the internal design to directly fit to libgcrypt.
*/
int
pk_verify (pubkey_algo_t pkalgo, gcry_mpi_t hash,
gcry_mpi_t *data, gcry_mpi_t *pkey)
{
gcry_sexp_t s_sig, s_hash, s_pkey;
int rc;
unsigned int neededfixedlen = 0;
/* Make a sexp from pkey. */
if (pkalgo == PUBKEY_ALGO_DSA)
{
rc = gcry_sexp_build (&s_pkey, NULL,
"(public-key(dsa(p%m)(q%m)(g%m)(y%m)))",
pkey[0], pkey[1], pkey[2], pkey[3]);
}
else if (pkalgo == PUBKEY_ALGO_ELGAMAL_E || pkalgo == PUBKEY_ALGO_ELGAMAL)
{
rc = gcry_sexp_build (&s_pkey, NULL,
"(public-key(elg(p%m)(g%m)(y%m)))",
pkey[0], pkey[1], pkey[2]);
}
else if (pkalgo == PUBKEY_ALGO_RSA || pkalgo == PUBKEY_ALGO_RSA_S)
{
rc = gcry_sexp_build (&s_pkey, NULL,
"(public-key(rsa(n%m)(e%m)))", pkey[0], pkey[1]);
}
else if (pkalgo == PUBKEY_ALGO_ECDSA)
{
char *curve = openpgp_oid_to_str (pkey[0]);
if (!curve)
rc = gpg_error_from_syserror ();
else
{
rc = gcry_sexp_build (&s_pkey, NULL,
"(public-key(ecdsa(curve %s)(q%m)))",
curve, pkey[1]);
xfree (curve);
}
}
else if (pkalgo == PUBKEY_ALGO_EDDSA)
{
char *curve = openpgp_oid_to_str (pkey[0]);
if (!curve)
rc = gpg_error_from_syserror ();
else
{
rc = gcry_sexp_build (&s_pkey, NULL,
"(public-key(ecc(curve %s)"
"(flags eddsa)(q%m)))",
curve, pkey[1]);
xfree (curve);
}
if (openpgp_oid_is_ed25519 (pkey[0]))
neededfixedlen = 256 / 8;
}
else
return GPG_ERR_PUBKEY_ALGO;
if (rc)
BUG (); /* gcry_sexp_build should never fail. */
/* Put hash into a S-Exp s_hash. */
if (pkalgo == PUBKEY_ALGO_EDDSA)
{
if (gcry_sexp_build (&s_hash, NULL,
"(data(flags eddsa)(hash-algo sha512)(value %m))",
hash))
BUG (); /* gcry_sexp_build should never fail. */
}
else
{
if (gcry_sexp_build (&s_hash, NULL, "%m", hash))
BUG (); /* gcry_sexp_build should never fail. */
}
/* Put data into a S-Exp s_sig. */
s_sig = NULL;
if (pkalgo == PUBKEY_ALGO_DSA)
{
if (!data[0] || !data[1])
rc = gpg_error (GPG_ERR_BAD_MPI);
else
rc = gcry_sexp_build (&s_sig, NULL,
"(sig-val(dsa(r%m)(s%m)))", data[0], data[1]);
}
else if (pkalgo == PUBKEY_ALGO_ECDSA)
{
if (!data[0] || !data[1])
rc = gpg_error (GPG_ERR_BAD_MPI);
else
rc = gcry_sexp_build (&s_sig, NULL,
"(sig-val(ecdsa(r%m)(s%m)))", data[0], data[1]);
}
else if (pkalgo == PUBKEY_ALGO_EDDSA)
{
gcry_mpi_t r = data[0];
gcry_mpi_t s = data[1];
size_t rlen, slen, n; /* (bytes) */
char buf[64];
log_assert (neededfixedlen <= sizeof buf);
if (!r || !s)
rc = gpg_error (GPG_ERR_BAD_MPI);
else if ((rlen = (gcry_mpi_get_nbits (r)+7)/8) > neededfixedlen || !rlen)
rc = gpg_error (GPG_ERR_BAD_MPI);
else if ((slen = (gcry_mpi_get_nbits (s)+7)/8) > neededfixedlen || !slen)
rc = gpg_error (GPG_ERR_BAD_MPI);
else
{
/* We need to fixup the length in case of leading zeroes.
