Page Menu
Home
GnuPG
Search
Configure Global Search
Log In
Files
F23020445
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Size
48 KB
Subscribers
None
View Options
diff --git a/g10/ecdh.c b/g10/ecdh.c
index ac2883cf4..9a1f535a0 100644
--- a/g10/ecdh.c
+++ b/g10/ecdh.c
@@ -1,575 +1,582 @@
/* ecdh.c - ECDH public key operations used in public key glue code
* Copyright (C) 2010, 2011 Free Software Foundation, Inc.
*
* This file is part of GnuPG.
*
* GnuPG is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* GnuPG is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <https://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include "gpg.h"
#include "../common/util.h"
#include "pkglue.h"
#include "main.h"
#include "options.h"
/* A table with the default KEK parameters used by GnuPG. */
static const struct
{
unsigned int qbits;
int openpgp_hash_id; /* KEK digest algorithm. */
int openpgp_cipher_id; /* KEK cipher algorithm. */
} kek_params_table[] =
/* Note: Must be sorted by ascending values for QBITS. */
{
{ 256, DIGEST_ALGO_SHA256, CIPHER_ALGO_AES },
{ 384, DIGEST_ALGO_SHA384, CIPHER_ALGO_AES256 },
/* Note: 528 is 521 rounded to the 8 bit boundary */
{ 528, DIGEST_ALGO_SHA512, CIPHER_ALGO_AES256 }
};
/* Return KEK parameters as an opaque MPI The caller must free the
returned value. Returns NULL and sets ERRNO on error. */
gcry_mpi_t
pk_ecdh_default_params (unsigned int qbits)
{
byte *kek_params;
int i;
kek_params = xtrymalloc (4);
if (!kek_params)
return NULL;
kek_params[0] = 3; /* Number of bytes to follow. */
kek_params[1] = 1; /* Version for KDF+AESWRAP. */
/* Search for matching KEK parameter. Defaults to the strongest
possible choices. Performance is not an issue here, only
interoperability. */
for (i=0; i < DIM (kek_params_table); i++)
{
if (kek_params_table[i].qbits >= qbits
|| i+1 == DIM (kek_params_table))
{
kek_params[2] = kek_params_table[i].openpgp_hash_id;
kek_params[3] = kek_params_table[i].openpgp_cipher_id;
break;
}
}
log_assert (i < DIM (kek_params_table));
if (DBG_CRYPTO)
log_printhex (kek_params, sizeof(kek_params), "ECDH KEK params are");
return gcry_mpi_set_opaque (NULL, kek_params, 4 * 8);
}
/* Extract xcomponent from the point SHARED. POINT_NBYTES is the
size to represent an EC point which is determined by the public
key. SECRET_X_SIZE is the size of x component to represent an
integer which is determined by the curve. */
static gpg_error_t
extract_secret_x (byte **r_secret_x,
const char *shared, size_t nshared,
size_t point_nbytes, size_t secret_x_size)
{
byte *secret_x;
*r_secret_x = NULL;
/* Extract X from the result. It must be in the format of:
04 || X || Y
40 || X
41 || X
Since it may come with the prefix, the size of point is larger
than or equals to the size of an integer X. */
if (point_nbytes < secret_x_size)
return gpg_error (GPG_ERR_BAD_DATA);
/* Extract x component of the shared point: this is the actual
shared secret. */
secret_x = xtrymalloc_secure (point_nbytes);
if (!secret_x)
return gpg_error_from_syserror ();
memcpy (secret_x, shared, nshared);
/* Remove the prefix. */
if ((point_nbytes & 1))
memmove (secret_x, secret_x+1, secret_x_size);
/* Clear the rest of data. */
if (point_nbytes - secret_x_size)
memset (secret_x+secret_x_size, 0, point_nbytes-secret_x_size);
if (DBG_CRYPTO)
log_printhex (secret_x, secret_x_size, "ECDH shared secret X is:");
*r_secret_x = secret_x;
return 0;
}
+/* Build KDF parameters */
+/* RFC 6637 defines the KDF parameters and its encoding in Section
+ 8. EC DH Algorighm (ECDH). Since it was written for v4 key, it
+ said "20 octets representing a recipient encryption subkey or a
+ master key fingerprint". For v5 key, it is considered "adequate"
+ (in terms of NIST SP 800 56A, see 5.8.2 FixedInfo) to use the first
+ 20 octets of its 32 octets fingerprint. */
static gpg_error_t
build_kdf_params (unsigned char kdf_params[256], size_t *r_size,
gcry_mpi_t *pkey, const byte pk_fp[MAX_FINGERPRINT_LEN])
{
IOBUF obuf;
gpg_error_t err;
*r_size = 0;
obuf = iobuf_temp();
if (!obuf)
return gpg_error_from_syserror ();
/* variable-length field 1, curve name OID */
err = gpg_mpi_write_nohdr (obuf, pkey[0]);
/* fixed-length field 2 */
iobuf_put (obuf, PUBKEY_ALGO_ECDH);
/* variable-length field 3, KDF params */
err = (err ? err : gpg_mpi_write_nohdr (obuf, pkey[2]));
/* fixed-length field 4 */
iobuf_write (obuf, "Anonymous Sender ", 20);
- /* fixed-length field 5, recipient fp */
+ /* fixed-length field 5, recipient fp (or first 20 octets of fp) */
iobuf_write (obuf, pk_fp, 20);
if (!err)
*r_size = iobuf_temp_to_buffer (obuf, kdf_params, 256);
iobuf_close (obuf);
if (!err)
{
if (DBG_CRYPTO)
log_printhex (kdf_params, *r_size, "ecdh KDF message params are:");
}
return err;
}
/* Derive KEK with KEK_SIZE into the memory at SECRET_X. */
static gpg_error_t
derive_kek (size_t kek_size,
int kdf_hash_algo,
byte *secret_x, int secret_x_size,
const unsigned char *kdf_params, size_t kdf_params_size)
{
gpg_error_t err;
gcry_md_hd_t h;
log_assert( gcry_md_get_algo_dlen (kdf_hash_algo) >= 32 );
err = gcry_md_open (&h, kdf_hash_algo, 0);
if (err)
{
log_error ("gcry_md_open failed for kdf_hash_algo %d: %s",
kdf_hash_algo, gpg_strerror (err));
return err;
}
gcry_md_write(h, "\x00\x00\x00\x01", 4); /* counter = 1 */
gcry_md_write(h, secret_x, secret_x_size); /* x of the point X */
gcry_md_write(h, kdf_params, kdf_params_size); /* KDF parameters */
gcry_md_final (h);
memcpy (secret_x, gcry_md_read (h, kdf_hash_algo), kek_size);
gcry_md_close (h);
/* Clean the tail before returning. */
memset (secret_x+kek_size, 0, secret_x_size - kek_size);
if (DBG_CRYPTO)
log_printhex (secret_x, kek_size, "ecdh KEK is:");
return err;
}
/* Prepare ECDH using SHARED, PK_FP fingerprint, and PKEY array.
