diff --git a/cipher/Makefile.am b/cipher/Makefile.am index bba815bb..6e6c5ac0 100644 --- a/cipher/Makefile.am +++ b/cipher/Makefile.am @@ -1,131 +1,131 @@ # Makefile for cipher modules # Copyright (C) 1998, 1999, 2000, 2001, 2002, # 2003, 2009 Free Software Foundation, Inc. # # This file is part of Libgcrypt. # # Libgcrypt is free software; you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as # published by the Free Software Foundation; either version 2.1 of # the License, or (at your option) any later version. # # Libgcrypt is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this program; if not, see . # Process this file with automake to produce Makefile.in # Need to include ../src in addition to top_srcdir because gcrypt.h is # a built header. AM_CPPFLAGS = -I../src -I$(top_srcdir)/src -I../mpi -I$(top_srcdir)/mpi AM_CFLAGS = $(GPG_ERROR_CFLAGS) AM_CCASFLAGS = $(NOEXECSTACK_FLAGS) EXTRA_DIST = gost-s-box.c CLEANFILES = gost-s-box DISTCLEANFILES = gost-sb.h noinst_LTLIBRARIES = libcipher.la GCRYPT_MODULES = @GCRYPT_CIPHERS@ @GCRYPT_PUBKEY_CIPHERS@ \ @GCRYPT_DIGESTS@ @GCRYPT_KDFS@ libcipher_la_DEPENDENCIES = $(GCRYPT_MODULES) libcipher_la_LIBADD = $(GCRYPT_MODULES) libcipher_la_SOURCES = \ cipher.c cipher-internal.h \ cipher-cbc.c cipher-cfb.c cipher-ofb.c cipher-ctr.c cipher-aeswrap.c \ cipher-ccm.c cipher-cmac.c cipher-gcm.c cipher-gcm-intel-pclmul.c \ cipher-gcm-armv8-aarch32-ce.S cipher-gcm-armv8-aarch64-ce.S \ -cipher-poly1305.c cipher-ocb.c cipher-xts.c \ +cipher-poly1305.c cipher-ocb.c cipher-xts.c cipher-eax.c \ cipher-selftest.c cipher-selftest.h \ pubkey.c pubkey-internal.h pubkey-util.c \ md.c \ mac.c mac-internal.h \ mac-hmac.c mac-cmac.c mac-gmac.c mac-poly1305.c \ poly1305.c poly1305-internal.h \ kdf.c kdf-internal.h \ hmac-tests.c \ bithelp.h \ bufhelp.h \ primegen.c \ hash-common.c hash-common.h \ dsa-common.c rsa-common.c \ sha1.h EXTRA_libcipher_la_SOURCES = \ asm-common-amd64.h \ arcfour.c arcfour-amd64.S \ blowfish.c blowfish-amd64.S blowfish-arm.S \ cast5.c cast5-amd64.S cast5-arm.S \ chacha20.c chacha20-amd64-ssse3.S chacha20-amd64-avx2.S chacha20-armv7-neon.S \ chacha20-aarch64.S \ crc.c \ crc-intel-pclmul.c \ des.c des-amd64.S \ dsa.c \ elgamal.c \ ecc.c ecc-curves.c ecc-misc.c ecc-common.h \ ecc-ecdsa.c ecc-eddsa.c ecc-gost.c \ idea.c \ gost28147.c gost.h \ gostr3411-94.c \ md4.c \ md5.c \ rijndael.c rijndael-internal.h rijndael-tables.h rijndael-aesni.c \ rijndael-padlock.c rijndael-amd64.S rijndael-arm.S \ rijndael-ssse3-amd64.c rijndael-ssse3-amd64-asm.S \ rijndael-armv8-ce.c rijndael-armv8-aarch32-ce.S rijndael-armv8-aarch64-ce.S \ rijndael-aarch64.S \ rmd160.c \ rsa.c \ salsa20.c salsa20-amd64.S salsa20-armv7-neon.S \ scrypt.c \ seed.c \ serpent.c serpent-sse2-amd64.S serpent-avx2-amd64.S serpent-armv7-neon.S \ sha1.c sha1-ssse3-amd64.S sha1-avx-amd64.S sha1-avx-bmi2-amd64.S \ sha1-armv7-neon.S sha1-armv8-aarch32-ce.S sha1-armv8-aarch64-ce.S \ sha256.c sha256-ssse3-amd64.S sha256-avx-amd64.S sha256-avx2-bmi2-amd64.S \ sha256-armv8-aarch32-ce.S sha256-armv8-aarch64-ce.S \ sha512.c sha512-ssse3-amd64.S sha512-avx-amd64.S sha512-avx2-bmi2-amd64.S \ sha512-armv7-neon.S sha512-arm.S \ sm3.c \ keccak.c keccak_permute_32.h keccak_permute_64.h keccak-armv7-neon.S \ stribog.c \ tiger.c \ whirlpool.c whirlpool-sse2-amd64.S \ twofish.c twofish-amd64.S twofish-arm.S twofish-aarch64.S \ twofish-avx2-amd64.S \ rfc2268.c \ camellia.c camellia.h camellia-glue.c camellia-aesni-avx-amd64.S \ camellia-aesni-avx2-amd64.S camellia-arm.S camellia-aarch64.S \ blake2.c gost28147.lo: gost-sb.h gost-sb.h: gost-s-box ./gost-s-box $@ gost-s-box: gost-s-box.c $(CC_FOR_BUILD) -o $@ $(srcdir)/gost-s-box.c if ENABLE_O_FLAG_MUNGING o_flag_munging = sed -e 's/-O\([2-9s][2-9s]*\)/-O1/' -e 's/-Ofast/-O1/g' else o_flag_munging = cat endif # We need to lower the optimization for this module. tiger.o: $(srcdir)/tiger.c `echo $(COMPILE) -c $(srcdir)/tiger.c | $(o_flag_munging) ` tiger.lo: $(srcdir)/tiger.c `echo $(LTCOMPILE) -c $(srcdir)/tiger.c | $(o_flag_munging) ` diff --git a/cipher/cipher-cmac.c b/cipher/cipher-cmac.c index da3ef759..30567b7f 100644 --- a/cipher/cipher-cmac.c +++ b/cipher/cipher-cmac.c @@ -1,253 +1,280 @@ /* cmac.c - CMAC, Cipher-based MAC. - * Copyright (C) 2013 Jussi Kivilinna + * Copyright (C) 2013,2018 Jussi Kivilinna * * This file is part of Libgcrypt. * * Libgcrypt is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2.1 of * the License, or (at your option) any later version. * * Libgcrypt is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program; if not, see . */ #include #include #include #include #include "g10lib.h" #include "cipher.h" #include "cipher-internal.h" #include "bufhelp.h" #define set_burn(burn, nburn) do { \ unsigned int __nburn = (nburn); \ (burn) = (burn) > __nburn ? (burn) : __nburn; } while (0) -static void -cmac_write (gcry_cipher_hd_t c, const byte * inbuf, size_t inlen) +gcry_err_code_t +_gcry_cmac_write (gcry_cipher_hd_t c, gcry_cmac_context_t *ctx, + const byte * inbuf, size_t inlen) { gcry_cipher_encrypt_t enc_fn = c->spec->encrypt; const unsigned int blocksize = c->spec->blocksize; byte outbuf[MAX_BLOCKSIZE]; unsigned int burn = 0; unsigned int nblocks; + if (ctx->tag) + return GPG_ERR_INV_STATE; + /* Tell compiler that we require a cipher with a 64bit or 128 bit block * length, to allow better optimization of this function. */ if (blocksize > 16 || blocksize < 8 || blocksize & (8 - 1)) - return; + return GPG_ERR_INV_CIPHER_MODE; - if (!inlen || !inbuf) - return; + if (!inbuf) + return GPG_ERR_INV_ARG; + + if (inlen == 0) + return 0; /* Last block is needed for cmac_final. */ - if (c->unused + inlen <= blocksize) + if (ctx->mac_unused + inlen <= blocksize) { - for (; inlen && c->unused < blocksize; inlen--) - c->lastiv[c->unused++] = *inbuf++; - return; + for (; inlen && ctx->mac_unused < blocksize; inlen--) + ctx->macbuf[ctx->mac_unused++] = *inbuf++; + return 0; } - if (c->unused) + if (ctx->mac_unused) { - for (; inlen && c->unused < blocksize; inlen--) - c->lastiv[c->unused++] = *inbuf++; + for (; inlen && ctx->mac_unused < blocksize; inlen--) + ctx->macbuf[ctx->mac_unused++] = *inbuf++; - buf_xor (c->u_iv.iv, c->u_iv.iv, c->lastiv, blocksize); - set_burn (burn, enc_fn (&c->context.c, c->u_iv.iv, c->u_iv.iv)); + buf_xor (ctx->u_iv.iv, ctx->u_iv.iv, ctx->macbuf, blocksize); + set_burn (burn, enc_fn (&c->context.c, ctx->u_iv.iv, ctx->u_iv.iv)); - c->unused = 0; + ctx->mac_unused = 0; } if (c->bulk.cbc_enc && inlen > blocksize) { nblocks = inlen / blocksize; nblocks -= (nblocks * blocksize == inlen); - c->bulk.cbc_enc (&c->context.c, c->u_iv.iv, outbuf, inbuf, nblocks, 1); + c->bulk.cbc_enc (&c->context.c, ctx->u_iv.iv, outbuf, inbuf, nblocks, 1); inbuf += nblocks * blocksize; inlen -= nblocks * blocksize; wipememory (outbuf, sizeof (outbuf)); } else while (inlen > blocksize) { - buf_xor (c->u_iv.iv, c->u_iv.iv, inbuf, blocksize); - set_burn (burn, enc_fn (&c->context.c, c->u_iv.iv, c->u_iv.iv)); + buf_xor (ctx->u_iv.iv, ctx->u_iv.iv, inbuf, blocksize); + set_burn (burn, enc_fn (&c->context.c, ctx->u_iv.iv, ctx->u_iv.iv)); inlen -= blocksize; inbuf += blocksize; } /* Make sure that last block is passed to cmac_final. */ if (inlen == 0) BUG (); - for (; inlen && c->unused < blocksize; inlen--) - c->lastiv[c->unused++] = *inbuf++; + for (; inlen && ctx->mac_unused < blocksize; inlen--) + ctx->macbuf[ctx->mac_unused++] = *inbuf++; if (burn) _gcry_burn_stack (burn + 4 * sizeof (void *)); + + return 0; } -static void -cmac_generate_subkeys (gcry_cipher_hd_t c) +gcry_err_code_t +_gcry_cmac_generate_subkeys (gcry_cipher_hd_t c, gcry_cmac_context_t *ctx) { const unsigned int blocksize = c->spec->blocksize; byte rb, carry, t, bi; unsigned int burn; int i, j; union { size_t _aligned; byte buf[MAX_BLOCKSIZE]; } u; /* Tell compiler that we require a cipher with a 64bit or 128 bit block * length, to allow better optimization of this function. */ if (blocksize > 16 || blocksize < 8 || blocksize & (8 - 1)) - return; + return GPG_ERR_INV_CIPHER_MODE; if (MAX_BLOCKSIZE < blocksize) BUG (); /* encrypt zero block */ memset (u.buf, 0, blocksize); burn = c->spec->encrypt (&c->context.c, u.buf, u.buf); /* Currently supported blocksizes are 16 and 8. */ - rb = blocksize == 16 ? 0x87 : 0x1B /*blocksize == 8 */ ; + rb = blocksize == 16 ? 0x87 : 0x1B /* blocksize == 8 */ ; for (j = 0; j < 2; j++) { /* Generate subkeys K1 and K2 */ carry = 0; for (i = blocksize - 1; i >= 0; i--) { bi = u.buf[i]; t = carry | (bi << 1); carry = bi >> 7; u.buf[i] = t & 0xff; - c->u_mode.cmac.subkeys[j][i] = u.buf[i]; + ctx->subkeys[j][i] = u.buf[i]; } u.buf[blocksize - 1] ^= carry ? rb : 0; - c->u_mode.cmac.subkeys[j][blocksize - 1] = u.buf[blocksize - 1]; + ctx->subkeys[j][blocksize - 1] = u.buf[blocksize - 1]; } wipememory (&u, sizeof (u)); if (burn) _gcry_burn_stack (burn + 4 * sizeof (void *)); + + return 0; } -static void -cmac_final (gcry_cipher_hd_t c) +gcry_err_code_t +_gcry_cmac_final (gcry_cipher_hd_t c, gcry_cmac_context_t *ctx) { const unsigned int blocksize = c->spec->blocksize; - unsigned int count = c->unused; + unsigned int count = ctx->mac_unused; unsigned int burn; byte *subkey; /* Tell compiler that we require a cipher with a 64bit or 128 bit block * length, to allow better optimization of this function. */ if (blocksize > 16 || blocksize < 8 || blocksize & (8 - 1)) - return; + return GPG_ERR_INV_CIPHER_MODE; if (count == blocksize) - subkey = c->u_mode.cmac.subkeys[0]; /* K1 */ + subkey = ctx->subkeys[0]; /* K1 */ else { - subkey = c->u_mode.cmac.subkeys[1]; /* K2 */ - c->lastiv[count++] = 0x80; + subkey = ctx->subkeys[1]; /* K2 */ + ctx->macbuf[count++] = 0x80; while (count < blocksize) - c->lastiv[count++] = 0; + ctx->macbuf[count++] = 0; } - buf_xor (c->lastiv, c->lastiv, subkey, blocksize); + buf_xor (ctx->macbuf, ctx->macbuf, subkey, blocksize); - buf_xor (c->u_iv.iv, c->u_iv.iv, c->lastiv, blocksize); - burn = c->spec->encrypt (&c->context.c, c->u_iv.iv, c->u_iv.iv); + buf_xor (ctx->u_iv.iv, ctx->u_iv.iv, ctx->macbuf, blocksize); + burn = c->spec->encrypt (&c->context.c, ctx->u_iv.iv, ctx->u_iv.iv); if (burn) _gcry_burn_stack (burn + 4 * sizeof (void *)); - c->unused = 0; + ctx->mac_unused = 0; + + return 0; } static gcry_err_code_t -cmac_tag (gcry_cipher_hd_t c, unsigned char *tag, size_t taglen, int check) +cmac_tag (gcry_cipher_hd_t c, gcry_cmac_context_t *ctx, + unsigned char *tag, size_t taglen, int check) { + gcry_err_code_t ret; + if (!tag || taglen == 0 || taglen > c->spec->blocksize) return GPG_ERR_INV_ARG; - if (!c->u_mode.cmac.tag) + if (!ctx->tag) { - cmac_final (c); - c->u_mode.cmac.tag = 1; + ret = _gcry_cmac_final (c, ctx); + if (ret != 0) + return ret; + + ctx->tag = 1; } if (!check) { - memcpy (tag, c->u_iv.iv, taglen); + memcpy (tag, ctx->u_iv.iv, taglen); return GPG_ERR_NO_ERROR; } else { - return buf_eq_const (tag, c->u_iv.iv, taglen) ? + return buf_eq_const (tag, ctx->u_iv.iv, taglen) ? GPG_ERR_NO_ERROR : GPG_ERR_CHECKSUM; } } +void +_gcry_cmac_reset (gcry_cmac_context_t *ctx) +{ + char tmp_buf[sizeof(ctx->subkeys)]; + + /* Only keep subkeys when reseting context. */ + + buf_cpy (tmp_buf, ctx->subkeys, sizeof(ctx->subkeys)); + memset (ctx, 0, sizeof(*ctx)); + buf_cpy (ctx->subkeys, tmp_buf, sizeof(ctx->subkeys)); + wipememory (tmp_buf, sizeof(tmp_buf)); +} + + gcry_err_code_t _gcry_cipher_cmac_authenticate (gcry_cipher_hd_t c, const unsigned char *abuf, size_t abuflen) { if (abuflen > 0 && !abuf) return GPG_ERR_INV_ARG; - if (c->u_mode.cmac.tag) - return GPG_ERR_INV_STATE; /* To support new blocksize, update cmac_generate_subkeys() then add new blocksize here. */ if (c->spec->blocksize != 16 && c->spec->blocksize != 8) return GPG_ERR_INV_CIPHER_MODE; - cmac_write (c, abuf, abuflen); - - return GPG_ERR_NO_ERROR; + return _gcry_cmac_write (c, &c->u_mode.cmac, abuf, abuflen); } gcry_err_code_t _gcry_cipher_cmac_get_tag (gcry_cipher_hd_t c, unsigned char *outtag, size_t taglen) { - return cmac_tag (c, outtag, taglen, 0); + return cmac_tag (c, &c->u_mode.cmac, outtag, taglen, 0); } gcry_err_code_t _gcry_cipher_cmac_check_tag (gcry_cipher_hd_t c, const unsigned char *intag, size_t taglen) { - return cmac_tag (c, (unsigned char *) intag, taglen, 1); + return cmac_tag (c, &c->u_mode.cmac, (unsigned char *) intag, taglen, 1); } gcry_err_code_t _gcry_cipher_cmac_set_subkeys (gcry_cipher_hd_t c) { - cmac_generate_subkeys (c); - - return GPG_ERR_NO_ERROR; + return _gcry_cmac_generate_subkeys (c, &c->u_mode.cmac); } diff --git a/cipher/cipher-eax.c b/cipher/cipher-eax.c new file mode 100644 index 00000000..1ce47975 --- /dev/null +++ b/cipher/cipher-eax.c @@ -0,0 +1,248 @@ +/* cipher-eax.c - EAX implementation + * Copyright (C) 2018 Jussi Kivilinna + * + * This file is part of Libgcrypt. + * + * Libgcrypt is free software; you can redistribute it and/or modify + * it under the terms of the GNU Lesser general Public License as + * published by the Free Software Foundation; either version 2.1 of + * the License, or (at your option) any later version. + * + * Libgcrypt is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this program; if not, see . + */ + +#include +#include +#include +#include +#include + +#include "g10lib.h" +#include "cipher.h" +#include "bufhelp.h" +#include "./cipher-internal.h" + + +gcry_err_code_t +_gcry_cipher_eax_encrypt (gcry_cipher_hd_t c, + byte *outbuf, size_t outbuflen, + const byte *inbuf, size_t inbuflen) +{ + gcry_err_code_t err; + + if (outbuflen < inbuflen) + return GPG_ERR_BUFFER_TOO_SHORT; + if (c->marks.tag) + return GPG_ERR_INV_STATE; + + if (!c->marks.iv) + { + err = _gcry_cipher_eax_set_nonce (c, NULL, 0); + if (err != 0) + return err; + } + + err = _gcry_cipher_ctr_encrypt (c, outbuf, outbuflen, inbuf, inbuflen); + if (err != 0) + return err; + + return _gcry_cmac_write (c, &c->u_mode.eax.cmac_ciphertext, outbuf, inbuflen); +} + + +gcry_err_code_t +_gcry_cipher_eax_decrypt (gcry_cipher_hd_t c, + byte *outbuf, size_t outbuflen, + const byte *inbuf, size_t inbuflen) +{ + gcry_err_code_t err; + + if (outbuflen < inbuflen) + return GPG_ERR_BUFFER_TOO_SHORT; + if (c->marks.tag) + return GPG_ERR_INV_STATE; + + if (!c->marks.iv) + { + err = _gcry_cipher_eax_set_nonce (c, NULL, 0); + if (err != 0) + return err; + } + + err = _gcry_cmac_write (c, &c->u_mode.eax.cmac_ciphertext, inbuf, inbuflen); + if (err != 0) + return err; + + return _gcry_cipher_ctr_encrypt (c, outbuf, outbuflen, inbuf, inbuflen); +} + + +gcry_err_code_t +_gcry_cipher_eax_authenticate (gcry_cipher_hd_t c, + const byte * aadbuf, size_t aadbuflen) +{ + gcry_err_code_t err; + + if (c->marks.tag) + return GPG_ERR_INV_STATE; + + if (!c->marks.iv) + { + err = _gcry_cipher_eax_set_nonce (c, NULL, 0); + if (err != 0) + return err; + } + + return _gcry_cmac_write (c, &c->u_mode.eax.cmac_header, aadbuf, aadbuflen); +} + + +gcry_err_code_t +_gcry_cipher_eax_setkey (gcry_cipher_hd_t c) +{ + gcry_err_code_t err; + + err = _gcry_cmac_generate_subkeys (c, &c->u_mode.eax.cmac_header); + if (err != 0) + return err; + + buf_cpy (c->u_mode.eax.cmac_ciphertext.subkeys, + c->u_mode.eax.cmac_header.subkeys, + sizeof(c->u_mode.eax.cmac_header.subkeys)); + + return 0; +} + + +gcry_err_code_t +_gcry_cipher_eax_set_nonce (gcry_cipher_hd_t c, const byte *nonce, + size_t noncelen) +{ + gcry_cmac_context_t nonce_cmac; + unsigned char initbuf[MAX_BLOCKSIZE]; + gcry_err_code_t err; + + c->marks.iv = 0; + c->marks.tag = 0; + + _gcry_cmac_reset (&c->u_mode.eax.cmac_header); + _gcry_cmac_reset (&c->u_mode.eax.cmac_ciphertext); + + /* Calculate nonce CMAC */ + + memset(&nonce_cmac, 0, sizeof(nonce_cmac)); + memset(&initbuf, 0, sizeof(initbuf)); + + buf_cpy (&nonce_cmac.subkeys, c->u_mode.eax.cmac_header.subkeys, + sizeof(c->u_mode.eax.cmac_header.subkeys)); + + err = _gcry_cmac_write (c, &nonce_cmac, initbuf, c->spec->blocksize); + if (err != 0) + return err; + + if (noncelen != 0) + { + err = _gcry_cmac_write (c, &nonce_cmac, nonce, noncelen); + if (err != 0) + return err; + } + + err = _gcry_cmac_final (c, &nonce_cmac); + if (err != 0) + return err; + + buf_cpy (c->u_iv.iv, nonce_cmac.u_iv.iv, MAX_BLOCKSIZE); + buf_cpy (c->u_ctr.ctr, nonce_cmac.u_iv.iv, MAX_BLOCKSIZE); + + wipememory (&nonce_cmac, sizeof(nonce_cmac)); + + /* Prepare header CMAC */ + + initbuf[c->spec->blocksize - 1] = 1; + err = _gcry_cmac_write (c, &c->u_mode.eax.cmac_header, initbuf, + c->spec->blocksize); + if (err != 0) + return err; + + /* Prepare ciphertext CMAC */ + + initbuf[c->spec->blocksize - 1] = 2; + err = _gcry_cmac_write (c, &c->u_mode.eax.cmac_ciphertext, initbuf, + c->spec->blocksize); + if (err != 0) + return err; + + c->marks.iv = 1; + c->marks.tag = 0; + + return 0; +} + + +static gcry_err_code_t +_gcry_cipher_eax_tag (gcry_cipher_hd_t c, + byte *outbuf, size_t outbuflen, int check) +{ + gcry_err_code_t err; + + if (!c->marks.tag) + { + err = _gcry_cmac_final (c, &c->u_mode.eax.cmac_header); + if (err != 0) + return err; + + err = _gcry_cmac_final (c, &c->u_mode.eax.cmac_ciphertext); + if (err != 0) + return err; + + buf_xor_1 (c->u_iv.iv, c->u_mode.eax.cmac_header.u_iv.iv, MAX_BLOCKSIZE); + buf_xor_1 (c->u_iv.iv, c->u_mode.eax.cmac_ciphertext.u_iv.iv, + MAX_BLOCKSIZE); + + _gcry_cmac_reset (&c->u_mode.eax.cmac_header); + _gcry_cmac_reset (&c->u_mode.eax.cmac_ciphertext); + + c->marks.tag = 1; + } + + if (!check) + { + if (outbuflen > c->spec->blocksize) + outbuflen = c->spec->blocksize; + + /* NB: We already checked that OUTBUF is large enough to hold + * the result or has valid truncated length. */ + memcpy (outbuf, c->u_iv.iv, outbuflen); + } + else + { + /* OUTBUFLEN gives the length of the user supplied tag in OUTBUF + * and thus we need to compare its length first. */ + if (!(outbuflen <= c->spec->blocksize) + || !buf_eq_const (outbuf, c->u_iv.iv, outbuflen)) + return GPG_ERR_CHECKSUM; + } + + return 0; +} + + +gcry_err_code_t +_gcry_cipher_eax_get_tag (gcry_cipher_hd_t c, unsigned char *outtag, + size_t taglen) +{ + return _gcry_cipher_eax_tag (c, outtag, taglen, 0); +} + +gcry_err_code_t +_gcry_cipher_eax_check_tag (gcry_cipher_hd_t c, const unsigned char *intag, + size_t taglen) +{ + return _gcry_cipher_eax_tag (c, (unsigned char *) intag, taglen, 1); +} diff --git a/cipher/cipher-internal.h b/cipher/cipher-internal.h index 8c897d7b..a0ede5e0 100644 --- a/cipher/cipher-internal.h +++ b/cipher/cipher-internal.h @@ -1,509 +1,566 @@ /* cipher-internal.h - Internal defs for cipher.c * Copyright (C) 2011 Free Software Foundation, Inc. * * This file is part of Libgcrypt. * * Libgcrypt is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser general Public License as * published by the Free Software Foundation; either version 2.1 of * the License, or (at your option) any later version. * * Libgcrypt is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program; if not, see . */ #ifndef G10_CIPHER_INTERNAL_H #define G10_CIPHER_INTERNAL_H #include "./poly1305-internal.h" /* The maximum supported size of a block in bytes. */ #define MAX_BLOCKSIZE 16 /* The length for an OCB block. Although OCB supports any block length it does not make sense to use a 64 bit blocklen (and cipher) because this reduces the security margin to an unacceptable state. Thus we require a cipher with 128 bit blocklength. */ #define OCB_BLOCK_LEN (128/8) /* The size of the pre-computed L table for OCB. This takes the same size as the table used for GCM and thus we don't save anything by not using such a table. */ #define OCB_L_TABLE_SIZE 16 /* Check the above constants. */ #if OCB_BLOCK_LEN > MAX_BLOCKSIZE # error OCB_BLOCKLEN > MAX_BLOCKSIZE #endif /* Magic values for the context structure. */ #define CTX_MAGIC_NORMAL 0x24091964 #define CTX_MAGIC_SECURE 0x46919042 /* Try to use 16 byte aligned cipher context for better performance. We use the aligned attribute, thus it is only possible to implement this with gcc. */ #undef NEED_16BYTE_ALIGNED_CONTEXT #ifdef HAVE_GCC_ATTRIBUTE_ALIGNED # define NEED_16BYTE_ALIGNED_CONTEXT 1 #endif /* Undef this symbol to trade GCM speed for 256 bytes of memory per context */ #define GCM_USE_TABLES 1 /* GCM_USE_INTEL_PCLMUL indicates whether to compile GCM with Intel PCLMUL code. */ #undef GCM_USE_INTEL_PCLMUL #if defined(ENABLE_PCLMUL_SUPPORT) && defined(GCM_USE_TABLES) # if ((defined(__i386__) && SIZEOF_UNSIGNED_LONG == 4) || defined(__x86_64__)) # if __GNUC__ >= 4 # define GCM_USE_INTEL_PCLMUL 1 # endif # endif #endif /* GCM_USE_INTEL_PCLMUL */ /* GCM_USE_ARM_PMULL indicates whether to compile GCM with ARMv8 PMULL code. */ #undef GCM_USE_ARM_PMULL #if defined(ENABLE_ARM_CRYPTO_SUPPORT) && defined(GCM_USE_TABLES) # if defined(HAVE_ARM_ARCH_V6) && defined(__ARMEL__) \ && defined(HAVE_COMPATIBLE_GCC_ARM_PLATFORM_AS) \ && defined(HAVE_GCC_INLINE_ASM_AARCH32_CRYPTO) # define GCM_USE_ARM_PMULL 1 # elif defined(__AARCH64EL__) && \ defined(HAVE_COMPATIBLE_GCC_AARCH64_PLATFORM_AS) && \ defined(HAVE_GCC_INLINE_ASM_AARCH64_CRYPTO) # define GCM_USE_ARM_PMULL 1 # endif #endif /* GCM_USE_ARM_PMULL */ typedef unsigned int (*ghash_fn_t) (gcry_cipher_hd_t c, byte *result, const byte *buf, size_t nblocks); /* A VIA processor with the Padlock engine as well as the Intel AES_NI instructions require an alignment of most data on a 16 byte boundary. Because we trick out the compiler while allocating the context, the align attribute as used in rijndael.c does not work on its own. Thus we need to make sure that the entire context structure is a aligned on that boundary. We achieve this by defining a new type and use that instead of our usual alignment type. */ typedef union { PROPERLY_ALIGNED_TYPE foo; #ifdef NEED_16BYTE_ALIGNED_CONTEXT char bar[16] __attribute__ ((aligned (16))); #endif char c[1]; } cipher_context_alignment_t; +/* Storage structure for CMAC, for CMAC and EAX modes. */ +typedef struct { + /* The initialization vector. Also contains tag after finalization. */ + union { + cipher_context_alignment_t iv_align; + unsigned char iv[MAX_BLOCKSIZE]; + } u_iv; + + /* Subkeys for tag creation, not cleared by gcry_cipher_reset. */ + unsigned char subkeys[2][MAX_BLOCKSIZE]; + + /* Space to save partial input lengths for MAC. */ + unsigned char macbuf[MAX_BLOCKSIZE]; + + int mac_unused; /* Number of unprocessed bytes in MACBUF. */ + unsigned int tag:1; /* Set to 1 if tag has been finalized. */ +} gcry_cmac_context_t; + + /* The handle structure. */ struct gcry_cipher_handle { int magic; size_t actual_handle_size; /* Allocated size of this handle. */ size_t handle_offset; /* Offset to the malloced block. */ gcry_cipher_spec_t *spec; /* The algorithm id. This is a hack required because the module interface does not easily allow to retrieve this value. */ int algo; /* A structure with function pointers for bulk operations. Due to limitations of the module system (we don't want to change the API) we need to keep these function pointers here. The cipher open function initializes them and the actual encryption routines use them if they are not NULL. */ struct { void (*cfb_enc)(void *context, unsigned char *iv, void *outbuf_arg, const void *inbuf_arg, size_t nblocks); void (*cfb_dec)(void *context, unsigned char *iv, void *outbuf_arg, const void *inbuf_arg, size_t nblocks); void (*cbc_enc)(void *context, unsigned char *iv, void *outbuf_arg, const void *inbuf_arg, size_t nblocks, int cbc_mac); void (*cbc_dec)(void *context, unsigned char *iv, void *outbuf_arg, const void *inbuf_arg, size_t nblocks); void (*ctr_enc)(void *context, unsigned char *iv, void *outbuf_arg, const void *inbuf_arg, size_t nblocks); size_t (*ocb_crypt)(gcry_cipher_hd_t c, void *outbuf_arg, const void *inbuf_arg, size_t nblocks, int encrypt); size_t (*ocb_auth)(gcry_cipher_hd_t c, const void *abuf_arg, size_t nblocks); void (*xts_crypt)(void *context, unsigned char *tweak, void *outbuf_arg, const void *inbuf_arg, size_t nblocks, int encrypt); } bulk; int mode; unsigned int flags; struct { unsigned int key:1; /* Set to 1 if a key has been set. */ unsigned int iv:1; /* Set to 1 if a IV has been set. */ unsigned int tag:1; /* Set to 1 if a tag is finalized. */ unsigned int finalize:1; /* Next encrypt/decrypt has the final data. */ } marks; /* The initialization vector. For best performance we make sure that it is properly aligned. In particular some implementations of bulk operations expect an 16 byte aligned IV. IV is also used to store CBC-MAC in CCM mode; counter IV is stored in U_CTR. For OCB mode it is used for the offset value. */ union { cipher_context_alignment_t iv_align; unsigned char iv[MAX_BLOCKSIZE]; } u_iv; /* The counter for CTR mode. This field is also used by AESWRAP and thus we can't use the U_IV union. For OCB mode it is used for the checksum. */ union { cipher_context_alignment_t iv_align; unsigned char ctr[MAX_BLOCKSIZE]; } u_ctr; /* Space to save an IV or CTR for chaining operations. */ unsigned char lastiv[MAX_BLOCKSIZE]; int unused; /* Number of unused bytes in LASTIV. */ union { /* Mode specific storage for CCM mode. */ struct { u64 encryptlen; u64 aadlen; unsigned int authlen; /* Space to save partial input lengths for MAC. */ unsigned char macbuf[GCRY_CCM_BLOCK_LEN]; int mac_unused; /* Number of unprocessed bytes in MACBUF. */ unsigned char s0[GCRY_CCM_BLOCK_LEN]; - unsigned int nonce:1;/* Set to 1 if nonce has been set. */ + unsigned int nonce:1; /* Set to 1 if nonce has been set. */ unsigned int lengths:1; /* Set to 1 if CCM length parameters has been processed. */ } ccm; /* Mode specific storage for Poly1305 mode. */ struct { /* byte counter for AAD. */ u32 aadcount[2]; /* byte counter for data. */ u32 datacount[2]; unsigned int aad_finalized:1; unsigned int bytecount_over_limits:1; poly1305_context_t ctx; } poly1305; /* Mode specific storage for CMAC mode. */ + gcry_cmac_context_t cmac; + + /* Mode specific storage for EAX mode. */ struct { - unsigned int tag:1; /* Set to 1 if tag has been finalized. */ + /* CMAC for header (AAD). */ + gcry_cmac_context_t cmac_header; - /* Subkeys for tag creation, not cleared by gcry_cipher_reset. */ - unsigned char subkeys[2][MAX_BLOCKSIZE]; - } cmac; + /* CMAC for ciphertext. */ + gcry_cmac_context_t cmac_ciphertext; + } eax; /* Mode specific storage for GCM mode. */ struct { /* The interim tag for GCM mode. */ union { cipher_context_alignment_t iv_align; unsigned char tag[MAX_BLOCKSIZE]; } u_tag; /* Space to save partial input lengths for MAC. */ unsigned char macbuf[GCRY_CCM_BLOCK_LEN]; int mac_unused; /* Number of unprocessed bytes in MACBUF. */ - /* byte counters for GCM */ u32 aadlen[2]; u32 datalen[2]; /* encrypted tag counter */ unsigned char tagiv[MAX_BLOCKSIZE]; unsigned int ghash_data_finalized:1; unsigned int ghash_aad_finalized:1; unsigned int datalen_over_limits:1; unsigned int disallow_encryption_because_of_setiv_in_fips_mode:1; /* --- Following members are not cleared in gcry_cipher_reset --- */ /* GHASH multiplier from key. */ union { cipher_context_alignment_t iv_align; unsigned char key[MAX_BLOCKSIZE]; } u_ghash_key; /* GHASH implementation in use. */ ghash_fn_t ghash_fn; /* Pre-calculated table for GCM. */ #ifdef GCM_USE_TABLES #if (SIZEOF_UNSIGNED_LONG == 8 || defined(__x86_64__)) #define GCM_TABLES_USE_U64 1 u64 gcm_table[2 * 16]; #else #undef GCM_TABLES_USE_U64 u32 gcm_table[4 * 16]; #endif #endif } gcm; /* Mode specific storage for OCB mode. */ struct { /* Helper variables and pre-computed table of L values. */ unsigned char L_star[OCB_BLOCK_LEN]; unsigned char L_dollar[OCB_BLOCK_LEN]; unsigned char L[OCB_BLOCK_LEN][OCB_L_TABLE_SIZE]; /* The tag is valid if marks.tag has been set. */ unsigned char tag[OCB_BLOCK_LEN]; /* A buffer to hold the offset for the AAD processing. */ unsigned char aad_offset[OCB_BLOCK_LEN]; /* A buffer to hold the current sum of AAD processing. We can't use tag here because tag may already hold the preprocessed checksum of the data. */ unsigned char aad_sum[OCB_BLOCK_LEN]; /* A buffer to store AAD data not yet processed. */ unsigned char aad_leftover[OCB_BLOCK_LEN]; /* Number of data/aad blocks processed so far. */ u64 data_nblocks; u64 aad_nblocks; /* Number of valid bytes in AAD_LEFTOVER. */ unsigned char aad_nleftover; /* Length of the tag. Fixed for now but may eventually be specified using a set of gcry_cipher_flags. */ unsigned char taglen; /* Flags indicating that the final data/aad block has been processed. */ unsigned int data_finalized:1; unsigned int aad_finalized:1; - } ocb; /* Mode specific storage for XTS mode. */ struct { /* Pointer to tweak cipher context, allocated after actual * cipher context. */ char *tweak_context; } xts; } u_mode; /* What follows are two contexts of the cipher in use. The first one needs to be aligned well enough for the cipher operation whereas the second one is a copy created by cipher_setkey and used by cipher_reset. That second copy has no need for proper aligment because it is only accessed by memcpy. */ cipher_context_alignment_t context; }; /*-- cipher-cbc.c --*/ gcry_err_code_t _gcry_cipher_cbc_encrypt /* */ (gcry_cipher_hd_t c, unsigned char *outbuf, size_t outbuflen, const unsigned char *inbuf, size_t inbuflen); gcry_err_code_t _gcry_cipher_cbc_decrypt /* */ (gcry_cipher_hd_t c, unsigned char *outbuf, size_t outbuflen, const unsigned char *inbuf, size_t inbuflen); /*-- cipher-cfb.c --*/ gcry_err_code_t _gcry_cipher_cfb_encrypt /* */ (gcry_cipher_hd_t c, unsigned char *outbuf, size_t outbuflen, const unsigned char *inbuf, size_t inbuflen); gcry_err_code_t _gcry_cipher_cfb_decrypt /* */ (gcry_cipher_hd_t c, unsigned char *outbuf, size_t outbuflen, const unsigned char *inbuf, size_t inbuflen); gcry_err_code_t _gcry_cipher_cfb8_encrypt /* */ (gcry_cipher_hd_t c, unsigned char *outbuf, size_t outbuflen, const unsigned char *inbuf, size_t inbuflen); gcry_err_code_t _gcry_cipher_cfb8_decrypt /* */ (gcry_cipher_hd_t c, unsigned char *outbuf, size_t outbuflen, const unsigned char *inbuf, size_t inbuflen); /*-- cipher-ofb.c --*/ gcry_err_code_t _gcry_cipher_ofb_encrypt /* */ (gcry_cipher_hd_t c, unsigned char *outbuf, size_t outbuflen, const unsigned char *inbuf, size_t inbuflen); /*-- cipher-ctr.c --*/ gcry_err_code_t _gcry_cipher_ctr_encrypt /* */ (gcry_cipher_hd_t c, unsigned char *outbuf, size_t outbuflen, const unsigned char *inbuf, size_t inbuflen); /*-- cipher-aeswrap.c --*/ gcry_err_code_t _gcry_cipher_aeswrap_encrypt /* */ (gcry_cipher_hd_t c, byte *outbuf, size_t outbuflen, const byte *inbuf, size_t inbuflen); gcry_err_code_t _gcry_cipher_aeswrap_decrypt /* */ (gcry_cipher_hd_t c, byte *outbuf, size_t outbuflen, const byte *inbuf, size_t inbuflen); /*-- cipher-ccm.c --*/ gcry_err_code_t _gcry_cipher_ccm_encrypt /* */ (gcry_cipher_hd_t c, unsigned char *outbuf, size_t outbuflen, const unsigned char *inbuf, size_t inbuflen); gcry_err_code_t _gcry_cipher_ccm_decrypt /* */ (gcry_cipher_hd_t c, unsigned char *outbuf, size_t outbuflen, const unsigned char *inbuf, size_t inbuflen); gcry_err_code_t _gcry_cipher_ccm_set_nonce /* */ (gcry_cipher_hd_t c, const unsigned char *nonce, size_t noncelen); gcry_err_code_t _gcry_cipher_ccm_authenticate /* */ (gcry_cipher_hd_t c, const unsigned char *abuf, size_t abuflen); gcry_err_code_t _gcry_cipher_ccm_set_lengths /* */ (gcry_cipher_hd_t c, u64 encryptedlen, u64 aadlen, u64 taglen); gcry_err_code_t _gcry_cipher_ccm_get_tag /* */ (gcry_cipher_hd_t c, unsigned char *outtag, size_t taglen); gcry_err_code_t _gcry_cipher_ccm_check_tag /* */ (gcry_cipher_hd_t c, const unsigned char *intag, size_t taglen); +/*-- cipher-cmac.c --*/ +gcry_err_code_t _gcry_cmac_generate_subkeys +/* */ (gcry_cipher_hd_t c, gcry_cmac_context_t *ctx); +gcry_err_code_t _gcry_cmac_write +/* */ (gcry_cipher_hd_t c, gcry_cmac_context_t *ctx, + const byte * inbuf, size_t inlen); +gcry_err_code_t _gcry_cmac_final +/* */ (gcry_cipher_hd_t c, gcry_cmac_context_t *ctx); +void _gcry_cmac_reset (gcry_cmac_context_t *ctx); + + +/*-- cipher-eax.c --*/ +gcry_err_code_t _gcry_cipher_eax_encrypt +/* */ (gcry_cipher_hd_t c, + unsigned char *outbuf, size_t outbuflen, + const unsigned char *inbuf, size_t inbuflen); +gcry_err_code_t _gcry_cipher_eax_decrypt +/* */ (gcry_cipher_hd_t c, + unsigned char *outbuf, size_t outbuflen, + const unsigned char *inbuf, size_t inbuflen); +gcry_err_code_t _gcry_cipher_eax_set_nonce +/* */ (gcry_cipher_hd_t c, + const unsigned char *nonce, size_t noncelen); +gcry_err_code_t _gcry_cipher_eax_authenticate +/* */ (gcry_cipher_hd_t c, + const unsigned char *aadbuf, size_t aadbuflen); +gcry_err_code_t _gcry_cipher_eax_get_tag +/* */ (gcry_cipher_hd_t c, + unsigned char *outtag, size_t taglen); +gcry_err_code_t _gcry_cipher_eax_check_tag +/* */ (gcry_cipher_hd_t c, + const unsigned char *intag, size_t taglen); +gcry_err_code_t _gcry_cipher_eax_setkey +/* */ (gcry_cipher_hd_t c); + + /*-- cipher-gcm.c --*/ gcry_err_code_t _gcry_cipher_gcm_encrypt /* */ (gcry_cipher_hd_t c, unsigned char *outbuf, size_t outbuflen, const unsigned char *inbuf, size_t inbuflen); gcry_err_code_t _gcry_cipher_gcm_decrypt /* */ (gcry_cipher_hd_t c, unsigned char *outbuf, size_t outbuflen, const unsigned char *inbuf, size_t inbuflen); gcry_err_code_t _gcry_cipher_gcm_setiv /* */ (gcry_cipher_hd_t c, const unsigned char *iv, size_t ivlen); gcry_err_code_t _gcry_cipher_gcm_authenticate /* */ (gcry_cipher_hd_t c, const unsigned char *aadbuf, size_t aadbuflen); gcry_err_code_t _gcry_cipher_gcm_get_tag /* */ (gcry_cipher_hd_t c, unsigned char *outtag, size_t taglen); gcry_err_code_t _gcry_cipher_gcm_check_tag /* */ (gcry_cipher_hd_t c, const unsigned char *intag, size_t taglen); void _gcry_cipher_gcm_setkey /* */ (gcry_cipher_hd_t c); /*-- cipher-poly1305.c --*/ gcry_err_code_t _gcry_cipher_poly1305_encrypt /* */ (gcry_cipher_hd_t c, unsigned char *outbuf, size_t outbuflen, const unsigned char *inbuf, size_t inbuflen); gcry_err_code_t _gcry_cipher_poly1305_decrypt /* */ (gcry_cipher_hd_t c, unsigned char *outbuf, size_t outbuflen, const unsigned char *inbuf, size_t inbuflen); gcry_err_code_t _gcry_cipher_poly1305_setiv /* */ (gcry_cipher_hd_t c, const unsigned char *iv, size_t ivlen); gcry_err_code_t _gcry_cipher_poly1305_authenticate /* */ (gcry_cipher_hd_t c, const unsigned char *aadbuf, size_t aadbuflen); gcry_err_code_t _gcry_cipher_poly1305_get_tag /* */ (gcry_cipher_hd_t c, unsigned char *outtag, size_t taglen); gcry_err_code_t _gcry_cipher_poly1305_check_tag /* */ (gcry_cipher_hd_t c, const unsigned char *intag, size_t taglen); void _gcry_cipher_poly1305_setkey /* */ (gcry_cipher_hd_t c); /*-- cipher-ocb.c --*/ gcry_err_code_t _gcry_cipher_ocb_encrypt /* */ (gcry_cipher_hd_t c, unsigned char *outbuf, size_t outbuflen, const unsigned char *inbuf, size_t inbuflen); gcry_err_code_t _gcry_cipher_ocb_decrypt /* */ (gcry_cipher_hd_t c, unsigned char *outbuf, size_t outbuflen, const unsigned char *inbuf, size_t inbuflen); gcry_err_code_t _gcry_cipher_ocb_set_nonce /* */ (gcry_cipher_hd_t c, const unsigned char *nonce, size_t noncelen); gcry_err_code_t _gcry_cipher_ocb_authenticate /* */ (gcry_cipher_hd_t c, const unsigned char *abuf, size_t abuflen); gcry_err_code_t _gcry_cipher_ocb_get_tag /* */ (gcry_cipher_hd_t c, unsigned char *outtag, size_t taglen); gcry_err_code_t _gcry_cipher_ocb_check_tag /* */ (gcry_cipher_hd_t c, const unsigned char *intag, size_t taglen); /*-- cipher-xts.c --*/ gcry_err_code_t _gcry_cipher_xts_crypt /* */ (gcry_cipher_hd_t c, unsigned char *outbuf, size_t outbuflen, const unsigned char *inbuf, size_t inbuflen, int encrypt); /* Return the L-value for block N. Note: 'cipher_ocb.c' ensures that N * will never be multiple of 65536 (1 << OCB_L_TABLE_SIZE), thus N can * be directly passed to _gcry_ctz() function and resulting index will * never overflow the table. */ static inline const unsigned char * ocb_get_l (gcry_cipher_hd_t c, u64 n) { unsigned long ntz; #if ((defined(__i386__) || defined(__x86_64__)) && __GNUC__ >= 4) /* Assumes that N != 0. */ asm ("rep;bsfl %k[low], %k[ntz]\n\t" : [ntz] "=r" (ntz) : [low] "r" ((unsigned long)n) : "cc"); #else ntz = _gcry_ctz (n); #endif return c->u_mode.ocb.L[ntz]; } #endif /*G10_CIPHER_INTERNAL_H*/ diff --git a/cipher/cipher.c b/cipher/cipher.c index 18b25911..1bef766c 100644 --- a/cipher/cipher.c +++ b/cipher/cipher.c @@ -1,1681 +1,1718 @@ /* cipher.c - cipher dispatcher * Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003 * 2005, 2007, 2008, 2009, 2011 Free Software Foundation, Inc. * Copyright (C) 2013 g10 Code GmbH * * This file is part of Libgcrypt. * * Libgcrypt is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser general Public License as * published by the Free Software Foundation; either version 2.1 of * the License, or (at your option) any later version. * * Libgcrypt is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program; if not, see . */ #include #include #include #include #include #include "g10lib.h" #include "../src/gcrypt-testapi.h" #include "cipher.h" #include "./cipher-internal.h" /* This is the list of the default ciphers, which are included in libgcrypt. */ static gcry_cipher_spec_t * const cipher_list[] = { #if USE_BLOWFISH &_gcry_cipher_spec_blowfish, #endif #if USE_DES &_gcry_cipher_spec_des, &_gcry_cipher_spec_tripledes, #endif #if USE_ARCFOUR &_gcry_cipher_spec_arcfour, #endif #if USE_CAST5 &_gcry_cipher_spec_cast5, #endif #if USE_AES &_gcry_cipher_spec_aes, &_gcry_cipher_spec_aes192, &_gcry_cipher_spec_aes256, #endif #if USE_TWOFISH &_gcry_cipher_spec_twofish, &_gcry_cipher_spec_twofish128, #endif #if USE_SERPENT &_gcry_cipher_spec_serpent128, &_gcry_cipher_spec_serpent192, &_gcry_cipher_spec_serpent256, #endif #if USE_RFC2268 &_gcry_cipher_spec_rfc2268_40, &_gcry_cipher_spec_rfc2268_128, #endif #if USE_SEED &_gcry_cipher_spec_seed, #endif #if USE_CAMELLIA &_gcry_cipher_spec_camellia128, &_gcry_cipher_spec_camellia192, &_gcry_cipher_spec_camellia256, #endif #ifdef USE_IDEA &_gcry_cipher_spec_idea, #endif #if USE_SALSA20 &_gcry_cipher_spec_salsa20, &_gcry_cipher_spec_salsa20r12, #endif #if USE_GOST28147 &_gcry_cipher_spec_gost28147, #endif #if USE_CHACHA20 &_gcry_cipher_spec_chacha20, #endif NULL }; static int map_algo (int algo) { return algo; } /* Return the spec structure for the cipher algorithm ALGO. For an unknown algorithm NULL is returned. */ static gcry_cipher_spec_t * spec_from_algo (int algo) { int idx; gcry_cipher_spec_t *spec; algo = map_algo (algo); for (idx = 0; (spec = cipher_list[idx]); idx++) if (algo == spec->algo) return spec; return NULL; } /* Lookup a cipher's spec by its name. */ static gcry_cipher_spec_t * spec_from_name (const char *name) { gcry_cipher_spec_t *spec; int idx; const char **aliases; for (idx=0; (spec = cipher_list[idx]); idx++) { if (!stricmp (name, spec->name)) return spec; if (spec->aliases) { for (aliases = spec->aliases; *aliases; aliases++) if (!stricmp (name, *aliases)) return spec; } } return NULL; } /* Lookup a cipher's spec by its OID. */ static gcry_cipher_spec_t * spec_from_oid (const char *oid) { gcry_cipher_spec_t *spec; gcry_cipher_oid_spec_t *oid_specs; int idx, j; for (idx=0; (spec = cipher_list[idx]); idx++) { oid_specs = spec->oids; if (oid_specs) { for (j = 0; oid_specs[j].oid; j++) if (!stricmp (oid, oid_specs[j].oid)) return spec; } } return NULL; } /* Locate the OID in the oid table and return the spec or NULL if not found. An optional "oid." or "OID." prefix in OID is ignored, the OID is expected to be in standard IETF dotted notation. A pointer to the OID specification of the module implementing this algorithm is return in OID_SPEC unless passed as NULL.