diff --git a/cipher/ecc-curves.c b/cipher/ecc-curves.c index 7c86e12c..3e5e5f96 100644 --- a/cipher/ecc-curves.c +++ b/cipher/ecc-curves.c @@ -1,1585 +1,1585 @@ /* ecc-curves.c - Elliptic Curve parameter mangement * Copyright (C) 2007, 2008, 2010, 2011 Free Software Foundation, Inc. * Copyright (C) 2013 g10 Code GmbH * * This file is part of Libgcrypt. * * Libgcrypt is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2.1 of * the License, or (at your option) any later version. * * Libgcrypt is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program; if not, see . */ #include #include #include #include #include #include "g10lib.h" #include "mpi.h" #include "mpi-internal.h" #include "cipher.h" #include "context.h" #include "ec-context.h" #include "pubkey-internal.h" #include "ecc-common.h" static gpg_err_code_t point_from_keyparam (gcry_mpi_point_t *r_a, gcry_sexp_t keyparam, const char *name, mpi_ec_t ec); /* This tables defines aliases for curve names. */ static const struct { const char *name; /* Our name. */ const char *other; /* Other name. */ } curve_aliases[] = { { "Ed25519", "1.3.6.1.4.1.11591.15.1" }, /* OpenPGP */ { "Ed25519", "1.3.101.112" }, /* rfc8410 */ { "Curve25519", "1.3.6.1.4.1.3029.1.5.1" }, /* OpenPGP */ { "Curve25519", "1.3.101.110" }, /* rfc8410 */ { "Curve25519", "X25519" }, /* rfc8410 */ { "Ed448", "1.3.101.113" }, /* rfc8410 */ { "X448", "1.3.101.111" }, /* rfc8410 */ { "NIST P-192", "1.2.840.10045.3.1.1" }, /* X9.62 OID */ { "NIST P-192", "prime192v1" }, /* X9.62 name. */ { "NIST P-192", "secp192r1" }, /* SECP name. */ { "NIST P-192", "nistp192" }, /* rfc5656. */ { "NIST P-224", "secp224r1" }, { "NIST P-224", "1.3.132.0.33" }, /* SECP OID. */ { "NIST P-224", "nistp224" }, /* rfc5656. */ { "NIST P-256", "1.2.840.10045.3.1.7" }, /* From NIST SP 800-78-1. */ { "NIST P-256", "prime256v1" }, { "NIST P-256", "secp256r1" }, { "NIST P-256", "nistp256" }, /* rfc5656. */ { "NIST P-384", "secp384r1" }, { "NIST P-384", "1.3.132.0.34" }, { "NIST P-384", "nistp384" }, /* rfc5656. */ { "NIST P-521", "secp521r1" }, { "NIST P-521", "1.3.132.0.35" }, { "NIST P-521", "nistp521" }, /* rfc5656. */ { "brainpoolP160r1", "1.3.36.3.3.2.8.1.1.1" }, { "brainpoolP192r1", "1.3.36.3.3.2.8.1.1.3" }, { "brainpoolP224r1", "1.3.36.3.3.2.8.1.1.5" }, { "brainpoolP256r1", "1.3.36.3.3.2.8.1.1.7" }, { "brainpoolP320r1", "1.3.36.3.3.2.8.1.1.9" }, { "brainpoolP384r1", "1.3.36.3.3.2.8.1.1.11"}, { "brainpoolP512r1", "1.3.36.3.3.2.8.1.1.13"}, { "GOST2001-test", "1.2.643.2.2.35.0" }, { "GOST2001-CryptoPro-A", "1.2.643.2.2.35.1" }, { "GOST2001-CryptoPro-B", "1.2.643.2.2.35.2" }, { "GOST2001-CryptoPro-C", "1.2.643.2.2.35.3" }, { "GOST2001-CryptoPro-A", "GOST2001-CryptoPro-XchA" }, { "GOST2001-CryptoPro-C", "GOST2001-CryptoPro-XchB" }, { "GOST2001-CryptoPro-A", "1.2.643.2.2.36.0" }, { "GOST2001-CryptoPro-C", "1.2.643.2.2.36.1" }, { "GOST2012-256-tc26-A", "1.2.643.7.1.2.1.1.1" }, { "GOST2001-CryptoPro-A", "1.2.643.7.1.2.1.1.2" }, { "GOST2001-CryptoPro-A", "GOST2012-256-tc26-B" }, { "GOST2001-CryptoPro-B", "1.2.643.7.1.2.1.1.3" }, { "GOST2001-CryptoPro-B", "GOST2012-256-tc26-C" }, { "GOST2001-CryptoPro-C", "1.2.643.7.1.2.1.1.4" }, { "GOST2001-CryptoPro-C", "GOST2012-256-tc26-D" }, { "GOST2012-512-test", "GOST2012-test" }, { "GOST2012-512-test", "1.2.643.7.1.2.1.2.0" }, { "GOST2012-512-tc26-A", "GOST2012-tc26-A" }, { "GOST2012-512-tc26-B", "GOST2012-tc26-B" }, { "GOST2012-512-tc26-A", "1.2.643.7.1.2.1.2.1" }, { "GOST2012-512-tc26-B", "1.2.643.7.1.2.1.2.2" }, { "GOST2012-512-tc26-C", "1.2.643.7.1.2.1.2.3" }, { "secp256k1", "1.3.132.0.10" }, { "sm2p256v1", "1.2.156.10197.1.301" }, { NULL, NULL} }; typedef struct { const char *desc; /* Description of the curve. */ unsigned int nbits; /* Number of bits. */ unsigned int fips:1; /* True if this is a FIPS140-3 approved curve. */ /* The model describing this curve. This is mainly used to select the group equation. */ enum gcry_mpi_ec_models model; /* The actual ECC dialect used. This is used for curve specific optimizations and to select encodings etc. */ enum ecc_dialects dialect; const char *p; /* The prime defining the field. */ const char *a, *b; /* The coefficients. For Twisted Edwards Curves b is used for d. For Montgomery Curves (a,b) has ((A-2)/4,B^-1). */ const char *n; /* The order of the base point. */ const char *g_x, *g_y; /* Base point. */ unsigned int h; /* Cofactor. */ } ecc_domain_parms_t; /* This static table defines all available curves. */ static const ecc_domain_parms_t domain_parms[] = { { /* (-x^2 + y^2 = 1 + dx^2y^2) */ - "Ed25519", 255, 0, + "Ed25519", 255, 1, MPI_EC_EDWARDS, ECC_DIALECT_ED25519, "0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFED", "-0x01", "-0x2DFC9311D490018C7338BF8688861767FF8FF5B2BEBE27548A14B235ECA6874A", "0x1000000000000000000000000000000014DEF9DEA2F79CD65812631A5CF5D3ED", "0x216936D3CD6E53FEC0A4E231FDD6DC5C692CC7609525A7B2C9562D608F25D51A", "0x6666666666666666666666666666666666666666666666666666666666666658", 8 }, { /* (y^2 = x^3 + 486662*x^2 + x) */ "Curve25519", 255, 0, MPI_EC_MONTGOMERY, ECC_DIALECT_STANDARD, "0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFED", "0x01DB41", "0x01", "0x1000000000000000000000000000000014DEF9DEA2F79CD65812631A5CF5D3ED", "0x0000000000000000000000000000000000000000000000000000000000000009", "0x20AE19A1B8A086B4E01EDD2C7748D14C923D4D7E6D7C61B229E9C5A27ECED3D9", 8 /* Note: As per RFC-7748 errata eid4730 the g_y value should be * "0x5F51E65E475F794B1FE122D388B72EB36DC2B28192839E4DD6163A5D81312C14" * but that breaks the keygrip. The new value is recovered in * the function _gcry_ecc_fill_in_curve. See bug #4712. */ }, { /* (x^2 + y^2 = 1 + dx^2y^2) */ - "Ed448", 448, 0, + "Ed448", 448, 1, MPI_EC_EDWARDS, ECC_DIALECT_SAFECURVE, "0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE" "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", "0x01", "0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE" "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF6756", "0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" "7CCA23E9C44EDB49AED63690216CC2728DC58F552378C292AB5844F3", "0x4F1970C66BED0DED221D15A622BF36DA9E146570470F1767EA6DE324" "A3D3A46412AE1AF72AB66511433B80E18B00938E2626A82BC70CC05E", "0x693F46716EB6BC248876203756C9C7624BEA73736CA3984087789C1E" "05A0C2D73AD3FF1CE67C39C4FDBD132C4ED7C8AD9808795BF230FA14", 4, }, { /* (y^2 = x^3 + 156326*x^2 + x) */ "X448", 448, 0, MPI_EC_MONTGOMERY, ECC_DIALECT_SAFECURVE, "0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE" "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", "0x98A9", "0x01", "0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" "7CCA23E9C44EDB49AED63690216CC2728DC58F552378C292AB5844F3", "0x00000000000000000000000000000000000000000000000000000000" "00000000000000000000000000000000000000000000000000000005", "0x7D235D1295F5B1F66C98AB6E58326FCECBAE5D34F55545D060F75DC2" "8DF3F6EDB8027E2346430D211312C4B150677AF76FD7223D457B5B1A", 4, }, #if 0 /* No real specs yet found. */ { /* x^2 + y^2 = 1 + 3617x^2y^2 mod 2^414 - 17 */ "Curve3617", "0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEF", MPI_EC_EDWARDS, 0, "0x01", "0x0e21", "0x07FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEB3CC92414CF" "706022B36F1C0338AD63CF181B0E71A5E106AF79", "0x1A334905141443300218C0631C326E5FCD46369F44C03EC7F57FF35498A4AB4D" "6D6BA111301A73FAA8537C64C4FD3812F3CBC595", "0x22", 8 }, #endif /*0*/ { "NIST P-192", 192, 0, MPI_EC_WEIERSTRASS, ECC_DIALECT_STANDARD, "0xfffffffffffffffffffffffffffffffeffffffffffffffff", "0xfffffffffffffffffffffffffffffffefffffffffffffffc", "0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1", "0xffffffffffffffffffffffff99def836146bc9b1b4d22831", "0x188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012", "0x07192b95ffc8da78631011ed6b24cdd573f977a11e794811", 1 }, { "NIST P-224", 224, 1, MPI_EC_WEIERSTRASS, ECC_DIALECT_STANDARD, "0xffffffffffffffffffffffffffffffff000000000000000000000001", "0xfffffffffffffffffffffffffffffffefffffffffffffffffffffffe", "0xb4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4", "0xffffffffffffffffffffffffffff16a2e0b8f03e13dd29455c5c2a3d" , "0xb70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21", "0xbd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34", 1 }, { "NIST P-256", 256, 