Returns the cipher handle in R_HD, which needs to be closed by
the caller. */
static gpg_error_t
prepare_ecdh_with_shared_point (const char *shared, size_t nshared,
const byte pk_fp[MAX_FINGERPRINT_LEN],
gcry_mpi_t *pkey, gcry_cipher_hd_t *r_hd)
{
gpg_error_t err;
byte *secret_x;
int secret_x_size;
unsigned int nbits;
const unsigned char *kek_params;
size_t kek_params_size;
int kdf_hash_algo;
int kdf_encr_algo;
unsigned char kdf_params[256];
size_t kdf_params_size;
size_t kek_size;
gcry_cipher_hd_t hd;
*r_hd = NULL;
if (!gcry_mpi_get_flag (pkey[2], GCRYMPI_FLAG_OPAQUE))
return gpg_error (GPG_ERR_BUG);
kek_params = gcry_mpi_get_opaque (pkey[2], &nbits);
kek_params_size = (nbits+7)/8;
if (DBG_CRYPTO)
log_printhex (kek_params, kek_params_size, "ecdh KDF params:");
/* Expect 4 bytes 03 01 hash_alg symm_alg. */
if (kek_params_size != 4 || kek_params[0] != 3 || kek_params[1] != 1)
return gpg_error (GPG_ERR_BAD_PUBKEY);
kdf_hash_algo = kek_params[2];
kdf_encr_algo = kek_params[3];
if (DBG_CRYPTO)
log_debug ("ecdh KDF algorithms %s+%s with aeswrap\n",
openpgp_md_algo_name (kdf_hash_algo),
openpgp_cipher_algo_name (kdf_encr_algo));
if (kdf_hash_algo != GCRY_MD_SHA256
&& kdf_hash_algo != GCRY_MD_SHA384
&& kdf_hash_algo != GCRY_MD_SHA512)
return gpg_error (GPG_ERR_BAD_PUBKEY);
if (kdf_encr_algo != CIPHER_ALGO_AES
&& kdf_encr_algo != CIPHER_ALGO_AES192
&& kdf_encr_algo != CIPHER_ALGO_AES256)
return gpg_error (GPG_ERR_BAD_PUBKEY);
kek_size = gcry_cipher_get_algo_keylen (kdf_encr_algo);
if (kek_size > gcry_md_get_algo_dlen (kdf_hash_algo))
return gpg_error (GPG_ERR_BAD_PUBKEY);
/* Build kdf_params. */
err = build_kdf_params (kdf_params, &kdf_params_size, pkey, pk_fp);
if (err)
return err;
nbits = pubkey_nbits (PUBKEY_ALGO_ECDH, pkey);
if (!nbits)
return gpg_error (GPG_ERR_TOO_SHORT);
secret_x_size = (nbits+7)/8;
if (kek_size > secret_x_size)
return gpg_error (GPG_ERR_BAD_PUBKEY);
err = extract_secret_x (&secret_x, shared, nshared,
/* pkey[1] is the public point */
(mpi_get_nbits (pkey[1])+7)/8,
secret_x_size);
if (err)
return err;
/*** We have now the shared secret bytes in secret_x. ***/
/* At this point we are done with PK encryption and the rest of the
* function uses symmetric key encryption techniques to protect the
* input DATA. The following two sections will simply replace
* current secret_x with a value derived from it. This will become
* a KEK.
*/
/* Derive a KEK (key wrapping key) using SECRET_X and KDF_PARAMS. */
err = derive_kek (kek_size, kdf_hash_algo, secret_x,
secret_x_size, kdf_params, kdf_params_size);
if (err)
{
xfree (secret_x);
return err;
}
/* And, finally, aeswrap with key secret_x. */
err = gcry_cipher_open (&hd, kdf_encr_algo, GCRY_CIPHER_MODE_AESWRAP, 0);
if (err)
{
log_error ("ecdh failed to initialize AESWRAP: %s\n",
gpg_strerror (err));
xfree (secret_x);
return err;
}
err = gcry_cipher_setkey (hd, secret_x, kek_size);
xfree (secret_x);
secret_x = NULL;
if (err)
{
gcry_cipher_close (hd);
log_error ("ecdh failed in gcry_cipher_setkey: %s\n",
gpg_strerror (err));
}
else
*r_hd = hd;
return err;
}
/* Encrypts DATA using a key derived from the ECC shared point SHARED
using the FIPS SP 800-56A compliant method
key_derivation+key_wrapping. PKEY is the public key and PK_FP the
fingerprint of this public key. On success the result is stored at
R_RESULT; on failure NULL is stored at R_RESULT and an error code
returned. */
gpg_error_t
pk_ecdh_encrypt_with_shared_point (const char *shared, size_t nshared,
const byte pk_fp[MAX_FINGERPRINT_LEN],
const byte *data, size_t ndata,
gcry_mpi_t *pkey, gcry_mpi_t *r_result)
{
gpg_error_t err;
gcry_cipher_hd_t hd;
byte *data_buf;
int data_buf_size;
gcry_mpi_t result;
byte *in;
*r_result = NULL;
err = prepare_ecdh_with_shared_point (shared, nshared, pk_fp, pkey, &hd);
if (err)
return err;
data_buf_size = ndata;
if ((data_buf_size & 7) != 0)
{
log_error ("can't use a shared secret of %d bytes for ecdh\n",
data_buf_size);
gcry_cipher_close (hd);
return gpg_error (GPG_ERR_BAD_DATA);
}
data_buf = xtrymalloc_secure( 1 + 2*data_buf_size + 8);
if (!data_buf)
{
err = gpg_error_from_syserror ();
gcry_cipher_close (hd);
return err;
}
in = data_buf+1+data_buf_size+8;
/* Write data MPI into the end of data_buf. data_buf is size
aeswrap data. */
memcpy (in, data, ndata);
if (DBG_CRYPTO)