*/ static gcry_cipher_spec_t * search_oid (const char *oid, gcry_cipher_oid_spec_t *oid_spec) { gcry_cipher_spec_t *spec; int i; if (!oid) return NULL; if (!strncmp (oid, "oid.", 4) || !strncmp (oid, "OID.", 4)) oid += 4; spec = spec_from_oid (oid); if (spec && spec->oids) { for (i = 0; spec->oids[i].oid; i++) if (!stricmp (oid, spec->oids[i].oid)) { if (oid_spec) *oid_spec = spec->oids[i]; return spec; } } return NULL; } /* Map STRING to the cipher algorithm identifier. Returns the algorithm ID of the cipher for the given name or 0 if the name is not known. It is valid to pass NULL for STRING which results in a return value of 0. */ int _gcry_cipher_map_name (const char *string) { gcry_cipher_spec_t *spec; if (!string) return 0; /* If the string starts with a digit (optionally prefixed with either "OID." or "oid."), we first look into our table of ASN.1 object identifiers to figure out the algorithm */ spec = search_oid (string, NULL); if (spec) return spec->algo; spec = spec_from_name (string); if (spec) return spec->algo; return 0; } /* Given a STRING with an OID in dotted decimal notation, this function returns the cipher mode (GCRY_CIPHER_MODE_*) associated with that OID or 0 if no mode is known. Passing NULL for string yields a return value of 0. */ int _gcry_cipher_mode_from_oid (const char *string) { gcry_cipher_spec_t *spec; gcry_cipher_oid_spec_t oid_spec; if (!string) return 0; spec = search_oid (string, &oid_spec); if (spec) return oid_spec.mode; return 0; } /* Map the cipher algorithm identifier ALGORITHM to a string representing this algorithm. This string is the default name as used by Libgcrypt. A "?" is returned for an unknown algorithm. NULL is never returned. */ const char * _gcry_cipher_algo_name (int algorithm) { gcry_cipher_spec_t *spec; spec = spec_from_algo (algorithm); return spec? spec->name : "?"; } /* Flag the cipher algorithm with the identifier ALGORITHM as disabled. There is no error return, the function does nothing for unknown algorithms. Disabled algorithms are virtually not available in Libgcrypt. This is not thread safe and should thus be called early. */ static void disable_cipher_algo (int algo) { gcry_cipher_spec_t *spec = spec_from_algo (algo); if (spec) spec->flags.disabled = 1; } /* Return 0 if the cipher algorithm with identifier ALGORITHM is available. Returns a basic error code value if it is not available. */ static gcry_err_code_t check_cipher_algo (int algorithm) { gcry_cipher_spec_t *spec; spec = spec_from_algo (algorithm); if (spec && !spec->flags.disabled) return 0; return GPG_ERR_CIPHER_ALGO; } /* Return the standard length in bits of the key for the cipher algorithm with the identifier ALGORITHM. */ static unsigned int cipher_get_keylen (int algorithm) { gcry_cipher_spec_t *spec; unsigned len = 0; spec = spec_from_algo (algorithm); if (spec) { len = spec->keylen; if (!len) log_bug ("cipher %d w/o key length\n", algorithm); } return len; } /* Return the block length of the cipher algorithm with the identifier ALGORITHM. This function return 0 for an invalid algorithm. */ static unsigned int cipher_get_blocksize (int algorithm) { gcry_cipher_spec_t *spec; unsigned len = 0; spec = spec_from_algo (algorithm); if (spec) { len = spec->blocksize; if (!len) log_bug ("cipher %d w/o blocksize\n", algorithm); } return len; } /* Open a cipher handle for use with cipher algorithm ALGORITHM, using the cipher mode MODE (one of the GCRY_CIPHER_MODE_*) and return a handle in HANDLE. Put NULL into HANDLE and return an error code if something goes wrong. FLAGS may be used to modify the operation. The defined flags are: GCRY_CIPHER_SECURE: allocate all internal buffers in secure memory. GCRY_CIPHER_ENABLE_SYNC: Enable the sync operation as used in OpenPGP. GCRY_CIPHER_CBC_CTS: Enable CTS mode. GCRY_CIPHER_CBC_MAC: Enable MAC mode. Values for these flags may be combined using OR. */ gcry_err_code_t _gcry_cipher_open (gcry_cipher_hd_t *handle, int algo, int mode, unsigned int flags) { gcry_err_code_t rc; gcry_cipher_hd_t h = NULL; if (mode >= GCRY_CIPHER_MODE_INTERNAL) rc = GPG_ERR_INV_CIPHER_MODE; else rc = _gcry_cipher_open_internal (&h, algo, mode, flags); *handle = rc ? NULL : h; return rc; } gcry_err_code_t _gcry_cipher_open_internal (gcry_cipher_hd_t *handle, int algo, int mode, unsigned int flags) { int secure = (flags & GCRY_CIPHER_SECURE); gcry_cipher_spec_t *spec; gcry_cipher_hd_t h = NULL; gcry_err_code_t err; /* If the application missed to call the random poll function, we do it here to ensure that it is used once in a while. */ _gcry_fast_random_poll (); spec = spec_from_algo (algo); if (!spec) err = GPG_ERR_CIPHER_ALGO; else if (spec->flags.disabled) err = GPG_ERR_CIPHER_ALGO; else err = 0; /* check flags */ if ((! err) && ((flags & ~(0 | GCRY_CIPHER_SECURE | GCRY_CIPHER_ENABLE_SYNC | GCRY_CIPHER_CBC_CTS | GCRY_CIPHER_CBC_MAC)) || (flags & GCRY_CIPHER_CBC_CTS & GCRY_CIPHER_CBC_MAC))) err = GPG_ERR_CIPHER_ALGO; /* check that a valid mode has been requested */ if (! err) switch (mode) { case GCRY_CIPHER_MODE_CCM: if (spec->blocksize != GCRY_CCM_BLOCK_LEN) err = GPG_ERR_INV_CIPHER_MODE; if (!spec->encrypt || !spec->decrypt) err = GPG_ERR_INV_CIPHER_MODE; break; case GCRY_CIPHER_MODE_XTS: if (spec->blocksize != GCRY_XTS_BLOCK_LEN) err = GPG_ERR_INV_CIPHER_MODE; if (!spec->encrypt || !spec->decrypt) err = GPG_ERR_INV_CIPHER_MODE; break; case GCRY_CIPHER_MODE_ECB: case GCRY_CIPHER_MODE_CBC: case GCRY_CIPHER_MODE_CFB: case GCRY_CIPHER_MODE_CFB8: case GCRY_CIPHER_MODE_OFB: case GCRY_CIPHER_MODE_CTR: case GCRY_CIPHER_MODE_AESWRAP: case GCRY_CIPHER_MODE_CMAC: + case GCRY_CIPHER_MODE_EAX: case GCRY_CIPHER_MODE_GCM: if (!spec->encrypt || !spec->decrypt) err = GPG_ERR_INV_CIPHER_MODE; break; case GCRY_CIPHER_MODE_POLY1305: if (!spec->stencrypt || !spec->stdecrypt || !spec->setiv) err = GPG_ERR_INV_CIPHER_MODE; else if (spec->algo != GCRY_CIPHER_CHACHA20) err = GPG_ERR_INV_CIPHER_MODE; break; case GCRY_CIPHER_MODE_OCB: /* Note that our implementation allows only for 128 bit block length algorithms. Lower block lengths would be possible but we do not implement them because they limit the security too much. */ if (!spec->encrypt || !spec->decrypt) err = GPG_ERR_INV_CIPHER_MODE; else if (spec->blocksize != (128/8)) err = GPG_ERR_INV_CIPHER_MODE; break; case GCRY_CIPHER_MODE_STREAM: if (!spec->stencrypt || !spec->stdecrypt) err = GPG_ERR_INV_CIPHER_MODE; break; case GCRY_CIPHER_MODE_NONE: /* This mode may be used for debugging. It copies the main text verbatim to the ciphertext. We do not allow this in fips mode or if no debug flag has been set. */ if (fips_mode () || !_gcry_get_debug_flag (0)) err = GPG_ERR_INV_CIPHER_MODE; break; default: err = GPG_ERR_INV_CIPHER_MODE; } /* Perform selftest here and mark this with a flag in cipher_table? No, we should not do this as it takes too long. Further it does not make sense to exclude algorithms with failing selftests at runtime: If a selftest fails there is something seriously wrong with the system and thus we better die immediately. */ if (! err) { size_t size = (sizeof (*h) + 2 * spec->contextsize - sizeof (cipher_context_alignment_t) #ifdef NEED_16BYTE_ALIGNED_CONTEXT + 15 /* Space for leading alignment gap. */ #endif /*NEED_16BYTE_ALIGNED_CONTEXT*/ ); /* Space needed per mode. */ switch (mode) { case GCRY_CIPHER_MODE_XTS: /* Additional cipher context for tweak. */ size += 2 * spec->contextsize + 15; break; default: break; } if (secure) h = xtrycalloc_secure (1, size); else h = xtrycalloc (1, size); if (! h) err = gpg_err_code_from_syserror (); else { size_t off = 0; char *tc; #ifdef NEED_16BYTE_ALIGNED_CONTEXT if ( ((uintptr_t)h & 0x0f) ) { /* The malloced block is not aligned on a 16 byte boundary. Correct for this. */ off = 16 - ((uintptr_t)h & 0x0f); h = (void*)((char*)h + off); } #endif /*NEED_16BYTE_ALIGNED_CONTEXT*/ h->magic = secure ? CTX_MAGIC_SECURE : CTX_MAGIC_NORMAL; h->actual_handle_size = size - off; h->handle_offset = off; h->spec = spec; h->algo = algo; h->mode = mode; h->flags = flags; /* Setup bulk encryption routines. */ switch (algo) { #ifdef USE_AES case GCRY_CIPHER_AES128: case GCRY_CIPHER_AES192: case GCRY_CIPHER_AES256: h->bulk.cfb_enc = _gcry_aes_cfb_enc; h->bulk.cfb_dec = _gcry_aes_cfb_dec; h->bulk.cbc_enc = _gcry_aes_cbc_enc; h->bulk.cbc_dec = _gcry_aes_cbc_dec; h->bulk.ctr_enc = _gcry_aes_ctr_enc; h->bulk.ocb_crypt = _gcry_aes_ocb_crypt; h->bulk.ocb_auth = _gcry_aes_ocb_auth; h->bulk.xts_crypt = _gcry_aes_xts_crypt; break; #endif /*USE_AES*/ #ifdef USE_BLOWFISH case GCRY_CIPHER_BLOWFISH: h->bulk.cfb_dec = _gcry_blowfish_cfb_dec; h->bulk.cbc_dec = _gcry_blowfish_cbc_dec; h->bulk.ctr_enc = _gcry_blowfish_ctr_enc; break; #endif /*USE_BLOWFISH*/ #ifdef USE_CAST5 case GCRY_CIPHER_CAST5: h->bulk.cfb_dec = _gcry_cast5_cfb_dec; h->bulk.cbc_dec = _gcry_cast5_cbc_dec; h->bulk.ctr_enc = _gcry_cast5_ctr_enc; break; #endif /*USE_CAMELLIA*/ #ifdef USE_CAMELLIA case GCRY_CIPHER_CAMELLIA128: case GCRY_CIPHER_CAMELLIA192: case GCRY_CIPHER_CAMELLIA256: h->bulk.cbc_dec = _gcry_camellia_cbc_dec; h->bulk.cfb_dec = _gcry_camellia_cfb_dec; h->bulk.ctr_enc = _gcry_camellia_ctr_enc; h->bulk.ocb_crypt = _gcry_camellia_ocb_crypt; h->bulk.ocb_auth = _gcry_camellia_ocb_auth; break; #endif /*USE_CAMELLIA*/ #ifdef USE_DES case GCRY_CIPHER_3DES: h->bulk.cbc_dec = _gcry_3des_cbc_dec; h->bulk.cfb_dec = _gcry_3des_cfb_dec; h->bulk.ctr_enc = _gcry_3des_ctr_enc; break; #endif /*USE_DES*/ #ifdef USE_SERPENT case GCRY_CIPHER_SERPENT128: case GCRY_CIPHER_SERPENT192: case GCRY_CIPHER_SERPENT256: h->bulk.cbc_dec = _gcry_serpent_cbc_dec; h->bulk.cfb_dec = _gcry_serpent_cfb_dec; h->bulk.ctr_enc = _gcry_serpent_ctr_enc; h->bulk.ocb_crypt = _gcry_serpent_ocb_crypt; h->bulk.ocb_auth = _gcry_serpent_ocb_auth; break; #endif /*USE_SERPENT*/ #ifdef USE_TWOFISH case GCRY_CIPHER_TWOFISH: case GCRY_CIPHER_TWOFISH128: h->bulk.cbc_dec = _gcry_twofish_cbc_dec; h->bulk.cfb_dec = _gcry_twofish_cfb_dec; h->bulk.ctr_enc = _gcry_twofish_ctr_enc; h->bulk.ocb_crypt = _gcry_twofish_ocb_crypt; h->bulk.ocb_auth = _gcry_twofish_ocb_auth; break; #endif /*USE_TWOFISH*/ default: break; } /* Setup defaults depending on the mode. */ switch (mode) { case GCRY_CIPHER_MODE_OCB: h->u_mode.ocb.taglen = 16; /* Bytes. */ break; case GCRY_CIPHER_MODE_XTS: tc = h->context.c + spec->contextsize * 2; tc += (16 - (uintptr_t)tc % 16) % 16; h->u_mode.xts.tweak_context = tc; break; default: break; } } } /* Done. */ *handle = err ? NULL : h; return err; } /* Release all resources associated with the cipher handle H. H may be NULL in which case this is a no-operation. */ void _gcry_cipher_close (gcry_cipher_hd_t h) { size_t off; if (!h) return; if ((h->magic != CTX_MAGIC_SECURE) && (h->magic != CTX_MAGIC_NORMAL)) _gcry_fatal_error(GPG_ERR_INTERNAL, "gcry_cipher_close: already closed/invalid handle"); else h->magic = 0; /* We always want to wipe out the memory even when the context has been allocated in secure memory. The user might have disabled secure memory or is using his own implementation which does not do the wiping. To accomplish this we need to keep track of the actual size of this structure because we have no way to known how large the allocated area was when using a standard malloc. */ off = h->handle_offset; wipememory (h, h->actual_handle_size); xfree ((char*)h - off); } /* Set the key to be used for the encryption context C to KEY with length KEYLEN. The length should match the required length. */ static gcry_err_code_t cipher_setkey (gcry_cipher_hd_t c, byte *key, size_t keylen) { gcry_err_code_t rc; if (c->mode == GCRY_CIPHER_MODE_XTS) { /* XTS uses two keys. */ if (keylen % 2) return GPG_ERR_INV_KEYLEN; keylen /= 2; if (fips_mode ()) { /* Reject key if subkeys Key_1 and Key_2 are equal. See "Implementation Guidance for FIPS 140-2, A.9 XTS-AES Key Generation Requirements" for details. */ if (buf_eq_const (key, key + keylen, keylen)) return GPG_ERR_WEAK_KEY; } } rc = c->spec->setkey (&c->context.c, key, keylen); if (!rc) { /* Duplicate initial context. */ memcpy ((void *) ((char *) &c->context.c + c->spec->contextsize), (void *) &c->context.c, c->spec->contextsize); c->marks.key = 1; switch (c->mode) { case GCRY_CIPHER_MODE_CMAC: - _gcry_cipher_cmac_set_subkeys (c); + rc = _gcry_cipher_cmac_set_subkeys (c); + break; + + case GCRY_CIPHER_MODE_EAX: + rc = _gcry_cipher_eax_setkey (c); break; case GCRY_CIPHER_MODE_GCM: _gcry_cipher_gcm_setkey (c); break; case GCRY_CIPHER_MODE_POLY1305: _gcry_cipher_poly1305_setkey (c); break; case GCRY_CIPHER_MODE_XTS: /* Setup tweak cipher with second part of XTS key. */ rc = c->spec->setkey (c->u_mode.xts.tweak_context, key + keylen, keylen); if (!rc) { /* Duplicate initial tweak context. */ memcpy (c->u_mode.xts.tweak_context + c->spec->contextsize, c->u_mode.xts.tweak_context, c->spec->contextsize); } else c->marks.key = 0; break; default: break; }; } else c->marks.key = 0; return rc; } /* Set the IV to be used for the encryption context C to IV with length IVLEN. The length should match the required length. */ static gcry_err_code_t cipher_setiv (gcry_cipher_hd_t c, const byte *iv, size_t ivlen) { /* If the cipher has its own IV handler, we use only this one. This is currently used for stream ciphers requiring a nonce. */ if (c->spec->setiv) { c->spec->setiv (&c->context.c, iv, ivlen); return 0; } memset (c->u_iv.iv, 0, c->spec->blocksize); if (iv) { if (ivlen != c->spec->blocksize) { log_info ("WARNING: cipher_setiv: ivlen=%u blklen=%u\n", (unsigned int)ivlen, (unsigned int)c->spec->blocksize); fips_signal_error ("IV length does not match blocklength"); } if (ivlen > c->spec->blocksize) ivlen = c->spec->blocksize; memcpy (c->u_iv.iv, iv, ivlen); c->marks.iv = 1; } else c->marks.iv = 0; c->unused = 0; return 0; } /* Reset the cipher context to the initial context. This is basically the same as an release followed by a new. */ static void cipher_reset (gcry_cipher_hd_t c) { unsigned int marks_key; marks_key = c->marks.key; memcpy (&c->context.c, (char *) &c->context.c + c->spec->contextsize, c->spec->contextsize); memset (&c->marks, 0, sizeof c->marks); memset (c->u_iv.iv, 0, c->spec->blocksize); memset (c->lastiv, 0, c->spec->blocksize); memset (c->u_ctr.ctr, 0, c->spec->blocksize); c->unused = 0; c->marks.key = marks_key; switch (c->mode) { case GCRY_CIPHER_MODE_CMAC: - /* Only clear 'tag' for cmac, keep subkeys. */ - c->u_mode.cmac.tag = 0; + _gcry_cmac_reset(&c->u_mode.cmac); + break; + + case GCRY_CIPHER_MODE_EAX: + _gcry_cmac_reset(&c->u_mode.eax.cmac_header); + _gcry_cmac_reset(&c->u_mode.eax.cmac_ciphertext); break; case GCRY_CIPHER_MODE_GCM: /* Only clear head of u_mode, keep ghash_key and gcm_table. */ { byte *u_mode_pos = (void *)&c->u_mode; byte *ghash_key_pos = c->u_mode.gcm.u_ghash_key.key; size_t u_mode_head_length = ghash_key_pos - u_mode_pos; memset (&c->u_mode, 0, u_mode_head_length); } break; case GCRY_CIPHER_MODE_POLY1305: memset (&c->u_mode.poly1305, 0, sizeof c->u_mode.poly1305); break; case GCRY_CIPHER_MODE_CCM: memset (&c->u_mode.ccm, 0, sizeof c->u_mode.ccm); break; case GCRY_CIPHER_MODE_OCB: memset (&c->u_mode.ocb, 0, sizeof c->u_mode.ocb); /* Setup default taglen. */ c->u_mode.ocb.taglen = 16; break; case GCRY_CIPHER_MODE_XTS: memcpy (c->u_mode.xts.tweak_context, c->u_mode.xts.tweak_context + c->spec->contextsize, c->spec->contextsize); break; default: break; /* u_mode unused by other modes. */ } } static gcry_err_code_t do_ecb_crypt (gcry_cipher_hd_t c, unsigned char *outbuf, size_t outbuflen, const unsigned char *inbuf, size_t inbuflen, gcry_cipher_encrypt_t crypt_fn) { unsigned int blocksize = c->spec->blocksize; size_t n, nblocks; unsigned int burn, nburn; if (outbuflen < inbuflen) return GPG_ERR_BUFFER_TOO_SHORT; if ((inbuflen % blocksize)) return GPG_ERR_INV_LENGTH; nblocks = inbuflen / blocksize; burn = 0; for (n=0; n < nblocks; n++ ) { nburn = crypt_fn (&c->context.c, outbuf, inbuf); burn = nburn > burn ? nburn : burn; inbuf += blocksize; outbuf += blocksize; } if (burn > 0) _gcry_burn_stack (burn + 4 * sizeof(void *)); return 0; } static gcry_err_code_t do_ecb_encrypt (gcry_cipher_hd_t c, unsigned char *outbuf, size_t outbuflen, const unsigned char *inbuf, size_t inbuflen) { return do_ecb_crypt (c, outbuf, outbuflen, inbuf, inbuflen, c->spec->encrypt); } static gcry_err_code_t do_ecb_decrypt (gcry_cipher_hd_t c, unsigned char *outbuf, size_t outbuflen, const unsigned char *inbuf, size_t inbuflen) { return do_ecb_crypt (c, outbuf, outbuflen, inbuf, inbuflen, c->spec->decrypt); } /**************** * Encrypt INBUF to OUTBUF with the mode selected at open. * inbuf and outbuf may overlap or be the same. * Depending on the mode some constraints apply to INBUFLEN. */ static gcry_err_code_t cipher_encrypt (gcry_cipher_hd_t c, byte *outbuf, size_t outbuflen, const byte *inbuf, size_t inbuflen) { gcry_err_code_t rc; if (c->mode != GCRY_CIPHER_MODE_NONE && !c->marks.key) { log_error ("cipher_encrypt: key not set\n"); return GPG_ERR_MISSING_KEY; } switch (c->mode) { case GCRY_CIPHER_MODE_ECB: rc = do_ecb_encrypt (c, outbuf, outbuflen, inbuf, inbuflen); break; case GCRY_CIPHER_MODE_CBC: rc = _gcry_cipher_cbc_encrypt (c, outbuf, outbuflen, inbuf, inbuflen); break; case GCRY_CIPHER_MODE_CFB: rc = _gcry_cipher_cfb_encrypt (c, outbuf, outbuflen, inbuf, inbuflen); break; case GCRY_CIPHER_MODE_CFB8: rc = _gcry_cipher_cfb8_encrypt (c, outbuf, outbuflen, inbuf, inbuflen); break; case GCRY_CIPHER_MODE_OFB: rc = _gcry_cipher_ofb_encrypt (c, outbuf, outbuflen, inbuf, inbuflen); break; case GCRY_CIPHER_MODE_CTR: rc = _gcry_cipher_ctr_encrypt (c, outbuf, outbuflen, inbuf, inbuflen); break; case GCRY_CIPHER_MODE_AESWRAP: rc = _gcry_cipher_aeswrap_encrypt (c, outbuf, outbuflen, inbuf, inbuflen); break; case GCRY_CIPHER_MODE_CCM: rc = _gcry_cipher_ccm_encrypt (c, outbuf, outbuflen, inbuf, inbuflen); break; case GCRY_CIPHER_MODE_CMAC: rc = GPG_ERR_INV_CIPHER_MODE; break; + case GCRY_CIPHER_MODE_EAX: + rc = _gcry_cipher_eax_encrypt (c, outbuf, outbuflen, inbuf, inbuflen); + break; + case GCRY_CIPHER_MODE_GCM: rc = _gcry_cipher_gcm_encrypt (c, outbuf, outbuflen, inbuf, inbuflen); break; case GCRY_CIPHER_MODE_POLY1305: rc = _gcry_cipher_poly1305_encrypt (c, outbuf, outbuflen, inbuf, inbuflen); break; case GCRY_CIPHER_MODE_OCB: rc = _gcry_cipher_ocb_encrypt (c, outbuf, outbuflen, inbuf, inbuflen); break; case GCRY_CIPHER_MODE_XTS: rc = _gcry_cipher_xts_crypt (c, outbuf, outbuflen, inbuf, inbuflen, 1); break; case GCRY_CIPHER_MODE_STREAM: c->spec->stencrypt (&c->context.c, outbuf, (byte*)/*arggg*/inbuf, inbuflen); rc = 0; break; case GCRY_CIPHER_MODE_NONE: if (fips_mode () || !_gcry_get_debug_flag (0)) { fips_signal_error ("cipher mode NONE used"); rc = GPG_ERR_INV_CIPHER_MODE; } else { if (inbuf != outbuf) memmove (outbuf, inbuf, inbuflen); rc = 0; } break; default: log_fatal ("cipher_encrypt: invalid mode %d\n", c->mode ); rc = GPG_ERR_INV_CIPHER_MODE; break; } return rc; } /**************** * Encrypt IN and write it to OUT. If IN is NULL, in-place encryption has * been requested. */ gcry_err_code_t _gcry_cipher_encrypt (gcry_cipher_hd_t h, void *out, size_t outsize, const void *in, size_t inlen) { gcry_err_code_t rc; if (!in) /* Caller requested in-place encryption. */ { in = out; inlen = outsize; } rc = cipher_encrypt (h, out, outsize, in, inlen); /* Failsafe: Make sure that the plaintext will never make it into OUT if the encryption returned an error. */ if (rc && out) memset (out, 0x42, outsize); return rc; } /**************** * Decrypt INBUF to OUTBUF with the mode selected at open. * inbuf and outbuf may overlap or be the same. * Depending on the mode some some constraints apply to INBUFLEN. */ static gcry_err_code_t cipher_decrypt (gcry_cipher_hd_t c, byte *outbuf, size_t outbuflen, const byte *inbuf, size_t inbuflen) { gcry_err_code_t rc; if (c->mode != GCRY_CIPHER_MODE_NONE && !c->marks.key) { log_error ("cipher_decrypt: key not set\n"); return GPG_ERR_MISSING_KEY; } switch (c->mode) { case GCRY_CIPHER_MODE_ECB: rc = do_ecb_decrypt (c, outbuf, outbuflen, inbuf, inbuflen); break; case GCRY_CIPHER_MODE_CBC: rc = _gcry_cipher_cbc_decrypt (c, outbuf, outbuflen, inbuf, inbuflen); break; case GCRY_CIPHER_MODE_CFB: rc = _gcry_cipher_cfb_decrypt (c, outbuf, outbuflen, inbuf, inbuflen); break; case GCRY_CIPHER_MODE_CFB8: rc = _gcry_cipher_cfb8_decrypt (c, outbuf, outbuflen, inbuf, inbuflen); break; case GCRY_CIPHER_MODE_OFB: rc = _gcry_cipher_ofb_encrypt (c, outbuf, outbuflen, inbuf, inbuflen); break; case GCRY_CIPHER_MODE_CTR: rc = _gcry_cipher_ctr_encrypt (c, outbuf, outbuflen, inbuf, inbuflen); break; case GCRY_CIPHER_MODE_AESWRAP: rc = _gcry_cipher_aeswrap_decrypt (c, outbuf, outbuflen, inbuf, inbuflen); break; case GCRY_CIPHER_MODE_CCM: rc = _gcry_cipher_ccm_decrypt (c, outbuf, outbuflen, inbuf, inbuflen); break; case GCRY_CIPHER_MODE_CMAC: rc = GPG_ERR_INV_CIPHER_MODE; break; + case GCRY_CIPHER_MODE_EAX: + rc = _gcry_cipher_eax_decrypt (c, outbuf, outbuflen, inbuf, inbuflen); + break; + case GCRY_CIPHER_MODE_GCM: rc = _gcry_cipher_gcm_decrypt (c, outbuf, outbuflen, inbuf, inbuflen); break; case GCRY_CIPHER_MODE_POLY1305: rc = _gcry_cipher_poly1305_decrypt (c, outbuf, outbuflen, inbuf, inbuflen); break; case GCRY_CIPHER_MODE_OCB: rc = _gcry_cipher_ocb_decrypt (c, outbuf, outbuflen, inbuf, inbuflen); break; case GCRY_CIPHER_MODE_XTS: rc = _gcry_cipher_xts_crypt (c, outbuf, outbuflen, inbuf, inbuflen, 0); break; case GCRY_CIPHER_MODE_STREAM: c->spec->stdecrypt (&c->context.c, outbuf, (byte*)/*arggg*/inbuf, inbuflen); rc = 0; break; case GCRY_CIPHER_MODE_NONE: if (fips_mode () || !_gcry_get_debug_flag (0)) { fips_signal_error ("cipher mode NONE used"); rc = GPG_ERR_INV_CIPHER_MODE; } else { if (inbuf != outbuf) memmove (outbuf, inbuf, inbuflen); rc = 0; } break; default: log_fatal ("cipher_decrypt: invalid mode %d\n", c->mode ); rc = GPG_ERR_INV_CIPHER_MODE; break; } return rc; } gcry_err_code_t _gcry_cipher_decrypt (gcry_cipher_hd_t h, void *out, size_t outsize, const void *in, size_t inlen) { if (!in) /* Caller requested in-place encryption. */ { in = out; inlen = outsize; } return cipher_decrypt (h, out, outsize, in, inlen); } /**************** * Used for PGP's somewhat strange CFB mode. Only works if * the corresponding flag is set. */ static void cipher_sync (gcry_cipher_hd_t c) { if ((c->flags & GCRY_CIPHER_ENABLE_SYNC) && c->unused) { memmove (c->u_iv.iv + c->unused, c->u_iv.iv, c->spec->blocksize - c->unused); memcpy (c->u_iv.iv, c->lastiv + c->spec->blocksize - c->unused, c->unused); c->unused = 0; } } gcry_err_code_t _gcry_cipher_setkey (gcry_cipher_hd_t hd, const void *key, size_t keylen) { return cipher_setkey (hd, (void*)key, keylen); } gcry_err_code_t _gcry_cipher_setiv (gcry_cipher_hd_t hd, const void *iv, size_t ivlen) { gcry_err_code_t rc = 0; switch (hd->mode) { case GCRY_CIPHER_MODE_CCM: rc = _gcry_cipher_ccm_set_nonce (hd, iv, ivlen); break; + case GCRY_CIPHER_MODE_EAX: + rc = _gcry_cipher_eax_set_nonce (hd, iv, ivlen); + break; + case GCRY_CIPHER_MODE_GCM: rc = _gcry_cipher_gcm_setiv (hd, iv, ivlen); break; case GCRY_CIPHER_MODE_POLY1305: rc = _gcry_cipher_poly1305_setiv (hd, iv, ivlen); break; case GCRY_CIPHER_MODE_OCB: rc = _gcry_cipher_ocb_set_nonce (hd, iv, ivlen); break; default: rc = cipher_setiv (hd, iv, ivlen); break; } return rc; } /* Set counter for CTR mode. (CTR,CTRLEN) must denote a buffer of block size length, or (NULL,0) to set the CTR to the all-zero block. */ gpg_err_code_t _gcry_cipher_setctr (gcry_cipher_hd_t hd, const void *ctr, size_t ctrlen) { if (ctr && ctrlen == hd->spec->blocksize) { memcpy (hd->u_ctr.ctr, ctr, hd->spec->blocksize); hd->unused = 0; } else if (!ctr || !ctrlen) { memset (hd->u_ctr.ctr, 0, hd->spec->blocksize); hd->unused = 0; } else return GPG_ERR_INV_ARG; return 0; } gpg_err_code_t _gcry_cipher_getctr (gcry_cipher_hd_t hd, void *ctr, size_t ctrlen) { if (ctr && ctrlen == hd->spec->blocksize) memcpy (ctr, hd->u_ctr.ctr, hd->spec->blocksize); else return GPG_ERR_INV_ARG; return 0; } gcry_err_code_t _gcry_cipher_authenticate (gcry_cipher_hd_t hd, const void *abuf, size_t abuflen) { gcry_err_code_t rc; switch (hd->mode) { case GCRY_CIPHER_MODE_CCM: rc = _gcry_cipher_ccm_authenticate (hd, abuf, abuflen); break; case GCRY_CIPHER_MODE_CMAC: rc = _gcry_cipher_cmac_authenticate (hd, abuf, abuflen); break; + case GCRY_CIPHER_MODE_EAX: + rc = _gcry_cipher_eax_authenticate (hd, abuf, abuflen); + break; + case GCRY_CIPHER_MODE_GCM: rc = _gcry_cipher_gcm_authenticate (hd, abuf, abuflen); break; case GCRY_CIPHER_MODE_POLY1305: rc = _gcry_cipher_poly1305_authenticate (hd, abuf, abuflen); break; case GCRY_CIPHER_MODE_OCB: rc = _gcry_cipher_ocb_authenticate (hd, abuf, abuflen); break; default: log_error ("gcry_cipher_authenticate: invalid mode %d\n", hd->mode); rc = GPG_ERR_INV_CIPHER_MODE; break; } return rc; } gcry_err_code_t _gcry_cipher_gettag (gcry_cipher_hd_t hd, void *outtag, size_t taglen) { gcry_err_code_t rc; switch (hd->mode) { case GCRY_CIPHER_MODE_CCM: rc = _gcry_cipher_ccm_get_tag (hd, outtag, taglen); break; case GCRY_CIPHER_MODE_CMAC: rc = _gcry_cipher_cmac_get_tag (hd, outtag, taglen); break; + case GCRY_CIPHER_MODE_EAX: + rc = _gcry_cipher_eax_get_tag (hd, outtag, taglen); + break; + case GCRY_CIPHER_MODE_GCM: rc = _gcry_cipher_gcm_get_tag (hd, outtag, taglen); break; case GCRY_CIPHER_MODE_POLY1305: rc = _gcry_cipher_poly1305_get_tag (hd, outtag, taglen); break; case GCRY_CIPHER_MODE_OCB: rc = _gcry_cipher_ocb_get_tag (hd, outtag, taglen); break; default: log_error ("gcry_cipher_gettag: invalid mode %d\n", hd->mode); rc = GPG_ERR_INV_CIPHER_MODE; break; } return rc; } gcry_err_code_t _gcry_cipher_checktag (gcry_cipher_hd_t hd, const void *intag, size_t taglen) { gcry_err_code_t rc; switch (hd->mode) { case GCRY_CIPHER_MODE_CCM: rc = _gcry_cipher_ccm_check_tag (hd, intag, taglen); break; case GCRY_CIPHER_MODE_CMAC: rc = _gcry_cipher_cmac_check_tag (hd, intag, taglen); break; + case GCRY_CIPHER_MODE_EAX: + rc = _gcry_cipher_eax_check_tag (hd, intag, taglen); + break; + case GCRY_CIPHER_MODE_GCM: rc = _gcry_cipher_gcm_check_tag (hd, intag, taglen); break; case GCRY_CIPHER_MODE_POLY1305: rc = _gcry_cipher_poly1305_check_tag (hd, intag, taglen); break; case GCRY_CIPHER_MODE_OCB: rc = _gcry_cipher_ocb_check_tag (hd, intag, taglen); break; default: log_error ("gcry_cipher_checktag: invalid mode %d\n", hd->mode); rc = GPG_ERR_INV_CIPHER_MODE; break; } return rc; } gcry_err_code_t _gcry_cipher_ctl (gcry_cipher_hd_t h, int cmd, void *buffer, size_t buflen) { gcry_err_code_t rc = 0; switch (cmd) { case GCRYCTL_RESET: cipher_reset (h); break; case GCRYCTL_FINALIZE: if (!h || buffer || buflen) return GPG_ERR_INV_ARG; h->marks.finalize = 1; break; case GCRYCTL_CFB_SYNC: cipher_sync( h ); break; case GCRYCTL_SET_CBC_CTS: if (buflen) if (h->flags & GCRY_CIPHER_CBC_MAC) rc = GPG_ERR_INV_FLAG; else h->flags |= GCRY_CIPHER_CBC_CTS; else h->flags &= ~GCRY_CIPHER_CBC_CTS; break; case GCRYCTL_SET_CBC_MAC: if (buflen) if (h->flags & GCRY_CIPHER_CBC_CTS) rc = GPG_ERR_INV_FLAG; else h->flags |= GCRY_CIPHER_CBC_MAC; else h->flags &= ~GCRY_CIPHER_CBC_MAC; break; case GCRYCTL_SET_CCM_LENGTHS: { u64 params[3]; size_t encryptedlen; size_t aadlen; size_t authtaglen; if (h->mode != GCRY_CIPHER_MODE_CCM) return GPG_ERR_INV_CIPHER_MODE; if (!buffer || buflen != 3 * sizeof(u64)) return GPG_ERR_INV_ARG; /* This command is used to pass additional length parameters needed by CCM mode to initialize CBC-MAC. */ memcpy (params, buffer, sizeof(params)); encryptedlen = params[0]; aadlen = params[1]; authtaglen = params[2]; rc = _gcry_cipher_ccm_set_lengths (h, encryptedlen, aadlen, authtaglen); } break; case GCRYCTL_SET_TAGLEN: if (!h || !buffer || buflen != sizeof(int) ) return GPG_ERR_INV_ARG; switch (h->mode) { case GCRY_CIPHER_MODE_OCB: switch (*(int*)buffer) { case 8: case 12: case 16: h->u_mode.ocb.taglen = *(int*)buffer; break; default: rc = GPG_ERR_INV_LENGTH; /* Invalid tag length. */ break; } break; default: rc =GPG_ERR_INV_CIPHER_MODE; break; } break; case GCRYCTL_DISABLE_ALGO: /* This command expects NULL for H and BUFFER to point to an integer with the algo number. */ if( h || !buffer || buflen != sizeof(int) ) return GPG_ERR_CIPHER_ALGO; disable_cipher_algo( *(int*)buffer ); break; case PRIV_CIPHERCTL_DISABLE_WEAK_KEY: /* (private) */ if (h->spec->set_extra_info) rc = h->spec->set_extra_info (&h->context.c, CIPHER_INFO_NO_WEAK_KEY, NULL, 0); else rc = GPG_ERR_NOT_SUPPORTED; break; case PRIV_CIPHERCTL_GET_INPUT_VECTOR: /* (private) */ /* This is the input block as used in CFB and OFB mode which has initially been set as IV. The returned format is: 1 byte Actual length of the block in bytes. n byte The block. If the provided buffer is too short, an error is returned. */ if (buflen < (1 + h->spec->blocksize)) rc = GPG_ERR_TOO_SHORT; else { unsigned char *ivp; unsigned char *dst = buffer; int n = h->unused; if (!n) n = h->spec->blocksize; gcry_assert (n <= h->spec->blocksize); *dst++ = n; ivp = h->u_iv.iv + h->spec->blocksize - n; while (n--) *dst++ = *ivp++; } break; case GCRYCTL_SET_SBOX: if (h->spec->set_extra_info) rc = h->spec->set_extra_info (&h->context.c, GCRYCTL_SET_SBOX, buffer, buflen); else rc = GPG_ERR_NOT_SUPPORTED; break; default: rc = GPG_ERR_INV_OP; } return rc; } /* Return information about the cipher handle H. CMD is the kind of * information requested. * * CMD may be one of: * * GCRYCTL_GET_TAGLEN: * Return the length of the tag for an AE algorithm mode. An * error is returned for modes which do not support a tag. * BUFFER must be given as NULL. On success the result is stored * at NBYTES. The taglen is returned in bytes. * * The function returns 0 on success or an error code. */ gcry_err_code_t _gcry_cipher_info (gcry_cipher_hd_t h, int cmd, void *buffer, size_t *nbytes) { gcry_err_code_t rc = 0; switch (cmd) { case GCRYCTL_GET_TAGLEN: if (!h || buffer || !nbytes) rc = GPG_ERR_INV_ARG; else { switch (h->mode) { case GCRY_CIPHER_MODE_OCB: *nbytes = h->u_mode.ocb.taglen; break; case GCRY_CIPHER_MODE_CCM: *nbytes = h->u_mode.ccm.authlen; break; + case GCRY_CIPHER_MODE_EAX: + *nbytes = h->spec->blocksize; + break; + case GCRY_CIPHER_MODE_GCM: *nbytes = GCRY_GCM_BLOCK_LEN; break; case GCRY_CIPHER_MODE_POLY1305: *nbytes = POLY1305_TAGLEN; break; default: rc = GPG_ERR_INV_CIPHER_MODE; break; } } break; default: rc = GPG_ERR_INV_OP; } return rc; } /* Return information about the given cipher algorithm ALGO. WHAT select the kind of information returned: GCRYCTL_GET_KEYLEN: Return the length of the key. If the algorithm ALGO supports multiple key lengths, the maximum supported key length is returned. The key length is returned as number of octets. BUFFER and NBYTES must be zero. GCRYCTL_GET_BLKLEN: Return the blocklength of the algorithm ALGO counted in octets. BUFFER and NBYTES must be zero. GCRYCTL_TEST_ALGO: Returns 0 if the specified algorithm ALGO is available for use. BUFFER and NBYTES must be zero. Note: Because this function is in most cases used to return an integer value, we can make it easier for the caller to just look at the return value. The caller will in all cases consult the value and thereby detecting whether a error occurred or not (i.e. while checking the block size) */ gcry_err_code_t _gcry_cipher_algo_info (int algo, int what, void *buffer, size_t *nbytes) { gcry_err_code_t rc = 0; unsigned int ui; switch (what) { case GCRYCTL_GET_KEYLEN: if (buffer || (! nbytes)) rc = GPG_ERR_CIPHER_ALGO; else { ui = cipher_get_keylen (algo); if ((ui > 0) && (ui <= 512)) *nbytes = (size_t) ui / 8; else /* The only reason for an error is an invalid algo. */ rc = GPG_ERR_CIPHER_ALGO; } break; case GCRYCTL_GET_BLKLEN: if (buffer || (! nbytes)) rc = GPG_ERR_CIPHER_ALGO; else { ui = cipher_get_blocksize (algo); if ((ui > 0) && (ui < 10000)) *nbytes = ui; else { /* The only reason is an invalid algo or a strange blocksize. */ rc = GPG_ERR_CIPHER_ALGO; } } break; case GCRYCTL_TEST_ALGO: if (buffer || nbytes) rc = GPG_ERR_INV_ARG; else rc = check_cipher_algo (algo); break; default: rc = GPG_ERR_INV_OP; } return rc; } /* This function returns length of the key for algorithm ALGO. If the algorithm supports multiple key lengths, the maximum supported key length is returned. On error 0 is returned. The key length is returned as number of octets. This is a convenience functions which should be preferred over gcry_cipher_algo_info because it allows for proper type checking. */ size_t _gcry_cipher_get_algo_keylen (int algo) { size_t n; if (_gcry_cipher_algo_info (algo, GCRYCTL_GET_KEYLEN, NULL, &n)) n = 0; return n; } /* This functions returns the blocklength of the algorithm ALGO counted in octets. On error 0 is returned. This is a convenience functions which should be preferred over gcry_cipher_algo_info because it allows for proper type checking. */ size_t _gcry_cipher_get_algo_blklen (int algo) { size_t n; if (_gcry_cipher_algo_info( algo, GCRYCTL_GET_BLKLEN, NULL, &n)) n = 0; return n; } /* Explicitly initialize this module. */ gcry_err_code_t _gcry_cipher_init (void) { if (fips_mode()) { /* disable algorithms that are disallowed in fips */ int idx; gcry_cipher_spec_t *spec; for (idx = 0; (spec = cipher_list[idx]); idx++) if (!spec->flags.fips) spec->flags.disabled = 1; } return 0; } /* Run the selftests for cipher algorithm ALGO with optional reporting function REPORT. */ gpg_error_t _gcry_cipher_selftest (int algo, int extended, selftest_report_func_t report) { gcry_err_code_t ec = 0; gcry_cipher_spec_t *spec; spec = spec_from_algo (algo); if (spec && !spec->flags.disabled && spec->selftest) ec = spec->selftest (algo, extended, report); else { ec = GPG_ERR_CIPHER_ALGO; if (report) report ("cipher", algo, "module", (spec && !spec->flags.disabled)? "no selftest available" : spec? "algorithm disabled" : "algorithm not found"); } return gpg_error (ec); } diff --git a/doc/gcrypt.texi b/doc/gcrypt.texi index 78315052..ccb4b820 100644 --- a/doc/gcrypt.texi +++ b/doc/gcrypt.texi @@ -1,6716 +1,6723 @@ \input texinfo @c -*- Texinfo -*- @c %**start of header @setfilename gcrypt.info @include version.texi @settitle The Libgcrypt Reference Manual @c Unify some of the indices. @syncodeindex tp fn @syncodeindex pg fn @c %**end of header @copying This manual is for Libgcrypt (version @value{VERSION}, @value{UPDATED}), which is GNU's library of cryptographic building blocks. @noindent Copyright @copyright{} 2000, 2002, 2003, 2004, 2006, 2007, 2008, 2009, 2011, 2012 Free Software Foundation, Inc. @* Copyright @copyright{} 2012, 2013, 2016, 2017 g10 Code GmbH @quotation Permission is granted to copy, distribute and/or modify this document under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. The text of the license can be found in the section entitled ``GNU General Public License''. @end quotation @end copying @dircategory GNU Libraries @direntry * libgcrypt: (gcrypt). Cryptographic function library. @end direntry @c A couple of macros with no effect on texinfo @c but used by the yat2m processor. @macro manpage {a} @end macro @macro mansect {a} @end macro @macro manpause @end macro @macro mancont @end macro @c @c Printing stuff taken from gcc. @c @macro gnupgtabopt{body} @code{\body\} @end macro @c @c Titlepage @c @setchapternewpage odd @titlepage @title The Libgcrypt Reference Manual @subtitle Version @value{VERSION} @subtitle @value{UPDATED} @author Werner Koch (@email{wk@@gnupg.org}) @author Moritz Schulte (@email{mo@@g10code.com}) @page @vskip 0pt plus 1filll @insertcopying @end titlepage @ifnothtml @summarycontents @contents @page @end ifnothtml @ifnottex @node Top @top The Libgcrypt Library @insertcopying @end ifnottex @menu * Introduction:: What is Libgcrypt. * Preparation:: What you should do before using the library. * Generalities:: General library functions and data types. * Handler Functions:: Working with handler functions. * Symmetric cryptography:: How to use symmetric cryptography. * Public Key cryptography:: How to use public key cryptography. * Hashing:: How to use hash algorithms. * Message Authentication Codes:: How to use MAC algorithms. * Key Derivation:: How to derive keys from strings * Random Numbers:: How to work with random numbers. * S-expressions:: How to manage S-expressions. * MPI library:: How to work with multi-precision-integers. * Prime numbers:: How to use the Prime number related functions. * Utilities:: Utility functions. * Tools:: Utility tools. * Configuration:: Configuration files and environment variables. * Architecture:: How Libgcrypt works internally. Appendices * Self-Tests:: Description of the self-tests. * FIPS Mode:: Description of the FIPS mode. * Library Copying:: The GNU Lesser General Public License says how you can copy and share Libgcrypt. * Copying:: The GNU General Public License says how you can copy and share some parts of Libgcrypt. Indices * Figures and Tables:: Index of figures and tables. * Concept Index:: Index of concepts and programs. * Function and Data Index:: Index of functions, variables and data types. @end menu @ifhtml @page @summarycontents @contents @end ifhtml @c ********************************************************** @c ******************* Introduction *********************** @c ********************************************************** @node Introduction @chapter Introduction Libgcrypt is a library providing cryptographic building blocks. @menu * Getting Started:: How to use this manual. * Features:: A glance at Libgcrypt's features. * Overview:: Overview about the library. @end menu @node Getting Started @section Getting Started This manual documents the Libgcrypt library application programming interface (API). All functions and data types provided by the library are explained. @noindent The reader is assumed to possess basic knowledge about applied cryptography. This manual can be used in several ways. If read from the beginning to the end, it gives a good introduction into the library and how it can be used in an application. Forward references are included where necessary. Later on, the manual can be used as a reference manual to get just the information needed about any particular interface of the library. Experienced programmers might want to start looking at the examples at the end of the manual, and then only read up those parts of the interface which are unclear. @node Features @section Features Libgcrypt might have a couple of advantages over other libraries doing a similar job. @table @asis @item It's Free Software Anybody can use, modify, and redistribute it under the terms of the GNU Lesser General Public License (@pxref{Library Copying}). Note, that some parts (which are in general not needed by applications) are subject to the terms of the GNU General Public License (@pxref{Copying}); please see the README file of the distribution for of list of these parts. @item It encapsulates the low level cryptography Libgcrypt provides a high level interface to cryptographic building blocks using an extensible and flexible API. @end table @node Overview @section Overview @noindent The Libgcrypt library is fully thread-safe, where it makes sense to be thread-safe. Not thread-safe are some cryptographic functions that modify a certain context stored in handles. If the user really intents to use such functions from different threads on the same handle, he has to take care of the serialization of such functions himself. If not described otherwise, every function is thread-safe. Libgcrypt depends on the library `libgpg-error', which contains some common code used by other GnuPG components. @c ********************************************************** @c ******************* Preparation ************************ @c ********************************************************** @node Preparation @chapter Preparation To use Libgcrypt, you have to perform some changes to your sources and the build system. The necessary changes are small and explained in the following sections. At the end of this chapter, it is described how the library is initialized, and how the requirements of the library are verified. @menu * Header:: What header file you need to include. * Building sources:: How to build sources using the library. * Building sources using Automake:: How to build sources with the help of Automake. * Initializing the library:: How to initialize the library. * Multi-Threading:: How Libgcrypt can be used in a MT environment. * Enabling FIPS mode:: How to enable the FIPS mode. * Hardware features:: How to disable hardware features. @end menu @node Header @section Header All interfaces (data types and functions) of the library are defined in the header file @file{gcrypt.h}. You must include this in all source files using the library, either directly or through some other header file, like this: @example #include @end example The name space of Libgcrypt is @code{gcry_*} for function and type names and @code{GCRY*} for other symbols. In addition the same name prefixes with one prepended underscore are reserved for internal use and should never be used by an application. Note that Libgcrypt uses libgpg-error, which uses @code{gpg_*} as name space for function and type names and @code{GPG_*} for other symbols, including all the error codes. @noindent Certain parts of gcrypt.h may be excluded by defining these macros: @table @code @item GCRYPT_NO_MPI_MACROS Do not define the shorthand macros @code{mpi_*} for @code{gcry_mpi_*}. @item GCRYPT_NO_DEPRECATED Do not include definitions for deprecated features. This is useful to make sure that no deprecated features are used. @end table @node Building sources @section Building sources If you want to compile a source file including the `gcrypt.h' header file, you must make sure that the compiler can find it in the directory hierarchy. This is accomplished by adding the path to the directory in which the header file is located to the compilers include file search path (via the @option{-I} option). However, the path to the include file is determined at the time the source is configured. To solve this problem, Libgcrypt ships with a small helper program @command{libgcrypt-config} that knows the path to the include file and other configuration options. The options that need to be added to the compiler invocation at compile time are output by the @option{--cflags} option to @command{libgcrypt-config}. The following example shows how it can be used at the command line: @example gcc -c foo.c `libgcrypt-config --cflags` @end example Adding the output of @samp{libgcrypt-config --cflags} to the compiler’s command line will ensure that the compiler can find the Libgcrypt header file. A similar problem occurs when linking the program with the library. Again, the compiler has to find the library files. For this to work, the path to the library files has to be added to the library search path (via the @option{-L} option). For this, the option @option{--libs} to @command{libgcrypt-config} can be used. For convenience, this option also outputs all other options that are required to link the program with the Libgcrypt libraries (in particular, the @samp{-lgcrypt} option). The example shows how to link @file{foo.o} with the Libgcrypt library to a program @command{foo}. @example gcc -o foo foo.o `libgcrypt-config --libs` @end example Of course you can also combine both examples to a single command by specifying both options to @command{libgcrypt-config}: @example gcc -o foo foo.c `libgcrypt-config --cflags --libs` @end example @node Building sources using Automake @section Building sources using Automake It is much easier if you use GNU Automake instead of writing your own Makefiles. If you do that, you do not have to worry about finding and invoking the @command{libgcrypt-config} script at all. Libgcrypt provides an extension to Automake that does all the work for you. @c A simple macro for optional variables. @macro ovar{varname} @r{[}@var{\varname\}@r{]} @end macro @defmac AM_PATH_LIBGCRYPT (@ovar{minimum-version}, @ovar{action-if-found}, @ovar{action-if-not-found}) Check whether Libgcrypt (at least version @var{minimum-version}, if given) exists on the host system. If it is found, execute @var{action-if-found}, otherwise do @var{action-if-not-found}, if given. Additionally, the function defines @code{LIBGCRYPT_CFLAGS} to the flags needed for compilation of the program to find the @file{gcrypt.h} header file, and @code{LIBGCRYPT_LIBS} to the linker flags needed to link the program to the Libgcrypt library. If the used helper script does not match the target type you are building for a warning is printed and the string @code{libgcrypt} is appended to the variable @code{gpg_config_script_warn}. This macro searches for @command{libgcrypt-config} along the PATH. If you are cross-compiling, it is useful to set the environment variable @code{SYSROOT} to the top directory of your target. The macro will then first look for the helper program in the @file{bin} directory below that top directory. An absolute directory name must be used for @code{SYSROOT}. Finally, if the configure command line option @code{--with-libgcrypt-prefix} is used, only its value is used for the top directory below which the helper script is expected. @end defmac You can use the defined Autoconf variables like this in your @file{Makefile.am}: @example AM_CPPFLAGS = $(LIBGCRYPT_CFLAGS) LDADD = $(LIBGCRYPT_LIBS) @end example @node Initializing the library @section Initializing the library Before the library can be used, it must initialize itself. This is achieved by invoking the function @code{gcry_check_version} described below. Also, it is often desirable to check that the version of Libgcrypt used is indeed one which fits all requirements. Even with binary compatibility, new features may have been introduced, but due to problem with the dynamic linker an old version may actually be used. So you may want to check that the version is okay right after program startup. @deftypefun {const char *} gcry_check_version (const char *@var{req_version}) The function @code{gcry_check_version} initializes some subsystems used by Libgcrypt and must be invoked before any other function in the library. @xref{Multi-Threading}. Furthermore, this function returns the version number of the library. It can also verify that the version number is higher than a certain required version number @var{req_version}, if this value is not a null pointer. @end deftypefun Libgcrypt uses a concept known as secure memory, which is a region of memory set aside for storing sensitive data. Because such memory is a scarce resource, it needs to be setup in advanced to a fixed size. Further, most operating systems have special requirements on how that secure memory can be used. For example, it might be required to install an application as ``setuid(root)'' to allow allocating such memory. Libgcrypt requires a sequence of initialization steps to make sure that this works correctly. The following examples show the necessary steps. If you don't have a need for secure memory, for example if your application does not use secret keys or other confidential data or it runs in a controlled environment where key material floating around in memory is not a problem, you should initialize Libgcrypt this way: @example /* Version check should be the very first call because it makes sure that important subsystems are initialized. */ if (!gcry_check_version (GCRYPT_VERSION)) @{ fputs ("libgcrypt version mismatch\n", stderr); exit (2); @} /* Disable secure memory. */ gcry_control (GCRYCTL_DISABLE_SECMEM, 0); /* ... If required, other initialization goes here. */ /* Tell Libgcrypt that initialization has completed. */ gcry_control (GCRYCTL_INITIALIZATION_FINISHED, 0); @end example If you have to protect your keys or other information in memory against being swapped out to disk and to enable an automatic overwrite of used and freed memory, you need to initialize Libgcrypt this way: @example /* Version check should be the very first call because it makes sure that important subsystems are initialized. */ if (!gcry_check_version (GCRYPT_VERSION)) @{ fputs ("libgcrypt version mismatch\n", stderr); exit (2); @} @anchor{sample-use-suspend-secmem} /* We don't want to see any warnings, e.g. because we have not yet parsed program options which might be used to suppress such warnings. */ gcry_control (GCRYCTL_SUSPEND_SECMEM_WARN); /* ... If required, other initialization goes here. Note that the process might still be running with increased privileges and that the secure memory has not been initialized. */ /* Allocate a pool of 16k secure memory. This makes the secure memory available and also drops privileges where needed. Note that by using functions like gcry_xmalloc_secure and gcry_mpi_snew Libgcrypt may expand the secure memory pool with memory which lacks the property of not being swapped out to disk. */ gcry_control (GCRYCTL_INIT_SECMEM, 16384, 0); @anchor{sample-use-resume-secmem} /* It is now okay to let Libgcrypt complain when there was/is a problem with the secure memory. */ gcry_control (GCRYCTL_RESUME_SECMEM_WARN); /* ... If required, other initialization goes here. */ /* Tell Libgcrypt that initialization has completed. */ gcry_control (GCRYCTL_INITIALIZATION_FINISHED, 0); @end example It is important that these initialization steps are not done by a library but by the actual application. A library using Libgcrypt might want to check for finished initialization using: @example if (!gcry_control (GCRYCTL_INITIALIZATION_FINISHED_P)) @{ fputs ("libgcrypt has not been initialized\n", stderr); abort (); @} @end example Instead of terminating the process, the library may instead print a warning and try to initialize Libgcrypt itself. See also the section on multi-threading below for more pitfalls. @node Multi-Threading @section Multi-Threading As mentioned earlier, the Libgcrypt library is thread-safe if you adhere to the following requirements: @itemize @bullet @item If you use pthread and your applications forks and does not directly call exec (even calling stdio functions), all kind of problems may occur. Future versions of Libgcrypt will try to cleanup using pthread_atfork but even that may lead to problems. This is a common problem with almost all applications using pthread and fork. @item The function @code{gcry_check_version} must be called before any other function in the library. To achieve this in multi-threaded programs, you must synchronize the memory with respect to other threads that also want to use Libgcrypt. For this, it is sufficient to call @code{gcry_check_version} before creating the other threads using Libgcrypt@footnote{At least this is true for POSIX threads, as @code{pthread_create} is a function that synchronizes memory with respects to other threads. There are many functions which have this property, a complete list can be found in POSIX, IEEE Std 1003.1-2003, Base Definitions, Issue 6, in the definition of the term ``Memory Synchronization''. For other thread packages, more relaxed or more strict rules may apply.