diff --git a/cipher/twofish-amd64.S b/cipher/twofish-amd64.S index a7a60553..8998d296 100644 --- a/cipher/twofish-amd64.S +++ b/cipher/twofish-amd64.S @@ -1,1184 +1,1258 @@ /* twofish-amd64.S - AMD64 assembly implementation of Twofish cipher * * Copyright (C) 2013-2015 Jussi Kivilinna * * This file is part of Libgcrypt. * * Libgcrypt is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2.1 of * the License, or (at your option) any later version. * * Libgcrypt is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program; if not, see . */ #ifdef __x86_64 #include #if (defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) || \ defined(HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS)) && defined(USE_TWOFISH) #include "asm-common-amd64.h" .text /* structure of TWOFISH_context: */ #define s0 0 #define s1 ((s0) + 4 * 256) #define s2 ((s1) + 4 * 256) #define s3 ((s2) + 4 * 256) #define w ((s3) + 4 * 256) #define k ((w) + 4 * 8) /* register macros */ #define CTX %rdi #define RA %rax #define RB %rbx #define RC %rcx #define RD %rdx #define RAd %eax #define RBd %ebx #define RCd %ecx #define RDd %edx #define RAbl %al #define RBbl %bl #define RCbl %cl #define RDbl %dl #define RAbh %ah #define RBbh %bh #define RCbh %ch #define RDbh %dh #define RX %r8 #define RY %r9 #define RXd %r8d #define RYd %r9d #define RT0 %rsi #define RT1 %rbp #define RT2 %r10 #define RT3 %r11 #define RT0d %esi #define RT1d %ebp #define RT2d %r10d #define RT3d %r11d /*********************************************************************** * AMD64 assembly implementation of the Twofish cipher ***********************************************************************/ #define enc_g1_2(a, b, x, y) \ movzbl b ## bl, RT3d; \ movzbl b ## bh, RT1d; \ movzbl a ## bl, RT2d; \ movzbl a ## bh, RT0d; \ rorl $16, b ## d; \ rorl $16, a ## d; \ movl s1(CTX, RT3, 4), RYd; \ movzbl b ## bl, RT3d; \ movl s0(CTX, RT2, 4), RXd; \ movzbl a ## bl, RT2d; \ xorl s2(CTX, RT1, 4), RYd; \ movzbl b ## bh, RT1d; \ xorl s1(CTX, RT0, 4), RXd; \ movzbl a ## bh, RT0d; \ rorl $16, b ## d; \ rorl $16, a ## d; \ xorl s3(CTX, RT3, 4), RYd; \ xorl s2(CTX, RT2, 4), RXd; \ xorl s0(CTX, RT1, 4), RYd; \ xorl s3(CTX, RT0, 4), RXd; #define dec_g1_2(a, b, x, y) \ movzbl a ## bl, RT2d; \ movzbl a ## bh, RT0d; \ movzbl b ## bl, RT3d; \ movzbl b ## bh, RT1d; \ rorl $16, a ## d; \ rorl $16, b ## d; \ movl s0(CTX, RT2, 4), RXd; \ movzbl a ## bl, RT2d; \ movl s1(CTX, RT3, 4), RYd; \ movzbl b ## bl, RT3d; \ xorl s1(CTX, RT0, 4), RXd; \ movzbl a ## bh, RT0d; \ xorl s2(CTX, RT1, 4), RYd; \ movzbl b ## bh, RT1d; \ rorl $16, a ## d; \ rorl $16, b ## d; \ xorl s2(CTX, RT2, 4), RXd; \ xorl s3(CTX, RT3, 4), RYd; \ xorl s3(CTX, RT0, 4), RXd; \ xorl s0(CTX, RT1, 4), RYd; #define encrypt_round(ra, rb, rc, rd, n) \ enc_g1_2(##ra, ##rb, RX, RY); \ \ leal (RXd, RYd, 2), RT0d; \ addl RYd, RXd; \ addl (k + 8 * (n) + 4)(CTX), RT0d; \ roll $1, rd ## d; \ addl (k + 8 * (n))(CTX), RXd; \ xorl RT0d, rd ## d; \ xorl RXd, rc ## d; \ rorl $1, rc ## d; #define decrypt_round(ra, rb, rc, rd, n) \ dec_g1_2(##ra, ##rb, RX, RY); \ \ leal (RXd, RYd, 2), RT0d; \ addl RYd, RXd; \ addl (k + 8 * (n) + 4)(CTX), RT0d; \ roll $1, rc ## d; \ addl (k + 8 * (n))(CTX), RXd; \ xorl RXd, rc ## d; \ xorl RT0d, rd ## d; \ rorl $1, rd ## d; #define encrypt_cycle(a, b, c, d, nc) \ encrypt_round(##a, ##b, ##c, ##d, (nc) * 2); \ encrypt_round(##c, ##d, ##a, ##b, (nc) * 2 + 1); #define decrypt_cycle(a, b, c, d, nc) \ decrypt_round(##c, ##d, ##a, ##b, (nc) * 2 + 1); \ decrypt_round(##a, ##b, ##c, ##d, (nc) * 2); #define inpack(in, n, x, m) \ movl (4 * (n))(in), x; \ xorl (w + 4 * (m))(CTX), x; #define outunpack(out, n, x, m) \ xorl (w + 4 * (m))(CTX), x; \ movl x, (4 * (n))(out); .align 8 .globl _gcry_twofish_amd64_encrypt_block ELF(.type _gcry_twofish_amd64_encrypt_block,@function;) _gcry_twofish_amd64_encrypt_block: /* input: * %rdi: context, CTX * %rsi: dst * %rdx: src */ CFI_STARTPROC(); ENTER_SYSV_FUNC_PARAMS_0_4 subq $(3 * 8), %rsp; CFI_ADJUST_CFA_OFFSET(3 * 8); movq %rsi, (0 * 8)(%rsp); movq %rbp, (1 * 8)(%rsp); movq %rbx, (2 * 8)(%rsp); CFI_REL_OFFSET(%rbp, 1 * 8); CFI_REL_OFFSET(%rbx, 2 * 8); movq %rdx, RX; inpack(RX, 0, RAd, 0); inpack(RX, 1, RBd, 1); inpack(RX, 2, RCd, 2); inpack(RX, 3, RDd, 3); encrypt_cycle(RA, RB, RC, RD, 0); encrypt_cycle(RA, RB, RC, RD, 1); encrypt_cycle(RA, RB, RC, RD, 2); encrypt_cycle(RA, RB, RC, RD, 3); encrypt_cycle(RA, RB, RC, RD, 4); encrypt_cycle(RA, RB, RC, RD, 5); encrypt_cycle(RA, RB, RC, RD, 6); encrypt_cycle(RA, RB, RC, RD, 7); movq (0 * 8)(%rsp), RX; /*dst*/ outunpack(RX, 0, RCd, 4); outunpack(RX, 1, RDd, 5); outunpack(RX, 2, RAd, 6); outunpack(RX, 3, RBd, 7); movq (2 * 8)(%rsp), %rbx; movq (1 * 8)(%rsp), %rbp; CFI_RESTORE(%rbx); CFI_RESTORE(%rbp); addq $(3 * 8), %rsp; CFI_ADJUST_CFA_OFFSET(-3 * 8); EXIT_SYSV_FUNC ret_spec_stop; CFI_ENDPROC(); ELF(.size _gcry_twofish_amd64_encrypt_block,.-_gcry_twofish_amd64_encrypt_block;) .align 8 .globl _gcry_twofish_amd64_decrypt_block ELF(.type _gcry_twofish_amd64_decrypt_block,@function;) _gcry_twofish_amd64_decrypt_block: /* input: * %rdi: context, CTX * %rsi: dst * %rdx: src */ CFI_STARTPROC(); ENTER_SYSV_FUNC_PARAMS_0_4 subq $(3 * 8), %rsp; CFI_ADJUST_CFA_OFFSET(3 * 8); movq %rsi, (0 * 8)(%rsp); movq %rbp, (1 * 8)(%rsp); movq %rbx, (2 * 8)(%rsp); CFI_REL_OFFSET(%rbp, 1 * 8); CFI_REL_OFFSET(%rbx, 2 * 8); movq %rdx, RX; inpack(RX, 0, RCd, 4); inpack(RX, 1, RDd, 5); inpack(RX, 2, RAd, 6); inpack(RX, 3, RBd, 7); decrypt_cycle(RA, RB, RC, RD, 7); decrypt_cycle(RA, RB, RC, RD, 6); decrypt_cycle(RA, RB, RC, RD, 5); decrypt_cycle(RA, RB, RC, RD, 4); decrypt_cycle(RA, RB, RC, RD, 3); decrypt_cycle(RA, RB, RC, RD, 2); decrypt_cycle(RA, RB, RC, RD, 1); decrypt_cycle(RA, RB, RC, RD, 0); movq (0 * 8)(%rsp), RX; /*dst*/ outunpack(RX, 0, RAd, 0); outunpack(RX, 1, RBd, 1); outunpack(RX, 2, RCd, 2); outunpack(RX, 3, RDd, 3); movq (2 * 8)(%rsp), %rbx; movq (1 * 8)(%rsp), %rbp; CFI_RESTORE(%rbx); CFI_RESTORE(%rbp); addq $(3 * 8), %rsp; CFI_ADJUST_CFA_OFFSET(-3 * 8); EXIT_SYSV_FUNC ret_spec_stop; CFI_ENDPROC(); ELF(.size _gcry_twofish_amd64_encrypt_block,.-_gcry_twofish_amd64_encrypt_block;) #undef CTX #undef RA #undef RB #undef RC #undef RD #undef RAd #undef RBd #undef RCd #undef RDd #undef RAbl #undef RBbl #undef RCbl #undef RDbl #undef RAbh #undef RBbh #undef RCbh #undef RDbh #undef RX #undef RY #undef RXd #undef RYd #undef RT0 #undef RT1 #undef RT2 #undef RT3 #undef RT0d #undef RT1d #undef RT2d #undef RT3d /*********************************************************************** * AMD64 assembly implementation of the Twofish cipher, 3-way parallel ***********************************************************************/ #define CTX %rdi #define RIO %rdx #define RAB0 %rax #define RAB1 %rbx #define RAB2 %rcx #define RAB0d %eax #define RAB1d %ebx #define RAB2d %ecx #define RAB0bh %ah #define RAB1bh %bh #define RAB2bh %ch #define RAB0bl %al #define RAB1bl %bl #define RAB2bl %cl #define RCD0 %r8 #define RCD1 %r9 #define RCD2 %r10 #define RCD0d %r8d #define RCD1d %r9d #define RCD2d %r10d #define RX0 %rbp #define RX1 %r11 #define RX2 %r12 #define RX0d %ebp #define RX1d %r11d #define RX2d %r12d #define RY0 %r13 #define RY1 %r14 #define RY2 %r15 #define RY0d %r13d #define RY1d %r14d #define RY2d %r15d #define RT0 %rdx #define RT1 %rsi #define RT0d %edx #define RT1d %esi #define do16bit_ror(rot, op1, op2, T0, T1, tmp1, tmp2, ab, dst) \ movzbl ab ## bl, tmp2 ## d; \ movzbl ab ## bh, tmp1 ## d; \ rorq $(rot), ab; \ op1##l T0(CTX, tmp2, 4), dst ## d; \ op2##l T1(CTX, tmp1, 4), dst ## d; /* * Combined G1 & G2 function. Reordered with help of rotates to have moves * at beginning. */ #define g1g2_3(ab, cd, Tx0, Tx1, Tx2, Tx3, Ty0, Ty1, Ty2, Ty3, x, y) \ /* G1,1 && G2,1 */ \ do16bit_ror(32, mov, xor, Tx0, Tx1, RT0, x ## 0, ab ## 0, x ## 0); \ do16bit_ror(48, mov, xor, Ty1, Ty2, RT0, y ## 0, ab ## 0, y ## 0); \ \ do16bit_ror(32, mov, xor, Tx0, Tx1, RT0, x ## 1, ab ## 1, x ## 1); \ do16bit_ror(48, mov, xor, Ty1, Ty2, RT0, y ## 1, ab ## 1, y ## 1); \ \ do16bit_ror(32, mov, xor, Tx0, Tx1, RT0, x ## 2, ab ## 2, x ## 2); \ do16bit_ror(48, mov, xor, Ty1, Ty2, RT0, y ## 2, ab ## 2, y ## 2); \ \ /* G1,2 && G2,2 */ \ do16bit_ror(32, xor, xor, Tx2, Tx3, RT0, RT1, ab ## 0, x ## 0); \ do16bit_ror(16, xor, xor, Ty3, Ty0, RT0, RT1, ab ## 0, y ## 0); \ movq ab ## 0, RT0; \ movq cd ## 0, ab ## 0; \ movq RT0, cd ## 0; \ \ do16bit_ror(32, xor, xor, Tx2, Tx3, RT0, RT1, ab ## 1, x ## 1); \ do16bit_ror(16, xor, xor, Ty3, Ty0, RT0, RT1, ab ## 1, y ## 1); \ movq ab ## 1, RT0; \ movq cd ## 1, ab ## 1; \ movq RT0, cd ## 1; \ \ do16bit_ror(32, xor, xor, Tx2, Tx3, RT0, RT1, ab ## 2, x ## 2); \ do16bit_ror(16, xor, xor, Ty3, Ty0, RT0, RT1, ab ## 2, y ## 2); \ movq ab ## 2, RT0; \ movq cd ## 2, ab ## 2; \ movq RT0, cd ## 2; #define enc_round_end(ab, x, y, n) \ addl y ## d, x ## d; \ addl x ## d, y ## d; \ addl k+4*(2*(n))(CTX), x ## d; \ xorl ab ## d, x ## d; \ addl k+4*(2*(n)+1)(CTX), y ## d; \ shrq $32, ab; \ roll $1, ab ## d; \ xorl y ## d, ab ## d; \ shlq $32, ab; \ rorl $1, x ## d; \ orq x, ab; #define dec_round_end(ba, x, y, n) \ addl y ## d, x ## d; \ addl x ## d, y ## d; \ addl k+4*(2*(n))(CTX), x ## d; \ addl k+4*(2*(n)+1)(CTX), y ## d; \ xorl ba ## d, y ## d; \ shrq $32, ba; \ roll $1, ba ## d; \ xorl x ## d, ba ## d; \ shlq $32, ba; \ rorl $1, y ## d; \ orq y, ba; #define encrypt_round3(ab, cd, n) \ g1g2_3(ab, cd, s0, s1, s2, s3, s0, s1, s2, s3, RX, RY); \ \ enc_round_end(ab ## 0, RX0, RY0, n); \ enc_round_end(ab ## 1, RX1, RY1, n); \ enc_round_end(ab ## 2, RX2, RY2, n); #define decrypt_round3(ba, dc, n) \ g1g2_3(ba, dc, s1, s2, s3, s0, s3, s0, s1, s2, RY, RX); \ \ dec_round_end(ba ## 0, RX0, RY0, n); \ dec_round_end(ba ## 1, RX1, RY1, n); \ dec_round_end(ba ## 2, RX2, RY2, n); #define encrypt_cycle3(ab, cd, n) \ encrypt_round3(ab, cd, n*2); \ encrypt_round3(ab, cd, (n*2)+1); #define decrypt_cycle3(ba, dc, n) \ decrypt_round3(ba, dc, (n*2)+1); \ decrypt_round3(ba, dc, (n*2)); #define inpack3(xy, m) \ xorq w+4*m(CTX), xy ## 0; \ xorq w+4*m(CTX), xy ## 1; \ xorq w+4*m(CTX), xy ## 2; #define outunpack3(xy, m) \ xorq w+4*m(CTX), xy ## 0; \ xorq w+4*m(CTX), xy ## 1; \ xorq w+4*m(CTX), xy ## 2; #define inpack_enc3() \ inpack3(RAB, 0); \ inpack3(RCD, 2); #define outunpack_enc3() \ outunpack3(RAB, 6); \ outunpack3(RCD, 4); #define inpack_dec3() \ inpack3(RAB, 4); \ rorq $32, RAB0; \ rorq $32, RAB1; \ rorq $32, RAB2; \ inpack3(RCD, 6); \ rorq $32, RCD0; \ rorq $32, RCD1; \ rorq $32, RCD2; #define outunpack_dec3() \ rorq $32, RCD0; \ rorq $32, RCD1; \ rorq $32, RCD2; \ outunpack3(RCD, 0); \ rorq $32, RAB0; \ rorq $32, RAB1; \ rorq $32, RAB2; \ outunpack3(RAB, 2); .align 8 ELF(.type __twofish_enc_blk3,@function;) __twofish_enc_blk3: /* input: * %rdi: ctx, CTX * RAB0,RCD0,RAB1,RCD1,RAB2,RCD2: three plaintext blocks * output: * RCD0,RAB0,RCD1,RAB1,RCD2,RAB2: three ciphertext blocks */ CFI_STARTPROC(); inpack_enc3(); encrypt_cycle3(RAB, RCD, 0); encrypt_cycle3(RAB, RCD, 1); encrypt_cycle3(RAB, RCD, 2); encrypt_cycle3(RAB, RCD, 3); encrypt_cycle3(RAB, RCD, 4); encrypt_cycle3(RAB, RCD, 5); encrypt_cycle3(RAB, RCD, 6); encrypt_cycle3(RAB, RCD, 7); outunpack_enc3(); ret_spec_stop; CFI_ENDPROC(); ELF(.size __twofish_enc_blk3,.-__twofish_enc_blk3;) .align 8 ELF(.type __twofish_dec_blk3,@function;) __twofish_dec_blk3: /* input: * %rdi: ctx, CTX * RAB0,RCD0,RAB1,RCD1,RAB2,RCD2: three ciphertext blocks * output: * RCD0,RAB0,RCD1,RAB1,RCD2,RAB2: three plaintext blocks */ CFI_STARTPROC(); inpack_dec3(); decrypt_cycle3(RAB, RCD, 7); decrypt_cycle3(RAB, RCD, 6); decrypt_cycle3(RAB, RCD, 5); decrypt_cycle3(RAB, RCD, 4); decrypt_cycle3(RAB, RCD, 3); decrypt_cycle3(RAB, RCD, 2); decrypt_cycle3(RAB, RCD, 1); decrypt_cycle3(RAB, RCD, 0); outunpack_dec3(); ret_spec_stop; CFI_ENDPROC(); ELF(.size __twofish_dec_blk3,.-__twofish_dec_blk3;) +.align 8 +.globl _gcry_twofish_amd64_blk3 +ELF(.type _gcry_twofish_amd64_blk3,@function;) +_gcry_twofish_amd64_blk3: + /* input: + * %rdi: ctx, CTX + * %rsi: dst (3 blocks) + * %rdx: src (3 blocks) + * %ecx: encrypt (0 or 1) + */ + CFI_STARTPROC(); + ENTER_SYSV_FUNC_PARAMS_0_4 + + subq $(8 * 8), %rsp; + CFI_ADJUST_CFA_OFFSET(8 * 8); + movq %rbp, (0 * 8)(%rsp); + movq %rbx, (1 * 8)(%rsp); + movq %r12, (2 * 8)(%rsp); + movq %r13, (3 * 8)(%rsp); + movq %r14, (4 * 8)(%rsp); + movq %r15, (5 * 8)(%rsp); + CFI_REL_OFFSET(%rbp, 0 * 8); + CFI_REL_OFFSET(%rbx, 1 * 8); + CFI_REL_OFFSET(%r12, 2 * 8); + CFI_REL_OFFSET(%r13, 3 * 8); + CFI_REL_OFFSET(%r14, 4 * 8); + CFI_REL_OFFSET(%r15, 5 * 8); + + testl %ecx, %ecx; + movq %rdx, RX0; + movq %rsi, (6 * 8)(%rsp); + + movq (0 * 8)(RX0), RAB0; + movq (1 * 8)(RX0), RCD0; + movq (2 * 8)(RX0), RAB1; + movq (3 * 8)(RX0), RCD1; + movq (4 * 8)(RX0), RAB2; + movq (5 * 8)(RX0), RCD2; + + jz .Lblk1_3_dec; + call __twofish_enc_blk3; + jmp .Lblk1_3_end; + .Lblk1_3_dec: + call __twofish_dec_blk3; + +.Lblk1_3_end: + movq (6 * 8)(%rsp), RX0; + movq RCD0, (0 * 8)(RX0); + movq RAB0, (1 * 8)(RX0); + movq RCD1, (2 * 8)(RX0); + movq RAB1, (3 * 8)(RX0); + movq RCD2, (4 * 8)(RX0); + movq RAB2, (5 * 8)(RX0); + + movq (0 * 8)(%rsp), %rbp; + movq (1 * 8)(%rsp), %rbx; + movq (2 * 8)(%rsp), %r12; + movq (3 * 8)(%rsp), %r13; + movq (4 * 8)(%rsp), %r14; + movq (5 * 8)(%rsp), %r15; + CFI_RESTORE(%rbp); + CFI_RESTORE(%rbx); + CFI_RESTORE(%r12); + CFI_RESTORE(%r13); + CFI_RESTORE(%r14); + CFI_RESTORE(%r15); + addq $(8 * 8), %rsp; + CFI_ADJUST_CFA_OFFSET(-8 * 8); + + EXIT_SYSV_FUNC + ret_spec_stop; + CFI_ENDPROC(); +ELF(.size _gcry_twofish_amd64_blk3,.-_gcry_twofish_amd64_blk3;) + .align 8 .globl _gcry_twofish_amd64_ctr_enc ELF(.type _gcry_twofish_amd64_ctr_enc,@function;) _gcry_twofish_amd64_ctr_enc: /* input: * %rdi: ctx, CTX * %rsi: dst (3 blocks) * %rdx: src (3 blocks) * %rcx: iv (big endian, 128bit) */ CFI_STARTPROC(); ENTER_SYSV_FUNC_PARAMS_0_4 subq $(8 * 8), %rsp; CFI_ADJUST_CFA_OFFSET(8 * 8); movq %rbp, (0 * 8)(%rsp); movq %rbx, (1 * 8)(%rsp); movq %r12, (2 * 8)(%rsp); movq %r13, (3 * 8)(%rsp); movq %r14, (4 * 8)(%rsp); movq %r15, (5 * 8)(%rsp); CFI_REL_OFFSET(%rbp, 0 * 8); CFI_REL_OFFSET(%rbx, 1 * 8); CFI_REL_OFFSET(%r12, 2 * 8); CFI_REL_OFFSET(%r13, 3 * 8); CFI_REL_OFFSET(%r14, 4 * 8); CFI_REL_OFFSET(%r15, 5 * 8); movq %rsi, (6 * 8)(%rsp); movq %rdx, (7 * 8)(%rsp); movq %rcx, RX0; /* load IV and byteswap */ movq 8(RX0), RT0; movq 0(RX0), RT1; movq RT0, RCD0; movq RT1, RAB0; bswapq RT0; bswapq RT1; /* construct IVs */ movq RT0, RCD1; movq RT1, RAB1; movq RT0, RCD2; movq RT1, RAB2; addq $1, RCD1; adcq $0, RAB1; bswapq RCD1; bswapq RAB1; addq $2, RCD2; adcq $0, RAB2; bswapq RCD2; bswapq RAB2; addq $3, RT0; adcq $0, RT1; bswapq RT0; bswapq RT1; /* store new IV */ movq RT0, 8(RX0); movq RT1, 0(RX0); call __twofish_enc_blk3; movq (7 * 8)(%rsp), RX0; /*src*/ movq (6 * 8)(%rsp), RX1; /*dst*/ /* XOR key-stream with plaintext */ xorq (0 * 8)(RX0), RCD0; xorq (1 * 8)(RX0), RAB0; xorq (2 * 8)(RX0), RCD1; xorq (3 * 8)(RX0), RAB1; xorq (4 * 8)(RX0), RCD2; xorq (5 * 8)(RX0), RAB2; movq RCD0, (0 * 8)(RX1); movq RAB0, (1 * 8)(RX1); movq RCD1, (2 * 8)(RX1); movq RAB1, (3 * 8)(RX1); movq RCD2, (4 * 8)(RX1); movq RAB2, (5 * 8)(RX1); movq (0 * 8)(%rsp), %rbp; movq (1 * 8)(%rsp), %rbx; movq (2 * 8)(%rsp), %r12; movq (3 * 8)(%rsp), %r13; movq (4 * 8)(%rsp), %r14; movq (5 * 8)(%rsp), %r15; CFI_RESTORE(%rbp); CFI_RESTORE(%rbx); CFI_RESTORE(%r12); CFI_RESTORE(%r13); CFI_RESTORE(%r14); CFI_RESTORE(%r15); addq $(8 * 8), %rsp; CFI_ADJUST_CFA_OFFSET(-8 * 8); EXIT_SYSV_FUNC ret_spec_stop; CFI_ENDPROC(); ELF(.size _gcry_twofish_amd64_ctr_enc,.