diff --git a/cipher/elgamal.c b/cipher/elgamal.c
index 9835122f..eead4502 100644
--- a/cipher/elgamal.c
+++ b/cipher/elgamal.c
@@ -1,1163 +1,1151 @@
 /* Elgamal.c  -  Elgamal Public Key encryption
  * Copyright (C) 1998, 2000, 2001, 2002, 2003,
  *               2008  Free Software Foundation, Inc.
  * Copyright (C) 2013 g10 Code GmbH
  *
  * This file is part of Libgcrypt.
  *
  * Libgcrypt is free software; you can redistribute it and/or modify
  * it under the terms of the GNU Lesser General Public License as
  * published by the Free Software Foundation; either version 2.1 of
  * the License, or (at your option) any later version.
  *
  * Libgcrypt is distributed in the hope that it will be useful,
  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  * GNU Lesser General Public License for more details.
  *
  * You should have received a copy of the GNU Lesser General Public
  * License along with this program; if not, see <http://www.gnu.org/licenses/>.
  *
  * For a description of the algorithm, see:
  *   Bruce Schneier: Applied Cryptography. John Wiley & Sons, 1996.
  *   ISBN 0-471-11709-9. Pages 476 ff.
  */
 
 #include <config.h>
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
 #include "g10lib.h"
 #include "mpi.h"
 #include "cipher.h"
 #include "pubkey-internal.h"
 
 
 /* Blinding is used to mitigate side-channel attacks.  You may undef
    this to speed up the operation in case the system is secured
    against physical and network mounted side-channel attacks.  */
 #define USE_BLINDING 1
 
 
 typedef struct
 {
   gcry_mpi_t p;	    /* prime */
   gcry_mpi_t g;	    /* group generator */
   gcry_mpi_t y;	    /* g^x mod p */
 } ELG_public_key;
 
 
 typedef struct
 {
   gcry_mpi_t p;	    /* prime */
   gcry_mpi_t g;	    /* group generator */
   gcry_mpi_t y;	    /* g^x mod p */
   gcry_mpi_t x;	    /* secret exponent */
 } ELG_secret_key;
 
 
 static const char *elg_names[] =
   {
     "elg",
     "openpgp-elg",
     "openpgp-elg-sig",
     NULL,
   };
 
 
 static int test_keys (ELG_secret_key *sk, unsigned int nbits, int nodie);
-static gcry_mpi_t gen_k (gcry_mpi_t p, int small_k);
+static gcry_mpi_t gen_k (gcry_mpi_t p);
 static gcry_err_code_t generate (ELG_secret_key *sk, unsigned nbits,
                                  gcry_mpi_t **factors);
 static int  check_secret_key (ELG_secret_key *sk);
 static void do_encrypt (gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input,
                         ELG_public_key *pkey);
 static void decrypt (gcry_mpi_t output, gcry_mpi_t a, gcry_mpi_t b,
                      ELG_secret_key *skey);
 static void sign (gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input,
                   ELG_secret_key *skey);
 static int  verify (gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input,
                     ELG_public_key *pkey);
 static unsigned int elg_get_nbits (gcry_sexp_t parms);
 
 
 static void (*progress_cb) (void *, const char *, int, int, int);
 static void *progress_cb_data;
 
 void
 _gcry_register_pk_elg_progress (void (*cb) (void *, const char *,
                                             int, int, int),
 				void *cb_data)
 {
   progress_cb = cb;
   progress_cb_data = cb_data;
 }
 
 
 static void
 progress (int c)
 {
   if (progress_cb)
     progress_cb (progress_cb_data, "pk_elg", c, 0, 0);
 }
 
 
 /****************
  * Michael Wiener's table on subgroup sizes to match field sizes.
  * (floating around somewhere, probably based on the paper from
  * Eurocrypt 96, page 332)
  */
 static unsigned int
 wiener_map( unsigned int n )
 {
   static struct { unsigned int p_n, q_n; } t[] =
     { /*   p	  q	 attack cost */
       {  512, 119 },	/* 9 x 10^17 */
       {  768, 145 },	/* 6 x 10^21 */
       { 1024, 165 },	/* 7 x 10^24 */
       { 1280, 183 },	/* 3 x 10^27 */
       { 1536, 198 },	/* 7 x 10^29 */
       { 1792, 212 },	/* 9 x 10^31 */
       { 2048, 225 },	/* 8 x 10^33 */
       { 2304, 237 },	/* 5 x 10^35 */
       { 2560, 249 },	/* 3 x 10^37 */
       { 2816, 259 },	/* 1 x 10^39 */
       { 3072, 269 },	/* 3 x 10^40 */
       { 3328, 279 },	/* 8 x 10^41 */
       { 3584, 288 },	/* 2 x 10^43 */
       { 3840, 296 },	/* 4 x 10^44 */
       { 4096, 305 },	/* 7 x 10^45 */
       { 4352, 313 },	/* 1 x 10^47 */
       { 4608, 320 },	/* 2 x 10^48 */
       { 4864, 328 },	/* 2 x 10^49 */
       { 5120, 335 },	/* 3 x 10^50 */
       { 0, 0 }
     };
   int i;
 
   for(i=0; t[i].p_n; i++ )
     {
       if( n <= t[i].p_n )
         return t[i].q_n;
     }
   /* Not in table - use an arbitrary high number. */
   return  n / 8 + 200;
 }
 
 static int
 test_keys ( ELG_secret_key *sk, unsigned int nbits, int nodie )
 {
   ELG_public_key pk;
   gcry_mpi_t test   = mpi_new ( 0 );
   gcry_mpi_t out1_a = mpi_new ( nbits );
   gcry_mpi_t out1_b = mpi_new ( nbits );
   gcry_mpi_t out2   = mpi_new ( nbits );
   int failed = 0;
 
   pk.p = sk->p;
   pk.g = sk->g;
   pk.y = sk->y;
 