}. @item Just like the function @code{gpg_strerror}, the function @code{gcry_strerror} is not thread safe. You have to use @code{gpg_strerror_r} instead. @end itemize @node Enabling FIPS mode @section How to enable the FIPS mode @cindex FIPS mode @cindex FIPS 140 @anchor{enabling fips mode} Libgcrypt may be used in a FIPS 140-2 mode. Note, that this does not necessary mean that Libcgrypt is an appoved FIPS 140-2 module. Check the NIST database at @url{http://csrc.nist.gov/groups/STM/cmvp/} to see what versions of Libgcrypt are approved. Because FIPS 140 has certain restrictions on the use of cryptography which are not always wanted, Libgcrypt needs to be put into FIPS mode explicitly. Three alternative mechanisms are provided to switch Libgcrypt into this mode: @itemize @item If the file @file{/proc/sys/crypto/fips_enabled} exists and contains a numeric value other than @code{0}, Libgcrypt is put into FIPS mode at initialization time. Obviously this works only on systems with a @code{proc} file system (i.e. GNU/Linux). @item If the file @file{/etc/gcrypt/fips_enabled} exists, Libgcrypt is put into FIPS mode at initialization time. Note that this filename is hardwired and does not depend on any configuration options. @item If the application requests FIPS mode using the control command @code{GCRYCTL_FORCE_FIPS_MODE}. This must be done prior to any initialization (i.e. before @code{gcry_check_version}). @end itemize @cindex Enforced FIPS mode In addition to the standard FIPS mode, Libgcrypt may also be put into an Enforced FIPS mode by writing a non-zero value into the file @file{/etc/gcrypt/fips_enabled} or by using the control command @code{GCRYCTL_SET_ENFORCED_FIPS_FLAG} before any other calls to libgcrypt. The Enforced FIPS mode helps to detect applications which don't fulfill all requirements for using Libgcrypt in FIPS mode (@pxref{FIPS Mode}). Once Libgcrypt has been put into FIPS mode, it is not possible to switch back to standard mode without terminating the process first. If the logging verbosity level of Libgcrypt has been set to at least 2, the state transitions and the self-tests are logged. @node Hardware features @section How to disable hardware features @cindex hardware features @anchor{hardware features} Libgcrypt makes use of certain hardware features. If the use of a feature is not desired it may be either be disabled by a program or globally using a configuration file. The currently supported features are @table @code @item padlock-rng @item padlock-aes @item padlock-sha @item padlock-mmul @item intel-cpu @item intel-fast-shld @item intel-bmi2 @item intel-ssse3 @item intel-pclmul @item intel-aesni @item intel-rdrand @item intel-avx @item intel-avx2 @item intel-rdtsc @item arm-neon @end table To disable a feature for all processes using Libgcrypt 1.6 or newer, create the file @file{/etc/gcrypt/hwf.deny} and put each feature not to be used on a single line. Empty lines, white space, and lines prefixed with a hash mark are ignored. The file should be world readable. To disable a feature specifically for a program that program must tell it Libgcrypt before before calling @code{gcry_check_version}. Example:@footnote{NB. Libgcrypt uses the RDRAND feature only as one source of entropy. A CPU with a broken RDRAND will thus not compromise of the random number generator} @example gcry_control (GCRYCTL_DISABLE_HWF, "intel-rdrand", NULL); @end example @noindent To print the list of active features you may use this command: @example mpicalc --print-config | grep ^hwflist: | tr : '\n' | tail -n +2 @end example @c ********************************************************** @c ******************* General **************************** @c ********************************************************** @node Generalities @chapter Generalities @menu * Controlling the library:: Controlling Libgcrypt's behavior. * Error Handling:: Error codes and such. @end menu @node Controlling the library @section Controlling the library @deftypefun gcry_error_t gcry_control (enum gcry_ctl_cmds @var{cmd}, ...) This function can be used to influence the general behavior of Libgcrypt in several ways. Depending on @var{cmd}, more arguments can or have to be provided. @table @code @item GCRYCTL_ENABLE_M_GUARD; Arguments: none This command enables the built-in memory guard. It must not be used to activate the memory guard after the memory management has already been used; therefore it can ONLY be used before @code{gcry_check_version}. Note that the memory guard is NOT used when the user of the library has set his own memory management callbacks. @item GCRYCTL_ENABLE_QUICK_RANDOM; Arguments: none This command inhibits the use the very secure random quality level (@code{GCRY_VERY_STRONG_RANDOM}) and degrades all request down to @code{GCRY_STRONG_RANDOM}. In general this is not recommended. However, for some applications the extra quality random Libgcrypt tries to create is not justified and this option may help to get better performance. Please check with a crypto expert whether this option can be used for your application. This option can only be used at initialization time. @item GCRYCTL_DUMP_RANDOM_STATS; Arguments: none This command dumps random number generator related statistics to the library's logging stream. @item GCRYCTL_DUMP_MEMORY_STATS; Arguments: none This command dumps memory management related statistics to the library's logging stream. @item GCRYCTL_DUMP_SECMEM_STATS; Arguments: none This command dumps secure memory management related statistics to the library's logging stream. @item GCRYCTL_DROP_PRIVS; Arguments: none This command disables the use of secure memory and drops the privileges of the current process. This command has not much use; the suggested way to disable secure memory is to use @code{GCRYCTL_DISABLE_SECMEM} right after initialization. @item GCRYCTL_DISABLE_SECMEM; Arguments: none This command disables the use of secure memory. If this command is used in FIPS mode, FIPS mode will be disabled and the function @code{gcry_fips_mode_active} returns false. However, in Enforced FIPS mode this command has no effect at all. Many applications do not require secure memory, so they should disable it right away. This command should be executed right after @code{gcry_check_version}. @item GCRYCTL_DISABLE_LOCKED_SECMEM; Arguments: none This command disables the use of the mlock call for secure memory. Disabling the use of mlock may for example be done if an encrypted swap space is in use. This command should be executed right after @code{gcry_check_version}. Note that by using functions like gcry_xmalloc_secure and gcry_mpi_snew Libgcrypt may expand the secure memory pool with memory which lacks the property of not being swapped out to disk (but will still be zeroed out on free). @item GCRYCTL_DISABLE_PRIV_DROP; Arguments: none This command sets a global flag to tell the secure memory subsystem that it shall not drop privileges after secure memory has been allocated. This command is commonly used right after @code{gcry_check_version} but may also be used right away at program startup. It won't have an effect after the secure memory pool has been initialized. WARNING: A process running setuid(root) is a severe security risk. Processes making use of Libgcrypt or other complex code should drop these extra privileges as soon as possible. If this command has been used the caller is responsible for dropping the privileges. @item GCRYCTL_INIT_SECMEM; Arguments: unsigned int nbytes This command is used to allocate a pool of secure memory and thus enabling the use of secure memory. It also drops all extra privileges the process has (i.e. if it is run as setuid (root)). If the argument @var{nbytes} is 0, secure memory will be disabled. The minimum amount of secure memory allocated is currently 16384 bytes; you may thus use a value of 1 to request that default size. @item GCRYCTL_AUTO_EXPAND_SECMEM; Arguments: unsigned int chunksize This command enables on-the-fly expanding of the secure memory area. Note that by using functions like @code{gcry_xmalloc_secure} and @code{gcry_mpi_snew} will do this auto expanding anyway. The argument to this option is the suggested size for new secure memory areas. A larger size improves performance of all memory allocation and releasing functions. The given chunksize is rounded up to the next 32KiB. The drawback of auto expanding is that memory might be swapped out to disk; this can be fixed by configuring the system to use an encrypted swap space. @item GCRYCTL_TERM_SECMEM; Arguments: none This command zeroises the secure memory and destroys the handler. The secure memory pool may not be used anymore after running this command. If the secure memory pool as already been destroyed, this command has no effect. Applications might want to run this command from their exit handler to make sure that the secure memory gets properly destroyed. This command is not necessarily thread-safe but that should not be needed in cleanup code. It may be called from a signal handler. @item GCRYCTL_DISABLE_SECMEM_WARN; Arguments: none Disable warning messages about problems with the secure memory subsystem. This command should be run right after @code{gcry_check_version}. @item GCRYCTL_SUSPEND_SECMEM_WARN; Arguments: none Postpone warning messages from the secure memory subsystem. @xref{sample-use-suspend-secmem,,the initialization example}, on how to use it. @item GCRYCTL_RESUME_SECMEM_WARN; Arguments: none Resume warning messages from the secure memory subsystem. @xref{sample-use-resume-secmem,,the initialization example}, on how to use it. @item GCRYCTL_USE_SECURE_RNDPOOL; Arguments: none This command tells the PRNG to store random numbers in secure memory. This command should be run right after @code{gcry_check_version} and not later than the command GCRYCTL_INIT_SECMEM. Note that in FIPS mode the secure memory is always used. @item GCRYCTL_SET_RANDOM_SEED_FILE; Arguments: const char *filename This command specifies the file, which is to be used as seed file for the PRNG. If the seed file is registered prior to initialization of the PRNG, the seed file's content (if it exists and seems to be valid) is fed into the PRNG pool. After the seed file has been registered, the PRNG can be signalled to write out the PRNG pool's content into the seed file with the following command. @item GCRYCTL_UPDATE_RANDOM_SEED_FILE; Arguments: none Write out the PRNG pool's content into the registered seed file. Multiple instances of the applications sharing the same random seed file can be started in parallel, in which case they will read out the same pool and then race for updating it (the last update overwrites earlier updates). They will differentiate only by the weak entropy that is added in read_seed_file based on the PID and clock, and up to 16 bytes of weak random non-blockingly. The consequence is that the output of these different instances is correlated to some extent. In a perfect attack scenario, the attacker can control (or at least guess) the PID and clock of the application, and drain the system's entropy pool to reduce the "up to 16 bytes" above to 0. Then the dependencies of the initial states of the pools are completely known. Note that this is not an issue if random of @code{GCRY_VERY_STRONG_RANDOM} quality is requested as in this case enough extra entropy gets mixed. It is also not an issue when using Linux (rndlinux driver), because this one guarantees to read full 16 bytes from /dev/urandom and thus there is no way for an attacker without kernel access to control these 16 bytes. @item GCRYCTL_CLOSE_RANDOM_DEVICE; Arguments: none Try to close the random device. If on Unix system you call fork(), the child process does no call exec(), and you do not intend to use Libgcrypt in the child, it might be useful to use this control code to close the inherited file descriptors of the random device. If Libgcrypt is later used again by the child, the device will be re-opened. On non-Unix systems this control code is ignored. @item GCRYCTL_SET_VERBOSITY; Arguments: int level This command sets the verbosity of the logging. A level of 0 disables all extra logging whereas positive numbers enable more verbose logging. The level may be changed at any time but be aware that no memory synchronization is done so the effect of this command might not immediately show up in other threads. This command may even be used prior to @code{gcry_check_version}. @item GCRYCTL_SET_DEBUG_FLAGS; Arguments: unsigned int flags Set the debug flag bits as given by the argument. Be aware that that no memory synchronization is done so the effect of this command might not immediately show up in other threads. The debug flags are not considered part of the API and thus may change without notice. As of now bit 0 enables debugging of cipher functions and bit 1 debugging of multi-precision-integers. This command may even be used prior to @code{gcry_check_version}. @item GCRYCTL_CLEAR_DEBUG_FLAGS; Arguments: unsigned int flags Set the debug flag bits as given by the argument. Be aware that that no memory synchronization is done so the effect of this command might not immediately show up in other threads. This command may even be used prior to @code{gcry_check_version}. @item GCRYCTL_DISABLE_INTERNAL_LOCKING; Arguments: none This command does nothing. It exists only for backward compatibility. @item GCRYCTL_ANY_INITIALIZATION_P; Arguments: none This command returns true if the library has been basically initialized. Such a basic initialization happens implicitly with many commands to get certain internal subsystems running. The common and suggested way to do this basic initialization is by calling gcry_check_version. @item GCRYCTL_INITIALIZATION_FINISHED; Arguments: none This command tells the library that the application has finished the initialization. @item GCRYCTL_INITIALIZATION_FINISHED_P; Arguments: none This command returns true if the command@* GCRYCTL_INITIALIZATION_FINISHED has already been run. @item GCRYCTL_SET_THREAD_CBS; Arguments: struct ath_ops *ath_ops This command is obsolete since version 1.6. @item GCRYCTL_FAST_POLL; Arguments: none Run a fast random poll. @item GCRYCTL_SET_RNDEGD_SOCKET; Arguments: const char *filename This command may be used to override the default name of the EGD socket to connect to. It may be used only during initialization as it is not thread safe. Changing the socket name again is not supported. The function may return an error if the given filename is too long for a local socket name. EGD is an alternative random gatherer, used only on systems lacking a proper random device. @item GCRYCTL_PRINT_CONFIG; Arguments: FILE *stream This command dumps information pertaining to the configuration of the library to the given stream. If NULL is given for @var{stream}, the log system is used. This command may be used before the initialization has been finished but not before a @code{gcry_check_version}. Note that the macro @code{estream_t} can be used instead of @code{gpgrt_stream_t}. @item GCRYCTL_OPERATIONAL_P; Arguments: none This command returns true if the library is in an operational state. This information makes only sense in FIPS mode. In contrast to other functions, this is a pure test function and won't put the library into FIPS mode or change the internal state. This command may be used before the initialization has been finished but not before a @code{gcry_check_version}. @item GCRYCTL_FIPS_MODE_P; Arguments: none This command returns true if the library is in FIPS mode. Note, that this is no indication about the current state of the library. This command may be used before the initialization has been finished but not before a @code{gcry_check_version}. An application may use this command or the convenience macro below to check whether FIPS mode is actually active. @deftypefun int gcry_fips_mode_active (void) Returns true if the FIPS mode is active. Note that this is implemented as a macro. @end deftypefun @item GCRYCTL_FORCE_FIPS_MODE; Arguments: none Running this command puts the library into FIPS mode. If the library is already in FIPS mode, a self-test is triggered and thus the library will be put into operational state. This command may be used before a call to @code{gcry_check_version} and that is actually the recommended way to let an application switch the library into FIPS mode. Note that Libgcrypt will reject an attempt to switch to fips mode during or after the initialization. @item GCRYCTL_SET_ENFORCED_FIPS_FLAG; Arguments: none Running this command sets the internal flag that puts the library into the enforced FIPS mode during the FIPS mode initialization. This command does not affect the library if the library is not put into the FIPS mode and it must be used before any other libgcrypt library calls that initialize the library such as @code{gcry_check_version}. Note that Libgcrypt will reject an attempt to switch to the enforced fips mode during or after the initialization. @item GCRYCTL_SET_PREFERRED_RNG_TYPE; Arguments: int These are advisory commands to select a certain random number generator. They are only advisory because libraries may not know what an application actually wants or vice versa. Thus Libgcrypt employs a priority check to select the actually used RNG. If an applications selects a lower priority RNG but a library requests a higher priority RNG Libgcrypt will switch to the higher priority RNG. Applications and libraries should use these control codes before @code{gcry_check_version}. The available generators are: @table @code @item GCRY_RNG_TYPE_STANDARD A conservative standard generator based on the ``Continuously Seeded Pseudo Random Number Generator'' designed by Peter Gutmann. @item GCRY_RNG_TYPE_FIPS A deterministic random number generator conforming to he document ``NIST-Recommended Random Number Generator Based on ANSI X9.31 Appendix A.2.4 Using the 3-Key Triple DES and AES Algorithms'' (2005-01-31). This implementation uses the AES variant. @item GCRY_RNG_TYPE_SYSTEM A wrapper around the system's native RNG. On Unix system these are usually the /dev/random and /dev/urandom devices. @end table The default is @code{GCRY_RNG_TYPE_STANDARD} unless FIPS mode as been enabled; in which case @code{GCRY_RNG_TYPE_FIPS} is used and locked against further changes. @item GCRYCTL_GET_CURRENT_RNG_TYPE; Arguments: int * This command stores the type of the currently used RNG as an integer value at the provided address. @item GCRYCTL_SELFTEST; Arguments: none This may be used at anytime to have the library run all implemented self-tests. It works in standard and in FIPS mode. Returns 0 on success or an error code on failure. @item GCRYCTL_DISABLE_HWF; Arguments: const char *name Libgcrypt detects certain features of the CPU at startup time. For performance tests it is sometimes required not to use such a feature. This option may be used to disable a certain feature; i.e. Libgcrypt behaves as if this feature has not been detected. This call can be used several times to disable a set of features, or features may be given as a colon or comma delimited string. The special feature "all" can be used to disable all available features. Note that the detection code might be run if the feature has been disabled. This command must be used at initialization time; i.e. before calling @code{gcry_check_version}. @item GCRYCTL_REINIT_SYSCALL_CLAMP; Arguments: none Libgcrypt wraps blocking system calls with two functions calls (``system call clamp'') to give user land threading libraries a hook for re-scheduling. This works by reading the system call clamp from Libgpg-error at initialization time. However sometimes Libgcrypt needs to be initialized before the user land threading systems and at that point the system call clamp has not been registered with Libgpg-error and in turn Libgcrypt would not use them. The control code can be used to tell Libgcrypt that a system call clamp has now been registered with Libgpg-error and advised it to read the clamp again. Obviously this control code may only be used before a second thread is started in a process. @end table @end deftypefun @c ********************************************************** @c ******************* Errors **************************** @c ********************************************************** @node Error Handling @section Error Handling Many functions in Libgcrypt can return an error if they fail. For this reason, the application should always catch the error condition and take appropriate measures, for example by releasing the resources and passing the error up to the caller, or by displaying a descriptive message to the user and cancelling the operation. Some error values do not indicate a system error or an error in the operation, but the result of an operation that failed properly. For example, if you try to decrypt a tempered message, the decryption will fail. Another error value actually means that the end of a data buffer or list has been reached. The following descriptions explain for many error codes what they mean usually. Some error values have specific meanings if returned by a certain functions. Such cases are described in the documentation of those functions. Libgcrypt uses the @code{libgpg-error} library. This allows to share the error codes with other components of the GnuPG system, and to pass error values transparently from the crypto engine, or some helper application of the crypto engine, to the user. This way no information is lost. As a consequence, Libgcrypt does not use its own identifiers for error codes, but uses those provided by @code{libgpg-error}. They usually start with @code{GPG_ERR_}. However, Libgcrypt does provide aliases for the functions defined in libgpg-error, which might be preferred for name space consistency. Most functions in Libgcrypt return an error code in the case of failure. For this reason, the application should always catch the error condition and take appropriate measures, for example by releasing the resources and passing the error up to the caller, or by displaying a descriptive message to the user and canceling the operation. Some error values do not indicate a system error or an error in the operation, but the result of an operation that failed properly. GnuPG components, including Libgcrypt, use an extra library named libgpg-error to provide a common error handling scheme. For more information on libgpg-error, see the according manual. @menu * Error Values:: The error value and what it means. * Error Sources:: A list of important error sources. * Error Codes:: A list of important error codes. * Error Strings:: How to get a descriptive string from a value. @end menu @node Error Values @subsection Error Values @cindex error values @cindex error codes @cindex error sources @deftp {Data type} {gcry_err_code_t} The @code{gcry_err_code_t} type is an alias for the @code{libgpg-error} type @code{gpg_err_code_t}. The error code indicates the type of an error, or the reason why an operation failed. A list of important error codes can be found in the next section. @end deftp @deftp {Data type} {gcry_err_source_t} The @code{gcry_err_source_t} type is an alias for the @code{libgpg-error} type @code{gpg_err_source_t}. The error source has not a precisely defined meaning. Sometimes it is the place where the error happened, sometimes it is the place where an error was encoded into an error value. Usually the error source will give an indication to where to look for the problem. This is not always true, but it is attempted to achieve this goal. A list of important error sources can be found in the next section. @end deftp @deftp {Data type} {gcry_error_t} The @code{gcry_error_t} type is an alias for the @code{libgpg-error} type @code{gpg_error_t}. An error value like this has always two components, an error code and an error source. Both together form the error value. Thus, the error value can not be directly compared against an error code, but the accessor functions described below must be used. However, it is guaranteed that only 0 is used to indicate success (@code{GPG_ERR_NO_ERROR}), and that in this case all other parts of the error value are set to 0, too. Note that in Libgcrypt, the error source is used purely for diagnostic purposes. Only the error code should be checked to test for a certain outcome of a function. The manual only documents the error code part of an error value. The error source is left unspecified and might be anything. @end deftp @deftypefun {gcry_err_code_t} gcry_err_code (@w{gcry_error_t @var{err}}) The static inline function @code{gcry_err_code} returns the @code{gcry_err_code_t} component of the error value @var{err}. This function must be used to extract the error code from an error value in order to compare it with the @code{GPG_ERR_*} error code macros. @end deftypefun @deftypefun {gcry_err_source_t} gcry_err_source (@w{gcry_error_t @var{err}}) The static inline function @code{gcry_err_source} returns the @code{gcry_err_source_t} component of the error value @var{err}. This function must be used to extract the error source from an error value in order to compare it with the @code{GPG_ERR_SOURCE_*} error source macros. @end deftypefun @deftypefun {gcry_error_t} gcry_err_make (@w{gcry_err_source_t @var{source}}, @w{gcry_err_code_t @var{code}}) The static inline function @code{gcry_err_make} returns the error value consisting of the error source @var{source} and the error code @var{code}. This function can be used in callback functions to construct an error value to return it to the library. @end deftypefun @deftypefun {gcry_error_t} gcry_error (@w{gcry_err_code_t @var{code}}) The static inline function @code{gcry_error} returns the error value consisting of the default error source and the error code @var{code}. For @acronym{GCRY} applications, the default error source is @code{GPG_ERR_SOURCE_USER_1}. You can define @code{GCRY_ERR_SOURCE_DEFAULT} before including @file{gcrypt.h} to change this default. This function can be used in callback functions to construct an error value to return it to the library. @end deftypefun The @code{libgpg-error} library provides error codes for all system error numbers it knows about. If @var{err} is an unknown error number, the error code @code{GPG_ERR_UNKNOWN_ERRNO} is used. The following functions can be used to construct error values from system errno numbers. @deftypefun {gcry_error_t} gcry_err_make_from_errno (@w{gcry_err_source_t @var{source}}, @w{int @var{err}}) The function @code{gcry_err_make_from_errno} is like @code{gcry_err_make}, but it takes a system error like @code{errno} instead of a @code{gcry_err_code_t} error code. @end deftypefun @deftypefun {gcry_error_t} gcry_error_from_errno (@w{int @var{err}}) The function @code{gcry_error_from_errno} is like @code{gcry_error}, but it takes a system error like @code{errno} instead of a @code{gcry_err_code_t} error code. @end deftypefun Sometimes you might want to map system error numbers to error codes directly, or map an error code representing a system error back to the system error number. The following functions can be used to do that. @deftypefun {gcry_err_code_t} gcry_err_code_from_errno (@w{int @var{err}}) The function @code{gcry_err_code_from_errno} returns the error code for the system error @var{err}. If @var{err} is not a known system error, the function returns @code{GPG_ERR_UNKNOWN_ERRNO}. @end deftypefun @deftypefun {int} gcry_err_code_to_errno (@w{gcry_err_code_t @var{err}}) The function @code{gcry_err_code_to_errno} returns the system error for the error code @var{err}. If @var{err} is not an error code representing a system error, or if this system error is not defined on this system, the function returns @code{0}. @end deftypefun @node Error Sources @subsection Error Sources @cindex error codes, list of The library @code{libgpg-error} defines an error source for every component of the GnuPG system. The error source part of an error value is not well defined. As such it is mainly useful to improve the diagnostic error message for the user. If the error code part of an error value is @code{0}, the whole error value will be @code{0}. In this case the error source part is of course @code{GPG_ERR_SOURCE_UNKNOWN}. The list of error sources that might occur in applications using @acronym{Libgcrypt} is: @table @code @item GPG_ERR_SOURCE_UNKNOWN The error source is not known. The value of this error source is @code{0}. @item GPG_ERR_SOURCE_GPGME The error source is @acronym{GPGME} itself. @item GPG_ERR_SOURCE_GPG The error source is GnuPG, which is the crypto engine used for the OpenPGP protocol. @item GPG_ERR_SOURCE_GPGSM The error source is GPGSM, which is the crypto engine used for the OpenPGP protocol. @item GPG_ERR_SOURCE_GCRYPT The error source is @code{libgcrypt}, which is used by crypto engines to perform cryptographic operations. @item GPG_ERR_SOURCE_GPGAGENT The error source is @command{gpg-agent}, which is used by crypto engines to perform operations with the secret key. @item GPG_ERR_SOURCE_PINENTRY The error source is @command{pinentry}, which is used by @command{gpg-agent} to query the passphrase to unlock a secret key. @item GPG_ERR_SOURCE_SCD The error source is the SmartCard Daemon, which is used by @command{gpg-agent} to delegate operations with the secret key to a SmartCard. @item GPG_ERR_SOURCE_KEYBOX The error source is @code{libkbx}, a library used by the crypto engines to manage local keyrings. @item GPG_ERR_SOURCE_USER_1 @item GPG_ERR_SOURCE_USER_2 @item GPG_ERR_SOURCE_USER_3 @item GPG_ERR_SOURCE_USER_4 These error sources are not used by any GnuPG component and can be used by other software. For example, applications using Libgcrypt can use them to mark error values coming from callback handlers. Thus @code{GPG_ERR_SOURCE_USER_1} is the default for errors created with @code{gcry_error} and @code{gcry_error_from_errno}, unless you define @code{GCRY_ERR_SOURCE_DEFAULT} before including @file{gcrypt.h}. @end table @node Error Codes @subsection Error Codes @cindex error codes, list of The library @code{libgpg-error} defines many error values. The following list includes the most important error codes. @table @code @item GPG_ERR_EOF This value indicates the end of a list, buffer or file. @item GPG_ERR_NO_ERROR This value indicates success. The value of this error code is @code{0}. Also, it is guaranteed that an error value made from the error code @code{0} will be @code{0} itself (as a whole). This means that the error source information is lost for this error code, however, as this error code indicates that no error occurred, this is generally not a problem. @item GPG_ERR_GENERAL This value means that something went wrong, but either there is not enough information about the problem to return a more useful error value, or there is no separate error value for this type of problem. @item GPG_ERR_ENOMEM This value means that an out-of-memory condition occurred. @item GPG_ERR_E... System errors are mapped to GPG_ERR_EFOO where FOO is the symbol for the system error. @item GPG_ERR_INV_VALUE This value means that some user provided data was out of range. @item GPG_ERR_UNUSABLE_PUBKEY This value means that some recipients for a message were invalid. @item GPG_ERR_UNUSABLE_SECKEY This value means that some signers were invalid. @item GPG_ERR_NO_DATA This value means that data was expected where no data was found. @item GPG_ERR_CONFLICT This value means that a conflict of some sort occurred. @item GPG_ERR_NOT_IMPLEMENTED This value indicates that the specific function (or operation) is not implemented. This error should never happen. It can only occur if you use certain values or configuration options which do not work, but for which we think that they should work at some later time. @item GPG_ERR_DECRYPT_FAILED This value indicates that a decryption operation was unsuccessful. @item GPG_ERR_WRONG_KEY_USAGE This value indicates that a key is not used appropriately. @item GPG_ERR_NO_SECKEY This value indicates that no secret key for the user ID is available. @item GPG_ERR_UNSUPPORTED_ALGORITHM This value means a verification failed because the cryptographic algorithm is not supported by the crypto backend. @item GPG_ERR_BAD_SIGNATURE This value means a verification failed because the signature is bad. @item GPG_ERR_NO_PUBKEY This value means a verification failed because the public key is not available. @item GPG_ERR_NOT_OPERATIONAL This value means that the library is not yet in state which allows to use this function. This error code is in particular returned if Libgcrypt is operated in FIPS mode and the internal state of the library does not yet or not anymore allow the use of a service. This error code is only available with newer libgpg-error versions, thus you might see ``invalid error code'' when passing this to @code{gpg_strerror}. The numeric value of this error code is 176. @item GPG_ERR_USER_1 @item GPG_ERR_USER_2 @item ... @item GPG_ERR_USER_16 These error codes are not used by any GnuPG component and can be freely used by other software. Applications using Libgcrypt might use them to mark specific errors returned by callback handlers if no suitable error codes (including the system errors) for these errors exist already. @end table @node Error Strings @subsection Error Strings @cindex error values, printing of @cindex error codes, printing of @cindex error sources, printing of @cindex error strings @deftypefun {const char *} gcry_strerror (@w{gcry_error_t @var{err}}) The function @code{gcry_strerror} returns a pointer to a statically allocated string containing a description of the error code contained in the error value @var{err}. This string can be used to output a diagnostic message to the user. @end deftypefun @deftypefun {const char *} gcry_strsource (@w{gcry_error_t @var{err}}) The function @code{gcry_strsource} returns a pointer to a statically allocated string containing a description of the error source contained in the error value @var{err}. This string can be used to output a diagnostic message to the user. @end deftypefun The following example illustrates the use of the functions described above: @example @{ gcry_cipher_hd_t handle; gcry_error_t err = 0; err = gcry_cipher_open (&handle, GCRY_CIPHER_AES, GCRY_CIPHER_MODE_CBC, 0); if (err) @{ fprintf (stderr, "Failure: %s/%s\n", gcry_strsource (err), gcry_strerror (err)); @} @} @end example @c ********************************************************** @c ******************* General **************************** @c ********************************************************** @node Handler Functions @chapter Handler Functions Libgcrypt makes it possible to install so called `handler functions', which get called by Libgcrypt in case of certain events. @menu * Progress handler:: Using a progress handler function. * Allocation handler:: Using special memory allocation functions. * Error handler:: Using error handler functions. * Logging handler:: Using a special logging function. @end menu @node Progress handler @section Progress handler It is often useful to retrieve some feedback while long running operations are performed. @deftp {Data type} gcry_handler_progress_t Progress handler functions have to be of the type @code{gcry_handler_progress_t}, which is defined as: @code{void (*gcry_handler_progress_t) (void *, const char *, int, int, int)} @end deftp The following function may be used to register a handler function for this purpose. @deftypefun void gcry_set_progress_handler (gcry_handler_progress_t @var{cb}, void *@var{cb_data}) This function installs @var{cb} as the `Progress handler' function. It may be used only during initialization. @var{cb} must be defined as follows: @example void my_progress_handler (void *@var{cb_data}, const char *@var{what}, int @var{printchar}, int @var{current}, int @var{total}) @{ /* Do something. */ @} @end example A description of the arguments of the progress handler function follows. @table @var @item cb_data The argument provided in the call to @code{gcry_set_progress_handler}. @item what A string identifying the type of the progress output. The following values for @var{what} are defined: @table @code @item need_entropy Not enough entropy is available. @var{total} holds the number of required bytes. @item wait_dev_random Waiting to re-open a random device. @var{total} gives the number of seconds until the next try. @item primegen Values for @var{printchar}: @table @code @item \n Prime generated. @item ! Need to refresh the pool of prime numbers. @item <, > Number of bits adjusted. @item ^ Searching for a generator. @item . Fermat test on 10 candidates failed. @item : Restart with a new random value. @item + Rabin Miller test passed. @end table @end table @end table @end deftypefun @node Allocation handler @section Allocation handler It is possible to make Libgcrypt use special memory allocation