-_gcry_twofish_amd64_ctr_enc;) .align 8 .globl _gcry_twofish_amd64_cbc_dec ELF(.type _gcry_twofish_amd64_cbc_dec,@function;) _gcry_twofish_amd64_cbc_dec: /* input: * %rdi: ctx, CTX * %rsi: dst (3 blocks) * %rdx: src (3 blocks) * %rcx: iv (128bit) */ CFI_STARTPROC(); ENTER_SYSV_FUNC_PARAMS_0_4 subq $(9 * 8), %rsp; CFI_ADJUST_CFA_OFFSET(9 * 8); movq %rbp, (0 * 8)(%rsp); movq %rbx, (1 * 8)(%rsp); movq %r12, (2 * 8)(%rsp); movq %r13, (3 * 8)(%rsp); movq %r14, (4 * 8)(%rsp); movq %r15, (5 * 8)(%rsp); CFI_REL_OFFSET(%rbp, 0 * 8); CFI_REL_OFFSET(%rbx, 1 * 8); CFI_REL_OFFSET(%r12, 2 * 8); CFI_REL_OFFSET(%r13, 3 * 8); CFI_REL_OFFSET(%r14, 4 * 8); CFI_REL_OFFSET(%r15, 5 * 8); movq %rsi, (6 * 8)(%rsp); movq %rdx, (7 * 8)(%rsp); movq %rcx, (8 * 8)(%rsp); movq %rdx, RX0; /* load input */ movq (0 * 8)(RX0), RAB0; movq (1 * 8)(RX0), RCD0; movq (2 * 8)(RX0), RAB1; movq (3 * 8)(RX0), RCD1; movq (4 * 8)(RX0), RAB2; movq (5 * 8)(RX0), RCD2; call __twofish_dec_blk3; movq (8 * 8)(%rsp), RT0; /*iv*/ movq (7 * 8)(%rsp), RX0; /*src*/ movq (6 * 8)(%rsp), RX1; /*dst*/ movq (4 * 8)(RX0), RY0; movq (5 * 8)(RX0), RY1; xorq (0 * 8)(RT0), RCD0; xorq (1 * 8)(RT0), RAB0; xorq (0 * 8)(RX0), RCD1; xorq (1 * 8)(RX0), RAB1; xorq (2 * 8)(RX0), RCD2; xorq (3 * 8)(RX0), RAB2; movq RY0, (0 * 8)(RT0); movq RY1, (1 * 8)(RT0); movq RCD0, (0 * 8)(RX1); movq RAB0, (1 * 8)(RX1); movq RCD1, (2 * 8)(RX1); movq RAB1, (3 * 8)(RX1); movq RCD2, (4 * 8)(RX1); movq RAB2, (5 * 8)(RX1); movq (0 * 8)(%rsp), %rbp; movq (1 * 8)(%rsp), %rbx; movq (2 * 8)(%rsp), %r12; movq (3 * 8)(%rsp), %r13; movq (4 * 8)(%rsp), %r14; movq (5 * 8)(%rsp), %r15; CFI_RESTORE(%rbp); CFI_RESTORE(%rbx); CFI_RESTORE(%r12); CFI_RESTORE(%r13); CFI_RESTORE(%r14); CFI_RESTORE(%r15); addq $(9 * 8), %rsp; CFI_ADJUST_CFA_OFFSET(-9 * 8); EXIT_SYSV_FUNC ret_spec_stop; CFI_ENDPROC(); ELF(.size _gcry_twofish_amd64_cbc_dec,.-_gcry_twofish_amd64_cbc_dec;) .align 8 .globl _gcry_twofish_amd64_cfb_dec ELF(.type _gcry_twofish_amd64_cfb_dec,@function;) _gcry_twofish_amd64_cfb_dec: /* input: * %rdi: ctx, CTX * %rsi: dst (3 blocks) * %rdx: src (3 blocks) * %rcx: iv (128bit) */ CFI_STARTPROC(); ENTER_SYSV_FUNC_PARAMS_0_4 subq $(8 * 8), %rsp; CFI_ADJUST_CFA_OFFSET(8 * 8); movq %rbp, (0 * 8)(%rsp); movq %rbx, (1 * 8)(%rsp); movq %r12, (2 * 8)(%rsp); movq %r13, (3 * 8)(%rsp); movq %r14, (4 * 8)(%rsp); movq %r15, (5 * 8)(%rsp); CFI_REL_OFFSET(%rbp, 0 * 8); CFI_REL_OFFSET(%rbx, 1 * 8); CFI_REL_OFFSET(%r12, 2 * 8); CFI_REL_OFFSET(%r13, 3 * 8); CFI_REL_OFFSET(%r14, 4 * 8); CFI_REL_OFFSET(%r15, 5 * 8); movq %rsi, (6 * 8)(%rsp); movq %rdx, (7 * 8)(%rsp); movq %rdx, RX0; movq %rcx, RX1; /* load input */ movq (0 * 8)(RX1), RAB0; movq (1 * 8)(RX1), RCD0; movq (0 * 8)(RX0), RAB1; movq (1 * 8)(RX0), RCD1; movq (2 * 8)(RX0), RAB2; movq (3 * 8)(RX0), RCD2; /* Update IV */ movq (4 * 8)(RX0), RY0; movq (5 * 8)(RX0), RY1; movq RY0, (0 * 8)(RX1); movq RY1, (1 * 8)(RX1); call __twofish_enc_blk3; movq (7 * 8)(%rsp), RX0; /*src*/ movq (6 * 8)(%rsp), RX1; /*dst*/ xorq (0 * 8)(RX0), RCD0; xorq (1 * 8)(RX0), RAB0; xorq (2 * 8)(RX0), RCD1; xorq (3 * 8)(RX0), RAB1; xorq (4 * 8)(RX0), RCD2; xorq (5 * 8)(RX0), RAB2; movq RCD0, (0 * 8)(RX1); movq RAB0, (1 * 8)(RX1); movq RCD1, (2 * 8)(RX1); movq RAB1, (3 * 8)(RX1); movq RCD2, (4 * 8)(RX1); movq RAB2, (5 * 8)(RX1); movq (0 * 8)(%rsp), %rbp; movq (1 * 8)(%rsp), %rbx; movq (2 * 8)(%rsp), %r12; movq (3 * 8)(%rsp), %r13; movq (4 * 8)(%rsp), %r14; movq (5 * 8)(%rsp), %r15; CFI_RESTORE(%rbp); CFI_RESTORE(%rbx); CFI_RESTORE(%r12); CFI_RESTORE(%r13); CFI_RESTORE(%r14); CFI_RESTORE(%r15); addq $(8 * 8), %rsp; CFI_ADJUST_CFA_OFFSET(-8 * 8); EXIT_SYSV_FUNC ret_spec_stop; CFI_ENDPROC(); ELF(.size _gcry_twofish_amd64_cfb_dec,.-_gcry_twofish_amd64_cfb_dec;) .align 8 .globl _gcry_twofish_amd64_ocb_enc ELF(.type _gcry_twofish_amd64_ocb_enc,@function;) _gcry_twofish_amd64_ocb_enc: /* input: * %rdi: ctx, CTX * %rsi: dst (3 blocks) * %rdx: src (3 blocks) * %rcx: offset * %r8 : checksum * %r9 : L pointers (void *L[3]) */ CFI_STARTPROC(); ENTER_SYSV_FUNC_PARAMS_6 subq $(8 * 8), %rsp; CFI_ADJUST_CFA_OFFSET(8 * 8); movq %rbp, (0 * 8)(%rsp); movq %rbx, (1 * 8)(%rsp); movq %r12, (2 * 8)(%rsp); movq %r13, (3 * 8)(%rsp); movq %r14, (4 * 8)(%rsp); movq %r15, (5 * 8)(%rsp); CFI_REL_OFFSET(%rbp, 0 * 8); CFI_REL_OFFSET(%rbx, 1 * 8); CFI_REL_OFFSET(%r12, 2 * 8); CFI_REL_OFFSET(%r13, 3 * 8); CFI_REL_OFFSET(%r14, 4 * 8); CFI_REL_OFFSET(%r15, 5 * 8); movq %rsi, (6 * 8)(%rsp); movq %rdx, RX0; movq %rcx, RX1; movq %r8, RX2; movq %r9, RY0; movq %rsi, RY1; /* Load offset */ movq (0 * 8)(RX1), RT0; movq (1 * 8)(RX1), RT1; /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */ movq (RY0), RY2; xorq (0 * 8)(RY2), RT0; xorq (1 * 8)(RY2), RT1; movq (0 * 8)(RX0), RAB0; movq (1 * 8)(RX0), RCD0; /* Store Offset_i */ movq RT0, (0 * 8)(RY1); movq RT1, (1 * 8)(RY1); /* Checksum_i = Checksum_{i-1} xor P_i */ xor RAB0, (0 * 8)(RX2); xor RCD0, (1 * 8)(RX2); /* PX_i = P_i xor Offset_i */ xorq RT0, RAB0; xorq RT1, RCD0; /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */ movq 8(RY0), RY2; xorq (0 * 8)(RY2), RT0; xorq (1 * 8)(RY2), RT1; movq (2 * 8)(RX0), RAB1; movq (3 * 8)(RX0), RCD1; /* Store Offset_i */ movq RT0, (2 * 8)(RY1); movq RT1, (3 * 8)(RY1); /* Checksum_i = Checksum_{i-1} xor P_i */ xor RAB1, (0 * 8)(RX2); xor RCD1, (1 * 8)(RX2); /* PX_i = P_i xor Offset_i */ xorq RT0, RAB1; xorq RT1, RCD1; /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */ movq 16(RY0), RY2; xorq (0 * 8)(RY2), RT0; xorq (1 * 8)(RY2), RT1; movq (4 * 8)(RX0), RAB2; movq (5 * 8)(RX0), RCD2; /* Store Offset_i */ movq RT0, (4 * 8)(RY1); movq RT1, (5 * 8)(RY1); /* Checksum_i = Checksum_{i-1} xor P_i */ xor RAB2, (0 * 8)(RX2); xor RCD2, (1 * 8)(RX2); /* PX_i = P_i xor Offset_i */ xorq RT0, RAB2; xorq RT1, RCD2; /* Store offset */ movq RT0, (0 * 8)(RX1); movq RT1, (1 * 8)(RX1); /* CX_i = ENCIPHER(K, PX_i) */ call __twofish_enc_blk3; movq (6 * 8)(%rsp), RX1; /*dst*/ /* C_i = CX_i xor Offset_i */ xorq RCD0, (0 * 8)(RX1); xorq RAB0, (1 * 8)(RX1); xorq RCD1, (2 * 8)(RX1); xorq RAB1, (3 * 8)(RX1); xorq RCD2, (4 * 8)(RX1); xorq RAB2, (5 * 8)(RX1); movq (0 * 8)(%rsp), %rbp; movq (1 * 8)(%rsp), %rbx; movq (2 * 8)(%rsp), %r12; movq (3 * 8)(%rsp), %r13; movq (4 * 8)(%rsp), %r14; movq (5 * 8)(%rsp), %r15; CFI_RESTORE(%rbp); CFI_RESTORE(%rbx); CFI_RESTORE(%r12); CFI_RESTORE(%r13); CFI_RESTORE(%r14); CFI_RESTORE(%r15); addq $(8 * 8), %rsp; CFI_ADJUST_CFA_OFFSET(-8 * 8); EXIT_SYSV_FUNC ret_spec_stop; CFI_ENDPROC(); ELF(.size _gcry_twofish_amd64_ocb_enc,.-_gcry_twofish_amd64_ocb_enc;) .align 8 .globl _gcry_twofish_amd64_ocb_dec ELF(.type _gcry_twofish_amd64_ocb_dec,@function;) _gcry_twofish_amd64_ocb_dec: /* input: * %rdi: ctx, CTX * %rsi: dst (3 blocks) * %rdx: src (3 blocks) * %rcx: offset * %r8 : checksum * %r9 : L pointers (void *L[3]) */ CFI_STARTPROC(); ENTER_SYSV_FUNC_PARAMS_6 subq $(8 * 8), %rsp; CFI_ADJUST_CFA_OFFSET(8 * 8); movq %rbp, (0 * 8)(%rsp); movq %rbx, (1 * 8)(%rsp); movq %r12, (2 * 8)(%rsp); movq %r13, (3 * 8)(%rsp); movq %r14, (4 * 8)(%rsp); movq %r15, (5 * 8)(%rsp); CFI_REL_OFFSET(%rbp, 0 * 8); CFI_REL_OFFSET(%rbx, 1 * 8); CFI_REL_OFFSET(%r12, 2 * 8); CFI_REL_OFFSET(%r13, 3 * 8); CFI_REL_OFFSET(%r14, 4 * 8); CFI_REL_OFFSET(%r15, 5 * 8); movq %rsi, (6 * 8)(%rsp); movq %r8, (7 * 8)(%rsp); movq %rdx, RX0; movq %rcx, RX1; movq %r9, RY0; movq %rsi, RY1; /* Load offset */ movq (0 * 8)(RX1), RT0; movq (1 * 8)(RX1), RT1; /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */ movq (RY0), RY2; xorq (0 * 8)(RY2), RT0; xorq (1 * 8)(RY2), RT1; movq (0 * 8)(RX0), RAB0; movq (1 * 8)(RX0), RCD0; /* Store Offset_i */ movq RT0, (0 * 8)(RY1); movq RT1, (1 * 8)(RY1); /* CX_i = C_i xor Offset_i */ xorq RT0, RAB0; xorq RT1, RCD0; /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */ movq 8(RY0), RY2; xorq (0 * 8)(RY2), RT0; xorq (1 * 8)(RY2), RT1; movq (2 * 8)(RX0), RAB1; movq (3 * 8)(RX0), RCD1; /* Store Offset_i */ movq RT0, (2 * 8)(RY1); movq RT1, (3 * 8)(RY1); /* PX_i = P_i xor Offset_i */ xorq RT0, RAB1; xorq RT1, RCD1; /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */ movq 16(RY0), RY2; xorq (0 * 8)(RY2), RT0; xorq (1 * 8)(RY2), RT1; movq (4 * 8)(RX0), RAB2; movq (5 * 8)(RX0), RCD2; /* Store Offset_i */ movq RT0, (4 * 8)(RY1); movq RT1, (5 * 8)(RY1); /* PX_i = P_i xor Offset_i */ xorq RT0, RAB2; xorq RT1, RCD2; /* Store offset */ movq RT0, (0 * 8)(RX1); movq RT1, (1 * 8)(RX1); /* PX_i = DECIPHER(K, CX_i) */ call __twofish_dec_blk3; movq (7 * 8)(%rsp), RX2; /*checksum*/ movq (6 * 8)(%rsp), RX1; /*dst*/ /* Load checksum */ movq (0 * 8)(RX2), RT0; movq (1 * 8)(RX2), RT1; /* P_i = PX_i xor Offset_i */ xorq RCD0, (0 * 8)(RX1); xorq RAB0, (1 * 8)(RX1); xorq RCD1, (2 * 8)(RX1); xorq RAB1, (3 * 8)(RX1); xorq RCD2, (4 * 8)(RX1); xorq RAB2, (5 * 8)(RX1); /* Checksum_i = Checksum_{i-1} xor P_i */ xorq (0 * 8)(RX1), RT0; xorq (1 * 8)(RX1), RT1; xorq (2 * 8)(RX1), RT0; xorq (3 * 8)(RX1), RT1; xorq (4 * 8)(RX1), RT0; xorq (5 * 8)(RX1), RT1; /* Store checksum */ movq RT0, (0 * 8)(RX2); movq RT1, (1 * 8)(RX2); movq (0 * 8)(%rsp), %rbp; movq (1 * 8)(%rsp), %rbx; movq (2 * 8)(%rsp), %r12; movq (3 * 8)(%rsp), %r13; movq (4 * 8)(%rsp), %r14; movq (5 * 8)(%rsp), %r15; CFI_RESTORE(%rbp); CFI_RESTORE(%rbx); CFI_RESTORE(%r12); CFI_RESTORE(%r13); CFI_RESTORE(%r14); CFI_RESTORE(%r15); addq $(8 * 8), %rsp; CFI_ADJUST_CFA_OFFSET(-8 * 8); EXIT_SYSV_FUNC ret_spec_stop; CFI_ENDPROC(); ELF(.size _gcry_twofish_amd64_ocb_dec,.-_gcry_twofish_amd64_ocb_dec;) .align 8 .globl _gcry_twofish_amd64_ocb_auth ELF(.type _gcry_twofish_amd64_ocb_auth,@function;) _gcry_twofish_amd64_ocb_auth: /* input: * %rdi: ctx, CTX * %rsi: abuf (3 blocks) * %rdx: offset * %rcx: checksum * %r8 : L pointers (void *L[3]) */ CFI_STARTPROC(); ENTER_SYSV_FUNC_PARAMS_5 subq $(8 * 8), %rsp; CFI_ADJUST_CFA_OFFSET(8 * 8); movq %rbp, (0 * 8)(%rsp); movq %rbx, (1 * 8)(%rsp); movq %r12, (2 * 8)(%rsp); movq %r13, (3 * 8)(%rsp); movq %r14, (4 * 8)(%rsp); movq %r15, (5 * 8)(%rsp); CFI_REL_OFFSET(%rbp, 0 * 8); CFI_REL_OFFSET(%rbx, 1 * 8); CFI_REL_OFFSET(%r12, 2 * 8); CFI_REL_OFFSET(%r13, 3 * 8); CFI_REL_OFFSET(%r14, 4 * 8); CFI_REL_OFFSET(%r15, 5 * 8); movq %rcx, (6 * 8)(%rsp); movq %rsi, RX0; movq %rdx, RX1; movq %r8, RY0; /* Load offset */ movq (0 * 8)(RX1), RT0; movq (1 * 8)(RX1), RT1; /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */ movq (RY0), RY2; xorq (0 * 8)(RY2), RT0; xorq (1 * 8)(RY2), RT1; movq (0 * 8)(RX0), RAB0; movq (1 * 8)(RX0), RCD0; /* PX_i = P_i xor Offset_i */ xorq RT0, RAB0; xorq RT1, RCD0; /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */ movq 8(RY0), RY2; xorq (0 * 8)(RY2), RT0; xorq (1 * 8)(RY2), RT1; movq (2 * 8)(RX0), RAB1; movq (3 * 8)(RX0), RCD1; /* PX_i = P_i xor Offset_i */ xorq RT0, RAB1; xorq RT1, RCD1; /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */ movq 16(RY0), RY2; xorq (0 * 8)(RY2), RT0; xorq (1 * 8)(RY2), RT1; movq (4 * 8)(RX0), RAB2; movq (5 * 8)(RX0), RCD2; /* PX_i = P_i xor Offset_i */ xorq RT0, RAB2; xorq RT1, RCD2; /* Store offset */ movq RT0, (0 * 8)(RX1); movq RT1, (1 * 8)(RX1); /* C_i = ENCIPHER(K, PX_i) */ call __twofish_enc_blk3; movq (6 * 8)(%rsp), RX1; /*checksum*/ /* Checksum_i = C_i xor Checksum_i */ xorq RCD0, RCD1; xorq RAB0, RAB1; xorq RCD1, RCD2; xorq RAB1, RAB2; xorq RCD2, (0 * 8)(RX1); xorq RAB2, (1 * 8)(RX1); movq (0 * 8)(%rsp), %rbp; movq (1 * 8)(%rsp), %rbx; movq (2 * 8)(%rsp), %r12; movq (3 * 8)(%rsp), %r13; movq (4 * 8)(%rsp), %r14; movq (5 * 8)(%rsp), %r15; CFI_RESTORE(%rbp); CFI_RESTORE(%rbx); CFI_RESTORE(%r12); CFI_RESTORE(%r13); CFI_RESTORE(%r14); CFI_RESTORE(%r15); addq $(8 * 8), %rsp; CFI_ADJUST_CFA_OFFSET(-8 * 8); EXIT_SYSV_FUNC ret_spec_stop; CFI_ENDPROC(); ELF(.size _gcry_twofish_amd64_ocb_auth,.-_gcry_twofish_amd64_ocb_auth;) #endif /*USE_TWOFISH*/ #endif /*__x86_64*/ diff --git a/cipher/twofish-avx2-amd64.S b/cipher/twofish-avx2-amd64.S index 930ac792..0cb9a64c 100644 --- a/cipher/twofish-avx2-amd64.S +++ b/cipher/twofish-avx2-amd64.S @@ -1,1048 +1,1094 @@ /* twofish-avx2-amd64.S - AMD64/AVX2 assembly implementation of Twofish cipher * * Copyright (C) 2013-2017 Jussi Kivilinna * * This file is part of Libgcrypt. * * Libgcrypt is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2.1 of * the License, or (at your option) any later version. * * Libgcrypt is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program; if not, see . */ #ifdef __x86_64 #include #if (defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) || \ defined(HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS)) && defined(USE_TWOFISH) && \ defined(ENABLE_AVX2_SUPPORT) #include "asm-common-amd64.h" .text /* structure of TWOFISH_context: */ #define s0 0 #define s1 ((s0) + 4 * 256) #define s2 ((s1) + 4 * 256) #define s3 ((s2) + 4 * 256) #define w ((s3) + 4 * 256) #define k ((w) + 4 * 8) /* register macros */ #define CTX %rdi #define RROUND %rbp #define RROUNDd %ebp #define RS0 CTX #define RS1 %r8 #define RS2 %r9 #define RS3 %r10 #define RK %r11 #define RW %rax #define RA0 %ymm8 #define RB0 %ymm9 #define RC0 %ymm10 #define RD0 %ymm11 #define RA1 %ymm12 #define RB1 %ymm13 #define RC1 %ymm14 #define RD1 %ymm15 /* temp regs */ #define RX0 %ymm0 #define RY0 %ymm1 #define RX1 %ymm2 #define RY1 %ymm3 #define RT0 %ymm4 #define RIDX %ymm5 #define RX0x %xmm0 #define RY0x %xmm1 #define RX1x %xmm2 #define RY1x %xmm3 #define RT0x %xmm4 #define RIDXx %xmm5 #define RTMP0 RX0 #define RTMP0x RX0x #define RTMP1 RX1 #define RTMP1x RX1x #define RTMP2 RY0 #define RTMP2x RY0x #define RTMP3 RY1 #define RTMP3x RY1x #define RTMP4 RIDX #define RTMP4x RIDXx /* vpgatherdd mask and '-1' */ #define RNOT %ymm6 #define RNOTx %xmm6 /* byte mask, (-1 >> 24) */ #define RBYTE %ymm7 /********************************************************************** 16-way AVX2 twofish **********************************************************************/ #define init_round_constants() \ vpcmpeqd RNOT, RNOT, RNOT; \ leaq k(CTX), RK; \ leaq w(CTX), RW; \ vpsrld $24, RNOT, RBYTE; \ leaq s1(CTX), RS1; \ leaq s2(CTX), RS2; \ leaq s3(CTX), RS3; \ #define g16(ab, rs0, rs1, rs2, rs3, xy) \ vpand RBYTE, ab ## 0, RIDX; \ vpgatherdd RNOT, (rs0, RIDX, 4), xy ## 0; \ vpcmpeqd RNOT, RNOT, RNOT; \ \ vpand RBYTE, ab ## 1, RIDX; \ vpgatherdd RNOT, (rs0, RIDX, 4), xy ## 1; \ vpcmpeqd RNOT, RNOT, RNOT; \ \ vpsrld $8, ab ## 0, RIDX; \ vpand RBYTE, RIDX, RIDX; \ vpgatherdd RNOT, (rs1, RIDX, 4), RT0; \ vpcmpeqd RNOT, RNOT, RNOT; \ vpxor RT0, xy ## 0, xy ## 0; \ \ vpsrld $8, ab ## 1, RIDX; \ vpand RBYTE, RIDX, RIDX; \ vpgatherdd RNOT, (rs1, RIDX, 4), RT0; \ vpcmpeqd RNOT, RNOT, RNOT; \ vpxor RT0, xy ## 1, xy ## 1; \ \ vpsrld $16, ab ## 0, RIDX; \ vpand RBYTE, RIDX, RIDX; \ vpgatherdd RNOT, (rs2, RIDX, 4), RT0; \ vpcmpeqd RNOT, RNOT, RNOT; \ vpxor RT0, xy ## 0, xy ## 0; \ \ vpsrld $16, ab ## 1, RIDX; \ vpand RBYTE, RIDX, RIDX; \ vpgatherdd RNOT, (rs2, RIDX, 4), RT0; \ vpcmpeqd RNOT, RNOT, RNOT; \ vpxor RT0, xy ## 1, xy ## 1; \ \ vpsrld $24, ab ## 0, RIDX; \ vpgatherdd RNOT, (rs3, RIDX, 4), RT0; \ vpcmpeqd RNOT, RNOT, RNOT; \ vpxor RT0, xy ## 0, xy ## 0; \ \ vpsrld $24, ab ## 1, RIDX; \ vpgatherdd RNOT, (rs3, RIDX, 4), RT0; \ vpcmpeqd RNOT, RNOT, RNOT; \ vpxor RT0, xy ## 1, xy ## 1; #define g1_16(a, x) \ g16(a, RS0, RS1, RS2, RS3, x); #define g2_16(b, y) \ g16(b, RS1, RS2, RS3, RS0, y); #define encrypt_round_end16(a, b, c, d, nk, r) \ vpaddd RY0, RX0, RX0; \ vpaddd RX0, RY0, RY0; \ vpbroadcastd ((nk)+((r)*8))(RK), RT0; \ vpaddd RT0, RX0, RX0; \ vpbroadcastd 4+((nk)+((r)*8))(RK), RT0; \ vpaddd RT0, RY0, RY0; \ \ vpxor RY0, d ## 0, d ## 0; \ \ vpxor RX0, c ## 0, c ## 0; \ vpsrld $1, c ## 0, RT0; \ vpslld $31, c ## 0, c ## 0; \ vpor RT0, c ## 0, c ## 0; \ \ vpaddd RY1, RX1, RX1; \ vpaddd RX1, RY1, RY1; \ vpbroadcastd ((nk)+((r)*8))(RK), RT0; \ vpaddd RT0, RX1, RX1; \ vpbroadcastd 4+((nk)+((r)*8))(RK), RT0; \ vpaddd RT0, RY1, RY1; \ \ vpxor RY1, d ## 1, d ## 1; \ \ vpxor RX1, c ## 1, c ## 1; \ vpsrld $1, c ## 1, RT0; \ vpslld $31, c ## 1, c ## 1; \ vpor RT0, c ## 1, c ## 1; \ #define encrypt_round16(a, b, c, d, nk, r) \ g2_16(b, RY); \ \ vpslld $1, b ## 0, RT0; \ vpsrld $31, b ## 0, b ## 0; \ vpor RT0, b ## 0, b ## 0; \ \ vpslld $1, b ## 1, RT0; \ vpsrld $31, b ## 1, b ## 1; \ vpor RT0, b ## 1, b ## 1; \ \ g1_16(a, RX); \ \ encrypt_round_end16(a, b, c, d, nk, r); #define encrypt_round_first16(a, b, c, d, nk, r) \ vpslld $1, d ## 0, RT0; \ vpsrld $31, d ## 0, d ## 0; \ vpor RT0, d ## 0, d ## 0; \ \ vpslld $1, d ## 1, RT0; \ vpsrld $31, d ## 1, d ## 1; \ vpor RT0, d ## 1, d ## 1; \ \ encrypt_round16(a, b, c, d, nk, r); #define encrypt_round_last16(a, b, c, d, nk, r) \ g2_16(b, RY); \ \ g1_16(a, RX); \ \ encrypt_round_end16(a, b, c, d, nk, r); #define decrypt_round_end16(a, b, c, d, nk, r) \ vpaddd RY0, RX0, RX0; \ vpaddd RX0, RY0, RY0; \ vpbroadcastd ((nk)+((r)*8))(RK), RT0; \ vpaddd RT0, RX0, RX0; \ vpbroadcastd 4+((nk)+((r)*8))(RK), RT0; \ vpaddd RT0, RY0, RY0; \ \ vpxor RX0, c ## 0, c ## 0; \ \ vpxor RY0, d ## 0, d ## 0; \ vpsrld $1, d ## 0, RT0; \ vpslld $31, d ## 0, d ## 0; \ vpor RT0, d ## 0, d ## 0; \ \ vpaddd RY1, RX1, RX1; \ vpaddd RX1, RY1, RY1; \ vpbroadcastd ((nk)+((r)*8))(RK), RT0; \ vpaddd RT0, RX1, RX1; \ vpbroadcastd 4+((nk)+((r)*8))(RK), RT0; \ vpaddd RT0, RY1, RY1; \ \ vpxor RX1, c ## 1, c ## 1; \ \ vpxor RY1, d ## 1, d ## 1; \ vpsrld $1, d ## 1, RT0; \ vpslld $31, d ## 1, d ## 1; \ vpor RT0, d ## 1, d ## 1; #define decrypt_round16(a, b, c, d, nk, r) \ g1_16(a, RX); \ \ vpslld $1, a ## 0, RT0; \ vpsrld $31, a ## 0, a ## 0; \ vpor RT0, a ## 0, a ## 0; \ \ vpslld $1, a ## 1, RT0; \ vpsrld $31, a ## 1, a ## 1; \ vpor RT0, a ## 1, a ## 1; \ \ g2_16(b, RY); \ \ decrypt_round_end16(a, b, c, d, nk, r); #define decrypt_round_first16(a, b, c, d, nk, r) \ vpslld $1, c ## 0, RT0; \ vpsrld $31, c ## 0, c ## 0; \ vpor RT0, c ## 0, c ## 0; \ \ vpslld $1, c ## 1, RT0; \ vpsrld $31, c ## 1, c ## 1; \ vpor RT0, c ## 1, c ## 1; \ \ decrypt_round16(a, b, c, d, nk, r) #define decrypt_round_last16(a, b, c, d, nk, r) \ g1_16(a, RX); \ \ g2_16(b, RY); \ \ decrypt_round_end16(a, b, c, d, nk, r); #define encrypt_cycle16(r) \ encrypt_round16(RA, RB, RC, RD, 0, r); \ encrypt_round16(RC, RD, RA, RB, 8, r); #define encrypt_cycle_first16(r) \ encrypt_round_first16(RA, RB, RC, RD, 0, r); \ encrypt_round16(RC, RD, RA, RB, 8, r); #define encrypt_cycle_last16(r) \ encrypt_round16(RA, RB, RC, RD, 0, r); \ encrypt_round_last16(RC, RD, RA, RB, 8, r); #define decrypt_cycle16(r) \ decrypt_round16(RC, RD, RA, RB, 8, r); \ decrypt_round16(RA, RB, RC, RD, 0, r); #define decrypt_cycle_first16(r) \ decrypt_round_first16(RC, RD, RA, RB, 8, r); \ decrypt_round16(RA, RB, RC, RD, 0, r); #define decrypt_cycle_last16(r) \ decrypt_round16(RC, RD, RA, RB, 8, r); \ decrypt_round_last16(RA, RB, RC, RD, 0, r); #define transpose_4x4(x0,x1,x2,x3,t1,t2) \ vpunpckhdq x1, x0, t2; \ vpunpckldq x1, x0, x0; \ \ vpunpckldq x3, x2, t1; \ vpunpckhdq x3, x2, x2; \ \ vpunpckhqdq t1, x0, x1; \ vpunpcklqdq t1, x0, x0; \ \ vpunpckhqdq x2, t2, x3; \ vpunpcklqdq x2, t2, x2; #define read_blocks8(offs,a,b,c,d) \ vmovdqu 16*offs(RIO), a; \ vmovdqu 16*offs+32(RIO), b; \ vmovdqu 16*offs+64(RIO), c; \ vmovdqu 16*offs+96(RIO), d; \ \ transpose_4x4(a, b, c, d, RX0, RY0); #define write_blocks8(offs,a,b,c,d) \ transpose_4x4(a, b, c, d, RX0, RY0); \ \ vmovdqu a, 16*offs(RIO); \ vmovdqu b, 16*offs+32(RIO); \ vmovdqu c, 16*offs+64(RIO); \ vmovdqu d, 16*offs+96(RIO); #define inpack_enc8(a,b,c,d) \ vpbroadcastd 4*0(RW), RT0; \ vpxor RT0, a, a; \ \ vpbroadcastd 4*1(RW), RT0; \ vpxor RT0, b, b; \ \ vpbroadcastd 4*2(RW), RT0; \ vpxor RT0, c, c; \ \ vpbroadcastd 4*3(RW), RT0; \ vpxor RT0, d, d; #define outunpack_enc8(a,b,c,d) \ vpbroadcastd 4*4(RW), RX0; \ vpbroadcastd 4*5(RW), RY0; \ vpxor RX0, c, RX0; \ vpxor RY0, d, RY0; \ \ vpbroadcastd 4*6(RW), RT0; \ vpxor RT0, a, c; \ vpbroadcastd 4*7(RW), RT0; \ vpxor RT0, b, d; \ \ vmovdqa RX0, a; \ vmovdqa RY0, b; #define inpack_dec8(a,b,c,d) \ vpbroadcastd 4*4(RW), RX0; \ vpbroadcastd 4*5(RW), RY0; \ vpxor RX0, a, RX0; \ vpxor RY0, b, RY0; \ \ vpbroadcastd 4*6(RW), RT0; \ vpxor RT0, c, a; \ vpbroadcastd 4*7(RW), RT0; \ vpxor RT0, d, b; \ \ vmovdqa RX0, c; \ vmovdqa RY0, d; #define outunpack_dec8(a,b,c,d) \ vpbroadcastd 4*0(RW), RT0; \ vpxor RT0, a, a; \ \ vpbroadcastd 4*1(RW), RT0; \ vpxor RT0, b, b; \ \ vpbroadcastd 4*2(RW), RT0; \ vpxor RT0, c, c; \ \ vpbroadcastd 4*3(RW), RT0; \ vpxor RT0, d, d; #define transpose4x4_16(a,b,c,d) \ transpose_4x4(a ## 0, b ## 0, c ## 0, d ## 0, RX0, RY0); \ transpose_4x4(a ## 1, b ## 1, c ## 1, d ## 1, RX0, RY0); #define inpack_enc16(a,b,c,d) \ inpack_enc8(a ## 0, b ## 0, c ## 0, d ## 0); \ inpack_enc8(a ## 1, b ## 1, c ## 1, d ## 1); #define outunpack_enc16(a,b,c,d) \ outunpack_enc8(a ## 0, b ## 0, c ## 0, d ## 0); \ outunpack_enc8(a ## 1, b ## 1, c ## 1, d ## 1); #define inpack_dec16(a,b,c,d) \ inpack_dec8(a ## 0, b ## 0, c ## 0, d ## 0); \ inpack_dec8(a ## 1, b ## 1, c ## 1, d ## 1); #define outunpack_dec16(a,b,c,d) \ outunpack_dec8(a ## 0, b ## 0, c ## 0, d ## 0); \ outunpack_dec8(a ## 1, b ## 1, c ## 1, d ## 1); .align 8 ELF(.type __twofish_enc_blk16,@function;) __twofish_enc_blk16: /* input: * %rdi: ctx, CTX * RA0, RB0, RC0, RD0, RA1, RB1, RC1, RD1: sixteen parallel * plaintext blocks * output: * RA0, RB0, RC0, RD0, RA1, RB1, RC1, RD1: sixteen parallel * ciphertext blocks */ CFI_STARTPROC(); init_round_constants(); transpose4x4_16(RA, RB, RC, RD); inpack_enc16(RA, RB, RC, RD); encrypt_cycle_first16(0); encrypt_cycle16(2); encrypt_cycle16(4); encrypt_cycle16(6); encrypt_cycle16(8); encrypt_cycle16(10); encrypt_cycle16(12); encrypt_cycle_last16(14); outunpack_enc16(RA, RB, RC, RD); transpose4x4_16(RA, RB, RC, RD); ret_spec_stop; CFI_ENDPROC(); ELF(.size __twofish_enc_blk16,.-__twofish_enc_blk16;) .align 8 ELF(.type __twofish_dec_blk16,@function;) __twofish_dec_blk16: /* input: * %rdi: ctx, CTX * RA0, RB0, RC0, RD0, RA1, RB1, RC1, RD1: sixteen parallel * plaintext blocks * output: * RA0, RB0, RC0, RD0, RA1, RB1, RC1, RD1: sixteen parallel * ciphertext blocks */ CFI_STARTPROC(); init_round_constants(); transpose4x4_16(RA, RB, RC, RD); inpack_dec16(RA, RB, RC, RD); decrypt_cycle_first16(14); decrypt_cycle16(12); decrypt_cycle16(10); decrypt_cycle16(8); decrypt_cycle16(6); decrypt_cycle16(4); decrypt_cycle16(2); decrypt_cycle_last16(0); outunpack_dec16(RA, RB, RC, RD); transpose4x4_16(RA, RB, RC, RD); ret_spec_stop; CFI_ENDPROC(); ELF(.size __twofish_dec_blk16,.-__twofish_dec_blk16;) +.align 8 +.globl _gcry_twofish_avx2_blk16 +ELF(.type _gcry_twofish_avx2_blk16,@function;) +_gcry_twofish_avx2_blk16: + /* input: + * %rdi: ctx, CTX + * %rsi: dst (16 blocks) + * %rdx: src (16 blocks) + * %ecx: encrypt + */ + CFI_STARTPROC(); + + vzeroupper; + + vmovdqu (0 * 32)(%rdx), RA0; + vmovdqu (1 * 32)(%rdx), RB0; + vmovdqu (2 * 32)(%rdx), RC0; + vmovdqu (3 * 32)(%rdx), RD0; + vmovdqu (4 * 32)(%rdx), RA1; + vmovdqu (5 * 32)(%rdx), RB1; + vmovdqu (6 * 32)(%rdx), RC1; + vmovdqu (7 * 32)(%rdx), RD1; + + testl %ecx, %ecx; + jz .Lblk16_dec; + call __twofish_enc_blk16; + jmp .Lblk16_end; + .Lblk16_dec: + call __twofish_dec_blk16; + +.Lblk16_end: + vmovdqu RA0, (0 * 32)(%rsi); + vmovdqu RB0, (1 * 32)(%rsi); + vmovdqu RC0, (2 * 32)(%rsi); + vmovdqu RD0, (3 * 32)(%rsi); + vmovdqu RA1, (4 * 32)(%rsi); + vmovdqu RB1, (5 * 32)(%rsi); + vmovdqu RC1, (6 * 32)(%rsi); + vmovdqu RD1, (7 * 32)(%rsi); + + vzeroall; + + ret_spec_stop; + CFI_ENDPROC(); +ELF(.size _gcry_twofish_avx2_blk16,.-_gcry_twofish_avx2_blk16;) + #define inc_le128(x, minus_one, tmp) \ vpcmpeqq minus_one, x, tmp; \ vpsubq minus_one, x, x; \ vpslldq $8, tmp, tmp; \ vpsubq tmp, x, x; .align 8 .globl _gcry_twofish_avx2_ctr_enc ELF(.type _gcry_twofish_avx2_ctr_enc,@function;) _gcry_twofish_avx2_ctr_enc: /* input: * %rdi: ctx, CTX * %rsi: dst (16 blocks) * %rdx: src (16 blocks) * %rcx: iv (big endian, 128bit) */ CFI_STARTPROC(); movq 8(%rcx), %rax; bswapq %rax; vzeroupper; vbroadcasti128 .Lbswap128_mask rRIP, RTMP3; vpcmpeqd RNOT, RNOT, RNOT; vpsrldq $8, RNOT, RNOT; /* ab: -1:0 ; cd: -1:0 */ vpaddq RNOT, RNOT, RTMP2; /* ab: -2:0 ; cd: -2:0 */ /* load IV and byteswap */ vmovdqu (%rcx), RTMP4x; vpshufb RTMP3x, RTMP4x, RTMP4x; vmovdqa RTMP4x, RTMP0x; inc_le128(RTMP4x, RNOTx, RTMP1x); vinserti128 $1, RTMP4x, RTMP0, RTMP0; vpshufb RTMP3, RTMP0, RA0; /* +1 ; +0 */ /* check need for handling 64-bit overflow and carry */ cmpq $(0xffffffffffffffff - 16), %rax; ja .Lhandle_ctr_carry; /* construct IVs */ vpsubq RTMP2, RTMP0, RTMP0; /* +3 ; +2 */ vpshufb RTMP3, RTMP0, RB0; vpsubq RTMP2, RTMP0, RTMP0; /* +5 ; +4 */ vpshufb RTMP3, RTMP0, RC0; vpsubq RTMP2, RTMP0, RTMP0; /* +7 ; +6 */ vpshufb RTMP3, RTMP0, RD0; vpsubq RTMP2, RTMP0, RTMP0; /* +9 ; +8 */ vpshufb RTMP3, RTMP0, RA1; vpsubq RTMP2, RTMP0, RTMP0; /* +11 ; +10 */ vpshufb RTMP3, RTMP0, RB1; vpsubq RTMP2, RTMP0, RTMP0; /* +13 ; +12 */ vpshufb RTMP3, RTMP0, RC1; vpsubq RTMP2, RTMP0, RTMP0; /* +15 ; +14 */ vpshufb RTMP3, RTMP0, RD1; vpsubq RTMP2, RTMP0, RTMP0; /* +16 */ vpshufb RTMP3x, RTMP0x, RTMP0x; jmp .Lctr_carry_done; .Lhandle_ctr_carry: /* construct IVs */ inc_le128(RTMP0, RNOT, RTMP1); inc_le128(RTMP0, RNOT, RTMP1); vpshufb RTMP3, RTMP0, RB0; /* +3 ; +2 */ inc_le128(RTMP0, RNOT, RTMP1); inc_le128(RTMP0, RNOT, RTMP1); vpshufb RTMP3, RTMP0, RC0; /* +5 ; +4 */ inc_le128(RTMP0, RNOT, RTMP1); inc_le128(RTMP0, RNOT, RTMP1); vpshufb RTMP3, RTMP0, RD0; /* +7 ; +6 */ inc_le128(RTMP0, RNOT, RTMP1); inc_le128(RTMP0, RNOT, RTMP1); vpshufb RTMP3, RTMP0, RA1; /* +9 ; +8 */ inc_le128(RTMP0, RNOT, RTMP1); inc_le128(RTMP0, RNOT, RTMP1); vpshufb RTMP3, RTMP0, RB1; /* +11 ; +10 */ inc_le128(RTMP0, RNOT, RTMP1); inc_le128(RTMP0, RNOT, RTMP1); vpshufb RTMP3, RTMP0, RC1; /* +13 ; +12 */ inc_le128(RTMP0, RNOT, RTMP1); inc_le128(RTMP0, RNOT, RTMP1); vpshufb RTMP3, RTMP0, RD1; /* +15 ; +14 */ inc_le128(RTMP0, RNOT, RTMP1); vextracti128 $1, RTMP0, RTMP0x; vpshufb RTMP3x, RTMP0x, RTMP0x; /* +16 */ .align 4 .Lctr_carry_done: /* store new IV */ vmovdqu RTMP0x, (%rcx); call __twofish_enc_blk16; vpxor (0 * 32)(%rdx), RA0, RA0; vpxor (1 * 32)(%rdx), RB0, RB0; vpxor (2 * 32)(%rdx), RC0, RC0; vpxor (3 * 32)(%rdx), RD0, RD0; vpxor (4 * 32)(%rdx), RA1, RA1; vpxor (5 * 32)(%rdx), RB1, RB1; vpxor (6 * 32)(%rdx), RC1, RC1; vpxor (7 * 32)(%rdx), RD1, RD1; vmovdqu RA0, (0 * 32)(%rsi); vmovdqu RB0, (1 * 32)(%rsi); vmovdqu RC0, (2 * 32)(%rsi); vmovdqu RD0, (3 * 32)(%rsi); vmovdqu RA1, (4 * 32)(%rsi); vmovdqu RB1, (5 * 32)(%rsi); vmovdqu RC1, (6 * 32)(%rsi); vmovdqu RD1, (7 * 32)(%rsi); vzeroall; ret_spec_stop; CFI_ENDPROC(); ELF(.size _gcry_twofish_avx2_ctr_enc,.-_gcry_twofish_avx2_ctr_enc;) .align 8 .globl _gcry_twofish_avx2_cbc_dec ELF(.type _gcry_twofish_avx2_cbc_dec,@function;) _gcry_twofish_avx2_cbc_dec: /* input: * %rdi: ctx, CTX * %rsi: dst (16 blocks) * %rdx: src (16 blocks) * %rcx: iv */ CFI_STARTPROC(); vzeroupper; vmovdqu (0 * 32)(%rdx), RA0; vmovdqu (1 * 32)(%rdx), RB0; vmovdqu (2 * 32)(%rdx), RC0; vmovdqu (3 * 32)(%rdx), RD0; vmovdqu (4 * 32)(%rdx), RA1; vmovdqu (5 * 32)(%rdx), RB1; vmovdqu (6 * 32)(%rdx), RC1; vmovdqu (7 * 32)(%rdx), RD1; call __twofish_dec_blk16; vmovdqu (%rcx), RNOTx; vinserti128 $1, (%rdx), RNOT, RNOT; vpxor RNOT, RA0, RA0; vpxor (0 * 32 + 16)(%rdx), RB0, RB0; vpxor (1 * 32 + 16)(%rdx), RC0, RC0; vpxor (2 * 32 + 16)(%rdx), RD0, RD0; vpxor (3 * 32 + 16)(%rdx), RA1, RA1; vpxor (4 * 32 + 16)(%rdx), RB1, RB1; vpxor (5 * 32 + 16)(%rdx), RC1, RC1; vpxor (6 * 32 + 16)(%rdx), RD1, RD1; vmovdqu (7 * 32 + 16)(%rdx), RNOTx; vmovdqu RNOTx, (%rcx); /* store new IV */ vmovdqu RA0, (0 * 32)(%rsi); vmovdqu RB0, (1 * 32)(%rsi); vmovdqu RC0, (2 * 32)(%rsi); vmovdqu RD0, (3 * 32)(%rsi); vmovdqu RA1, (4 * 32)(%rsi); vmovdqu RB1, (5 * 32)(%rsi); vmovdqu RC1, (6 * 32)(%rsi); vmovdqu RD1, (7 * 32)(%rsi); vzeroall; ret_spec_stop; CFI_ENDPROC(); ELF(.size _gcry_twofish_avx2_cbc_dec,.-_gcry_twofish_avx2_cbc_dec;) .align 8 .globl _gcry_twofish_avx2_cfb_dec ELF(.type _gcry_twofish_avx2_cfb_dec,@function;) _gcry_twofish_avx2_cfb_dec: /* input: * %rdi: ctx, CTX * %rsi: dst (16 blocks) * %rdx: src (16 blocks) * %rcx: iv */ CFI_STARTPROC(); vzeroupper; /* Load input */ vmovdqu (%rcx), RNOTx; vinserti128 $1, (%rdx), RNOT, RA0; vmovdqu (0 * 32 + 16)(%rdx), RB0; vmovdqu (1 * 32 + 16)(%rdx), RC0; vmovdqu (2 * 32 + 16)(%rdx), RD0; vmovdqu (3 * 32 + 16)(%rdx), RA1; vmovdqu (4 * 32 + 16)(%rdx), RB1; vmovdqu (5 * 32 + 16)(%rdx), RC1; vmovdqu (6 * 32 + 16)(%rdx), RD1; /* Update IV */ vmovdqu (7 * 32 + 16)(%rdx), RNOTx; vmovdqu RNOTx, (%rcx); call __twofish_enc_blk16; vpxor (0 * 32)(%rdx), RA0, RA0; vpxor (1 * 32)(%rdx), RB0, RB0; vpxor (2 * 32)(%rdx), RC0, RC0; vpxor (3 * 32)(%rdx), RD0, RD0; vpxor (4 * 32)(%rdx), RA1, RA1; vpxor (5 * 32)(%rdx), RB1, RB1; vpxor (6 * 32)(%rdx), RC1, RC1; vpxor (7 * 32)(%rdx), RD1, RD1; vmovdqu RA0, (0 * 32)(%rsi); vmovdqu RB0, (1 * 32)(%rsi); vmovdqu RC0, (2 * 32)(%rsi); vmovdqu RD0, (3 * 32)(%rsi); vmovdqu RA1, (4 * 32)(%rsi); vmovdqu RB1, (5 * 32)(%rsi); vmovdqu RC1, (6 * 32)(%rsi); vmovdqu RD1, (7 * 32)(%rsi); vzeroall; ret_spec_stop; CFI_ENDPROC(); ELF(.size _gcry_twofish_avx2_cfb_dec,.