   _gcry_mpi_randomize ( test, nbits, GCRY_WEAK_RANDOM );
 
   do_encrypt ( out1_a, out1_b, test, &pk );
   decrypt ( out2, out1_a, out1_b, sk );
   if ( mpi_cmp( test, out2 ) )
     failed |= 1;
 
   sign ( out1_a, out1_b, test, sk );
   if ( !verify( out1_a, out1_b, test, &pk ) )
     failed |= 2;
 
   _gcry_mpi_release ( test );
   _gcry_mpi_release ( out1_a );
   _gcry_mpi_release ( out1_b );
   _gcry_mpi_release ( out2 );
 
   if (failed && !nodie)
     log_fatal ("Elgamal test key for %s %s failed\n",
                (failed & 1)? "encrypt+decrypt":"",
                (failed & 2)? "sign+verify":"");
   if (failed && DBG_CIPHER)
     log_debug ("Elgamal test key for %s %s failed\n",
                (failed & 1)? "encrypt+decrypt":"",
                (failed & 2)? "sign+verify":"");
 
   return failed;
 }
 
 
 /****************
  * Generate a random secret exponent k from prime p, so that k is
- * relatively prime to p-1.  With SMALL_K set, k will be selected for
- * better encryption performance - this must never be used signing!
+ * relatively prime to p-1.
  */
 static gcry_mpi_t
-gen_k( gcry_mpi_t p, int small_k )
+gen_k( gcry_mpi_t p )
 {
   gcry_mpi_t k = mpi_alloc_secure( 0 );
   gcry_mpi_t temp = mpi_alloc( mpi_get_nlimbs(p) );
   gcry_mpi_t p_1 = mpi_copy(p);
   unsigned int orig_nbits = mpi_get_nbits(p);
   unsigned int nbits, nbytes;
   char *rndbuf = NULL;
 
-  if (small_k)
-    {
-      /* Using a k much lesser than p is sufficient for encryption and
-       * it greatly improves the encryption performance.  We use
-       * Wiener's table and add a large safety margin. */
-      nbits = wiener_map( orig_nbits ) * 3 / 2;
-      if( nbits >= orig_nbits )
-        BUG();
-    }
-  else
-    nbits = orig_nbits;
-
+  nbits = orig_nbits;
 
   nbytes = (nbits+7)/8;
   if( DBG_CIPHER )
     log_debug("choosing a random k\n");
   mpi_sub_ui( p_1, p, 1);
   for(;;)
     {
       if( !rndbuf || nbits < 32 )
         {
           xfree(rndbuf);
           rndbuf = _gcry_random_bytes_secure( nbytes, GCRY_STRONG_RANDOM );
         }
       else
         {
           /* Change only some of the higher bits.  We could improve
              this by directly requesting more memory at the first call
              to get_random_bytes() and use this the here maybe it is
              easier to do this directly in random.c Anyway, it is
              highly inlikely that we will ever reach this code. */
           char *pp = _gcry_random_bytes_secure( 4, GCRY_STRONG_RANDOM );
           memcpy( rndbuf, pp, 4 );
           xfree(pp);
 	}
       _gcry_mpi_set_buffer( k, rndbuf, nbytes, 0 );
 
       for(;;)
         {
           if( !(mpi_cmp( k, p_1 ) < 0) )  /* check: k < (p-1) */
             {
               if( DBG_CIPHER )
                 progress('+');
               break; /* no  */
             }
           if( !(mpi_cmp_ui( k, 0 ) > 0) )  /* check: k > 0 */
             {
               if( DBG_CIPHER )
                 progress('-');
               break; /* no */
             }
           if (mpi_gcd( temp, k, p_1 ))
             goto found;  /* okay, k is relative prime to (p-1) */
           mpi_add_ui( k, k, 1 );
           if( DBG_CIPHER )
             progress('.');
 	}
     }
  found:
   xfree (rndbuf);
   if( DBG_CIPHER )
     progress('\n');
   mpi_free(p_1);
   mpi_free(temp);
 
   return k;
 }
 
 /****************
  * Generate a key pair with a key of size NBITS
  * Returns: 2 structures filled with all needed values
  *	    and an array with n-1 factors of (p-1)
  */
 static gcry_err_code_t
 generate ( ELG_secret_key *sk, unsigned int nbits, gcry_mpi_t **ret_factors )
 {
   gcry_err_code_t rc;
   gcry_mpi_t p;    /* the prime */
   gcry_mpi_t p_min1;
   gcry_mpi_t g;
   gcry_mpi_t x;    /* the secret exponent */
   gcry_mpi_t y;
   unsigned int qbits;
   unsigned int xbits;
   byte *rndbuf;
 
   p_min1 = mpi_new ( nbits );
   qbits = wiener_map( nbits );
   if( qbits & 1 ) /* better have a even one */
     qbits++;
   g = mpi_alloc(1);
   rc = _gcry_generate_elg_prime (0, nbits, qbits, g, &p, ret_factors);
   if (rc)
     {
       mpi_free (p_min1);
       mpi_free (g);
       return rc;
     }
   mpi_sub_ui(p_min1, p, 1);
 