functions instead of the built-in ones. Memory allocation functions are of the following types: @deftp {Data type} gcry_handler_alloc_t This type is defined as: @code{void *(*gcry_handler_alloc_t) (size_t n)}. @end deftp @deftp {Data type} gcry_handler_secure_check_t This type is defined as: @code{int *(*gcry_handler_secure_check_t) (const void *)}. @end deftp @deftp {Data type} gcry_handler_realloc_t This type is defined as: @code{void *(*gcry_handler_realloc_t) (void *p, size_t n)}. @end deftp @deftp {Data type} gcry_handler_free_t This type is defined as: @code{void *(*gcry_handler_free_t) (void *)}. @end deftp Special memory allocation functions can be installed with the following function: @deftypefun void gcry_set_allocation_handler (gcry_handler_alloc_t @var{func_alloc}, gcry_handler_alloc_t @var{func_alloc_secure}, gcry_handler_secure_check_t @var{func_secure_check}, gcry_handler_realloc_t @var{func_realloc}, gcry_handler_free_t @var{func_free}) Install the provided functions and use them instead of the built-in functions for doing memory allocation. Using this function is in general not recommended because the standard Libgcrypt allocation functions are guaranteed to zeroize memory if needed. This function may be used only during initialization and may not be used in fips mode. @end deftypefun @node Error handler @section Error handler The following functions may be used to register handler functions that are called by Libgcrypt in case certain error conditions occur. They may and should be registered prior to calling @code{gcry_check_version}. @deftp {Data type} gcry_handler_no_mem_t This type is defined as: @code{int (*gcry_handler_no_mem_t) (void *, size_t, unsigned int)} @end deftp @deftypefun void gcry_set_outofcore_handler (gcry_handler_no_mem_t @var{func_no_mem}, void *@var{cb_data}) This function registers @var{func_no_mem} as `out-of-core handler', which means that it will be called in the case of not having enough memory available. The handler is called with 3 arguments: The first one is the pointer @var{cb_data} as set with this function, the second is the requested memory size and the last being a flag. If bit 0 of the flag is set, secure memory has been requested. The handler should either return true to indicate that Libgcrypt should try again allocating memory or return false to let Libgcrypt use its default fatal error handler. @end deftypefun @deftp {Data type} gcry_handler_error_t This type is defined as: @code{void (*gcry_handler_error_t) (void *, int, const char *)} @end deftp @deftypefun void gcry_set_fatalerror_handler (gcry_handler_error_t @var{func_error}, void *@var{cb_data}) This function registers @var{func_error} as `error handler', which means that it will be called in error conditions. @end deftypefun @node Logging handler @section Logging handler @deftp {Data type} gcry_handler_log_t This type is defined as: @code{void (*gcry_handler_log_t) (void *, int, const char *, va_list)} @end deftp @deftypefun void gcry_set_log_handler (gcry_handler_log_t @var{func_log}, void *@var{cb_data}) This function registers @var{func_log} as `logging handler', which means that it will be called in case Libgcrypt wants to log a message. This function may and should be used prior to calling @code{gcry_check_version}. @end deftypefun @c ********************************************************** @c ******************* Ciphers **************************** @c ********************************************************** @c @include cipher-ref.texi @node Symmetric cryptography @chapter Symmetric cryptography The cipher functions are used for symmetrical cryptography, i.e. cryptography using a shared key. The programming model follows an open/process/close paradigm and is in that similar to other building blocks provided by Libgcrypt. @menu * Available ciphers:: List of ciphers supported by the library. * Available cipher modes:: List of cipher modes supported by the library. * Working with cipher handles:: How to perform operations related to cipher handles. * General cipher functions:: General cipher functions independent of cipher handles. @end menu @node Available ciphers @section Available ciphers @table @code @item GCRY_CIPHER_NONE This is not a real algorithm but used by some functions as error return. The value always evaluates to false. @item GCRY_CIPHER_IDEA @cindex IDEA This is the IDEA algorithm. @item GCRY_CIPHER_3DES @cindex 3DES @cindex Triple-DES @cindex DES-EDE @cindex Digital Encryption Standard Triple-DES with 3 Keys as EDE. The key size of this algorithm is 168 but you have to pass 192 bits because the most significant bits of each byte are ignored. @item GCRY_CIPHER_CAST5 @cindex CAST5 CAST128-5 block cipher algorithm. The key size is 128 bits. @item GCRY_CIPHER_BLOWFISH @cindex Blowfish The blowfish algorithm. The current implementation allows only for a key size of 128 bits. @item GCRY_CIPHER_SAFER_SK128 Reserved and not currently implemented. @item GCRY_CIPHER_DES_SK Reserved and not currently implemented. @item GCRY_CIPHER_AES @itemx GCRY_CIPHER_AES128 @itemx GCRY_CIPHER_RIJNDAEL @itemx GCRY_CIPHER_RIJNDAEL128 @cindex Rijndael @cindex AES @cindex Advanced Encryption Standard AES (Rijndael) with a 128 bit key. @item GCRY_CIPHER_AES192 @itemx GCRY_CIPHER_RIJNDAEL192 AES (Rijndael) with a 192 bit key. @item GCRY_CIPHER_AES256 @itemx GCRY_CIPHER_RIJNDAEL256 AES (Rijndael) with a 256 bit key. @item GCRY_CIPHER_TWOFISH @cindex Twofish The Twofish algorithm with a 256 bit key. @item GCRY_CIPHER_TWOFISH128 The Twofish algorithm with a 128 bit key. @item GCRY_CIPHER_ARCFOUR @cindex Arcfour @cindex RC4 An algorithm which is 100% compatible with RSA Inc.'s RC4 algorithm. Note that this is a stream cipher and must be used very carefully to avoid a couple of weaknesses. @item GCRY_CIPHER_DES @cindex DES Standard DES with a 56 bit key. You need to pass 64 bit but the high bits of each byte are ignored. Note, that this is a weak algorithm which can be broken in reasonable time using a brute force approach. @item GCRY_CIPHER_SERPENT128 @itemx GCRY_CIPHER_SERPENT192 @itemx GCRY_CIPHER_SERPENT256 @cindex Serpent The Serpent cipher from the AES contest. @item GCRY_CIPHER_RFC2268_40 @itemx GCRY_CIPHER_RFC2268_128 @cindex rfc-2268 @cindex RC2 Ron's Cipher 2 in the 40 and 128 bit variants. @item GCRY_CIPHER_SEED @cindex Seed (cipher) A 128 bit cipher as described by RFC4269. @item GCRY_CIPHER_CAMELLIA128 @itemx GCRY_CIPHER_CAMELLIA192 @itemx GCRY_CIPHER_CAMELLIA256 @cindex Camellia The Camellia cipher by NTT. See @uref{http://info.isl.ntt.co.jp/@/crypt/@/eng/@/camellia/@/specifications.html}. @item GCRY_CIPHER_SALSA20 @cindex Salsa20 This is the Salsa20 stream cipher. @item GCRY_CIPHER_SALSA20R12 @cindex Salsa20/12 This is the Salsa20/12 - reduced round version of Salsa20 stream cipher. @item GCRY_CIPHER_GOST28147 @cindex GOST 28147-89 The GOST 28147-89 cipher, defined in the respective GOST standard. Translation of this GOST into English is provided in the RFC-5830. @item GCRY_CIPHER_CHACHA20 @cindex ChaCha20 This is the ChaCha20 stream cipher. @end table @node Available cipher modes @section Available cipher modes @table @code @item GCRY_CIPHER_MODE_NONE No mode specified. This should not be used. The only exception is that if Libgcrypt is not used in FIPS mode and if any debug flag has been set, this mode may be used to bypass the actual encryption. @item GCRY_CIPHER_MODE_ECB @cindex ECB, Electronic Codebook mode Electronic Codebook mode. @item GCRY_CIPHER_MODE_CFB @item GCRY_CIPHER_MODE_CFB8 @cindex CFB, Cipher Feedback mode Cipher Feedback mode. For GCRY_CIPHER_MODE_CFB the shift size equals the block size of the cipher (e.g. for AES it is CFB-128). For GCRY_CIPHER_MODE_CFB8 the shift size is 8 bit but that variant is not yet available. @item GCRY_CIPHER_MODE_CBC @cindex CBC, Cipher Block Chaining mode Cipher Block Chaining mode. @item GCRY_CIPHER_MODE_STREAM Stream mode, only to be used with stream cipher algorithms. @item GCRY_CIPHER_MODE_OFB @cindex OFB, Output Feedback mode Output Feedback mode. @item GCRY_CIPHER_MODE_CTR @cindex CTR, Counter mode Counter mode. @item GCRY_CIPHER_MODE_AESWRAP @cindex AES-Wrap mode This mode is used to implement the AES-Wrap algorithm according to RFC-3394. It may be used with any 128 bit block length algorithm, however the specs require one of the 3 AES algorithms. These special conditions apply: If @code{gcry_cipher_setiv} has not been used the standard IV is used; if it has been used the lower 64 bit of the IV are used as the Alternative Initial Value. On encryption the provided output buffer must be 64 bit (8 byte) larger than the input buffer; in-place encryption is still allowed. On decryption the output buffer may be specified 64 bit (8 byte) shorter than then input buffer. As per specs the input length must be at least 128 bits and the length must be a multiple of 64 bits. @item GCRY_CIPHER_MODE_CCM @cindex CCM, Counter with CBC-MAC mode Counter with CBC-MAC mode is an Authenticated Encryption with Associated Data (AEAD) block cipher mode, which is specified in 'NIST Special Publication 800-38C' and RFC 3610. @item GCRY_CIPHER_MODE_GCM @cindex GCM, Galois/Counter Mode Galois/Counter Mode (GCM) is an Authenticated Encryption with Associated Data (AEAD) block cipher mode, which is specified in 'NIST Special Publication 800-38D'. @item GCRY_CIPHER_MODE_POLY1305 @cindex Poly1305 based AEAD mode with ChaCha20 This mode implements the Poly1305 Authenticated Encryption with Associated Data (AEAD) mode according to RFC-7539. This mode can be used with ChaCha20 stream cipher. @item GCRY_CIPHER_MODE_OCB @cindex OCB, OCB3 OCB is an Authenticated Encryption with Associated Data (AEAD) block cipher mode, which is specified in RFC-7253. Supported tag lengths are 128, 96, and 64 bit with the default being 128 bit. To switch to a different tag length @code{gcry_cipher_ctl} using the command @code{GCRYCTL_SET_TAGLEN} and the address of an @code{int} variable set to 12 (for 96 bit) or 8 (for 64 bit) provided for the @code{buffer} argument and @code{sizeof(int)} for @code{buflen}. Note that the use of @code{gcry_cipher_final} is required. @item GCRY_CIPHER_MODE_XTS @cindex XTS, XTS mode XEX-based tweaked-codebook mode with ciphertext stealing (XTS) mode is used to implement the AES-XTS as specified in IEEE 1619 Standard Architecture for Encrypted Shared Storage Media and NIST SP800-38E. The XTS mode requires doubling key-length, for example, using 512-bit key with AES-256 (@code{GCRY_CIPHER_AES256}). The 128-bit tweak value is feed to XTS mode as little-endian byte array using @code{gcry_cipher_setiv} function. When encrypting or decrypting, full-sized data unit buffers needs to be passed to @code{gcry_cipher_encrypt} or @code{gcry_cipher_decrypt}. The tweak value is automatically incremented after each call of @code{gcry_cipher_encrypt} and @code{gcry_cipher_decrypt}. Auto-increment allows avoiding need of setting IV between processing of sequential data units. +@item GCRY_CIPHER_MODE_EAX +@cindex EAX, EAX mode +EAX is an Authenticated Encryption with Associated Data (AEAD) block cipher +mode by Bellare, Rogaway, and Wagner (see +@uref{http://web.cs.ucdavis.edu/~rogaway/papers/eax.html}). + @end table @node Working with cipher handles @section Working with cipher handles To use a cipher algorithm, you must first allocate an according handle. This is to be done using the open function: @deftypefun gcry_error_t gcry_cipher_open (gcry_cipher_hd_t *@var{hd}, int @var{algo}, int @var{mode}, unsigned int @var{flags}) This function creates the context handle required for most of the other cipher functions and returns a handle to it in `hd'. In case of an error, an according error code is returned. The ID of algorithm to use must be specified via @var{algo}. See @xref{Available ciphers}, for a list of supported ciphers and the according constants. Besides using the constants directly, the function @code{gcry_cipher_map_name} may be used to convert the textual name of an algorithm into the according numeric ID. The cipher mode to use must be specified via @var{mode}. See @xref{Available cipher modes}, for a list of supported cipher modes and the according constants. Note that some modes are incompatible with some algorithms - in particular, stream mode (@code{GCRY_CIPHER_MODE_STREAM}) only works with stream ciphers. Poly1305 AEAD mode (@code{GCRY_CIPHER_MODE_POLY1305}) only works with ChaCha20 stream cipher. The block cipher modes (@code{GCRY_CIPHER_MODE_ECB}, @code{GCRY_CIPHER_MODE_CBC}, -@code{GCRY_CIPHER_MODE_CFB}, @code{GCRY_CIPHER_MODE_OFB} and -@code{GCRY_CIPHER_MODE_CTR}) will work with any block cipher -algorithm. GCM mode (@code{GCRY_CIPHER_MODE_CCM}), CCM mode -(@code{GCRY_CIPHER_MODE_GCM}), OCB mode (@code{GCRY_CIPHER_MODE_OCB}), -and XTS mode (@code{GCRY_CIPHER_MODE_XTS}) will only work -with block cipher algorithms which have the block size of 16 bytes. +@code{GCRY_CIPHER_MODE_CFB}, @code{GCRY_CIPHER_MODE_OFB}, +@code{GCRY_CIPHER_MODE_CTR} and @code{GCRY_CIPHER_MODE_EAX}) will work +with any block cipher algorithm. GCM mode +(@code{GCRY_CIPHER_MODE_CCM}), CCM mode (@code{GCRY_CIPHER_MODE_GCM}), +OCB mode (@code{GCRY_CIPHER_MODE_OCB}), and XTS mode +(@code{GCRY_CIPHER_MODE_XTS}) will only work with block cipher +algorithms which have the block size of 16 bytes. The third argument @var{flags} can either be passed as @code{0} or as the bit-wise OR of the following constants. @table @code @item GCRY_CIPHER_SECURE Make sure that all operations are allocated in secure memory. This is useful when the key material is highly confidential. @item GCRY_CIPHER_ENABLE_SYNC @cindex sync mode (OpenPGP) This flag enables the CFB sync mode, which is a special feature of Libgcrypt's CFB mode implementation to allow for OpenPGP's CFB variant. See @code{gcry_cipher_sync}. @item GCRY_CIPHER_CBC_CTS @cindex cipher text stealing Enable cipher text stealing (CTS) for the CBC mode. Cannot be used simultaneous as GCRY_CIPHER_CBC_MAC. CTS mode makes it possible to transform data of almost arbitrary size (only limitation is that it must be greater than the algorithm's block size). @item GCRY_CIPHER_CBC_MAC @cindex CBC-MAC Compute CBC-MAC keyed checksums. This is the same as CBC mode, but only output the last block. Cannot be used simultaneous as GCRY_CIPHER_CBC_CTS. @end table @end deftypefun Use the following function to release an existing handle: @deftypefun void gcry_cipher_close (gcry_cipher_hd_t @var{h}) This function releases the context created by @code{gcry_cipher_open}. It also zeroises all sensitive information associated with this cipher handle. @end deftypefun In order to use a handle for performing cryptographic operations, a `key' has to be set first: @deftypefun gcry_error_t gcry_cipher_setkey (gcry_cipher_hd_t @var{h}, const void *@var{k}, size_t @var{l}) Set the key @var{k} used for encryption or decryption in the context denoted by the handle @var{h}. The length @var{l} (in bytes) of the key @var{k} must match the required length of the algorithm set for this context or be in the allowed range for algorithms with variable key size. The function checks this and returns an error if there is a problem. A caller should always check for an error. @end deftypefun Most crypto modes requires an initialization vector (IV), which usually is a non-secret random string acting as a kind of salt value. The CTR mode requires a counter, which is also similar to a salt value. To set the IV or CTR, use these functions: @deftypefun gcry_error_t gcry_cipher_setiv (gcry_cipher_hd_t @var{h}, const void *@var{k}, size_t @var{l}) Set the initialization vector used for encryption or decryption. The vector is passed as the buffer @var{K} of length @var{l} bytes and copied to internal data structures. The function checks that the IV matches the requirement of the selected algorithm and mode. This function is also used by AEAD modes and with Salsa20 and ChaCha20 stream ciphers to set or update the required nonce. In these cases it needs to be called after setting the key. @end deftypefun @deftypefun gcry_error_t gcry_cipher_setctr (gcry_cipher_hd_t @var{h}, const void *@var{c}, size_t @var{l}) Set the counter vector used for encryption or decryption. The counter is passed as the buffer @var{c} of length @var{l} bytes and copied to internal data structures. The function checks that the counter matches the requirement of the selected algorithm (i.e., it must be the same size as the block size). @end deftypefun @deftypefun gcry_error_t gcry_cipher_reset (gcry_cipher_hd_t @var{h}) Set the given handle's context back to the state it had after the last call to gcry_cipher_setkey and clear the initialization vector. Note that gcry_cipher_reset is implemented as a macro. @end deftypefun Authenticated Encryption with Associated Data (AEAD) block cipher modes require the handling of the authentication tag and the additional authenticated data, which can be done by using the following functions: @deftypefun gcry_error_t gcry_cipher_authenticate (gcry_cipher_hd_t @var{h}, const void *@var{abuf}, size_t @var{abuflen}) Process the buffer @var{abuf} of length @var{abuflen} as the additional authenticated data (AAD) for AEAD cipher modes. @end deftypefun @deftypefun {gcry_error_t} gcry_cipher_gettag @ (@w{gcry_cipher_hd_t @var{h}}, @ @w{void *@var{tag}}, @w{size_t @var{taglen}}) This function is used to read the authentication tag after encryption. The function finalizes and outputs the authentication tag to the buffer @var{tag} of length @var{taglen} bytes. Depending on the used mode certain restrictions for @var{taglen} are enforced: For GCM @var{taglen} must be at least 16 or one of the allowed truncated lengths (4, 8, 12, 13, 14, or 15). @end deftypefun @deftypefun {gcry_error_t} gcry_cipher_checktag @ (@w{gcry_cipher_hd_t @var{h}}, @ @w{const void *@var{tag}}, @w{size_t @var{taglen}}) Check the authentication tag after decryption. The authentication tag is passed as the buffer @var{tag} of length @var{taglen} bytes and compared to internal authentication tag computed during decryption. Error code @code{GPG_ERR_CHECKSUM} is returned if the authentication tag in the buffer @var{tag} does not match the authentication tag calculated during decryption. Depending on the used mode certain restrictions for @var{taglen} are enforced: For GCM @var{taglen} must either be 16 or one of the allowed truncated lengths (4, 8, 12, 13, 14, or 15). @end deftypefun The actual encryption and decryption is done by using one of the following functions. They may be used as often as required to process all the data. @deftypefun gcry_error_t gcry_cipher_encrypt (gcry_cipher_hd_t @var{h}, unsigned char *{out}, size_t @var{outsize}, const unsigned char *@var{in}, size_t @var{inlen}) @code{gcry_cipher_encrypt} is used to encrypt the data. This function can either work in place or with two buffers. It uses the cipher context already setup and described by the handle @var{h}. There are 2 ways to use the function: If @var{in} is passed as @code{NULL} and @var{inlen} is @code{0}, in-place encryption of the data in @var{out} of length @var{outsize} takes place. With @var{in} being not @code{NULL}, @var{inlen} bytes are encrypted to the buffer @var{out} which must have at least a size of @var{inlen}. @var{outsize} must be set to the allocated size of @var{out}, so that the function can check that there is sufficient space. Note that overlapping buffers are not allowed. Depending on the selected algorithms and encryption mode, the length of the buffers must be a multiple of the block size. Some encryption modes require that @code{gcry_cipher_final} is used before the final data chunk is passed to this function. The function returns @code{0} on success or an error code. @end deftypefun @deftypefun gcry_error_t gcry_cipher_decrypt (gcry_cipher_hd_t @var{h}, unsigned char *{out}, size_t @var{outsize}, const unsigned char *@var{in}, size_t @var{inlen}) @code{gcry_cipher_decrypt} is used to decrypt the data. This function can either work in place or with two buffers. It uses the cipher context already setup and described by the handle @var{h}. There are 2 ways to use the function: If @var{in} is passed as @code{NULL} and @var{inlen} is @code{0}, in-place decryption of the data in @var{out} or length @var{outsize} takes place. With @var{in} being not @code{NULL}, @var{inlen} bytes are decrypted to the buffer @var{out} which must have at least a size of @var{inlen}. @var{outsize} must be set to the allocated size of @var{out}, so that the function can check that there is sufficient space. Note that overlapping buffers are not allowed. Depending on the selected algorithms and encryption mode, the length of the buffers must be a multiple of the block size. Some encryption modes require that @code{gcry_cipher_final} is used before the final data chunk is passed to this function. The function returns @code{0} on success or an error code. @end deftypefun The OCB mode features integrated padding and must thus be told about the end of the input data. This is done with: @deftypefun gcry_error_t gcry_cipher_final (gcry_cipher_hd_t @var{h}) Set a flag in the context to tell the encrypt and decrypt functions that their next call will provide the last chunk of data. Only the first call to this function has an effect and only for modes which support it. Checking the error is in general not necessary. This is implemented as a macro. @end deftypefun OpenPGP (as defined in RFC-4880) requires a special sync operation in some places. The following function is used for this: @deftypefun gcry_error_t gcry_cipher_sync (gcry_cipher_hd_t @var{h}) Perform the OpenPGP sync operation on context @var{h}. Note that this is a no-op unless the context was created with the flag @code{GCRY_CIPHER_ENABLE_SYNC} @end deftypefun Some of the described functions are implemented as macros utilizing a catch-all control function. This control function is rarely used directly but there is nothing which would inhibit it: @deftypefun gcry_error_t gcry_cipher_ctl (gcry_cipher_hd_t @var{h}, int @var{cmd}, void *@var{buffer}, size_t @var{buflen}) @code{gcry_cipher_ctl} controls various aspects of the cipher module and specific cipher contexts. Usually some more specialized functions or macros are used for this purpose. The semantics of the function and its parameters depends on the the command @var{cmd} and the passed context handle @var{h}. Please see the comments in the source code (@code{src/global.c}) for details. @end deftypefun @deftypefun gcry_error_t gcry_cipher_info (gcry_cipher_hd_t @var{h}, @ int @var{what}, void *@var{buffer}, size_t *@var{nbytes}) @code{gcry_cipher_info} is used to retrieve various information about a cipher context or the cipher module in general. @c begin constants for gcry_cipher_info @table @code @item GCRYCTL_GET_TAGLEN: Return the length of the tag for an AE algorithm mode. An error is returned for modes which do not support a tag. @var{buffer} must be given as NULL. On success the result is stored @var{nbytes}. The taglen is returned in bytes. @end table @c end constants for gcry_cipher_info @end deftypefun @node General cipher functions @section General cipher functions To work with the algorithms, several functions are available to map algorithm names to the internal identifiers, as well as ways to retrieve information about an algorithm or the current cipher context. @deftypefun gcry_error_t gcry_cipher_algo_info (int @var{algo}, int @var{what}, void *@var{buffer}, size_t *@var{nbytes}) This function is used to retrieve information on a specific algorithm. You pass the cipher algorithm ID as @var{algo} and the type of information requested as @var{what}. The result is either returned as the return code of the function or copied to the provided @var{buffer} whose allocated length must be available in an integer variable with the address passed in @var{nbytes}. This variable will also receive the actual used length of the buffer. Here is a list of supported codes for @var{what}: @c begin constants for gcry_cipher_algo_info @table @code @item GCRYCTL_GET_KEYLEN: Return the length of the key. If the algorithm supports multiple key lengths, the maximum supported value is returned. The length is returned as number of octets (bytes) and not as number of bits in @var{nbytes}; @var{buffer} must be zero. Note that it is usually better to use the convenience function @code{gcry_cipher_get_algo_keylen}. @item GCRYCTL_GET_BLKLEN: Return the block length of the algorithm. The length is returned as a number of octets in @var{nbytes}; @var{buffer} must be zero. Note that it is usually better to use the convenience function @code{gcry_cipher_get_algo_blklen}. @item GCRYCTL_TEST_ALGO: Returns @code{0} when the specified algorithm is available for use. @var{buffer} and @var{nbytes} must be zero. @end table @c end constants for gcry_cipher_algo_info @end deftypefun @c end gcry_cipher_algo_info @deftypefun size_t gcry_cipher_get_algo_keylen (@var{algo}) This function returns length of the key for algorithm @var{algo}. If the algorithm supports multiple key lengths, the maximum supported key length is returned. On error @code{0} is returned. The key length is returned as number of octets. This is a convenience functions which should be preferred over @code{gcry_cipher_algo_info} because it allows for proper type checking. @end deftypefun @c end gcry_cipher_get_algo_keylen @deftypefun size_t gcry_cipher_get_algo_blklen (int @var{algo}) This functions returns the block-length of the algorithm @var{algo} counted in octets. On error @code{0} is returned. This is a convenience functions which should be preferred over @code{gcry_cipher_algo_info} because it allows for proper type checking. @end deftypefun @c end gcry_cipher_get_algo_blklen @deftypefun {const char *} gcry_cipher_algo_name (int @var{algo}) @code{gcry_cipher_algo_name} returns a string with the name of the cipher algorithm @var{algo}. If the algorithm is not known or another error occurred, the string @code{"?"} is returned. This function should not be used to test for the availability of an algorithm. @end deftypefun @deftypefun int gcry_cipher_map_name (const char *@var{name}) @code{gcry_cipher_map_name} returns the algorithm identifier for the cipher algorithm described by the string @var{name}. If this algorithm is not available @code{0} is returned. @end deftypefun @deftypefun int gcry_cipher_mode_from_oid (const char *@var{string}) Return the cipher mode associated with an @acronym{ASN.1} object identifier. The object identifier is expected to be in the @acronym{IETF}-style dotted decimal notation. The function returns @code{0} for an unknown object identifier or when no mode is associated with it. @end deftypefun @c ********************************************************** @c ******************* Public Key ************************* @c ********************************************************** @node Public Key cryptography @chapter Public Key cryptography Public key cryptography, also known as asymmetric cryptography, is an easy way for key management and to provide digital signatures. Libgcrypt provides two completely different interfaces to public key cryptography, this chapter explains the one based on S-expressions. @menu * Available algorithms:: Algorithms supported by the library. * Used S-expressions:: Introduction into the used S-expression. * Cryptographic Functions:: Functions for performing the cryptographic actions. * General public-key related Functions:: General functions, not implementing any cryptography. @end menu @node Available algorithms @section Available algorithms Libgcrypt supports the RSA (Rivest-Shamir-Adleman) algorithms as well as DSA (Digital Signature Algorithm) and Elgamal. The versatile interface allows to add more algorithms in the future. @node Used S-expressions @section Used S-expressions Libgcrypt's API for asymmetric cryptography is based on data structures called S-expressions (see @uref{http://people.csail.mit.edu/@/rivest/@/sexp.html}) and does not work with contexts as most of the other building blocks of Libgcrypt do. @noindent The following information are stored in S-expressions: @itemize @item keys @item plain text data @item encrypted data @item signatures @end itemize @noindent To describe how Libgcrypt expect keys, we use examples. Note that words in @ifnottex uppercase @end ifnottex @iftex italics @end iftex indicate parameters whereas lowercase words are literals. Note that all MPI (multi-precision-integers) values are expected to be in @code{GCRYMPI_FMT_USG} format. An easy way to create S-expressions is by using @code{gcry_sexp_build} which allows to pass a string with printf-like escapes to insert MPI values. @menu * RSA key parameters:: Parameters used with an RSA key. * DSA key parameters:: Parameters used with a DSA key. * ECC key parameters:: Parameters used with ECC keys. @end menu @node RSA key parameters @subsection RSA key parameters @noindent An RSA private key is described by this S-expression: @example (private-key (rsa (n @var{n-mpi}) (e @var{e-mpi}) (d @var{d-mpi}) (p @var{p-mpi}) (q @var{q-mpi}) (u @var{u-mpi}))) @end example @noindent An RSA public key is described by this S-expression: @example (public-key (rsa (n @var{n-mpi}) (e @var{e-mpi}))) @end example @table @var @item n-mpi RSA public modulus @math{n}. @item e-mpi RSA public exponent @math{e}. @item d-mpi RSA secret exponent @math{d = e^{-1} \bmod (p-1)(q-1)}. @item p-mpi RSA secret prime @math{p}. @item q-mpi RSA secret prime @math{q} with @math{p < q}. @item u-mpi Multiplicative inverse @math{u = p^{-1} \bmod q}. @end table For signing and decryption the parameters @math{(p, q, u)} are optional but greatly improve the performance. Either all of these optional parameters must be given or none of them. They are mandatory for gcry_pk_testkey. Note that OpenSSL uses slighly different parameters: @math{q < p} and @math{u = q^{-1} \bmod p}. To use these parameters you will need to swap the values and recompute @math{u}. Here is example code to do this: @example if (gcry_mpi_cmp (p, q) > 0) @{ gcry_mpi_swap (p, q); gcry_mpi_invm (u, p, q); @} @end example @node DSA key parameters @subsection DSA key parameters @noindent A DSA private key is described by this S-expression: @example (private-key (dsa (p @var{p-mpi}) (q @var{q-mpi}) (g @var{g-mpi}) (y @var{y-mpi}) (x @var{x-mpi}))) @end example @table @var @item p-mpi DSA prime @math{p}. @item q-mpi DSA group order @math{q} (which is a prime divisor of @math{p-1}). @item g-mpi DSA group generator @math{g}. @item y-mpi DSA public key value @math{y = g^x \bmod p}. @item x-mpi DSA secret exponent x. @end table The public key is similar with "private-key" replaced by "public-key" and no @var{x-mpi}. @node ECC key parameters @subsection ECC key parameters @anchor{ecc_keyparam} @noindent An ECC private key is described by this S-expression: @example (private-key (ecc (p @var{p-mpi}) (a @var{a-mpi}) (b @var{b-mpi}) (g @var{g-point}) (n @var{n-mpi}) (q @var{q-point}) (d @var{d-mpi}))) @end example @table @var @item p-mpi Prime specifying the field @math{GF(p)}. @item a-mpi @itemx b-mpi The two coefficients of the Weierstrass equation @math{y^2 = x^3 + ax + b} @item g-point Base point @math{g}. @item n-mpi Order of @math{g} @item q-point The point representing the public key @math{Q = dG}. @item d-mpi The private key @math{d} @end table All point values are encoded in standard format; Libgcrypt does in general only support uncompressed points, thus the first byte needs to be @code{0x04}. However ``EdDSA'' describes its own compression scheme which is used by default; the non-standard first byte @code{0x40} may optionally be used to explicit flag the use of the algorithm’s native compression method. The public key is similar with "private-key" replaced by "public-key" and no @var{d-mpi}. If the domain parameters are well-known, the name of this curve may be used. For example @example (private-key (ecc (curve "NIST P-192") (q @var{q-point}) (d @var{d-mpi}))) @end example Note that @var{q-point} is optional for a private key. The @code{curve} parameter may be given in any case and is used to replace missing parameters. @noindent Currently implemented curves are: @table @code @item NIST P-192 @itemx 1.2.840.10045.3.1.1 @itemx prime192v1 @itemx secp192r1 The NIST 192 bit curve, its OID, X9.62 and SECP aliases. @item NIST P-224 @itemx secp224r1 The NIST 224 bit curve and its SECP alias. @item NIST P-256 @itemx 1.2.840.10045.3.1.7 @itemx prime256v1 @itemx secp256r1 The NIST 256 bit curve, its OID, X9.62 and SECP aliases. @item NIST P-384 @itemx secp384r1 The NIST 384 bit curve and its SECP alias. @item NIST P-521 @itemx secp521r1 The NIST 521 bit curve and its SECP alias. @end table As usual the OIDs may optionally be prefixed with the string @code{OID.} or @code{oid.}. @node Cryptographic Functions @section Cryptographic Functions @noindent Some functions operating on S-expressions support `flags' to influence the operation. These flags have to be listed in a sub-S-expression named `flags'. Flag names are case-sensitive. The following flags are known: @table @code @item comp @itemx nocomp @cindex comp @cindex nocomp If supported by the algorithm and curve the @code{comp} flag requests that points are returned in compact (compressed) representation. The @code{nocomp} flag requests that points are returned with full coordinates. The default depends on the the algorithm and curve. The compact representation requires a small overhead before a point can be used but halves the size of a to be conveyed public key. If @code{comp} is used with the ``EdDSA'' algorithm the key generation prefix the public key with a @code{0x40} byte. @item pkcs1 @cindex PKCS1 Use PKCS#1 block type 2 padding for encryption, block type 1 padding for signing. @item oaep @cindex OAEP Use RSA-OAEP padding for encryption. @item pss @cindex PSS Use RSA-PSS padding for signing. @item eddsa @cindex EdDSA Use the EdDSA scheme signing instead of the default ECDSA algorithm. Note that the EdDSA uses a special form of the public key. @item rfc6979 @cindex RFC6979 For DSA and ECDSA use a deterministic scheme for the k parameter. @item no-blinding @cindex no-blinding Do not use a technique called `blinding', which is used by default in order to prevent leaking of secret information. Blinding is only implemented by RSA, but it might be implemented by other algorithms in the future as well, when necessary. @item param @cindex param For ECC key generation also return the domain parameters. For ECC signing and verification override default parameters by provided domain parameters of the public or private key. @item transient-key @cindex transient-key This flag is only meaningful for RSA, DSA, and ECC key generation. If given the key is created using a faster and a somewhat less secure random number generator. This flag may be used for keys which are only used for a short time or per-message and do not require full cryptographic strength. @item no-keytest @cindex no-keytest This flag skips internal failsafe tests to assert that a generated key is properly working. It currently has an effect only for standard ECC key generation. It is mostly useful along with transient-key to achieve fastest ECC key generation. @item use-x931 @cindex X9.31 Force the use of the ANSI X9.31 key generation algorithm instead of the default algorithm. This flag is only meaningful for RSA key generation and usually not required. Note that this algorithm is implicitly used if either @code{derive-parms} is given or Libgcrypt is in FIPS mode. @item use-fips186 @cindex FIPS 186 Force the use of the FIPS 186 key generation algorithm instead of the default algorithm. This flag is only meaningful for DSA and usually not required. Note that this algorithm is implicitly used if either @code{derive-parms} is given or Libgcrypt is in FIPS mode. As of now FIPS 186-2 is implemented; after the approval of FIPS 186-3 the code will be changed to implement 186-3. @item use-fips186-2 @cindex FIPS 186-2 Force the use of the FIPS 186-2 key generation algorithm instead of the default algorithm. This algorithm is slightly different from FIPS 186-3 and allows only 1024 bit keys. This flag is only meaningful for DSA and only required for FIPS testing backward compatibility. @end table @noindent Now that we know the key basics, we can carry on and explain how to encrypt and decrypt data. In almost all cases the data is a random session key which is in turn used for the actual encryption of the real data. There are 2 functions to do this: @deftypefun gcry_error_t gcry_pk_encrypt (@w{gcry_sexp_t *@var{r_ciph},} @w{gcry_sexp_t @var{data},} @w{gcry_sexp_t @var{pkey}}) Obviously a public key must be provided for encryption. It is expected as an appropriate S-expression (see above) in @var{pkey}. The data to be encrypted can either be in the simple old format, which is a very simple S-expression consisting only of one MPI, or it may be a more complex S-expression which also allows to specify flags for operation, like e.g. padding rules. @noindent If you don't want to let Libgcrypt handle the padding, you must pass an appropriate MPI using this expression for @var{data}: @example (data (flags raw) (value @var{mpi})) @end example @noindent This has the same semantics as the old style MPI only way. @var{MPI} is the actual data, already padded appropriate for your protocol. Most RSA based systems however use PKCS#1 padding and so you can use this S-expression for @var{data}: @example (data (flags pkcs1) (value @var{block})) @end example @noindent Here, the "flags" list has the "pkcs1" flag which let the function know that it should provide PKCS#1 block type 2 padding. The actual data to be encrypted is passed as a string of octets in @var{block}. The function checks that this data actually can be used with the given key, does the padding and encrypts it. If the function could successfully perform the encryption, the return value will be 0 and a new S-expression with the encrypted result is allocated and assigned to the variable at the address of @var{r_ciph}. The caller is responsible to release this value using @code{gcry_sexp_release}. In case of an error, an error code is returned and @var{r_ciph} will be set to @code{NULL}. @noindent The returned S-expression has this format when used with RSA: @example (enc-val (rsa (a @var{a-mpi}))) @end example @noindent Where @var{a-mpi} is an MPI with the result of the RSA operation. When using the Elgamal algorithm, the return value will have this format: @example (enc-val (elg (a @var{a-mpi}) (b @var{b-mpi}))) @end example @noindent Where @var{a-mpi} and @var{b-mpi} are MPIs with the result of the Elgamal encryption operation. @end deftypefun @c end gcry_pk_encrypt @deftypefun gcry_error_t gcry_pk_decrypt (@w{gcry_sexp_t *@var{r_plain},} @w{gcry_sexp_t @var{data},} @w{gcry_sexp_t @var{skey}}) Obviously a private key must be provided for decryption. It is expected as an appropriate S-expression (see above) in @var{skey}. The data to be decrypted must match the format of the result as returned by @code{gcry_pk_encrypt}, but should be enlarged with a @code{flags} element: @example (enc-val (flags) (elg (a @var{a-mpi}) (b @var{b-mpi}))) @end example @noindent This function does not remove padding from the data by default. To let Libgcrypt remove padding, give a hint in `flags' telling which padding method was used when encrypting: @example (flags @var{padding-method}) @end example @noindent Currently @var{padding-method} is either @code{pkcs1} for PKCS#1 block type 2 padding, or @code{oaep} for RSA-OAEP padding. @noindent The function returns 0 on success or an error code. The variable at the address of @var{r_plain} will be set to NULL on error or receive the decrypted value on success. The format of @var{r_plain} is a simple S-expression part (i.e. not a valid one) with just one MPI if there was no @code{flags} element in @var{data}; if at least an empty @code{flags} is passed in @var{data}, the format is: @example (value @var{plaintext}) @end example @end deftypefun @c end gcry_pk_decrypt Another operation commonly performed using public key cryptography is signing data. In some sense this is even more important than encryption because digital signatures are an important instrument for key management. Libgcrypt supports digital signatures using 2 functions, similar to the encryption functions: @deftypefun gcry_error_t gcry_pk_sign (@w{gcry_sexp_t *@var{r_sig},} @w{gcry_sexp_t @var{data},} @w{gcry_sexp_t @var{skey}}) This function creates a digital signature for @var{data} using the private key @var{skey} and place it into the variable at the address of @var{r_sig}. @var{data} may either be the simple old style S-expression with just one MPI or a modern and more versatile S-expression which allows to let Libgcrypt handle padding: @example (data (flags pkcs1) (hash @var{hash-algo} @var{block})) @end example @noindent This example requests to sign the data in @var{block} after applying PKCS#1 block type 1 style padding. @var{hash-algo} is a string with the hash algorithm to be encoded into the signature, this may be any hash algorithm name as supported by Libgcrypt. Most likely, this will be "sha256" or "sha1". It is obvious that the length of @var{block} must match the size of that message digests; the function checks that this and other constraints are valid. @noindent If PKCS#1 padding is not required (because the caller does already provide a padded value), either the old format or better the following format should be used: @example (data (flags raw) (value @var{mpi})) @end example @noindent Here, the data to be signed is directly given as an @var{MPI}. @noindent For DSA the input data is expected in this format: @example (data (flags raw) (value @var{mpi})) @end example @noindent Here, the data to be signed is directly given as an @var{MPI}. It is expect that this MPI is the the hash value. For the standard DSA using a MPI is not a problem in regard to leading zeroes because the hash value is directly used as an MPI. For better standard conformance it would be better to explicit use a memory string (like with pkcs1) but that is currently not supported. However, for deterministic DSA as specified in RFC6979 this can't be used. Instead the following input is expected. @example (data (flags rfc6979) (hash @var{hash-algo} @var{block})) @end example Note that the provided hash-algo is used for the internal HMAC; it should match the hash-algo used to create @var{block}. @noindent The signature is returned as a newly allocated S-expression in @var{r_sig} using this format for RSA: @example (sig-val (rsa (s @var{s-mpi}))) @end example Where @var{s-mpi} is the result of the RSA sign operation. For DSA the S-expression returned is: @example (sig-val (dsa (r @var{r-mpi}) (s @var{s-mpi}))) @end example Where @var{r-mpi} and @var{s-mpi} are the result of the DSA sign operation. For Elgamal signing (which is slow, yields large numbers and probably is not as secure as the other algorithms), the same format is used with "elg" replacing "dsa"; for ECDSA signing, the same format is used with "ecdsa" replacing "dsa". For the EdDSA algorithm (cf. Ed25515) the required input parameters are: @example (data (flags eddsa) (hash-algo sha512) (value @var{message})) @end example Note that the @var{message} may be of any length; hashing is part of the algorithm. Using a large data block for @var{message} is not suggested; in that case the used protocol should better require that a hash of the message is used as input to the EdDSA algorithm. @end deftypefun @c end gcry_pk_sign @noindent The operation most commonly used is definitely the verification of a signature. Libgcrypt provides this function: @deftypefun gcry_error_t gcry_pk_verify (@w{gcry_sexp_t @var{sig}}, @w{gcry_sexp_t @var{data}}, @w{gcry_sexp_t @var{pkey}}) This is used to check whether the signature @var{sig} matches the @var{data}. The public key @var{pkey} must be provided to perform this verification. This function is similar in its parameters to @code{gcry_pk_sign} with the exceptions that the public key is used instead of the private key and that no signature is created but a signature, in a format as created by @code{gcry_pk_sign}, is passed to the function in @var{sig}. @noindent The result is 0 for success (i.e. the data matches the signature), or an error code where the most relevant code is @code{GCRY_ERR_BAD_SIGNATURE} to indicate that the signature does not match the provided data. @end deftypefun @c end gcry_pk_verify @node General public-key related Functions @section General public-key related Functions @noindent A couple of utility functions are available to retrieve the length of the key, map algorithm identifiers and perform sanity checks: @deftypefun {const char *} gcry_pk_algo_name (int @var{algo}) Map the public key algorithm id @var{algo} to a string representation of the algorithm name. For unknown algorithms this functions returns the string @code{"?"