1, MPI_EC_WEIERSTRASS, ECC_DIALECT_STANDARD, "0xffffffff00000001000000000000000000000000ffffffffffffffffffffffff", "0xffffffff00000001000000000000000000000000fffffffffffffffffffffffc", "0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b", "0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551", "0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296", "0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5", 1 }, { "NIST P-384", 384, 1, MPI_EC_WEIERSTRASS, ECC_DIALECT_STANDARD, "0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe" "ffffffff0000000000000000ffffffff", "0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe" "ffffffff0000000000000000fffffffc", "0xb3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875a" "c656398d8a2ed19d2a85c8edd3ec2aef", "0xffffffffffffffffffffffffffffffffffffffffffffffffc7634d81f4372ddf" "581a0db248b0a77aecec196accc52973", "0xaa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a38" "5502f25dbf55296c3a545e3872760ab7", "0x3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c0" "0a60b1ce1d7e819d7a431d7c90ea0e5f", 1 }, { "NIST P-521", 521, 1, MPI_EC_WEIERSTRASS, ECC_DIALECT_STANDARD, "0x01ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff" "ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff", "0x01ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff" "fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc", "0x051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef10" "9e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00", "0x01ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff" "fffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb71e91386409", "0x00c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d" "3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66", "0x011839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e" "662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650", 1 }, { "brainpoolP160r1", 160, 0, MPI_EC_WEIERSTRASS, ECC_DIALECT_STANDARD, "0xe95e4a5f737059dc60dfc7ad95b3d8139515620f", "0x340e7be2a280eb74e2be61bada745d97e8f7c300", "0x1e589a8595423412134faa2dbdec95c8d8675e58", "0xe95e4a5f737059dc60df5991d45029409e60fc09", "0xbed5af16ea3f6a4f62938c4631eb5af7bdbcdbc3", "0x1667cb477a1a8ec338f94741669c976316da6321", 1 }, { "brainpoolP192r1", 192, 0, MPI_EC_WEIERSTRASS, ECC_DIALECT_STANDARD, "0xc302f41d932a36cda7a3463093d18db78fce476de1a86297", "0x6a91174076b1e0e19c39c031fe8685c1cae040e5c69a28ef", "0x469a28ef7c28cca3dc721d044f4496bcca7ef4146fbf25c9", "0xc302f41d932a36cda7a3462f9e9e916b5be8f1029ac4acc1", "0xc0a0647eaab6a48753b033c56cb0f0900a2f5c4853375fd6", "0x14b690866abd5bb88b5f4828c1490002e6773fa2fa299b8f", 1 }, { "brainpoolP224r1", 224, 0, MPI_EC_WEIERSTRASS, ECC_DIALECT_STANDARD, "0xd7c134aa264366862a18302575d1d787b09f075797da89f57ec8c0ff", "0x68a5e62ca9ce6c1c299803a6c1530b514e182ad8b0042a59cad29f43", "0x2580f63ccfe44138870713b1a92369e33e2135d266dbb372386c400b", "0xd7c134aa264366862a18302575d0fb98d116bc4b6ddebca3a5a7939f", "0x0d9029ad2c7e5cf4340823b2a87dc68c9e4ce3174c1e6efdee12c07d", "0x58aa56f772c0726f24c6b89e4ecdac24354b9e99caa3f6d3761402cd", 1 }, { "brainpoolP256r1", 256, 0, MPI_EC_WEIERSTRASS, ECC_DIALECT_STANDARD, "0xa9fb57dba1eea9bc3e660a909d838d726e3bf623d52620282013481d1f6e5377", "0x7d5a0975fc2c3057eef67530417affe7fb8055c126dc5c6ce94a4b44f330b5d9", "0x26dc5c6ce94a4b44f330b5d9bbd77cbf958416295cf7e1ce6bccdc18ff8c07b6", "0xa9fb57dba1eea9bc3e660a909d838d718c397aa3b561a6f7901e0e82974856a7", "0x8bd2aeb9cb7e57cb2c4b482ffc81b7afb9de27e1e3bd23c23a4453bd9ace3262", "0x547ef835c3dac4fd97f8461a14611dc9c27745132ded8e545c1d54c72f046997", 1 }, { "brainpoolP320r1", 320, 0, MPI_EC_WEIERSTRASS, ECC_DIALECT_STANDARD, "0xd35e472036bc4fb7e13c785ed201e065f98fcfa6f6f40def4f92b9ec7893ec28" "fcd412b1f1b32e27", "0x3ee30b568fbab0f883ccebd46d3f3bb8a2a73513f5eb79da66190eb085ffa9f4" "92f375a97d860eb4", "0x520883949dfdbc42d3ad198640688a6fe13f41349554b49acc31dccd88453981" "6f5eb4ac8fb1f1a6", "0xd35e472036bc4fb7e13c785ed201e065f98fcfa5b68f12a32d482ec7ee8658e9" "8691555b44c59311", "0x43bd7e9afb53d8b85289bcc48ee5bfe6f20137d10a087eb6e7871e2a10a599c7" "10af8d0d39e20611", "0x14fdd05545ec1cc8ab4093247f77275e0743ffed117182eaa9c77877aaac6ac7" "d35245d1692e8ee1", 1 }, { "brainpoolP384r1", 384, 0, MPI_EC_WEIERSTRASS, ECC_DIALECT_STANDARD, "0x8cb91e82a3386d280f5d6f7e50e641df152f7109ed5456b412b1da197fb71123" "acd3a729901d1a71874700133107ec53", "0x7bc382c63d8c150c3c72080ace05afa0c2bea28e4fb22787139165efba91f90f" "8aa5814a503ad4eb04a8c7dd22ce2826", "0x04a8c7dd22ce28268b39b55416f0447c2fb77de107dcd2a62e880ea53eeb62d5" "7cb4390295dbc9943ab78696fa504c11", "0x8cb91e82a3386d280f5d6f7e50e641df152f7109ed5456b31f166e6cac0425a7" "cf3ab6af6b7fc3103b883202e9046565", "0x1d1c64f068cf45ffa2a63a81b7c13f6b8847a3e77ef14fe3db7fcafe0cbd10e8" "e826e03436d646aaef87b2e247d4af1e", "0x8abe1d7520f9c2a45cb1eb8e95cfd55262b70b29feec5864e19c054ff9912928" "0e4646217791811142820341263c5315", 1 }, { "brainpoolP512r1", 512, 0, MPI_EC_WEIERSTRASS, ECC_DIALECT_STANDARD, "0xaadd9db8dbe9c48b3fd4e6ae33c9fc07cb308db3b3c9d20ed6639cca70330871" "7d4d9b009bc66842aecda12ae6a380e62881ff2f2d82c68528aa6056583a48f3", "0x7830a3318b603b89e2327145ac234cc594cbdd8d3df91610a83441caea9863bc" "2ded5d5aa8253aa10a2ef1c98b9ac8b57f1117a72bf2c7b9e7c1ac4d77fc94ca", "0x3df91610a83441caea9863bc2ded5d5aa8253aa10a2ef1c98b9ac8b57f1117a7" "2bf2c7b9e7c1ac4d77fc94cadc083e67984050b75ebae5dd2809bd638016f723", "0xaadd9db8dbe9c48b3fd4e6ae33c9fc07cb308db3b3c9d20ed6639cca70330870" "553e5c414ca92619418661197fac10471db1d381085ddaddb58796829ca90069", "0x81aee4bdd82ed9645a21322e9c4c6a9385ed9f70b5d916c1b43b62eef4d0098e" "ff3b1f78e2d0d48d50d1687b93b97d5f7c6d5047406a5e688b352209bcb9f822", "0x7dde385d566332ecc0eabfa9cf7822fdf209f70024a57b1aa000c55b881f8111" "b2dcde494a5f485e5bca4bd88a2763aed1ca2b2fa8f0540678cd1e0f3ad80892", 1 }, { "GOST2001-test", 256, 0, MPI_EC_WEIERSTRASS, ECC_DIALECT_STANDARD, "0x8000000000000000000000000000000000000000000000000000000000000431", "0x0000000000000000000000000000000000000000000000000000000000000007", "0x5fbff498aa938ce739b8e022fbafef40563f6e6a3472fc2a514c0ce9dae23b7e", "0x8000000000000000000000000000000150fe8a1892976154c59cfc193accf5b3", "0x0000000000000000000000000000000000000000000000000000000000000002", "0x08e2a8a0e65147d4bd6316030e16d19c85c97f0a9ca267122b96abbcea7e8fc8", 1 }, { "GOST2001-CryptoPro-A", 256, 0, MPI_EC_WEIERSTRASS, ECC_DIALECT_STANDARD, "0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffd97", "0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffd94", "0x00000000000000000000000000000000000000000000000000000000000000a6", "0xffffffffffffffffffffffffffffffff6c611070995ad10045841b09b761b893", "0x0000000000000000000000000000000000000000000000000000000000000001", "0x8d91e471e0989cda27df505a453f2b7635294f2ddf23e3b122acc99c9e9f1e14", 1 }, { "GOST2001-CryptoPro-B", 256, 0, MPI_EC_WEIERSTRASS, ECC_DIALECT_STANDARD, "0x8000000000000000000000000000000000000000000000000000000000000c99", "0x8000000000000000000000000000000000000000000000000000000000000c96", "0x3e1af419a269a5f866a7d3c25c3df80ae979259373ff2b182f49d4ce7e1bbc8b", "0x800000000000000000000000000000015f700cfff1a624e5e497161bcc8a198f", "0x0000000000000000000000000000000000000000000000000000000000000001", "0x3fa8124359f96680b83d1c3eb2c070e5c545c9858d03ecfb744bf8d717717efc", 1 }, { "GOST2001-CryptoPro-C", 256, 0, MPI_EC_WEIERSTRASS, ECC_DIALECT_STANDARD, "0x9b9f605f5a858107ab1ec85e6b41c8aacf846e86789051d37998f7b9022d759b", "0x9b9f605f5a858107ab1ec85e6b41c8aacf846e86789051d37998f7b9022d7598", "0x000000000000000000000000000000000000000000000000000000000000805a", "0x9b9f605f5a858107ab1ec85e6b41c8aa582ca3511eddfb74f02f3a6598980bb9", "0x0000000000000000000000000000000000000000000000000000000000000000", "0x41ece55743711a8c3cbf3783cd08c0ee4d4dc440d4641a8f366e550dfdb3bb67", 1 }, { "GOST2012-256-A", 256, 0, MPI_EC_WEIERSTRASS, ECC_DIALECT_STANDARD, "0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffd97", "0xc2173f1513981673af4892c23035a27ce25e2013bf95aa33b22c656f277e7335", "0x295f9bae7428ed9ccc20e7c359a9d41a22fccd9108e17bf7ba9337a6f8ae9513", "0x400000000000000000000000000000000fd8cddfc87b6635c115af556c360c67", "0x91e38443a5e82c0d880923425712b2bb658b9196932e02c78b2582fe742daa28", "0x32879423ab1a0375895786c4bb46e9565fde0b5344766740af268adb32322e5c", 4 }, { "GOST2012-512-test", 511, 