 
   /* Select a random number which has these properties:
    *	 0 < x < p-1
    * This must be a very good random number because this is the
    * secret part.  The prime is public and may be shared anyway,
    * so a random generator level of 1 is used for the prime.
    *
    * I don't see a reason to have a x of about the same size
    * as the p.  It should be sufficient to have one about the size
    * of q or the later used k plus a large safety margin. Decryption
    * will be much faster with such an x.
    */
   xbits = qbits * 3 / 2;
   if( xbits >= nbits )
     BUG();
   x = mpi_snew ( xbits );
   if( DBG_CIPHER )
     log_debug("choosing a random x of size %u\n", xbits );
   rndbuf = NULL;
   do
     {
       if( DBG_CIPHER )
         progress('.');
       if( rndbuf )
         { /* Change only some of the higher bits */
           if( xbits < 16 ) /* should never happen ... */
             {
               xfree(rndbuf);
               rndbuf = _gcry_random_bytes_secure ((xbits+7)/8,
                                                   GCRY_VERY_STRONG_RANDOM);
             }
           else
             {
               char *r = _gcry_random_bytes_secure (2, GCRY_VERY_STRONG_RANDOM);
               memcpy(rndbuf, r, 2 );
               xfree (r);
             }
 	}
       else
         {
           rndbuf = _gcry_random_bytes_secure ((xbits+7)/8,
                                               GCRY_VERY_STRONG_RANDOM );
 	}
       _gcry_mpi_set_buffer( x, rndbuf, (xbits+7)/8, 0 );
       mpi_clear_highbit( x, xbits+1 );
     }
   while( !( mpi_cmp_ui( x, 0 )>0 && mpi_cmp( x, p_min1 )<0 ) );
   xfree(rndbuf);
 
   y = mpi_new (nbits);
   mpi_powm( y, g, x, p );
 
   if( DBG_CIPHER )
     {
       progress ('\n');
       log_mpidump ("elg  p", p );
       log_mpidump ("elg  g", g );
       log_mpidump ("elg  y", y );
       log_mpidump ("elg  x", x );
     }
 
   /* Copy the stuff to the key structures */
   sk->p = p;
   sk->g = g;
   sk->y = y;
   sk->x = x;
 
   _gcry_mpi_release ( p_min1 );
 
   /* Now we can test our keys (this should never fail!) */
   test_keys ( sk, nbits - 64, 0 );
 
   return 0;
 }
 
 
 /* Generate a key pair with a key of size NBITS not using a random
    value for the secret key but the one given as X.  This is useful to
    implement a passphrase based decryption for a public key based
    encryption.  It has appliactions in backup systems.
 
    Returns: A structure filled with all needed values and an array
  	    with n-1 factors of (p-1).  */
 static gcry_err_code_t
 generate_using_x (ELG_secret_key *sk, unsigned int nbits, gcry_mpi_t x,
                   gcry_mpi_t **ret_factors )
 {
   gcry_err_code_t rc;
   gcry_mpi_t p;      /* The prime.  */
   gcry_mpi_t p_min1; /* The prime minus 1.  */
   gcry_mpi_t g;      /* The generator.  */
   gcry_mpi_t y;      /* g^x mod p.  */
   unsigned int qbits;
   unsigned int xbits;
 
   sk->p = NULL;
   sk->g = NULL;
   sk->y = NULL;
   sk->x = NULL;
 
   /* Do a quick check to see whether X is suitable.  */
   xbits = mpi_get_nbits (x);
   if ( xbits < 64 || xbits >= nbits )
     return GPG_ERR_INV_VALUE;
 
   p_min1 = mpi_new ( nbits );
   qbits  = wiener_map ( nbits );
   if ( (qbits & 1) ) /* Better have an even one.  */
     qbits++;
   g = mpi_alloc (1);
   rc = _gcry_generate_elg_prime (0, nbits, qbits, g, &p, ret_factors );
   if (rc)
     {
       mpi_free (p_min1);
       mpi_free (g);
       return rc;
     }
   mpi_sub_ui (p_min1, p, 1);
 
   if (DBG_CIPHER)
     log_debug ("using a supplied x of size %u", xbits );
   if ( !(mpi_cmp_ui ( x, 0 ) > 0 && mpi_cmp ( x, p_min1 ) <0 ) )
     {
       _gcry_mpi_release ( p_min1 );
       _gcry_mpi_release ( p );
       _gcry_mpi_release ( g );
       return GPG_ERR_INV_VALUE;
     }
 
   y = mpi_new (nbits);
   mpi_powm ( y, g, x, p );
 
   if ( DBG_CIPHER )
     {
       progress ('\n');
       log_mpidump ("elg  p", p );
       log_mpidump ("elg  g", g );
       log_mpidump ("elg  y", y );
       log_mpidump ("elg  x", x );
     }
 