* OpenPGP does not allow leading zeroes and the parser for
* the signature packet has no information on the use curve,
* thus we need to do it here. We won't do it for opaque
* MPIs under the assumption that they are known to be fine;
* we won't see them here anyway but the check is anyway
* required. Fixme: A nifty feature for gcry_sexp_build
* would be a format to left pad the value (e.g. "%*M"). */
rc = 0;
if (rlen < neededfixedlen
&& !gcry_mpi_get_flag (r, GCRYMPI_FLAG_OPAQUE)
&& !(rc=gcry_mpi_print (GCRYMPI_FMT_USG, buf, sizeof buf, &n, r)))
{
log_assert (n < neededfixedlen);
memmove (buf + (neededfixedlen - n), buf, n);
memset (buf, 0, neededfixedlen - n);
r = gcry_mpi_set_opaque_copy (NULL, buf, neededfixedlen * 8);
}
if (slen < neededfixedlen
&& !gcry_mpi_get_flag (s, GCRYMPI_FLAG_OPAQUE)
&& !(rc=gcry_mpi_print (GCRYMPI_FMT_USG, buf, sizeof buf, &n, s)))
{
log_assert (n < neededfixedlen);
memmove (buf + (neededfixedlen - n), buf, n);
memset (buf, 0, neededfixedlen - n);
s = gcry_mpi_set_opaque_copy (NULL, buf, neededfixedlen * 8);
}
if (!rc)
rc = gcry_sexp_build (&s_sig, NULL,
"(sig-val(eddsa(r%M)(s%M)))", r, s);
if (r != data[0])
gcry_mpi_release (r);
if (s != data[1])
gcry_mpi_release (s);
}
}
else if (pkalgo == PUBKEY_ALGO_ELGAMAL || pkalgo == PUBKEY_ALGO_ELGAMAL_E)
{
if (!data[0] || !data[1])
rc = gpg_error (GPG_ERR_BAD_MPI);
else
rc = gcry_sexp_build (&s_sig, NULL,
"(sig-val(elg(r%m)(s%m)))", data[0], data[1]);
}
else if (pkalgo == PUBKEY_ALGO_RSA || pkalgo == PUBKEY_ALGO_RSA_S)
{
if (!data[0])
rc = gpg_error (GPG_ERR_BAD_MPI);
else
rc = gcry_sexp_build (&s_sig, NULL, "(sig-val(rsa(s%m)))", data[0]);
}
else
BUG ();
if (!rc)
rc = gcry_pk_verify (s_sig, s_hash, s_pkey);
gcry_sexp_release (s_sig);
gcry_sexp_release (s_hash);
gcry_sexp_release (s_pkey);
return rc;
}
/****************
* Emulate our old PK interface here - sometime in the future we might
* change the internal design to directly fit to libgcrypt.
* PK is only required to compute the fingerprint for ECDH.
*/
int
pk_encrypt (pubkey_algo_t algo, gcry_mpi_t *resarr, gcry_mpi_t data,
PKT_public_key *pk, gcry_mpi_t *pkey)
{
gcry_sexp_t s_ciph = NULL;
gcry_sexp_t s_data = NULL;
gcry_sexp_t s_pkey = NULL;
int rc;
/* Make a sexp from pkey. */
if (algo == PUBKEY_ALGO_ELGAMAL || algo == PUBKEY_ALGO_ELGAMAL_E)
{
rc = gcry_sexp_build (&s_pkey, NULL,
"(public-key(elg(p%m)(g%m)(y%m)))",
pkey[0], pkey[1], pkey[2]);
/* Put DATA into a simplified S-expression. */
if (!rc)
rc = gcry_sexp_build (&s_data, NULL, "%m", data);
}
else if (algo == PUBKEY_ALGO_RSA || algo == PUBKEY_ALGO_RSA_E)
{
rc = gcry_sexp_build (&s_pkey, NULL,
"(public-key(rsa(n%m)(e%m)))",
pkey[0], pkey[1]);
/* Put DATA into a simplified S-expression. */
if (!rc)
rc = gcry_sexp_build (&s_data, NULL, "%m", data);
}
else if (algo == PUBKEY_ALGO_ECDH)
{
gcry_mpi_t k;
rc = pk_ecdh_generate_ephemeral_key (pkey, &k);
if (!rc)
{
char *curve;
curve = openpgp_oid_to_str (pkey[0]);
if (!curve)
rc = gpg_error_from_syserror ();
else
{
int with_djb_tweak_flag = openpgp_oid_is_cv25519 (pkey[0]);
/* Now use the ephemeral secret to compute the shared point. */
rc = gcry_sexp_build (&s_pkey, NULL,
with_djb_tweak_flag ?