0, MPI_EC_WEIERSTRASS, ECC_DIALECT_STANDARD, "0x4531acd1fe0023c7550d267b6b2fee80922b14b2ffb90f04d4eb7c09b5d2d15d" "f1d852741af4704a0458047e80e4546d35b8336fac224dd81664bbf528be6373", "0x0000000000000000000000000000000000000000000000000000000000000007", "0x1cff0806a31116da29d8cfa54e57eb748bc5f377e49400fdd788b649eca1ac4" "361834013b2ad7322480a89ca58e0cf74bc9e540c2add6897fad0a3084f302adc", "0x4531acd1fe0023c7550d267b6b2fee80922b14b2ffb90f04d4eb7c09b5d2d15d" "a82f2d7ecb1dbac719905c5eecc423f1d86e25edbe23c595d644aaf187e6e6df", "0x24d19cc64572ee30f396bf6ebbfd7a6c5213b3b3d7057cc825f91093a68cd762" "fd60611262cd838dc6b60aa7eee804e28bc849977fac33b4b530f1b120248a9a", "0x2bb312a43bd2ce6e0d020613c857acddcfbf061e91e5f2c3f32447c259f39b2" "c83ab156d77f1496bf7eb3351e1ee4e43dc1a18b91b24640b6dbb92cb1add371e", 1 }, { "GOST2012-512-tc26-A", 512, 0, MPI_EC_WEIERSTRASS, ECC_DIALECT_STANDARD, "0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff" "fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffdc7", "0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff" "fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffdc4", "0xe8c2505dedfc86ddc1bd0b2b6667f1da34b82574761cb0e879bd081cfd0b6265" "ee3cb090f30d27614cb4574010da90dd862ef9d4ebee4761503190785a71c760", "0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff" "27e69532f48d89116ff22b8d4e0560609b4b38abfad2b85dcacdb1411f10b275", "0x0000000000000000000000000000000000000000000000000000000000000000" "0000000000000000000000000000000000000000000000000000000000000003", "0x7503cfe87a836ae3a61b8816e25450e6ce5e1c93acf1abc1778064fdcbefa921" "df1626be4fd036e93d75e6a50e3a41e98028fe5fc235f5b889a589cb5215f2a4", 1 }, { "GOST2012-512-tc26-B", 512, 0, MPI_EC_WEIERSTRASS, ECC_DIALECT_STANDARD, "0x8000000000000000000000000000000000000000000000000000000000000000" "000000000000000000000000000000000000000000000000000000000000006f", "0x8000000000000000000000000000000000000000000000000000000000000000" "000000000000000000000000000000000000000000000000000000000000006c", "0x687d1b459dc841457e3e06cf6f5e2517b97c7d614af138bcbf85dc806c4b289f" "3e965d2db1416d217f8b276fad1ab69c50f78bee1fa3106efb8ccbc7c5140116", "0x8000000000000000000000000000000000000000000000000000000000000001" "49a1ec142565a545acfdb77bd9d40cfa8b996712101bea0ec6346c54374f25bd", "0x0000000000000000000000000000000000000000000000000000000000000000" "0000000000000000000000000000000000000000000000000000000000000002", "0x1a8f7eda389b094c2c071e3647a8940f3c123b697578c213be6dd9e6c8ec7335" "dcb228fd1edf4a39152cbcaaf8c0398828041055f94ceeec7e21340780fe41bd", 1 }, { "GOST2012-512-tc26-C", 512, 0, MPI_EC_WEIERSTRASS, ECC_DIALECT_STANDARD, "0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff" "fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffdc7", "0xdc9203e514a721875485a529d2c722fb187bc8980eb866644de41c68e1430645" "46e861c0e2c9edd92ade71f46fcf50ff2ad97f951fda9f2a2eb6546f39689bd3", "0xb4c4ee28cebc6c2c8ac12952cf37f16ac7efb6a9f69f4b57ffda2e4f0de5ade0" "38cbc2fff719d2c18de0284b8bfef3b52b8cc7a5f5bf0a3c8d2319a5312557e1", "0x3fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff" "c98cdba46506ab004c33a9ff5147502cc8eda9e7a769a12694623cef47f023ed", "0xe2e31edfc23de7bdebe241ce593ef5de2295b7a9cbaef021d385f7074cea043a" "a27272a7ae602bf2a7b9033db9ed3610c6fb85487eae97aac5bc7928c1950148", "0xf5ce40d95b5eb899abbccff5911cb8577939804d6527378b8c108c3d2090ff9be" "18e2d33e3021ed2ef32d85822423b6304f726aa854bae07d0396e9a9addc40f", 4 }, { "secp256k1", 256, 0, MPI_EC_WEIERSTRASS, ECC_DIALECT_STANDARD, "0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", "0x0000000000000000000000000000000000000000000000000000000000000000", "0x0000000000000000000000000000000000000000000000000000000000000007", "0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", "0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798", "0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8", 1 }, { "sm2p256v1", 256, 0, MPI_EC_WEIERSTRASS, ECC_DIALECT_STANDARD, "0xfffffffeffffffffffffffffffffffffffffffff00000000ffffffffffffffff", "0xfffffffeffffffffffffffffffffffffffffffff00000000fffffffffffffffc", "0x28e9fa9e9d9f5e344d5a9e4bcf6509a7f39789f515ab8f92ddbcbd414d940e93", "0xfffffffeffffffffffffffffffffffff7203df6b21c6052b53bbf40939d54123", "0x32c4ae2c1f1981195f9904466a39c9948fe30bbff2660be1715a4589334c74c7", "0xbc3736a2f4f6779c59bdcee36b692153d0a9877cc62a474002df32e52139f0a0", 1 }, { NULL, 0, 0, 0, 0, NULL, NULL, NULL, NULL, NULL } }; /* Return a copy of POINT. */ static gcry_mpi_point_t point_copy (gcry_mpi_point_t point) { gcry_mpi_point_t newpoint; if (point) { newpoint = mpi_point_new (0); point_set (newpoint, point); } else newpoint = NULL; return newpoint; } /* Helper to scan a hex string. */ static gcry_mpi_t scanval (const char *string) { gpg_err_code_t rc; gcry_mpi_t val; rc = _gcry_mpi_scan (&val, GCRYMPI_FMT_HEX, string, 0, NULL); if (rc) log_fatal ("scanning ECC parameter failed: %s\n", gpg_strerror (rc)); return val; } /* Return the index of the domain_parms table for a curve with NAME. Return -1 if not found. */ static int find_domain_parms_idx (const char *name) { int idx, aliasno; /* First check our native curves. */ for (idx = 0; domain_parms[idx].desc; idx++) if (!strcmp (name, domain_parms[idx].desc)) return idx; /* If not found consult the alias table. */ if (!domain_parms[idx].desc) { for (aliasno = 0; curve_aliases[aliasno].name; aliasno++) if (!strcmp (name, curve_aliases[aliasno].other)) break; if (curve_aliases[aliasno].name) { for (idx = 0; domain_parms[idx].desc; idx++) if (!strcmp (curve_aliases[aliasno].name, domain_parms[idx].desc)) return idx; } } return -1; } /* Generate the crypto system setup. This function takes the NAME of a curve or the desired number of bits and stores at R_CURVE the parameters of the named curve or those of a suitable curve. If R_NBITS is not NULL, the chosen number of bits is stored there. NULL may be given for R_CURVE, if the value is not required and for example only a quick test for availability is desired. Note that the curve fields should be initialized to zero because fields which are not NULL are skipped. */ gpg_err_code_t _gcry_ecc_fill_in_curve (unsigned int nbits, const char *name, elliptic_curve_t *curve, unsigned int *r_nbits) { int idx; const char *resname = NULL; /* Set to a found curve name. */ if (name) idx = find_domain_parms_idx (name); else { for (idx = 0; domain_parms[idx].desc; idx++) if (nbits == domain_parms[idx].nbits && domain_parms[idx].model == MPI_EC_WEIERSTRASS) break; if (!domain_parms[idx].desc) idx = -1; } if (idx < 0) return GPG_ERR_UNKNOWN_CURVE; resname = domain_parms[idx].desc; /* In fips mode we only support NIST curves. Note that it is possible to bypass this check by specifying the curve parameters directly. */ if (fips_mode () && !domain_parms[idx].fips ) return GPG_ERR_NOT_SUPPORTED; switch (domain_parms[idx].model) { case MPI_EC_WEIERSTRASS: case MPI_EC_EDWARDS: case MPI_EC_MONTGOMERY: break; default: return GPG_ERR_BUG; } if (r_nbits) *r_nbits = domain_parms[idx].nbits; if (curve) { curve->model = domain_parms[idx].model; curve->dialect = domain_parms[idx].dialect; if (!curve->p) curve->p = scanval (domain_parms[idx].p); if (!curve->a) { curve->a = scanval (domain_parms[idx].a); if (curve->a->sign) { mpi_resize (curve->a, curve->p->nlimbs); _gcry_mpih_sub_n (curve->a->d, curve->p->d, curve->a->d, curve->p->nlimbs); curve->a->nlimbs = curve->p->nlimbs; curve->a->sign = 0; } } if (!curve->b) { curve->b = scanval (domain_parms[idx].b); if (curve->b->sign) { mpi_resize (curve->b, curve->p->nlimbs); _gcry_mpih_sub_n (curve->b->d, curve->p->d, curve->b->d, curve->p->nlimbs); curve->b->nlimbs = curve->p->nlimbs; curve->b->sign = 0; } } if (!curve->n) curve->n = scanval (domain_parms[idx].n); if (!curve->G.x) curve->G.x = scanval (domain_parms[idx].g_x); if (!curve->G.y) curve->G.y = scanval (domain_parms[idx].g_y); curve->h = domain_parms[idx].h; /* * In the constants of domain_parms, we defined Curve25519 * domain parameters as the ones in RFC-7748 before the errata * (eid4730). To keep the computation having exact same values, * we recover the new value of g_y, here. */ if (!strcmp (resname, "Curve25519")) mpi_sub (curve->G.y, curve->p, curve->G.y); if (!curve->G.z) curve->G.z = mpi_alloc_set_ui (1); if (!curve->name) curve->name = resname; } return 0; } /* Give the name of the curve NAME, store the curve parameters into P, A, B, G, and N if they point to NULL value. Note that G is returned in standard uncompressed format. Also update MODEL and DIALECT if they are not NULL. */ gpg_err_code_t _gcry_ecc_update_curve_param (const char *name, enum gcry_mpi_ec_models *model, enum ecc_dialects *dialect, gcry_mpi_t *p, gcry_mpi_t *a, gcry_mpi_t *b, gcry_mpi_t *g, gcry_mpi_t *n) { int idx; idx = find_domain_parms_idx (name); if (idx < 0) return GPG_ERR_UNKNOWN_CURVE; if (g) { char *buf; size_t len; len = 4; len += strlen (domain_parms[idx].g_x+2); len += strlen (domain_parms[idx].g_y+2); len++; buf = xtrymalloc (len); if (!buf) return gpg_err_code_from_syserror (); strcpy (stpcpy (stpcpy (buf, "0x04"), domain_parms[idx].g_x+2), domain_parms[idx].g_y+2); _gcry_mpi_release (*g); *g = scanval (buf); xfree (buf); } if (model) *model = domain_parms[idx].model; if (dialect) *dialect = domain_parms[idx].dialect; if (p) { _gcry_mpi_release (*p); *p = scanval (domain_parms[idx].p); } if (a) { _gcry_mpi_release (*a); *a = scanval (domain_parms[idx].a); } if (b) { _gcry_mpi_release (*b); *b = scanval (domain_parms[idx].b); } if (n) { _gcry_mpi_release (*n); *n = scanval (domain_parms[idx].n); } return 0; } /* Return the name matching the parameters in PKEY. This works only with curves described by the Weierstrass equation. */ const char * _gcry_ecc_get_curve (gcry_sexp_t keyparms, int iterator, unsigned int *r_nbits) { gpg_err_code_t rc; const char *result = NULL; elliptic_curve_t E; gcry_mpi_point_t G = NULL; gcry_mpi_t tmp = NULL; int idx; memset (&E, 0, sizeof E); if (r_nbits) *r_nbits = 0; if (!keyparms) { idx = iterator; if (idx >= 0 && idx < DIM (domain_parms)) { result = domain_parms[idx].desc; if (r_nbits) *r_nbits = domain_parms[idx].nbits; } return result; } /* * Extract the curve parameters.. */ rc = gpg_err_code (sexp_extract_param (keyparms, NULL, "pabn", &E.p, &E.a, &E.b, &E.n, NULL)); if (rc == GPG_ERR_NO_OBJ) { /* This might be the second use case of checking whether a specific curve given by name is supported. */ gcry_sexp_t l1; char *name; l1 = sexp_find_token (keyparms, "curve", 5); if (!l1) goto leave; /* No curve name parameter. */ name = sexp_nth_string (l1, 1); sexp_release (l1); if (!name) goto leave; /* Name missing or out of core. */ idx = find_domain_parms_idx (name); xfree (name); if (idx >= 0) /* Curve found. */ { result = domain_parms[idx].desc; if (r_nbits) *r_nbits = domain_parms[idx].nbits; } return result; } if (rc) goto leave; rc = point_from_keyparam (&G, keyparms, "g", NULL); if (rc) goto leave; _gcry_mpi_point_init (&E.G); _gcry_mpi_point_set (&E.G, G->x, G->y, G->z); for (idx = 0; domain_parms[idx].desc; idx++) { mpi_free (tmp); tmp = scanval (domain_parms[idx].p); if (mpi_cmp (tmp, E.p)) continue; mpi_free (tmp); tmp = scanval (domain_parms[idx].a); if (tmp->sign) { if (!mpi_cmpabs (tmp, E.a)) /* For backward compatibility to <= libgcrypt 1.8, we allow this match to support existing keys in SEXP. */ ; else { mpi_resize (tmp, E.p->nlimbs); _gcry_mpih_sub_n (tmp->d, E.p->d, tmp->d, E.p->nlimbs); tmp->nlimbs = E.p->nlimbs; tmp->sign = 0; if (mpi_cmp (tmp, E.a)) continue; } } else if (mpi_cmp (tmp, E.a)) continue; mpi_free (tmp); tmp = scanval (domain_parms[idx].b); if (tmp->sign) { if (!mpi_cmpabs (tmp, E.b)) /* Same for backward compatibility, see above. */ ; else { mpi_resize (tmp, E.p->nlimbs); _gcry_mpih_sub_n (tmp->d, E.p->d, tmp->d, E.p->nlimbs); tmp->nlimbs = E.p->nlimbs; tmp->sign = 0; if (mpi_cmp (tmp, E.b)) continue; } } else if (mpi_cmp (tmp, E.b)) continue; mpi_free (tmp); tmp = scanval (domain_parms[idx].n); if (mpi_cmp (tmp, E.n)) continue; mpi_free (tmp); tmp = scanval (domain_parms[idx].g_x); if (mpi_cmp (tmp, E.G.x)) continue; mpi_free (tmp); tmp = scanval (domain_parms[idx].g_y); if (mpi_cmp (tmp, E.G.y)) continue; result = domain_parms[idx].desc; if (r_nbits) *r_nbits = domain_parms[idx].nbits; break; } leave: _gcry_mpi_point_release (G); _gcry_mpi_release (tmp); _gcry_mpi_release (E.p); _gcry_mpi_release (E.a); _gcry_mpi_release (E.b); _gcry_mpi_point_free_parts (&E.G); _gcry_mpi_release (E.n); return result; } /* Helper to extract an MPI from key parameters. */ static gpg_err_code_t mpi_from_keyparam (gcry_mpi_t *r_a, gcry_sexp_t keyparam, const char *name, int opaque) { gcry_err_code_t ec = 0; gcry_sexp_t l1; l1 = sexp_find_token (keyparam, name, 0); if (l1) { *r_a = sexp_nth_mpi (l1, 1, opaque? GCRYMPI_FMT_OPAQUE : GCRYMPI_FMT_USG); sexp_release (l1); if (!*r_a) ec = GPG_ERR_INV_OBJ; } return ec; } /* Helper to extract a point from key parameters. If no parameter with NAME is found, the functions tries to find a non-encoded point by appending ".x", ".y" and ".z" to NAME. ".z" is in this case optional and defaults to 1. EC is the context which at this point may not be fully initialized. */ static gpg_err_code_t point_from_keyparam (gcry_mpi_point_t *r_a, gcry_sexp_t keyparam, const char *name, mpi_ec_t ec) { gcry_err_code_t rc; gcry_sexp_t l1; gcry_mpi_point_t point; l1 = sexp_find_token (keyparam, name, 0); if (l1) { gcry_mpi_t a; a = sexp_nth_mpi (l1, 1, GCRYMPI_FMT_OPAQUE); sexp_release (l1); if (!a) return GPG_ERR_INV_OBJ; point = mpi_point_new (0); rc = _gcry_mpi_ec_decode_point (point, a, ec); mpi_free (a); if (rc) { mpi_point_release (point); return rc; } } else { char *tmpname; gcry_mpi_t x = NULL; gcry_mpi_t y = NULL; gcry_mpi_t z = NULL; tmpname = xtrymalloc (strlen (name) + 2 + 1); if (!tmpname) return gpg_err_code_from_syserror (); strcpy (stpcpy (tmpname, name), ".x"); rc = mpi_from_keyparam (&x, keyparam, tmpname, 0); if (rc) { xfree (tmpname); return rc; } strcpy (stpcpy (tmpname, name), ".y"); rc = mpi_from_keyparam (&y, keyparam, tmpname, 0); if (rc) { mpi_free (x); xfree (tmpname); return rc; } strcpy (stpcpy (tmpname, name), ".z"); rc = mpi_from_keyparam (&z, keyparam, tmpname, 0); if (rc) { mpi_free (y); mpi_free (x); xfree (tmpname); return rc; } if (!z) z = mpi_set_ui (NULL, 1); if (x && y) point = mpi_point_snatch_set (NULL, x, y, z); else { mpi_free (x); mpi_free (y); mpi_free (z); point = NULL; } xfree (tmpname); } if (point) *r_a = point; return 0; } static gpg_err_code_t mpi_ec_get_elliptic_curve (elliptic_curve_t *E, int *r_flags, gcry_sexp_t keyparam, const char *curvename) { gpg_err_code_t errc; unsigned int nbits; gcry_sexp_t l1; errc = _gcry_pk_util_get_nbits (keyparam, &nbits); if (errc) return errc; E->model = MPI_EC_WEIERSTRASS; E->dialect = ECC_DIALECT_STANDARD; E->h = 1; if (keyparam) { /* Parse an optional flags list. */ l1 = sexp_find_token (keyparam, "flags", 0); if (l1) { int flags = 0; errc = _gcry_pk_util_parse_flaglist (l1, &flags, NULL); sexp_release (l1); l1 = NULL; if (errc) goto leave; *r_flags |= flags; } /* Parse the deprecated optional transient-key flag. */ l1 = sexp_find_token (keyparam, "transient-key", 0); if (l1) { *r_flags |= PUBKEY_FLAG_TRANSIENT_KEY; sexp_release (l1); } /* Check whether a curve name was given. */ l1 = sexp_find_token (keyparam, "curve", 5); /* If we don't have a curve name or if override parameters have explicitly been requested, parse them. */ if (!l1 || (*r_flags & PUBKEY_FLAG_PARAM)) { gcry_mpi_point_t G = NULL; gcry_mpi_t cofactor = NULL; errc = mpi_from_keyparam (&E->p, keyparam, "p", 0); if (errc) goto leave; errc = mpi_from_keyparam (&E->a, keyparam, "a", 0); if (errc) goto leave; errc = mpi_from_keyparam (&E->b, keyparam, "b", 0); if (errc) goto leave; errc = point_from_keyparam (&G, keyparam, "g", NULL); if (errc) goto leave; if (G) { _gcry_mpi_point_init (&E->G); mpi_point_set (&E->G, G->x, G->y, G->z); mpi_point_set (G, NULL, NULL, NULL); mpi_point_release (G); } errc = mpi_from_keyparam (&E->n, keyparam, "n", 0); if (errc) goto leave; errc = mpi_from_keyparam (&cofactor, keyparam, "h", 0); if (errc) goto leave; if (cofactor) { mpi_get_ui (&E->h, cofactor); mpi_free (cofactor); } } } else l1 = NULL; /* No curvename. */ /* Check whether a curve parameter is available and use that to fill in missing values. If no curve parameter is available try an optional provided curvename. If only the curvename has been given use that one. */ if (l1 || curvename || nbits) { char *name; if (l1) { name = sexp_nth_string (l1, 1); sexp_release (l1); if (!name) { errc = GPG_ERR_INV_OBJ; /* Name missing or out of core. */ goto leave; } } else name = NULL; errc = _gcry_ecc_fill_in_curve (nbits, name? name : curvename, E, NULL); xfree (name); if (errc) goto leave; } leave: return errc; } static gpg_err_code_t mpi_ec_setup_elliptic_curve (mpi_ec_t ec, int flags, elliptic_curve_t *E, gcry_sexp_t keyparam) { gpg_err_code_t errc = 0; ec->G = mpi_point_snatch_set (NULL, E->G.x, E->G.y, E->G.z); E->G.x = NULL; E->G.y = NULL; E->G.z = NULL; ec->n = E->n; E->n = NULL; ec->h = E->h; ec->name = E->name; /* Now that we know the curve name we can look for the public key Q. point_from_keyparam