   /* Copy the stuff to the key structures */
   sk->p = p;
   sk->g = g;
   sk->y = y;
   sk->x = mpi_copy (x);
 
   _gcry_mpi_release ( p_min1 );
 
   /* Now we can test our keys. */
   if ( test_keys ( sk, nbits - 64, 1 ) )
     {
       _gcry_mpi_release ( sk->p ); sk->p = NULL;
       _gcry_mpi_release ( sk->g ); sk->g = NULL;
       _gcry_mpi_release ( sk->y ); sk->y = NULL;
       _gcry_mpi_release ( sk->x ); sk->x = NULL;
       return GPG_ERR_BAD_SECKEY;
     }
 
   return 0;
 }
 
 
 /****************
  * Test whether the secret key is valid.
  * Returns: if this is a valid key.
  */
 static int
 check_secret_key( ELG_secret_key *sk )
 {
   int rc;
   gcry_mpi_t y = mpi_alloc( mpi_get_nlimbs(sk->y) );
 
   mpi_powm (y, sk->g, sk->x, sk->p);
   rc = !mpi_cmp( y, sk->y );
   mpi_free( y );
   return rc;
 }
 
 
 static void
 do_encrypt(gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input, ELG_public_key *pkey )
 {
   gcry_mpi_t k;
 
   /* Note: maybe we should change the interface, so that it
    * is possible to check that input is < p and return an
    * error code.
    */
 
-  k = gen_k( pkey->p, 1 );
+  k = gen_k( pkey->p );
   mpi_powm (a, pkey->g, k, pkey->p);
 
   /* b = (y^k * input) mod p
    *	 = ((y^k mod p) * (input mod p)) mod p
    * and because input is < p
    *	 = ((y^k mod p) * input) mod p
    */
   mpi_powm (b, pkey->y, k, pkey->p);
   mpi_mulm (b, b, input, pkey->p);
 #if 0
   if( DBG_CIPHER )
     {
       log_mpidump("elg encrypted y", pkey->y);
       log_mpidump("elg encrypted p", pkey->p);
       log_mpidump("elg encrypted k", k);
       log_mpidump("elg encrypted M", input);
       log_mpidump("elg encrypted a", a);
       log_mpidump("elg encrypted b", b);
     }
 #endif
   mpi_free(k);
 }
 
 
 
 
 static void
 decrypt (gcry_mpi_t output, gcry_mpi_t a, gcry_mpi_t b, ELG_secret_key *skey )
 {
   gcry_mpi_t t1, t2, r, r1, h;
   unsigned int nbits = mpi_get_nbits (skey->p);
   gcry_mpi_t x_blind;
 
   mpi_normalize (a);
   mpi_normalize (b);
 
   t1 = mpi_snew (nbits);
 
 #ifdef USE_BLINDING
 
   t2 = mpi_snew (nbits);
   r  = mpi_new (nbits);
   r1 = mpi_new (nbits);
   h  = mpi_new (nbits);
   x_blind = mpi_snew (nbits);
 
   /* We need a random number of about the prime size.  The random
      number merely needs to be unpredictable; thus we use level 0.  */
   _gcry_mpi_randomize (r, nbits, GCRY_WEAK_RANDOM);
 
   /* Also, exponent blinding: x_blind = x + (p-1)*r1 */
   _gcry_mpi_randomize (r1, nbits, GCRY_WEAK_RANDOM);
   mpi_set_highbit (r1, nbits - 1);
   mpi_sub_ui (h, skey->p, 1);
   mpi_mul (x_blind, h, r1);
   mpi_add (x_blind, skey->x, x_blind);
 
   /* t1 = r^x mod p */
   mpi_powm (t1, r, x_blind, skey->p);
   /* t2 = (a * r)^-x mod p */
   mpi_mulm (t2, a, r, skey->p);
   mpi_powm (t2, t2, x_blind, skey->p);
   mpi_invm (t2, t2, skey->p);
   /* t1 = (t1 * t2) mod p*/
   mpi_mulm (t1, t1, t2, skey->p);
 
   mpi_free (x_blind);
   mpi_free (h);
   mpi_free (r1);
   mpi_free (r);
   mpi_free (t2);
 
 #else /*!USE_BLINDING*/
 
   /* output = b/(a^x) mod p */
   mpi_powm (t1, a, skey->x, skey->p);
   mpi_invm (t1, t1, skey->p);
 
 #endif /*!USE_BLINDING*/
 
   mpi_mulm (output, b, t1, skey->p);
 
 #if 0
   if( DBG_CIPHER )
     {
       log_mpidump ("elg decrypted x", skey->x);
       log_mpidump ("elg decrypted p", skey->p);
       log_mpidump ("elg decrypted a", a);
       log_mpidump ("elg decrypted b", b);
       log_mpidump ("elg decrypted M", output);
     }
 #endif
   mpi_free (t1);
 }
 
