diff --git a/cipher/elgamal.c b/cipher/elgamal.c index 9835122f..eead4502 100644 --- a/cipher/elgamal.c +++ b/cipher/elgamal.c @@ -1,1163 +1,1151 @@ /* Elgamal.c - Elgamal Public Key encryption * Copyright (C) 1998, 2000, 2001, 2002, 2003, * 2008 Free Software Foundation, Inc. * Copyright (C) 2013 g10 Code GmbH * * This file is part of Libgcrypt. * * Libgcrypt is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2.1 of * the License, or (at your option) any later version. * * Libgcrypt is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program; if not, see . * * For a description of the algorithm, see: * Bruce Schneier: Applied Cryptography. John Wiley & Sons, 1996. * ISBN 0-471-11709-9. Pages 476 ff. */ #include #include #include #include #include "g10lib.h" #include "mpi.h" #include "cipher.h" #include "pubkey-internal.h" /* Blinding is used to mitigate side-channel attacks. You may undef this to speed up the operation in case the system is secured against physical and network mounted side-channel attacks. */ #define USE_BLINDING 1 typedef struct { gcry_mpi_t p; /* prime */ gcry_mpi_t g; /* group generator */ gcry_mpi_t y; /* g^x mod p */ } ELG_public_key; typedef struct { gcry_mpi_t p; /* prime */ gcry_mpi_t g; /* group generator */ gcry_mpi_t y; /* g^x mod p */ gcry_mpi_t x; /* secret exponent */ } ELG_secret_key; static const char *elg_names[] = { "elg", "openpgp-elg", "openpgp-elg-sig", NULL, }; static int test_keys (ELG_secret_key *sk, unsigned int nbits, int nodie); -static gcry_mpi_t gen_k (gcry_mpi_t p, int small_k); +static gcry_mpi_t gen_k (gcry_mpi_t p); static gcry_err_code_t generate (ELG_secret_key *sk, unsigned nbits, gcry_mpi_t **factors); static int check_secret_key (ELG_secret_key *sk); static void do_encrypt (gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input, ELG_public_key *pkey); static void decrypt (gcry_mpi_t output, gcry_mpi_t a, gcry_mpi_t b, ELG_secret_key *skey); static void sign (gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input, ELG_secret_key *skey); static int verify (gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input, ELG_public_key *pkey); static unsigned int elg_get_nbits (gcry_sexp_t parms); static void (*progress_cb) (void *, const char *, int, int, int); static void *progress_cb_data; void _gcry_register_pk_elg_progress (void (*cb) (void *, const char *, int, int, int), void *cb_data) { progress_cb = cb; progress_cb_data = cb_data; } static void progress (int c) { if (progress_cb) progress_cb (progress_cb_data, "pk_elg", c, 0, 0); } /**************** * Michael Wiener's table on subgroup sizes to match field sizes. * (floating around somewhere, probably based on the paper from * Eurocrypt 96, page 332) */ static unsigned int wiener_map( unsigned int n ) { static struct { unsigned int p_n, q_n; } t[] = { /* p q attack cost */ { 512, 119 }, /* 9 x 10^17 */ { 768, 145 }, /* 6 x 10^21 */ { 1024, 165 }, /* 7 x 10^24 */ { 1280, 183 }, /* 3 x 10^27 */ { 1536, 198 }, /* 7 x 10^29 */ { 1792, 212 }, /* 9 x 10^31 */ { 2048, 225 }, /* 8 x 10^33 */ { 2304, 237 }, /* 5 x 10^35 */ { 2560, 249 }, /* 3 x 10^37 */ { 2816, 259 }, /* 1 x 10^39 */ { 3072, 269 }, /* 3 x 10^40 */ { 3328, 279 }, /* 8 x 10^41 */ { 3584, 