needs to know the curve parameters so that it is able to use the correct decompression. Parsing the private key D could have been done earlier but it is less surprising if we do it here as well. */ if (keyparam) { int is_opaque_bytes = ((ec->dialect == ECC_DIALECT_ED25519 && (flags & PUBKEY_FLAG_EDDSA)) || (ec->dialect == ECC_DIALECT_SAFECURVE)); errc = point_from_keyparam (&ec->Q, keyparam, "q", ec); if (errc) return errc; errc = mpi_from_keyparam (&ec->d, keyparam, "d", is_opaque_bytes); /* Size of opaque bytes should match size of P. */ if (!errc && ec->d && is_opaque_bytes) { unsigned int n = mpi_get_nbits (ec->d); unsigned int len; len = (ec->nbits+7)/8; /* EdDSA requires additional bit for sign. */ if ((ec->nbits%8) == 0 && ec->model == MPI_EC_EDWARDS) len++; if ((n+7)/8 != len) { if (ec->dialect == ECC_DIALECT_ED25519) { /* * GnuPG (<= 2.2) or OpenPGP implementations with no * SOS support may remove zeros at the beginning. * Recover those zeros. */ /* * Also, GnuPG (<= 2.2) may add additional zero at * the beginning, when private key is moved from * OpenPGP to gpg-agent. Remove such a zero-prefix. */ const unsigned char *buf; unsigned char *value; buf = mpi_get_opaque (ec->d, &n); if (!buf) return GPG_ERR_INV_OBJ; value = xtrymalloc_secure (len); if (!value) return gpg_err_code_from_syserror (); if ((n+7)/8 < len) /* Recover zeros. */ { memset (value, 0, len - (n+7)/8); memcpy (value + len - (n+7)/8, buf, (n+7)/8); } else if ((n+7)/8 == len + 1) /* Remove a zero. */ memcpy (value, buf+1, len); else { xfree (value); return GPG_ERR_INV_OBJ; } mpi_set_opaque (ec->d, value, len*8); } else { if (DBG_CIPHER) log_debug ("scalar size (%d) != prime size (%d)", (n+7)/8, len); errc = GPG_ERR_INV_OBJ; } } } } return errc; } gpg_err_code_t _gcry_mpi_ec_internal_new (mpi_ec_t *r_ec, int *r_flags, const char *name_op, gcry_sexp_t keyparam, const char *curvename) { gpg_err_code_t errc; elliptic_curve_t E; mpi_ec_t ec; *r_ec = NULL; memset (&E, 0, sizeof E); errc = mpi_ec_get_elliptic_curve (&E, r_flags, keyparam, curvename); if (errc) goto leave; ec = _gcry_mpi_ec_p_internal_new (E.model, E.dialect, *r_flags, E.p, E.a, E.b); if (!ec) goto leave; errc = mpi_ec_setup_elliptic_curve (ec, *r_flags, &E, keyparam); if (errc) { _gcry_mpi_ec_free (ec); goto leave; } else *r_ec = ec; if (!errc && DBG_CIPHER) { gcry_mpi_t mpi_q = NULL; gcry_sexp_t l1; char msg[80]; l1 = sexp_find_token (keyparam, "q", 0); if (l1) { mpi_q = sexp_nth_mpi (l1, 1, GCRYMPI_FMT_OPAQUE); sexp_release (l1); } log_debug ("%s info: %s/%s%s\n", name_op, _gcry_ecc_model2str (ec->model), _gcry_ecc_dialect2str (ec->dialect), (*r_flags & PUBKEY_FLAG_EDDSA)? "+EdDSA" : ""); if (ec->name) log_debug ("%s name: %s\n", name_op, ec->name); snprintf (msg, sizeof msg, "%s p", name_op); log_printmpi (msg, ec->p); snprintf (msg, sizeof msg, "%s a", name_op); log_printmpi (msg, ec->a); snprintf (msg, sizeof msg, "%s b", name_op); log_printmpi (msg, ec->b); snprintf (msg, sizeof msg, "%s g", name_op); log_printpnt (msg, ec->G, NULL); snprintf (msg, sizeof msg, "%s n", name_op); log_printmpi (msg, ec->n); log_debug ("%s h:+%02x\n", name_op, ec->h); if (mpi_q) { snprintf (msg, sizeof msg, "%s q", name_op); log_printmpi (msg, mpi_q); mpi_free (mpi_q); } if (!fips_mode () && ec->d) { snprintf (msg, sizeof msg, "%s d", name_op); log_printmpi (msg, ec->d); } } leave: _gcry_ecc_curve_free (&E); return errc; } /* This function creates a new context for elliptic curve operations. Either KEYPARAM or CURVENAME must be given. If both are given and KEYPARAM has no curve parameter, CURVENAME is used to add missing parameters. On success 0 is returned and the new context stored at R_CTX. On error NULL is stored at R_CTX and an error code is returned. The context needs to be released using gcry_ctx_release. */ gpg_err_code_t _gcry_mpi_ec_new (gcry_ctx_t *r_ctx, gcry_sexp_t keyparam, const char *curvename) { gpg_err_code_t errc; elliptic_curve_t E; gcry_ctx_t ctx = NULL; int flags = 0; mpi_ec_t ec; *r_ctx = NULL; memset (&E, 0, sizeof E); errc = mpi_ec_get_elliptic_curve (&E, &flags, keyparam, curvename); if (errc) goto leave; errc = _gcry_mpi_ec_p_new (&ctx, E.model, E.dialect, flags, E.p, E.a, E.b); if (errc) goto leave; ec = _gcry_ctx_get_pointer (ctx, CONTEXT_TYPE_EC); errc = mpi_ec_setup_elliptic_curve (ec, flags, &E, keyparam); if (errc) goto leave; *r_ctx = ctx; ctx = NULL; leave: _gcry_ecc_curve_free (&E); _gcry_ctx_release (ctx); return errc; } /* Return the parameters of the curve NAME as an S-expression. */ gcry_sexp_t _gcry_ecc_get_param_sexp (const char *name) { elliptic_curve_t E; gcry_mpi_t pkey[5]; gcry_sexp_t result; memset (&E, 0, sizeof E); if (_gcry_ecc_fill_in_curve (0, name, &E, NULL)) return NULL; pkey[0] = E.p; pkey[1] = E.a; pkey[2] = E.b; pkey[3] = _gcry_ecc_ec2os (E.G.x, E.G.y, E.p); pkey[4] = E.n; if (sexp_build (&result, NULL, "(public-key(ecc(p%m)(a%m)(b%m)(g%m)(n%m)(h%u)))", pkey[0], pkey[1], pkey[2], pkey[3], pkey[4], E.h)) result = NULL; _gcry_ecc_curve_free (&E); _gcry_mpi_release (pkey[3]); return result; } /* Return an MPI (or opaque MPI) described by NAME and the context EC. If COPY is true a copy is returned, if not a const MPI may be returned. In any case mpi_free must be used. */ gcry_mpi_t _gcry_ecc_get_mpi (const char *name, mpi_ec_t ec, int copy) { if (!*name) return NULL; if (!strcmp (name, "p") && ec->p) return mpi_is_const (ec->p) && !copy? ec->p : mpi_copy (ec->p); if (!strcmp (name, "a") && ec->a) return mpi_is_const (ec->a) && !copy? ec->a : mpi_copy (ec->a); if (!strcmp (name, "b") && ec->b) return mpi_is_const (ec->b) && !copy? ec->b : mpi_copy (ec->b); if (!strcmp (name, "n") && ec->n) return mpi_is_const (ec->n) && !copy? ec->n : mpi_copy (ec->n); if (!strcmp (name, "h")) { gcry_mpi_t h = _gcry_mpi_get_const (ec->h); return !copy? h : mpi_set (NULL, h); } if (!strcmp (name, "d") && ec->d) return mpi_is_const (ec->d) && !copy? ec->d : mpi_copy (ec->d); /* Return a requested point coordinate. */ if (!strcmp (name, "g.x") && ec->G && ec->G->x) return mpi_is_const (ec->G->x) && !copy? ec->G->x : mpi_copy (ec->G->x); if (!strcmp (name, "g.y") && ec->G && ec->G->y) return mpi_is_const (ec->G->y) && !copy? ec->G->y : mpi_copy (ec->G->y); if (!strcmp (name, "q.x") && ec->Q && ec->Q->x) return mpi_is_const (ec->Q->x) && !copy? ec->Q->x : mpi_copy (ec->Q->x); if (!strcmp (name, "q.y") && ec->Q && ec->Q->y) return mpi_is_const (ec->Q->y) && !copy? ec->Q->y : mpi_copy (ec->Q->y); /* If the base point has been requested, return it in standard encoding. */ if (!strcmp (name, "g") && ec->G) return _gcry_mpi_ec_ec2os (ec->G, ec); /* If the public key has been requested, return it by default in standard uncompressed encoding or if requested in other encodings. */ if (*name == 'q' && (!name[1] || name[1] == '@')) { /* If only the private key is given, compute the public key. */ if (!ec->Q) ec->Q = _gcry_ecc_compute_public (NULL, ec); if (!ec->Q) return NULL; if (name[1] != '@') return _gcry_mpi_ec_ec2os (ec->Q, ec); if (!strcmp (name+2, "eddsa") && ec->model == MPI_EC_EDWARDS) { unsigned char *encpk; unsigned int encpklen; if (!_gcry_ecc_eddsa_encodepoint (ec->Q, ec, NULL, NULL, 0, &encpk, &encpklen)) return mpi_set_opaque (NULL, encpk, encpklen*8); } } return NULL; } /* Return a point described by NAME and the context EC. */ gcry_mpi_point_t _gcry_ecc_get_point (const char *name, mpi_ec_t ec) { if (!strcmp (name, "g") && ec->G) return point_copy (ec->G); if (!strcmp (name, "q")) { /* If only the private key is given, compute the public key. */ if (!ec->Q) ec->Q = _gcry_ecc_compute_public (NULL, ec); if (ec->Q) return point_copy (ec->Q); } return NULL; } /* Store the MPI NEWVALUE into the context EC under NAME. */ gpg_err_code_t _gcry_ecc_set_mpi (const char *name, gcry_mpi_t newvalue, mpi_ec_t ec) { gpg_err_code_t rc = 0; if (!