 
 /****************
  * Make an Elgamal signature out of INPUT
  */
 
 static void
 sign(gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input, ELG_secret_key *skey )
 {
     gcry_mpi_t k;
     gcry_mpi_t t   = mpi_alloc( mpi_get_nlimbs(a) );
     gcry_mpi_t inv = mpi_alloc( mpi_get_nlimbs(a) );
     gcry_mpi_t p_1 = mpi_copy(skey->p);
 
    /*
     * b = (t * inv) mod (p-1)
     * b = (t * inv(k,(p-1),(p-1)) mod (p-1)
     * b = (((M-x*a) mod (p-1)) * inv(k,(p-1),(p-1))) mod (p-1)
     *
     */
     mpi_sub_ui(p_1, p_1, 1);
-    k = gen_k( skey->p, 0 /* no small K ! */ );
+    k = gen_k( skey->p );
     mpi_powm( a, skey->g, k, skey->p );
     mpi_mul(t, skey->x, a );
     mpi_subm(t, input, t, p_1 );
     mpi_invm(inv, k, p_1 );
     mpi_mulm(b, t, inv, p_1 );
 
 #if 0
     if( DBG_CIPHER )
       {
 	log_mpidump ("elg sign p", skey->p);
 	log_mpidump ("elg sign g", skey->g);
 	log_mpidump ("elg sign y", skey->y);
 	log_mpidump ("elg sign x", skey->x);
 	log_mpidump ("elg sign k", k);
 	log_mpidump ("elg sign M", input);
 	log_mpidump ("elg sign a", a);
 	log_mpidump ("elg sign b", b);
       }
 #endif
     mpi_free(k);
     mpi_free(t);
     mpi_free(inv);
     mpi_free(p_1);
 }
 
 
 /****************
  * Returns true if the signature composed of A and B is valid.
  */
 static int
 verify(gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input, ELG_public_key *pkey )
 {
   int rc;
   gcry_mpi_t t1;
   gcry_mpi_t t2;
   gcry_mpi_t base[4];
   gcry_mpi_t ex[4];
 
   if( !(mpi_cmp_ui( a, 0 ) > 0 && mpi_cmp( a, pkey->p ) < 0) )
     return 0; /* assertion	0 < a < p  failed */
 
   t1 = mpi_alloc( mpi_get_nlimbs(a) );
   t2 = mpi_alloc( mpi_get_nlimbs(a) );
 
 #if 0
   /* t1 = (y^a mod p) * (a^b mod p) mod p */
   gcry_mpi_powm( t1, pkey->y, a, pkey->p );
   gcry_mpi_powm( t2, a, b, pkey->p );
   mpi_mulm( t1, t1, t2, pkey->p );
 
   /* t2 = g ^ input mod p */
   gcry_mpi_powm( t2, pkey->g, input, pkey->p );
 
   rc = !mpi_cmp( t1, t2 );
 #elif 0
   /* t1 = (y^a mod p) * (a^b mod p) mod p */
   base[0] = pkey->y; ex[0] = a;
   base[1] = a;       ex[1] = b;
   base[2] = NULL;    ex[2] = NULL;
   mpi_mulpowm( t1, base, ex, pkey->p );
 
   /* t2 = g ^ input mod p */
   gcry_mpi_powm( t2, pkey->g, input, pkey->p );
 
   rc = !mpi_cmp( t1, t2 );
 #else
   /* t1 = g ^ - input * y ^ a * a ^ b  mod p */
   mpi_invm(t2, pkey->g, pkey->p );
   base[0] = t2     ; ex[0] = input;
   base[1] = pkey->y; ex[1] = a;
   base[2] = a;       ex[2] = b;
   base[3] = NULL;    ex[3] = NULL;
   mpi_mulpowm( t1, base, ex, pkey->p );
   rc = !mpi_cmp_ui( t1, 1 );
 
 #endif
 
   mpi_free(t1);
   mpi_free(t2);
   return rc;
 }
 
 /*********************************************
  **************  interface  ******************
  *********************************************/
 
 static gpg_err_code_t
 elg_generate (const gcry_sexp_t genparms, gcry_sexp_t *r_skey)
 {
   gpg_err_code_t rc;
   unsigned int nbits;
   ELG_secret_key sk;
   gcry_mpi_t xvalue = NULL;
   gcry_sexp_t l1;
   gcry_mpi_t *factors = NULL;
   gcry_sexp_t misc_info = NULL;
 
   memset (&sk, 0, sizeof sk);
 
   rc = _gcry_pk_util_get_nbits (genparms, &nbits);
   if (rc)
     return rc;
 