}. This function should not be used to test for the availability of an algorithm. @end deftypefun @deftypefun int gcry_pk_map_name (const char *@var{name}) Map the algorithm @var{name} to a public key algorithm Id. Returns 0 if the algorithm name is not known. @end deftypefun @deftypefun int gcry_pk_test_algo (int @var{algo}) Return 0 if the public key algorithm @var{algo} is available for use. Note that this is implemented as a macro. @end deftypefun @deftypefun {unsigned int} gcry_pk_get_nbits (gcry_sexp_t @var{key}) Return what is commonly referred as the key length for the given public or private in @var{key}. @end deftypefun @deftypefun {unsigned char *} gcry_pk_get_keygrip (@w{gcry_sexp_t @var{key}}, @w{unsigned char *@var{array}}) Return the so called "keygrip" which is the SHA-1 hash of the public key parameters expressed in a way depended on the algorithm. @var{array} must either provide space for 20 bytes or be @code{NULL}. In the latter case a newly allocated array of that size is returned. On success a pointer to the newly allocated space or to @var{array} is returned. @code{NULL} is returned to indicate an error which is most likely an unknown algorithm or one where a "keygrip" has not yet been defined. The function accepts public or secret keys in @var{key}. @end deftypefun @deftypefun gcry_error_t gcry_pk_testkey (gcry_sexp_t @var{key}) Return zero if the private key @var{key} is `sane', an error code otherwise. Note that it is not possible to check the `saneness' of a public key. @end deftypefun @deftypefun gcry_error_t gcry_pk_algo_info (@w{int @var{algo}}, @w{int @var{what}}, @w{void *@var{buffer}}, @w{size_t *@var{nbytes}}) Depending on the value of @var{what} return various information about the public key algorithm with the id @var{algo}. Note that the function returns @code{-1} on error and the actual error code must be retrieved using the function @code{gcry_errno}. The currently defined values for @var{what} are: @table @code @item GCRYCTL_TEST_ALGO: Return 0 if the specified algorithm is available for use. @var{buffer} must be @code{NULL}, @var{nbytes} may be passed as @code{NULL} or point to a variable with the required usage of the algorithm. This may be 0 for "don't care" or the bit-wise OR of these flags: @table @code @item GCRY_PK_USAGE_SIGN Algorithm is usable for signing. @item GCRY_PK_USAGE_ENCR Algorithm is usable for encryption. @end table Unless you need to test for the allowed usage, it is in general better to use the macro gcry_pk_test_algo instead. @item GCRYCTL_GET_ALGO_USAGE: Return the usage flags for the given algorithm. An invalid algorithm return 0. Disabled algorithms are ignored here because we want to know whether the algorithm is at all capable of a certain usage. @item GCRYCTL_GET_ALGO_NPKEY Return the number of elements the public key for algorithm @var{algo} consist of. Return 0 for an unknown algorithm. @item GCRYCTL_GET_ALGO_NSKEY Return the number of elements the private key for algorithm @var{algo} consist of. Note that this value is always larger than that of the public key. Return 0 for an unknown algorithm. @item GCRYCTL_GET_ALGO_NSIGN Return the number of elements a signature created with the algorithm @var{algo} consists of. Return 0 for an unknown algorithm or for an algorithm not capable of creating signatures. @item GCRYCTL_GET_ALGO_NENC Return the number of elements a encrypted message created with the algorithm @var{algo} consists of. Return 0 for an unknown algorithm or for an algorithm not capable of encryption. @end table @noindent Please note that parameters not required should be passed as @code{NULL}. @end deftypefun @c end gcry_pk_algo_info @deftypefun gcry_error_t gcry_pk_ctl (@w{int @var{cmd}}, @w{void *@var{buffer}}, @w{size_t @var{buflen}}) This is a general purpose function to perform certain control operations. @var{cmd} controls what is to be done. The return value is 0 for success or an error code. Currently supported values for @var{cmd} are: @table @code @item GCRYCTL_DISABLE_ALGO Disable the algorithm given as an algorithm id in @var{buffer}. @var{buffer} must point to an @code{int} variable with the algorithm id and @var{buflen} must have the value @code{sizeof (int)}. This function is not thread safe and should thus be used before any other threads are started. @end table @end deftypefun @c end gcry_pk_ctl @noindent Libgcrypt also provides a function to generate public key pairs: @deftypefun gcry_error_t gcry_pk_genkey (@w{gcry_sexp_t *@var{r_key}}, @w{gcry_sexp_t @var{parms}}) This function create a new public key pair using information given in the S-expression @var{parms} and stores the private and the public key in one new S-expression at the address given by @var{r_key}. In case of an error, @var{r_key} is set to @code{NULL}. The return code is 0 for success or an error code otherwise. @noindent Here is an example for @var{parms} to create an 2048 bit RSA key: @example (genkey (rsa (nbits 4:2048))) @end example @noindent To create an Elgamal key, substitute "elg" for "rsa" and to create a DSA key use "dsa". Valid ranges for the key length depend on the algorithms; all commonly used key lengths are supported. Currently supported parameters are: @table @code @item nbits This is always required to specify the length of the key. The argument is a string with a number in C-notation. The value should be a multiple of 8. Note that the S-expression syntax requires that a number is prefixed with its string length; thus the @code{4:} in the above example. @item curve @var{name} For ECC a named curve may be used instead of giving the number of requested bits. This allows to request a specific curve to override a default selection Libgcrypt would have taken if @code{nbits} has been given. The available names are listed with the description of the ECC public key parameters. @item rsa-use-e @var{value} This is only used with RSA to give a hint for the public exponent. The @var{value} will be used as a base to test for a usable exponent. Some values are special: @table @samp @item 0 Use a secure and fast value. This is currently the number 41. @item 1 Use a value as required by some crypto policies. This is currently the number 65537. @item 2 Reserved @item > 2 Use the given value. @end table @noindent If this parameter is not used, Libgcrypt uses for historic reasons 65537. @item qbits @var{n} This is only meanigful for DSA keys. If it is given the DSA key is generated with a Q parameyer of size @var{n} bits. If it is not given or zero Q is deduced from NBITS in this way: @table @samp @item 512 <= N <= 1024 Q = 160 @item N = 2048 Q = 224 @item N = 3072 Q = 256 @item N = 7680 Q = 384 @item N = 15360 Q = 512 @end table Note that in this case only the values for N, as given in the table, are allowed. When specifying Q all values of N in the range 512 to 15680 are valid as long as they are multiples of 8. @item domain @var{list} This is only meaningful for DLP algorithms. If specified keys are generated with domain parameters taken from this list. The exact format of this parameter depends on the actual algorithm. It is currently only implemented for DSA using this format: @example (genkey (dsa (domain (p @var{p-mpi}) (q @var{q-mpi}) (g @var{q-mpi})))) @end example @code{nbits} and @code{qbits} may not be specified because they are derived from the domain parameters. @item derive-parms @var{list} This is currently only implemented for RSA and DSA keys. It is not allowed to use this together with a @code{domain} specification. If given, it is used to derive the keys using the given parameters. If given for an RSA key the X9.31 key generation algorithm is used even if libgcrypt is not in FIPS mode. If given for a DSA key, the FIPS 186 algorithm is used even if libgcrypt is not in FIPS mode. @example (genkey (rsa (nbits 4:1024) (rsa-use-e 1:3) (derive-parms (Xp1 #1A1916DDB29B4EB7EB6732E128#) (Xp2 #192E8AAC41C576C822D93EA433#) (Xp #D8CD81F035EC57EFE822955149D3BFF70C53520D 769D6D76646C7A792E16EBD89FE6FC5B605A6493 39DFC925A86A4C6D150B71B9EEA02D68885F5009 B98BD984#) (Xq1 #1A5CF72EE770DE50CB09ACCEA9#) (Xq2 #134E4CAA16D2350A21D775C404#) (Xq #CC1092495D867E64065DEE3E7955F2EBC7D47A2D 7C9953388F97DDDC3E1CA19C35CA659EDC2FC325 6D29C2627479C086A699A49C4C9CEE7EF7BD1B34 321DE34A#)))) @end example @example (genkey (dsa (nbits 4:1024) (derive-parms (seed @var{seed-mpi})))) @end example @item flags @var{flaglist} This is preferred way to define flags. @var{flaglist} may contain any number of flags. See above for a specification of these flags. Here is an example on how to create a key using curve Ed25519 with the ECDSA signature algorithm. Note that the use of ECDSA with that curve is in general not recommended. @example (genkey (ecc (flags transient-key))) @end example @item transient-key @itemx use-x931 @itemx use-fips186 @itemx use-fips186-2 These are deprecated ways to set a flag with that name; see above for a description of each flag. @end table @c end table of parameters @noindent The key pair is returned in a format depending on the algorithm. Both private and public keys are returned in one container and may be accompanied by some miscellaneous information. @noindent Here are two examples; the first for Elgamal and the second for elliptic curve key generation: @example (key-data (public-key (elg (p @var{p-mpi}) (g @var{g-mpi}) (y @var{y-mpi}))) (private-key (elg (p @var{p-mpi}) (g @var{g-mpi}) (y @var{y-mpi}) (x @var{x-mpi}))) (misc-key-info (pm1-factors @var{n1 n2 ... nn})) @end example @example (key-data (public-key (ecc (curve Ed25519) (flags eddsa) (q @var{q-value}))) (private-key (ecc (curve Ed25519) (flags eddsa) (q @var{q-value}) (d @var{d-value})))) @end example @noindent As you can see, some of the information is duplicated, but this provides an easy way to extract either the public or the private key. Note that the order of the elements is not defined, e.g. the private key may be stored before the public key. @var{n1 n2 ... nn} is a list of prime numbers used to composite @var{p-mpi}; this is in general not a very useful information and only available if the key generation algorithm provides them. @end deftypefun @c end gcry_pk_genkey @noindent Future versions of Libgcrypt will have extended versions of the public key interfaced which will take an additional context to allow for pre-computations, special operations, and other optimization. As a first step a new function is introduced to help using the ECC algorithms in new ways: @deftypefun gcry_error_t gcry_pubkey_get_sexp (@w{gcry_sexp_t *@var{r_sexp}}, @ @w{int @var{mode}}, @w{gcry_ctx_t @var{ctx}}) Return an S-expression representing the context @var{ctx}. Depending on the state of that context, the S-expression may either be a public key, a private key or any other object used with public key operations. On success 0 is returned and a new S-expression is stored at @var{r_sexp}; on error an error code is returned and NULL is stored at @var{r_sexp}. @var{mode} must be one of: @table @code @item 0 Decide what to return depending on the context. For example if the private key parameter is available a private key is returned, if not a public key is returned. @item GCRY_PK_GET_PUBKEY Return the public key even if the context has the private key parameter. @item GCRY_PK_GET_SECKEY Return the private key or the error @code{GPG_ERR_NO_SECKEY} if it is not possible. @end table As of now this function supports only certain ECC operations because a context object is right now only defined for ECC. Over time this function will be extended to cover more algorithms. @end deftypefun @c end gcry_pubkey_get_sexp @c ********************************************************** @c ******************* Hash Functions ********************* @c ********************************************************** @node Hashing @chapter Hashing Libgcrypt provides an easy and consistent to use interface for hashing. Hashing is buffered and several hash algorithms can be updated at once. It is possible to compute a HMAC using the same routines. The programming model follows an open/process/close paradigm and is in that similar to other building blocks provided by Libgcrypt. For convenience reasons, a few cyclic redundancy check value operations are also supported. @menu * Available hash algorithms:: List of hash algorithms supported by the library. * Working with hash algorithms:: List of functions related to hashing. @end menu @node Available hash algorithms @section Available hash algorithms @c begin table of hash algorithms @cindex SHA-1 @cindex SHA-224, SHA-256, SHA-384, SHA-512 @cindex SHA3-224, SHA3-256, SHA3-384, SHA3-512, SHAKE128, SHAKE256 @cindex RIPE-MD-160 @cindex MD2, MD4, MD5 @cindex TIGER, TIGER1, TIGER2 @cindex HAVAL @cindex Whirlpool @cindex BLAKE2b-512, BLAKE2b-384, BLAKE2b-256, BLAKE2b-160 @cindex BLAKE2s-256, BLAKE2s-224, BLAKE2s-160, BLAKE2s-128 @cindex CRC32 @table @code @item GCRY_MD_NONE This is not a real algorithm but used by some functions as an error return value. This constant is guaranteed to have the value @code{0}. @item GCRY_MD_SHA1 This is the SHA-1 algorithm which yields a message digest of 20 bytes. Note that SHA-1 begins to show some weaknesses and it is suggested to fade out its use if strong cryptographic properties are required. @item GCRY_MD_RMD160 This is the 160 bit version of the RIPE message digest (RIPE-MD-160). Like SHA-1 it also yields a digest of 20 bytes. This algorithm share a lot of design properties with SHA-1 and thus it is advisable not to use it for new protocols. @item GCRY_MD_MD5 This is the well known MD5 algorithm, which yields a message digest of 16 bytes. Note that the MD5 algorithm has severe weaknesses, for example it is easy to compute two messages yielding the same hash (collision attack). The use of this algorithm is only justified for non-cryptographic application. @item GCRY_MD_MD4 This is the MD4 algorithm, which yields a message digest of 16 bytes. This algorithm has severe weaknesses and should not be used. @item GCRY_MD_MD2 This is an reserved identifier for MD-2; there is no implementation yet. This algorithm has severe weaknesses and should not be used. @item GCRY_MD_TIGER This is the TIGER/192 algorithm which yields a message digest of 24 bytes. Actually this is a variant of TIGER with a different output print order as used by GnuPG up to version 1.3.2. @item GCRY_MD_TIGER1 This is the TIGER variant as used by the NESSIE project. It uses the most commonly used output print order. @item GCRY_MD_TIGER2 This is another variant of TIGER with a different padding scheme. @item GCRY_MD_HAVAL This is an reserved value for the HAVAL algorithm with 5 passes and 160 bit. It yields a message digest of 20 bytes. Note that there is no implementation yet available. @item GCRY_MD_SHA224 This is the SHA-224 algorithm which yields a message digest of 28 bytes. See Change Notice 1 for FIPS 180-2 for the specification. @item GCRY_MD_SHA256 This is the SHA-256 algorithm which yields a message digest of 32 bytes. See FIPS 180-2 for the specification. @item GCRY_MD_SHA384 This is the SHA-384 algorithm which yields a message digest of 48 bytes. See FIPS 180-2 for the specification. @item GCRY_MD_SHA512 This is the SHA-384 algorithm which yields a message digest of 64 bytes. See FIPS 180-2 for the specification. @item GCRY_MD_SHA3_224 This is the SHA3-224 algorithm which yields a message digest of 28 bytes. See FIPS 202 for the specification. @item GCRY_MD_SHA3_256 This is the SHA3-256 algorithm which yields a message digest of 32 bytes. See FIPS 202 for the specification. @item GCRY_MD_SHA3_384 This is the SHA3-384 algorithm which yields a message digest of 48 bytes. See FIPS 202 for the specification. @item GCRY_MD_SHA3_512 This is the SHA3-384 algorithm which yields a message digest of 64 bytes. See FIPS 202 for the specification. @item GCRY_MD_SHAKE128 This is the SHAKE128 extendable-output function (XOF) algorithm with 128 bit security strength. See FIPS 202 for the specification. @item GCRY_MD_SHAKE256 This is the SHAKE256 extendable-output function (XOF) algorithm with 256 bit security strength. See FIPS 202 for the specification. @item GCRY_MD_CRC32 This is the ISO 3309 and ITU-T V.42 cyclic redundancy check. It yields an output of 4 bytes. Note that this is not a hash algorithm in the cryptographic sense. @item GCRY_MD_CRC32_RFC1510 This is the above cyclic redundancy check function, as modified by RFC 1510. It yields an output of 4 bytes. Note that this is not a hash algorithm in the cryptographic sense. @item GCRY_MD_CRC24_RFC2440 This is the OpenPGP cyclic redundancy check function. It yields an output of 3 bytes. Note that this is not a hash algorithm in the cryptographic sense. @item GCRY_MD_WHIRLPOOL This is the Whirlpool algorithm which yields a message digest of 64 bytes. @item GCRY_MD_GOSTR3411_94 This is the hash algorithm described in GOST R 34.11-94 which yields a message digest of 32 bytes. @item GCRY_MD_STRIBOG256 This is the 256-bit version of hash algorithm described in GOST R 34.11-2012 which yields a message digest of 32 bytes. @item GCRY_MD_STRIBOG512 This is the 512-bit version of hash algorithm described in GOST R 34.11-2012 which yields a message digest of 64 bytes. @item GCRY_MD_BLAKE2B_512 This is the BLAKE2b-512 algorithm which yields a message digest of 64 bytes. See RFC 7693 for the specification. @item GCRY_MD_BLAKE2B_384 This is the BLAKE2b-384 algorithm which yields a message digest of 48 bytes. See RFC 7693 for the specification. @item GCRY_MD_BLAKE2B_256 This is the BLAKE2b-256 algorithm which yields a message digest of 32 bytes. See RFC 7693 for the specification. @item GCRY_MD_BLAKE2B_160 This is the BLAKE2b-160 algorithm which yields a message digest of 20 bytes. See RFC 7693 for the specification. @item GCRY_MD_BLAKE2S_256 This is the BLAKE2s-256 algorithm which yields a message digest of 32 bytes. See RFC 7693 for the specification. @item GCRY_MD_BLAKE2S_224 This is the BLAKE2s-224 algorithm which yields a message digest of 28 bytes. See RFC 7693 for the specification. @item GCRY_MD_BLAKE2S_160 This is the BLAKE2s-160 algorithm which yields a message digest of 20 bytes. See RFC 7693 for the specification. @item GCRY_MD_BLAKE2S_128 This is the BLAKE2s-128 algorithm which yields a message digest of 16 bytes. See RFC 7693 for the specification. @end table @c end table of hash algorithms @node Working with hash algorithms @section Working with hash algorithms To use most of these function it is necessary to create a context; this is done using: @deftypefun gcry_error_t gcry_md_open (gcry_md_hd_t *@var{hd}, int @var{algo}, unsigned int @var{flags}) Create a message digest object for algorithm @var{algo}. @var{flags} may be given as an bitwise OR of constants described below. @var{algo} may be given as @code{0} if the algorithms to use are later set using @code{gcry_md_enable}. @var{hd} is guaranteed to either receive a valid handle or NULL. For a list of supported algorithms, see @xref{Available hash algorithms}. The flags allowed for @var{mode} are: @c begin table of hash flags @table @code @item GCRY_MD_FLAG_SECURE Allocate all buffers and the resulting digest in "secure memory". Use this is the hashed data is highly confidential. @item GCRY_MD_FLAG_HMAC @cindex HMAC Turn the algorithm into a HMAC message authentication algorithm. This only works if just one algorithm is enabled for the handle and that algorithm is not an extendable-output function. Note that the function @code{gcry_md_setkey} must be used to set the MAC key. The size of the MAC is equal to the message digest of the underlying hash algorithm. If you want CBC message authentication codes based on a cipher, see @xref{Working with cipher handles}. @item GCRY_MD_FLAG_BUGEMU1 @cindex bug emulation Versions of Libgcrypt before 1.6.0 had a bug in the Whirlpool code which led to a wrong result for certain input sizes and write patterns. Using this flag emulates that bug. This may for example be useful for applications which use Whirlpool as part of their key generation. It is strongly suggested to use this flag only if really needed and if possible to the data should be re-processed using the regular Whirlpool algorithm. Note that this flag works for the entire hash context. If needed arises it may be used to enable bug emulation for other hash algorithms. Thus you should not use this flag for a multi-algorithm hash context. @end table @c begin table of hash flags You may use the function @code{gcry_md_is_enabled} to later check whether an algorithm has been enabled. @end deftypefun @c end function gcry_md_open If you want to calculate several hash algorithms at the same time, you have to use the following function right after the @code{gcry_md_open}: @deftypefun gcry_error_t gcry_md_enable (gcry_md_hd_t @var{h}, int @var{algo}) Add the message digest algorithm @var{algo} to the digest object described by handle @var{h}. Duplicated enabling of algorithms is detected and ignored. @end deftypefun If the flag @code{GCRY_MD_FLAG_HMAC} was used, the key for the MAC must be set using the function: @deftypefun gcry_error_t gcry_md_setkey (gcry_md_hd_t @var{h}, const void *@var{key}, size_t @var{keylen}) For use with the HMAC feature or BLAKE2 keyed hash, set the MAC key to the value of @var{key} of length @var{keylen} bytes. For HMAC, there is no restriction on the length of the key. For keyed BLAKE2b hash, length of the key must be 64 bytes or less. For keyed BLAKE2s hash, length of the key must be 32 bytes or less. @end deftypefun After you are done with the hash calculation, you should release the resources by using: @deftypefun void gcry_md_close (gcry_md_hd_t @var{h}) Release all resources of hash context @var{h}. @var{h} should not be used after a call to this function. A @code{NULL} passed as @var{h} is ignored. The function also zeroises all sensitive information associated with this handle. @end deftypefun Often you have to do several hash operations using the same algorithm. To avoid the overhead of creating and releasing context, a reset function is provided: @deftypefun void gcry_md_reset (gcry_md_hd_t @var{h}) Reset the current context to its initial state. This is effectively identical to a close followed by an open and enabling all currently active algorithms. @end deftypefun Often it is necessary to start hashing some data and then continue to hash different data. To avoid hashing the same data several times (which might not even be possible if the data is received from a pipe), a snapshot of the current hash context can be taken and turned into a new context: @deftypefun gcry_error_t gcry_md_copy (gcry_md_hd_t *@var{handle_dst}, gcry_md_hd_t @var{handle_src}) Create a new digest object as an exact copy of the object described by handle @var{handle_src} and store it in @var{handle_dst}. The context is not reset and you can continue to hash data using this context and independently using the original context. @end deftypefun Now that we have prepared everything to calculate hashes, it is time to see how it is actually done. There are two ways for this, one to update the hash with a block of memory and one macro to update the hash by just one character. Both methods can be used on the same hash context. @deftypefun void gcry_md_write (gcry_md_hd_t @var{h}, const void *@var{buffer}, size_t @var{length}) Pass @var{length} bytes of the data in @var{buffer} to the digest object with handle @var{h} to update the digest values. This function should be used for large blocks of data. If this function is used after the context has been finalized, it will keep on pushing the data through the algorithm specific transform function and change the context; however the results are not meaningful and this feature is only available to mitigate timing attacks. @end deftypefun @deftypefun void gcry_md_putc (gcry_md_hd_t @var{h}, int @var{c}) Pass the byte in @var{c} to the digest object with handle @var{h} to update the digest value. This is an efficient function, implemented as a macro to buffer the data before an actual update. @end deftypefun The semantics of the hash functions do not provide for reading out intermediate message digests because the calculation must be finalized first. This finalization may for example include the number of bytes hashed in the message digest or some padding. @deftypefun void gcry_md_final (gcry_md_hd_t @var{h}) Finalize the message digest calculation. This is not really needed because @code{gcry_md_read} and @code{gcry_md_extract} do this implicitly. After this has been done no further updates (by means of @code{gcry_md_write} or @code{gcry_md_putc} should be done; However, to mitigate timing attacks it is sometimes useful to keep on updating the context after having stored away the actual digest. Only the first call to this function has an effect. It is implemented as a macro. @end deftypefun The way to read out the calculated message digest is by using the function: @deftypefun {unsigned char *} gcry_md_read (gcry_md_hd_t @var{h}, int @var{algo}) @code{gcry_md_read} returns the message digest after finalizing the calculation. This function may be used as often as required but it will always return the same value for one handle. The returned message digest is allocated within the message context and therefore valid until the handle is released or reset-ed (using @code{gcry_md_close} or @code{gcry_md_reset} or it has been updated as a mitigation measure against timing attacks. @var{algo} may be given as 0 to return the only enabled message digest or it may specify one of the enabled algorithms. The function does return @code{NULL} if the requested algorithm has not been enabled. @end deftypefun The way to read output of extendable-output function is by using the function: @deftypefun gpg_err_code_t gcry_md_extract (gcry_md_hd_t @var{h}, @ int @var{algo}, void *@var{buffer}, size_t @var{length}) @code{gcry_mac_read} returns output from extendable-output function. This function may be used as often as required to generate more output byte stream from the algorithm. Function extracts the new output bytes to @var{buffer} of the length @var{length}. Buffer will be fully populated with new output. @var{algo} may be given as 0 to return the only enabled message digest or it may specify one of the enabled algorithms. The function does return non-zero value if the requested algorithm has not been enabled. @end deftypefun Because it is often necessary to get the message digest of blocks of memory, two fast convenience function are available for this task: @deftypefun gpg_err_code_t gcry_md_hash_buffers ( @ @w{int @var{algo}}, @w{unsigned int @var{flags}}, @ @w{void *@var{digest}}, @ @w{const gcry_buffer_t *@var{iov}}, @w{int @var{iovcnt}} ) @code{gcry_md_hash_buffers} is a shortcut function to calculate a message digest from several buffers. This function does not require a context and immediately returns the message digest of the data described by @var{iov} and @var{iovcnt}. @var{digest} must be allocated by the caller, large enough to hold the message digest yielded by the the specified algorithm @var{algo}. This required size may be obtained by using the function @code{gcry_md_get_algo_dlen}. @var{iov} is an array of buffer descriptions with @var{iovcnt} items. The caller should zero out the structures in this array and for each array item set the fields @code{.data} to the address of the data to be hashed, @code{.len} to number of bytes to be hashed. If @var{.off} is also set, the data is taken starting at @var{.off} bytes from the begin of the buffer. The field @code{.size} is not used. The only supported flag value for @var{flags} is @var{GCRY_MD_FLAG_HMAC} which turns this function into a HMAC function; the first item in @var{iov} is then used as the key. On success the function returns 0 and stores the resulting hash or MAC at @var{digest}. @end deftypefun @deftypefun void gcry_md_hash_buffer (int @var{algo}, void *@var{digest}, const void *@var{buffer}, size_t @var{length}); @code{gcry_md_hash_buffer} is a shortcut function to calculate a message digest of a buffer. This function does not require a context and immediately returns the message digest of the @var{length} bytes at @var{buffer}. @var{digest} must be allocated by the caller, large enough to hold the message digest yielded by the the specified algorithm @var{algo}. This required size may be obtained by using the function @code{gcry_md_get_algo_dlen}. Note that in contrast to @code{gcry_md_hash_buffers} this function will abort the process if an unavailable algorithm is used. @end deftypefun @c *********************************** @c ***** MD info functions *********** @c *********************************** Hash algorithms are identified by internal algorithm numbers (see @code{gcry_md_open} for a list). However, in most applications they are used by names, so two functions are available to map between string representations and hash algorithm identifiers. @deftypefun {const char *} gcry_md_algo_name (int @var{algo}) Map the digest algorithm id @var{algo} to a string representation of the algorithm name. For unknown algorithms this function returns the string @code{"?"}. This function should not be used to test for the availability of an algorithm. @end deftypefun @deftypefun int gcry_md_map_name (const char *@var{name}) Map the algorithm with @var{name} to a digest algorithm identifier. Returns 0 if the algorithm name is not known. Names representing @acronym{ASN.1} object identifiers are recognized if the @acronym{IETF} dotted format is used and the OID is prefixed with either "@code{oid.}" or "@code{OID.}". For a list of supported OIDs, see the source code at @file{cipher/md.c}. This function should not be used to test for the availability of an algorithm. @end deftypefun @deftypefun gcry_error_t gcry_md_get_asnoid (int @var{algo}, void *@var{buffer}, size_t *@var{length}) Return an DER encoded ASN.1 OID for the algorithm @var{algo} in the user allocated @var{buffer}. @var{length} must point to variable with the available size of @var{buffer} and receives after return the actual size of the returned OID. The returned error code may be @code{GPG_ERR_TOO_SHORT} if the provided buffer is to short to receive the OID; it is possible to call the function with @code{NULL} for @var{buffer} to have it only return the required size. The function returns 0 on success. @end deftypefun To test whether an algorithm is actually available for use, the following macro should be used: @deftypefun gcry_error_t gcry_md_test_algo (int @var{algo}) The macro returns 0 if the algorithm @var{algo} is available for use. @end deftypefun If the length of a message digest is not known, it can be retrieved using the following function: @deftypefun {unsigned int} gcry_md_get_algo_dlen (int @var{algo}) Retrieve the length in bytes of the digest yielded by algorithm @var{algo}. This is often used prior to @code{gcry_md_read} to allocate sufficient memory for the digest. @end deftypefun In some situations it might be hard to remember the algorithm used for the ongoing hashing. The following function might be used to get that information: @deftypefun int gcry_md_get_algo (gcry_md_hd_t @var{h}) Retrieve the algorithm used with the handle @var{h}. Note that this does not work reliable if more than one algorithm is enabled in @var{h}. @end deftypefun The following macro might also be useful: @deftypefun int gcry_md_is_secure (gcry_md_hd_t @var{h}) This function returns true when the digest object @var{h} is allocated in "secure memory"; i.e. @var{h} was created with the @code{GCRY_MD_FLAG_SECURE}. @end deftypefun @deftypefun int gcry_md_is_enabled (gcry_md_hd_t @var{h}, int @var{algo}) This function returns true when the algorithm @var{algo} has been enabled for the digest object @var{h}. @end deftypefun Tracking bugs related to hashing is often a cumbersome task which requires to add a lot of printf statements into the code. Libgcrypt provides an easy way to avoid this. The actual data hashed can be written to files on request. @deftypefun void gcry_md_debug (gcry_md_hd_t @var{h}, const char *@var{suffix}) Enable debugging for the digest object with handle @var{h}. This creates files named @file{dbgmd-.} while doing the actual hashing. @var{suffix} is the string part in the filename. The number is a counter incremented for each new hashing. The data in the file is the raw data as passed to @code{gcry_md_write} or @code{gcry_md_putc}. If @code{NULL} is used for @var{suffix}, the debugging is stopped and the file closed. This is only rarely required because @code{gcry_md_close} implicitly stops debugging. @end deftypefun @c ********************************************************** @c ******************* MAC Functions ********************** @c ********************************************************** @node Message Authentication Codes @chapter Message Authentication Codes Libgcrypt provides an easy and consistent to use interface for generating Message Authentication Codes (MAC). MAC generation is buffered and interface similar to the one used with hash algorithms. The programming model follows an open/process/close paradigm and is in that similar to other building blocks provided by Libgcrypt. @menu * Available MAC algorithms:: List of MAC algorithms supported by the library. * Working with MAC algorithms:: List of functions related to MAC algorithms. @end menu @node Available MAC algorithms @section Available MAC algorithms @c begin table of MAC algorithms @cindex HMAC-SHA-1 @cindex HMAC-SHA-224, HMAC-SHA-256, HMAC-SHA-384, HMAC-SHA-512 @cindex HMAC-SHA3-224, HMAC-SHA3-256, HMAC-SHA3-384, HMAC-SHA3-512 @cindex HMAC-RIPE-MD-160 @cindex HMAC-MD2, HMAC-MD4, HMAC-MD5 @cindex HMAC-TIGER1 @cindex HMAC-Whirlpool @cindex HMAC-Stribog-256, HMAC-Stribog-512 @cindex HMAC-GOSTR-3411-94 @table @code @item GCRY_MAC_NONE This is not a real algorithm but used by some functions as an error return value. This constant is guaranteed to have the value @code{0}. @item GCRY_MAC_HMAC_SHA256 This is keyed-hash message authentication code (HMAC) message authentication algorithm based on the SHA-256 hash algorithm. @item GCRY_MAC_HMAC_SHA224 This is HMAC message authentication algorithm based on the SHA-224 hash algorithm. @item GCRY_MAC_HMAC_SHA512 This is HMAC message authentication algorithm based on the SHA-512 hash algorithm. @item GCRY_MAC_HMAC_SHA384 This is HMAC message authentication algorithm based on the SHA-384 hash algorithm. @item GCRY_MAC_HMAC_SHA3_256 This is HMAC message authentication algorithm based on the SHA3-384 hash algorithm. @item GCRY_MAC_HMAC_SHA3_224 This is HMAC message authentication algorithm based on the SHA3-224 hash algorithm. @item GCRY_MAC_HMAC_SHA3_512 This is HMAC message authentication algorithm based on the SHA3-512 hash algorithm. @item GCRY_MAC_HMAC_SHA3_384 This is HMAC message authentication algorithm based on the SHA3-384 hash algorithm. @item GCRY_MAC_HMAC_SHA1 This is HMAC message authentication algorithm based on the SHA-1 hash algorithm. @item GCRY_MAC_HMAC_MD5 This is HMAC message authentication algorithm based on the MD5 hash algorithm. @item GCRY_MAC_HMAC_MD4 This is HMAC message authentication algorithm based on the MD4 hash algorithm. @item GCRY_MAC_HMAC_RMD160 This is HMAC message authentication algorithm based on the RIPE-MD-160 hash algorithm. @item GCRY_MAC_HMAC_WHIRLPOOL This is HMAC message authentication algorithm based on the WHIRLPOOL hash algorithm. @item GCRY_MAC_HMAC_GOSTR3411_94 This is HMAC message authentication algorithm based on the GOST R 34.11-94 hash algorithm. @item GCRY_MAC_HMAC_STRIBOG256 This is HMAC message authentication algorithm based on the 256-bit hash algorithm described in GOST R 34.11-2012. @item GCRY_MAC_HMAC_STRIBOG512 This is HMAC message authentication algorithm based on the 512-bit hash algorithm described in GOST R 34.11-2012. @item GCRY_MAC_CMAC_AES This is CMAC (Cipher-based MAC) message authentication algorithm based on the AES block cipher algorithm. @item GCRY_MAC_CMAC_3DES This is CMAC message authentication algorithm based on the three-key EDE Triple-DES block cipher algorithm. @item GCRY_MAC_CMAC_CAMELLIA This is CMAC message authentication algorithm based on the Camellia block cipher algorithm. @item GCRY_MAC_CMAC_CAST5 This is CMAC message authentication algorithm based on the CAST128-5 block cipher algorithm. @item GCRY_MAC_CMAC_BLOWFISH This is CMAC message authentication algorithm based on the Blowfish block cipher algorithm. @item GCRY_MAC_CMAC_TWOFISH This is CMAC message authentication algorithm based on the Twofish block cipher algorithm. @item GCRY_MAC_CMAC_SERPENT This is CMAC message authentication algorithm based on the Serpent block cipher algorithm. @item GCRY_MAC_CMAC_SEED This is CMAC message authentication algorithm based on the SEED block cipher algorithm. @item GCRY_MAC_CMAC_RFC2268 This is CMAC message authentication algorithm based on the Ron's Cipher 2 block cipher algorithm. @item GCRY_MAC_CMAC_IDEA This is CMAC message authentication algorithm based on the IDEA block cipher algorithm. @item GCRY_MAC_CMAC_GOST28147 This is CMAC message authentication algorithm based on the GOST 28147-89 block cipher algorithm. @item GCRY_MAC_GMAC_AES This is GMAC (GCM mode based MAC) message authentication algorithm based on the AES block cipher algorithm. @item GCRY_MAC_GMAC_CAMELLIA This is GMAC message authentication algorithm based on the Camellia block cipher algorithm. @item GCRY_MAC_GMAC_TWOFISH This is GMAC message authentication algorithm based on the Twofish block cipher algorithm. @item GCRY_MAC_GMAC_SERPENT This is GMAC message authentication algorithm based on the Serpent block cipher algorithm. @item GCRY_MAC_GMAC_SEED This is GMAC message authentication algorithm based on the SEED block cipher algorithm. @item GCRY_MAC_POLY1305 This is plain Poly1305 message authentication algorithm, used with one-time key. @item GCRY_MAC_POLY1305_AES This is Poly1305-AES message authentication algorithm, used with key and one-time nonce. @item GCRY_MAC_POLY1305_CAMELLIA This is Poly1305-Camellia message authentication algorithm, used with key and one-time nonce. @item GCRY_MAC_POLY1305_TWOFISH This is Poly1305-Twofish message authentication algorithm, used with key and one-time nonce. @item GCRY_MAC_POLY1305_SERPENT This is Poly1305-Serpent message authentication algorithm, used with key and one-time nonce. @item GCRY_MAC_POLY1305_SEED This is Poly1305-SEED message authentication algorithm, used with key and one-time nonce. @end table @c end table of MAC algorithms @node Working with MAC algorithms @section Working with MAC algorithms To use most of these function it is necessary to create a context; this is done using: @deftypefun gcry_error_t gcry_mac_open (gcry_mac_hd_t *@var{hd}, int @var{algo}, unsigned int @var{flags}, gcry_ctx_t @var{ctx}) Create a MAC object for algorithm @var{algo}. @var{flags} may be given as an bitwise OR of constants described below. @var{hd} is guaranteed to either receive a valid handle or NULL. @var{ctx} is context object to associate MAC object with. @var{ctx} maybe set to NULL. For a list of supported algorithms, see @xref{Available MAC algorithms}. The flags allowed for @var{mode} are: @c begin table of MAC flags @table @code @item GCRY_MAC_FLAG_SECURE Allocate all buffers and the resulting MAC in "secure memory". Use this if the MAC data is highly confidential. @end table @c begin table of MAC flags @end deftypefun @c end function gcry_mac_open In order to use a handle for performing MAC algorithm operations, a `key' has to be set first: @deftypefun gcry_error_t gcry_mac_setkey (gcry_mac_hd_t @var{h}, const void *@var{key}, size_t @var{keylen}) Set the MAC key to the value of @var{key} of length @var{keylen} bytes. With HMAC algorithms, there is no restriction on the length of the key. With CMAC algorithms, the length of the key is restricted to those supported by the underlying block cipher. @end deftypefun GMAC algorithms and Poly1305-with-cipher algorithms need initialization vector to be set, which can be performed with function: @deftypefun gcry_error_t gcry_mac_setiv (gcry_mac_hd_t @var{h}, const void *@var{iv}, size_t @var{ivlen}) Set the IV to the value of @var{iv} of length @var{ivlen} bytes. @end deftypefun After you are done with the MAC calculation, you should release the resources by using: @deftypefun void gcry_mac_close (gcry_mac_hd_t @var{h}) Release all resources of MAC context @var{h}. @var{h} should not be used after a call to this function. A @code{NULL} passed as @var{h} is ignored. The function also clears all sensitive information associated with this handle. @end deftypefun Often you have to do several MAC operations using the same algorithm. To avoid the overhead of creating and releasing context, a reset function is provided: @deftypefun gcry_error_t gcry_mac_reset (gcry_mac_hd_t @var{h}) Reset the current context to its initial state. This is effectively identical to a close followed by an open and setting same key. Note that gcry_mac_reset is implemented as a macro. @end deftypefun Now that we have prepared everything to calculate MAC, it is time to see how it is actually done. @deftypefun gcry_error_t gcry_mac_write (gcry_mac_hd_t @var{h}, const void *@var{buffer}, size_t @var{length}) Pass @var{length} bytes of the data in @var{buffer} to the MAC object with handle @var{h} to update the MAC values. If this function is used after the context has been finalized, it will keep on pushing the data through the algorithm specific transform function and thereby change the context; however the results are not meaningful and this feature is only available to mitigate timing attacks. @end deftypefun The way to read out the calculated MAC is by using the function: @deftypefun gcry_error_t gcry_mac_read (gcry_mac_hd_t @var{h}, void *@var{buffer}, size_t *@var{length}) @code{gcry_mac_read} returns the MAC after finalizing the calculation. Function copies the resulting MAC value to @var{buffer} of the length @var{length}. If @var{length} is larger than length of resulting MAC value, then length of MAC is returned through @var{length}. @end deftypefun To compare existing MAC value with recalculated MAC, one is to use the function: @deftypefun gcry_error_t gcry_mac_verify (gcry_mac_hd_t @var{h}, void *@var{buffer}, size_t @var{length}) @code{gcry_mac_verify} finalizes MAC calculation and compares result with @var{length} bytes of data in @var{buffer}. Error code @code{GPG_ERR_CHECKSUM} is returned if the MAC value in the buffer @var{buffer} does not match the MAC calculated in object @var{h}. @end deftypefun In some situations it might be hard to remember the algorithm used for the MAC calculation. The following function might be used to get that information: @deftypefun {int} gcry_mac_get_algo (gcry_mac_hd_t @var{h}) Retrieve the algorithm used with the handle @var{h}. @end deftypefun @c *********************************** @c ***** MAC info functions ********** @c *********************************** MAC algorithms are identified by internal algorithm numbers (see @code{gcry_mac_open} for a list). However, in most applications they are used by names, so two functions are available to map between string representations and MAC algorithm identifiers. @deftypefun {const char *} gcry_mac_algo_name (int @var{algo}) Map the MAC algorithm id @var{algo} to a string representation of the algorithm name. For unknown algorithms this function returns the string @code{"?"