*name) ; else if (!strcmp (name, "p")) { mpi_free (ec->p); ec->p = mpi_copy (newvalue); _gcry_mpi_ec_get_reset (ec); } else if (!strcmp (name, "a")) { mpi_free (ec->a); ec->a = mpi_copy (newvalue); _gcry_mpi_ec_get_reset (ec); } else if (!strcmp (name, "b")) { mpi_free (ec->b); ec->b = mpi_copy (newvalue); } else if (!strcmp (name, "n")) { mpi_free (ec->n); ec->n = mpi_copy (newvalue); } else if (!strcmp (name, "h")) { mpi_get_ui (&ec->h, newvalue); } else if (*name == 'q' && (!name[1] || name[1] == '@')) { if (newvalue) { if (!ec->Q) ec->Q = mpi_point_new (0); rc = _gcry_mpi_ec_decode_point (ec->Q, newvalue, ec); } if (rc || !newvalue) { _gcry_mpi_point_release (ec->Q); ec->Q = NULL; } /* Note: We assume that Q matches d and thus do not reset d. */ } else if (!strcmp (name, "d")) { mpi_free (ec->d); ec->d = mpi_copy (newvalue); if (ec->d) { /* We need to reset the public key because it may not anymore match. */ _gcry_mpi_point_release (ec->Q); ec->Q = NULL; } } else rc = GPG_ERR_UNKNOWN_NAME; return rc; } /* Store the point NEWVALUE into the context EC under NAME. */ gpg_err_code_t _gcry_ecc_set_point (const char *name, gcry_mpi_point_t newvalue, mpi_ec_t ec) { if (!strcmp (name, "g")) { _gcry_mpi_point_release (ec->G); ec->G = point_copy (newvalue); } else if (!strcmp (name, "q")) { _gcry_mpi_point_release (ec->Q); ec->Q = point_copy (newvalue); } else return GPG_ERR_UNKNOWN_NAME; return 0; } diff --git a/src/fips.c b/src/fips.c index 669cfd0e..574776ac 100644 --- a/src/fips.c +++ b/src/fips.c @@ -1,1171 +1,1172 @@ /* fips.c - FIPS mode management * Copyright (C) 2008 Free Software Foundation, Inc. * * This file is part of Libgcrypt. * * Libgcrypt is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2.1 of * the License, or (at your option) any later version. * * Libgcrypt is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program; if not, see . */ #include #include #include #include #include #include #ifdef ENABLE_HMAC_BINARY_CHECK # include # include # include # include #endif #ifdef HAVE_SYSLOG # include #endif /*HAVE_SYSLOG*/ /* The name of the file used to force libgcrypt into fips mode. */ #define FIPS_FORCE_FILE "/etc/gcrypt/fips_enabled" #include "g10lib.h" #include "cipher-proto.h" #include "../random/random.h" /* The states of the finite state machine used in fips mode. */ enum module_states { /* POWEROFF cannot be represented. */ STATE_POWERON = 0, STATE_INIT, STATE_SELFTEST, STATE_OPERATIONAL, STATE_ERROR, STATE_FATALERROR, STATE_SHUTDOWN }; /* Flag telling whether we are in fips mode. It uses inverse logic so that fips mode is the default unless changed by the initialization code. To check whether fips mode is enabled, use the function fips_mode()! */ int _gcry_no_fips_mode_required; /* This is the lock we use to protect the FSM. */ GPGRT_LOCK_DEFINE (fsm_lock); /* The current state of the FSM. The whole state machinery is only used while in fips mode. Change this only while holding fsm_lock. */ static enum module_states current_state; static void fips_new_state (enum module_states new_state); /* Convert lowercase hex digits; assumes valid hex digits. */ #define loxtoi_1(p) (*(p) <= '9'? (*(p)- '0'): (*(p)-'a'+10)) #define loxtoi_2(p) ((loxtoi_1(p) * 16) + loxtoi_1((p)+1)) /* Returns true if P points to a lowercase hex digit. */ #define loxdigit_p(p) !!strchr ("01234567890abcdef", *(p)) /* * Returns 1 if the FIPS mode is to be activated based on the * environment variable LIBGCRYPT_FORCE_FIPS_MODE, the file defined by * FIPS_FORCE_FILE, or /proc/sys/crypto/fips_enabled. * This function aborts on misconfigured filesystems. */ static int check_fips_system_setting (void) { /* Do we have the environment variable set? */ if (getenv ("LIBGCRYPT_FORCE_FIPS_MODE")) return 1; /* For testing the system it is useful to override the system provided detection of the FIPS mode and force FIPS mode using a file. The filename is hardwired so that there won't be any confusion on whether /etc/gcrypt/ or /usr/local/etc/gcrypt/ is actually used. The file itself may be empty. */ if ( !access (FIPS_FORCE_FILE, F_OK) ) return 1; /* Checking based on /proc file properties. */ { static const char procfname[] = "/proc/sys/crypto/fips_enabled"; FILE *fp; int saved_errno; fp = fopen (procfname, "r"); if (fp) { char line[256]; if (fgets (line, sizeof line, fp) && atoi (line)) { /* System is in fips mode. */ fclose (fp); return 1; } fclose (fp); } else if ((saved_errno = errno) != ENOENT && saved_errno != EACCES && !access ("/proc/version", F_OK) ) { /* Problem reading the fips file despite that we have the proc file system. We better stop right away. */ log_info ("FATAL: error reading `%s' in libgcrypt: %s\n", procfname, strerror (saved_errno)); #ifdef HAVE_SYSLOG syslog (LOG_USER|LOG_ERR, "Libgcrypt error: " "reading `%s' failed: %s - abort", procfname, strerror (saved_errno)); #endif /*HAVE_SYSLOG*/ abort (); } } return 0; } /* * Initial check if the FIPS mode should be activated on startup. * Called by the constructor at the initialization of the library. */ int _gcry_fips_to_activate (void) { return check_fips_system_setting (); } /* Check whether the OS is in FIPS mode and record that in a module local variable. If FORCE is passed as true, fips mode will be enabled anyway. Note: This function is not thread-safe and should be called before any threads are created. This function may only be called once. */ void _gcry_initialize_fips_mode (int force) { static int done; gpg_error_t err; /* Make sure we are not accidentally called twice. */ if (done) { if ( fips_mode () ) { fips_new_state (STATE_FATALERROR); fips_noreturn (); } /* If not in fips mode an assert is sufficient. */ gcry_assert (!done); } done = 1; /* If the calling application explicitly requested fipsmode, do so. */ if (force) { gcry_assert (!_gcry_no_fips_mode_required); goto leave; } /* If the system explicitly requested fipsmode, do so. */ if (check_fips_system_setting ()) { gcry_assert (!_gcry_no_fips_mode_required); goto leave; } /* Fips not not requested, set flag. */ _gcry_no_fips_mode_required = 1; leave: if (!_gcry_no_fips_mode_required) { /* Yes, we are in FIPS mode. */ /* Intitialize the lock to protect the FSM. */ err = gpgrt_lock_init (&fsm_lock); if (err) { /* If that fails we can't do anything but abort the process. We need to use log_info so that the FSM won't get involved. */ log_info ("FATAL: failed to create the FSM lock in libgcrypt: %s\n", gpg_strerror (err)); #ifdef HAVE_SYSLOG syslog (LOG_USER|LOG_ERR, "Libgcrypt error: " "creating FSM lock failed: %s - abort", gpg_strerror (err)); #endif /*HAVE_SYSLOG*/ abort (); } /* Now get us into the INIT state. */ fips_new_state (STATE_INIT); } return; } static void lock_fsm (void) { gpg_error_t err; err = gpgrt_lock_lock (&fsm_lock); if (err) { log_info ("FATAL: failed to acquire the FSM lock in libgrypt: %s\n", gpg_strerror (err)); #ifdef HAVE_SYSLOG syslog (LOG_USER|LOG_ERR, "Libgcrypt error: " "acquiring FSM lock failed: %s - abort", gpg_strerror (err)); #endif /*HAVE_SYSLOG*/ abort (); } } static void unlock_fsm (void) { gpg_error_t err; err = gpgrt_lock_unlock (&fsm_lock); if (err) { log_info ("FATAL: failed to release the FSM lock in libgrypt: %s\n", gpg_strerror (err)); #ifdef HAVE_SYSLOG syslog (LOG_USER|LOG_ERR, "Libgcrypt error: " "releasing FSM lock failed: %s - abort", gpg_strerror (err)); #endif /*HAVE_SYSLOG*/ abort (); } } static const char * state2str (enum module_states state) { const char *s; switch (state) { case STATE_POWERON: s = "Power-On"; break; case STATE_INIT: s = "Init"; break; case STATE_SELFTEST: s = "Self-Test"; break; case STATE_OPERATIONAL: s = "Operational"; break; case STATE_ERROR: s = "Error"; break; case STATE_FATALERROR: s = "Fatal-Error"; break; case STATE_SHUTDOWN: s = "Shutdown"; break; default: s = "?"; break; } return s; } /* Return true if the library is in the operational state. */ int _gcry_fips_is_operational (void) { int result; if (!fips_mode ()) result = 1; else { lock_fsm (); if (current_state == STATE_INIT) { /* If we are still in the INIT state, we need to run the selftests so that the FSM can eventually get into operational state. Given that we would need a 2-phase initialization of libgcrypt, but that has traditionally not been enforced, we use this on demand self-test checking. Note that Proper applications would do the application specific libgcrypt initialization between a gcry_check_version() and gcry_control (GCRYCTL_INITIALIZATION_FINISHED) where the latter will run the selftests. The drawback of these on-demand self-tests are a small chance that self-tests are performed by several threads; that is no problem because our FSM make sure that we won't oversee any error. */ unlock_fsm (); _gcry_fips_run_selftests (0); /* Release resources for random. */ _gcry_random_close_fds (); lock_fsm (); } result = (current_state == STATE_OPERATIONAL); unlock_fsm (); } return result; } /* This is test on whether the library is in the operational state. In contrast to _gcry_fips_is_operational this function won't do a state transition on the