log_printhex (in, data_buf_size, "ecdh encrypting :");
err = gcry_cipher_encrypt (hd, data_buf+1, data_buf_size+8,
in, data_buf_size);
memset (in, 0, data_buf_size);
gcry_cipher_close (hd);
if (err)
{
log_error ("ecdh failed in gcry_cipher_encrypt: %s\n",
gpg_strerror (err));
xfree (data_buf);
return err;
}
data_buf[0] = data_buf_size+8;
if (DBG_CRYPTO)
log_printhex (data_buf+1, data_buf[0], "ecdh encrypted to:");
result = gcry_mpi_set_opaque (NULL, data_buf, 8 * (1+data_buf[0]));
if (!result)
{
err = gpg_error_from_syserror ();
xfree (data_buf);
log_error ("ecdh failed to create an MPI: %s\n",
gpg_strerror (err));
return err;
}
*r_result = result;
return err;
}
static gcry_mpi_t
gen_k (unsigned nbits, int little_endian, int is_opaque)
{
gcry_mpi_t k;
if (is_opaque)
{
unsigned char *p;
size_t nbytes = (nbits+7)/8;
p = gcry_random_bytes_secure (nbytes, GCRY_STRONG_RANDOM);
if ((nbits % 8))
{
if (little_endian)
p[nbytes-1] &= ((1 << (nbits % 8)) - 1);
else
p[0] &= ((1 << (nbits % 8)) - 1);
}
k = gcry_mpi_set_opaque (NULL, p, nbits);
return k;
}
k = gcry_mpi_snew (nbits);
if (DBG_CRYPTO)
log_debug ("choosing a random k of %u bits\n", nbits);
gcry_mpi_randomize (k, nbits-1, GCRY_STRONG_RANDOM);
if (DBG_CRYPTO)
{
unsigned char *buffer;
if (gcry_mpi_aprint (GCRYMPI_FMT_HEX, &buffer, NULL, k))
BUG ();
log_debug ("ephemeral scalar MPI #0: %s\n", buffer);
gcry_free (buffer);
}
return k;
}
/* Generate an ephemeral key for the public ECDH key in PKEY. On
success the generated key is stored at R_K; on failure NULL is
stored at R_K and an error code returned. */
gpg_error_t
pk_ecdh_generate_ephemeral_key (gcry_mpi_t *pkey, gcry_mpi_t *r_k)
{
unsigned int nbits;
gcry_mpi_t k;
int is_little_endian = 0;
int require_opaque = 0;
if (openpgp_oid_is_cv448 (pkey[0]))
{
is_little_endian = 1;
require_opaque = 1;
}
*r_k = NULL;
nbits = pubkey_nbits (PUBKEY_ALGO_ECDH, pkey);
if (!nbits)
return gpg_error (GPG_ERR_TOO_SHORT);
k = gen_k (nbits, is_little_endian, require_opaque);
if (!k)
BUG ();
*r_k = k;
return 0;
}
/* Perform ECDH decryption. */
int
pk_ecdh_decrypt (gcry_mpi_t *r_result, const byte sk_fp[MAX_FINGERPRINT_LEN],
gcry_mpi_t data,
const byte *shared, size_t nshared, gcry_mpi_t * skey)
{
gpg_error_t err;
gcry_cipher_hd_t hd;
size_t nbytes;
byte *data_buf;
int data_buf_size;
byte *in;
const void *p;
unsigned int nbits;
*r_result = NULL;
err = prepare_ecdh_with_shared_point (shared, nshared, sk_fp, skey, &hd);
if (err)
return err;
p = gcry_mpi_get_opaque (data, &nbits);
nbytes = (nbits+7)/8;
data_buf_size = nbytes;
if ((data_buf_size & 7) != 1)
{
log_error ("can't use a shared secret of %d bytes for ecdh\n",
data_buf_size);
gcry_cipher_close (hd);
return gpg_error (GPG_ERR_BAD_DATA);
}
data_buf = xtrymalloc_secure( 1 + 2*data_buf_size + 8);
if (!data_buf)
{
err = gpg_error_from_syserror ();
gcry_cipher_close (hd);
return err;
}
if (!p)
{
xfree (data_buf);
gcry_cipher_close (hd);
return gpg_error (GPG_ERR_BAD_MPI);
}
memcpy (data_buf, p, nbytes);
if (data_buf[0] != nbytes-1)
{
log_error ("ecdh inconsistent size\n");
xfree (data_buf);
gcry_cipher_close (hd);
return gpg_error (GPG_ERR_BAD_MPI);
}
in = data_buf+data_buf_size;
data_buf_size = data_buf[0];
if (DBG_CRYPTO)
log_printhex (data_buf+1, data_buf_size, "ecdh decrypting :");
err = gcry_cipher_decrypt (hd, in, data_buf_size, data_buf+1,
data_buf_size);
gcry_cipher_close (hd);
if (err)
{
log_error ("ecdh failed in gcry_cipher_decrypt: %s\n",
gpg_strerror (err));
xfree (data_buf);
return err;
}
data_buf_size -= 8;
if (DBG_CRYPTO)
log_printhex (in, data_buf_size, "ecdh decrypted to :");
/* Padding is removed later. */
/* if (in[data_buf_size-1] > 8 ) */
/* { */
/* log_error ("ecdh failed at decryption: invalid padding." */
/* " 0x%02x > 8\n", in[data_buf_size-1] ); */
/* return gpg_error (GPG_ERR_BAD_KEY); */
/* } */
err = gcry_mpi_scan (r_result, GCRYMPI_FMT_USG, in, data_buf_size, NULL);
xfree (data_buf);
if (err)
{
log_error ("ecdh failed to create a plain text MPI: %s\n",
gpg_strerror (err));
return err;
}
return err;
}
diff --git a/g10/pkglue.c b/g10/pkglue.c
index 13f8e2f03..cab007f01 100644
--- a/g10/pkglue.c
+++ b/g10/pkglue.c
@@ -1,541 +1,538 @@
/* pkglue.c - public key operations glue code
* Copyright (C) 2000, 2003, 2010 Free Software Foundation, Inc.
* Copyright (C) 2014 Werner Koch
*
* This file is part of GnuPG.