-_gcry_twofish_avx2_cfb_dec;) .align 8 .globl _gcry_twofish_avx2_ocb_enc ELF(.type _gcry_twofish_avx2_ocb_enc,@function;) _gcry_twofish_avx2_ocb_enc: /* input: * %rdi: ctx, CTX * %rsi: dst (16 blocks) * %rdx: src (16 blocks) * %rcx: offset * %r8 : checksum * %r9 : L pointers (void *L[16]) */ CFI_STARTPROC(); vzeroupper; subq $(4 * 8), %rsp; CFI_ADJUST_CFA_OFFSET(4 * 8); movq %r10, (0 * 8)(%rsp); movq %r11, (1 * 8)(%rsp); movq %r12, (2 * 8)(%rsp); movq %r13, (3 * 8)(%rsp); CFI_REL_OFFSET(%r10, 0 * 8); CFI_REL_OFFSET(%r11, 1 * 8); CFI_REL_OFFSET(%r12, 2 * 8); CFI_REL_OFFSET(%r13, 3 * 8); vmovdqu (%rcx), RTMP0x; vmovdqu (%r8), RTMP1x; /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */ /* Checksum_i = Checksum_{i-1} xor P_i */ /* C_i = Offset_i xor ENCIPHER(K, P_i xor Offset_i) */ #define OCB_INPUT(n, l0reg, l1reg, yreg) \ vmovdqu (n * 32)(%rdx), yreg; \ vpxor (l0reg), RTMP0x, RNOTx; \ vpxor (l1reg), RNOTx, RTMP0x; \ vinserti128 $1, RTMP0x, RNOT, RNOT; \ vpxor yreg, RTMP1, RTMP1; \ vpxor yreg, RNOT, yreg; \ vmovdqu RNOT, (n * 32)(%rsi); movq (0 * 8)(%r9), %r10; movq (1 * 8)(%r9), %r11; movq (2 * 8)(%r9), %r12; movq (3 * 8)(%r9), %r13; OCB_INPUT(0, %r10, %r11, RA0); OCB_INPUT(1, %r12, %r13, RB0); movq (4 * 8)(%r9), %r10; movq (5 * 8)(%r9), %r11; movq (6 * 8)(%r9), %r12; movq (7 * 8)(%r9), %r13; OCB_INPUT(2, %r10, %r11, RC0); OCB_INPUT(3, %r12, %r13, RD0); movq (8 * 8)(%r9), %r10; movq (9 * 8)(%r9), %r11; movq (10 * 8)(%r9), %r12; movq (11 * 8)(%r9), %r13; OCB_INPUT(4, %r10, %r11, RA1); OCB_INPUT(5, %r12, %r13, RB1); movq (12 * 8)(%r9), %r10; movq (13 * 8)(%r9), %r11; movq (14 * 8)(%r9), %r12; movq (15 * 8)(%r9), %r13; OCB_INPUT(6, %r10, %r11, RC1); OCB_INPUT(7, %r12, %r13, RD1); #undef OCB_INPUT vextracti128 $1, RTMP1, RNOTx; vmovdqu RTMP0x, (%rcx); vpxor RNOTx, RTMP1x, RTMP1x; vmovdqu RTMP1x, (%r8); movq (0 * 8)(%rsp), %r10; movq (1 * 8)(%rsp), %r11; movq (2 * 8)(%rsp), %r12; movq (3 * 8)(%rsp), %r13; CFI_RESTORE(%r10); CFI_RESTORE(%r11); CFI_RESTORE(%r12); CFI_RESTORE(%r13); call __twofish_enc_blk16; addq $(4 * 8), %rsp; CFI_ADJUST_CFA_OFFSET(-4 * 8); vpxor (0 * 32)(%rsi), RA0, RA0; vpxor (1 * 32)(%rsi), RB0, RB0; vpxor (2 * 32)(%rsi), RC0, RC0; vpxor (3 * 32)(%rsi), RD0, RD0; vpxor (4 * 32)(%rsi), RA1, RA1; vpxor (5 * 32)(%rsi), RB1, RB1; vpxor (6 * 32)(%rsi), RC1, RC1; vpxor (7 * 32)(%rsi), RD1, RD1; vmovdqu RA0, (0 * 32)(%rsi); vmovdqu RB0, (1 * 32)(%rsi); vmovdqu RC0, (2 * 32)(%rsi); vmovdqu RD0, (3 * 32)(%rsi); vmovdqu RA1, (4 * 32)(%rsi); vmovdqu RB1, (5 * 32)(%rsi); vmovdqu RC1, (6 * 32)(%rsi); vmovdqu RD1, (7 * 32)(%rsi); vzeroall; ret_spec_stop; CFI_ENDPROC(); ELF(.size _gcry_twofish_avx2_ocb_enc,.-_gcry_twofish_avx2_ocb_enc;) .align 8 .globl _gcry_twofish_avx2_ocb_dec ELF(.type _gcry_twofish_avx2_ocb_dec,@function;) _gcry_twofish_avx2_ocb_dec: /* input: * %rdi: ctx, CTX * %rsi: dst (16 blocks) * %rdx: src (16 blocks) * %rcx: offset * %r8 : checksum * %r9 : L pointers (void *L[16]) */ CFI_STARTPROC(); vzeroupper; subq $(4 * 8), %rsp; CFI_ADJUST_CFA_OFFSET(4 * 8); movq %r10, (0 * 8)(%rsp); movq %r11, (1 * 8)(%rsp); movq %r12, (2 * 8)(%rsp); movq %r13, (3 * 8)(%rsp); CFI_REL_OFFSET(%r10, 0 * 8); CFI_REL_OFFSET(%r11, 1 * 8); CFI_REL_OFFSET(%r12, 2 * 8); CFI_REL_OFFSET(%r13, 3 * 8); vmovdqu (%rcx), RTMP0x; /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */ /* C_i = Offset_i xor ENCIPHER(K, P_i xor Offset_i) */ #define OCB_INPUT(n, l0reg, l1reg, yreg) \ vmovdqu (n * 32)(%rdx), yreg; \ vpxor (l0reg), RTMP0x, RNOTx; \ vpxor (l1reg), RNOTx, RTMP0x; \ vinserti128 $1, RTMP0x, RNOT, RNOT; \ vpxor yreg, RNOT, yreg; \ vmovdqu RNOT, (n * 32)(%rsi); movq (0 * 8)(%r9), %r10; movq (1 * 8)(%r9), %r11; movq (2 * 8)(%r9), %r12; movq (3 * 8)(%r9), %r13; OCB_INPUT(0, %r10, %r11, RA0); OCB_INPUT(1, %r12, %r13, RB0); movq (4 * 8)(%r9), %r10; movq (5 * 8)(%r9), %r11; movq (6 * 8)(%r9), %r12; movq (7 * 8)(%r9), %r13; OCB_INPUT(2, %r10, %r11, RC0); OCB_INPUT(3, %r12, %r13, RD0); movq (8 * 8)(%r9), %r10; movq (9 * 8)(%r9), %r11; movq (10 * 8)(%r9), %r12; movq (11 * 8)(%r9), %r13; OCB_INPUT(4, %r10, %r11, RA1); OCB_INPUT(5, %r12, %r13, RB1); movq (12 * 8)(%r9), %r10; movq (13 * 8)(%r9), %r11; movq (14 * 8)(%r9), %r12; movq (15 * 8)(%r9), %r13; OCB_INPUT(6, %r10, %r11, RC1); OCB_INPUT(7, %r12, %r13, RD1); #undef OCB_INPUT vmovdqu RTMP0x, (%rcx); mov %r8, %rcx movq (0 * 8)(%rsp), %r10; movq (1 * 8)(%rsp), %r11; movq (2 * 8)(%rsp), %r12; movq (3 * 8)(%rsp), %r13; CFI_RESTORE(%r10); CFI_RESTORE(%r11); CFI_RESTORE(%r12); CFI_RESTORE(%r13); call __twofish_dec_blk16; vmovdqu (%rcx), RTMP1x; vpxor (0 * 32)(%rsi), RA0, RA0; vpxor (1 * 32)(%rsi), RB0, RB0; vpxor (2 * 32)(%rsi), RC0, RC0; vpxor (3 * 32)(%rsi), RD0, RD0; vpxor (4 * 32)(%rsi), RA1, RA1; vpxor (5 * 32)(%rsi), RB1, RB1; vpxor (6 * 32)(%rsi), RC1, RC1; vpxor (7 * 32)(%rsi), RD1, RD1; addq $(4 * 8), %rsp; CFI_ADJUST_CFA_OFFSET(-4 * 8); /* Checksum_i = Checksum_{i-1} xor P_i */ vmovdqu RA0, (0 * 32)(%rsi); vpxor RA0, RTMP1, RTMP1; vmovdqu RB0, (1 * 32)(%rsi); vpxor RB0, RTMP1, RTMP1; vmovdqu RC0, (2 * 32)(%rsi); vpxor RC0, RTMP1, RTMP1; vmovdqu RD0, (3 * 32)(%rsi); vpxor RD0, RTMP1, RTMP1; vmovdqu RA1, (4 * 32)(%rsi); vpxor RA1, RTMP1, RTMP1; vmovdqu RB1, (5 * 32)(%rsi); vpxor RB1, RTMP1, RTMP1; vmovdqu RC1, (6 * 32)(%rsi); vpxor RC1, RTMP1, RTMP1; vmovdqu RD1, (7 * 32)(%rsi); vpxor RD1, RTMP1, RTMP1; vextracti128 $1, RTMP1, RNOTx; vpxor RNOTx, RTMP1x, RTMP1x; vmovdqu RTMP1x, (%rcx); vzeroall; ret_spec_stop; CFI_ENDPROC(); ELF(.size _gcry_twofish_avx2_ocb_dec,.-_gcry_twofish_avx2_ocb_dec;) .align 8 .globl _gcry_twofish_avx2_ocb_auth ELF(.type _gcry_twofish_avx2_ocb_auth,@function;) _gcry_twofish_avx2_ocb_auth: /* input: * %rdi: ctx, CTX * %rsi: abuf (16 blocks) * %rdx: offset * %rcx: checksum * %r8 : L pointers (void *L[16]) */ CFI_STARTPROC(); vzeroupper; subq $(4 * 8), %rsp; CFI_ADJUST_CFA_OFFSET(4 * 8); movq %r10, (0 * 8)(%rsp); movq %r11, (1 * 8)(%rsp); movq %r12, (2 * 8)(%rsp); movq %r13, (3 * 8)(%rsp); CFI_REL_OFFSET(%r10, 0 * 8); CFI_REL_OFFSET(%r11, 1 * 8); CFI_REL_OFFSET(%r12, 2 * 8); CFI_REL_OFFSET(%r13, 3 * 8); vmovdqu (%rdx), RTMP0x; /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */ /* Sum_i = Sum_{i-1} xor ENCIPHER(K, A_i xor Offset_i) */ #define OCB_INPUT(n, l0reg, l1reg, yreg) \ vmovdqu (n * 32)(%rsi), yreg; \ vpxor (l0reg), RTMP0x, RNOTx; \ vpxor (l1reg), RNOTx, RTMP0x; \ vinserti128 $1, RTMP0x, RNOT, RNOT; \ vpxor yreg, RNOT, yreg; movq (0 * 8)(%r8), %r10; movq (1 * 8)(%r8), %r11; movq (2 * 8)(%r8), %r12; movq (3 * 8)(%r8), %r13; OCB_INPUT(0, %r10, %r11, RA0); OCB_INPUT(1, %r12, %r13, RB0); movq (4 * 8)(%r8), %r10; movq (5 * 8)(%r8), %r11; movq (6 * 8)(%r8), %r12; movq (7 * 8)(%r8), %r13; OCB_INPUT(2, %r10, %r11, RC0); OCB_INPUT(3, %r12, %r13, RD0); movq (8 * 8)(%r8), %r10; movq (9 * 8)(%r8), %r11; movq (10 * 8)(%r8), %r12; movq (11 * 8)(%r8), %r13; OCB_INPUT(4, %r10, %r11, RA1); OCB_INPUT(5, %r12, %r13, RB1); movq (12 * 8)(%r8), %r10; movq (13 * 8)(%r8), %r11; movq (14 * 8)(%r8), %r12; movq (15 * 8)(%r8), %r13; OCB_INPUT(6, %r10, %r11, RC1); OCB_INPUT(7, %r12, %r13, RD1); #undef OCB_INPUT vmovdqu RTMP0x, (%rdx); movq (0 * 8)(%rsp), %r10; movq (1 * 8)(%rsp), %r11; movq (2 * 8)(%rsp), %r12; movq (3 * 8)(%rsp), %r13; CFI_RESTORE(%r10); CFI_RESTORE(%r11); CFI_RESTORE(%r12); CFI_RESTORE(%r13); call __twofish_enc_blk16; vpxor RA0, RB0, RA0; vpxor RC0, RD0, RC0; vpxor RA1, RB1, RA1; vpxor RC1, RD1, RC1; vpxor RA0, RC0, RA0; vpxor RA1, RC1, RA1; addq $(4 * 8), %rsp; CFI_ADJUST_CFA_OFFSET(-4 * 8); vpxor RA1, RA0, RTMP1; vextracti128 $1, RTMP1, RNOTx; vpxor (%rcx), RTMP1x, RTMP1x; vpxor RNOTx, RTMP1x, RTMP1x; vmovdqu RTMP1x, (%rcx); vzeroall; ret_spec_stop; CFI_ENDPROC(); ELF(.size _gcry_twofish_avx2_ocb_auth,.-_gcry_twofish_avx2_ocb_auth;) .align 16 /* For CTR-mode IV byteswap */ _gcry_twofish_bswap128_mask: .Lbswap128_mask: .byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 ELF(.size _gcry_twofish_bswap128_mask,.-_gcry_twofish_bswap128_mask;) #endif /*defined(USE_TWOFISH) && defined(ENABLE_AVX2_SUPPORT)*/ #endif /*__x86_64*/ diff --git a/cipher/twofish.c b/cipher/twofish.c index b300715b..92c463fc 100644 --- a/cipher/twofish.c +++ b/cipher/twofish.c @@ -1,1713 +1,1854 @@ /* Twofish for GPG * Copyright (C) 1998, 2002, 2003 Free Software Foundation, Inc. * Written by Matthew Skala , July 26, 1998 * 256-bit key length added March 20, 1999 * Some modifications to reduce the text size by Werner Koch, April, 1998 * * This file is part of Libgcrypt. * * Libgcrypt is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2.1 of * the License, or (at your option) any later version. * * Libgcrypt is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA ******************************************************************** * * This code is a "clean room" implementation, written from the paper * _Twofish: A 128-Bit Block Cipher_ by Bruce Schneier, John Kelsey, * Doug Whiting, David Wagner, Chris Hall, and Niels Ferguson, available * through http://www.counterpane.com/twofish.html * * For background information on multiplication in finite fields, used for * the matrix operations in the key schedule, see the book _Contemporary * Abstract Algebra_ by Joseph A. Gallian, especially chapter 22 in the * Third Edition. * * Only the 128- and 256-bit key sizes are supported. This code is intended * for GNU C on a 32-bit system, but it should work almost anywhere. Loops * are unrolled, precomputation tables are used, etc., for maximum speed at * some cost in memory consumption. */ #include #include #include #include /* for memcmp() */ #include "types.h" /* for byte and u32 typedefs */ #include "g10lib.h" #include "cipher.h" #include "bufhelp.h" #include "cipher-internal.h" #include "bulkhelp.h" #define TWOFISH_BLOCKSIZE 16 /* USE_AMD64_ASM indicates whether to use AMD64 assembly code. */ #undef USE_AMD64_ASM #if defined(__x86_64__) && (defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) || \ defined(HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS)) # define USE_AMD64_ASM 1 #endif /* USE_ARM_ASM indicates whether to use ARM assembly code. */ #undef USE_ARM_ASM #if defined(__ARMEL__) # if defined(HAVE_COMPATIBLE_GCC_ARM_PLATFORM_AS) # define USE_ARM_ASM 1 # endif #endif # if defined(__AARCH64EL__) # ifdef HAVE_COMPATIBLE_GCC_AARCH64_PLATFORM_AS # define USE_ARM_ASM 1 # endif # endif /* USE_AVX2 indicates whether to compile with AMD64 AVX2 code. */ #undef USE_AVX2 #if defined(__x86_64__) && (defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) || \ defined(HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS)) # if defined(ENABLE_AVX2_SUPPORT) # define USE_AVX2 1 # endif #endif /* Prototype for the self-test function. */ static const char *selftest(void); /* Prototypes for the bulk functions. */ static void _gcry_twofish_ctr_enc (void *context, unsigned char *ctr, void *outbuf_arg, const void *inbuf_arg, size_t nblocks); static void _gcry_twofish_cbc_dec (void *context, unsigned char *iv, void *outbuf_arg, const void *inbuf_arg, size_t nblocks); static void _gcry_twofish_cfb_dec (void *context, unsigned char *iv, void *outbuf_arg, const void *inbuf_arg, size_t nblocks); static size_t _gcry_twofish_ocb_crypt (gcry_cipher_hd_t c, void *outbuf_arg, const void *inbuf_arg, size_t nblocks, int encrypt); static size_t _gcry_twofish_ocb_auth (gcry_cipher_hd_t c, const void *abuf_arg, size_t nblocks); - +static void _gcry_twofish_xts_crypt (void *context, unsigned char *tweak, + void *outbuf_arg, const void *inbuf_arg, + size_t nblocks, int encrypt); +static void _gcry_twofish_ecb_crypt (void *context, void *outbuf_arg, + const void *inbuf_arg, size_t nblocks, + int encrypt); /* Structure for an expanded Twofish key. s contains the key-dependent * S-boxes composed with the MDS matrix; w contains the eight "whitening" * subkeys, K[0] through K[7]. k holds the remaining, "round" subkeys. Note * that k[i] corresponds to what the Twofish paper calls K[i+8]. */ typedef struct { u32 s[4][256], w[8], k[32]; #ifdef USE_AVX2 int use_avx2; #endif } TWOFISH_context; /* Assembly implementations use SystemV ABI, ABI conversion and additional * stack to store XMM6-XMM15 needed on Win64. */ #undef ASM_FUNC_ABI #if defined(USE_AVX2) # ifdef HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS # define ASM_FUNC_ABI __attribute__((sysv_abi)) # else # define ASM_FUNC_ABI # endif #endif /* These two tables are the q0 and q1 permutations, exactly as described in * the Twofish paper. */ static const byte q0[256] = { 0xA9, 0x67, 0xB3, 0xE8, 0x04, 0xFD, 0xA3, 0x76, 0x9A, 0x92, 0x80, 0x78, 0xE4, 0xDD, 0xD1, 0x38, 0x0D, 0xC6, 0x35, 0x98, 0x18, 0xF7, 0xEC, 0x6C, 0x43, 0x75, 0x37, 0x26, 0xFA, 0x13, 0x94, 0x48, 0xF2, 0xD0, 0x8B, 0x30, 0x84, 0x54, 0xDF, 0x23, 0x19, 0x5B, 0x3D, 0x59, 0xF3, 0xAE, 0xA2, 0x82, 0x63, 0x01, 0x83, 0x2E, 0xD9, 0x51, 0x9B, 0x7C, 0xA6, 0xEB, 0xA5, 0xBE, 0x16, 0x0C, 0xE3, 0x61, 0xC0, 0x8C, 0x3A, 0xF5, 0x73, 0x2C, 0x25, 0x0B, 0xBB, 0x4E, 0x89, 0x6B, 0x53, 0x6A, 0xB4, 0xF1, 0xE1, 0xE6, 0xBD, 0x45, 0xE2, 0xF4, 0xB6, 0x66, 0xCC, 0x95, 0x03, 0x56, 0xD4, 0x1C, 0x1E, 0xD7, 0xFB, 0xC3, 0x8E, 0xB5, 0xE9, 0xCF, 0xBF, 0xBA, 0xEA, 0x77, 0x39, 0xAF, 0x33, 0xC9, 0x62, 0x71, 0x81, 0x79, 0x09, 0xAD, 0x24, 0xCD, 0xF9, 0xD8, 0xE5, 0xC5, 0xB9, 0x4D, 0x44, 0x08, 0x86, 0xE7, 0xA1, 0x1D, 0xAA, 0xED, 0x06, 0x70, 0xB2, 0xD2, 0x41, 0x7B, 0xA0, 0x11, 0x31, 0xC2, 0x27, 0x90, 0x20, 0xF6, 0x60, 0xFF, 0x96, 0x5C, 0xB1, 0xAB, 0x9E, 0x9C, 0x52, 0x1B, 0x5F, 0x93, 0x0A, 0xEF, 0x91, 0x85, 0x49, 0xEE, 0x2D, 0x4F, 0x8F, 0x3B, 0x47, 0x87, 0x6D, 0x46, 0xD6, 0x3E, 0x69, 0x64, 0x2A, 0xCE, 0xCB, 0x2F, 0xFC, 0x97, 0x05, 0x7A, 0xAC, 0x7F, 0xD5, 0x1A, 0x4B, 0x0E, 0xA7, 0x5A, 0x28, 0x14, 0x3F, 0x29, 0x88, 0x3C, 0x4C, 0x02, 0xB8, 0xDA, 0xB0, 0x17, 0x55, 0x1F, 0x8A, 0x7D, 0x57, 0xC7, 0x8D, 0x74, 0xB7, 0xC4, 0x9F, 0x72, 0x7E, 0x15, 0x22, 0x12, 0x58, 0x07, 0x99, 0x34, 0x6E, 0x50, 0xDE, 0x68, 0x65, 0xBC, 0xDB, 0xF8, 0xC8, 0xA8, 0x2B, 0x40, 0xDC, 0xFE, 0x32, 0xA4, 0xCA, 0x10, 0x21, 0xF0, 0xD3, 0x5D, 0x0F, 0x00, 0x6F, 0x9D, 0x36, 0x42, 0x4A, 0x5E, 0xC1, 0xE0 }; static const byte q1[256] = { 0x75, 0xF3, 0xC6, 0xF4, 0xDB, 0x7B, 0xFB, 0xC8, 0x4A, 0xD3, 0xE6, 0x6B, 0x45, 0x7D, 0xE8, 0x4B, 0xD6, 0x32, 0xD8, 0xFD, 0x37, 0x71, 0xF1, 0xE1, 0x30, 0x0F, 0xF8, 0x1B, 0x87, 0xFA, 0x06, 0x3F, 0x5E, 0xBA, 0xAE, 0x5B, 0x8A, 0x00, 0xBC, 0x9D, 0x6D, 0xC1, 0xB1, 0x0E, 0x80, 0x5D, 0xD2, 0xD5, 0xA0, 0x84, 0x07, 0x14, 0xB5, 0x90, 0x2C, 0xA3, 0xB2, 0x73, 0x4C, 0x54, 0x92, 0x74, 0x36, 0x51, 0x38, 0xB0, 0xBD, 0x5A, 0xFC, 0x60, 0x62, 0x96, 0x6C, 0x42, 0xF7, 0x10, 0x7C, 0x28, 0x27, 0x8C, 0x13, 0x95, 0x9C, 0xC7, 0x24, 0x46, 0x3B, 0x70, 0xCA, 0xE3, 0x85, 0xCB, 0x11, 0xD0, 0x93, 0xB8, 0xA6, 0x83, 0x20, 0xFF, 0x9F, 0x77, 0xC3, 0xCC, 0x03, 0x6F, 0x08, 0xBF, 0x40, 0xE7, 0x2B, 0xE2, 0x79, 0x0C, 0xAA, 0x82, 0x41, 0x3A, 0xEA, 0xB9, 0xE4, 0x9A, 0xA4, 0x97, 0x7E, 0xDA, 0x7A, 0x17, 0x66, 0x94, 0xA1, 0x1D, 0x3D, 0xF0, 0xDE, 0xB3, 0x0B, 0x72, 0xA7, 0x1C, 0xEF, 0xD1, 0x53, 0x3E, 0x8F, 0x33, 0x26, 0x5F, 0xEC, 0x76, 0x2A, 0x49, 0x81, 0x88, 0xEE, 0x21, 0xC4, 0x1A, 0xEB, 0xD9, 0xC5, 0x39, 0x99, 0xCD, 0xAD, 0x31, 0x8B, 0x01, 0x18, 0x23, 0xDD, 0x1F, 0x4E, 0x2D, 0xF9, 0x48, 0x4F, 0xF2, 0x65, 0x8E, 0x78, 0x5C, 0x58, 