fly. */ int _gcry_fips_test_operational (void) { int result; if (!fips_mode ()) result = 1; else { lock_fsm (); result = (current_state == STATE_OPERATIONAL); unlock_fsm (); } return result; } int _gcry_fips_indicator_cipher (va_list arg_ptr) { enum gcry_cipher_algos alg = va_arg (arg_ptr, enum gcry_cipher_algos); enum gcry_cipher_modes mode; switch (alg) { case GCRY_CIPHER_AES: case GCRY_CIPHER_AES192: case GCRY_CIPHER_AES256: mode = va_arg (arg_ptr, enum gcry_cipher_modes); switch (mode) { case GCRY_CIPHER_MODE_ECB: case GCRY_CIPHER_MODE_CBC: case GCRY_CIPHER_MODE_CFB: case GCRY_CIPHER_MODE_CFB8: case GCRY_CIPHER_MODE_OFB: case GCRY_CIPHER_MODE_CTR: case GCRY_CIPHER_MODE_CCM: case GCRY_CIPHER_MODE_GCM: case GCRY_CIPHER_MODE_XTS: case GCRY_CIPHER_MODE_AESWRAP: return GPG_ERR_NO_ERROR; default: return GPG_ERR_NOT_SUPPORTED; } default: return GPG_ERR_NOT_SUPPORTED; } } int _gcry_fips_indicator_mac (va_list arg_ptr) { enum gcry_mac_algos alg = va_arg (arg_ptr, enum gcry_mac_algos); switch (alg) { case GCRY_MAC_CMAC_AES: case GCRY_MAC_HMAC_SHA1: case GCRY_MAC_HMAC_SHA224: case GCRY_MAC_HMAC_SHA256: case GCRY_MAC_HMAC_SHA384: case GCRY_MAC_HMAC_SHA512: case GCRY_MAC_HMAC_SHA512_224: case GCRY_MAC_HMAC_SHA512_256: case GCRY_MAC_HMAC_SHA3_224: case GCRY_MAC_HMAC_SHA3_256: case GCRY_MAC_HMAC_SHA3_384: case GCRY_MAC_HMAC_SHA3_512: return GPG_ERR_NO_ERROR; default: return GPG_ERR_NOT_SUPPORTED; } } int _gcry_fips_indicator_md (va_list arg_ptr) { enum gcry_md_algos alg = va_arg (arg_ptr, enum gcry_md_algos); switch (alg) { case GCRY_MD_SHA1: case GCRY_MD_SHA224: case GCRY_MD_SHA256: case GCRY_MD_SHA384: case GCRY_MD_SHA512: case GCRY_MD_SHA512_224: case GCRY_MD_SHA512_256: case GCRY_MD_SHA3_224: case GCRY_MD_SHA3_256: case GCRY_MD_SHA3_384: case GCRY_MD_SHA3_512: case GCRY_MD_SHAKE128: case GCRY_MD_SHAKE256: return GPG_ERR_NO_ERROR; default: return GPG_ERR_NOT_SUPPORTED; } } int _gcry_fips_indicator_kdf (va_list arg_ptr) { enum gcry_kdf_algos alg = va_arg (arg_ptr, enum gcry_kdf_algos); switch (alg) { case GCRY_KDF_PBKDF2: return GPG_ERR_NO_ERROR; default: return GPG_ERR_NOT_SUPPORTED; } } int _gcry_fips_indicator_function (va_list arg_ptr) { const char *function = va_arg (arg_ptr, const char *); if (strcmp (function, "gcry_pk_sign") == 0 || strcmp (function, "gcry_pk_verify") == 0 || strcmp (function, "gcry_pk_encrypt") == 0 || strcmp (function, "gcry_pk_decrypt") == 0 || strcmp (function, "gcry_pk_random_override_new") == 0) return GPG_ERR_NOT_SUPPORTED; return GPG_ERR_NO_ERROR; } /* Note: the array should be sorted. */ static const char *valid_string_in_sexp[] = { "curve", "d", "data", "e", "ecdsa", + "eddsa", "flags", "genkey", "hash", "n", "nbits", "pkcs1", "private-key", "pss", "public-key", "q", "r", "raw", "rsa", "rsa-use-e", "s", "salt-length", "sig-val", "value" }; static int compare_string (const void *v1, const void *v2) { const char * const *p_str1 = v1; const char * const *p_str2 = v2; return strcmp (*p_str1, *p_str2); } int _gcry_fips_indicator_pk_flags (va_list arg_ptr) { const char *flag = va_arg (arg_ptr, const char *); if (bsearch (&flag, valid_string_in_sexp, DIM (valid_string_in_sexp), sizeof (char *), compare_string)) return GPG_ERR_NO_ERROR; return GPG_ERR_NOT_SUPPORTED; } /* This is a test on whether the library is in the error or operational state. */ int _gcry_fips_test_error_or_operational (void) { int result; if (!fips_mode ()) result = 1; else { lock_fsm (); result = (current_state == STATE_OPERATIONAL || current_state == STATE_ERROR); unlock_fsm (); } return result; } static void reporter (const char *domain, int algo, const char *what, const char *errtxt) { if (!errtxt && !_gcry_log_verbosity (2)) return; log_info ("libgcrypt selftest: %s %s%s (%d): %s%s%s%s\n", !strcmp (domain, "hmac")? "digest":domain, !strcmp (domain, "hmac")? "HMAC-":"", !strcmp (domain, "cipher")? _gcry_cipher_algo_name (algo) : !strcmp (domain, "digest")? _gcry_md_algo_name (algo) : !strcmp (domain, "hmac")? _gcry_md_algo_name (algo) : !strcmp (domain, "pubkey")? _gcry_pk_algo_name (algo) : "", algo, errtxt? errtxt:"Okay", what?" (":"", what? what:"", what?")":""); } /* Run self-tests for all required cipher algorithms. Return 0 on success. */ static int run_cipher_selftests (int extended) { static int algos[] = { GCRY_CIPHER_AES128, GCRY_CIPHER_AES192, GCRY_CIPHER_AES256, 0 }; int idx; gpg_error_t err; int anyerr = 0; for (idx=0; algos[idx]; idx++) { err = _gcry_cipher_selftest (algos[idx], extended, reporter); reporter ("cipher", algos[idx], NULL, err? gpg_strerror (err):NULL); if (err) anyerr = 1; } return anyerr; } /* Run self-tests for all required hash algorithms. Return 0 on success. */ static int run_digest_selftests (int extended) { static int algos[] = { GCRY_MD_SHA1, GCRY_MD_SHA224, #ifndef ENABLE_HMAC_BINARY_CHECK GCRY_MD_SHA256, #endif GCRY_MD_SHA384, GCRY_MD_SHA512, 0 }; int idx; gpg_error_t err; int anyerr = 0; for (idx=0; algos[idx]; idx++) { err = _gcry_md_selftest (algos[idx], extended, reporter); reporter ("digest", algos[idx], NULL, err? gpg_strerror (err):NULL); if (err) anyerr = 1; } return anyerr; } /* Run self-tests for MAC algorithms. Return 0 on success. */ static int run_mac_selftests (int extended) { static int algos[] = { GCRY_MAC_HMAC_SHA1, GCRY_MAC_HMAC_SHA224, #ifndef ENABLE_HMAC_BINARY_CHECK GCRY_MAC_HMAC_SHA256, #endif GCRY_MAC_HMAC_SHA384, GCRY_MAC_HMAC_SHA512, GCRY_MAC_HMAC_SHA3_224, GCRY_MAC_HMAC_SHA3_256, GCRY_MAC_HMAC_SHA3_384, GCRY_MAC_HMAC_SHA3_512, GCRY_MAC_CMAC_AES, 0 }; int idx; gpg_error_t err; int anyerr = 0; for (idx=0; algos[idx]; idx++) { err = _gcry_mac_selftest (algos[idx], extended, reporter); reporter ("mac", algos[idx], NULL, err? gpg_strerror (err):NULL); if (err) anyerr = 1; } return anyerr; } /* Run self-tests for all KDF algorithms. Return 0 on success. */ static int run_kdf_selftests (int extended) { static int algos[] = { GCRY_KDF_PBKDF2, 0 }; int idx; gpg_error_t err; int anyerr = 0; for (idx=0; algos[idx]; idx++) { err = _gcry_kdf_selftest (algos[idx], extended, reporter); reporter ("kdf", algos[idx], NULL, err? gpg_strerror (err):NULL); if (err) anyerr = 1; } return anyerr; } /* Run self-tests for all required public key algorithms. Return 0 on success. */ static int run_pubkey_selftests (int extended) { static int algos[] = { #if USE_RSA GCRY_PK_RSA, #endif /* USE_RSA */ #if USE_ECC GCRY_PK_ECC, #endif /* USE_ECC */ 0 }; int idx; gpg_error_t err; int anyerr = 0; for (idx=0; algos[idx]; idx++) { err = _gcry_pk_selftest (algos[idx], extended, reporter); reporter ("pubkey", algos[idx], NULL, err? gpg_strerror (err):NULL); if (err) anyerr = 1; } return anyerr; } /* Run self-tests for the random number generator. Returns 0 on success. */ static int run_random_selftests (void) { gpg_error_t err; err = _gcry_random_selftest (reporter); reporter ("random", 0, NULL, err? gpg_strerror (err):NULL); return !!err; } #ifdef ENABLE_HMAC_BINARY_CHECK # ifndef KEY_FOR_BINARY_CHECK # define KEY_FOR_BINARY_CHECK "What am I, a doctor or a moonshuttle conductor?" # endif #define HMAC_LEN 32 /* * In the ELF file opened as FP, fill the ELF header to the pointer * EHDR_P, determine the maximum offset of segments in R_OFFSET. * Also, find the section which contains the hmac value and return it * in HMAC. Rewinds FP to the beginning on success. */ static gpg_error_t get_file_offset (FILE *fp, ElfW (Ehdr) *ehdr_p, unsigned long *r_offset, unsigned char hmac[HMAC_LEN]) { ElfW (Phdr) phdr; ElfW (Shdr) shdr; int i; unsigned long off_segment = 0; /* Read the ELF header */ if (fseek (fp, 0, SEEK_SET) != 0) return gpg_error_from_syserror (); if (fread (ehdr_p, sizeof (*ehdr_p), 1, fp) != 1) return gpg_error_from_syserror (); /* The program header entry size should match the size of the phdr struct */ if (ehdr_p->e_phentsize != sizeof (phdr)) return gpg_error (GPG_ERR_INV_OBJ); if (ehdr_p->e_phoff == 0) return gpg_error (GPG_ERR_INV_OBJ); /* Jump to the first program header */ if (fseek (fp, ehdr_p->e_phoff, SEEK_SET) != 0) return gpg_error_from_syserror (); /* Iterate over the program headers, determine the last offset of segments. */ for (i = 0; i < ehdr_p->e_phnum; i++) { unsigned long off; if (fread (&phdr, sizeof (phdr), 1, fp) != 1) return gpg_error_from_syserror (); off = phdr.p_offset + phdr.p_filesz; if (off_segment < off) off_segment = off; } if (!off_segment) /* No segment found in the file */ return gpg_error (GPG_ERR_INV_OBJ); /* The section header entry size