288 }, /* 2 x 10^43 */ { 3840, 296 }, /* 4 x 10^44 */ { 4096, 305 }, /* 7 x 10^45 */ { 4352, 313 }, /* 1 x 10^47 */ { 4608, 320 }, /* 2 x 10^48 */ { 4864, 328 }, /* 2 x 10^49 */ { 5120, 335 }, /* 3 x 10^50 */ { 0, 0 } }; int i; for(i=0; t[i].p_n; i++ ) { if( n <= t[i].p_n ) return t[i].q_n; } /* Not in table - use an arbitrary high number. */ return n / 8 + 200; } static int test_keys ( ELG_secret_key *sk, unsigned int nbits, int nodie ) { ELG_public_key pk; gcry_mpi_t test = mpi_new ( 0 ); gcry_mpi_t out1_a = mpi_new ( nbits ); gcry_mpi_t out1_b = mpi_new ( nbits ); gcry_mpi_t out2 = mpi_new ( nbits ); int failed = 0; pk.p = sk->p; pk.g = sk->g; pk.y = sk->y; _gcry_mpi_randomize ( test, nbits, GCRY_WEAK_RANDOM ); do_encrypt ( out1_a, out1_b, test, &pk ); decrypt ( out2, out1_a, out1_b, sk ); if ( mpi_cmp( test, out2 ) ) failed |= 1; sign ( out1_a, out1_b, test, sk ); if ( !verify( out1_a, out1_b, test, &pk ) ) failed |= 2; _gcry_mpi_release ( test ); _gcry_mpi_release ( out1_a ); _gcry_mpi_release ( out1_b ); _gcry_mpi_release ( out2 ); if (failed && !nodie) log_fatal ("Elgamal test key for %s %s failed\n", (failed & 1)? "encrypt+decrypt":"", (failed & 2)? "sign+verify":""); if (failed && DBG_CIPHER) log_debug ("Elgamal test key for %s %s failed\n", (failed & 1)? "encrypt+decrypt":"", (failed & 2)? "sign+verify":""); return failed; } /**************** * Generate a random secret exponent k from prime p, so that k is - * relatively prime to p-1. With SMALL_K set, k will be selected for - * better encryption performance - this must never be used signing! + * relatively prime to p-1. */ static gcry_mpi_t -gen_k( gcry_mpi_t p, int small_k ) +gen_k( gcry_mpi_t p ) { gcry_mpi_t k = mpi_alloc_secure( 0 ); gcry_mpi_t temp = mpi_alloc( mpi_get_nlimbs(p) ); gcry_mpi_t p_1 = mpi_copy(p); unsigned int orig_nbits = mpi_get_nbits(p); unsigned int nbits, nbytes; char *rndbuf = NULL; - if (small_k) - { - /* Using a k much lesser than p is sufficient for encryption and - * it greatly improves the encryption performance. We use - * Wiener's table and add a large safety margin. */ - nbits = wiener_map( orig_nbits ) * 3 / 2; - if( nbits >= orig_nbits ) - BUG(); - } - else - nbits = orig_nbits; - + nbits = orig_nbits; nbytes = (nbits+7)/8; if( DBG_CIPHER ) log_debug("choosing a random k\n"); mpi_sub_ui( p_1, p, 1); for(;;) { if( !rndbuf || nbits < 32 ) { xfree(rndbuf); rndbuf = _gcry_random_bytes_secure( nbytes, GCRY_STRONG_RANDOM ); } else { /* Change only some of the higher bits. We could improve this by directly requesting more memory at the first call to get_random_bytes() and use this the here maybe it is easier to do this directly in random.c Anyway, it is highly inlikely that we will ever reach this code. */ char *pp = _gcry_random_bytes_secure( 4, GCRY_STRONG_RANDOM ); memcpy( rndbuf, pp, 4 ); xfree(pp); } _gcry_mpi_set_buffer( k, rndbuf, nbytes, 0 ); for(;;) { if( !(mpi_cmp( k, p_1 ) < 0) ) /* check: k < (p-1) */ { if( DBG_CIPHER ) progress('+'); break; /* no */ } if( !