*
* GnuPG is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* GnuPG is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <https://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include "gpg.h"
#include "../common/util.h"
#include "pkglue.h"
#include "main.h"
#include "options.h"
/* FIXME: Better change the function name because mpi_ is used by
gcrypt macros. */
gcry_mpi_t
get_mpi_from_sexp (gcry_sexp_t sexp, const char *item, int mpifmt)
{
gcry_sexp_t list;
gcry_mpi_t data;
list = gcry_sexp_find_token (sexp, item, 0);
log_assert (list);
data = gcry_sexp_nth_mpi (list, 1, mpifmt);
log_assert (data);
gcry_sexp_release (list);
return data;
}
/* Extract SOS representation from SEXP for PARAM, return the result
in R_SOS. */
gpg_error_t
sexp_extract_param_sos (gcry_sexp_t sexp, const char *param, gcry_mpi_t *r_sos)
{
gpg_error_t err;
gcry_sexp_t l2 = gcry_sexp_find_token (sexp, param, 0);
*r_sos = NULL;
if (!l2)
err = gpg_error (GPG_ERR_NO_OBJ);
else
{
size_t buflen;
void *p0 = gcry_sexp_nth_buffer (l2, 1, &buflen);
if (!p0)
err = gpg_error_from_syserror ();
else
{
gcry_mpi_t sos;
unsigned int nbits = buflen*8;
unsigned char *p = p0;
if (*p && nbits >= 8 && !(*p & 0x80))
if (--nbits >= 7 && !(*p & 0x40))
if (--nbits >= 6 && !(*p & 0x20))
if (--nbits >= 5 && !(*p & 0x10))
if (--nbits >= 4 && !(*p & 0x08))
if (--nbits >= 3 && !(*p & 0x04))
if (--nbits >= 2 && !(*p & 0x02))
if (--nbits >= 1 && !(*p & 0x01))
--nbits;
sos = gcry_mpi_set_opaque (NULL, p0, nbits);
if (sos)
{
gcry_mpi_set_flag (sos, GCRYMPI_FLAG_USER2);
*r_sos = sos;
err = 0;
}
else
err = gpg_error_from_syserror ();
}
gcry_sexp_release (l2);
}
return err;
}
static byte *
get_data_from_sexp (gcry_sexp_t sexp, const char *item, size_t *r_size)
{
gcry_sexp_t list;
size_t valuelen;
const char *value;
byte *v;
if (DBG_CRYPTO)
log_printsexp ("get_data_from_sexp:", sexp);
list = gcry_sexp_find_token (sexp, item, 0);
log_assert (list);
value = gcry_sexp_nth_data (list, 1, &valuelen);
log_assert (value);
v = xtrymalloc (valuelen);
memcpy (v, value, valuelen);
gcry_sexp_release (list);
*r_size = valuelen;
return v;
}
/****************
* Emulate our old PK interface here - sometime in the future we might
* change the internal design to directly fit to libgcrypt.
*/
int
pk_verify (pubkey_algo_t pkalgo, gcry_mpi_t hash,
gcry_mpi_t *data, gcry_mpi_t *pkey)
{
gcry_sexp_t s_sig, s_hash, s_pkey;
int rc;
/* Make a sexp from pkey. */
if (pkalgo == PUBKEY_ALGO_DSA)
{
rc = gcry_sexp_build (&s_pkey, NULL,
"(public-key(dsa(p%m)(q%m)(g%m)(y%m)))",
pkey[0], pkey[1], pkey[2], pkey[3]);
}
else if (pkalgo == PUBKEY_ALGO_ELGAMAL_E || pkalgo == PUBKEY_ALGO_ELGAMAL)
{
rc = gcry_sexp_build (&s_pkey, NULL,
"(public-key(elg(p%m)(g%m)(y%m)))",
pkey[0], pkey[1], pkey[2]);
}
else if (pkalgo == PUBKEY_ALGO_RSA || pkalgo == PUBKEY_ALGO_RSA_S)
{
rc = gcry_sexp_build (&s_pkey, NULL,
"(public-key(rsa(n%m)(e%m)))", pkey[0], pkey[1]);
}
else if (pkalgo == PUBKEY_ALGO_ECDSA)
{
char *curve = openpgp_oid_to_str (pkey[0]);
if (!curve)
rc = gpg_error_from_syserror ();
else
{
rc = gcry_sexp_build (&s_pkey, NULL,
"(public-key(ecdsa(curve %s)(q%m)))",
curve, pkey[1]);
xfree (curve);
}
}
else if (pkalgo == PUBKEY_ALGO_EDDSA)
{
char *curve = openpgp_oid_to_str (pkey[0]);
if (!curve)
rc = gpg_error_from_syserror ();
else
{
const char *fmt;
if (openpgp_oid_is_ed25519 (pkey[0]))
fmt = "(public-key(ecc(curve %s)(flags eddsa)(q%m)))";
else
fmt = "(public-key(ecc(curve %s)(q%m)))";
rc = gcry_sexp_build (&s_pkey, NULL, fmt, curve, pkey[1]);
xfree (curve);
}
}
else
return GPG_ERR_PUBKEY_ALGO;
if (rc)
BUG (); /* gcry_sexp_build should never fail. */
/* Put hash into a S-Exp s_hash. */
if (pkalgo == PUBKEY_ALGO_EDDSA)
{
const char *fmt;
if (openpgp_oid_is_ed25519 (pkey[0]))
fmt = "(data(flags eddsa)(hash-algo sha512)(value %m))";
else
fmt = "(data(value %m))";
if (gcry_sexp_build (&s_hash, NULL, fmt, hash))
BUG (); /* gcry_sexp_build should never fail. */
}
else
{
if (gcry_sexp_build (&s_hash, NULL, "%m", hash))
BUG (); /* gcry_sexp_build should never fail. */
}
/* Put data into a S-Exp s_sig. */
s_sig = NULL;
if (pkalgo == PUBKEY_ALGO_DSA)
{
if (!data[0] || !data[1])
rc = gpg_error (GPG_ERR_BAD_MPI);
else
rc = gcry_sexp_build (&s_sig, NULL,
"(sig-val(dsa(r%m)(s%m)))", data[0], data[1]);
}
else if (pkalgo == PUBKEY_ALGO_ECDSA)
{
if (!data[0] || !data[1])
rc = gpg_error (GPG_ERR_BAD_MPI);
else
rc = gcry_sexp_build (&s_sig, NULL,
"(sig-val(ecdsa(r%m)(s%m)))", data[0], data[1]);
}
else if (pkalgo == PUBKEY_ALGO_EDDSA)
{
gcry_mpi_t r = data[0];
gcry_mpi_t s = data[1];
if (openpgp_oid_is_ed25519 (pkey[0]))
{
size_t rlen, slen, n; /* (bytes) */
char buf[64];
unsigned int nbits;
unsigned int neededfixedlen = 256 / 8;
log_assert (neededfixedlen <= sizeof buf);
if (!r || !s)
rc = gpg_error (GPG_ERR_BAD_MPI);
else if ((rlen = (gcry_mpi_get_nbits (r)+7)/8) > neededfixedlen || !rlen)
rc = gpg_error (GPG_ERR_BAD_MPI);
else if ((slen = (gcry_mpi_get_nbits (s)+7)/8) > neededfixedlen || !slen)
rc = gpg_error (GPG_ERR_BAD_MPI);
else
{
/* We need to fixup the length in case of leading zeroes.