"(public-key(ecdh(curve%s)(flags djb-tweak)(q%m)))"
: "(public-key(ecdh(curve%s)(q%m)))",
curve, pkey[1]);
xfree (curve);
/* Put K into a simplified S-expression. */
if (!rc)
rc = gcry_sexp_build (&s_data, NULL, "%m", k);
}
gcry_mpi_release (k);
}
}
else
rc = gpg_error (GPG_ERR_PUBKEY_ALGO);
/* Pass it to libgcrypt. */
if (!rc)
rc = gcry_pk_encrypt (&s_ciph, s_data, s_pkey);
gcry_sexp_release (s_data);
gcry_sexp_release (s_pkey);
if (rc)
;
else if (algo == PUBKEY_ALGO_ECDH)
{
gcry_mpi_t shared, public, result;
byte fp[MAX_FINGERPRINT_LEN];
size_t fpn;
/* Get the shared point and the ephemeral public key. */
- shared = get_mpi_from_sexp (s_ciph, "s", GCRYMPI_FMT_USG);
- public = get_mpi_from_sexp (s_ciph, "e", GCRYMPI_FMT_USG);
+ shared = get_mpi_from_sexp (s_ciph, "s", GCRYMPI_FMT_OPAQUE);
+ public = get_mpi_from_sexp (s_ciph, "e", GCRYMPI_FMT_OPAQUE);
gcry_sexp_release (s_ciph);
s_ciph = NULL;
if (DBG_CRYPTO)
{
log_debug ("ECDH ephemeral key:");
gcry_mpi_dump (public);
log_printf ("\n");
}
result = NULL;
fingerprint_from_pk (pk, fp, &fpn);
if (fpn != 20)
rc = gpg_error (GPG_ERR_INV_LENGTH);
else
rc = pk_ecdh_encrypt_with_shared_point (1 /*=encrypton*/, shared,
fp, data, pkey, &result);
gcry_mpi_release (shared);
if (!rc)
{
resarr[0] = public;
resarr[1] = result;
}
else
{
gcry_mpi_release (public);
gcry_mpi_release (result);
}
}
else /* Elgamal or RSA case. */
{ /* Fixme: Add better error handling or make gnupg use
S-expressions directly. */
resarr[0] = get_mpi_from_sexp (s_ciph, "a", GCRYMPI_FMT_USG);
if (!is_RSA (algo))
resarr[1] = get_mpi_from_sexp (s_ciph, "b", GCRYMPI_FMT_USG);
}
gcry_sexp_release (s_ciph);
return rc;
}
/* Check whether SKEY is a suitable secret key. */
int
pk_check_secret_key (pubkey_algo_t pkalgo, gcry_mpi_t *skey)
{
gcry_sexp_t s_skey;
int rc;
if (pkalgo == PUBKEY_ALGO_DSA)
{
rc = gcry_sexp_build (&s_skey, NULL,
"(private-key(dsa(p%m)(q%m)(g%m)(y%m)(x%m)))",
skey[0], skey[1], skey[2], skey[3], skey[4]);
}
else if (pkalgo == PUBKEY_ALGO_ELGAMAL || pkalgo == PUBKEY_ALGO_ELGAMAL_E)
{
rc = gcry_sexp_build (&s_skey, NULL,
"(private-key(elg(p%m)(g%m)(y%m)(x%m)))",
skey[0], skey[1], skey[2], skey[3]);
}
else if (is_RSA (pkalgo))
{
rc = gcry_sexp_build (&s_skey, NULL,
"(private-key(rsa(n%m)(e%m)(d%m)(p%m)(q%m)(u%m)))",
skey[0], skey[1], skey[2], skey[3], skey[4],
skey[5]);
}
else if (pkalgo == PUBKEY_ALGO_ECDSA || pkalgo == PUBKEY_ALGO_ECDH)
{
char *curve = openpgp_oid_to_str (skey[0]);
if (!curve)
rc = gpg_error_from_syserror ();
else
{
rc = gcry_sexp_build (&s_skey, NULL,
"(private-key(ecc(curve%s)(q%m)(d%m)))",
curve, skey[1], skey[2]);
xfree (curve);
}
}
else if (pkalgo == PUBKEY_ALGO_EDDSA)
{
char *curve = openpgp_oid_to_str (skey[0]);
if (!curve)
rc = gpg_error_from_syserror ();
else
{
rc = gcry_sexp_build (&s_skey, NULL,
"(private-key(ecc(curve %s)"
"(flags eddsa)(q%m)(d%m)))",
curve, skey[1], skey[2]);
xfree (curve);
}
}
else
return GPG_ERR_PUBKEY_ALGO;
if (!rc)
{
rc = gcry_pk_testkey (s_skey);
gcry_sexp_release (s_skey);
}
return rc;
}
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Sun, Feb 8, 2:43 PM (2 h, 37 m)
Storage Engine
local-disk
Storage Format
Raw Data
Storage Handle
82/b2/0d8dd69f288e522b6de05d51be1c
Attached To
rG GnuPG
Event Timeline
Log In to Comment