0x19, 0x8D, 0xE5, 0x98, 0x57, 0x67, 0x7F, 0x05, 0x64, 0xAF, 0x63, 0xB6, 0xFE, 0xF5, 0xB7, 0x3C, 0xA5, 0xCE, 0xE9, 0x68, 0x44, 0xE0, 0x4D, 0x43, 0x69, 0x29, 0x2E, 0xAC, 0x15, 0x59, 0xA8, 0x0A, 0x9E, 0x6E, 0x47, 0xDF, 0x34, 0x35, 0x6A, 0xCF, 0xDC, 0x22, 0xC9, 0xC0, 0x9B, 0x89, 0xD4, 0xED, 0xAB, 0x12, 0xA2, 0x0D, 0x52, 0xBB, 0x02, 0x2F, 0xA9, 0xD7, 0x61, 0x1E, 0xB4, 0x50, 0x04, 0xF6, 0xC2, 0x16, 0x25, 0x86, 0x56, 0x55, 0x09, 0xBE, 0x91 }; /* These MDS tables are actually tables of MDS composed with q0 and q1, * because it is only ever used that way and we can save some time by * precomputing. Of course the main saving comes from precomputing the * GF(2^8) multiplication involved in the MDS matrix multiply; by looking * things up in these tables we reduce the matrix multiply to four lookups * and three XORs. Semi-formally, the definition of these tables is: * mds[0][i] = MDS (q1[i] 0 0 0)^T mds[1][i] = MDS (0 q0[i] 0 0)^T * mds[2][i] = MDS (0 0 q1[i] 0)^T mds[3][i] = MDS (0 0 0 q0[i])^T * where ^T means "transpose", the matrix multiply is performed in GF(2^8) * represented as GF(2)[x]/v(x) where v(x)=x^8+x^6+x^5+x^3+1 as described * by Schneier et al, and I'm casually glossing over the byte/word * conversion issues. */ static const u32 mds[4][256] = { {0xBCBC3275, 0xECEC21F3, 0x202043C6, 0xB3B3C9F4, 0xDADA03DB, 0x02028B7B, 0xE2E22BFB, 0x9E9EFAC8, 0xC9C9EC4A, 0xD4D409D3, 0x18186BE6, 0x1E1E9F6B, 0x98980E45, 0xB2B2387D, 0xA6A6D2E8, 0x2626B74B, 0x3C3C57D6, 0x93938A32, 0x8282EED8, 0x525298FD, 0x7B7BD437, 0xBBBB3771, 0x5B5B97F1, 0x474783E1, 0x24243C30, 0x5151E20F, 0xBABAC6F8, 0x4A4AF31B, 0xBFBF4887, 0x0D0D70FA, 0xB0B0B306, 0x7575DE3F, 0xD2D2FD5E, 0x7D7D20BA, 0x666631AE, 0x3A3AA35B, 0x59591C8A, 0x00000000, 0xCDCD93BC, 0x1A1AE09D, 0xAEAE2C6D, 0x7F7FABC1, 0x2B2BC7B1, 0xBEBEB90E, 0xE0E0A080, 0x8A8A105D, 0x3B3B52D2, 0x6464BAD5, 0xD8D888A0, 0xE7E7A584, 0x5F5FE807, 0x1B1B1114, 0x2C2CC2B5, 0xFCFCB490, 0x3131272C, 0x808065A3, 0x73732AB2, 0x0C0C8173, 0x79795F4C, 0x6B6B4154, 0x4B4B0292, 0x53536974, 0x94948F36, 0x83831F51, 0x2A2A3638, 0xC4C49CB0, 0x2222C8BD, 0xD5D5F85A, 0xBDBDC3FC, 0x48487860, 0xFFFFCE62, 0x4C4C0796, 0x4141776C, 0xC7C7E642, 0xEBEB24F7, 0x1C1C1410, 0x5D5D637C, 0x36362228, 0x6767C027, 0xE9E9AF8C, 0x4444F913, 0x1414EA95, 0xF5F5BB9C, 0xCFCF18C7, 0x3F3F2D24, 0xC0C0E346, 0x7272DB3B, 0x54546C70, 0x29294CCA, 0xF0F035E3, 0x0808FE85, 0xC6C617CB, 0xF3F34F11, 0x8C8CE4D0, 0xA4A45993, 0xCACA96B8, 0x68683BA6, 0xB8B84D83, 0x38382820, 0xE5E52EFF, 0xADAD569F, 0x0B0B8477, 0xC8C81DC3, 0x9999FFCC, 0x5858ED03, 0x19199A6F, 0x0E0E0A08, 0x95957EBF, 0x70705040, 0xF7F730E7, 0x6E6ECF2B, 0x1F1F6EE2, 0xB5B53D79, 0x09090F0C, 0x616134AA, 0x57571682, 0x9F9F0B41, 0x9D9D803A, 0x111164EA, 0x2525CDB9, 0xAFAFDDE4, 0x4545089A, 0xDFDF8DA4, 0xA3A35C97, 0xEAEAD57E, 0x353558DA, 0xEDEDD07A, 0x4343FC17, 0xF8F8CB66, 0xFBFBB194, 0x3737D3A1, 0xFAFA401D, 0xC2C2683D, 0xB4B4CCF0, 0x32325DDE, 0x9C9C71B3, 0x5656E70B, 0xE3E3DA72, 0x878760A7, 0x15151B1C, 0xF9F93AEF, 0x6363BFD1, 0x3434A953, 0x9A9A853E, 0xB1B1428F, 0x7C7CD133, 0x88889B26, 0x3D3DA65F, 0xA1A1D7EC, 0xE4E4DF76, 0x8181942A, 0x91910149, 0x0F0FFB81, 0xEEEEAA88, 0x161661EE, 0xD7D77321, 0x9797F5C4, 0xA5A5A81A, 0xFEFE3FEB, 0x6D6DB5D9, 0x7878AEC5, 0xC5C56D39, 0x1D1DE599, 0x7676A4CD, 0x3E3EDCAD, 0xCBCB6731, 0xB6B6478B, 0xEFEF5B01, 0x12121E18, 0x6060C523, 0x6A6AB0DD, 0x4D4DF61F, 0xCECEE94E, 0xDEDE7C2D, 0x55559DF9, 0x7E7E5A48, 0x2121B24F, 0x03037AF2, 0xA0A02665, 0x5E5E198E, 0x5A5A6678, 0x65654B5C, 0x62624E58, 0xFDFD4519, 0x0606F48D, 0x404086E5, 0xF2F2BE98, 0x3333AC57, 0x17179067, 0x05058E7F, 0xE8E85E05, 0x4F4F7D64, 0x89896AAF, 0x10109563, 0x74742FB6, 0x0A0A75FE, 0x5C5C92F5, 0x9B9B74B7, 0x2D2D333C, 0x3030D6A5, 0x2E2E49CE, 0x494989E9, 0x46467268, 0x77775544, 0xA8A8D8E0, 0x9696044D, 0x2828BD43, 0xA9A92969, 0xD9D97929, 0x8686912E, 0xD1D187AC, 0xF4F44A15, 0x8D8D1559, 0xD6D682A8, 0xB9B9BC0A, 0x42420D9E, 0xF6F6C16E, 0x2F2FB847, 0xDDDD06DF, 0x23233934, 0xCCCC6235, 0xF1F1C46A, 0xC1C112CF, 0x8585EBDC, 0x8F8F9E22, 0x7171A1C9, 0x9090F0C0, 0xAAAA539B, 0x0101F189, 0x8B8BE1D4, 0x4E4E8CED, 0x8E8E6FAB, 0xABABA212, 0x6F6F3EA2, 0xE6E6540D, 0xDBDBF252, 0x92927BBB, 0xB7B7B602, 0x6969CA2F, 0x3939D9A9, 0xD3D30CD7, 0xA7A72361, 0xA2A2AD1E, 0xC3C399B4, 0x6C6C4450, 0x07070504, 0x04047FF6, 0x272746C2, 0xACACA716, 0xD0D07625, 0x50501386, 0xDCDCF756, 0x84841A55, 0xE1E15109, 0x7A7A25BE, 0x1313EF91}, {0xA9D93939, 0x67901717, 0xB3719C9C, 0xE8D2A6A6, 0x04050707, 0xFD985252, 0xA3658080, 0x76DFE4E4, 0x9A084545, 0x92024B4B, 0x80A0E0E0, 0x78665A5A, 0xE4DDAFAF, 0xDDB06A6A, 0xD1BF6363, 0x38362A2A, 0x0D54E6E6, 0xC6432020, 0x3562CCCC, 0x98BEF2F2, 0x181E1212, 0xF724EBEB, 0xECD7A1A1, 0x6C774141, 0x43BD2828, 0x7532BCBC, 0x37D47B7B, 0x269B8888, 0xFA700D0D, 0x13F94444, 0x94B1FBFB, 0x485A7E7E, 0xF27A0303, 0xD0E48C8C, 0x8B47B6B6, 0x303C2424, 0x84A5E7E7, 0x54416B6B, 0xDF06DDDD, 0x23C56060, 0x1945FDFD, 0x5BA33A3A, 0x3D68C2C2, 0x59158D8D, 0xF321ECEC, 0xAE316666, 0xA23E6F6F, 0x82165757, 0x63951010, 0x015BEFEF, 0x834DB8B8, 0x2E918686, 0xD9B56D6D, 0x511F8383, 0x9B53AAAA, 0x7C635D5D, 0xA63B6868, 0xEB3FFEFE, 0xA5D63030, 0xBE257A7A, 0x16A7ACAC, 0x0C0F0909, 0xE335F0F0, 0x6123A7A7, 0xC0F09090, 0x8CAFE9E9, 0x3A809D9D, 0xF5925C5C, 0x73810C0C, 0x2C273131, 0x2576D0D0, 0x0BE75656, 0xBB7B9292, 0x4EE9CECE, 0x89F10101, 0x6B9F1E1E, 0x53A93434, 0x6AC4F1F1, 0xB499C3C3, 0xF1975B5B, 0xE1834747, 0xE66B1818, 0xBDC82222, 0x450E9898, 0xE26E1F1F, 0xF4C9B3B3, 0xB62F7474, 0x66CBF8F8, 0xCCFF9999, 0x95EA1414, 0x03ED5858, 0x56F7DCDC, 0xD4E18B8B, 0x1C1B1515, 0x1EADA2A2, 0xD70CD3D3, 0xFB2BE2E2, 0xC31DC8C8, 0x8E195E5E, 0xB5C22C2C, 0xE9894949, 0xCF12C1C1, 0xBF7E9595, 0xBA207D7D, 0xEA641111, 0x77840B0B, 0x396DC5C5, 0xAF6A8989, 0x33D17C7C, 0xC9A17171, 0x62CEFFFF, 0x7137BBBB, 0x81FB0F0F, 0x793DB5B5, 0x0951E1E1, 0xADDC3E3E, 0x242D3F3F, 0xCDA47676, 0xF99D5555, 0xD8EE8282, 0xE5864040, 0xC5AE7878, 0xB9CD2525, 0x4D049696, 0x44557777, 0x080A0E0E, 0x86135050, 0xE730F7F7, 0xA1D33737, 0x1D40FAFA, 0xAA346161, 0xED8C4E4E, 0x06B3B0B0, 0x706C5454, 0xB22A7373, 0xD2523B3B, 0x410B9F9F, 0x7B8B0202, 0xA088D8D8, 0x114FF3F3, 0x3167CBCB, 0xC2462727, 0x27C06767, 0x90B4FCFC, 0x20283838, 0xF67F0404, 0x60784848, 0xFF2EE5E5, 0x96074C4C, 0x5C4B6565, 0xB1C72B2B, 0xAB6F8E8E, 0x9E0D4242, 0x9CBBF5F5, 0x52F2DBDB, 0x1BF34A4A, 0x5FA63D3D, 0x9359A4A4, 0x0ABCB9B9, 0xEF3AF9F9, 0x91EF1313, 0x85FE0808, 0x49019191, 0xEE611616, 0x2D7CDEDE, 0x4FB22121, 0x8F42B1B1, 0x3BDB7272, 0x47B82F2F, 0x8748BFBF, 0x6D2CAEAE, 0x46E3C0C0, 0xD6573C3C, 0x3E859A9A, 0x6929A9A9, 0x647D4F4F, 0x2A948181, 0xCE492E2E, 0xCB17C6C6, 0x2FCA6969, 0xFCC3BDBD, 0x975CA3A3, 0x055EE8E8, 0x7AD0EDED, 0xAC87D1D1, 0x7F8E0505, 0xD5BA6464, 0x1AA8A5A5, 0x4BB72626, 0x0EB9BEBE, 0xA7608787, 0x5AF8D5D5, 0x28223636, 0x14111B1B, 0x3FDE7575, 0x2979D9D9, 0x88AAEEEE, 0x3C332D2D, 0x4C5F7979, 0x02B6B7B7, 0xB896CACA, 0xDA583535, 0xB09CC4C4, 0x17FC4343, 0x551A8484, 0x1FF64D4D, 0x8A1C5959, 0x7D38B2B2, 0x57AC3333, 0xC718CFCF, 0x8DF40606, 0x74695353, 0xB7749B9B, 0xC4F59797, 0x9F56ADAD, 0x72DAE3E3, 0x7ED5EAEA, 0x154AF4F4, 0x229E8F8F, 0x12A2ABAB, 0x584E6262, 0x07E85F5F, 0x99E51D1D, 0x34392323, 0x6EC1F6F6, 0x50446C6C, 0xDE5D3232, 0x68724646, 0x6526A0A0, 0xBC93CDCD, 0xDB03DADA, 0xF8C6BABA, 0xC8FA9E9E, 0xA882D6D6, 0x2BCF6E6E, 0x40507070, 0xDCEB8585, 0xFE750A0A, 0x328A9393, 0xA48DDFDF, 0xCA4C2929, 0x10141C1C, 0x2173D7D7, 0xF0CCB4B4, 0xD309D4D4, 0x5D108A8A, 0x0FE25151, 0x00000000, 0x6F9A1919, 0x9DE01A1A, 0x368F9494, 0x42E6C7C7, 0x4AECC9C9, 0x5EFDD2D2, 0xC1AB7F7F, 0xE0D8A8A8}, {0xBC75BC32, 0xECF3EC21, 0x20C62043, 0xB3F4B3C9, 0xDADBDA03, 0x027B028B, 0xE2FBE22B, 0x9EC89EFA, 0xC94AC9EC, 0xD4D3D409, 0x18E6186B, 0x1E6B1E9F, 0x9845980E, 0xB27DB238, 0xA6E8A6D2, 0x264B26B7, 0x3CD63C57, 0x9332938A, 0x82D882EE, 0x52FD5298, 0x7B377BD4, 0xBB71BB37, 0x5BF15B97, 0x47E14783, 0x2430243C, 0x510F51E2, 0xBAF8BAC6, 0x4A1B4AF3, 0xBF87BF48, 0x0DFA0D70, 0xB006B0B3, 0x753F75DE, 0xD25ED2FD, 0x7DBA7D20, 0x66AE6631, 0x3A5B3AA3, 0x598A591C, 0x00000000, 0xCDBCCD93, 0x1A9D1AE0, 0xAE6DAE2C, 0x7FC17FAB, 0x2BB12BC7, 0xBE0EBEB9, 0xE080E0A0, 0x8A5D8A10, 0x3BD23B52, 0x64D564BA, 0xD8A0D888, 0xE784E7A5, 0x5F075FE8, 0x1B141B11, 0x2CB52CC2, 0xFC90FCB4, 0x312C3127, 0x80A38065, 0x73B2732A, 0x0C730C81, 0x794C795F, 0x6B546B41, 0x4B924B02, 0x53745369, 0x9436948F, 0x8351831F, 0x2A382A36, 0xC4B0C49C, 0x22BD22C8, 0xD55AD5F8, 0xBDFCBDC3, 0x48604878, 0xFF62FFCE, 0x4C964C07, 0x416C4177, 0xC742C7E6, 0xEBF7EB24, 0x1C101C14, 0x5D7C5D63, 0x36283622, 0x672767C0, 0xE98CE9AF, 0x441344F9, 0x149514EA, 0xF59CF5BB, 0xCFC7CF18, 0x3F243F2D, 0xC046C0E3, 0x723B72DB, 0x5470546C, 0x29CA294C, 0xF0E3F035, 0x088508FE, 0xC6CBC617, 0xF311F34F, 0x8CD08CE4, 0xA493A459, 0xCAB8CA96, 0x68A6683B, 0xB883B84D, 0x38203828, 0xE5FFE52E, 0xAD9FAD56, 0x0B770B84, 0xC8C3C81D, 0x99CC99FF, 0x580358ED, 0x196F199A, 0x0E080E0A, 0x95BF957E, 0x70407050, 0xF7E7F730, 0x6E2B6ECF, 0x1FE21F6E, 0xB579B53D, 0x090C090F, 0x61AA6134, 0x57825716, 0x9F419F0B, 0x9D3A9D80, 0x11EA1164, 0x25B925CD, 0xAFE4AFDD, 0x459A4508, 0xDFA4DF8D, 0xA397A35C, 0xEA7EEAD5, 0x35DA3558, 0xED7AEDD0, 0x431743FC, 0xF866F8CB, 0xFB94FBB1, 0x37A137D3, 0xFA1DFA40, 0xC23DC268, 0xB4F0B4CC, 0x32DE325D, 0x9CB39C71, 0x560B56E7, 0xE372E3DA, 0x87A78760, 0x151C151B, 0xF9EFF93A, 0x63D163BF, 0x345334A9, 0x9A3E9A85, 0xB18FB142, 0x7C337CD1, 0x8826889B, 0x3D5F3DA6, 0xA1ECA1D7, 0xE476E4DF, 0x812A8194, 0x91499101, 0x0F810FFB, 0xEE88EEAA, 0x16EE1661, 0xD721D773, 0x97C497F5, 0xA51AA5A8, 0xFEEBFE3F, 0x6DD96DB5, 0x78C578AE, 0xC539C56D, 0x1D991DE5, 0x76CD76A4, 0x3EAD3EDC, 0xCB31CB67, 0xB68BB647, 0xEF01EF5B, 0x1218121E, 0x602360C5, 0x6ADD6AB0, 0x4D1F4DF6, 0xCE4ECEE9, 0xDE2DDE7C, 0x55F9559D, 0x7E487E5A, 0x214F21B2, 0x03F2037A, 0xA065A026, 0x5E8E5E19, 0x5A785A66, 0x655C654B, 0x6258624E, 0xFD19FD45, 0x068D06F4, 0x40E54086, 0xF298F2BE, 0x335733AC, 0x17671790, 0x057F058E, 0xE805E85E, 0x4F644F7D, 0x89AF896A, 0x10631095, 0x74B6742F, 0x0AFE0A75, 0x5CF55C92, 0x9BB79B74, 0x2D3C2D33, 0x30A530D6, 0x2ECE2E49, 0x49E94989, 0x46684672, 0x77447755, 0xA8E0A8D8, 0x964D9604, 0x284328BD, 0xA969A929, 0xD929D979, 0x862E8691, 0xD1ACD187, 0xF415F44A, 0x8D598D15, 0xD6A8D682, 0xB90AB9BC, 0x429E420D, 0xF66EF6C1, 0x2F472FB8, 0xDDDFDD06, 0x23342339, 0xCC35CC62, 0xF16AF1C4, 0xC1CFC112, 0x85DC85EB, 0x8F228F9E, 0x71C971A1, 0x90C090F0, 0xAA9BAA53, 0x018901F1, 0x8BD48BE1, 0x4EED4E8C, 0x8EAB8E6F, 0xAB12ABA2, 0x6FA26F3E, 0xE60DE654, 0xDB52DBF2, 0x92BB927B, 0xB702B7B6, 0x692F69CA, 0x39A939D9, 0xD3D7D30C, 0xA761A723, 0xA21EA2AD, 0xC3B4C399, 0x6C506C44, 0x07040705, 0x04F6047F, 0x27C22746, 0xAC16ACA7, 0xD025D076, 0x50865013, 0xDC56DCF7, 0x8455841A, 0xE109E151, 0x7ABE7A25, 0x139113EF}, {0xD939A9D9, 0x90176790, 0x719CB371, 0xD2A6E8D2, 0x05070405, 0x9852FD98, 0x6580A365, 0xDFE476DF, 0x08459A08, 0x024B9202, 0xA0E080A0, 0x665A7866, 0xDDAFE4DD, 0xB06ADDB0, 0xBF63D1BF, 0x362A3836, 0x54E60D54, 0x4320C643, 0x62CC3562, 0xBEF298BE, 0x1E12181E, 0x24EBF724, 0xD7A1ECD7, 0x77416C77, 0xBD2843BD, 0x32BC7532, 0xD47B37D4, 0x9B88269B, 0x700DFA70, 0xF94413F9, 0xB1FB94B1, 0x5A7E485A, 0x7A03F27A, 0xE48CD0E4, 0x47B68B47, 0x3C24303C, 0xA5E784A5, 0x416B5441, 0x06DDDF06, 0xC56023C5, 0x45FD1945, 0xA33A5BA3, 0x68C23D68, 0x158D5915, 0x21ECF321, 0x3166AE31, 0x3E6FA23E, 0x16578216, 0x95106395, 0x5BEF015B, 0x4DB8834D, 0x91862E91, 0xB56DD9B5, 0x1F83511F, 0x53AA9B53, 0x635D7C63, 0x3B68A63B, 0x3FFEEB3F, 0xD630A5D6, 0x257ABE25, 0xA7AC16A7, 0x0F090C0F, 0x35F0E335, 0x23A76123, 0xF090C0F0, 0xAFE98CAF, 0x809D3A80, 0x925CF592, 0x810C7381, 0x27312C27, 0x76D02576, 0xE7560BE7, 0x7B92BB7B, 0xE9CE4EE9, 0xF10189F1, 0x9F1E6B9F, 0xA93453A9, 0xC4F16AC4, 0x99C3B499, 0x975BF197, 0x8347E183, 0x6B18E66B, 0xC822BDC8, 0x0E98450E, 0x6E1FE26E, 0xC9B3F4C9, 0x2F74B62F, 0xCBF866CB, 0xFF99CCFF, 0xEA1495EA, 0xED5803ED, 0xF7DC56F7, 0xE18BD4E1, 0x1B151C1B, 0xADA21EAD, 0x0CD3D70C, 0x2BE2FB2B, 0x1DC8C31D, 0x195E8E19, 0xC22CB5C2, 0x8949E989, 0x12C1CF12, 0x7E95BF7E, 0x207DBA20, 0x6411EA64, 0x840B7784, 0x6DC5396D, 0x6A89AF6A, 0xD17C33D1, 0xA171C9A1, 0xCEFF62CE, 0x37BB7137, 0xFB0F81FB, 0x3DB5793D, 0x51E10951, 0xDC3EADDC, 0x2D3F242D, 0xA476CDA4, 0x9D55F99D, 0xEE82D8EE, 0x8640E586, 0xAE78C5AE, 0xCD25B9CD, 0x04964D04, 0x55774455, 0x0A0E080A, 0x13508613, 0x30F7E730, 0xD337A1D3, 0x40FA1D40, 0x3461AA34, 0x8C4EED8C, 0xB3B006B3, 0x6C54706C, 0x2A73B22A, 0x523BD252, 0x0B9F410B, 0x8B027B8B, 0x88D8A088, 0x4FF3114F, 0x67CB3167, 0x4627C246, 0xC06727C0, 0xB4FC90B4, 0x28382028, 0x7F04F67F, 0x78486078, 0x2EE5FF2E, 0x074C9607, 0x4B655C4B, 0xC72BB1C7, 0x6F8EAB6F, 0x0D429E0D, 0xBBF59CBB, 0xF2DB52F2, 0xF34A1BF3, 0xA63D5FA6, 0x59A49359, 0xBCB90ABC, 0x3AF9EF3A, 0xEF1391EF, 0xFE0885FE, 0x01914901, 0x6116EE61, 0x7CDE2D7C, 0xB2214FB2, 0x42B18F42, 0xDB723BDB, 0xB82F47B8, 0x48BF8748, 0x2CAE6D2C, 0xE3C046E3, 0x573CD657, 0x859A3E85, 0x29A96929, 0x7D4F647D, 0x94812A94, 0x492ECE49, 0x17C6CB17, 0xCA692FCA, 0xC3BDFCC3, 0x5CA3975C, 0x5EE8055E, 0xD0ED7AD0, 0x87D1AC87, 0x8E057F8E, 0xBA64D5BA, 0xA8A51AA8, 0xB7264BB7, 0xB9BE0EB9, 0x6087A760, 0xF8D55AF8, 0x22362822, 0x111B1411, 0xDE753FDE, 0x79D92979, 0xAAEE88AA, 0x332D3C33, 0x5F794C5F, 0xB6B702B6, 0x96CAB896, 0x5835DA58, 0x9CC4B09C, 0xFC4317FC, 0x1A84551A, 0xF64D1FF6, 0x1C598A1C, 0x38B27D38, 0xAC3357AC, 0x18CFC718, 0xF4068DF4, 0x69537469, 0x749BB774, 0xF597C4F5, 0x56AD9F56, 0xDAE372DA, 0xD5EA7ED5, 0x4AF4154A, 0x9E8F229E, 0xA2AB12A2, 0x4E62584E, 0xE85F07E8, 0xE51D99E5, 0x39233439, 0xC1F66EC1, 0x446C5044, 0x5D32DE5D, 0x72466872, 0x26A06526, 0x93CDBC93, 0x03DADB03, 0xC6BAF8C6, 0xFA9EC8FA, 0x82D6A882, 0xCF6E2BCF, 0x50704050, 0xEB85DCEB, 0x750AFE75, 0x8A93328A, 0x8DDFA48D, 0x4C29CA4C, 0x141C1014, 0x73D72173, 0xCCB4F0CC, 0x09D4D309, 0x108A5D10, 0xE2510FE2, 0x00000000, 0x9A196F9A, 0xE01A9DE0, 0x8F94368F, 0xE6C742E6, 0xECC94AEC, 0xFDD25EFD, 0xAB7FC1AB, 0xD8A8E0D8} }; /* The exp_to_poly and poly_to_exp tables are used to perform efficient * operations in GF(2^8) represented as GF(2)[x]/w(x) where * w(x)=x^8+x^6+x^3+x^2+1. We care about doing that because it's part of the * definition of the RS matrix in the key schedule. Elements of that field * are polynomials of degree not greater than 7 and all coefficients 0 or 1, * which can be represented naturally by bytes (just substitute x=2). In that * form, GF(2^8) addition is the same as bitwise XOR, but GF(2^8) * multiplication is inefficient without hardware support. To multiply * faster, I make use of the fact x is a generator for the nonzero elements, * so that every element p of GF(2)[x]/w(x) is either 0 or equal to (x)^n for * some n in 0..254. Note that that caret is exponentiation in GF(2^8), * *not* polynomial notation. So if I want to compute pq where p and q are * in GF(2^8), I can just say: * 1. if p=0 or q=0 then pq=0 * 2. otherwise, find m and n such that p=x^m and q=x^n * 3. pq=(x^m)(x^n)=x^(m+n), so add m and n and find pq * The translations in steps 2 and 3 are looked up in the tables * poly_to_exp (for step 2) and exp_to_poly (for step 3). To see this * in action, look at the CALC_S macro. As additional wrinkles, note that * one of my operands is always a constant, so the poly_to_exp lookup on it * is done in advance; I included