* OpenPGP does not allow leading zeroes and the parser for
* the signature packet has no information on the use curve,
* thus we need to do it here. We won't do it for opaque
* MPIs under the assumption that they are known to be fine;
* we won't see them here anyway but the check is anyway
* required. Fixme: A nifty feature for gcry_sexp_build
* would be a format to left pad the value (e.g. "%*M"). */
rc = 0;
if (rlen < neededfixedlen
&& !gcry_mpi_get_flag (r, GCRYMPI_FLAG_OPAQUE)
&& !(rc=gcry_mpi_print (GCRYMPI_FMT_USG, buf, sizeof buf, &n, r)))
{
log_assert (n < neededfixedlen);
memmove (buf + (neededfixedlen - n), buf, n);
memset (buf, 0, neededfixedlen - n);
r = gcry_mpi_set_opaque_copy (NULL, buf, neededfixedlen * 8);
}
else if (rlen < neededfixedlen
&& gcry_mpi_get_flag (r, GCRYMPI_FLAG_OPAQUE))
{
const unsigned char *p;
p = gcry_mpi_get_opaque (r, &nbits);
n = (nbits+7)/8;
memcpy (buf + (neededfixedlen - n), p, n);
memset (buf, 0, neededfixedlen - n);
gcry_mpi_set_opaque_copy (r, buf, neededfixedlen * 8);
}
if (slen < neededfixedlen
&& !gcry_mpi_get_flag (s, GCRYMPI_FLAG_OPAQUE)
&& !(rc=gcry_mpi_print (GCRYMPI_FMT_USG, buf, sizeof buf, &n, s)))
{
log_assert (n < neededfixedlen);
memmove (buf + (neededfixedlen - n), buf, n);
memset (buf, 0, neededfixedlen - n);
s = gcry_mpi_set_opaque_copy (NULL, buf, neededfixedlen * 8);
}
else if (slen < neededfixedlen
&& gcry_mpi_get_flag (s, GCRYMPI_FLAG_OPAQUE))
{
const unsigned char *p;
p = gcry_mpi_get_opaque (s, &nbits);
n = (nbits+7)/8;
memcpy (buf + (neededfixedlen - n), p, n);
memset (buf, 0, neededfixedlen - n);
gcry_mpi_set_opaque_copy (s, buf, neededfixedlen * 8);
}
}
}
else
rc = 0;
if (!rc)
rc = gcry_sexp_build (&s_sig, NULL,
"(sig-val(eddsa(r%M)(s%M)))", r, s);
if (r != data[0])
gcry_mpi_release (r);
if (s != data[1])
gcry_mpi_release (s);
}
else if (pkalgo == PUBKEY_ALGO_ELGAMAL || pkalgo == PUBKEY_ALGO_ELGAMAL_E)
{
if (!data[0] || !data[1])
rc = gpg_error (GPG_ERR_BAD_MPI);
else
rc = gcry_sexp_build (&s_sig, NULL,
"(sig-val(elg(r%m)(s%m)))", data[0], data[1]);
}
else if (pkalgo == PUBKEY_ALGO_RSA || pkalgo == PUBKEY_ALGO_RSA_S)
{
if (!data[0])
rc = gpg_error (GPG_ERR_BAD_MPI);
else
rc = gcry_sexp_build (&s_sig, NULL, "(sig-val(rsa(s%m)))", data[0]);
}
else
BUG ();
if (!rc)
rc = gcry_pk_verify (s_sig, s_hash, s_pkey);
gcry_sexp_release (s_sig);
gcry_sexp_release (s_hash);
gcry_sexp_release (s_pkey);
return rc;
}
/****************
* Emulate our old PK interface here - sometime in the future we might
* change the internal design to directly fit to libgcrypt.
* PK is only required to compute the fingerprint for ECDH.
*/
int
pk_encrypt (pubkey_algo_t algo, gcry_mpi_t *resarr, gcry_mpi_t data,
PKT_public_key *pk, gcry_mpi_t *pkey)
{
gcry_sexp_t s_ciph = NULL;
gcry_sexp_t s_data = NULL;
gcry_sexp_t s_pkey = NULL;
int rc;
/* Make a sexp from pkey. */
if (algo == PUBKEY_ALGO_ELGAMAL || algo == PUBKEY_ALGO_ELGAMAL_E)
{
rc = gcry_sexp_build (&s_pkey, NULL,
"(public-key(elg(p%m)(g%m)(y%m)))",
pkey[0], pkey[1], pkey[2]);
/* Put DATA into a simplified S-expression. */
if (!rc)
rc = gcry_sexp_build (&s_data, NULL, "%m", data);
}
else if (algo == PUBKEY_ALGO_RSA || algo == PUBKEY_ALGO_RSA_E)
{
rc = gcry_sexp_build (&s_pkey, NULL,
"(public-key(rsa(n%m)(e%m)))",
pkey[0], pkey[1]);
/* Put DATA into a simplified S-expression. */
if (!rc)
rc = gcry_sexp_build (&s_data, NULL, "%m", data);
}
else if (algo == PUBKEY_ALGO_ECDH)
{
gcry_mpi_t k;
rc = pk_ecdh_generate_ephemeral_key (pkey, &k);
if (!rc)
{
char *curve;
curve = openpgp_oid_to_str (pkey[0]);
if (!curve)
rc = gpg_error_from_syserror ();
else
{
int with_djb_tweak_flag = openpgp_oid_is_cv25519 (pkey[0]);
/* Now use the ephemeral secret to compute the shared point. */
rc = gcry_sexp_build (&s_pkey, NULL,
with_djb_tweak_flag ?