   /* Parse the optional xvalue element. */
   l1 = sexp_find_token (genparms, "xvalue", 0);
   if (l1)
     {
       xvalue = sexp_nth_mpi (l1, 1, 0);
       sexp_release (l1);
       if (!xvalue)
         return GPG_ERR_BAD_MPI;
     }
 
   if (xvalue)
     {
       rc = generate_using_x (&sk, nbits, xvalue, &factors);
       mpi_free (xvalue);
     }
   else
     {
       rc = generate (&sk, nbits, &factors);
     }
   if (rc)
     goto leave;
 
   if (factors && factors[0])
     {
       int nfac;
       void **arg_list;
       char *buffer, *p;
 
       for (nfac = 0; factors[nfac]; nfac++)
         ;
       arg_list = xtrycalloc (nfac+1, sizeof *arg_list);
       if (!arg_list)
         {
           rc = gpg_err_code_from_syserror ();
           goto leave;
         }
       buffer = xtrymalloc (30 + nfac*2 + 2 + 1);
       if (!buffer)
         {
           rc = gpg_err_code_from_syserror ();
           xfree (arg_list);
           goto leave;
         }
       p = stpcpy (buffer, "(misc-key-info(pm1-factors");
       for(nfac = 0; factors[nfac]; nfac++)
         {
           p = stpcpy (p, "%m");
           arg_list[nfac] = factors + nfac;
         }
       p = stpcpy (p, "))");
       rc = sexp_build_array (&misc_info, NULL, buffer, arg_list);
       xfree (arg_list);
       xfree (buffer);
       if (rc)
         goto leave;
     }
 
   rc = sexp_build (r_skey, NULL,
                    "(key-data"
                    " (public-key"
                    "  (elg(p%m)(g%m)(y%m)))"
                    " (private-key"
                    "  (elg(p%m)(g%m)(y%m)(x%m)))"
                    " %S)",
                    sk.p, sk.g, sk.y,
                    sk.p, sk.g, sk.y, sk.x,
                    misc_info);
 
  leave:
   mpi_free (sk.p);
   mpi_free (sk.g);
   mpi_free (sk.y);
   mpi_free (sk.x);
   sexp_release (misc_info);
   if (factors)
     {
       gcry_mpi_t *mp;
       for (mp = factors; *mp; mp++)
         mpi_free (*mp);
       xfree (factors);
     }
 
   return rc;
 }
 
 
 static gcry_err_code_t
 elg_check_secret_key (gcry_sexp_t keyparms)
 {
   gcry_err_code_t rc;
   ELG_secret_key sk = {NULL, NULL, NULL, NULL};
 
   rc = sexp_extract_param (keyparms, NULL, "pgyx",
                            &sk.p, &sk.g, &sk.y, &sk.x,
                            NULL);
   if (rc)
     goto leave;
 
   if (!check_secret_key (&sk))
     rc = GPG_ERR_BAD_SECKEY;
 
  leave:
   _gcry_mpi_release (sk.p);
   _gcry_mpi_release (sk.g);
   _gcry_mpi_release (sk.y);
   _gcry_mpi_release (sk.x);
   if (DBG_CIPHER)
     log_debug ("elg_testkey    => %s\n", gpg_strerror (rc));
   return rc;
 }
 
 
 static gcry_err_code_t
 elg_encrypt (gcry_sexp_t *r_ciph, gcry_sexp_t s_data, gcry_sexp_t keyparms)
 {
   gcry_err_code_t rc;
   struct pk_encoding_ctx ctx;
   gcry_mpi_t mpi_a = NULL;
   gcry_mpi_t mpi_b = NULL;
   gcry_mpi_t data = NULL;
   ELG_public_key pk = { NULL, NULL, NULL };
 
   _gcry_pk_util_init_encoding_ctx (&ctx, PUBKEY_OP_ENCRYPT,
                                    elg_get_nbits (keyparms));
 
   /* Extract the data.  */
   rc = _gcry_pk_util_data_to_mpi (s_data, &data, &ctx);
   if (rc)
     goto leave;
   if (DBG_CIPHER)
     log_mpidump ("elg_encrypt data", data);
   if (mpi_is_opaque (data))
     {
       rc = GPG_ERR_INV_DATA;
       goto leave;
     }
 
   /* Extract the key.  */
   rc = sexp_extract_param (keyparms, NULL, "pgy",
                            &pk.p, &pk.g, &pk.y, NULL);
   if (rc)
     goto leave;
   if (DBG_CIPHER)
     {
       log_mpidump ("elg_encrypt  p", pk.p);
       log_mpidump ("elg_encrypt  g", pk.g);
       log_mpidump ("elg_encrypt  y", pk.y);
     }
 
   /* Do Elgamal computation and build result.  */
   mpi_a = mpi_new (0);
   mpi_b = mpi_new (0);
   do_encrypt (mpi_a, mpi_b, data, &pk);
   rc = sexp_build (r_ciph, NULL, "(enc-val(elg(a%m)(b%m)))", mpi_a, mpi_b);
 
  leave:
   _gcry_mpi_release (mpi_a);
   _gcry_mpi_release (mpi_b);
   _gcry_mpi_release (pk.p);
   _gcry_mpi_release (pk.g);
   _gcry_mpi_release (pk.y);
   _gcry_mpi_release (data);
   _gcry_pk_util_free_encoding_ctx (&ctx);
   if (DBG_CIPHER)
     log_debug ("elg_encrypt   => %s\n", gpg_strerror (rc));
   return rc;
 }
 
 
 static gcry_err_code_t
 elg_decrypt (gcry_sexp_t *r_plain, gcry_sexp_t s_data, gcry_sexp_t keyparms)
 {
   gpg_err_code_t rc;
   struct pk_encoding_ctx ctx;
   gcry_sexp_t l1 = NULL;
   gcry_mpi_t data_a = NULL;
   gcry_mpi_t data_b = NULL;
   ELG_secret_key sk = {NULL, NULL, NULL, NULL};
   gcry_mpi_t plain = NULL;
   unsigned char *unpad = NULL;
   size_t unpadlen = 0;
 