the original values in the comments so * readers can have some chance of recognizing that this *is* the RS matrix * from the Twofish paper. I've only included the table entries I actually * need; I never do a lookup on a variable input of zero and the biggest * exponents I'll ever see are 254 (variable) and 237 (constant), so they'll * never sum to more than 491. I'm repeating part of the exp_to_poly table * so that I don't have to do mod-255 reduction in the exponent arithmetic. * Since I know my constant operands are never zero, I only have to worry * about zero values in the variable operand, and I do it with a simple * conditional branch. I know conditionals are expensive, but I couldn't * see a non-horrible way of avoiding them, and I did manage to group the * statements so that each if covers four group multiplications. */ static const u16 poly_to_exp[256] = { 492, 0x00, 0x01, 0x17, 0x02, 0x2E, 0x18, 0x53, 0x03, 0x6A, 0x2F, 0x93, 0x19, 0x34, 0x54, 0x45, 0x04, 0x5C, 0x6B, 0xB6, 0x30, 0xA6, 0x94, 0x4B, 0x1A, 0x8C, 0x35, 0x81, 0x55, 0xAA, 0x46, 0x0D, 0x05, 0x24, 0x5D, 0x87, 0x6C, 0x9B, 0xB7, 0xC1, 0x31, 0x2B, 0xA7, 0xA3, 0x95, 0x98, 0x4C, 0xCA, 0x1B, 0xE6, 0x8D, 0x73, 0x36, 0xCD, 0x82, 0x12, 0x56, 0x62, 0xAB, 0xF0, 0x47, 0x4F, 0x0E, 0xBD, 0x06, 0xD4, 0x25, 0xD2, 0x5E, 0x27, 0x88, 0x66, 0x6D, 0xD6, 0x9C, 0x79, 0xB8, 0x08, 0xC2, 0xDF, 0x32, 0x68, 0x2C, 0xFD, 0xA8, 0x8A, 0xA4, 0x5A, 0x96, 0x29, 0x99, 0x22, 0x4D, 0x60, 0xCB, 0xE4, 0x1C, 0x7B, 0xE7, 0x3B, 0x8E, 0x9E, 0x74, 0xF4, 0x37, 0xD8, 0xCE, 0xF9, 0x83, 0x6F, 0x13, 0xB2, 0x57, 0xE1, 0x63, 0xDC, 0xAC, 0xC4, 0xF1, 0xAF, 0x48, 0x0A, 0x50, 0x42, 0x0F, 0xBA, 0xBE, 0xC7, 0x07, 0xDE, 0xD5, 0x78, 0x26, 0x65, 0xD3, 0xD1, 0x5F, 0xE3, 0x28, 0x21, 0x89, 0x59, 0x67, 0xFC, 0x6E, 0xB1, 0xD7, 0xF8, 0x9D, 0xF3, 0x7A, 0x3A, 0xB9, 0xC6, 0x09, 0x41, 0xC3, 0xAE, 0xE0, 0xDB, 0x33, 0x44, 0x69, 0x92, 0x2D, 0x52, 0xFE, 0x16, 0xA9, 0x0C, 0x8B, 0x80, 0xA5, 0x4A, 0x5B, 0xB5, 0x97, 0xC9, 0x2A, 0xA2, 0x9A, 0xC0, 0x23, 0x86, 0x4E, 0xBC, 0x61, 0xEF, 0xCC, 0x11, 0xE5, 0x72, 0x1D, 0x3D, 0x7C, 0xEB, 0xE8, 0xE9, 0x3C, 0xEA, 0x8F, 0x7D, 0x9F, 0xEC, 0x75, 0x1E, 0xF5, 0x3E, 0x38, 0xF6, 0xD9, 0x3F, 0xCF, 0x76, 0xFA, 0x1F, 0x84, 0xA0, 0x70, 0xED, 0x14, 0x90, 0xB3, 0x7E, 0x58, 0xFB, 0xE2, 0x20, 0x64, 0xD0, 0xDD, 0x77, 0xAD, 0xDA, 0xC5, 0x40, 0xF2, 0x39, 0xB0, 0xF7, 0x49, 0xB4, 0x0B, 0x7F, 0x51, 0x15, 0x43, 0x91, 0x10, 0x71, 0xBB, 0xEE, 0xBF, 0x85, 0xC8, 0xA1 }; static const byte exp_to_poly[492 + 256] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x4D, 0x9A, 0x79, 0xF2, 0xA9, 0x1F, 0x3E, 0x7C, 0xF8, 0xBD, 0x37, 0x6E, 0xDC, 0xF5, 0xA7, 0x03, 0x06, 0x0C, 0x18, 0x30, 0x60, 0xC0, 0xCD, 0xD7, 0xE3, 0x8B, 0x5B, 0xB6, 0x21, 0x42, 0x84, 0x45, 0x8A, 0x59, 0xB2, 0x29, 0x52, 0xA4, 0x05, 0x0A, 0x14, 0x28, 0x50, 0xA0, 0x0D, 0x1A, 0x34, 0x68, 0xD0, 0xED, 0x97, 0x63, 0xC6, 0xC1, 0xCF, 0xD3, 0xEB, 0x9B, 0x7B, 0xF6, 0xA1, 0x0F, 0x1E, 0x3C, 0x78, 0xF0, 0xAD, 0x17, 0x2E, 0x5C, 0xB8, 0x3D, 0x7A, 0xF4, 0xA5, 0x07, 0x0E, 0x1C, 0x38, 0x70, 0xE0, 0x8D, 0x57, 0xAE, 0x11, 0x22, 0x44, 0x88, 0x5D, 0xBA, 0x39, 0x72, 0xE4, 0x85, 0x47, 0x8E, 0x51, 0xA2, 0x09, 0x12, 0x24, 0x48, 0x90, 0x6D, 0xDA, 0xF9, 0xBF, 0x33, 0x66, 0xCC, 0xD5, 0xE7, 0x83, 0x4B, 0x96, 0x61, 0xC2, 0xC9, 0xDF, 0xF3, 0xAB, 0x1B, 0x36, 0x6C, 0xD8, 0xFD, 0xB7, 0x23, 0x46, 0x8C, 0x55, 0xAA, 0x19, 0x32, 0x64, 0xC8, 0xDD, 0xF7, 0xA3, 0x0B, 0x16, 0x2C, 0x58, 0xB0, 0x2D, 0x5A, 0xB4, 0x25, 0x4A, 0x94, 0x65, 0xCA, 0xD9, 0xFF, 0xB3, 0x2B, 0x56, 0xAC, 0x15, 0x2A, 0x54, 0xA8, 0x1D, 0x3A, 0x74, 0xE8, 0x9D, 0x77, 0xEE, 0x91, 0x6F, 0xDE, 0xF1, 0xAF, 0x13, 0x26, 0x4C, 0x98, 0x7D, 0xFA, 0xB9, 0x3F, 0x7E, 0xFC, 0xB5, 0x27, 0x4E, 0x9C, 0x75, 0xEA, 0x99, 0x7F, 0xFE, 0xB1, 0x2F, 0x5E, 0xBC, 0x35, 0x6A, 0xD4, 0xE5, 0x87, 0x43, 0x86, 0x41, 0x82, 0x49, 0x92, 0x69, 0xD2, 0xE9, 0x9F, 0x73, 0xE6, 0x81, 0x4F, 0x9E, 0x71, 0xE2, 0x89, 0x5F, 0xBE, 0x31, 0x62, 0xC4, 0xC5, 0xC7, 0xC3, 0xCB, 0xDB, 0xFB, 0xBB, 0x3B, 0x76, 0xEC, 0x95, 0x67, 0xCE, 0xD1, 0xEF, 0x93, 0x6B, 0xD6, 0xE1, 0x8F, 0x53, 0xA6, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x4D, 0x9A, 0x79, 0xF2, 0xA9, 0x1F, 0x3E, 0x7C, 0xF8, 0xBD, 0x37, 0x6E, 0xDC, 0xF5, 0xA7, 0x03, 0x06, 0x0C, 0x18, 0x30, 0x60, 0xC0, 0xCD, 0xD7, 0xE3, 0x8B, 0x5B, 0xB6, 0x21, 0x42, 0x84, 0x45, 0x8A, 0x59, 0xB2, 0x29, 0x52, 0xA4, 0x05, 0x0A, 0x14, 0x28, 0x50, 0xA0, 0x0D, 0x1A, 0x34, 0x68, 0xD0, 0xED, 0x97, 0x63, 0xC6, 0xC1, 0xCF, 0xD3, 0xEB, 0x9B, 0x7B, 0xF6, 0xA1, 0x0F, 0x1E, 0x3C, 0x78, 0xF0, 0xAD, 0x17, 0x2E, 0x5C, 0xB8, 0x3D, 0x7A, 0xF4, 0xA5, 0x07, 0x0E, 0x1C, 0x38, 0x70, 0xE0, 0x8D, 0x57, 0xAE, 0x11, 0x22, 0x44, 0x88, 0x5D, 0xBA, 0x39, 0x72, 0xE4, 0x85, 0x47, 0x8E, 0x51, 0xA2, 0x09, 0x12, 0x24, 0x48, 0x90, 0x6D, 0xDA, 0xF9, 0xBF, 0x33, 0x66, 0xCC, 0xD5, 0xE7, 0x83, 0x4B, 0x96, 0x61, 0xC2, 0xC9, 0xDF, 0xF3, 0xAB, 0x1B, 0x36, 0x6C, 0xD8, 0xFD, 0xB7, 0x23, 0x46, 0x8C, 0x55, 0xAA, 0x19, 0x32, 0x64, 0xC8, 0xDD, 0xF7, 0xA3, 0x0B, 0x16, 0x2C, 0x58, 0xB0, 0x2D, 0x5A, 0xB4, 0x25, 0x4A, 0x94, 0x65, 0xCA, 0xD9, 0xFF, 0xB3, 0x2B, 0x56, 0xAC, 0x15, 0x2A, 0x54, 0xA8, 0x1D, 0x3A, 0x74, 0xE8, 0x9D, 0x77, 0xEE, 0x91, 0x6F, 0xDE, 0xF1, 0xAF, 0x13, 0x26, 0x4C, 0x98, 0x7D, 0xFA, 0xB9, 0x3F, 0x7E, 0xFC, 0xB5, 0x27, 0x4E, 0x9C, 0x75, 0xEA, 0x99, 0x7F, 0xFE, 0xB1, 0x2F, 0x5E, 0xBC, 0x35, 0x6A, 0xD4, 0xE5, 0x87, 0x43, 0x86, 0x41, 0x82, 0x49, 0x92, 0x69, 0xD2, 0xE9, 0x9F, 0x73, 0xE6, 0x81, 0x4F, 0x9E, 0x71, 0xE2, 0x89, 0x5F, 0xBE, 0x31, 0x62, 0xC4, 0xC5, 0xC7, 0xC3, 0xCB, }; /* The table constants are indices of * S-box entries, preprocessed through q0 and q1. */ static byte calc_sb_tbl[512] = { 0xA9, 0x75, 0x67, 0xF3, 0xB3, 0xC6, 0xE8, 0xF4, 0x04, 0xDB, 0xFD, 0x7B, 0xA3, 0xFB, 0x76, 0xC8, 0x9A, 0x4A, 0x92, 0xD3, 0x80, 0xE6, 0x78, 0x6B, 0xE4, 0x45, 0xDD, 0x7D, 0xD1, 0xE8, 0x38, 0x4B, 0x0D, 0xD6, 0xC6, 0x32, 0x35, 0xD8, 0x98, 0xFD, 0x18, 0x37, 0xF7, 0x71, 0xEC, 0xF1, 0x6C, 0xE1, 0x43, 0x30, 0x75, 0x0F, 0x37, 0xF8, 0x26, 0x1B, 0xFA, 0x87, 0x13, 0xFA, 0x94, 0x06, 0x48, 0x3F, 0xF2, 0x5E, 0xD0, 0xBA, 0x8B, 0xAE, 0x30, 0x5B, 0x84, 0x8A, 0x54, 0x00, 0xDF, 0xBC, 0x23, 0x9D, 0x19, 0x6D, 0x5B, 0xC1, 0x3D, 0xB1, 0x59, 0x0E, 0xF3, 0x80, 0xAE, 0x5D, 0xA2, 0xD2, 0x82, 0xD5, 0x63, 0xA0, 0x01, 0x84, 0x83, 0x07, 0x2E, 0x14, 0xD9, 0xB5, 0x51, 0x90, 0x9B, 0x2C, 0x7C, 0xA3, 0xA6, 0xB2, 0xEB, 0x73, 0xA5, 0x4C, 0xBE, 0x54, 0x16, 0x92, 0x0C, 0x74, 0xE3, 0x36, 0x61, 0x51, 0xC0, 0x38, 0x8C, 0xB0, 0x3A, 0xBD, 0xF5, 0x5A, 0x73, 0xFC, 0x2C, 0x60, 0x25, 0x62, 0x0B, 0x96, 0xBB, 0x6C, 0x4E, 0x42, 0x89, 0xF7, 0x6B, 0x10, 0x53, 0x7C, 0x6A, 0x28, 0xB4, 0x27, 0xF1, 0x8C, 0xE1, 0x13, 0xE6, 0x95, 0xBD, 0x9C, 0x45, 0xC7, 0xE2, 0x24, 0xF4, 0x46, 0xB6, 0x3B, 0x66, 0x70, 0xCC, 0xCA, 0x95, 0xE3, 0x03, 0x85, 0x56, 0xCB, 0xD4, 0x11, 0x1C, 0xD0, 0x1E, 0x93, 0xD7, 0xB8, 0xFB, 0xA6, 0xC3, 0x83, 0x8E, 0x20, 0xB5, 0xFF, 0xE9, 0x9F, 0xCF, 0x77, 0xBF, 0xC3, 0xBA, 0xCC, 0xEA, 0x03, 0x77, 0x6F, 0x39, 0x08, 0xAF, 0xBF, 0x33, 0x40, 0xC9, 0xE7, 0x62, 0x2B, 0x71, 0xE2, 0x81, 0x79, 0x79, 0x0C, 0x09, 0xAA, 0xAD, 0x82, 0x24, 0x41, 0xCD, 0x3A, 0xF9, 0xEA, 0xD8, 0xB9, 0xE5, 0xE4, 0xC5, 0x9A, 0xB9, 0xA4, 0x4D, 0x97, 0x44, 0x7E, 0x08, 0xDA, 0x86, 0x7A, 0xE7, 0x17, 0xA1, 0x66, 0x1D, 0x94, 0xAA, 0xA1, 0xED, 0x1D, 0x06, 0x3D, 0x70, 0xF0, 0xB2, 0xDE, 0xD2, 0xB3, 0x41, 0x0B, 0x7B, 0x72, 0xA0, 0xA7, 0x11, 0x1C, 0x31, 0xEF, 0xC2, 0xD1, 0x27, 0x53, 0x90, 0x3E, 0x20, 0x8F, 0xF6, 0x33, 0x60, 0x26, 0xFF, 0x5F, 0x96, 0xEC, 0x5C, 0x76, 0xB1, 0x2A, 0xAB, 0x49, 0x9E, 0x81, 0x9C, 0x88, 0x52, 0xEE, 0x1B, 0x21, 0x5F, 0xC4, 0x93, 0x1A, 0x0A, 0xEB, 0xEF, 0xD9, 0x91, 0xC5, 0x85, 0x39, 0x49, 0x99, 0xEE, 0xCD, 0x2D, 0xAD, 0x4F, 0x31, 0x8F, 0x8B, 0x3B, 0x01, 0x47, 0x18, 0x87, 0x23, 0x6D, 0xDD, 0x46, 0x1F, 0xD6, 0x4E, 0x3E, 0x2D, 0x69, 0xF9, 0x64, 0x48, 0x2A, 0x4F, 0xCE, 0xF2, 0xCB, 0x65, 0x2F, 0x8E, 0xFC, 0x78, 0x97, 0x5C, 0x05, 0x58, 0x7A, 0x19, 0xAC, 0x8D, 0x7F, 0xE5, 0xD5, 0x98, 0x1A, 0x57, 0x4B, 0x67, 0x0E, 0x7F, 0xA7, 0x05, 0x5A, 0x64, 0x28, 0xAF, 0x14, 0x63, 0x3F, 0xB6, 0x29, 0xFE, 0x88, 0xF5, 0x3C, 0xB7, 0x4C, 0x3C, 0x02, 0xA5, 0xB8, 0xCE, 0xDA, 0xE9, 0xB0, 0x68, 0x17, 0x44, 0x55, 0xE0, 0x1F, 0x4D, 0x8A, 0x43, 0x7D, 0x69, 0x57, 0x29, 0xC7, 0x2E, 0x8D, 0xAC, 0x74, 0x15, 0xB7, 0x59, 0xC4, 0xA8, 0x9F, 0x0A, 0x72, 0x9E, 0x7E, 0x6E, 0x15, 0x47, 0x22, 0xDF, 0x12, 0x34, 0x58, 0x35, 0x07, 0x6A, 0x99, 0xCF, 0x34, 0xDC, 0x6E, 0x22, 0x50, 0xC9, 0xDE, 0xC0, 0x68, 0x9B, 0x65, 0x89, 0xBC, 0xD4, 0xDB, 0xED, 0xF8, 0xAB, 0xC8, 0x12, 0xA8, 0xA2, 0x2B, 0x0D, 0x40, 0x52, 0xDC, 0xBB, 0xFE, 0x02, 0x32, 0x2F, 0xA4, 0xA9, 0xCA, 0xD7, 0x10, 0x61, 0x21, 0x1E, 0xF0, 0xB4, 0xD3, 0x50, 0x5D, 0x04, 0x0F, 0xF6, 0x00, 0xC2, 0x6F, 0x16, 0x9D, 0x25, 0x36, 0x86, 0x42, 0x56, 0x4A, 0x55, 0x5E, 0x09, 0xC1, 0xBE, 0xE0, 0x91 }; /* Macro to perform one column of the RS matrix multiplication. The * parameters a, b, c, and d are the four bytes of output; i is the index * of the key bytes, and w, x, y, and z, are the column of constants from * the RS matrix, preprocessed through the poly_to_exp table. */ #define CALC_S(a, b, c, d, i, w, x, y, z) \ { \ tmp = poly_to_exp[key[i]]; \ (a) ^= exp_to_poly[tmp + (w)]; \ (b) ^= exp_to_poly[tmp + (x)]; \ (c) ^= exp_to_poly[tmp + (y)]; \ (d) ^= exp_to_poly[tmp + (z)]; \ } /* Macros to calculate the key-dependent S-boxes for a 128-bit key using * the S vector from CALC_S. CALC_SB_2 computes a single entry in all * four S-boxes, where i is the index of the entry to compute, and a and b * are the index numbers preprocessed through the q0 and q1 tables * respectively. CALC_SB is simply a convenience to make the code shorter; * it calls CALC_SB_2 four times with consecutive indices from i to i+3, * using the remaining parameters two by two. */ #define CALC_SB_2(i, a, b) \ ctx->s[0][i] = mds[0][q0[(a) ^ sa] ^ se]; \ ctx->s[1][i] = mds[1][q0[(b) ^ sb] ^ sf]; \ ctx->s[2][i] = mds[2][q1[(a) ^ sc] ^ sg]; \ ctx->s[3][i] = mds[3][q1[(b) ^ sd] ^ sh] #define CALC_SB(i, a, b, c, d, e, f, g, h) \ CALC_SB_2 (i, a, b); CALC_SB_2 ((i)+1, c, d); \ CALC_SB_2 ((i)+2, e, f); CALC_SB_2 ((i)+3, g, h) /* Macros exactly like CALC_SB and CALC_SB_2, but for 256-bit keys. */ #define CALC_SB256_2(i, a, b) \ ctx->s[0][i] = mds[0][q0[q0[q1[(b) ^ sa] ^ se] ^ si] ^ sm]; \ ctx->s[1][i] = mds[1][q0[q1[q1[(a) ^ sb] ^ sf] ^ sj] ^ sn]; \ ctx->s[2][i] = mds[2][q1[q0[q0[(a) ^ sc] ^ sg] ^ sk] ^ so]; \ ctx->s[3][i] = mds[3][q1[q1[q0[(b) ^ sd] ^ sh] ^ sl] ^ sp]; #define CALC_SB256(i, a, b, c, d, e, f, g, h) \ CALC_SB256_2 (i, a, b); CALC_SB256_2 ((i)+1, c, d); \ CALC_SB256_2 ((i)+2, e, f); CALC_SB256_2 ((i)+3, g, h) /* Macros to calculate the whitening and round subkeys. CALC_K_2 computes the * last two stages of the h() function for a given index (either 2i or 2i+1). * a, b, c, and d are the four bytes going into the last two stages. For * 128-bit keys, this is the entire h() function and a and c are the index * preprocessed through q0 and q1 respectively; for longer keys they are the * output of previous stages. j is the index of the first key byte to use. * CALC_K computes a pair of subkeys for 128-bit Twofish, by calling CALC_K_2 * twice, doing the Pseudo-Hadamard Transform, and doing the necessary * rotations. Its parameters are: a, the array to write the results into, * j, the index of the first output entry, k and l, the preprocessed indices * for index 2i, and m and n, the preprocessed indices for index 2i+1. * CALC_K256_2 expands CALC_K_2 to handle 256-bit keys, by doing two * additional lookup-and-XOR stages. The parameters a and b are the index * preprocessed through q0 and q1 respectively; j is the index of the first * key byte to use. CALC_K256 is identical to CALC_K but for using the * CALC_K256_2 macro instead of CALC_K_2. */ #define CALC_K_2(a, b, c, d, j) \ mds[0][q0[a ^ key[(j) + 8]] ^ key[j]] \ ^ mds[1][q0[b ^ key[(j) + 9]] ^ key[(j) + 1]] \ ^ mds[2][q1[c ^ key[(j) + 10]] ^ key[(j) + 2]] \ ^ mds[3][q1[d ^ key[(j) + 11]] ^ key[(j) + 3]] #define CALC_K(a, j, k, l, m, n) \ x = CALC_K_2 (k, l, k, l, 0); \ y = CALC_K_2 (m, n, m, n, 4); \ y = (y << 8) + (y >> 24); \ x += y; y += x; ctx->a[j] = x; \ ctx->a[(j) + 1] = (y << 9) + (y >> 23) #define CALC_K256_2(a, b, j) \ CALC_K_2 (q0[q1[b ^ key[(j) + 24]] ^ key[(j) + 16]], \ q1[q1[a ^ key[(j) + 25]] ^ key[(j) + 17]], \ q0[q0[a ^ key[(j) + 26]] ^ key[(j) + 18]], \ q1[q0[b ^ key[(j) + 27]] ^ key[(j) + 19]], j) #define CALC_K256(a, j, k, l, m, n) \ x = CALC_K256_2 (k, l, 0); \ y = CALC_K256_2 (m, n, 4); \ y = (y << 8) + (y >> 24); \ x += y; y += x; ctx->a[j] = x; \ ctx->a[(j) + 1] = (y << 9) + (y >> 23) /* Perform the key setup. Note that this works only with 128- and 256-bit * keys, despite the API that looks like it might support other sizes. */ static gcry_err_code_t do_twofish_setkey (TWOFISH_context *ctx, const byte *key, const unsigned keylen) { int i, j, k; /* Temporaries for CALC_K. */ u32 x, y; /* The S vector used to key the S-boxes, split up into individual bytes. * 128-bit keys use only sa through sh; 256-bit use all of them. */ byte sa = 0, sb = 0, sc = 0, sd = 0, se = 0, sf = 0, sg = 0, sh = 0; byte si = 0, sj = 0, sk = 0, sl = 0, sm = 0, sn = 0, so = 0, sp = 0; /* Temporary for CALC_S. */ unsigned int tmp; /* Flags for self-test. */ static int initialized = 0; static const char *selftest_failed=0; /* Check key length. */ if( ( ( keylen - 16 ) | 16 ) != 16 ) return GPG_ERR_INV_KEYLEN; /* Do self-test if necessary. */ if (!initialized) { initialized = 1; selftest_failed = selftest (); if( selftest_failed ) log_error("%s\n", selftest_failed ); } if( selftest_failed ) return GPG_ERR_SELFTEST_FAILED; /* Compute the first two words of the S vector. The magic numbers are * the entries of the RS matrix, preprocessed through poly_to_exp. The * numbers in the comments are the original (polynomial form) matrix * entries. */ CALC_S (sa, sb, sc, sd, 0, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */ CALC_S (sa, sb, sc, sd, 1, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */ CALC_S (sa, sb, sc, sd, 2, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */ CALC_S (sa, sb, sc, sd, 3, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */ CALC_S (sa, sb, sc, sd, 4, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */ CALC_S (sa, sb, sc, sd, 5, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */ CALC_S (sa, sb, sc, sd, 6, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */ CALC_S (sa, sb, sc, sd, 7, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */ CALC_S (se, sf, sg, sh, 8, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */ CALC_S (se, sf, sg, sh, 9, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */ CALC_S (se, sf, sg, sh, 10, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */ CALC_S (se, sf, sg, sh, 11, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */ CALC_S (se, sf, sg, sh, 12, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */ CALC_S (se, sf, sg, sh, 13, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */ CALC_S (se, sf, sg, sh, 14, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */ CALC_S (se, sf, sg, sh, 15, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */ if (keylen == 32) /* 256-bit key */ { /* Calculate the remaining two words of the S vector */ CALC_S (si, sj, sk, sl, 16, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */ CALC_S (si, sj, sk, sl, 17, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */ CALC_S (si, sj, sk, sl, 18, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */ CALC_S (si, sj, sk, sl, 19, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */ CALC_S (si, sj, sk, sl, 20, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */ CALC_S (si, sj, sk, sl, 21, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */ CALC_S (si, sj, sk, sl, 22, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */ CALC_S (si, sj, sk, sl, 23, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */ CALC_S (sm, sn, so, sp, 24, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */ CALC_S (sm, sn, so, sp, 25, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */ CALC_S (sm, sn, so, sp, 26, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */ CALC_S (sm, sn, so, sp, 27, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */ CALC_S (sm, sn, so, sp, 28, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */ CALC_S (sm, sn, so, sp, 29, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */ CALC_S (sm, sn, so, sp, 30, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */ CALC_S (sm, sn, so, sp, 31, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */ /* Compute the S-boxes. */ for(i=j=0,k=1; i < 256; i++, j += 2, k += 2 ) { CALC_SB256_2( i, calc_sb_tbl[j], calc_sb_tbl[k] ); } /* Calculate whitening and round subkeys. */ for (i = 0; i < 8; i += 2) { CALC_K256 ( w, i, q0[i], q1[i], q0[i + 1], q1[i + 1] ); } for (j = 0; j < 32; j += 2, i += 2) { CALC_K256 ( k, j, q0[i], q1[i], q0[i + 1], q1[i + 1] ); } } else { /* Compute the S-boxes. */ for(i=j=0,k=1; i < 256; i++, j += 2, k += 2 ) { CALC_SB_2( i, calc_sb_tbl[j], calc_sb_tbl[k] ); } /* Calculate whitening and round subkeys. */ for (i = 0; i < 8; i += 2) { CALC_K ( w, i, q0[i], q1[i], q0[i + 1], q1[i + 1] ); } for (j = 0; j < 32; j += 2, i += 2) { CALC_K ( k, j, q0[i], q1[i], q0[i + 1], q1[i + 1] ); } } return 0; } static gcry_err_code_t twofish_setkey (void *context, const byte *key, unsigned int keylen, cipher_bulk_ops_t *bulk_ops) { TWOFISH_context *ctx = context; unsigned int hwfeatures = _gcry_get_hw_features (); int rc; rc = do_twofish_setkey (ctx, key, keylen); #ifdef USE_AVX2 ctx->use_avx2 = 0; if ((hwfeatures & HWF_INTEL_AVX2) && (hwfeatures & HWF_INTEL_FAST_VPGATHER)) { ctx->use_avx2 = 1; } #endif /* Setup bulk encryption routines. */ memset (bulk_ops, 0, sizeof(*bulk_ops)); bulk_ops->cbc_dec = _gcry_twofish_cbc_dec; bulk_ops->cfb_dec = _gcry_twofish_cfb_dec; bulk_ops->ctr_enc = _gcry_twofish_ctr_enc; bulk_ops->ocb_crypt = _gcry_twofish_ocb_crypt; - bulk_ops->ocb_auth = _gcry_twofish_ocb_auth; + bulk_ops->ocb_auth = _gcry_twofish_ocb_auth; + bulk_ops->xts_crypt = _gcry_twofish_xts_crypt; + bulk_ops->ecb_crypt = _gcry_twofish_ecb_crypt; (void)hwfeatures; _gcry_burn_stack (23+6*sizeof(void*)); return rc; } #ifdef USE_AVX2 /* Assembler implementations of Twofish using AVX2. Process 16 block in parallel. */ +extern void _gcry_twofish_avx2_blk16 (const TWOFISH_context *c, byte *out, + const byte *in, int encrypt) ASM_FUNC_ABI; + extern void _gcry_twofish_avx2_ctr_enc(const TWOFISH_context *ctx, unsigned char *out, const unsigned char *in, unsigned char *ctr) ASM_FUNC_ABI; extern void _gcry_twofish_avx2_cbc_dec(const TWOFISH_context *ctx, unsigned char *out, const unsigned char *in, unsigned char *iv) ASM_FUNC_ABI; extern void _gcry_twofish_avx2_cfb_dec(const TWOFISH_context *ctx, unsigned char *out, const unsigned char *in, unsigned char *iv) ASM_FUNC_ABI; extern void _gcry_twofish_avx2_ocb_enc(const TWOFISH_context *ctx, unsigned char *out, const unsigned char *in, unsigned char *offset, unsigned char *checksum, const u64 Ls[16]) ASM_FUNC_ABI; extern void _gcry_twofish_avx2_ocb_dec(const TWOFISH_context *ctx, unsigned char *out, const unsigned char *in, unsigned char *offset, unsigned char *checksum, const u64 Ls[16]) ASM_FUNC_ABI; extern void _gcry_twofish_avx2_ocb_auth(const TWOFISH_context *ctx, const unsigned char *abuf, unsigned char *offset, unsigned char *checksum, const u64 Ls[16]) ASM_FUNC_ABI; #endif #ifdef USE_AMD64_ASM /* Assembly implementations of Twofish. */ extern void _gcry_twofish_amd64_encrypt_block(const TWOFISH_context *c, byte *out, const byte *in); extern void _gcry_twofish_amd64_decrypt_block(const TWOFISH_context *c, byte *out, const byte *in); /* These assembly implementations process three blocks in parallel. */ +extern void _gcry_twofish_amd64_blk3(const TWOFISH_context *c, byte *out, + const byte *in, int encrypt); + extern void _gcry_twofish_amd64_ctr_enc(const TWOFISH_context *c, byte *out, const byte *in, byte *ctr); extern void _gcry_twofish_amd64_cbc_dec(const TWOFISH_context *c, byte *out, const byte *in, byte *iv); extern void _gcry_twofish_amd64_cfb_dec(const TWOFISH_context *c, byte *out, const byte *in, byte *iv); extern void _gcry_twofish_amd64_ocb_enc(const TWOFISH_context *ctx, byte *out, const byte *in, byte *offset, byte *checksum, const u64 Ls[3]); extern void _gcry_twofish_amd64_ocb_dec(const TWOFISH_context *ctx, byte *out, const byte *in, byte *offset, byte *checksum, const u64 Ls[3]); extern void _gcry_twofish_amd64_ocb_auth(const TWOFISH_context *ctx, const byte *abuf, byte *offset, byte *checksum, const u64 Ls[3]); static inline void twofish_amd64_encrypt_block(const TWOFISH_context *c, byte *out, const byte *in) { _gcry_twofish_amd64_encrypt_block(c, out, in); } static inline void twofish_amd64_decrypt_block(const TWOFISH_context *c, byte *out, const byte *in) { _gcry_twofish_amd64_decrypt_block(c, out, in); } static inline void twofish_amd64_ctr_enc(const TWOFISH_context *c, byte *out, const byte *in, byte *ctr) { _gcry_twofish_amd64_ctr_enc(c, out, in, ctr); } static inline void twofish_amd64_cbc_dec(const TWOFISH_context *c, byte *out, const byte *in, byte *iv) { _gcry_twofish_amd64_cbc_dec(c, out, in, iv); } static inline void twofish_amd64_cfb_dec(const TWOFISH_context *c, byte *out, const byte *in, byte *iv) { _gcry_twofish_amd64_cfb_dec(c, out, in, iv); } static inline void twofish_amd64_ocb_enc(const TWOFISH_context *ctx, byte *out, const byte *in, byte *offset, byte *checksum, const u64 Ls[3]) { _gcry_twofish_amd64_ocb_enc(ctx, out, in, offset, checksum, Ls); } static inline void twofish_amd64_ocb_dec(const TWOFISH_context *ctx, byte *out, const byte *in, byte *offset, byte *checksum, const u64 Ls[3]) { _gcry_twofish_amd64_ocb_dec(ctx, out, in, offset, checksum, Ls); } static inline void twofish_amd64_ocb_auth(const TWOFISH_context *ctx, const byte *abuf, byte *offset, byte *checksum, const u64 Ls[3]) { _gcry_twofish_amd64_ocb_auth(ctx, abuf, offset, checksum, Ls); } #elif defined(USE_ARM_ASM) /* Assembly implementations of Twofish. */ extern void _gcry_twofish_arm_encrypt_block(const TWOFISH_context *c, byte *out, const byte *in); extern void _gcry_twofish_arm_decrypt_block(const TWOFISH_context *c, byte *out, const byte *in); #else /*!USE_AMD64_ASM && !USE_ARM_ASM*/ /* Macros to compute the g() function in the encryption and decryption * rounds. G1 is the straight g() function; G2 includes the 8-bit * rotation for the high 32-bit word. */ #define G1(a) \ (ctx->s[0][(a) & 0xFF]) ^ (ctx->s[1][((a) >> 8) & 0xFF]) \ ^ (ctx->s[2][((a) >> 16) & 0xFF]) ^ (ctx->s[3][(a) >> 24]) #define G2(b) \ (ctx->s[1][(b) & 0xFF]) ^ (ctx->s[2][((b) >> 8) & 0xFF]) \ ^ (ctx->s[3][((b) >> 16) & 0xFF]) ^ (ctx->s[0][(b) >> 24]) /* Encryption and decryption Feistel rounds. Each one calls the two g() * macros, does the PHT, and performs the XOR and the appropriate bit * rotations. The parameters are the round number (used to select subkeys), * and the four 32-bit chunks of the text. */ #define ENCROUND(n, a, b, c, d) \ x = G1 (a); y = G2 (b); \ x += y; y += x + ctx->k[2 * (n) + 1]; \ (c) ^= x + ctx->k[2 * (n)]; \ (c) = ((c) >> 1) + ((c) << 31); \ (d) = (((d) << 1)+((d) >> 31)) ^ y #define DECROUND(n, a, b, c, d) \ x = G1 (a); y = G2 (b); \ x += y; y += x; \ (d) ^= y + ctx->k[2 * (n) + 1]; \ (d) = ((d) >> 1) + ((d) << 31); \ (c) = (((c) << 1)+((c) >> 31)); \ (c) ^= (x + ctx->k[2 * (n)]) /* Encryption and decryption cycles; each one is simply two Feistel rounds * with the 32-bit chunks re-ordered to simulate the "swap" */ #define ENCCYCLE(n) \ ENCROUND (2 * (n), a, b, c, d); \ ENCROUND (2 * (n) + 1, c, d, a, b) #define DECCYCLE(n) \ DECROUND (2 * (n) + 1, c, d, a, b); \ DECROUND (2 * (n), a, b, c, d) /* Macros to convert the input and output bytes into 32-bit words, * and simultaneously perform the whitening step. INPACK packs word * number n into the variable named by x, using whitening subkey number m. * OUTUNPACK unpacks word number n from the variable named by x, using * whitening subkey number m. */ #define INPACK(n, x, m) \ x = buf_get_le32(in + (n) * 4); \ x ^= ctx->w[m] #define OUTUNPACK(n, x, m) \ x ^= ctx->w[m]; \ buf_put_le32(out + (n) * 4, x) #endif /*!USE_AMD64_ASM*/ /* Encrypt one block. in and out may be the same. */ #ifdef USE_AMD64_ASM static unsigned int twofish_encrypt (void *context, byte *out, const byte *in) { TWOFISH_context *ctx = context; twofish_amd64_encrypt_block(ctx, out, in); return /*burn_stack*/ (4*sizeof (void*)); } #elif defined(USE_ARM_ASM) static unsigned int twofish_encrypt (void *context, byte *out, const byte *in) { TWOFISH_context *ctx = context; _gcry_twofish_arm_encrypt_block(ctx, out, in); return /*burn_stack*/ (4*sizeof (void*)); } #else /*!USE_AMD64_ASM && !USE_ARM_ASM*/ static void do_twofish_encrypt (const TWOFISH_context *ctx, byte *out, const byte *in) { /* The four 32-bit chunks of the text. */ u32 a, b, c, d; /* Temporaries used by the round function. */ u32 x, y; /* Input whitening and packing. */ INPACK (0, a, 0); INPACK (1, b, 1); INPACK (2, c, 2); INPACK (3, d, 3); /* Encryption Feistel cycles. */ ENCCYCLE (0); ENCCYCLE (1); ENCCYCLE (2); ENCCYCLE (3); ENCCYCLE (4); ENCCYCLE (5); ENCCYCLE (6); ENCCYCLE (7); /* Output whitening and unpacking. */ OUTUNPACK (0, c, 4); OUTUNPACK (1, d, 5); OUTUNPACK (2, a, 6); OUTUNPACK (3, b, 7); } static unsigned int twofish_encrypt (void *context, byte *out, const byte *in) { TWOFISH_context *ctx = context; do_twofish_encrypt (ctx, out, in); return /*burn_stack*/ (24+3*sizeof (void*)); } #endif /*!USE_AMD64_ASM && !USE_ARM_ASM*/ /* Decrypt one block. in and out may be the same. */ #ifdef USE_AMD64_ASM static unsigned int twofish_decrypt (void *context, byte *out, const byte *in) { TWOFISH_context *ctx = context; twofish_amd64_decrypt_block(ctx, out, in); return /*burn_stack*/ (4*sizeof (void*)); } #elif defined(USE_ARM_ASM) static unsigned int twofish_decrypt (void *context, byte *out, const byte *in) { TWOFISH_context *ctx = context; _gcry_twofish_arm_decrypt_block(ctx, out, in); return /*burn_stack*/ (4*sizeof (void*)); } #else /*!USE_AMD64_ASM && !USE_ARM_ASM*/ static void do_twofish_decrypt (const TWOFISH_context *ctx, byte *out, const byte *in) { /* The four 32-bit chunks of the text. */ u32 a, b, c, d; /* Temporaries used by the round function. */ u32 x, y; /* Input whitening and packing. */ INPACK (0, c, 4); INPACK (1, d, 5); INPACK (2, a, 6); INPACK (3, b, 7); /* Encryption Feistel cycles. */ DECCYCLE (7); DECCYCLE (6); DECCYCLE (5); DECCYCLE (4); DECCYCLE (3); DECCYCLE (2); DECCYCLE (1); DECCYCLE (0); /* Output whitening and unpacking. */ OUTUNPACK (0, a, 0); OUTUNPACK (1, b, 1); OUTUNPACK (2, c, 2); OUTUNPACK (3, d, 3); } static unsigned int twofish_decrypt (void *context, byte *out, const byte *in) { TWOFISH_context *ctx = context; do_twofish_decrypt (ctx, out, in); return /*burn_stack*/ (24+3*sizeof (void*)); } #endif /*!USE_AMD64_ASM && !USE_ARM_ASM*/ /* Bulk encryption of complete blocks in CTR mode. This function is only intended for the bulk encryption feature of cipher.c. CTR is expected to be of size TWOFISH_BLOCKSIZE. */ static void _gcry_twofish_ctr_enc(void *context, unsigned char *ctr, void *outbuf_arg, const void *inbuf_arg, size_t nblocks) { TWOFISH_context *ctx = context; unsigned char *outbuf = outbuf_arg; const unsigned char *inbuf = inbuf_arg; unsigned char tmpbuf[TWOFISH_BLOCKSIZE]; unsigned int burn, burn_stack_depth = 0; #ifdef USE_AVX2 if (ctx->use_avx2) { int did_use_avx2 = 0; /* Process data in 16 block chunks. */ while (nblocks >= 16) { _gcry_twofish_avx2_ctr_enc(ctx, outbuf, inbuf, ctr); nblocks -= 16; outbuf += 16 * TWOFISH_BLOCKSIZE; inbuf += 16 * TWOFISH_BLOCKSIZE; did_use_avx2 = 1; } if (did_use_avx2) { /* twofish-avx2 assembly code does not use stack */ if (nblocks == 0) burn_stack_depth = 0; } } #endif #ifdef USE_AMD64_ASM { /* Process data in 3 block chunks. */ while (nblocks >= 3) { twofish_amd64_ctr_enc(ctx, outbuf, inbuf, ctr); nblocks -= 3; outbuf += 3 * TWOFISH_BLOCKSIZE; inbuf += 3 * TWOFISH_BLOCKSIZE; burn = 8 * sizeof(void*); if (burn > burn_stack_depth) burn_stack_depth = burn; } /* Use generic code to handle smaller chunks... */ /* TODO: use caching instead? */ } #endif for ( ;nblocks; nblocks-- ) { /* Encrypt the counter. */ burn = twofish_encrypt(ctx, tmpbuf, ctr); if (burn > burn_stack_depth) burn_stack_depth = burn; /* XOR the input with the encrypted counter and store in output. */ cipher_block_xor(outbuf, tmpbuf, inbuf, TWOFISH_BLOCKSIZE); outbuf += TWOFISH_BLOCKSIZE; inbuf += TWOFISH_BLOCKSIZE; /* Increment the counter. */ cipher_block_add(ctr, 1, TWOFISH_BLOCKSIZE); } wipememory(tmpbuf, sizeof(tmpbuf)); _gcry_burn_stack(burn_stack_depth); } /* Bulk decryption of complete blocks in CBC mode. This function is only intended for the bulk encryption feature of cipher.c. */ static void _gcry_twofish_cbc_dec(void *context, unsigned char *iv, void *outbuf_arg, const void *inbuf_arg, size_t nblocks) { TWOFISH_context *ctx = context; unsigned char *outbuf = outbuf_arg; const unsigned char *inbuf = inbuf_arg; unsigned char savebuf[TWOFISH_BLOCKSIZE]; unsigned int burn, burn_stack_depth = 0; #ifdef USE_AVX2 if (ctx->use_avx2) { int did_use_avx2 = 0; /* Process data in 16 block chunks. */ while (nblocks >= 16) { _gcry_twofish_avx2_cbc_dec(ctx, outbuf, inbuf, iv); nblocks -= 16; outbuf += 16 * TWOFISH_BLOCKSIZE; inbuf += 16 * TWOFISH_BLOCKSIZE; did_use_avx2 = 1; } if (did_use_avx2) { /* twofish-avx2 assembly code does not use stack */ if (nblocks == 0) burn_stack_depth = 0; } } #endif #ifdef USE_AMD64_ASM { /* Process data in 3 block chunks. */ while (nblocks >= 3) { twofish_amd64_cbc_dec(ctx, outbuf, inbuf, iv); nblocks -= 3; outbuf += 3 * TWOFISH_BLOCKSIZE; inbuf += 3 * TWOFISH_BLOCKSIZE; burn = 9 * sizeof(void*); if (burn > burn_stack_depth) burn_stack_depth = burn; } /* Use generic code to handle smaller chunks... */ } #endif for ( ;nblocks; nblocks-- ) { /* INBUF is needed later and it may be