"(public-key(ecdh(curve%s)(flags djb-tweak)(q%m)))"
: "(public-key(ecdh(curve%s)(q%m)))",
curve, pkey[1]);
xfree (curve);
/* Put K into a simplified S-expression. */
if (!rc)
rc = gcry_sexp_build (&s_data, NULL, "%m", k);
}
gcry_mpi_release (k);
}
}
else
rc = gpg_error (GPG_ERR_PUBKEY_ALGO);
/* Pass it to libgcrypt. */
if (!rc)
rc = gcry_pk_encrypt (&s_ciph, s_data, s_pkey);
gcry_sexp_release (s_data);
gcry_sexp_release (s_pkey);
if (rc)
;
else if (algo == PUBKEY_ALGO_ECDH)
{
gcry_mpi_t public, result;
byte fp[MAX_FINGERPRINT_LEN];
- size_t fpn;
byte *shared;
size_t nshared;
/* Get the shared point and the ephemeral public key. */
shared = get_data_from_sexp (s_ciph, "s", &nshared);
rc = sexp_extract_param_sos (s_ciph, "e", &public);
gcry_sexp_release (s_ciph);
s_ciph = NULL;
if (DBG_CRYPTO)
{
log_debug ("ECDH ephemeral key:");
gcry_mpi_dump (public);
log_printf ("\n");
}
result = NULL;
- fingerprint_from_pk (pk, fp, &fpn);
- if (fpn != 20)
- rc = gpg_error (GPG_ERR_INV_LENGTH);
+ fingerprint_from_pk (pk, fp, NULL);
if (!rc)
{
unsigned int nbits;
byte *p = gcry_mpi_get_opaque (data, &nbits);
rc = pk_ecdh_encrypt_with_shared_point (shared, nshared, fp, p,
(nbits+7)/8, pkey, &result);
}
xfree (shared);
if (!rc)
{
resarr[0] = public;
resarr[1] = result;
}
else
{
gcry_mpi_release (public);
gcry_mpi_release (result);
}
}
else /* Elgamal or RSA case. */
{ /* Fixme: Add better error handling or make gnupg use
S-expressions directly. */
resarr[0] = get_mpi_from_sexp (s_ciph, "a", GCRYMPI_FMT_USG);
if (!is_RSA (algo))
resarr[1] = get_mpi_from_sexp (s_ciph, "b", GCRYMPI_FMT_USG);
}
gcry_sexp_release (s_ciph);
return rc;
}
/* Check whether SKEY is a suitable secret key. */
int
pk_check_secret_key (pubkey_algo_t pkalgo, gcry_mpi_t *skey)
{
gcry_sexp_t s_skey;
int rc;
if (pkalgo == PUBKEY_ALGO_DSA)
{
rc = gcry_sexp_build (&s_skey, NULL,
"(private-key(dsa(p%m)(q%m)(g%m)(y%m)(x%m)))",
skey[0], skey[1], skey[2], skey[3], skey[4]);
}
else if (pkalgo == PUBKEY_ALGO_ELGAMAL || pkalgo == PUBKEY_ALGO_ELGAMAL_E)
{
rc = gcry_sexp_build (&s_skey, NULL,
"(private-key(elg(p%m)(g%m)(y%m)(x%m)))",
skey[0], skey[1], skey[2], skey[3]);
}
else if (is_RSA (pkalgo))
{
rc = gcry_sexp_build (&s_skey, NULL,
"(private-key(rsa(n%m)(e%m)(d%m)(p%m)(q%m)(u%m)))",
skey[0], skey[1], skey[2], skey[3], skey[4],
skey[5]);
}
else if (pkalgo == PUBKEY_ALGO_ECDSA || pkalgo == PUBKEY_ALGO_ECDH)
{
char *curve = openpgp_oid_to_str (skey[0]);
if (!curve)
rc = gpg_error_from_syserror ();
else
{
rc = gcry_sexp_build (&s_skey, NULL,
"(private-key(ecc(curve%s)(q%m)(d%m)))",
curve, skey[1], skey[2]);
xfree (curve);
}
}
else if (pkalgo == PUBKEY_ALGO_EDDSA)
{
char *curve = openpgp_oid_to_str (skey[0]);
if (!curve)
rc = gpg_error_from_syserror ();
else
{
const char *fmt;
if (openpgp_oid_is_ed25519 (skey[0]))
fmt = "(private-key(ecc(curve %s)(flags eddsa)(q%m)(d%m)))";
else
fmt = "(private-key(ecc(curve %s)(q%m)(d%m)))";
rc = gcry_sexp_build (&s_skey, NULL, fmt, curve, skey[1], skey[2]);
xfree (curve);
}
}
else
return GPG_ERR_PUBKEY_ALGO;
if (!rc)
{
rc = gcry_pk_testkey (s_skey);
gcry_sexp_release (s_skey);
}
return rc;
}
diff --git a/g10/pubkey-enc.c b/g10/pubkey-enc.c
index 9a2c107f8..6e1b0898e 100644
--- a/g10/pubkey-enc.c
+++ b/g10/pubkey-enc.c
@@ -1,507 +1,503 @@
/* pubkey-enc.c - Process a public key encoded packet.
* Copyright (C) 1998, 1999, 2000, 2001, 2002, 2006, 2009,
* 2010 Free Software Foundation, Inc.
*
* This file is part of GnuPG.
*
* GnuPG is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* GnuPG is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <https://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "gpg.h"
#include "../common/util.h"
#include "packet.h"
#include "keydb.h"
#include "trustdb.h"
#include "../common/status.h"
#include "options.h"
#include "main.h"
#include "../common/i18n.h"
#include "pkglue.h"
#include "call-agent.h"
#include "../common/host2net.h"
#include "../common/compliance.h"
static gpg_error_t get_it (ctrl_t ctrl, struct pubkey_enc_list *k,
DEK *dek, PKT_public_key *sk, u32 *keyid);
/* Check that the given algo is mentioned in one of the valid user-ids. */
static int
is_algo_in_prefs (kbnode_t keyblock, preftype_t type, int algo)
{
kbnode_t k;
for (k = keyblock; k; k = k->next)
{
if (k->pkt->pkttype == PKT_USER_ID)
{
PKT_user_id *uid = k->pkt->pkt.user_id;
prefitem_t *prefs = uid->prefs;
if (uid->created && prefs && !uid->flags.revoked && !uid->flags.expired)
{
for (; prefs->type; prefs++)
if (prefs->type == type && prefs->value == algo)
return 1;
}
}
}
return 0;
}
/*
* Get the session key from a pubkey enc packet and return it in DEK,
* which should have been allocated in secure memory by the caller.