   _gcry_pk_util_init_encoding_ctx (&ctx, PUBKEY_OP_DECRYPT,
                                    elg_get_nbits (keyparms));
 
   /* Extract the data.  */
   rc = _gcry_pk_util_preparse_encval (s_data, elg_names, &l1, &ctx);
   if (rc)
     goto leave;
   rc = sexp_extract_param (l1, NULL, "ab", &data_a, &data_b, NULL);
   if (rc)
     goto leave;
   if (DBG_CIPHER)
     {
       log_printmpi ("elg_decrypt  d_a", data_a);
       log_printmpi ("elg_decrypt  d_b", data_b);
     }
   if (mpi_is_opaque (data_a) || mpi_is_opaque (data_b))
     {
       rc = GPG_ERR_INV_DATA;
       goto leave;
     }
 
   /* Extract the key.  */
   rc = sexp_extract_param (keyparms, NULL, "pgyx",
                            &sk.p, &sk.g, &sk.y, &sk.x,
                            NULL);
   if (rc)
     goto leave;
   if (DBG_CIPHER)
     {
       log_printmpi ("elg_decrypt    p", sk.p);
       log_printmpi ("elg_decrypt    g", sk.g);
       log_printmpi ("elg_decrypt    y", sk.y);
       if (!fips_mode ())
         log_printmpi ("elg_decrypt    x", sk.x);
     }
 
   plain = mpi_snew (ctx.nbits);
   decrypt (plain, data_a, data_b, &sk);
   if (DBG_CIPHER)
     log_printmpi ("elg_decrypt  res", plain);
 
   /* Reverse the encoding and build the s-expression.  */
   switch (ctx.encoding)
     {
     case PUBKEY_ENC_PKCS1:
       rc = _gcry_rsa_pkcs1_decode_for_enc (&unpad, &unpadlen, ctx.nbits, plain);
       mpi_free (plain); plain = NULL;
       if (!rc)
         rc = sexp_build (r_plain, NULL, "(value %b)", (int)unpadlen, unpad);
       break;
 
     case PUBKEY_ENC_OAEP:
       rc = _gcry_rsa_oaep_decode (&unpad, &unpadlen,
                                   ctx.nbits, ctx.hash_algo, plain,
                                   ctx.label, ctx.labellen);
       mpi_free (plain); plain = NULL;
       if (!rc)
         rc = sexp_build (r_plain, NULL, "(value %b)", (int)unpadlen, unpad);
       break;
 
     default:
       /* Raw format.  For backward compatibility we need to assume a
          signed mpi by using the sexp format string "%m".  */
       rc = sexp_build (r_plain, NULL,
                        (ctx.flags & PUBKEY_FLAG_LEGACYRESULT)
                        ? "%m" : "(value %m)",
                        plain);
       break;
     }
 
 
  leave:
   xfree (unpad);
   _gcry_mpi_release (plain);
   _gcry_mpi_release (sk.p);
   _gcry_mpi_release (sk.g);
   _gcry_mpi_release (sk.y);
   _gcry_mpi_release (sk.x);
   _gcry_mpi_release (data_a);
   _gcry_mpi_release (data_b);
   sexp_release (l1);
   _gcry_pk_util_free_encoding_ctx (&ctx);
   if (DBG_CIPHER)
     log_debug ("elg_decrypt    => %s\n", gpg_strerror (rc));
   return rc;
 }
 
 
 static gcry_err_code_t
 elg_sign (gcry_sexp_t *r_sig, gcry_sexp_t s_data, gcry_sexp_t keyparms)
 {
   gcry_err_code_t rc;
   struct pk_encoding_ctx ctx;
   gcry_mpi_t data = NULL;
   ELG_secret_key sk = {NULL, NULL, NULL, NULL};
   gcry_mpi_t sig_r = NULL;
   gcry_mpi_t sig_s = NULL;
 
   _gcry_pk_util_init_encoding_ctx (&ctx, PUBKEY_OP_SIGN,
                                    elg_get_nbits (keyparms));
 
   /* Extract the data.  */
   rc = _gcry_pk_util_data_to_mpi (s_data, &data, &ctx);
   if (rc)
     goto leave;
   if (DBG_CIPHER)
     log_mpidump ("elg_sign   data", data);
   if (mpi_is_opaque (data))
     {
       rc = GPG_ERR_INV_DATA;
       goto leave;
     }
 