}. This function should not be used to test for the availability of an algorithm. @end deftypefun @deftypefun int gcry_mac_map_name (const char *@var{name}) Map the algorithm with @var{name} to a MAC algorithm identifier. Returns 0 if the algorithm name is not known. This function should not be used to test for the availability of an algorithm. @end deftypefun To test whether an algorithm is actually available for use, the following macro should be used: @deftypefun gcry_error_t gcry_mac_test_algo (int @var{algo}) The macro returns 0 if the MAC algorithm @var{algo} is available for use. @end deftypefun If the length of a message digest is not known, it can be retrieved using the following function: @deftypefun {unsigned int} gcry_mac_get_algo_maclen (int @var{algo}) Retrieve the length in bytes of the MAC yielded by algorithm @var{algo}. This is often used prior to @code{gcry_mac_read} to allocate sufficient memory for the MAC value. On error @code{0} is returned. @end deftypefun @deftypefun {unsigned int} gcry_mac_get_algo_keylen (@var{algo}) This function returns length of the key for MAC algorithm @var{algo}. If the algorithm supports multiple key lengths, the default supported key length is returned. On error @code{0} is returned. The key length is returned as number of octets. @end deftypefun @c ******************************************************* @c ******************* KDF ***************************** @c ******************************************************* @node Key Derivation @chapter Key Derivation @acronym{Libgcypt} provides a general purpose function to derive keys from strings. @deftypefun gpg_error_t gcry_kdf_derive ( @ @w{const void *@var{passphrase}}, @w{size_t @var{passphraselen}}, @ @w{int @var{algo}}, @w{int @var{subalgo}}, @ @w{const void *@var{salt}}, @w{size_t @var{saltlen}}, @ @w{unsigned long @var{iterations}}, @ @w{size_t @var{keysize}}, @w{void *@var{keybuffer}} ) Derive a key from a passphrase. @var{keysize} gives the requested size of the keys in octets. @var{keybuffer} is a caller provided buffer filled on success with the derived key. The input passphrase is taken from @var{passphrase} which is an arbitrary memory buffer of @var{passphraselen} octets. @var{algo} specifies the KDF algorithm to use; see below. @var{subalgo} specifies an algorithm used internally by the KDF algorithms; this is usually a hash algorithm but certain KDF algorithms may use it differently. @var{salt} is a salt of length @var{saltlen} octets, as needed by most KDF algorithms. @var{iterations} is a positive integer parameter to most KDFs. @noindent On success 0 is returned; on failure an error code. @noindent Currently supported KDFs (parameter @var{algo}): @table @code @item GCRY_KDF_SIMPLE_S2K The OpenPGP simple S2K algorithm (cf. RFC4880). Its use is strongly deprecated. @var{salt} and @var{iterations} are not needed and may be passed as @code{NULL}/@code{0}. @item GCRY_KDF_SALTED_S2K The OpenPGP salted S2K algorithm (cf. RFC4880). Usually not used. @var{iterations} is not needed and may be passed as @code{0}. @var{saltlen} must be given as 8. @item GCRY_KDF_ITERSALTED_S2K The OpenPGP iterated+salted S2K algorithm (cf. RFC4880). This is the default for most OpenPGP applications. @var{saltlen} must be given as 8. Note that OpenPGP defines a special encoding of the @var{iterations}; however this function takes the plain decoded iteration count. @item GCRY_KDF_PBKDF2 The PKCS#5 Passphrase Based Key Derivation Function number 2. @item GCRY_KDF_SCRYPT The SCRYPT Key Derivation Function. The subalgorithm is used to specify the CPU/memory cost parameter N, and the number of iterations is used for the parallelization parameter p. The block size is fixed at 8 in the current implementation. @end table @end deftypefun @c ********************************************************** @c ******************* Random ***************************** @c ********************************************************** @node Random Numbers @chapter Random Numbers @menu * Quality of random numbers:: Libgcrypt uses different quality levels. * Retrieving random numbers:: How to retrieve random numbers. @end menu @node Quality of random numbers @section Quality of random numbers @acronym{Libgcypt} offers random numbers of different quality levels: @deftp {Data type} gcry_random_level_t The constants for the random quality levels are of this enum type. @end deftp @table @code @item GCRY_WEAK_RANDOM For all functions, except for @code{gcry_mpi_randomize}, this level maps to GCRY_STRONG_RANDOM. If you do not want this, consider using @code{gcry_create_nonce}. @item GCRY_STRONG_RANDOM Use this level for session keys and similar purposes. @item GCRY_VERY_STRONG_RANDOM Use this level for long term key material. @end table @node Retrieving random numbers @section Retrieving random numbers @deftypefun void gcry_randomize (unsigned char *@var{buffer}, size_t @var{length}, enum gcry_random_level @var{level}) Fill @var{buffer} with @var{length} random bytes using a random quality as defined by @var{level}. @end deftypefun @deftypefun {void *} gcry_random_bytes (size_t @var{nbytes}, enum gcry_random_level @var{level}) Convenience function to allocate a memory block consisting of @var{nbytes} fresh random bytes using a random quality as defined by @var{level}. @end deftypefun @deftypefun {void *} gcry_random_bytes_secure (size_t @var{nbytes}, enum gcry_random_level @var{level}) Convenience function to allocate a memory block consisting of @var{nbytes} fresh random bytes using a random quality as defined by @var{level}. This function differs from @code{gcry_random_bytes} in that the returned buffer is allocated in a ``secure'' area of the memory. @end deftypefun @deftypefun void gcry_create_nonce (unsigned char *@var{buffer}, size_t @var{length}) Fill @var{buffer} with @var{length} unpredictable bytes. This is commonly called a nonce and may also be used for initialization vectors and padding. This is an extra function nearly independent of the other random function for 3 reasons: It better protects the regular random generator's internal state, provides better performance and does not drain the precious entropy pool. @end deftypefun @c ********************************************************** @c ******************* S-Expressions *********************** @c ********************************************************** @node S-expressions @chapter S-expressions S-expressions are used by the public key functions to pass complex data structures around. These LISP like objects are used by some cryptographic protocols (cf. RFC-2692) and Libgcrypt provides functions to parse and construct them. For detailed information, see @cite{Ron Rivest, code and description of S-expressions, @uref{http://theory.lcs.mit.edu/~rivest/sexp.html}}. @menu * Data types for S-expressions:: Data types related with S-expressions. * Working with S-expressions:: How to work with S-expressions. @end menu @node Data types for S-expressions @section Data types for S-expressions @deftp {Data type} gcry_sexp_t The @code{gcry_sexp_t} type describes an object with the Libgcrypt internal representation of an S-expression. @end deftp @node Working with S-expressions @section Working with S-expressions @noindent There are several functions to create an Libgcrypt S-expression object from its external representation or from a string template. There is also a function to convert the internal representation back into one of the external formats: @deftypefun gcry_error_t gcry_sexp_new (@w{gcry_sexp_t *@var{r_sexp}}, @w{const void *@var{buffer}}, @w{size_t @var{length}}, @w{int @var{autodetect}}) This is the generic function to create an new S-expression object from its external representation in @var{buffer} of @var{length} bytes. On success the result is stored at the address given by @var{r_sexp}. With @var{autodetect} set to 0, the data in @var{buffer} is expected to be in canonized format, with @var{autodetect} set to 1 the parses any of the defined external formats. If @var{buffer} does not hold a valid S-expression an error code is returned and @var{r_sexp} set to @code{NULL}. Note that the caller is responsible for releasing the newly allocated S-expression using @code{gcry_sexp_release}. @end deftypefun @deftypefun gcry_error_t gcry_sexp_create (@w{gcry_sexp_t *@var{r_sexp}}, @w{void *@var{buffer}}, @w{size_t @var{length}}, @w{int @var{autodetect}}, @w{void (*@var{freefnc})(void*)}) This function is identical to @code{gcry_sexp_new} but has an extra argument @var{freefnc}, which, when not set to @code{NULL}, is expected to be a function to release the @var{buffer}; most likely the standard @code{free} function is used for this argument. This has the effect of transferring the ownership of @var{buffer} to the created object in @var{r_sexp}. The advantage of using this function is that Libgcrypt might decide to directly use the provided buffer and thus avoid extra copying. @end deftypefun @deftypefun gcry_error_t gcry_sexp_sscan (@w{gcry_sexp_t *@var{r_sexp}}, @w{size_t *@var{erroff}}, @w{const char *@var{buffer}}, @w{size_t @var{length}}) This is another variant of the above functions. It behaves nearly identical but provides an @var{erroff} argument which will receive the offset into the buffer where the parsing stopped on error. @end deftypefun @deftypefun gcry_error_t gcry_sexp_build (@w{gcry_sexp_t *@var{r_sexp}}, @w{size_t *@var{erroff}}, @w{const char *@var{format}, ...}) This function creates an internal S-expression from the string template @var{format} and stores it at the address of @var{r_sexp}. If there is a parsing error, the function returns an appropriate error code and stores the offset into @var{format} where the parsing stopped in @var{erroff}. The function supports a couple of printf-like formatting characters and expects arguments for some of these escape sequences right after @var{format}. The following format characters are defined: @table @samp @item %m The next argument is expected to be of type @code{gcry_mpi_t} and a copy of its value is inserted into the resulting S-expression. The MPI is stored as a signed integer. @item %M The next argument is expected to be of type @code{gcry_mpi_t} and a copy of its value is inserted into the resulting S-expression. The MPI is stored as an unsigned integer. @item %s The next argument is expected to be of type @code{char *} and that string is inserted into the resulting S-expression. @item %d The next argument is expected to be of type @code{int} and its value is inserted into the resulting S-expression. @item %u The next argument is expected to be of type @code{unsigned int} and its value is inserted into the resulting S-expression. @item %b The next argument is expected to be of type @code{int} directly followed by an argument of type @code{char *}. This represents a buffer of given length to be inserted into the resulting S-expression. @item %S The next argument is expected to be of type @code{gcry_sexp_t} and a copy of that S-expression is embedded in the resulting S-expression. The argument needs to be a regular S-expression, starting with a parenthesis. @end table @noindent No other format characters are defined and would return an error. Note that the format character @samp{%%} does not exists, because a percent sign is not a valid character in an S-expression. @end deftypefun @deftypefun void gcry_sexp_release (@w{gcry_sexp_t @var{sexp}}) Release the S-expression object @var{sexp}. If the S-expression is stored in secure memory it explicitly zeroises that memory; note that this is done in addition to the zeroisation always done when freeing secure memory. @end deftypefun @noindent The next 2 functions are used to convert the internal representation back into a regular external S-expression format and to show the structure for debugging. @deftypefun size_t gcry_sexp_sprint (@w{gcry_sexp_t @var{sexp}}, @w{int @var{mode}}, @w{char *@var{buffer}}, @w{size_t @var{maxlength}}) Copies the S-expression object @var{sexp} into @var{buffer} using the format specified in @var{mode}. @var{maxlength} must be set to the allocated length of @var{buffer}. The function returns the actual length of valid bytes put into @var{buffer} or 0 if the provided buffer is too short. Passing @code{NULL} for @var{buffer} returns the required length for @var{buffer}. For convenience reasons an extra byte with value 0 is appended to the buffer. @noindent The following formats are supported: @table @code @item GCRYSEXP_FMT_DEFAULT Returns a convenient external S-expression representation. @item GCRYSEXP_FMT_CANON Return the S-expression in canonical format. @item GCRYSEXP_FMT_BASE64 Not currently supported. @item GCRYSEXP_FMT_ADVANCED Returns the S-expression in advanced format. @end table @end deftypefun @deftypefun void gcry_sexp_dump (@w{gcry_sexp_t @var{sexp}}) Dumps @var{sexp} in a format suitable for debugging to Libgcrypt's logging stream. @end deftypefun @noindent Often canonical encoding is used in the external representation. The following function can be used to check for valid encoding and to learn the length of the S-expression. @deftypefun size_t gcry_sexp_canon_len (@w{const unsigned char *@var{buffer}}, @w{size_t @var{length}}, @w{size_t *@var{erroff}}, @w{int *@var{errcode}}) Scan the canonical encoded @var{buffer} with implicit length values and return the actual length this S-expression uses. For a valid S-expression it should never return 0. If @var{length} is not 0, the maximum length to scan is given; this can be used for syntax checks of data passed from outside. @var{errcode} and @var{erroff} may both be passed as @code{NULL}. @end deftypefun @noindent There are functions to parse S-expressions and retrieve elements: @deftypefun gcry_sexp_t gcry_sexp_find_token (@w{const gcry_sexp_t @var{list}}, @w{const char *@var{token}}, @w{size_t @var{toklen}}) Scan the S-expression for a sublist with a type (the car of the list) matching the string @var{token}. If @var{toklen} is not 0, the token is assumed to be raw memory of this length. The function returns a newly allocated S-expression consisting of the found sublist or @code{NULL} when not found. @end deftypefun @deftypefun int gcry_sexp_length (@w{const gcry_sexp_t @var{list}}) Return the length of the @var{list}. For a valid S-expression this should be at least 1. @end deftypefun @deftypefun gcry_sexp_t gcry_sexp_nth (@w{const gcry_sexp_t @var{list}}, @w{int @var{number}}) Create and return a new S-expression from the element with index @var{number} in @var{list}. Note that the first element has the index 0. If there is no such element, @code{NULL} is returned. @end deftypefun @deftypefun gcry_sexp_t gcry_sexp_car (@w{const gcry_sexp_t @var{list}}) Create and return a new S-expression from the first element in @var{list}; this is called the "type" and should always exist per S-expression specification and in general be a string. @code{NULL} is returned in case of a problem. @end deftypefun @deftypefun gcry_sexp_t gcry_sexp_cdr (@w{const gcry_sexp_t @var{list}}) Create and return a new list form all elements except for the first one. Note that this function may return an invalid S-expression because it is not guaranteed, that the type exists and is a string. However, for parsing a complex S-expression it might be useful for intermediate lists. Returns @code{NULL} on error. @end deftypefun @deftypefun {const char *} gcry_sexp_nth_data (@w{const gcry_sexp_t @var{list}}, @w{int @var{number}}, @w{size_t *@var{datalen}}) This function is used to get data from a @var{list}. A pointer to the actual data with index @var{number} is returned and the length of this data will be stored to @var{datalen}. If there is no data at the given index or the index represents another list, @code{NULL} is returned. @strong{Caution:} The returned pointer is valid as long as @var{list} is not modified or released. @noindent Here is an example on how to extract and print the surname (Meier) from the S-expression @samp{(Name Otto Meier (address Burgplatz 3))}: @example size_t len; const char *name; name = gcry_sexp_nth_data (list, 2, &len); printf ("my name is %.*s\n", (int)len, name); @end example @end deftypefun @deftypefun {void *} gcry_sexp_nth_buffer (@w{const gcry_sexp_t @var{list}}, @w{int @var{number}}, @w{size_t *@var{rlength}}) This function is used to get data from a @var{list}. A malloced buffer with the actual data at list index @var{number} is returned and the length of this buffer will be stored to @var{rlength}. If there is no data at the given index or the index represents another list, @code{NULL} is returned. The caller must release the result using @code{gcry_free}. @noindent Here is an example on how to extract and print the CRC value from the S-expression @samp{(hash crc32 #23ed00d7)}: @example size_t len; char *value; value = gcry_sexp_nth_buffer (list, 2, &len); if (value) fwrite (value, len, 1, stdout); gcry_free (value); @end example @end deftypefun @deftypefun {char *} gcry_sexp_nth_string (@w{gcry_sexp_t @var{list}}, @w{int @var{number}}) This function is used to get and convert data from a @var{list}. The data is assumed to be a Nul terminated string. The caller must release this returned value using @code{gcry_free}. If there is no data at the given index, the index represents a list or the value can't be converted to a string, @code{NULL} is returned. @end deftypefun @deftypefun gcry_mpi_t gcry_sexp_nth_mpi (@w{gcry_sexp_t @var{list}}, @w{int @var{number}}, @w{int @var{mpifmt}}) This function is used to get and convert data from a @var{list}. This data is assumed to be an MPI stored in the format described by @var{mpifmt} and returned as a standard Libgcrypt MPI. The caller must release this returned value using @code{gcry_mpi_release}. If there is no data at the given index, the index represents a list or the value can't be converted to an MPI, @code{NULL} is returned. If you use this function to parse results of a public key function, you most likely want to use @code{GCRYMPI_FMT_USG}. @end deftypefun @deftypefun gpg_error_t gcry_sexp_extract_param ( @ @w{gcry_sexp_t @var{sexp}}, @ @w{const char *@var{path}}, @ @w{const char *@var{list}}, ...) Extract parameters from an S-expression using a list of parameter names. The names of these parameters are specified in LIST. White space between the parameter names are ignored. Some special characters may be given to control the conversion: @table @samp @item + Switch to unsigned integer format (GCRYMPI_FMT_USG). This is the default mode. @item - Switch to standard signed format (GCRYMPI_FMT_STD). @item / Switch to opaque MPI format. The resulting MPIs may not be used for computations; see @code{gcry_mpi_get_opaque} for details. @item & Switch to buffer descriptor mode. See below for details. @item ? If immediately following a parameter letter (no white space allowed), that parameter is considered optional. @end table In general parameter names are single letters. To use a string for a parameter name, enclose the name in single quotes. Unless in buffer descriptor mode for each parameter name a pointer to an @code{gcry_mpi_t} variable is expected that must be set to @code{NULL} prior to invoking this function, and finally a @code{NULL} is expected. For example @example _gcry_sexp_extract_param (key, NULL, "n/x+e d-'foo'", &mpi_n, &mpi_x, &mpi_e, &mpi_foo, NULL) @end example stores the parameter 'n' from @var{key} as an unsigned MPI into @var{mpi_n}, the parameter 'x' as an opaque MPI into @var{mpi_x}, the parameter 'e' again as an unsigned MPI into @var{mpi_e}, and the parameter 'foo' as a signed MPI. @var{path} is an optional string used to locate a token. The exclamation mark separated tokens are used via @code{gcry_sexp_find_token} to find a start point inside the S-expression. In buffer descriptor mode a pointer to a @code{gcry_buffer_t} descriptor is expected instead of a pointer to an MPI. The caller may use two different operation modes here: If the @var{data} field of the provided descriptor is @code{NULL}, the function allocates a new buffer and stores it at @var{data}; the other fields are set accordingly with @var{off} set to 0. If @var{data} is not @code{NULL}, the function assumes that the @var{data}, @var{size}, and @var{off} fields specify a buffer where to but the value of the respective parameter; on return the @var{len} field receives the number of bytes copied to that buffer; in case the buffer is too small, the function immediately returns with an error code (and @var{len} is set to 0). The function returns 0 on success. On error an error code is returned, all passed MPIs that might have been allocated up to this point are deallocated and set to @code{NULL}, and all passed buffers are either truncated if the caller supplied the buffer, or deallocated if the function allocated the buffer. @end deftypefun @c ********************************************************** @c ******************* MPIs ******** *********************** @c ********************************************************** @node MPI library @chapter MPI library @menu * Data types:: MPI related data types. * Basic functions:: First steps with MPI numbers. * MPI formats:: External representation of MPIs. * Calculations:: Performing MPI calculations. * Comparisons:: How to compare MPI values. * Bit manipulations:: How to access single bits of MPI values. * EC functions:: Elliptic curve related functions. * Miscellaneous:: Miscellaneous MPI functions. @end menu Public key cryptography is based on mathematics with large numbers. To implement the public key functions, a library for handling these large numbers is required. Because of the general usefulness of such a library, its interface is exposed by Libgcrypt. In the context of Libgcrypt and in most other applications, these large numbers are called MPIs (multi-precision-integers). @node Data types @section Data types @deftp {Data type} {gcry_mpi_t} This type represents an object to hold an MPI. @end deftp @deftp {Data type} {gcry_mpi_point_t} This type represents an object to hold a point for elliptic curve math. @end deftp @node Basic functions @section Basic functions @noindent To work with MPIs, storage must be allocated and released for the numbers. This can be done with one of these functions: @deftypefun gcry_mpi_t gcry_mpi_new (@w{unsigned int @var{nbits}}) Allocate a new MPI object, initialize it to 0 and initially allocate enough memory for a number of at least @var{nbits}. This pre-allocation is only a small performance issue and not actually necessary because Libgcrypt automatically re-allocates the required memory. @end deftypefun @deftypefun gcry_mpi_t gcry_mpi_snew (@w{unsigned int @var{nbits}}) This is identical to @code{gcry_mpi_new} but allocates the MPI in the so called "secure memory" which in turn will take care that all derived values will also be stored in this "secure memory". Use this for highly confidential data like private key parameters. @end deftypefun @deftypefun gcry_mpi_t gcry_mpi_copy (@w{const gcry_mpi_t @var{a}}) Create a new MPI as the exact copy of @var{a} but with the constant and immutable flags cleared. @end deftypefun @deftypefun void gcry_mpi_release (@w{gcry_mpi_t @var{a}}) Release the MPI @var{a} and free all associated resources. Passing @code{NULL} is allowed and ignored. When a MPI stored in the "secure memory" is released, that memory gets wiped out immediately. @end deftypefun @noindent The simplest operations are used to assign a new value to an MPI: @deftypefun gcry_mpi_t gcry_mpi_set (@w{gcry_mpi_t @var{w}}, @w{const gcry_mpi_t @var{u}}) Assign the value of @var{u} to @var{w} and return @var{w}. If @code{NULL} is passed for @var{w}, a new MPI is allocated, set to the value of @var{u} and returned. @end deftypefun @deftypefun gcry_mpi_t gcry_mpi_set_ui (@w{gcry_mpi_t @var{w}}, @w{unsigned long @var{u}}) Assign the value of @var{u} to @var{w} and return @var{w}. If @code{NULL} is passed for @var{w}, a new MPI is allocated, set to the value of @var{u} and returned. This function takes an @code{unsigned int} as type for @var{u} and thus it is only possible to set @var{w} to small values (usually up to the word size of the CPU). @end deftypefun @deftypefun gcry_error_t gcry_mpi_get_ui (@w{unsigned int *@var{w}}, @w{gcry_mpi_t @var{u}}) If @var{u} is not negative and small enough to be stored in an @code{unsigned int} variable, store its value at @var{w}. If the value does not fit or is negative return GPG_ERR_ERANGE and do not change the value stored at @var{w}. Note that this function returns an @code{unsigned int} so that this value can immediately be used with the bit test functions. This is in contrast to the other "_ui" functions which allow for values up to an @code{unsigned long}. @end deftypefun @deftypefun void gcry_mpi_swap (@w{gcry_mpi_t @var{a}}, @w{gcry_mpi_t @var{b}}) Swap the values of @var{a} and @var{b}. @end deftypefun @deftypefun void gcry_mpi_snatch (@w{gcry_mpi_t @var{w}}, @ @w{const gcry_mpi_t @var{u}}) Set @var{u} into @var{w} and release @var{u}. If @var{w} is @code{NULL} only @var{u} will be released. @end deftypefun @deftypefun void gcry_mpi_neg (@w{gcry_mpi_t @var{w}}, @w{gcry_mpi_t @var{u}}) Set the sign of @var{w} to the negative of @var{u}. @end deftypefun @deftypefun void gcry_mpi_abs (@w{gcry_mpi_t @var{w}}) Clear the sign of @var{w}. @end deftypefun @node MPI formats @section MPI formats @noindent The following functions are used to convert between an external representation of an MPI and the internal one of Libgcrypt. @deftypefun gcry_error_t gcry_mpi_scan (@w{gcry_mpi_t *@var{r_mpi}}, @w{enum gcry_mpi_format @var{format}}, @w{const unsigned char *@var{buffer}}, @w{size_t @var{buflen}}, @w{size_t *@var{nscanned}}) Convert the external representation of an integer stored in @var{buffer} with a length of @var{buflen} into a newly created MPI returned which will be stored at the address of @var{r_mpi}. For certain formats the length argument is not required and should be passed as @code{0}. A @var{buflen} larger than 16 MiByte will be rejected. After a successful operation the variable @var{nscanned} receives the number of bytes actually scanned unless @var{nscanned} was given as @code{NULL}. @var{format} describes the format of the MPI as stored in @var{buffer}: @table @code @item GCRYMPI_FMT_STD 2-complement stored without a length header. Note that @code{gcry_mpi_print} stores a @code{0} as a string of zero length. @item GCRYMPI_FMT_PGP As used by OpenPGP (only defined as unsigned). This is basically @code{GCRYMPI_FMT_STD} with a 2 byte big endian length header. A length header indicating a length of more than 16384 is not allowed. @item GCRYMPI_FMT_SSH As used in the Secure Shell protocol. This is @code{GCRYMPI_FMT_STD} with a 4 byte big endian header. @item GCRYMPI_FMT_HEX Stored as a string with each byte of the MPI encoded as 2 hex digits. Negative numbers are prefix with a minus sign and in addition the high bit is always zero to make clear that an explicit sign ist used. When using this format, @var{buflen} must be zero. @item GCRYMPI_FMT_USG Simple unsigned integer. @end table @noindent Note that all of the above formats store the integer in big-endian format (MSB first). @end deftypefun @deftypefun gcry_error_t gcry_mpi_print (@w{enum gcry_mpi_format @var{format}}, @w{unsigned char *@var{buffer}}, @w{size_t @var{buflen}}, @w{size_t *@var{nwritten}}, @w{const gcry_mpi_t @var{a}}) Convert the MPI @var{a} into an external representation described by @var{format} (see above) and store it in the provided @var{buffer} which has a usable length of at least the @var{buflen} bytes. If @var{nwritten} is not NULL, it will receive the number of bytes actually stored in @var{buffer} after a successful operation. @end deftypefun @deftypefun gcry_error_t gcry_mpi_aprint (@w{enum gcry_mpi_format @var{format}}, @w{unsigned char **@var{buffer}}, @w{size_t *@var{nbytes}}, @w{const gcry_mpi_t @var{a}}) Convert the MPI @var{a} into an external representation described by @var{format} (see above) and store it in a newly allocated buffer which address will be stored in the variable @var{buffer} points to. The number of bytes stored in this buffer will be stored in the variable @var{nbytes} points to, unless @var{nbytes} is @code{NULL}. Even if @var{nbytes} is zero, the function allocates at least one byte and store a zero there. Thus with formats @code{GCRYMPI_FMT_STD} and @code{GCRYMPI_FMT_USG} the caller may safely set a returned length of 0 to 1 to represent a zero as a 1 byte string. @end deftypefun @deftypefun void gcry_mpi_dump (@w{const gcry_mpi_t @var{a}}) Dump the value of @var{a} in a format suitable for debugging to Libgcrypt's logging stream. Note that one leading space but no trailing space or linefeed will be printed. It is okay to pass @code{NULL} for @var{a}. @end deftypefun @node Calculations @section Calculations @noindent Basic arithmetic operations: @deftypefun void gcry_mpi_add (@w{gcry_mpi_t @var{w}}, @w{gcry_mpi_t @var{u}}, @w{gcry_mpi_t @var{v}}) @math{@var{w} = @var{u} + @var{v}}. @end deftypefun @deftypefun void gcry_mpi_add_ui (@w{gcry_mpi_t @var{w}}, @w{gcry_mpi_t @var{u}}, @w{unsigned long @var{v}}) @math{@var{w} = @var{u} + @var{v}}. Note that @var{v} is an unsigned integer. @end deftypefun @deftypefun void gcry_mpi_addm (@w{gcry_mpi_t @var{w}}, @w{gcry_mpi_t @var{u}}, @w{gcry_mpi_t @var{v}}, @w{gcry_mpi_t @var{m}}) @math{@var{w} = @var{u} + @var{v} \bmod @var{m}}. @end deftypefun @deftypefun void gcry_mpi_sub (@w{gcry_mpi_t @var{w}}, @w{gcry_mpi_t @var{u}}, @w{gcry_mpi_t @var{v}}) @math{@var{w} = @var{u} - @var{v}}. @end deftypefun @deftypefun void gcry_mpi_sub_ui (@w{gcry_mpi_t @var{w}}, @w{gcry_mpi_t @var{u}}, @w{unsigned long @var{v}}) @math{@var{w} = @var{u} - @var{v}}. @var{v} is an unsigned integer. @end deftypefun @deftypefun void gcry_mpi_subm (@w{gcry_mpi_t @var{w}}, @w{gcry_mpi_t @var{u}}, @w{gcry_mpi_t @var{v}}, @w{gcry_mpi_t @var{m}}) @math{@var{w} = @var{u} - @var{v} \bmod @var{m}}. @end deftypefun @deftypefun void gcry_mpi_mul (@w{gcry_mpi_t @var{w}}, @w{gcry_mpi_t @var{u}}, @w{gcry_mpi_t @var{v}}) @math{@var{w} = @var{u} * @var{v}}. @end deftypefun @deftypefun void gcry_mpi_mul_ui (@w{gcry_mpi_t @var{w}}, @w{gcry_mpi_t @var{u}}, @w{unsigned long @var{v}}) @math{@var{w} = @var{u} * @var{v}}. @var{v} is an unsigned integer. @end deftypefun @deftypefun void gcry_mpi_mulm (@w{gcry_mpi_t @var{w}}, @w{gcry_mpi_t @var{u}}, @w{gcry_mpi_t @var{v}}, @w{gcry_mpi_t @var{m}}) @math{@var{w} = @var{u} * @var{v} \bmod @var{m}}. @end deftypefun @deftypefun void gcry_mpi_mul_2exp (@w{gcry_mpi_t @var{w}}, @w{gcry_mpi_t @var{u}}, @w{unsigned long @var{e}}) @c FIXME: I am in need for a real TeX{info} guru: @c I don't know why TeX can grok @var{e} here. @math{@var{w} = @var{u} * 2^e}. @end deftypefun @deftypefun void gcry_mpi_div (@w{gcry_mpi_t @var{q}}, @w{gcry_mpi_t @var{r}}, @w{gcry_mpi_t @var{dividend}}, @w{gcry_mpi_t @var{divisor}}, @w{int @var{round}}) @math{@var{q} = @var{dividend} / @var{divisor}}, @math{@var{r} = @var{dividend} \bmod @var{divisor}}. @var{q} and @var{r} may be passed as @code{NULL}. @var{round} is either negative for floored division (rounds towards the next lower integer) or zero for truncated division (rounds towards zero). @end deftypefun @deftypefun void gcry_mpi_mod (@w{gcry_mpi_t @var{r}}, @w{gcry_mpi_t @var{dividend}}, @w{gcry_mpi_t @var{divisor}}) @math{@var{r} = @var{dividend} \bmod @var{divisor}}. @end deftypefun @deftypefun void gcry_mpi_powm (@w{gcry_mpi_t @var{w}}, @w{const gcry_mpi_t @var{b}}, @w{const gcry_mpi_t @var{e}}, @w{const gcry_mpi_t @var{m}}) @c I don't know why TeX can grok @var{e} here. @math{@var{w} = @var{b}^e \bmod @var{m}}. @end deftypefun @deftypefun int gcry_mpi_gcd (@w{gcry_mpi_t @var{g}}, @w{gcry_mpi_t @var{a}}, @w{gcry_mpi_t @var{b}}) Set @var{g} to the greatest common divisor of @var{a} and @var{b}. Return true if the @var{g} is 1. @end deftypefun @deftypefun int gcry_mpi_invm (@w{gcry_mpi_t @var{x}}, @w{gcry_mpi_t @var{a}}, @w{gcry_mpi_t @var{m}}) Set @var{x} to the multiplicative inverse of @math{@var{a} \bmod @var{m}}. Return true if the inverse exists. @end deftypefun @node Comparisons @section Comparisons @noindent The next 2 functions are used to compare MPIs: @deftypefun int gcry_mpi_cmp (@w{const gcry_mpi_t @var{u}}, @w{const gcry_mpi_t @var{v}}) Compare the multi-precision-integers number @var{u} and @var{v} returning 0 for equality, a positive value for @var{u} > @var{v} and a negative for @var{u} < @var{v}. If both numbers are opaque values (cf, gcry_mpi_set_opaque) the comparison is done by checking the bit sizes using memcmp. If only one number is an opaque value, the opaque value is less than the other number. @end deftypefun @deftypefun int gcry_mpi_cmp_ui (@w{const gcry_mpi_t @var{u}}, @w{unsigned long @var{v}}) Compare the multi-precision-integers number @var{u} with the unsigned integer @var{v} returning 0 for equality, a positive value for @var{u} > @var{v} and a negative for @var{u} < @var{v}. @end deftypefun @deftypefun int gcry_mpi_is_neg (@w{const gcry_mpi_t @var{a}}) Return 1 if @var{a} is less than zero; return 0 if zero or positive. @end deftypefun @node Bit manipulations @section Bit manipulations @noindent There are a couple of functions to get information on arbitrary bits in an MPI and to set or clear them: @deftypefun {unsigned int} gcry_mpi_get_nbits (@w{gcry_mpi_t @var{a}}) Return the number of bits required to represent @var{a}. @end deftypefun @deftypefun int gcry_mpi_test_bit (@w{gcry_mpi_t @var{a}}, @w{unsigned int @var{n}}) Return true if bit number @var{n} (counting from 0) is set in @var{a}. @end deftypefun @deftypefun void gcry_mpi_set_bit (@w{gcry_mpi_t @var{a}}, @w{unsigned int @var{n}}) Set bit number @var{n} in @var{a}. @end deftypefun @deftypefun void gcry_mpi_clear_bit (@w{gcry_mpi_t @var{a}}, @w{unsigned int @var{n}}) Clear bit number @var{n} in @var{a}. @end deftypefun @deftypefun void gcry_mpi_set_highbit (@w{gcry_mpi_t @var{a}}, @w{unsigned int @var{n}}) Set bit number @var{n} in @var{a} and clear all bits greater than @var{n}. @end deftypefun @deftypefun void gcry_mpi_clear_highbit (@w{gcry_mpi_t @var{a}}, @w{unsigned int @var{n}}) Clear bit number @var{n} in @var{a} and all bits greater than @var{n}. @end deftypefun @deftypefun void gcry_mpi_rshift (@w{gcry_mpi_t @var{x}}, @w{gcry_mpi_t @var{a}}, @w{unsigned int @var{n}}) Shift the value of @var{a} by @var{n} bits to the right and store the result in @var{x}. @end deftypefun @deftypefun void gcry_mpi_lshift (@w{gcry_mpi_t @var{x}}, @w{gcry_mpi_t @var{a}}, @w{unsigned int @var{n}}) Shift the value of @var{a} by @var{n} bits to the left and store the result in @var{x}. @end deftypefun @node EC functions @section EC functions @noindent Libgcrypt provides an API to access low level functions used by its elliptic curve implementation. These functions allow to implement elliptic curve methods for which no explicit support is available. @deftypefun gcry_mpi_point_t gcry_mpi_point_new (@w{unsigned int @var{nbits}}) Allocate a new point object, initialize it to 0, and allocate enough memory for a points of at least @var{nbits}. This pre-allocation yields only a small performance win and is not really necessary because Libgcrypt automatically re-allocates the required memory. Using 0 for @var{nbits} is usually the right thing to do. @end deftypefun @deftypefun void gcry_mpi_point_release (@w{gcry_mpi_point_t @var{point}}) Release @var{point} and free all associated resources. Passing @code{NULL} is allowed and ignored. @end deftypefun @deftypefun gcry_mpi_point_t gcry_mpi_point_copy (@w{gcry_mpi_point_t @var{point}}) Allocate and return a new point object and initialize it with @var{point}. If @var{point} is NULL the function is identical to @code{gcry_mpi_point_new(0)}. @end deftypefun @deftypefun void gcry_mpi_point_get (@w{gcry_mpi_t @var{x}}, @ @w{gcry_mpi_t @var{y}}, @w{gcry_mpi_t @var{z}}, @ @w{gcry_mpi_point_t @var{point}}) Store the projective coordinates from @var{point} into the MPIs @var{x}, @var{y}, and @var{z}. If a coordinate is not required, @code{NULL} may be used for @var{x}, @var{y}, or @var{z}. @end deftypefun @deftypefun void gcry_mpi_point_snatch_get (@w{gcry_mpi_t @var{x}}, @ @w{gcry_mpi_t @var{y}}, @w{gcry_mpi_t @var{z}}, @ @w{gcry_mpi_point_t @var{point}}) Store the projective coordinates from @var{point} into the MPIs @var{x}, @var{y}, and @var{z}. If a coordinate is not required, @code{NULL} may be used for @var{x}, @var{y}, or @var{z}. The object @var{point} is then released. Using this function instead of @code{gcry_mpi_point_get} and @code{gcry_mpi_point_release} has the advantage of avoiding some extra memory allocations and copies. @end deftypefun @deftypefun gcry_mpi_point_t gcry_mpi_point_set ( @ @w{gcry_mpi_point_t @var{point}}, @ @w{gcry_mpi_t @var{x}}, @w{gcry_mpi_t @var{y}}, @w{gcry_mpi_t @var{z}}) Store the projective coordinates from @var{x}, @var{y}, and @var{z} into @var{point}. If a coordinate is given as @code{NULL}, the value 0 is used. If @code{NULL} is used for @var{point} a new point object is allocated and returned. Returns @var{point} or the newly allocated point object. @end deftypefun @deftypefun gcry_mpi_point_t gcry_mpi_point_snatch_set ( @ @w{gcry_mpi_point_t @var{point}}, @ @w{gcry_mpi_t @var{x}}, @w{gcry_mpi_t @var{y}}, @w{gcry_mpi_t @var{z}}) Store the projective coordinates from @var{x}, @var{y}, and @var{z} into @var{point}. If a coordinate is given as @code{NULL}, the value 0 is used. If @code{NULL} is used for @var{point} a new point object is allocated and returned. The MPIs @var{x}, @var{y}, and @var{z} are released. Using this function instead of @code{gcry_mpi_point_set} and 3 calls to @code{gcry_mpi_release} has the advantage of avoiding some extra memory allocations and copies. Returns @var{point} or the newly allocated point object. @end deftypefun @anchor{gcry_mpi_ec_new} @deftypefun gpg_error_t gcry_mpi_ec_new (@w{gcry_ctx_t *@var{r_ctx}}, @ @w{gcry_sexp_t @var{keyparam}}, @w{const char *@var{curvename}}) Allocate a new context for elliptic curve operations. If @var{keyparam} is given it specifies the parameters of the curve (@pxref{ecc_keyparam}). If @var{curvename} is given in addition to @var{keyparam} and the key parameters do not include a named curve reference, the string @var{curvename} is used to fill in missing parameters. If only @var{curvename} is given, the context is initialized for this named curve. If a parameter specifying a point (e.g. @code{g} or @code{q}) is not found, the parser looks