identical to OUTBUF, so store the intermediate result to SAVEBUF. */ burn = twofish_decrypt (ctx, savebuf, inbuf); if (burn > burn_stack_depth) burn_stack_depth = burn; cipher_block_xor_n_copy_2(outbuf, savebuf, iv, inbuf, TWOFISH_BLOCKSIZE); inbuf += TWOFISH_BLOCKSIZE; outbuf += TWOFISH_BLOCKSIZE; } wipememory(savebuf, sizeof(savebuf)); _gcry_burn_stack(burn_stack_depth); } /* Bulk decryption of complete blocks in CFB mode. This function is only intended for the bulk encryption feature of cipher.c. */ static void _gcry_twofish_cfb_dec(void *context, unsigned char *iv, void *outbuf_arg, const void *inbuf_arg, size_t nblocks) { TWOFISH_context *ctx = context; unsigned char *outbuf = outbuf_arg; const unsigned char *inbuf = inbuf_arg; unsigned int burn, burn_stack_depth = 0; #ifdef USE_AVX2 if (ctx->use_avx2) { int did_use_avx2 = 0; /* Process data in 16 block chunks. */ while (nblocks >= 16) { _gcry_twofish_avx2_cfb_dec(ctx, outbuf, inbuf, iv); nblocks -= 16; outbuf += 16 * TWOFISH_BLOCKSIZE; inbuf += 16 * TWOFISH_BLOCKSIZE; did_use_avx2 = 1; } if (did_use_avx2) { /* twofish-avx2 assembly code does not use stack */ if (nblocks == 0) burn_stack_depth = 0; } } #endif #ifdef USE_AMD64_ASM { /* Process data in 3 block chunks. */ while (nblocks >= 3) { twofish_amd64_cfb_dec(ctx, outbuf, inbuf, iv); nblocks -= 3; outbuf += 3 * TWOFISH_BLOCKSIZE; inbuf += 3 * TWOFISH_BLOCKSIZE; burn = 8 * sizeof(void*); if (burn > burn_stack_depth) burn_stack_depth = burn; } /* Use generic code to handle smaller chunks... */ } #endif for ( ;nblocks; nblocks-- ) { burn = twofish_encrypt(ctx, iv, iv); if (burn > burn_stack_depth) burn_stack_depth = burn; cipher_block_xor_n_copy(outbuf, iv, inbuf, TWOFISH_BLOCKSIZE); outbuf += TWOFISH_BLOCKSIZE; inbuf += TWOFISH_BLOCKSIZE; } _gcry_burn_stack(burn_stack_depth); } /* Bulk encryption/decryption of complete blocks in OCB mode. */ static size_t _gcry_twofish_ocb_crypt (gcry_cipher_hd_t c, void *outbuf_arg, const void *inbuf_arg, size_t nblocks, int encrypt) { #ifdef USE_AMD64_ASM TWOFISH_context *ctx = (void *)&c->context.c; unsigned char *outbuf = outbuf_arg; const unsigned char *inbuf = inbuf_arg; unsigned int burn, burn_stack_depth = 0; u64 blkn = c->u_mode.ocb.data_nblocks; #ifdef USE_AVX2 if (ctx->use_avx2) { int did_use_avx2 = 0; u64 Ls[16]; u64 *l; if (nblocks >= 16) { l = bulk_ocb_prepare_L_pointers_array_blk16 (c, Ls, blkn); /* Process data in 16 block chunks. */ while (nblocks >= 16) { blkn += 16; *l = (uintptr_t)(void *)ocb_get_l(c, blkn - blkn % 16); if (encrypt) _gcry_twofish_avx2_ocb_enc(ctx, outbuf, inbuf, c->u_iv.iv, c->u_ctr.ctr, Ls); else _gcry_twofish_avx2_ocb_dec(ctx, outbuf, inbuf, c->u_iv.iv, c->u_ctr.ctr, Ls); nblocks -= 16; outbuf += 16 * TWOFISH_BLOCKSIZE; inbuf += 16 * TWOFISH_BLOCKSIZE; did_use_avx2 = 1; } } if (did_use_avx2) { /* twofish-avx2 assembly code does not use stack */ if (nblocks == 0) burn_stack_depth = 0; } } #endif { /* Use u64 to store pointers for x32 support (assembly function * assumes 64-bit pointers). */ u64 Ls[3]; /* Process data in 3 block chunks. */ while (nblocks >= 3) { Ls[0] = (uintptr_t)(const void *)ocb_get_l(c, blkn + 1); Ls[1] = (uintptr_t)(const void *)ocb_get_l(c, blkn + 2); Ls[2] = (uintptr_t)(const void *)ocb_get_l(c, blkn + 3); blkn += 3; if (encrypt) twofish_amd64_ocb_enc(ctx, outbuf, inbuf, c->u_iv.iv, c->u_ctr.ctr, Ls); else twofish_amd64_ocb_dec(ctx, outbuf, inbuf, c->u_iv.iv, c->u_ctr.ctr, Ls); nblocks -= 3; outbuf += 3 * TWOFISH_BLOCKSIZE; inbuf += 3 * TWOFISH_BLOCKSIZE; burn = 8 * sizeof(void*); if (burn > burn_stack_depth) burn_stack_depth = burn; } /* Use generic code to handle smaller chunks... */ } c->u_mode.ocb.data_nblocks = blkn; if (burn_stack_depth) _gcry_burn_stack (burn_stack_depth + 4 * sizeof(void *)); #else (void)c; (void)outbuf_arg; (void)inbuf_arg; (void)encrypt; #endif return nblocks; } /* Bulk authentication of complete blocks in OCB mode. */ static size_t _gcry_twofish_ocb_auth (gcry_cipher_hd_t c, const void *abuf_arg, size_t nblocks) { #ifdef USE_AMD64_ASM TWOFISH_context *ctx = (void *)&c->context.c; const unsigned char *abuf = abuf_arg; unsigned int burn, burn_stack_depth = 0; u64 blkn = c->u_mode.ocb.aad_nblocks; #ifdef USE_AVX2 if (ctx->use_avx2) { int did_use_avx2 = 0; u64 Ls[16]; u64 *l; if (nblocks >= 16) { l = bulk_ocb_prepare_L_pointers_array_blk16 (c, Ls, blkn); /* Process data in 16 block chunks. */ while (nblocks >= 16) { blkn += 16; *l = (uintptr_t)(void *)ocb_get_l(c, blkn - blkn % 16); _gcry_twofish_avx2_ocb_auth(ctx, abuf, c->u_mode.ocb.aad_offset, c->u_mode.ocb.aad_sum, Ls); nblocks -= 16; abuf += 16 * TWOFISH_BLOCKSIZE; did_use_avx2 = 1; } } if (did_use_avx2) { /* twofish-avx2 assembly code does not use stack */ if (nblocks == 0) burn_stack_depth = 0; } /* Use generic code to handle smaller chunks... */ } #endif { /* Use u64 to store pointers for x32 support (assembly function * assumes 64-bit pointers). */ u64 Ls[3]; /* Process data in 3 block chunks. */ while (nblocks >= 3) { Ls[0] = (uintptr_t)(const void *)ocb_get_l(c, blkn + 1); Ls[1] = (uintptr_t)(const void *)ocb_get_l(c, blkn + 2); Ls[2] = (uintptr_t)(const void *)ocb_get_l(c, blkn + 3); blkn += 3; twofish_amd64_ocb_auth(ctx, abuf, c->u_mode.ocb.aad_offset, - c->u_mode.ocb.aad_sum, Ls); + c->u_mode.ocb.aad_sum, Ls); nblocks -= 3; abuf += 3 * TWOFISH_BLOCKSIZE; burn = 8 * sizeof(void*); if (burn > burn_stack_depth) burn_stack_depth = burn; } /* Use generic code to handle smaller chunks... */ } c->u_mode.ocb.aad_nblocks = blkn; if (burn_stack_depth) _gcry_burn_stack (burn_stack_depth + 4 * sizeof(void *)); #else (void)c; (void)abuf_arg; #endif return nblocks; } +static unsigned int +twofish_crypt_blk1_16(const void *context, byte *out, const byte *in, + unsigned int num_blks, int encrypt) +{ + const TWOFISH_context *ctx = context; + unsigned int burn, burn_stack_depth = 0; + +#ifdef USE_AVX2 + if (num_blks == 16 && ctx->use_avx2) + { + _gcry_twofish_avx2_blk16 (ctx, out, in, encrypt); + return 0; + } +#endif + +#ifdef USE_AMD64_ASM + while (num_blks >= 3) + { + _gcry_twofish_amd64_blk3 (ctx, out, in, encrypt); + burn = 8 * sizeof(void *); + burn_stack_depth = (burn > burn_stack_depth) ? burn : burn_stack_depth; + out += 3 * TWOFISH_BLOCKSIZE; + in += 3 * TWOFISH_BLOCKSIZE; + num_blks -= 3; + } +#endif + + while (num_blks >= 1) + { + if (encrypt) + burn = twofish_encrypt((void *)ctx, out, in); + else + burn = twofish_decrypt((void *)ctx, out, in); + + burn_stack_depth = (burn > burn_stack_depth) ? burn : burn_stack_depth; + out += TWOFISH_BLOCKSIZE; + in += TWOFISH_BLOCKSIZE; + num_blks--; + } + + return burn_stack_depth; +} + +static unsigned int +twofish_encrypt_blk1_16(const void *ctx, byte *out, const byte *in, + unsigned int num_blks) +{ + return twofish_crypt_blk1_16 (ctx, out, in, num_blks, 1); +} + +static unsigned int +twofish_decrypt_blk1_16(const void *ctx, byte *out, const byte *in, + unsigned int num_blks) +{ + return twofish_crypt_blk1_16 (ctx, out, in, num_blks, 0); +} + + +/* Bulk encryption/decryption of complete blocks in XTS mode. */ +static void +_gcry_twofish_xts_crypt (void *context, unsigned char *tweak, void *outbuf_arg, + const void *inbuf_arg, size_t nblocks, int encrypt) +{ + TWOFISH_context *ctx = context; + unsigned char *outbuf = outbuf_arg; + const unsigned char *inbuf = inbuf_arg; + int burn_stack_depth = 0; + + /* Process remaining blocks. */ + if (nblocks) + { + unsigned char tmpbuf[16 * 16]; + unsigned int tmp_used = 16; + size_t tmpbufsize = 15 * 16; + size_t nburn; + +#ifdef USE_AVX2 + if (ctx->use_avx2) + tmpbufsize = 16 * 16; +#endif + + nburn = bulk_xts_crypt_128(ctx, encrypt ? twofish_encrypt_blk1_16 + : twofish_decrypt_blk1_16, + outbuf, inbuf, nblocks, + tweak, tmpbuf, tmpbufsize / 16, + &tmp_used); + burn_stack_depth = nburn > burn_stack_depth ? nburn : burn_stack_depth; + + wipememory(tmpbuf, tmp_used); + } + + if (burn_stack_depth) + _gcry_burn_stack(burn_stack_depth); +} + + +/* Bulk encryption/decryption in ECB mode. */ +static void +_gcry_twofish_ecb_crypt (void *context, void *outbuf_arg, const void *inbuf_arg, + size_t nblocks, int encrypt) +{ + TWOFISH_context *ctx = context; + unsigned char *outbuf = outbuf_arg; + const unsigned char *inbuf = inbuf_arg; + int burn_stack_depth = 0; + + /* Process remaining blocks. */ + if (nblocks) + { + size_t fn_maxblocks = 15; + size_t nburn; + +#ifdef USE_AVX2 + if (ctx->use_avx2) + fn_maxblocks = 16; +#endif + + nburn = bulk_ecb_crypt_128(ctx, encrypt ? twofish_encrypt_blk1_16 + : twofish_decrypt_blk1_16, + outbuf, inbuf, nblocks, fn_maxblocks); + burn_stack_depth = nburn > burn_stack_depth ? nburn : burn_stack_depth; + } + + if (burn_stack_depth) + _gcry_burn_stack(burn_stack_depth); +} + + /* Test a single encryption and decryption with each key size. */ static const char* selftest (void) { TWOFISH_context ctx; /* Expanded key. */ byte scratch[16]; /* Encryption/decryption result buffer. */ cipher_bulk_ops_t bulk_ops; /* Test vectors for single encryption/decryption. Note that I am using * the vectors from the Twofish paper's "known answer test", I=3 for * 128-bit and I=4 for 256-bit, instead of the all-0 vectors from the * "intermediate value test", because an all-0 key would trigger all the * special cases in the RS matrix multiply, leaving the math untested. */ static byte plaintext[16] = { 0xD4, 0x91, 0xDB, 0x16, 0xE7, 0xB1, 0xC3, 0x9E, 0x86, 0xCB, 0x08, 0x6B, 0x78, 0x9F, 0x54, 0x19 }; static byte key[16] = { 0x9F, 0x58, 0x9F, 0x5C, 0xF6, 0x12, 0x2C, 0x32, 0xB6, 0xBF, 0xEC, 0x2F, 0x2A, 0xE8, 0xC3, 0x5A }; static const byte ciphertext[16] = { 0x01, 0x9F, 0x98, 0x09, 0xDE, 0x17, 0x11, 0x85, 0x8F, 0xAA, 0xC3, 0xA3, 0xBA, 0x20, 0xFB, 0xC3 }; static byte plaintext_256[16] = { 0x90, 0xAF, 0xE9, 0x1B, 0xB2, 0x88, 0x54, 0x4F, 0x2C, 0x32, 0xDC, 0x23, 0x9B, 0x26, 0x35, 0xE6 }; static byte key_256[32] = { 0xD4, 0x3B, 0xB7, 0x55, 0x6E, 0xA3, 0x2E, 0x46, 0xF2, 0xA2, 0x82, 0xB7, 0xD4, 0x5B, 0x4E, 0x0D, 0x57, 0xFF, 0x73, 0x9D, 0x4D, 0xC9, 0x2C, 0x1B, 0xD7, 0xFC, 0x01, 0x70, 0x0C, 0xC8, 0x21, 0x6F }; static const byte ciphertext_256[16] = { 0x6C, 0xB4, 0x56, 0x1C, 0x40, 0xBF, 0x0A, 0x97, 0x05, 0x93, 0x1C, 0xB6, 0xD4, 0x08, 0xE7, 0xFA }; twofish_setkey (&ctx, key, sizeof(key), &bulk_ops); twofish_encrypt (&ctx, scratch, plaintext); if (memcmp (scratch, ciphertext, sizeof (ciphertext))) return "Twofish-128 test encryption failed."; twofish_decrypt (&ctx, scratch, scratch); if (memcmp (scratch, plaintext, sizeof (plaintext))) return "Twofish-128 test decryption failed."; twofish_setkey (&ctx, key_256, sizeof(key_256), &bulk_ops); twofish_encrypt (&ctx, scratch, plaintext_256); if (memcmp (scratch, ciphertext_256, sizeof (ciphertext_256))) return "Twofish-256 test encryption failed."; twofish_decrypt (&ctx, scratch, scratch); if (memcmp (scratch, plaintext_256, sizeof (plaintext_256))) return "Twofish-256 test decryption failed."; return NULL; } /* More complete test program. This does 1000 encryptions and decryptions * with each of 250 128-bit keys and 2000 encryptions and decryptions with * each of 125 256-bit keys, using a feedback scheme similar to a Feistel * cipher, so as to be sure of testing all the table entries pretty * thoroughly. We keep changing the keys so as to get a more meaningful * performance number, since the key setup is non-trivial for Twofish. */ #ifdef TEST #include #include #include int main() { TWOFISH_context ctx; /* Expanded key. */ int i, j; /* Loop counters. */ cipher_bulk_ops_t bulk_ops; const char *encrypt_msg; /* Message to print regarding encryption test; * the printf is done outside the loop to avoid * stuffing up the timing. */ clock_t timer; /* For computing elapsed time. */ /* Test buffer. */ byte buffer[4][16] = { {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF}, {0x0F, 0x1E, 0x2D, 0x3C, 0x4B, 0x5A, 0x69, 0x78, 0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2 ,0xE1, 0xF0}, {0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF, 0xFE, 0xDC, 0xBA, 0x98, 0x76, 0x54 ,0x32, 0x10}, {0x01, 0x23, 0x45, 0x67, 0x76, 0x54 ,0x32, 0x10, 0x89, 0xAB, 0xCD, 0xEF, 0xFE, 0xDC, 0xBA, 0x98} }; /* Expected outputs for the million-operation test */ static const byte test_encrypt[4][16] = { {0xC8, 0x23, 0xB8, 0xB7, 0x6B, 0xFE, 0x91, 0x13, 0x2F, 0xA7, 0x5E, 0xE6, 0x94, 0x77, 0x6F, 0x6B}, {0x90, 0x36, 0xD8, 0x29, 0xD5, 0x96, 0xC2, 0x8E, 0xE4, 0xFF, 0x76, 0xBC, 0xE5, 0x77, 0x88, 0x27}, {0xB8, 0x78, 0x69, 0xAF, 0x42, 0x8B, 0x48, 0x64, 0xF7, 0xE9, 0xF3, 0x9C, 0x42, 0x18, 0x7B, 0x73}, {0x7A, 0x88, 0xFB, 0xEB, 0x90, 0xA4, 0xB4, 0xA8, 0x43, 0xA3, 0x1D, 0xF1, 0x26, 0xC4, 0x53, 0x57} }; static const byte test_decrypt[4][16] = { {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF}, {0x0F, 0x1E, 0x2D, 0x3C, 0x4B, 0x5A, 0x69, 0x78, 0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2 ,0xE1, 0xF0}, {0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF, 0xFE, 0xDC, 0xBA, 0x98, 0x76, 0x54 ,0x32, 0x10}, {0x01, 0x23, 0x45, 0x67, 0x76, 0x54 ,0x32, 0x10, 0x89, 0xAB, 0xCD, 0xEF, 0xFE, 0xDC, 0xBA, 0x98} }; /* Start the timer ticking. */ timer = clock (); /* Encryption test. */ for (i = 0; i < 125; i++) { twofish_setkey (&ctx, buffer[0], sizeof (buffer[0]), &bulk_ops); for (j = 0; j < 1000; j++) twofish_encrypt (&ctx, buffer[2], buffer[2]); twofish_setkey (&ctx, buffer[1], sizeof (buffer[1]), &bulk_ops); for (j = 0; j < 1000; j++) twofish_encrypt (&ctx, buffer[3], buffer[3]); twofish_setkey (&ctx, buffer[2], sizeof (buffer[2])*2, &bulk_ops); for (j = 0; j < 1000; j++) { twofish_encrypt (&ctx, buffer[0], buffer[0]); twofish_encrypt (&ctx, buffer[1], buffer[1]); } } encrypt_msg = memcmp (buffer, test_encrypt, sizeof (test_encrypt)) ? "encryption failure!\n" : "encryption OK!\n"; /* Decryption test. */ for (i = 0; i < 125; i++) { twofish_setkey (&ctx, buffer[2], sizeof (buffer[2])*2, &bulk_ops); for (j = 0; j < 1000; j++) { twofish_decrypt (&ctx, buffer[0], buffer[0]); twofish_decrypt (&ctx, buffer[1], buffer[1]); } twofish_setkey (&ctx, buffer[1], sizeof (buffer[1]), &bulk_ops); for (j = 0; j < 1000; j++) twofish_decrypt (&ctx, buffer[3], buffer[3]); twofish_setkey (&ctx, buffer[0], sizeof (buffer[0]), &bulk_ops); for (j = 0; j < 1000; j++) twofish_decrypt (&ctx, buffer[2], buffer[2]); } /* Stop the timer, and print results. */ timer = clock () - timer; printf (encrypt_msg); printf (memcmp (buffer, test_decrypt, sizeof (test_decrypt)) ? "decryption failure!\n" : "decryption OK!\n"); printf ("elapsed time: %.1f s.\n", (float) timer / CLOCKS_PER_SEC); return 0; } #endif /* TEST */ gcry_cipher_spec_t _gcry_cipher_spec_twofish = { GCRY_CIPHER_TWOFISH, {0, 0}, "TWOFISH", NULL, NULL, 16, 256, sizeof (TWOFISH_context), twofish_setkey, twofish_encrypt, twofish_decrypt }; gcry_cipher_spec_t _gcry_cipher_spec_twofish128 = { GCRY_CIPHER_TWOFISH128, {0, 0}, "TWOFISH128", NULL, NULL, 16, 128, sizeof (TWOFISH_context), twofish_setkey, twofish_encrypt, twofish_decrypt };