   /* Extract the key.  */
   rc = sexp_extract_param (keyparms, NULL, "pgyx",
                            &sk.p, &sk.g, &sk.y, &sk.x, NULL);
   if (rc)
     goto leave;
   if (DBG_CIPHER)
     {
       log_mpidump ("elg_sign      p", sk.p);
       log_mpidump ("elg_sign      g", sk.g);
       log_mpidump ("elg_sign      y", sk.y);
       if (!fips_mode ())
         log_mpidump ("elg_sign      x", sk.x);
     }
 
   sig_r = mpi_new (0);
   sig_s = mpi_new (0);
   sign (sig_r, sig_s, data, &sk);
   if (DBG_CIPHER)
     {
       log_mpidump ("elg_sign  sig_r", sig_r);
       log_mpidump ("elg_sign  sig_s", sig_s);
     }
   rc = sexp_build (r_sig, NULL, "(sig-val(elg(r%M)(s%M)))", sig_r, sig_s);
 
  leave:
   _gcry_mpi_release (sig_r);
   _gcry_mpi_release (sig_s);
   _gcry_mpi_release (sk.p);
   _gcry_mpi_release (sk.g);
   _gcry_mpi_release (sk.y);
   _gcry_mpi_release (sk.x);
   _gcry_mpi_release (data);
   _gcry_pk_util_free_encoding_ctx (&ctx);
   if (DBG_CIPHER)
     log_debug ("elg_sign      => %s\n", gpg_strerror (rc));
   return rc;
 }
 
 
 static gcry_err_code_t
 elg_verify (gcry_sexp_t s_sig, gcry_sexp_t s_data, gcry_sexp_t s_keyparms)
 {
   gcry_err_code_t rc;
   struct pk_encoding_ctx ctx;
   gcry_sexp_t l1 = NULL;
   gcry_mpi_t sig_r = NULL;
   gcry_mpi_t sig_s = NULL;
   gcry_mpi_t data = NULL;
   ELG_public_key pk = { NULL, NULL, NULL };
 
   _gcry_pk_util_init_encoding_ctx (&ctx, PUBKEY_OP_VERIFY,
                                    elg_get_nbits (s_keyparms));
 
   /* Extract the data.  */
   rc = _gcry_pk_util_data_to_mpi (s_data, &data, &ctx);
   if (rc)
     goto leave;
   if (DBG_CIPHER)
     log_mpidump ("elg_verify data", data);
   if (mpi_is_opaque (data))
     {
       rc = GPG_ERR_INV_DATA;
       goto leave;
     }
 
   /* Extract the signature value.  */
   rc = _gcry_pk_util_preparse_sigval (s_sig, elg_names, &l1, NULL);
   if (rc)
     goto leave;
   rc = sexp_extract_param (l1, NULL, "rs", &sig_r, &sig_s, NULL);
   if (rc)
     goto leave;
   if (DBG_CIPHER)
     {
       log_mpidump ("elg_verify  s_r", sig_r);
       log_mpidump ("elg_verify  s_s", sig_s);
     }
 
   /* Extract the key.  */
   rc = sexp_extract_param (s_keyparms, NULL, "pgy",
                                  &pk.p, &pk.g, &pk.y, NULL);
   if (rc)
     goto leave;
   if (DBG_CIPHER)
     {
       log_mpidump ("elg_verify    p", pk.p);
       log_mpidump ("elg_verify    g", pk.g);
       log_mpidump ("elg_verify    y", pk.y);
     }
 
   /* Verify the signature.  */
   if (!verify (sig_r, sig_s, data, &pk))
     rc = GPG_ERR_BAD_SIGNATURE;
 
  leave:
   _gcry_mpi_release (pk.p);
   _gcry_mpi_release (pk.g);
   _gcry_mpi_release (pk.y);
   _gcry_mpi_release (data);
   _gcry_mpi_release (sig_r);
   _gcry_mpi_release (sig_s);
   sexp_release (l1);
   _gcry_pk_util_free_encoding_ctx (&ctx);
   if (DBG_CIPHER)
     log_debug ("elg_verify    => %s\n", rc?gpg_strerror (rc):"Good");
   return rc;
 }
 
 
 /* Return the number of bits for the key described by PARMS.  On error
  * 0 is returned.  The format of PARMS starts with the algorithm name;
  * for example:
  *
  *   (dsa
  *     (p <mpi>)
  *     (g <mpi>)
  *     (y <mpi>))
  *
  * More parameters may be given but we only need P here.
  */
 static unsigned int
 elg_get_nbits (gcry_sexp_t parms)
 {
   gcry_sexp_t l1;
   gcry_mpi_t p;
   unsigned int nbits;
 
   l1 = sexp_find_token (parms, "p", 1);
   if (!l1)
     return 0; /* Parameter P not found.  */
 
   p= sexp_nth_mpi (l1, 1, GCRYMPI_FMT_USG);
   sexp_release (l1);
   nbits = p? mpi_get_nbits (p) : 0;
   _gcry_mpi_release (p);
   return nbits;
 }
 
 
 
 gcry_pk_spec_t _gcry_pubkey_spec_elg =
   {
     GCRY_PK_ELG, { 0, 0 },
     (GCRY_PK_USAGE_SIGN | GCRY_PK_USAGE_ENCR),
     "ELG", elg_names,
     "pgy", "pgyx", "ab", "rs", "pgy",
     elg_generate,
     elg_check_secret_key,
     elg_encrypt,
     elg_decrypt,
     elg_sign,
     elg_verify,
     elg_get_nbits,
   };