for a non-encoded point by appending @code{.x}, @code{.y}, and @code{.z} to the parameter name and looking them all up to create a point. A parameter with the suffix @code{.z} is optional and defaults to 1. On success the function returns 0 and stores the new context object at @var{r_ctx}; this object eventually needs to be released (@pxref{gcry_ctx_release}). On error the function stores @code{NULL} at @var{r_ctx} and returns an error code. @end deftypefun @deftypefun gcry_mpi_t gcry_mpi_ec_get_mpi ( @ @w{const char *@var{name}}, @w{gcry_ctx_t @var{ctx}}, @w{int @var{copy}}) Return the MPI with @var{name} from the context @var{ctx}. If not found @code{NULL} is returned. If the returned MPI may later be modified, it is suggested to pass @code{1} to @var{copy}, so that the function guarantees that a modifiable copy of the MPI is returned. If @code{0} is used for @var{copy}, this function may return a constant flagged MPI. In any case @code{gcry_mpi_release} needs to be called to release the result. For valid names @ref{ecc_keyparam}. If the public key @code{q} is requested but only the private key @code{d} is available, @code{q} will be recomputed on the fly. If a point parameter is requested it is returned as an uncompressed encoded point unless these special names are used: @table @var @item q@@eddsa Return an EdDSA style compressed point. This is only supported for Twisted Edwards curves. @end table @end deftypefun @deftypefun gcry_mpi_point_t gcry_mpi_ec_get_point ( @ @w{const char *@var{name}}, @w{gcry_ctx_t @var{ctx}}, @w{int @var{copy}}) Return the point with @var{name} from the context @var{ctx}. If not found @code{NULL} is returned. If the returned MPI may later be modified, it is suggested to pass @code{1} to @var{copy}, so that the function guarantees that a modifiable copy of the MPI is returned. If @code{0} is used for @var{copy}, this function may return a constant flagged point. In any case @code{gcry_mpi_point_release} needs to be called to release the result. If the public key @code{q} is requested but only the private key @code{d} is available, @code{q} will be recomputed on the fly. @end deftypefun @deftypefun gpg_error_t gcry_mpi_ec_set_mpi ( @ @w{const char *@var{name}}, @w{gcry_mpi_t @var{newvalue}}, @ @w{gcry_ctx_t @var{ctx}}) Store the MPI @var{newvalue} at @var{name} into the context @var{ctx}. On success @code{0} is returned; on error an error code. Valid names are the MPI parameters of an elliptic curve (@pxref{ecc_keyparam}). @end deftypefun @deftypefun gpg_error_t gcry_mpi_ec_set_point ( @ @w{const char *@var{name}}, @w{gcry_mpi_point_t @var{newvalue}}, @ @w{gcry_ctx_t @var{ctx}}) Store the point @var{newvalue} at @var{name} into the context @var{ctx}. On success @code{0} is returned; on error an error code. Valid names are the point parameters of an elliptic curve (@pxref{ecc_keyparam}). @end deftypefun @deftypefun gpg_err_code_t gcry_mpi_ec_decode_point ( @ @w{mpi_point_t @var{result}}, @w{gcry_mpi_t @var{value}}, @ @w{gcry_ctx_t @var{ctx}}) Decode the point given as an MPI in @var{value} and store at @var{result}. To decide which encoding is used the function takes a context @var{ctx} which can be created with @code{gcry_mpi_ec_new}. If @code{NULL} is given for the context the function assumes a 0x04 prefixed uncompressed encoding. On error an error code is returned and @var{result} might be changed. @end deftypefun @deftypefun int gcry_mpi_ec_get_affine ( @ @w{gcry_mpi_t @var{x}}, @w{gcry_mpi_t @var{y}}, @ @w{gcry_mpi_point_t @var{point}}, @w{gcry_ctx_t @var{ctx}}) Compute the affine coordinates from the projective coordinates in @var{point} and store them into @var{x} and @var{y}. If one coordinate is not required, @code{NULL} may be passed to @var{x} or @var{y}. @var{ctx} is the context object which has been created using @code{gcry_mpi_ec_new}. Returns 0 on success or not 0 if @var{point} is at infinity. Note that you can use @code{gcry_mpi_ec_set_point} with the value @code{GCRYMPI_CONST_ONE} for @var{z} to convert affine coordinates back into projective coordinates. @end deftypefun @deftypefun void gcry_mpi_ec_dup ( @ @w{gcry_mpi_point_t @var{w}}, @w{gcry_mpi_point_t @var{u}}, @ @w{gcry_ctx_t @var{ctx}}) Double the point @var{u} of the elliptic curve described by @var{ctx} and store the result into @var{w}. @end deftypefun @deftypefun void gcry_mpi_ec_add ( @ @w{gcry_mpi_point_t @var{w}}, @w{gcry_mpi_point_t @var{u}}, @ @w{gcry_mpi_point_t @var{v}}, @w{gcry_ctx_t @var{ctx}}) Add the points @var{u} and @var{v} of the elliptic curve described by @var{ctx} and store the result into @var{w}. @end deftypefun @deftypefun void gcry_mpi_ec_sub ( @ @w{gcry_mpi_point_t @var{w}}, @w{gcry_mpi_point_t @var{u}}, @ @w{gcry_mpi_point_t @var{v}}, @w{gcry_ctx_t @var{ctx}}) Subtracts the point @var{v} from the point @var{u} of the elliptic curve described by @var{ctx} and store the result into @var{w}. Only Twisted Edwards curves are supported for now. @end deftypefun @deftypefun void gcry_mpi_ec_mul ( @ @w{gcry_mpi_point_t @var{w}}, @w{gcry_mpi_t @var{n}}, @ @w{gcry_mpi_point_t @var{u}}, @w{gcry_ctx_t @var{ctx}}) Multiply the point @var{u} of the elliptic curve described by @var{ctx} by @var{n} and store the result into @var{w}. @end deftypefun @deftypefun int gcry_mpi_ec_curve_point ( @ @w{gcry_mpi_point_t @var{point}}, @w{gcry_ctx_t @var{ctx}}) Return true if @var{point} is on the elliptic curve described by @var{ctx}. @end deftypefun @node Miscellaneous @section Miscellaneous An MPI data type is allowed to be ``misused'' to store an arbitrary value. Two functions implement this kludge: @deftypefun gcry_mpi_t gcry_mpi_set_opaque (@w{gcry_mpi_t @var{a}}, @w{void *@var{p}}, @w{unsigned int @var{nbits}}) Store @var{nbits} of the value @var{p} points to in @var{a} and mark @var{a} as an opaque value (i.e. an value that can't be used for any math calculation and is only used to store an arbitrary bit pattern in @var{a}). Ownership of @var{p} is taken by this function and thus the user may not use dereference the passed value anymore. It is required that them memory referenced by @var{p} has been allocated in a way that @code{gcry_free} is able to release it. WARNING: Never use an opaque MPI for actual math operations. The only valid functions are gcry_mpi_get_opaque and gcry_mpi_release. Use gcry_mpi_scan to convert a string of arbitrary bytes into an MPI. @end deftypefun @deftypefun gcry_mpi_t gcry_mpi_set_opaque_copy (@w{gcry_mpi_t @var{a}}, @w{const void *@var{p}}, @w{unsigned int @var{nbits}}) Same as @code{gcry_mpi_set_opaque} but ownership of @var{p} is not taken instead a copy of @var{p} is used. @end deftypefun @deftypefun {void *} gcry_mpi_get_opaque (@w{gcry_mpi_t @var{a}}, @w{unsigned int *@var{nbits}}) Return a pointer to an opaque value stored in @var{a} and return its size in @var{nbits}. Note that the returned pointer is still owned by @var{a} and that the function should never be used for an non-opaque MPI. @end deftypefun Each MPI has an associated set of flags for special purposes. The currently defined flags are: @table @code @item GCRYMPI_FLAG_SECURE Setting this flag converts @var{a} into an MPI stored in "secure memory". Clearing this flag is not allowed. @item GCRYMPI_FLAG_OPAQUE This is an internal flag, indicating the an opaque valuue and not an integer is stored. This is an read-only flag; it may not be set or cleared. @item GCRYMPI_FLAG_IMMUTABLE If this flag is set, the MPI is marked as immutable. Setting or changing the value of that MPI is ignored and an error message is logged. The flag is sometimes useful for debugging. @item GCRYMPI_FLAG_CONST If this flag is set, the MPI is marked as a constant and as immutable Setting or changing the value of that MPI is ignored and an error message is logged. Such an MPI will never be deallocated and may thus be used without copying. Note that using gcry_mpi_copy will return a copy of that constant with this and the immutable flag cleared. A few commonly used constants are pre-defined and accessible using the macros @code{GCRYMPI_CONST_ONE}, @code{GCRYMPI_CONST_TWO}, @code{GCRYMPI_CONST_THREE}, @code{GCRYMPI_CONST_FOUR}, and @code{GCRYMPI_CONST_EIGHT}. @item GCRYMPI_FLAG_USER1 @itemx GCRYMPI_FLAG_USER2 @itemx GCRYMPI_FLAG_USER3 @itemx GCRYMPI_FLAG_USER4 These flags are reserved for use by the application. @end table @deftypefun void gcry_mpi_set_flag (@w{gcry_mpi_t @var{a}}, @ @w{enum gcry_mpi_flag @var{flag}}) Set the @var{flag} for the MPI @var{a}. The only allowed flags are @code{GCRYMPI_FLAG_SECURE}, @code{GCRYMPI_FLAG_IMMUTABLE}, and @code{GCRYMPI_FLAG_CONST}. @end deftypefun @deftypefun void gcry_mpi_clear_flag (@w{gcry_mpi_t @var{a}}, @ @w{enum gcry_mpi_flag @var{flag}}) Clear @var{flag} for the multi-precision-integers @var{a}. The only allowed flag is @code{GCRYMPI_FLAG_IMMUTABLE} but only if @code{GCRYMPI_FLAG_CONST} is not set. If @code{GCRYMPI_FLAG_CONST} is set, clearing @code{GCRYMPI_FLAG_IMMUTABLE} will simply be ignored. @end deftypefun o @deftypefun int gcry_mpi_get_flag (@w{gcry_mpi_t @var{a}}, @ @w{enum gcry_mpi_flag @var{flag}}) Return true if @var{flag} is set for @var{a}. @end deftypefun To put a random value into an MPI, the following convenience function may be used: @deftypefun void gcry_mpi_randomize (@w{gcry_mpi_t @var{w}}, @w{unsigned int @var{nbits}}, @w{enum gcry_random_level @var{level}}) Set the multi-precision-integers @var{w} to a random non-negative number of @var{nbits}, using random data quality of level @var{level}. In case @var{nbits} is not a multiple of a byte, @var{nbits} is rounded up to the next byte boundary. When using a @var{level} of @code{GCRY_WEAK_RANDOM} this function makes use of @code{gcry_create_nonce}. @end deftypefun @c ********************************************************** @c ******************** Prime numbers *********************** @c ********************************************************** @node Prime numbers @chapter Prime numbers @menu * Generation:: Generation of new prime numbers. * Checking:: Checking if a given number is prime. @end menu @node Generation @section Generation @deftypefun gcry_error_t gcry_prime_generate (gcry_mpi_t *@var{prime},unsigned int @var{prime_bits}, unsigned int @var{factor_bits}, gcry_mpi_t **@var{factors}, gcry_prime_check_func_t @var{cb_func}, void *@var{cb_arg}, gcry_random_level_t @var{random_level}, unsigned int @var{flags}) Generate a new prime number of @var{prime_bits} bits and store it in @var{prime}. If @var{factor_bits} is non-zero, one of the prime factors of (@var{prime} - 1) / 2 must be @var{factor_bits} bits long. If @var{factors} is non-zero, allocate a new, @code{NULL}-terminated array holding the prime factors and store it in @var{factors}. @var{flags} might be used to influence the prime number generation process. @end deftypefun @deftypefun gcry_error_t gcry_prime_group_generator (gcry_mpi_t *@var{r_g}, gcry_mpi_t @var{prime}, gcry_mpi_t *@var{factors}, gcry_mpi_t @var{start_g}) Find a generator for @var{prime} where the factorization of (@var{prime}-1) is in the @code{NULL} terminated array @var{factors}. Return the generator as a newly allocated MPI in @var{r_g}. If @var{start_g} is not NULL, use this as the start for the search. @end deftypefun @deftypefun void gcry_prime_release_factors (gcry_mpi_t *@var{factors}) Convenience function to release the @var{factors} array. @end deftypefun @node Checking @section Checking @deftypefun gcry_error_t gcry_prime_check (gcry_mpi_t @var{p}, unsigned int @var{flags}) Check whether the number @var{p} is prime. Returns zero in case @var{p} is indeed a prime, returns @code{GPG_ERR_NO_PRIME} in case @var{p} is not a prime and a different error code in case something went horribly wrong. @end deftypefun @c ********************************************************** @c ******************** Utilities *************************** @c ********************************************************** @node Utilities @chapter Utilities @menu * Memory allocation:: Functions related with memory allocation. * Context management:: Functions related with context management. * Buffer description:: A data type to describe buffers. * Config reporting:: How to return Libgcrypt's configuration. @end menu @node Memory allocation @section Memory allocation @deftypefun {void *} gcry_malloc (size_t @var{n}) This function tries to allocate @var{n} bytes of memory. On success it returns a pointer to the memory area, in an out-of-core condition, it returns NULL. @end deftypefun @deftypefun {void *} gcry_malloc_secure (size_t @var{n}) Like @code{gcry_malloc}, but uses secure memory. @end deftypefun @deftypefun {void *} gcry_calloc (size_t @var{n}, size_t @var{m}) This function allocates a cleared block of memory (i.e. initialized with zero bytes) long enough to contain a vector of @var{n} elements, each of size @var{m} bytes. On success it returns a pointer to the memory block; in an out-of-core condition, it returns NULL. @end deftypefun @deftypefun {void *} gcry_calloc_secure (size_t @var{n}, size_t @var{m}) Like @code{gcry_calloc}, but uses secure memory. @end deftypefun @deftypefun {void *} gcry_realloc (void *@var{p}, size_t @var{n}) This function tries to resize the memory area pointed to by @var{p} to @var{n} bytes. On success it returns a pointer to the new memory area, in an out-of-core condition, it returns NULL. Depending on whether the memory pointed to by @var{p} is secure memory or not, gcry_realloc tries to use secure memory as well. @end deftypefun @deftypefun void gcry_free (void *@var{p}) Release the memory area pointed to by @var{p}. @end deftypefun @node Context management @section Context management Some function make use of a context object. As of now there are only a few math functions. However, future versions of Libgcrypt may make more use of this context object. @deftp {Data type} {gcry_ctx_t} This type is used to refer to the general purpose context object. @end deftp @anchor{gcry_ctx_release} @deftypefun void gcry_ctx_release (gcry_ctx_t @var{ctx}) Release the context object @var{ctx} and all associated resources. A @code{NULL} passed as @var{ctx} is ignored. @end deftypefun @node Buffer description @section Buffer description To help hashing non-contiguous areas of memory a general purpose data type is defined: @deftp {Data type} {gcry_buffer_t} This type is a structure to describe a buffer. The user should make sure that this structure is initialized to zero. The available fields of this structure are: @table @code @item .size This is either 0 for no information available or indicates the allocated length of the buffer. @item .off This is the offset into the buffer. @item .len This is the valid length of the buffer starting at @code{.off}. @item .data This is the address of the buffer. @end table @end deftp @node Config reporting @section How to return Libgcrypt's configuration. Although @code{GCRYCTL_PRINT_CONFIG} can be used to print configuration options, it is sometimes necessary to check them in a program. This can be accomplished by using this function: @deftypefun {char *} gcry_get_config @ (@w{int @var{mode}}, @ @w{const char *@var{what}}) This function returns a malloced string with colon delimited configure options. With a value of 0 for @var{mode} this string resembles the output of @code{GCRYCTL_PRINT_CONFIG}. However, if @var{what} is not NULL, only the line where the first field (e.g. "cpu-arch") matches @var{what} is returned. Other values than 0 for @var{mode} are not defined. The caller shall free the string using @code{gcry_free}. On error NULL is returned and ERRNO is set; if a value for WHAT is unknow ERRNO will be set to 0. @end deftypefun @c ********************************************************** @c ********************* Tools **************************** @c ********************************************************** @node Tools @chapter Tools @menu * hmac256:: A standalone HMAC-SHA-256 implementation @end menu @manpage hmac256.1 @node hmac256 @section A HMAC-SHA-256 tool @ifset manverb .B hmac256 \- Compute an HMAC-SHA-256 MAC @end ifset @mansect synopsis @ifset manverb .B hmac256 .RB [ \-\-binary ] .I key .I [FILENAME] @end ifset @mansect description This is a standalone HMAC-SHA-256 implementation used to compute an HMAC-SHA-256 message authentication code. The tool has originally been developed as a second implementation for Libgcrypt to allow comparing against the primary implementation and to be used for internal consistency checks. It should not be used for sensitive data because no mechanisms to clear the stack etc are used. The code has been written in a highly portable manner and requires only a few standard definitions to be provided in a config.h file. @noindent @command{hmac256} is commonly invoked as @example hmac256 "This is my key" foo.txt @end example @noindent This compute the MAC on the file @file{foo.txt} using the key given on the command line. @mansect options @noindent @command{hmac256} understands these options: @table @gnupgtabopt @item --binary Print the MAC as a binary string. The default is to print the MAC encoded has lower case hex digits. @item --version Print version of the program and exit. @end table @mansect see also @ifset isman @command{sha256sum}(1) @end ifset @manpause @c ********************************************************** @c **************** Environment Variables ***************** @c ********************************************************** @node Configuration @chapter Configuration files and environment variables This chapter describes which files and environment variables can be used to change the behaviour of Libgcrypt. @noindent The environment variables considered by Libgcrypt are: @table @code @item GCRYPT_BARRETT @cindex GCRYPT_BARRETT By setting this variable to any value a different algorithm for modular reduction is used for ECC. @item GCRYPT_RNDUNIX_DBG @item GCRYPT_RNDUNIX_DBGALL @cindex GCRYPT_RNDUNIX_DBG @cindex GCRYPT_RNDUNIX_DBGALL These two environment variables are used to enable debug output for the rndunix entropy gatherer, which is used on systems lacking a /dev/random device. The value of @code{GCRYPT_RNDUNIX_DBG} is a file name or @code{-} for stdout. Debug output is the written to this file. By setting @code{GCRYPT_RNDUNIX_DBGALL} to any value the debug output will be more verbose. @item GCRYPT_RNDW32_NOPERF @cindex GCRYPT_RNDW32_NOPERF Setting this environment variable on Windows to any value disables the use of performance data (@code{HKEY_PERFORMANCE_DATA}) as source for entropy. On some older Windows systems this could help to speed up the creation of random numbers but also decreases the amount of data used to init the random number generator. @item GCRYPT_RNDW32_DBG @cindex GCRYPT_RNDW32_DBG Setting the value of this variable to a positive integer logs information about the Windows entropy gatherer using the standard log interface. @item HOME @cindex HOME This is used to locate the socket to connect to the EGD random daemon. The EGD can be used on system without a /dev/random to speed up the random number generator. It is not needed on the majority of today's operating systems and support for EGD requires the use of a configure option at build time. @end table @noindent The files which Libgcrypt uses to retrieve system information and the files which can be created by the user to modify Libgcrypt's behavior are: @table @file @item /etc/gcrypt/hwf.deny @cindex /etc/gcrypt/hwf.deny This file can be used to disable the use of hardware based optimizations, @pxref{hardware features}. @item /etc/gcrypt/random.conf @cindex /etc/gcrypt/random.conf This file can be used to globally change parameters of the random generator. The file is a simple text file where empty lines and lines with the first non white-space character being '#' are ignored. Supported options are @table @file @item disable-jent @cindex disable-jent Disable the use of the jitter based entropy generator. @item only-urandom @cindex only-urandom Always use the non-blocking /dev/urandom or the respective system call instead of the blocking /dev/random. If Libgcrypt is used early in the boot process of the system, this option should only be used if the system also supports the getrandom system call. @end table @item /etc/gcrypt/fips_enabled @itemx /proc/sys/crypto/fips_enabled @cindex /etc/gcrypt/fips_enabled @cindex fips_enabled On Linux these files are used to enable FIPS mode, @pxref{enabling fips mode}. @item /proc/cpuinfo @itemx /proc/self/auxv @cindex /proc/cpuinfo @cindex /proc/self/auxv On Linux running on the ARM architecture, these files are used to read hardware capabilities of the CPU. @end table @c ********************************************************** @c ***************** Architecure Overview ***************** @c ********************************************************** @node Architecture @chapter Architecture This chapter describes the internal architecture of Libgcrypt. Libgcrypt is a function library written in ISO C-90. Any compliant compiler should be able to build Libgcrypt as long as the target is either a POSIX platform or compatible to the API used by Windows NT. Provisions have been take so that the library can be directly used from C++ applications; however building with a C++ compiler is not supported. Building Libgcrypt is done by using the common @code{./configure && make} approach. The configure command is included in the source distribution and as a portable shell script it works on any Unix-alike system. The result of running the configure script are a C header file (@file{config.h}), customized Makefiles, the setup of symbolic links and a few other things. After that the make tool builds and optionally installs the library and the documentation. See the files @file{INSTALL} and @file{README} in the source distribution on how to do this. Libgcrypt is developed using a Subversion@footnote{A version control system available for many platforms} repository. Although all released versions are tagged in this repository, they should not be used to build production versions of Libgcrypt. Instead released tarballs should be used. These tarballs are available from several places with the master copy at @indicateurl{ftp://ftp.gnupg.org/gcrypt/libgcrypt/}. Announcements of new releases are posted to the @indicateurl{gnupg-announce@@gnupg.org} mailing list@footnote{See @url{http://www.gnupg.org/documentation/mailing-lists.en.html} for details.}. @float Figure,fig:subsystems @caption{Libgcrypt subsystems} @center @image{libgcrypt-modules, 150mm,,Libgcrypt subsystems} @end float Libgcrypt consists of several subsystems (@pxref{fig:subsystems}) and all these subsystems provide a public API; this includes the helper subsystems like the one for S-expressions. The API style depends on the subsystem; in general an open-use-close approach is implemented. The open returns a handle to a context used for all further operations on this handle, several functions may then be used on this handle and a final close function releases all resources associated with the handle. @menu * Public-Key Subsystem Architecture:: About public keys. * Symmetric Encryption Subsystem Architecture:: About standard ciphers. * Hashing and MACing Subsystem Architecture:: About hashing. * Multi-Precision-Integer Subsystem Architecture:: About big integers. * Prime-Number-Generator Subsystem Architecture:: About prime numbers. * Random-Number Subsystem Architecture:: About random stuff. @c * Helper Subsystems Architecture:: About other stuff. @end menu @node Public-Key Subsystem Architecture @section Public-Key Architecture Because public key cryptography is almost always used to process small amounts of data (hash values or session keys), the interface is not implemented using the open-use-close paradigm, but with single self-contained functions. Due to the wide variety of parameters required by different algorithms S-expressions, as flexible way to convey these parameters, are used. There is a set of helper functions to work with these S-expressions. @c see @xref{S-expression Subsystem Architecture}. Aside of functions to register new algorithms, map algorithms names to algorithms identifiers and to lookup properties of a key, the following main functions are available: @table @code @item gcry_pk_encrypt Encrypt data using a public key. @item gcry_pk_decrypt Decrypt data using a private key. @item gcry_pk_sign Sign data using a private key. @item gcry_pk_verify Verify that a signature matches the data. @item gcry_pk_testkey Perform a consistency over a public or private key. @item gcry_pk_genkey Create a new public/private key pair. @end table All these functions lookup the module implementing the algorithm and pass the actual work to that module. The parsing of the S-expression input and the construction of S-expression for the return values is done by the high level code (@file{cipher/pubkey.c}). Thus the internal interface between the algorithm modules and the high level functions passes data in a custom format. By default Libgcrypt uses a blinding technique for RSA decryption to mitigate real world timing attacks over a network: Instead of using the RSA decryption directly, a blinded value @math{y = x r^{e} \bmod n} is decrypted and the unblinded value @math{x' = y' r^{-1} \bmod n} returned. The blinding value @math{r} is a random value with the size of the modulus @math{n} and generated with @code{GCRY_WEAK_RANDOM} random level. @cindex X9.31 @cindex FIPS 186 The algorithm used for RSA and DSA key generation depends on whether Libgcrypt is operated in standard or in FIPS mode. In standard mode an algorithm based on the Lim-Lee prime number generator is used. In FIPS mode RSA keys are generated as specified in ANSI X9.31 (1998) and DSA keys as specified in FIPS 186-2. @node Symmetric Encryption Subsystem Architecture @section Symmetric Encryption Subsystem Architecture The interface to work with symmetric encryption algorithms is made up of functions from the @code{gcry_cipher_} name space. The implementation follows the open-use-close paradigm and uses registered algorithm modules for the actual work. Unless a module implements optimized cipher mode implementations, the high level code (@file{cipher/cipher.c}) implements the modes and calls the core algorithm functions to process each block. The most important functions are: @table @code @item gcry_cipher_open Create a new instance to encrypt or decrypt using a specified algorithm and mode. @item gcry_cipher_close Release an instance. @item gcry_cipher_setkey Set a key to be used for encryption or decryption. @item gcry_cipher_setiv Set an initialization vector to be used for encryption or decryption. @item gcry_cipher_encrypt @itemx gcry_cipher_decrypt Encrypt or decrypt data. These functions may be called with arbitrary amounts of data and as often as needed to encrypt or decrypt all data. @end table There are also functions to query properties of algorithms or context, like block length, key length, map names or to enable features like padding methods. @node Hashing and MACing Subsystem Architecture @section Hashing and MACing Subsystem Architecture The interface to work with message digests and CRC algorithms is made up of functions from the @code{gcry_md_} name space. The implementation follows the open-use-close paradigm and uses registered algorithm modules for the actual work. Although CRC algorithms are not considered cryptographic hash algorithms, they share enough properties so that it makes sense to handle them in the same way. It is possible to use several algorithms at once with one context and thus compute them all on the same data. The most important functions are: @table @code @item gcry_md_open Create a new message digest instance and optionally enable one algorithm. A flag may be used to turn the message digest algorithm into a HMAC algorithm. @item gcry_md_enable Enable an additional algorithm for the instance. @item gcry_md_setkey Set the key for the MAC. @item gcry_md_write Pass more data for computing the message digest to an instance. @item gcry_md_putc Buffered version of @code{gcry_md_write} implemented as a macro. @item gcry_md_read Finalize the computation of the message digest or HMAC and return the result. @item gcry_md_close Release an instance @item gcry_md_hash_buffer Convenience function to directly compute a message digest over a memory buffer without the need to create an instance first. @end table There are also functions to query properties of algorithms or the instance, like enabled algorithms, digest length, map algorithm names. it is also possible to reset an instance or to copy the current state of an instance at any time. Debug functions to write the hashed data to files are available as well. @node Multi-Precision-Integer Subsystem Architecture @section Multi-Precision-Integer Subsystem Architecture The implementation of Libgcrypt's big integer computation code is based on an old release of GNU Multi-Precision Library (GMP). The decision not to use the GMP library directly was due to stalled development at that time and due to security requirements which could not be provided by the code in GMP. As GMP does, Libgcrypt provides high performance assembler implementations of low level code for several CPUS to gain much better performance than with a generic C implementation. @noindent Major features of Libgcrypt's multi-precision-integer code compared to GMP are: @itemize @item Avoidance of stack based allocations to allow protection against swapping out of sensitive data and for easy zeroing of sensitive intermediate results. @item Optional use of secure memory and tracking of its use so that results are also put into secure memory. @item MPIs are identified by a handle (implemented as a pointer) to give better control over allocations and to augment them with extra properties like opaque data. @item Removal of unnecessary code to reduce complexity. @item Functions specialized for public key cryptography. @end itemize @node Prime-Number-Generator Subsystem Architecture @section Prime-Number-Generator Subsystem Architecture Libgcrypt provides an interface to its prime number generator. These functions make use of the internal prime number generator which is required for the generation for public key key pairs. The plain prime checking function is exported as well. The generation of random prime numbers is based on the Lim and Lee algorithm to create practically save primes.@footnote{Chae Hoon Lim and Pil Joong Lee. A key recovery attack on discrete log-based schemes using a prime order subgroup. In Burton S. Kaliski Jr., editor, Advances in Cryptology: Crypto '97, pages 249­-263, Berlin / Heidelberg / New York, 1997. Springer-Verlag. Described on page 260.} This algorithm creates a pool of smaller primes, select a few of them to create candidate primes of the form @math{2 * p_0 * p_1 * ... * p_n + 1}, tests the candidate for primality and permutates the pool until a prime has been found. It is possible to clamp one of the small primes to a certain size to help DSA style algorithms. Because most of the small primes in the pool are not used for the resulting prime number, they are saved for later use (see @code{save_pool_prime} and @code{get_pool_prime} in @file{cipher/primegen.c}). The prime generator optionally supports the finding of an appropriate generator. @noindent The primality test works in three steps: @enumerate @item The standard sieve algorithm using the primes up to 4999 is used as a quick first check. @item A Fermat test filters out almost all non-primes. @item A 5 round Rabin-Miller test is finally used. The first round uses a witness of 2, whereas the next rounds use a random witness. @end enumerate To support the generation of RSA and DSA keys in FIPS mode according to X9.31 and FIPS 186-2, Libgcrypt implements two additional prime generation functions: @code{_gcry_derive_x931_prime} and @code{_gcry_generate_fips186_2_prime}. These functions are internal and not available through the public API. @node Random-Number Subsystem Architecture @section Random-Number Subsystem Architecture Libgcrypt provides 3 levels or random quality: The level @code{GCRY_VERY_STRONG_RANDOM} usually used for key generation, the level @code{GCRY_STRONG_RANDOM} for all other strong random requirements and the function @code{gcry_create_nonce} which is used for weaker usages like nonces. There is also a level @code{GCRY_WEAK_RANDOM} which in general maps to @code{GCRY_STRONG_RANDOM} except when used with the function @code{gcry_mpi_randomize}, where it randomizes an multi-precision-integer using the @code{gcry_create_nonce} function. @noindent There are two distinct random generators available: @itemize @item The Continuously Seeded Pseudo Random Number Generator (CSPRNG), which is based on the classic GnuPG derived big pool implementation. Implemented in @code{random/random-csprng.c} and used by default. @item A FIPS approved ANSI X9.31 PRNG using AES with a 128 bit key. Implemented in @code{random/random-fips.c} and used if Libgcrypt is in FIPS mode. @end itemize @noindent Both generators make use of so-called entropy gathering modules: @table @asis @item rndlinux Uses the operating system provided @file{/dev/random} and @file{/dev/urandom} devices. The @file{/dev/gcrypt/random.conf} config option @option{only-urandom} can be used to inhibit the use of the blocking @file{/dev/random} device. @item rndunix Runs several operating system commands to collect entropy from sources like virtual machine and process statistics. It is a kind of poor-man's @code{/dev/random} implementation. It is not available in FIPS mode. @item rndegd Uses the operating system provided Entropy Gathering Daemon (EGD). The EGD basically uses the same algorithms as rndunix does. However as a system daemon it keeps on running and thus can serve several processes requiring entropy input and does not waste collected entropy if the application does not need all the collected entropy. It is not available in FIPS mode. @item rndw32 Targeted for the Microsoft Windows OS. It uses certain properties of that system and is the only gathering module available for that OS. @item rndhw Extra module to collect additional entropy by utilizing a hardware random number generator. As of now the supported hardware RNG is the Padlock engine of VIA (Centaur) CPUs and x86 CPUs with the RDRAND instruction. It is not available in FIPS mode. @item rndjent Extra module to collect additional entropy using a CPU jitter based approach. This is only used on X86 hardware where the RDTSC opcode is available. The @file{/dev/gcrypt/random.conf} config option @option{disable-jent} can be used to inhibit the use of this module. @end table @menu * CSPRNG Description:: Description of the CSPRNG. * FIPS PRNG Description:: Description of the FIPS X9.31 PRNG. @end menu @node CSPRNG Description @subsection Description of the CSPRNG This random number generator is loosely modelled after the one described in Peter Gutmann's paper: "Software Generation of Practically Strong Random Numbers".@footnote{Also described in chapter 6 of his book "Cryptographic Security Architecture", New York, 2004, ISBN 0-387-95387-6.} A pool of 600 bytes is used and mixed using the core SHA-1 hash transform function. Several extra features are used to make the robust against a wide variety of attacks and to protect against failures of subsystems. The state of the generator may be saved to a file and initially seed form a file. Depending on how Libgcrypt was build the generator is able to select the best working entropy gathering module. It makes use of the slow and fast collection methods and requires the pool to initially seeded form the slow gatherer or a seed file. An entropy estimation is used to mix in enough data from the gather modules before returning the actual random output. Process fork detection and protection is implemented. @c FIXME: The design and implementation needs a more verbose description. The implementation of the nonce generator (for @code{gcry_create_nonce}) is a straightforward repeated hash design: A 28 byte buffer is initially seeded with the PID and the time in seconds in the first 20 bytes and with 8 bytes of random taken from the @code{GCRY_STRONG_RANDOM} generator. Random numbers are then created by hashing all the 28 bytes with SHA-1 and saving that again in the first 20 bytes. The hash is also returned as result. @node FIPS PRNG Description @subsection Description of the FIPS X9.31 PRNG The core of this deterministic random number generator is implemented according to the document ``NIST-Recommended Random Number Generator Based on ANSI X9.31 Appendix A.2.4 Using the 3-Key Triple DES and AES Algorithms'', dated 2005-01-31. This implementation uses the AES variant. The generator is based on contexts to utilize the same core functions for all random levels as required by the high-level interface. All random generators return their data in 128 bit blocks. If the caller requests less bits, the extra bits are not used. The key for each generator is only set once at the first time a generator context is used. The seed value is set along with the key and again after 1000 output blocks. On Unix like systems the @code{GCRY_VERY_STRONG_RANDOM} and @code{GCRY_STRONG_RANDOM} generators are keyed and seeded using the rndlinux module with the @file{/dev/random} device. Thus these generators may block until the OS kernel has collected enough entropy. When used with Microsoft Windows the rndw32 module is used instead. The generator used for @code{gcry_create_nonce} is keyed and seeded from the @code{GCRY_STRONG_RANDOM} generator. Thus is may also block if the @code{GCRY_STRONG_RANDOM} generator has not yet been used before and thus gets initialized on the first use by @code{gcry_create_nonce}. This special treatment is justified by the weaker requirements for a nonce generator and to save precious kernel entropy for use by the ``real'' random generators. A self-test facility uses a separate context to check the functionality of the core X9.31 functions using a known answers test. During runtime each output block is compared to the previous one to detect a stuck generator. The DT value for the generator is made up of the current time down to microseconds (if available) and a free running 64 bit counter. When used with the test context the DT value is taken from the context and incremented on each use. @c @node Helper Subsystems Architecture @c @section Helper Subsystems Architecture @c @c There are a few smaller subsystems which are mainly used internally by @c Libgcrypt but also available to applications. @c @c @menu @c * S-expression Subsystem Architecture:: Details about the S-expression architecture. @c * Memory Subsystem Architecture:: Details about the memory allocation architecture. @c * Miscellaneous Subsystems Architecture:: Details about other subsystems. @c @end menu @c @c @node S-expression Subsystem Architecture @c @subsection S-expression Subsystem Architecture @c @c Libgcrypt provides an interface to S-expression to create and parse @c them. To use an S-expression with Libgcrypt it needs first be @c converted into the internal representation used by Libgcrypt (the type @c @code{gcry_sexp_t}). The conversion functions support a large subset @c of the S-expression specification and further feature a printf like @c function to convert a list of big integers or other binary data into @c an S-expression. @c @c Libgcrypt currently implements S-expressions using a tagged linked @c list. However this is not exposed to an application and may be @c changed in future releases to reduce overhead when already working @c with canonically encoded S-expressions. Secure memory is supported by @c this S-expressions implementation. @c @c @node Memory Subsystem Architecture @c @subsection Memory Subsystem Architecture @c @c TBD. @c @c @c @node Miscellaneous Subsystems Architecture @c @subsection Miscellaneous Subsystems Architecture @c @c TBD. @c @c @c ********************************************************** @c ******************* Appendices ************************* @c ********************************************************** @c ******************************************** @node Self-Tests @appendix Description of the Self-Tests In addition to the build time regression test suite, Libgcrypt implements self-tests to be performed at runtime. Which self-tests are actually used depends on the mode Libgcrypt is used in. In standard mode a limited set of self-tests is run at the time an algorithm is first used. Note that not all algorithms feature a self-test in standard mode. The @code{GCRYCTL_SELFTEST} control command may be used to run all implemented self-tests at any time; this will even run more tests than those run in FIPS mode. If any of the self-tests fails, the library immediately returns an error code to the caller. If Libgcrypt is in FIPS mode the self-tests will be performed within the ``Self-Test'' state and any failure puts the library into the ``Error'' state. @c -------------------------------- @section Power-Up Tests Power-up tests are only performed if Libgcrypt is in FIPS mode. @subsection Symmetric Cipher Algorithm Power-Up Tests The following symmetric encryption algorithm tests are run during power-up: @table @asis @item 3DES To test the 3DES 3-key EDE encryption in ECB mode these tests are run: @enumerate @item A known answer test is run on a 64 bit test vector processed by 64 rounds of Single-DES block encryption and decryption using a key changed with each round. @item A known answer test is run on a 64 bit test vector processed by 16 rounds of 2-key and 3-key Triple-DES block encryption and decryptions using a key changed with each round. @item 10 known answer tests using 3-key Triple-DES EDE encryption, comparing the ciphertext to the known value, then running a decryption and comparing it to the initial plaintext. @end enumerate (@code{cipher/des.c:selftest}) @item AES-128 A known answer tests is run using one test vector and one test key with AES in ECB mode. (@code{cipher/rijndael.c:selftest_basic_128}) @item AES-192 A known answer tests is run using one test vector and one test key with AES in ECB mode. (@code{cipher/rijndael.c:selftest_basic_192}) @item AES-256 A known answer tests is run using one test vector and one test key with AES in ECB