(mpi_cmp_ui( k, 0 ) > 0) ) /* check: k > 0 */ { if( DBG_CIPHER ) progress('-'); break; /* no */ } if (mpi_gcd( temp, k, p_1 )) goto found; /* okay, k is relative prime to (p-1) */ mpi_add_ui( k, k, 1 ); if( DBG_CIPHER ) progress('.'); } } found: xfree (rndbuf); if( DBG_CIPHER ) progress('\n'); mpi_free(p_1); mpi_free(temp); return k; } /**************** * Generate a key pair with a key of size NBITS * Returns: 2 structures filled with all needed values * and an array with n-1 factors of (p-1) */ static gcry_err_code_t generate ( ELG_secret_key *sk, unsigned int nbits, gcry_mpi_t **ret_factors ) { gcry_err_code_t rc; gcry_mpi_t p; /* the prime */ gcry_mpi_t p_min1; gcry_mpi_t g; gcry_mpi_t x; /* the secret exponent */ gcry_mpi_t y; unsigned int qbits; unsigned int xbits; byte *rndbuf; p_min1 = mpi_new ( nbits ); qbits = wiener_map( nbits ); if( qbits & 1 ) /* better have a even one */ qbits++; g = mpi_alloc(1); rc = _gcry_generate_elg_prime (0, nbits, qbits, g, &p, ret_factors); if (rc) { mpi_free (p_min1); mpi_free (g); return rc; } mpi_sub_ui(p_min1, p, 1); /* Select a random number which has these properties: * 0 < x < p-1 * This must be a very good random number because this is the * secret part. The prime is public and may be shared anyway, * so a random generator level of 1 is used for the prime. * * I don't see a reason to have a x of about the same size * as the p. It should be sufficient to have one about the size * of q or the later used k plus a large safety margin. Decryption * will be much faster with such an x. */ xbits = qbits * 3 / 2; if( xbits >= nbits ) BUG(); x = mpi_snew ( xbits ); if( DBG_CIPHER ) log_debug("choosing a random x of size %u\n", xbits ); rndbuf = NULL; do { if( DBG_CIPHER ) progress('.'); if( rndbuf ) { /* Change only some of the higher bits */ if( xbits < 16 ) /* should never happen ... */ { xfree(rndbuf); rndbuf = _gcry_random_bytes_secure ((xbits+7)/8, GCRY_VERY_STRONG_RANDOM); } else { char *r = _gcry_random_bytes_secure (2, GCRY_VERY_STRONG_RANDOM); memcpy(rndbuf, r, 2 ); xfree (r); } } else { rndbuf = _gcry_random_bytes_secure ((xbits+7)/8, GCRY_VERY_STRONG_RANDOM ); } _gcry_mpi_set_buffer( x, rndbuf, (xbits+7)/8, 0 ); mpi_clear_highbit( x, xbits+1 ); } while( !( mpi_cmp_ui( x, 0 )>0 && mpi_cmp( x, p_min1 )<0 ) ); xfree(rndbuf); y = mpi_new (nbits); mpi_powm( y, g, x, p ); if( DBG_CIPHER ) { progress ('\n'); log_mpidump ("elg p", p ); log_mpidump ("elg g", g ); log_mpidump ("elg y", y ); log_mpidump ("elg x", x ); } /* Copy the stuff to the key structures */ sk->p = p; sk->g = g; sk->y = y; sk->x = x; _gcry_mpi_release ( p_min1 ); /* Now we can test our keys (this should never fail!) */ test_keys ( sk, nbits - 64, 0 ); return 0; } /* Generate a key pair with a key of size NBITS not using a random value for the secret key but the one given as X. This is useful to implement a passphrase based decryption for a public key based encryption. It has appliactions in backup systems. Returns: A structure filled with all needed values and an array with n-1 factors of (p-1). */ static gcry_err_code_t generate_using_x (ELG_secret_key *sk, unsigned int nbits, gcry_mpi_t x, gcry_mpi_t **ret_factors ) { gcry_err_code_t rc; gcry_mpi_t p; /* The prime. */ gcry_mpi_t p_min1; /* The prime minus 1. */ gcry_mpi_t g; /* The generator. */ gcry_mpi_t y; /* g^x mod p. */ unsigned int qbits; unsigned int xbits; sk->p = NULL; sk->g = NULL; sk->y = NULL; sk->x = NULL; /* Do a quick check to see whether X is suitable. */ xbits = mpi_get_nbits (x); if ( xbits < 64 || xbits >= nbits ) return GPG_ERR_INV_VALUE; p_min1 = mpi_new ( nbits ); qbits = wiener_map ( nbits ); if ( (qbits & 1) ) /* Better have an even one. */ qbits++; g = mpi_alloc (1); rc = _gcry_generate_elg_prime (0, nbits, qbits, g, &p, ret_factors ); if (rc) { mpi_free (p_min1); mpi_free (g); return rc; } mpi_sub_ui (p_min1, p, 1); if (DBG_CIPHER) log_debug ("using a supplied x of size %u", xbits ); if ( !(mpi_cmp_ui ( x, 0 ) > 0 && mpi_cmp ( x, p_min1 ) <0 ) ) { _gcry_mpi_release ( p_min1 ); _gcry_mpi_release ( p ); _gcry_mpi_release ( g ); return GPG_ERR_INV_VALUE; } y = mpi_new (nbits); mpi_powm ( y, g, x, p ); if ( DBG_CIPHER ) { progress ('\n'); log_mpidump ("elg p", p ); log_mpidump ("elg g", g ); log_mpidump ("elg y", y ); log_mpidump ("elg x", x ); } /* Copy the stuff to the key structures */ sk->p = p; sk->g = g; sk->y = y; sk->x = mpi_copy (x); _gcry_mpi_release ( p_min1 ); /* Now we can test our keys. */ if ( test_keys ( sk, nbits - 64, 1 ) ) { _gcry_mpi_release ( sk->p ); sk->p = NULL; _gcry_mpi_release ( sk->g ); sk->g = NULL; _gcry_mpi_release ( sk->y ); sk->y = NULL; _gcry_mpi_release ( sk->x ); sk->x = NULL; return GPG_ERR_BAD_SECKEY; } return 0; } /**************** * Test whether the secret key is valid. * Returns: if this is a valid key. */ static int check_secret_key( ELG_secret_key *sk ) { int rc; gcry_mpi_t y = mpi_alloc( mpi_get_nlimbs(sk->y) ); mpi_powm (y, sk->g, sk->x, sk->p); rc = !mpi_cmp( y, sk->y ); mpi_free( y ); return rc; } static void do_encrypt(gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input, ELG_public_key *pkey ) { gcry_mpi_t k; /* Note: maybe we should change the interface, so that it * is possible to check that input is < p and return an * error code. */ - k = gen_k( pkey->p, 1 ); + k = gen_k( pkey->p ); mpi_powm (a, pkey->g, k, pkey->p); /* b = (y^k * input) mod p * = ((y^k mod p) * (input mod p)) mod p * and because input is < p * = ((y^k mod p) * input) mod p */ mpi_powm (b, pkey->y, k, pkey->p); mpi_mulm (b, b, input, pkey->p); #if 0 if( DBG_CIPHER ) { log_mpidump("elg encrypted y", pkey->y); log_mpidump("elg encrypted p", pkey->p); log_mpidump("elg encrypted k", k); log_mpidump("elg encrypted M", input); log_mpidump("elg encrypted a", a); log_mpidump("elg encrypted b", b); } #endif mpi_free(k); } static void decrypt (gcry_mpi_t output, gcry_mpi_t a, gcry_mpi_t b, ELG_secret_key *skey ) { gcry_mpi_t t1, t2, r, r1, h; unsigned int nbits = mpi_get_nbits (skey->p); gcry_mpi_t x_blind; mpi_normalize (a); mpi_normalize (b); t1 = mpi_snew (nbits); #ifdef USE_BLINDING t2 = mpi_snew (nbits); r = mpi_new (nbits); r1 = mpi_new (nbits); h = mpi_new (nbits); x_blind = mpi_snew (nbits); /* We need a random number of about the prime size. The random number merely needs to be unpredictable; thus we use level 0. */ _gcry_mpi_randomize (r, nbits, GCRY_WEAK_RANDOM); /* Also, exponent blinding: x_blind = x + (p-1)*r1 */ _gcry_mpi_randomize (r1, nbits, GCRY_WEAK_RANDOM); mpi_set_highbit (r1, nbits - 1); mpi_sub_ui (h, skey->p, 1); mpi_mul (x_blind, h, r1); mpi_add (x_blind, skey->x, x_blind); /* t1 = r^x mod p */ mpi_powm (t1, r, x_blind, skey->p); /* t2 = (a * r)^-x mod p */ mpi_mulm (t2, a, r, skey->p); mpi_powm (t2, t2, x_blind, skey->p); mpi_invm (t2, t2, skey->p); /* t1 = (t1 * t2) mod p*/ mpi_mulm (t1, t1, t2, skey->p); mpi_free (x_blind); mpi_free (h); mpi_free (r1); mpi_free (r); mpi_free (t2); #else /*!USE_BLINDING*/ /* output = b/(a^x) mod p */ mpi_powm (t1, a, skey->x, skey->p); mpi_invm (t1, t1, skey->p); #endif /*!USE_BLINDING*/ mpi_mulm (output, b, t1, skey->p); #if 0 if( DBG_CIPHER ) { log_mpidump ("elg decrypted x", skey->x); log_mpidump ("elg decrypted p", skey->p); log_mpidump ("elg decrypted a", a); log_mpidump ("elg decrypted b", b); log_mpidump ("elg decrypted M", output); } #endif mpi_free (t1); } /**************** * Make an Elgamal signature out of INPUT */ static void sign(gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input, ELG_secret_key *skey ) { gcry_mpi_t k; gcry_mpi_t t = mpi_alloc( mpi_get_nlimbs(a) ); gcry_mpi_t inv = mpi_alloc( mpi_get_nlimbs(a) ); gcry_mpi_t p_1 = mpi_copy(skey->p); /* * b = (t * inv) mod (p-1) * b = (t * inv(k,(p-1),(p-1)) mod (p-1) * b = (((M-x*a) mod (p-1)) * inv(k,(p-1),(p-1))) mod (p-1) * */ mpi_sub_ui(p_1, p_1, 1); - k = gen_k( skey->p, 0 /* no small K ! */ ); + k = gen_k( skey->p ); mpi_powm( a, skey->g, k, skey->p ); mpi_mul(t, skey->x, a ); mpi_subm(t, input, t, p_1 ); mpi_invm(inv, k, p_1 ); mpi_mulm(b, t, inv, p_1 ); #if 0 if( DBG_CIPHER ) { log_mpidump ("elg sign p", skey->p); log_mpidump ("elg sign g", skey->g); log_mpidump ("elg sign y", skey->y); log_mpidump ("elg sign x", skey->x); log_mpidump ("elg sign k", k); log_mpidump ("elg sign M", input); log_mpidump ("elg sign a", a); log_mpidump ("elg sign b", b); } #endif mpi_free(k); mpi_free(t); mpi_free(inv); mpi_free(p_1); } /**************** * Returns true if the signature composed of A and B is valid. */ static int verify(gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input, ELG_public_key *pkey ) { int rc; gcry_mpi_t t1; gcry_mpi_t t2; gcry_mpi_t base[4]; gcry_mpi_t ex[4]; if( !(mpi_cmp_ui( a, 0 ) > 0 && mpi_cmp( a, pkey->p ) < 0) ) return 0; /* assertion 0 < a < p failed */ t1 = mpi_alloc( mpi_get_nlimbs(a) ); t2 = mpi_alloc( mpi_get_nlimbs(a) ); #if 0 /* t1 = (y^a mod p) * (a^b mod p) mod p */ gcry_mpi_powm( t1, pkey->y, a, pkey->p ); gcry_mpi_powm( t2, a, b, pkey->p ); mpi_mulm( t1, t1, t2, pkey->p ); /* t2 = g ^ input mod p */ gcry_mpi_powm( t2, pkey->g, input, pkey->p ); rc = !mpi_cmp( t1, t2 ); #elif 0 /* t1 = (y^a mod p) * (a^b mod p) mod p */ base[0] = pkey->y; ex[0] = a; base[1] = a; ex[1] = b; base[2] = NULL; ex[2] = NULL; mpi_mulpowm( t1, base, ex, pkey->p ); /* t2 = g ^ input mod p */ gcry_mpi_powm( t2, pkey->g, input, pkey->p ); rc = !mpi_cmp( t1, t2 ); #else /* t1 = g ^ - input * y ^ a * a ^ b mod p */ mpi_invm(t2, pkey->g, pkey->p ); base[0] = t2 ; ex[0] = input; base[1] = pkey->y; ex[1] = a; base[2] = a; ex[2] = b; base[3] = NULL; ex[3] = NULL; mpi_mulpowm( t1, base, ex, pkey->p ); rc = !mpi_cmp_ui( t1, 1 ); #endif mpi_free(t1); mpi_free(t2); return rc; } /********************************************* ************** interface ****************** *********************************************/ static gpg_err_code_t elg_generate (const gcry_sexp_t