should match the size of the shdr struct */ if (ehdr_p->e_shentsize != sizeof (shdr)) return gpg_error (GPG_ERR_INV_OBJ); if (ehdr_p->e_shoff == 0) return gpg_error (GPG_ERR_INV_OBJ); /* Jump to the first section header */ if (fseek (fp, ehdr_p->e_shoff, SEEK_SET) != 0) return gpg_error_from_syserror (); /* Iterate over the section headers, determine the note section, read the hmac value. */ for (i = 0; i < ehdr_p->e_shnum; i++) { long off; if (fread (&shdr, sizeof (shdr), 1, fp) != 1) return gpg_error_from_syserror (); off = ftell (fp); if (off < 0) return gpg_error_from_syserror (); if (shdr.sh_type == SHT_NOTE && shdr.sh_flags == 0 && shdr.sh_size == 48) { const char header_of_the_note[] = { 0x04, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0xca, 0xfe, 0x2a, 0x8e, 'F', 'D', 'O', 0x00 }; unsigned char header[16]; /* Jump to the note section. */ if (fseek (fp, shdr.sh_offset, SEEK_SET) != 0) return gpg_error_from_syserror (); if (fread (header, sizeof (header), 1, fp) != 1) return gpg_error_from_syserror (); if (!memcmp (header, header_of_the_note, 16)) { /* Found. Read the hmac value into HMAC. */ if (fread (hmac, HMAC_LEN, 1, fp) != 1) return gpg_error_from_syserror (); break; } /* Back to the next section header. */ if (fseek (fp, off, SEEK_SET) != 0) return gpg_error_from_syserror (); } } if (i == ehdr_p->e_shnum) /* The note section not found. */ return gpg_error (GPG_ERR_INV_OBJ); /* Fix up the ELF header, clean all section information. */ ehdr_p->e_shoff = 0; ehdr_p->e_shentsize = 0; ehdr_p->e_shnum = 0; ehdr_p->e_shstrndx = 0; *r_offset = off_segment; if (fseek (fp, 0, SEEK_SET) != 0) return gpg_error_from_syserror (); return 0; } static gpg_error_t hmac256_check (const char *filename, const char *key) { gpg_error_t err; FILE *fp; gcry_md_hd_t hd; const size_t buffer_size = 32768; size_t nread; char *buffer; unsigned long offset = 0; unsigned long pos = 0; ElfW (Ehdr) ehdr; unsigned char hmac[HMAC_LEN]; fp = fopen (filename, "rb"); if (!fp) return gpg_error (GPG_ERR_INV_OBJ); err = get_file_offset (fp, &ehdr, &offset, hmac); if (err) { fclose (fp); return err; } err = _gcry_md_open (&hd, GCRY_MD_SHA256, GCRY_MD_FLAG_HMAC); if (err) { fclose (fp); return err; } err = _gcry_md_setkey (hd, key, strlen (key)); if (err) { fclose (fp); _gcry_md_close (hd); return err; } buffer = xtrymalloc (buffer_size); if (!buffer) { err = gpg_error_from_syserror (); fclose (fp); _gcry_md_close (hd); return err; } while (1) { nread = fread (buffer, 1, buffer_size, fp); if (pos + nread >= offset) nread = offset - pos; /* Copy the fixed ELF header at the beginning. */ if (pos == 0) memcpy (buffer, &ehdr, sizeof (ehdr)); _gcry_md_write (hd, buffer, nread); if (nread < buffer_size) break; pos += nread; } if (ferror (fp)) err = gpg_error (GPG_ERR_INV_HANDLE); else { unsigned char *digest; digest = _gcry_md_read (hd, 0); if (!memcmp (digest, hmac, HMAC_LEN)) /* Success. */ err = 0; else err = gpg_error (GPG_ERR_CHECKSUM); } _gcry_md_close (hd); xfree (buffer); fclose (fp); return err; } /* Run an integrity check on the binary. Returns 0 on success. */ static int check_binary_integrity (void) { gpg_error_t err; Dl_info info; const char *key = KEY_FOR_BINARY_CHECK; if (!dladdr (hmac256_check, &info)) err = gpg_error_from_syserror (); else err = hmac256_check (info.dli_fname, key); reporter ("binary", 0, NULL, err? gpg_strerror (err):NULL); #ifdef HAVE_SYSLOG if (err) syslog (LOG_USER|LOG_ERR, "Libgcrypt error: " "integrity check failed: %s", gpg_strerror (err)); #endif /*HAVE_SYSLOG*/ return !!err; } /* Run self-tests for HMAC-SHA256 algorithm before verifying library integrity. * Return 0 on success. */ static int run_hmac_sha256_selftests (int extended) { gpg_error_t err; int anyerr = 0; err = _gcry_md_selftest (GCRY_MD_SHA256, extended, reporter); reporter ("digest", GCRY_MD_SHA256, NULL, err? gpg_strerror (err):NULL); if (err) anyerr = 1; err = _gcry_mac_selftest (GCRY_MAC_HMAC_SHA256, extended, reporter); reporter ("mac", GCRY_MAC_HMAC_SHA256, NULL, err? gpg_strerror (err):NULL); if (err) anyerr = 1; return anyerr; } #endif /* Run the self-tests. If EXTENDED is true, extended versions of the selftest are run, that is more tests than required by FIPS. */ gpg_err_code_t _gcry_fips_run_selftests (int extended) { enum module_states result = STATE_ERROR; gcry_err_code_t ec = GPG_ERR_SELFTEST_FAILED; if (fips_mode ()) fips_new_state (STATE_SELFTEST); #ifdef ENABLE_HMAC_BINARY_CHECK if (run_hmac_sha256_selftests (extended)) goto leave; if (fips_mode ()) { /* Now check the integrity of the binary. We do this this after having checked the HMAC code. */ if (check_binary_integrity ()) goto leave; } #endif if (run_cipher_selftests (extended)) goto leave; if (run_digest_selftests (extended)) goto leave; if (run_mac_selftests (extended)) goto leave; if (run_kdf_selftests (extended)) goto leave; /* Run random tests before the pubkey tests because the latter require random. */ if (run_random_selftests ()) goto leave; if (run_pubkey_selftests (extended)) goto leave; /* All selftests passed. */ result = STATE_OPERATIONAL; ec = 0; leave: if (fips_mode ()) fips_new_state (result); return ec; } /* This function is used to tell the FSM about errors in the library. The FSM will be put into an error state. This function should not be called directly but by one of the macros fips_signal_error (description) fips_signal_fatal_error (description) where DESCRIPTION is a string describing the error. */ void _gcry_fips_signal_error (const char *srcfile, int srcline, const char *srcfunc, int is_fatal, const char *description) { if (!fips_mode ()) return; /* Not required. */ /* Set new state before printing an error. */ fips_new_state (is_fatal? STATE_FATALERROR : STATE_ERROR); /* Print error. */ log_info ("%serror in libgcrypt, file %s, line %d%s%s: %s\n", is_fatal? "fatal ":"", srcfile, srcline, srcfunc? ", function ":"", srcfunc? srcfunc:"", description? description : "no description available"); #ifdef HAVE_SYSLOG syslog (LOG_USER|LOG_ERR, "Libgcrypt error: " "%serror in file %s, line %d%s%s: %s", is_fatal? "fatal ":"", srcfile, srcline, srcfunc? ", function ":"", srcfunc? srcfunc:"", description? description : "no description available"); #endif /*HAVE_SYSLOG*/ } /* Perform a state transition to NEW_STATE. If this is an invalid transition, the module will go into a fatal error state. */ static void fips_new_state (enum module_states new_state) { int ok = 0; enum module_states last_state; lock_fsm (); last_state = current_state; switch (current_state) { case STATE_POWERON: if (new_state == STATE_INIT || new_state == STATE_ERROR || new_state == STATE_FATALERROR) ok = 1; break; case STATE_INIT: if (new_state == STATE_SELFTEST || new_state == STATE_ERROR || new_state == STATE_FATALERROR) ok = 1; break; case STATE_SELFTEST: if (new_state == STATE_OPERATIONAL || new_state == STATE_ERROR || new_state == STATE_FATALERROR) ok = 1; break; case STATE_OPERATIONAL: if (new_state == STATE_SHUTDOWN || new_state == STATE_SELFTEST || new_state == STATE_ERROR || new_state == STATE_FATALERROR) ok = 1; break; case STATE_ERROR: if (new_state == STATE_SHUTDOWN || new_state == STATE_ERROR || new_state == STATE_FATALERROR || new_state == STATE_SELFTEST) ok = 1; break; case STATE_FATALERROR: if (new_state == STATE_SHUTDOWN ) ok = 1; break; case STATE_SHUTDOWN: /* We won't see any transition *from* Shutdown because the only allowed new state is Power-Off and that one can't be represented. */ break; } if (ok) { current_state = new_state; } unlock_fsm (); if (!ok || _gcry_log_verbosity (2)) log_info ("libgcrypt state transition %s => %s %s\n", state2str (last_state), state2str (new_state), ok? "granted":"denied"); if (!ok) { /* Invalid state transition. Halting library. */ #ifdef HAVE_SYSLOG syslog (LOG_USER|LOG_ERR, "Libgcrypt error: invalid state transition %s => %s", state2str (last_state), state2str (new_state)); #endif /*HAVE_SYSLOG*/ fips_noreturn (); } else if (new_state == STATE_ERROR || new_state == STATE_FATALERROR) { #ifdef HAVE_SYSLOG syslog (LOG_USER|LOG_WARNING, "Libgcrypt notice: state transition %s => %s", state2str (last_state), state2str (new_state)); #endif /*HAVE_SYSLOG*/ } } /* This function should be called to ensure that the execution shall not continue. */ void _gcry_fips_noreturn (void) { #ifdef HAVE_SYSLOG syslog (LOG_USER|LOG_ERR, "Libgcrypt terminated the application"); #endif /*HAVE_SYSLOG*/ fflush (NULL); abort (); /*NOTREACHED*/ }