*/
gpg_error_t
get_session_key (ctrl_t ctrl, struct pubkey_enc_list *list, DEK *dek)
{
PKT_public_key *sk = NULL;
gpg_error_t err;
void *enum_context = NULL;
u32 keyid[2];
int search_for_secret_keys = 1;
struct pubkey_enc_list *k;
if (DBG_CLOCK)
log_clock ("get_session_key enter");
while (search_for_secret_keys)
{
sk = xmalloc_clear (sizeof *sk);
err = enum_secret_keys (ctrl, &enum_context, sk);
if (err)
break;
/* Check compliance. */
if (! gnupg_pk_is_allowed (opt.compliance, PK_USE_DECRYPTION,
sk->pubkey_algo, 0,
sk->pkey, nbits_from_pk (sk), NULL))
{
log_info (_("key %s is not suitable for decryption"
" in %s mode\n"),
keystr_from_pk (sk),
gnupg_compliance_option_string (opt.compliance));
continue;
}
/* FIXME: The list needs to be sorted so that we try the keys in
* an appropriate order. For example:
* - On-disk keys w/o protection
* - On-disk keys with a cached passphrase
* - On-card keys of an active card
* - On-disk keys with protection
* - On-card keys from cards which are not plugged it. Here a
* cancel-all button should stop asking for other cards.
* Without any anonymous keys the sorting can be skipped.
*/
for (k = list; k; k = k->next)
{
if (!(k->pubkey_algo == PUBKEY_ALGO_ELGAMAL_E
|| k->pubkey_algo == PUBKEY_ALGO_ECDH
|| k->pubkey_algo == PUBKEY_ALGO_RSA
|| k->pubkey_algo == PUBKEY_ALGO_RSA_E
|| k->pubkey_algo == PUBKEY_ALGO_ELGAMAL))
continue;
if (openpgp_pk_test_algo2 (k->pubkey_algo, PUBKEY_USAGE_ENC))
continue;
if (sk->pubkey_algo != k->pubkey_algo)
continue;
keyid_from_pk (sk, keyid);
if (!k->keyid[0] && !k->keyid[1])
{
if (opt.skip_hidden_recipients)
continue;
if (!opt.quiet)
log_info (_("anonymous recipient; trying secret key %s ...\n"),
keystr (keyid));
}
else if (opt.try_all_secrets
|| (k->keyid[0] == keyid[0] && k->keyid[1] == keyid[1]))
{
if (!opt.quiet && !(sk->pubkey_usage & PUBKEY_USAGE_ENC))
log_info (_("used key is not marked for encryption use.\n"));
}
else
continue;
err = get_it (ctrl, k, dek, sk, keyid);
k->result = err;
if (!err)
{
if (!opt.quiet && !k->keyid[0] && !k->keyid[1])
{
log_info (_("okay, we are the anonymous recipient.\n"));
if (!(sk->pubkey_usage & PUBKEY_USAGE_ENC))
log_info (_("used key is not marked for encryption use.\n")
);
}
search_for_secret_keys = 0;
break;
}
else if (gpg_err_code (err) == GPG_ERR_FULLY_CANCELED)
{
search_for_secret_keys = 0;
break; /* Don't try any more secret keys. */
}
}
}
enum_secret_keys (ctrl, &enum_context, NULL); /* free context */
if (gpg_err_code (err) == GPG_ERR_EOF)
{
err = gpg_error (GPG_ERR_NO_SECKEY);
/* Return the last specific error, if any. */
for (k = list; k; k = k->next)
if (k->result != -1)
err = k->result;
}
if (DBG_CLOCK)
log_clock ("get_session_key leave");
return err;
}
static gpg_error_t
get_it (ctrl_t ctrl,
struct pubkey_enc_list *enc, DEK *dek, PKT_public_key *sk, u32 *keyid)
{
gpg_error_t err;
byte *frame = NULL;
unsigned int n;
size_t nframe;
u16 csum, csum2;
int padding;
gcry_sexp_t s_data;
char *desc;
char *keygrip;
byte fp[MAX_FINGERPRINT_LEN];
- size_t fpn;
if (DBG_CLOCK)
log_clock ("decryption start");
/* Get the keygrip. */
err = hexkeygrip_from_pk (sk, &keygrip);
if (err)
goto leave;
/* Convert the data to an S-expression. */
if (sk->pubkey_algo == PUBKEY_ALGO_ELGAMAL
|| sk->pubkey_algo == PUBKEY_ALGO_ELGAMAL_E)
{
if (!enc->data[0] || !enc->data[1])
err = gpg_error (GPG_ERR_BAD_MPI);
else
err = gcry_sexp_build (&s_data, NULL, "(enc-val(elg(a%m)(b%m)))",
enc->data[0], enc->data[1]);
}
else if (sk->pubkey_algo == PUBKEY_ALGO_RSA
|| sk->pubkey_algo == PUBKEY_ALGO_RSA_E)
{
if (!enc->data[0])
err = gpg_error (GPG_ERR_BAD_MPI);
else
err = gcry_sexp_build (&s_data, NULL, "(enc-val(rsa(a%m)))",
enc->data[0]);
}
else if (sk->pubkey_algo == PUBKEY_ALGO_ECDH)
{
if (!enc->data[0] || !enc->data[1])
err = gpg_error (GPG_ERR_BAD_MPI);
else
err = gcry_sexp_build (&s_data, NULL, "(enc-val(ecdh(s%m)(e%m)))",
enc->data[1], enc->data[0]);
}
else
err = gpg_error (GPG_ERR_BUG);
if (err)
goto leave;
if (sk->pubkey_algo == PUBKEY_ALGO_ECDH)
- {
- fingerprint_from_pk (sk, fp, &fpn);
- log_assert (fpn == 20);
- }
+ fingerprint_from_pk (sk, fp, NULL);
/* Decrypt. */
desc = gpg_format_keydesc (ctrl, sk, FORMAT_KEYDESC_NORMAL, 1);
err = agent_pkdecrypt (NULL, keygrip,
desc, sk->keyid, sk->main_keyid, sk->pubkey_algo,
s_data, &frame, &nframe, &padding);
xfree (desc);
gcry_sexp_release (s_data);
if (err)
goto leave;
/* Now get the DEK (data encryption key) from the frame
*
* Old versions encode the DEK in this format (msb is left):
*
* 0 1 DEK(16 bytes) CSUM(2 bytes) 0 RND(n bytes) 2
*
* Later versions encode the DEK like this:
*
* 0 2 RND(n bytes) 0 A DEK(k bytes) CSUM(2 bytes)
*
* (mpi_get_buffer already removed the leading zero).
*
* RND are non-zero randow bytes.