genparms, gcry_sexp_t *r_skey) { gpg_err_code_t rc; unsigned int nbits; ELG_secret_key sk; gcry_mpi_t xvalue = NULL; gcry_sexp_t l1; gcry_mpi_t *factors = NULL; gcry_sexp_t misc_info = NULL; memset (&sk, 0, sizeof sk); rc = _gcry_pk_util_get_nbits (genparms, &nbits); if (rc) return rc; /* Parse the optional xvalue element. */ l1 = sexp_find_token (genparms, "xvalue", 0); if (l1) { xvalue = sexp_nth_mpi (l1, 1, 0); sexp_release (l1); if (!xvalue) return GPG_ERR_BAD_MPI; } if (xvalue) { rc = generate_using_x (&sk, nbits, xvalue, &factors); mpi_free (xvalue); } else { rc = generate (&sk, nbits, &factors); } if (rc) goto leave; if (factors && factors[0]) { int nfac; void **arg_list; char *buffer, *p; for (nfac = 0; factors[nfac]; nfac++) ; arg_list = xtrycalloc (nfac+1, sizeof *arg_list); if (!arg_list) { rc = gpg_err_code_from_syserror (); goto leave; } buffer = xtrymalloc (30 + nfac*2 + 2 + 1); if (!buffer) { rc = gpg_err_code_from_syserror (); xfree (arg_list); goto leave; } p = stpcpy (buffer, "(misc-key-info(pm1-factors"); for(nfac = 0; factors[nfac]; nfac++) { p = stpcpy (p, "%m"); arg_list[nfac] = factors + nfac; } p = stpcpy (p, "))"); rc = sexp_build_array (&misc_info, NULL, buffer, arg_list); xfree (arg_list); xfree (buffer); if (rc) goto leave; } rc = sexp_build (r_skey, NULL, "(key-data" " (public-key" " (elg(p%m)(g%m)(y%m)))" " (private-key" " (elg(p%m)(g%m)(y%m)(x%m)))" " %S)", sk.p, sk.g, sk.y, sk.p, sk.g, sk.y, sk.x, misc_info); leave: mpi_free (sk.p); mpi_free (sk.g); mpi_free (sk.y); mpi_free (sk.x); sexp_release (misc_info); if (factors) { gcry_mpi_t *mp; for (mp = factors; *mp; mp++) mpi_free (*mp); xfree (factors); } return rc; } static gcry_err_code_t elg_check_secret_key (gcry_sexp_t keyparms) { gcry_err_code_t rc; ELG_secret_key sk = {NULL, NULL, NULL, NULL}; rc = sexp_extract_param (keyparms, NULL, "pgyx", &sk.p, &sk.g, &sk.y, &sk.x, NULL); if (rc) goto leave; if (!check_secret_key (&sk)) rc = GPG_ERR_BAD_SECKEY; leave: _gcry_mpi_release (sk.p); _gcry_mpi_release (sk.g); _gcry_mpi_release (sk.y); _gcry_mpi_release (sk.x); if (DBG_CIPHER) log_debug ("elg_testkey => %s\n", gpg_strerror (rc)); return rc; } static gcry_err_code_t elg_encrypt (gcry_sexp_t *r_ciph, gcry_sexp_t s_data, gcry_sexp_t keyparms) { gcry_err_code_t rc; struct pk_encoding_ctx ctx; gcry_mpi_t mpi_a = NULL; gcry_mpi_t mpi_b = NULL; gcry_mpi_t data = NULL; ELG_public_key pk = { NULL, NULL, NULL }; _gcry_pk_util_init_encoding_ctx (&ctx, PUBKEY_OP_ENCRYPT, elg_get_nbits (keyparms)); /* Extract the data. */ rc = _gcry_pk_util_data_to_mpi (s_data, &data, &ctx); if (rc) goto leave; if (DBG_CIPHER) log_mpidump ("elg_encrypt data", data); if (mpi_is_opaque (data)) { rc = GPG_ERR_INV_DATA; goto leave; } /* Extract the key. */ rc = sexp_extract_param (keyparms, NULL, "pgy", &pk.p, &pk.g, &pk.y, NULL); if (rc) goto leave; if (DBG_CIPHER) { log_mpidump ("elg_encrypt p", pk.p); log_mpidump ("elg_encrypt g", pk.g); log_mpidump ("elg_encrypt y", pk.y); } /* Do Elgamal computation and build result. */ mpi_a = mpi_new (0); mpi_b = mpi_new (0); do_encrypt (mpi_a, mpi_b, data, &pk); rc = sexp_build (r_ciph, NULL, "(enc-val(elg(a%m)(b%m)))", mpi_a, mpi_b); leave: _gcry_mpi_release (mpi_a); _gcry_mpi_release (mpi_b); _gcry_mpi_release (pk.p); _gcry_mpi_release (pk.g); _gcry_mpi_release (pk.y); _gcry_mpi_release (data); _gcry_pk_util_free_encoding_ctx (&ctx); if (DBG_CIPHER) log_debug ("elg_encrypt => %s\n", gpg_strerror (rc)); return rc; } static gcry_err_code_t elg_decrypt (gcry_sexp_t *r_plain, gcry_sexp_t s_data, gcry_sexp_t keyparms) { gpg_err_code_t rc; struct pk_encoding_ctx ctx; gcry_sexp_t l1 = NULL; gcry_mpi_t data_a = NULL; gcry_mpi_t data_b = NULL; ELG_secret_key sk = {NULL, NULL, NULL, NULL}; gcry_mpi_t plain = NULL; unsigned char *unpad = NULL; size_t unpadlen = 0; _gcry_pk_util_init_encoding_ctx (&ctx, PUBKEY_OP_DECRYPT, elg_get_nbits (keyparms)); /* Extract the data. */ rc = _gcry_pk_util_preparse_encval (s_data, elg_names, &l1, &ctx); if (rc) goto leave; rc = sexp_extract_param (l1, NULL, "ab", &data_a, &data_b, NULL); if (rc) goto leave; if (DBG_CIPHER) { log_printmpi ("elg_decrypt d_a", data_a); log_printmpi ("elg_decrypt d_b", data_b); } if (mpi_is_opaque (data_a) || mpi_is_opaque (data_b)) { rc = GPG_ERR_INV_DATA; goto leave; } /* Extract the key. */ rc = sexp_extract_param (keyparms, NULL, "pgyx", &sk.p, &sk.g, &sk.y, &sk.x, NULL); if (rc) goto leave; if (DBG_CIPHER) { log_printmpi ("elg_decrypt p", sk.p); log_printmpi ("elg_decrypt g", sk.g); log_printmpi ("elg_decrypt y", sk.y); if (!fips_mode ()) log_printmpi ("elg_decrypt x", sk.x); } plain = mpi_snew (ctx.nbits); decrypt (plain, data_a, data_b, &sk); if (DBG_CIPHER) log_printmpi ("elg_decrypt res", plain); /* Reverse the encoding and build the s-expression. */ switch (ctx.encoding) { case PUBKEY_ENC_PKCS1: rc = _gcry_rsa_pkcs1_decode_for_enc (&unpad, &unpadlen, ctx.nbits, plain); mpi_free (plain); plain = NULL; if (!rc) rc = sexp_build (r_plain, NULL, "(value %b)", (int)unpadlen, unpad); break; case PUBKEY_ENC_OAEP: rc = _gcry_rsa_oaep_decode (&unpad, &unpadlen, ctx.nbits, ctx.hash_algo, plain, ctx.label, ctx.labellen); mpi_free (plain); plain = NULL; if (!rc) rc = sexp_build (r_plain, NULL, "(value %b)", (int)unpadlen, unpad); break; default: /* Raw format. For backward compatibility we need to assume a signed mpi by using the sexp format string "%m". */ rc = sexp_build (r_plain, NULL, (ctx.flags & PUBKEY_FLAG_LEGACYRESULT) ? "%m" : "(value %m)", plain); break; } leave: xfree (unpad); _gcry_mpi_release (plain); _gcry_mpi_release (sk.p); _gcry_mpi_release (sk.g); _gcry_mpi_release (sk.y); _gcry_mpi_release (sk.x); _gcry_mpi_release (data_a); _gcry_mpi_release (data_b); sexp_release (l1); _gcry_pk_util_free_encoding_ctx (&ctx); if (DBG_CIPHER) log_debug ("elg_decrypt => %s\n", gpg_strerror (rc)); return rc; } static gcry_err_code_t elg_sign (gcry_sexp_t *r_sig, gcry_sexp_t s_data, gcry_sexp_t keyparms) { gcry_err_code_t rc; struct pk_encoding_ctx ctx; gcry_mpi_t data = NULL; ELG_secret_key sk = {NULL, NULL, NULL, NULL}; gcry_mpi_t sig_r = NULL; gcry_mpi_t sig_s = NULL; _gcry_pk_util_init_encoding_ctx (&ctx, PUBKEY_OP_SIGN, elg_get_nbits (keyparms)); /* Extract the data. */ rc = _gcry_pk_util_data_to_mpi (s_data, &data, &ctx); if (rc) goto leave; if (DBG_CIPHER) log_mpidump ("elg_sign data", data); if (mpi_is_opaque (data)) { rc = GPG_ERR_INV_DATA; goto leave; } /* Extract the key. */ rc = sexp_extract_param (keyparms, NULL, "pgyx", &sk.p, &sk.g, &sk.y, &sk.x, NULL); if (rc) goto leave; if (DBG_CIPHER) { log_mpidump ("elg_sign p", sk.p); log_mpidump ("elg_sign g", sk.g); log_mpidump ("elg_sign y", sk.y); if (!fips_mode ()) log_mpidump ("elg_sign x", sk.x); } sig_r = mpi_new (0); sig_s = mpi_new (0); sign (sig_r, sig_s, data, &sk); if (DBG_CIPHER) { log_mpidump ("elg_sign sig_r", sig_r); log_mpidump ("elg_sign sig_s", sig_s); } rc = sexp_build (r_sig, NULL, "(sig-val(elg(r%M)(s%M)))", sig_r, sig_s); leave: _gcry_mpi_release (sig_r); _gcry_mpi_release (sig_s); _gcry_mpi_release (sk.p); _gcry_mpi_release (sk.g); _gcry_mpi_release (sk.y); _gcry_mpi_release (sk.x); _gcry_mpi_release (data); _gcry_pk_util_free_encoding_ctx (&ctx); if (DBG_CIPHER) log_debug ("elg_sign => %s\n", gpg_strerror (rc)); return rc; } static gcry_err_code_t elg_verify (gcry_sexp_t s_sig, gcry_sexp_t s_data, gcry_sexp_t s_keyparms) { gcry_err_code_t rc; struct pk_encoding_ctx ctx; gcry_sexp_t l1 = NULL; gcry_mpi_t sig_r = NULL; gcry_mpi_t sig_s = NULL; gcry_mpi_t data = NULL; ELG_public_key pk = { NULL, NULL, NULL }; _gcry_pk_util_init_encoding_ctx (&ctx, PUBKEY_OP_VERIFY, elg_get_nbits (s_keyparms)); /* Extract the data. */ rc = _gcry_pk_util_data_to_mpi (s_data, &data, &ctx); if (rc) goto leave; if (DBG_CIPHER) log_mpidump ("elg_verify data", data); if (mpi_is_opaque (data)) { rc = GPG_ERR_INV_DATA; goto leave; } /* Extract the signature value. */ rc = _gcry_pk_util_preparse_sigval (s_sig, elg_names, &l1, NULL); if (rc) goto leave; rc = sexp_extract_param (l1, NULL, "rs", &sig_r, &sig_s, NULL); if (rc) goto leave; if (DBG_CIPHER) { log_mpidump ("elg_verify s_r", sig_r); log_mpidump ("elg_verify s_s", sig_s); } /* Extract the key. */ rc = sexp_extract_param (s_keyparms, NULL, "pgy", &pk.p, &pk.g, &pk.y, NULL); if (rc) goto leave; if (DBG_CIPHER) { log_mpidump ("elg_verify p", pk.p); log_mpidump ("elg_verify g", pk.g); log_mpidump ("elg_verify y", pk.y); } /* Verify the signature. */ if (!verify (sig_r, sig_s, data, &pk)) rc = GPG_ERR_BAD_SIGNATURE; leave: _gcry_mpi_release (pk.p); _gcry_mpi_release (pk.g); _gcry_mpi_release (pk.y); _gcry_mpi_release (data); _gcry_mpi_release (sig_r); _gcry_mpi_release (sig_s); sexp_release (l1); _gcry_pk_util_free_encoding_ctx (&ctx); if (DBG_CIPHER) log_debug ("elg_verify => %s\n", rc?gpg_strerror (rc):"Good"); return rc; } /* Return the number of bits for the key described by PARMS. On error * 0 is returned. The format of PARMS starts with the algorithm name; * for example: * * (dsa * (p ) * (g ) * (y )) * * More parameters may be given but we only need P here. */ static unsigned int elg_get_nbits (gcry_sexp_t parms) { gcry_sexp_t l1; gcry_mpi_t p; unsigned int nbits; l1 = sexp_find_token (parms, "p", 1); if (!l1) return 0; /* Parameter P not found. */ p= sexp_nth_mpi (l1, 1, GCRYMPI_FMT_USG); sexp_release (l1); nbits = p? mpi_get_nbits (p) : 0; _gcry_mpi_release (p); return nbits; } gcry_pk_spec_t _gcry_pubkey_spec_elg = { GCRY_PK_ELG, { 0, 0 }, (GCRY_PK_USAGE_SIGN | GCRY_PK_USAGE_ENCR), "ELG", elg_names, "pgy", "pgyx", "ab", "rs", "pgy", elg_generate, elg_check_secret_key, elg_encrypt, elg_decrypt, elg_sign, elg_verify, elg_get_nbits, };