* A is the cipher algorithm
* DEK is the encryption key (session key) with length k
* CSUM
*/
if (DBG_CRYPTO)
log_printhex (frame, nframe, "DEK frame:");
n = 0;
if (sk->pubkey_algo == PUBKEY_ALGO_ECDH)
{
gcry_mpi_t decoded;
/* At the beginning the frame are the bytes of shared point MPI. */
err = pk_ecdh_decrypt (&decoded, fp, enc->data[1]/*encr data as an MPI*/,
frame, nframe, sk->pkey);
if(err)
goto leave;
xfree (frame);
err = gcry_mpi_aprint (GCRYMPI_FMT_USG, &frame, &nframe, decoded);
mpi_release (decoded);
if (err)
goto leave;
/* Now the frame are the bytes decrypted but padded session key. */
if (!nframe || nframe <= 8
|| frame[nframe-1] > nframe)
{
err = gpg_error (GPG_ERR_WRONG_SECKEY);
goto leave;
}
nframe -= frame[nframe-1]; /* Remove padding. */
log_assert (!n); /* (used just below) */
}
else
{
if (padding)
{
if (n + 7 > nframe)
{
err = gpg_error (GPG_ERR_WRONG_SECKEY);
goto leave;
}
/* FIXME: Actually the leading zero is required but due to
* the way we encode the output in libgcrypt as an MPI we
* are not able to encode that leading zero. However, when
* using a Smartcard we are doing it the right way and
* therefore we have to skip the zero. This should be fixed
* in gpg-agent of course. */
if (!frame[n])
n++;
if (frame[n] == 1 && frame[nframe - 1] == 2)
{
log_info (_("old encoding of the DEK is not supported\n"));
err = gpg_error (GPG_ERR_CIPHER_ALGO);
goto leave;
}
if (frame[n] != 2) /* Something went wrong. */
{
err = gpg_error (GPG_ERR_WRONG_SECKEY);
goto leave;
}
for (n++; n < nframe && frame[n]; n++) /* Skip the random bytes. */
;
n++; /* Skip the zero byte. */
}
}
if (n + 4 > nframe)
{
err = gpg_error (GPG_ERR_WRONG_SECKEY);
goto leave;
}
dek->keylen = nframe - (n + 1) - 2;
dek->algo = frame[n++];
err = openpgp_cipher_test_algo (dek->algo);
if (err)
{
if (!opt.quiet && gpg_err_code (err) == GPG_ERR_CIPHER_ALGO)
{
log_info (_("cipher algorithm %d%s is unknown or disabled\n"),
dek->algo,
dek->algo == CIPHER_ALGO_IDEA ? " (IDEA)" : "");
}
dek->algo = 0;
goto leave;
}
if (dek->keylen != openpgp_cipher_get_algo_keylen (dek->algo))
{
err = gpg_error (GPG_ERR_WRONG_SECKEY);
goto leave;
}
/* Copy the key to DEK and compare the checksum. */
csum = buf16_to_u16 (frame+nframe-2);
memcpy (dek->key, frame + n, dek->keylen);
for (csum2 = 0, n = 0; n < dek->keylen; n++)
csum2 += dek->key[n];
if (csum != csum2)
{
err = gpg_error (GPG_ERR_WRONG_SECKEY);
goto leave;
}
if (DBG_CLOCK)
log_clock ("decryption ready");
if (DBG_CRYPTO)
log_printhex (dek->key, dek->keylen, "DEK is:");
/* Check that the algo is in the preferences and whether it has
* expired. Also print a status line with the key's fingerprint. */
{
PKT_public_key *pk = NULL;
PKT_public_key *mainpk = NULL;
KBNODE pkb = get_pubkeyblock (ctrl, keyid);
if (!pkb)
{
err = -1;
log_error ("oops: public key not found for preference check\n");
}
else if (pkb->pkt->pkt.public_key->selfsigversion > 3
&& dek->algo != CIPHER_ALGO_3DES
&& !opt.quiet
&& !is_algo_in_prefs (pkb, PREFTYPE_SYM, dek->algo))
log_info (_("WARNING: cipher algorithm %s not found in recipient"
" preferences\n"), openpgp_cipher_algo_name (dek->algo));
if (!err)
{
kbnode_t k;
int first = 1;
for (k = pkb; k; k = k->next)
{
if (k->pkt->pkttype == PKT_PUBLIC_KEY
|| k->pkt->pkttype == PKT_PUBLIC_SUBKEY)
{
u32 aki[2];
if (first)
{
first = 0;
mainpk = k->pkt->pkt.public_key;
}
keyid_from_pk (k->pkt->pkt.public_key, aki);
if (aki[0] == keyid[0] && aki[1] == keyid[1])
{
pk = k->pkt->pkt.public_key;
break;
}
}
}
if (!pk)
BUG ();
if (pk->expiredate && pk->expiredate <= make_timestamp ())
{
log_info (_("Note: secret key %s expired at %s\n"),
keystr (keyid), asctimestamp (pk->expiredate));
}
}
if (pk && pk->flags.revoked)
{
log_info (_("Note: key has been revoked"));
log_printf ("\n");
show_revocation_reason (ctrl, pk, 1);
}
if (is_status_enabled () && pk && mainpk)
{
char pkhex[MAX_FINGERPRINT_LEN*2+1];
char mainpkhex[MAX_FINGERPRINT_LEN*2+1];
hexfingerprint (pk, pkhex, sizeof pkhex);
hexfingerprint (mainpk, mainpkhex, sizeof mainpkhex);
/* Note that we do not want to create a trustdb just for
* getting the ownertrust: If there is no trustdb there can't
* be ulitmately trusted key anyway and thus the ownertrust
* value is irrelevant. */
write_status_printf (STATUS_DECRYPTION_KEY, "%s %s %c",
pkhex, mainpkhex,
get_ownertrust_info (ctrl, mainpk, 1));
}
release_kbnode (pkb);
err = 0;
}
leave:
xfree (frame);
xfree (keygrip);
return err;
}
/*
* Get the session key from the given string.
* String is supposed to be formatted as this:
* <algo-id>:<even-number-of-hex-digits>
*/
gpg_error_t
get_override_session_key (DEK *dek, const char *string)
{
const char *s;
int i;
if (!string)
return GPG_ERR_BAD_KEY;
dek->algo = atoi (string);
if (dek->algo < 1)
return GPG_ERR_BAD_KEY;
if (!(s = strchr (string, ':')))
return GPG_ERR_BAD_KEY;
s++;
for (i = 0; i < DIM (dek->key) && *s; i++, s += 2)
{
int c = hextobyte (s);
if (c == -1)
return GPG_ERR_BAD_KEY;
dek->key[i] = c;
}
if (*s)
return GPG_ERR_BAD_KEY;
dek->keylen = i;
return 0;
}
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Mon, May 12, 6:15 PM (13 h, 17 m)
Storage Engine
local-disk
Storage Format
Raw Data
Storage Handle
89/2d/d308896d4c4c8bc41494b496eb01
Attached To
rG GnuPG
Event Timeline
Log In to Comment