mode. (@code{cipher/rijndael.c:selftest_basic_256}) @end table @subsection Hash Algorithm Power-Up Tests The following hash algorithm tests are run during power-up: @table @asis @item SHA-1 A known answer test using the string @code{"abc"} is run. (@code{cipher/@/sha1.c:@/selftests_sha1}) @item SHA-224 A known answer test using the string @code{"abc"} is run. (@code{cipher/@/sha256.c:@/selftests_sha224}) @item SHA-256 A known answer test using the string @code{"abc"} is run. (@code{cipher/@/sha256.c:@/selftests_sha256}) @item SHA-384 A known answer test using the string @code{"abc"} is run. (@code{cipher/@/sha512.c:@/selftests_sha384}) @item SHA-512 A known answer test using the string @code{"abc"} is run. (@code{cipher/@/sha512.c:@/selftests_sha512}) @end table @subsection MAC Algorithm Power-Up Tests The following MAC algorithm tests are run during power-up: @table @asis @item HMAC SHA-1 A known answer test using 9 byte of data and a 64 byte key is run. (@code{cipher/hmac-tests.c:selftests_sha1}) @item HMAC SHA-224 A known answer test using 28 byte of data and a 4 byte key is run. (@code{cipher/hmac-tests.c:selftests_sha224}) @item HMAC SHA-256 A known answer test using 28 byte of data and a 4 byte key is run. (@code{cipher/hmac-tests.c:selftests_sha256}) @item HMAC SHA-384 A known answer test using 28 byte of data and a 4 byte key is run. (@code{cipher/hmac-tests.c:selftests_sha384}) @item HMAC SHA-512 A known answer test using 28 byte of data and a 4 byte key is run. (@code{cipher/hmac-tests.c:selftests_sha512}) @end table @subsection Random Number Power-Up Test The DRNG is tested during power-up this way: @enumerate @item Requesting one block of random using the public interface to check general working and the duplicated block detection. @item 3 know answer tests using pre-defined keys, seed and initial DT values. For each test 3 blocks of 16 bytes are requested and compared to the expected result. The DT value is incremented for each block. @end enumerate @subsection Public Key Algorithm Power-Up Tests The public key algorithms are tested during power-up: @table @asis @item RSA A pre-defined 1024 bit RSA key is used and these tests are run in turn: @enumerate @item Conversion of S-expression to internal format. (@code{cipher/@/rsa.c:@/selftests_rsa}) @item Private key consistency check. (@code{cipher/@/rsa.c:@/selftests_rsa}) @item A pre-defined 20 byte value is signed with PKCS#1 padding for SHA-1. The result is verified using the public key against the original data and against modified data. (@code{cipher/@/rsa.c:@/selftest_sign_1024}) @item A 1000 bit random value is encrypted and checked that it does not match the original random value. The encrypted result is then decrypted and checked that it matches the original random value. (@code{cipher/@/rsa.c:@/selftest_encr_1024}) @end enumerate @item DSA A pre-defined 1024 bit DSA key is used and these tests are run in turn: @enumerate @item Conversion of S-expression to internal format. (@code{cipher/@/dsa.c:@/selftests_dsa}) @item Private key consistency check. (@code{cipher/@/dsa.c:@/selftests_dsa}) @item A pre-defined 20 byte value is signed with PKCS#1 padding for SHA-1. The result is verified using the public key against the original data and against modified data. (@code{cipher/@/dsa.c:@/selftest_sign_1024}) @end enumerate @end table @subsection Integrity Power-Up Tests The integrity of the Libgcrypt is tested during power-up but only if checking has been enabled at build time. The check works by computing a HMAC SHA-256 checksum over the file used to load Libgcrypt into memory. That checksum is compared against a checksum stored in a file of the same name but with a single dot as a prefix and a suffix of @file{.hmac}. @subsection Critical Functions Power-Up Tests The 3DES weak key detection is tested during power-up by calling the detection function with keys taken from a table listening all weak keys. The table itself is protected using a SHA-1 hash. (@code{cipher/@/des.c:@/selftest}) @c -------------------------------- @section Conditional Tests The conditional tests are performed if a certain condition is met. This may occur at any time; the library does not necessary enter the ``Self-Test'' state to run these tests but will transit to the ``Error'' state if a test failed. @subsection Key-Pair Generation Tests After an asymmetric key-pair has been generated, Libgcrypt runs a pair-wise consistency tests on the generated key. On failure the generated key is not used, an error code is returned and, if in FIPS mode, the library is put into the ``Error'' state. @table @asis @item RSA The test uses a random number 64 bits less the size of the modulus as plaintext and runs an encryption and decryption operation in turn. The encrypted value is checked to not match the plaintext and the result of the decryption is checked to match the plaintext. A new random number of the same size is generated, signed and verified to test the correctness of the signing operation. As a second signing test, the signature is modified by incrementing its value and then verified with the expected result that the verification fails. (@code{cipher/@/rsa.c:@/test_keys}) @item DSA The test uses a random number of the size of the Q parameter to create a signature and then checks that the signature verifies. As a second signing test, the data is modified by incrementing its value and then verified against the signature with the expected result that the verification fails. (@code{cipher/@/dsa.c:@/test_keys}) @end table @subsection Software Load Tests No code is loaded at runtime. @subsection Manual Key Entry Tests A manual key entry feature is not implemented in Libgcrypt. @subsection Continuous RNG Tests The continuous random number test is only used in FIPS mode. The RNG generates blocks of 128 bit size; the first block generated per context is saved in the context and another block is generated to be returned to the caller. Each block is compared against the saved block and then stored in the context. If a duplicated block is detected an error is signaled and the library is put into the ``Fatal-Error'' state. (@code{random/@/random-fips.c:@/x931_aes_driver}) @c -------------------------------- @section Application Requested Tests The application may requests tests at any time by means of the @code{GCRYCTL_SELFTEST} control command. Note that using these tests is not FIPS conform: Although Libgcrypt rejects all application requests for services while running self-tests, it does not ensure that no other operations of Libgcrypt are still being executed. Thus, in FIPS mode an application requesting self-tests needs to power-cycle Libgcrypt instead. When self-tests are requested, Libgcrypt runs all the tests it does during power-up as well as a few extra checks as described below. @subsection Symmetric Cipher Algorithm Tests The following symmetric encryption algorithm tests are run in addition to the power-up tests: @table @asis @item AES-128 A known answer tests with test vectors taken from NIST SP800-38a and using the high level functions is run for block modes CFB and OFB. @end table @subsection Hash Algorithm Tests The following hash algorithm tests are run in addition to the power-up tests: @table @asis @item SHA-1 @itemx SHA-224 @itemx SHA-256 @enumerate @item A known answer test using a 56 byte string is run. @item A known answer test using a string of one million letters "a" is run. @end enumerate (@code{cipher/@/sha1.c:@/selftests_sha1}, @code{cipher/@/sha256.c:@/selftests_sha224}, @code{cipher/@/sha256.c:@/selftests_sha256}) @item SHA-384 @item SHA-512 @enumerate @item A known answer test using a 112 byte string is run. @item A known answer test using a string of one million letters "a" is run. @end enumerate (@code{cipher/@/sha512.c:@/selftests_sha384}, @code{cipher/@/sha512.c:@/selftests_sha512}) @end table @subsection MAC Algorithm Tests The following MAC algorithm tests are run in addition to the power-up tests: @table @asis @item HMAC SHA-1 @enumerate @item A known answer test using 9 byte of data and a 20 byte key is run. @item A known answer test using 9 byte of data and a 100 byte key is run. @item A known answer test using 9 byte of data and a 49 byte key is run. @end enumerate (@code{cipher/hmac-tests.c:selftests_sha1}) @item HMAC SHA-224 @itemx HMAC SHA-256 @itemx HMAC SHA-384 @itemx HMAC SHA-512 @enumerate @item A known answer test using 9 byte of data and a 20 byte key is run. @item A known answer test using 50 byte of data and a 20 byte key is run. @item A known answer test using 50 byte of data and a 26 byte key is run. @item A known answer test using 54 byte of data and a 131 byte key is run. @item A known answer test using 152 byte of data and a 131 byte key is run. @end enumerate (@code{cipher/@/hmac-tests.c:@/selftests_sha224}, @code{cipher/@/hmac-tests.c:@/selftests_sha256}, @code{cipher/@/hmac-tests.c:@/selftests_sha384}, @code{cipher/@/hmac-tests.c:@/selftests_sha512}) @end table @c ******************************************** @node FIPS Mode @appendix Description of the FIPS Mode This appendix gives detailed information pertaining to the FIPS mode. In particular, the changes to the standard mode and the finite state machine are described. The self-tests required in this mode are described in the appendix on self-tests. @c ------------------------------- @section Restrictions in FIPS Mode @noindent If Libgcrypt is used in FIPS mode these restrictions are effective: @itemize @item The cryptographic algorithms are restricted to this list: @table @asis @item GCRY_CIPHER_3DES 3 key EDE Triple-DES symmetric encryption. @item GCRY_CIPHER_AES128 AES 128 bit symmetric encryption. @item GCRY_CIPHER_AES192 AES 192 bit symmetric encryption. @item GCRY_CIPHER_AES256 AES 256 bit symmetric encryption. @item GCRY_MD_SHA1 SHA-1 message digest. @item GCRY_MD_SHA224 SHA-224 message digest. @item GCRY_MD_SHA256 SHA-256 message digest. @item GCRY_MD_SHA384 SHA-384 message digest. @item GCRY_MD_SHA512 SHA-512 message digest. @item GCRY_MD_SHA1,GCRY_MD_FLAG_HMAC HMAC using a SHA-1 message digest. @item GCRY_MD_SHA224,GCRY_MD_FLAG_HMAC HMAC using a SHA-224 message digest. @item GCRY_MD_SHA256,GCRY_MD_FLAG_HMAC HMAC using a SHA-256 message digest. @item GCRY_MD_SHA384,GCRY_MD_FLAG_HMAC HMAC using a SHA-384 message digest. @item GCRY_MD_SHA512,GCRY_MD_FLAG_HMAC HMAC using a SHA-512 message digest. @item GCRY_PK_RSA RSA encryption and signing. @item GCRY_PK_DSA DSA signing. @end table Note that the CRC algorithms are not considered cryptographic algorithms and thus are in addition available. @item RSA key generation refuses to create a key with a keysize of less than 1024 bits. @item DSA key generation refuses to create a key with a keysize other than 1024 bits. @item The @code{transient-key} flag for RSA and DSA key generation is ignored. @item Support for the VIA Padlock engine is disabled. @item FIPS mode may only be used on systems with a /dev/random device. Switching into FIPS mode on other systems will fail at runtime. @item Saving and loading a random seed file is ignored. @item An X9.31 style random number generator is used in place of the large-pool-CSPRNG generator. @item The command @code{GCRYCTL_ENABLE_QUICK_RANDOM} is ignored. @item Message digest debugging is disabled. @item All debug output related to cryptographic data is suppressed. @item On-the-fly self-tests are not performed, instead self-tests are run before entering operational state. @item The function @code{gcry_set_allocation_handler} may not be used. If it is used Libgcrypt disables FIPS mode unless Enforced FIPS mode is enabled, in which case Libgcrypt will enter the error state. @item The digest algorithm MD5 may not be used. If it is used Libgcrypt disables FIPS mode unless Enforced FIPS mode is enabled, in which case Libgcrypt will enter the error state. @item In Enforced FIPS mode the command @code{GCRYCTL_DISABLE_SECMEM} is ignored. In standard FIPS mode it disables FIPS mode. @item A handler set by @code{gcry_set_outofcore_handler} is ignored. @item A handler set by @code{gcry_set_fatalerror_handler} is ignored. @end itemize Note that when we speak about disabling FIPS mode, it merely means that the function @code{gcry_fips_mode_active} returns false; it does not mean that any non FIPS algorithms are allowed. @c ******************************************** @section FIPS Finite State Machine The FIPS mode of libgcrypt implements a finite state machine (FSM) using 8 states (@pxref{tbl:fips-states}) and checks at runtime that only valid transitions (@pxref{tbl:fips-state-transitions}) may happen. @float Figure,fig:fips-fsm @caption{FIPS mode state diagram} @center @image{fips-fsm,150mm,,FIPS FSM Diagram} @end float @float Table,tbl:fips-states @caption{FIPS mode states} @noindent States used by the FIPS FSM: @table @asis @item Power-Off Libgcrypt is not runtime linked to another application. This usually means that the library is not loaded into main memory. This state is documentation only. @item Power-On Libgcrypt is loaded into memory and API calls may be made. Compiler introduced constructor functions may be run. Note that Libgcrypt does not implement any arbitrary constructor functions to be called by the operating system @item Init The Libgcrypt initialization functions are performed and the library has not yet run any self-test. @item Self-Test Libgcrypt is performing self-tests. @item Operational Libgcrypt is in the operational state and all interfaces may be used. @item Error Libgrypt is in the error state. When calling any FIPS relevant interfaces they either return an error (@code{GPG_ERR_NOT_OPERATIONAL}) or put Libgcrypt into the Fatal-Error state and won't return. @item Fatal-Error Libgcrypt is in a non-recoverable error state and will automatically transit into the Shutdown state. @item Shutdown Libgcrypt is about to be terminated and removed from the memory. The application may at this point still running cleanup handlers. @end table @end float @float Table,tbl:fips-state-transitions @caption{FIPS mode state transitions} @noindent The valid state transitions (@pxref{fig:fips-fsm}) are: @table @code @item 1 Power-Off to Power-On is implicitly done by the OS loading Libgcrypt as a shared library and having it linked to an application. @item 2 Power-On to Init is triggered by the application calling the Libgcrypt initialization function @code{gcry_check_version}. @item 3 Init to Self-Test is either triggered by a dedicated API call or implicit by invoking a libgrypt service controlled by the FSM. @item 4 Self-Test to Operational is triggered after all self-tests passed successfully. @item 5 Operational to Shutdown is an artificial state without any direct action in Libgcrypt. When reaching the Shutdown state the library is deinitialized and can't return to any other state again. @item 6 Shutdown to Power-off is the process of removing Libgcrypt from the computer's memory. For obvious reasons the Power-Off state can't be represented within Libgcrypt and thus this transition is for documentation only. @item 7 Operational to Error is triggered if Libgcrypt detected an application error which can't be returned to the caller but still allows Libgcrypt to properly run. In the Error state all FIPS relevant interfaces return an error code. @item 8 Error to Shutdown is similar to the Operational to Shutdown transition (5). @item 9 Error to Fatal-Error is triggered if Libgrypt detects an fatal error while already being in Error state. @item 10 Fatal-Error to Shutdown is automatically entered by Libgcrypt after having reported the error. @item 11 Power-On to Shutdown is an artificial state to document that Libgcrypt has not ye been initialized but the process is about to terminate. @item 12 Power-On to Fatal-Error will be triggered if certain Libgcrypt functions are used without having reached the Init state. @item 13 Self-Test to Fatal-Error is triggered by severe errors in Libgcrypt while running self-tests. @item 14 Self-Test to Error is triggered by a failed self-test. @item 15 Operational to Fatal-Error is triggered if Libcrypt encountered a non-recoverable error. @item 16 Operational to Self-Test is triggered if the application requested to run the self-tests again. @item 17 Error to Self-Test is triggered if the application has requested to run self-tests to get to get back into operational state after an error. @item 18 Init to Error is triggered by errors in the initialization code. @item 19 Init to Fatal-Error is triggered by non-recoverable errors in the initialization code. @item 20 Error to Error is triggered by errors while already in the Error state. @end table @end float @c ******************************************** @section FIPS Miscellaneous Information Libgcrypt does not do any key management on itself; the application needs to care about it. Keys which are passed to Libgcrypt should be allocated in secure memory as available with the functions @code{gcry_malloc_secure} and @code{gcry_calloc_secure}. By calling @code{gcry_free} on this memory, the memory and thus the keys are overwritten with zero bytes before releasing the memory. For use with the random number generator, Libgcrypt generates 3 internal keys which are stored in the encryption contexts used by the RNG. These keys are stored in secure memory for the lifetime of the process. Application are required to use @code{GCRYCTL_TERM_SECMEM} before process termination. This will zero out the entire secure memory and thus also the encryption contexts with these keys. @c ********************************************************** @c ************* Appendices (license etc.) **************** @c ********************************************************** @include lgpl.texi @include gpl.texi @node Figures and Tables @unnumbered List of Figures and Tables @listoffloats Figure @listoffloats Table @node Concept Index @unnumbered Concept Index @printindex cp @node Function and Data Index @unnumbered Function and Data Index @printindex fn @bye GCRYCTL_SET_RANDOM_DAEMON_SOCKET GCRYCTL_USE_RANDOM_DAEMON The random daemon is still a bit experimental, thus we do not document them. Note that they should be used during initialization and that these functions are not really thread safe. @c LocalWords: int HD diff --git a/src/gcrypt.h.in b/src/gcrypt.h.in index 1eb3d7c0..83f94b68 100644 --- a/src/gcrypt.h.in +++ b/src/gcrypt.h.in @@ -1,1804 +1,1805 @@ /* gcrypt.h - GNU Cryptographic Library Interface -*- c -*- * Copyright (C) 1998-2017 Free Software Foundation, Inc. * Copyright (C) 2012-2017 g10 Code GmbH * * This file is part of Libgcrypt. * * Libgcrypt is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2.1 of * the License, or (at your option) any later version. * * Libgcrypt is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program; if not, see . * * File: @configure_input@ */ #ifndef _GCRYPT_H #define _GCRYPT_H #include #include #include #include #include #if defined _WIN32 || defined __WIN32__ # include # include # include # ifndef __GNUC__ typedef long ssize_t; typedef int pid_t; # endif /*!__GNUC__*/ #else # include # include #@INSERT_SYS_SELECT_H@ #endif /*!_WIN32*/ @FALLBACK_SOCKLEN_T@ /* This is required for error code compatibility. */ #define _GCRY_ERR_SOURCE_DEFAULT GPG_ERR_SOURCE_GCRYPT #ifdef __cplusplus extern "C" { #if 0 /* (Keep Emacsens' auto-indent happy.) */ } #endif #endif /* The version of this header should match the one of the library. It should not be used by a program because gcry_check_version() should return the same version. The purpose of this macro is to let autoconf (using the AM_PATH_GCRYPT macro) check that this header matches the installed library. */ #define GCRYPT_VERSION "@VERSION@" /* The version number of this header. It may be used to handle minor API incompatibilities. */ #define GCRYPT_VERSION_NUMBER @VERSION_NUMBER@ /* Internal: We can't use the convenience macros for the multi precision integer functions when building this library. */ #ifdef _GCRYPT_IN_LIBGCRYPT #ifndef GCRYPT_NO_MPI_MACROS #define GCRYPT_NO_MPI_MACROS 1 #endif #endif /* We want to use gcc attributes when possible. Warning: Don't use these macros in your programs: As indicated by the leading underscore they are subject to change without notice. */ #ifdef __GNUC__ #define _GCRY_GCC_VERSION (__GNUC__ * 10000 \ + __GNUC_MINOR__ * 100 \ + __GNUC_PATCHLEVEL__) #if _GCRY_GCC_VERSION >= 30100 #define _GCRY_GCC_ATTR_DEPRECATED __attribute__ ((__deprecated__)) #endif #if _GCRY_GCC_VERSION >= 29600 #define _GCRY_GCC_ATTR_PURE __attribute__ ((__pure__)) #endif #if _GCRY_GCC_VERSION >= 30200 #define _GCRY_GCC_ATTR_MALLOC __attribute__ ((__malloc__)) #endif #define _GCRY_GCC_ATTR_PRINTF(f,a) __attribute__ ((format (printf,f,a))) #if _GCRY_GCC_VERSION >= 40000 #define _GCRY_GCC_ATTR_SENTINEL(a) __attribute__ ((sentinel(a))) #endif #endif /*__GNUC__*/ #ifndef _GCRY_GCC_ATTR_DEPRECATED #define _GCRY_GCC_ATTR_DEPRECATED #endif #ifndef _GCRY_GCC_ATTR_PURE #define _GCRY_GCC_ATTR_PURE #endif #ifndef _GCRY_GCC_ATTR_MALLOC #define _GCRY_GCC_ATTR_MALLOC #endif #ifndef _GCRY_GCC_ATTR_PRINTF #define _GCRY_GCC_ATTR_PRINTF(f,a) #endif #ifndef _GCRY_GCC_ATTR_SENTINEL #define _GCRY_GCC_ATTR_SENTINEL(a) #endif /* Make up an attribute to mark functions and types as deprecated but allow internal use by Libgcrypt. */ #ifdef _GCRYPT_IN_LIBGCRYPT #define _GCRY_ATTR_INTERNAL #else #define _GCRY_ATTR_INTERNAL _GCRY_GCC_ATTR_DEPRECATED #endif /* Wrappers for the libgpg-error library. */ typedef gpg_error_t gcry_error_t; typedef gpg_err_code_t gcry_err_code_t; typedef gpg_err_source_t gcry_err_source_t; static GPG_ERR_INLINE gcry_error_t gcry_err_make (gcry_err_source_t source, gcry_err_code_t code) { return gpg_err_make (source, code); } /* The user can define GPG_ERR_SOURCE_DEFAULT before including this file to specify a default source for gpg_error. */ #ifndef GCRY_ERR_SOURCE_DEFAULT #define GCRY_ERR_SOURCE_DEFAULT GPG_ERR_SOURCE_USER_1 #endif static GPG_ERR_INLINE gcry_error_t gcry_error (gcry_err_code_t code) { return gcry_err_make (GCRY_ERR_SOURCE_DEFAULT, code); } static GPG_ERR_INLINE gcry_err_code_t gcry_err_code (gcry_error_t err) { return gpg_err_code (err); } static GPG_ERR_INLINE gcry_err_source_t gcry_err_source (gcry_error_t err) { return gpg_err_source (err); } /* Return a pointer to a string containing a description of the error code in the error value ERR. */ const char *gcry_strerror (gcry_error_t err); /* Return a pointer to a string containing a description of the error source in the error value ERR. */ const char *gcry_strsource (gcry_error_t err); /* Retrieve the error code for the system error ERR. This returns GPG_ERR_UNKNOWN_ERRNO if the system error is not mapped (report this). */ gcry_err_code_t gcry_err_code_from_errno (int err); /* Retrieve the system error for the error code CODE. This returns 0 if CODE is not a system error code. */ int gcry_err_code_to_errno (gcry_err_code_t code); /* Return an error value with the error source SOURCE and the system error ERR. */ gcry_error_t gcry_err_make_from_errno (gcry_err_source_t source, int err); /* Return an error value with the system error ERR. */ gcry_error_t gcry_error_from_errno (int err); /* NOTE: Since Libgcrypt 1.6 the thread callbacks are not anymore used. However we keep it to allow for some source code compatibility if used in the standard way. */ /* Constants defining the thread model to use. Used with the OPTION field of the struct gcry_thread_cbs. */ #define GCRY_THREAD_OPTION_DEFAULT 0 #define GCRY_THREAD_OPTION_USER 1 #define GCRY_THREAD_OPTION_PTH 2 #define GCRY_THREAD_OPTION_PTHREAD 3 /* The version number encoded in the OPTION field of the struct gcry_thread_cbs. */ #define GCRY_THREAD_OPTION_VERSION 1 /* Wrapper for struct ath_ops. */ struct gcry_thread_cbs { /* The OPTION field encodes the thread model and the version number of this structure. Bits 7 - 0 are used for the thread model Bits 15 - 8 are used for the version number. */ unsigned int option; } _GCRY_ATTR_INTERNAL; #define GCRY_THREAD_OPTION_PTH_IMPL \ static struct gcry_thread_cbs gcry_threads_pth = { \ (GCRY_THREAD_OPTION_PTH | (GCRY_THREAD_OPTION_VERSION << 8))} #define GCRY_THREAD_OPTION_PTHREAD_IMPL \ static struct gcry_thread_cbs gcry_threads_pthread = { \ (GCRY_THREAD_OPTION_PTHREAD | (GCRY_THREAD_OPTION_VERSION << 8))} /* A generic context object as used by some functions. */ struct gcry_context; typedef struct gcry_context *gcry_ctx_t; /* The data objects used to hold multi precision integers. */ struct gcry_mpi; typedef struct gcry_mpi *gcry_mpi_t; struct gcry_mpi_point; typedef struct gcry_mpi_point *gcry_mpi_point_t; #ifndef GCRYPT_NO_DEPRECATED typedef struct gcry_mpi *GCRY_MPI _GCRY_GCC_ATTR_DEPRECATED; typedef struct gcry_mpi *GcryMPI _GCRY_GCC_ATTR_DEPRECATED; #endif /* A structure used for scatter gather hashing. */ typedef struct { size_t size; /* The allocated size of the buffer or 0. */ size_t off; /* Offset into the buffer. */ size_t len; /* The used length of the buffer. */ void *data; /* The buffer. */ } gcry_buffer_t; /* Check that the library fulfills the version requirement. */ const char *gcry_check_version (const char *req_version); /* Codes for function dispatchers. */ /* Codes used with the gcry_control function. */ enum gcry_ctl_cmds { /* Note: 1 .. 2 are not anymore used. */ GCRYCTL_CFB_SYNC = 3, GCRYCTL_RESET = 4, /* e.g. for MDs */ GCRYCTL_FINALIZE = 5, GCRYCTL_GET_KEYLEN = 6, GCRYCTL_GET_BLKLEN = 7, GCRYCTL_TEST_ALGO = 8, GCRYCTL_IS_SECURE = 9, GCRYCTL_GET_ASNOID = 10, GCRYCTL_ENABLE_ALGO = 11, GCRYCTL_DISABLE_ALGO = 12, GCRYCTL_DUMP_RANDOM_STATS = 13, GCRYCTL_DUMP_SECMEM_STATS = 14, GCRYCTL_GET_ALGO_NPKEY = 15, GCRYCTL_GET_ALGO_NSKEY = 16, GCRYCTL_GET_ALGO_NSIGN = 17, GCRYCTL_GET_ALGO_NENCR = 18, GCRYCTL_SET_VERBOSITY = 19, GCRYCTL_SET_DEBUG_FLAGS = 20, GCRYCTL_CLEAR_DEBUG_FLAGS = 21, GCRYCTL_USE_SECURE_RNDPOOL= 22, GCRYCTL_DUMP_MEMORY_STATS = 23, GCRYCTL_INIT_SECMEM = 24, GCRYCTL_TERM_SECMEM = 25, GCRYCTL_DISABLE_SECMEM_WARN = 27, GCRYCTL_SUSPEND_SECMEM_WARN = 28, GCRYCTL_RESUME_SECMEM_WARN = 29, GCRYCTL_DROP_PRIVS = 30, GCRYCTL_ENABLE_M_GUARD = 31, GCRYCTL_START_DUMP = 32, GCRYCTL_STOP_DUMP = 33, GCRYCTL_GET_ALGO_USAGE = 34, GCRYCTL_IS_ALGO_ENABLED = 35, GCRYCTL_DISABLE_INTERNAL_LOCKING = 36, GCRYCTL_DISABLE_SECMEM = 37, GCRYCTL_INITIALIZATION_FINISHED = 38, GCRYCTL_INITIALIZATION_FINISHED_P = 39, GCRYCTL_ANY_INITIALIZATION_P = 40, GCRYCTL_SET_CBC_CTS = 41, GCRYCTL_SET_CBC_MAC = 42, /* Note: 43 is not anymore used. */ GCRYCTL_ENABLE_QUICK_RANDOM = 44, GCRYCTL_SET_RANDOM_SEED_FILE = 45, GCRYCTL_UPDATE_RANDOM_SEED_FILE = 46, GCRYCTL_SET_THREAD_CBS = 47, GCRYCTL_FAST_POLL = 48, GCRYCTL_SET_RANDOM_DAEMON_SOCKET = 49, GCRYCTL_USE_RANDOM_DAEMON = 50, GCRYCTL_FAKED_RANDOM_P = 51, GCRYCTL_SET_RNDEGD_SOCKET = 52, GCRYCTL_PRINT_CONFIG = 53, GCRYCTL_OPERATIONAL_P = 54, GCRYCTL_FIPS_MODE_P = 55, GCRYCTL_FORCE_FIPS_MODE = 56, GCRYCTL_SELFTEST = 57, /* Note: 58 .. 62 are used internally. */ GCRYCTL_DISABLE_HWF = 63, GCRYCTL_SET_ENFORCED_FIPS_FLAG = 64, GCRYCTL_SET_PREFERRED_RNG_TYPE = 65, GCRYCTL_GET_CURRENT_RNG_TYPE = 66, GCRYCTL_DISABLE_LOCKED_SECMEM = 67, GCRYCTL_DISABLE_PRIV_DROP = 68, GCRYCTL_SET_CCM_LENGTHS = 69, GCRYCTL_CLOSE_RANDOM_DEVICE = 70, GCRYCTL_INACTIVATE_FIPS_FLAG = 71, GCRYCTL_REACTIVATE_FIPS_FLAG = 72, GCRYCTL_SET_SBOX = 73, GCRYCTL_DRBG_REINIT = 74, GCRYCTL_SET_TAGLEN = 75, GCRYCTL_GET_TAGLEN = 76, GCRYCTL_REINIT_SYSCALL_CLAMP = 77, GCRYCTL_AUTO_EXPAND_SECMEM = 78 }; /* Perform various operations defined by CMD. */ gcry_error_t gcry_control (enum gcry_ctl_cmds CMD, ...); /* S-expression management. */ /* The object to represent an S-expression as used with the public key functions. */ struct gcry_sexp; typedef struct gcry_sexp *gcry_sexp_t; #ifndef GCRYPT_NO_DEPRECATED typedef struct gcry_sexp *GCRY_SEXP _GCRY_GCC_ATTR_DEPRECATED; typedef struct gcry_sexp *GcrySexp _GCRY_GCC_ATTR_DEPRECATED; #endif /* The possible values for the S-expression format. */ enum gcry_sexp_format { GCRYSEXP_FMT_DEFAULT = 0, GCRYSEXP_FMT_CANON = 1, GCRYSEXP_FMT_BASE64 = 2, GCRYSEXP_FMT_ADVANCED = 3 }; /* Create an new S-expression object from BUFFER of size LENGTH and return it in RETSEXP. With AUTODETECT set to 0 the data in BUFFER is expected to be in canonized format. */ gcry_error_t gcry_sexp_new (gcry_sexp_t *retsexp, const void *buffer, size_t length, int autodetect); /* Same as gcry_sexp_new but allows to pass a FREEFNC which has the effect to transfer ownership of BUFFER to the created object. */ gcry_error_t gcry_sexp_create (gcry_sexp_t *retsexp, void *buffer, size_t length, int autodetect, void (*freefnc) (void *)); /* Scan BUFFER and return a new S-expression object in RETSEXP. This function expects a printf like string in BUFFER. */ gcry_error_t gcry_sexp_sscan (gcry_sexp_t *retsexp, size_t *erroff, const char *buffer, size_t length); /* Same as gcry_sexp_sscan but expects a string in FORMAT and can thus only be used for certain encodings. */ gcry_error_t gcry_sexp_build (gcry_sexp_t *retsexp, size_t *erroff, const char *format, ...); /* Like gcry_sexp_build, but uses an array instead of variable function arguments. */ gcry_error_t gcry_sexp_build_array (gcry_sexp_t *retsexp, size_t *erroff, const char *format, void **arg_list); /* Release the S-expression object SEXP */ void gcry_sexp_release (gcry_sexp_t sexp); /* Calculate the length of an canonized S-expression in BUFFER and check for a valid encoding. */ size_t gcry_sexp_canon_len (const unsigned char *buffer, size_t length, size_t *erroff, gcry_error_t *errcode); /* Copies the S-expression object SEXP into BUFFER using the format specified in MODE. */ size_t gcry_sexp_sprint (gcry_sexp_t sexp, int mode, void *buffer, size_t maxlength); /* Dumps the S-expression object A in a format suitable for debugging to Libgcrypt's logging stream. */ void gcry_sexp_dump (const gcry_sexp_t a); gcry_sexp_t gcry_sexp_cons (const gcry_sexp_t a, const gcry_sexp_t b); gcry_sexp_t gcry_sexp_alist (const gcry_sexp_t *array); gcry_sexp_t gcry_sexp_vlist (const gcry_sexp_t a, ...); gcry_sexp_t gcry_sexp_append (const gcry_sexp_t a, const gcry_sexp_t n); gcry_sexp_t gcry_sexp_prepend (const gcry_sexp_t a, const gcry_sexp_t n); /* Scan the S-expression for a sublist with a type (the car of the list) matching the string TOKEN. If TOKLEN is not 0, the token is assumed to be raw memory of this length. The function returns a newly allocated S-expression consisting of the found sublist or `NULL' when not found. */ gcry_sexp_t gcry_sexp_find_token (gcry_sexp_t list, const char *tok, size_t toklen); /* Return the length of the LIST. For a valid S-expression this should be at least 1. */ int gcry_sexp_length (const gcry_sexp_t list); /* Create and return a new S-expression from the element with index NUMBER in LIST. Note that the first element has the index 0. If there is no such element, `NULL' is returned. */ gcry_sexp_t gcry_sexp_nth (const gcry_sexp_t list, int number); /* Create and return a new S-expression from the first element in LIST; this called the "type" and should always exist and be a string. `NULL' is returned in case of a problem. */ gcry_sexp_t gcry_sexp_car (const gcry_sexp_t list); /* Create and return a new list form all elements except for the first one. Note, that this function may return an invalid S-expression because it is not guaranteed, that the type exists and is a string. However, for parsing a complex S-expression it might be useful for intermediate lists. Returns `NULL' on error. */ gcry_sexp_t gcry_sexp_cdr (const gcry_sexp_t list); gcry_sexp_t gcry_sexp_cadr (const gcry_sexp_t list); /* This function is used to get data from a LIST. A pointer to the actual data with index NUMBER is returned and the length of this data will be stored to DATALEN. If there is no data at the given index or the index represents another list, `NULL' is returned. *Note:* The returned pointer is valid as long as LIST is not modified or released. */ const char *gcry_sexp_nth_data (const gcry_sexp_t list, int number, size_t *datalen); /* This function is used to get data from a LIST. A malloced buffer to the data with index NUMBER is returned and the length of this data will be stored to RLENGTH. If there is no data at the given index or the index represents another list, `NULL' is returned. */ void *gcry_sexp_nth_buffer (const gcry_sexp_t list, int number, size_t *rlength); /* This function is used to get and convert data from a LIST. The data is assumed to be a Nul terminated string. The caller must release the returned value using `gcry_free'. If there is no data at the given index, the index represents a list or the value can't be converted to a string, `NULL' is returned. */ char *gcry_sexp_nth_string (gcry_sexp_t list, int number); /* This function is used to get and convert data from a LIST. This data is assumed to be an MPI stored in the format described by MPIFMT and returned as a standard Libgcrypt MPI. The caller must release this returned value using `gcry_mpi_release'. If there is no data at the given index, the index represents a list or the value can't be converted to an MPI, `NULL' is returned. */ gcry_mpi_t gcry_sexp_nth_mpi (gcry_sexp_t list, int number, int mpifmt); /* Extract MPIs from an s-expression using a list of parameters. The * names of these parameters are given by the string LIST. Some * special characters may be given to control the conversion: * * + :: Switch to unsigned integer format (default). * - :: Switch to standard signed format. * / :: Switch to opaque format. * & :: Switch to buffer descriptor mode - see below. * ? :: The previous parameter is optional. * * In general parameter names are single letters. To use a string for * a parameter name, enclose the name in single quotes. * * Unless in gcry_buffer_t mode for each parameter name a pointer to * an MPI variable is expected that must be set to NULL prior to * invoking this function, and finally a NULL is expected. Example: * * _gcry_sexp_extract_param (key, NULL, "n/x+ed", * &mpi_n, &mpi_x, &mpi_e, NULL) * * This stores the parameter "N" from KEY as an unsigned MPI into * MPI_N, the parameter "X" as an opaque MPI into MPI_X, and the * parameter "E" again as an unsigned MPI into MPI_E. * * If in buffer descriptor mode a pointer to gcry_buffer_t descriptor * is expected instead of a pointer to an MPI. The caller may use two * different operation modes: If the DATA field of the provided buffer * descriptor is NULL, the function allocates a new buffer and stores * it at DATA; the other fields are set accordingly with OFF being 0. * If DATA is not NULL, the function assumes that DATA, SIZE, and OFF * describe a buffer where to but the data; on return the LEN field * receives the number of bytes copied to that buffer; if the buffer * is too small, the function immediately returns with an error code * (and LEN set to 0). * * PATH is an optional string used to locate a token. The exclamation * mark separated tokens are used to via gcry_sexp_find_token to find * a start point inside SEXP. * * The function returns 0 on success. On error an error code is * returned, all passed MPIs that might have been allocated up to this * point are deallocated and set to NULL, and all passed buffers are * either truncated if the caller supplied the buffer, or deallocated * if the function allocated the buffer. */ gpg_error_t gcry_sexp_extract_param (gcry_sexp_t sexp, const char *path, const char *list, ...) _GCRY_GCC_ATTR_SENTINEL(0); /******************************************* * * * Multi Precision Integer Functions * * * *******************************************/ /* Different formats of external big integer representation. */ enum gcry_mpi_format { GCRYMPI_FMT_NONE= 0, GCRYMPI_FMT_STD = 1, /* Twos complement stored without length. */ GCRYMPI_FMT_PGP = 2, /* As used by OpenPGP (unsigned only). */ GCRYMPI_FMT_SSH = 3, /* As used by SSH (like STD but with length). */ GCRYMPI_FMT_HEX = 4, /* Hex format. */ GCRYMPI_FMT_USG = 5, /* Like STD but unsigned. */ GCRYMPI_FMT_OPAQUE = 8 /* Opaque format (some functions only). */ }; /* Flags used for creating big integers. */ enum gcry_mpi_flag { GCRYMPI_FLAG_SECURE = 1, /* Allocate the number in "secure" memory. */ GCRYMPI_FLAG_OPAQUE = 2, /* The number is not a real one but just a way to store some bytes. This is useful for encrypted big integers. */ GCRYMPI_FLAG_IMMUTABLE = 4, /* Mark the MPI as immutable. */ GCRYMPI_FLAG_CONST = 8, /* Mark the MPI as a constant. */ GCRYMPI_FLAG_USER1 = 0x0100,/* User flag 1. */ GCRYMPI_FLAG_USER2 = 0x0200,/* User flag 2. */ GCRYMPI_FLAG_USER3 = 0x0400,/* User flag 3. */ GCRYMPI_FLAG_USER4 = 0x0800 /* User flag 4. */ }; /* Macros to return pre-defined MPI constants. */ #define GCRYMPI_CONST_ONE (_gcry_mpi_get_const (1)) #define GCRYMPI_CONST_TWO (_gcry_mpi_get_const (2)) #define GCRYMPI_CONST_THREE (_gcry_mpi_get_const (3)) #define GCRYMPI_CONST_FOUR (_gcry_mpi_get_const (4)) #define GCRYMPI_CONST_EIGHT (_gcry_mpi_get_const (8)) /* Allocate a new big integer object, initialize it with 0 and initially allocate memory for a number of at least NBITS. */ gcry_mpi_t gcry_mpi_new (unsigned int nbits); /* Same as gcry_mpi_new() but allocate in "secure" memory. */ gcry_mpi_t gcry_mpi_snew (unsigned int nbits); /* Release the number A and free all associated resources. */ void gcry_mpi_release (gcry_mpi_t a); /* Create a new number with the same value as A. */ gcry_mpi_t gcry_mpi_copy (const gcry_mpi_t a); /* Store the big integer value U in W and release U. */ void gcry_mpi_snatch (gcry_mpi_t w, gcry_mpi_t u); /* Store the big integer value U in W. */ gcry_mpi_t gcry_mpi_set (gcry_mpi_t w, const gcry_mpi_t u); /* Store the unsigned integer value U in W. */ gcry_mpi_t gcry_mpi_set_ui (gcry_mpi_t w, unsigned long u); /* Store U as an unsigned int at W or return GPG_ERR_ERANGE. */ gpg_error_t gcry_mpi_get_ui (unsigned int *w, gcry_mpi_t u); /* Swap the values of A and B. */ void gcry_mpi_swap (gcry_mpi_t a, gcry_mpi_t b); /* Return 1 if A is negative; 0 if zero or positive. */ int gcry_mpi_is_neg (gcry_mpi_t a); /* W = - U */ void gcry_mpi_neg (gcry_mpi_t w, gcry_mpi_t u); /* W = [W] */ void gcry_mpi_abs (gcry_mpi_t w); /* Compare the big integer number U and V returning 0 for equality, a positive value for U > V and a negative for U < V. */ int gcry_mpi_cmp (const gcry_mpi_t u, const gcry_mpi_t v); /* Compare the big integer number U with the unsigned integer V returning 0 for equality, a positive value for U > V and a negative for U < V. */ int gcry_mpi_cmp_ui (const gcry_mpi_t u, unsigned long v); /* Convert the external representation of an integer stored in BUFFER with a length of BUFLEN into a newly create MPI returned in RET_MPI. If NSCANNED is not NULL, it will receive the number of bytes actually scanned after a successful operation. */ gcry_error_t gcry_mpi_scan (gcry_mpi_t *ret_mpi, enum gcry_mpi_format format, const void *buffer, size_t buflen, size_t *nscanned); /* Convert the big integer A into the external representation described by FORMAT and store it in the provided BUFFER which has been allocated by the user with a size of BUFLEN bytes. NWRITTEN receives the actual length of the external representation unless it has been passed as NULL. */ gcry_error_t gcry_mpi_print (enum gcry_mpi_format format, unsigned char *buffer, size_t buflen, size_t *nwritten, const gcry_mpi_t a); /* Convert the big integer A into the external representation described by FORMAT and store it in a newly allocated buffer which address will be put into BUFFER. NWRITTEN receives the actual lengths of the external representation. */ gcry_error_t gcry_mpi_aprint (enum gcry_mpi_format format, unsigned char **buffer, size_t *nwritten, const gcry_mpi_t a); /* Dump the value of A in a format suitable for debugging to Libgcrypt's logging stream. Note that one leading space but no trailing space or linefeed will be printed. It is okay to pass NULL for A. */ void gcry_mpi_dump (const gcry_mpi_t a); /* W = U + V. */ void gcry_mpi_add (gcry_mpi_t w, gcry_mpi_t u, gcry_mpi_t v); /* W = U + V. V is an unsigned integer. */ void gcry_mpi_add_ui (gcry_mpi_t w, gcry_mpi_t u, unsigned long v); /* W = U + V mod M. */ void gcry_mpi_addm (gcry_mpi_t w, gcry_mpi_t u, gcry_mpi_t v, gcry_mpi_t m); /* W = U - V. */ void gcry_mpi_sub (gcry_mpi_t w, gcry_mpi_t u, gcry_mpi_t v); /* W = U - V. V is an unsigned integer. */ void gcry_mpi_sub_ui (gcry_mpi_t w, gcry_mpi_t u, unsigned long v ); /* W = U - V mod M */ void gcry_mpi_subm (gcry_mpi_t w, gcry_mpi_t u, gcry_mpi_t v, gcry_mpi_t m); /* W = U * V. */ void gcry_mpi_mul (gcry_mpi_t w, gcry_mpi_t u, gcry_mpi_t v); /* W = U * V. V is an unsigned integer. */ void gcry_mpi_mul_ui (gcry_mpi_t w, gcry_mpi_t u, unsigned long v ); /* W = U * V mod M. */ void gcry_mpi_mulm (gcry_mpi_t w, gcry_mpi_t u, gcry_mpi_t v, gcry_mpi_t m); /* W = U * (2 ^ CNT). */ void gcry_mpi_mul_2exp (gcry_mpi_t w, gcry_mpi_t u, unsigned long cnt); /* Q = DIVIDEND / DIVISOR, R = DIVIDEND % DIVISOR, Q or R may be passed as NULL. ROUND should be negative or 0. */ void gcry_mpi_div (gcry_mpi_t q, gcry_mpi_t r, gcry_mpi_t dividend, gcry_mpi_t divisor, int round); /* R = DIVIDEND % DIVISOR */ void gcry_mpi_mod (gcry_mpi_t r, gcry_mpi_t dividend, gcry_mpi_t divisor); /* W = B ^ E mod M. */ void gcry_mpi_powm (gcry_mpi_t w, const gcry_mpi_t b, const gcry_mpi_t e, const gcry_mpi_t m); /* Set G to the greatest common divisor of A and B. Return true if the G is 1. */ int gcry_mpi_gcd (gcry_mpi_t g, gcry_mpi_t a, gcry_mpi_t b); /* Set X to the multiplicative inverse of A mod M. Return true if the value exists. */ int gcry_mpi_invm (gcry_mpi_t x, gcry_mpi_t a, gcry_mpi_t m); /* Create a new point object. NBITS is usually 0. */ gcry_mpi_point_t gcry_mpi_point_new (unsigned int nbits); /* Release the object POINT. POINT may be NULL. */ void gcry_mpi_point_release (gcry_mpi_point_t point); /* Return a copy of POINT. */ gcry_mpi_point_t gcry_mpi_point_copy (gcry_mpi_point_t point); /* Store the projective coordinates from POINT into X, Y, and Z. */ void gcry_mpi_point_get (gcry_mpi_t x, gcry_mpi_t y, gcry_mpi_t z, gcry_mpi_point_t point); /* Store the projective coordinates from POINT into X, Y, and Z and release POINT. */ void gcry_mpi_point_snatch_get (gcry_mpi_t x, gcry_mpi_t y, gcry_mpi_t z, gcry_mpi_point_t point); /* Store the projective coordinates X, Y, and Z into POINT. */ gcry_mpi_point_t gcry_mpi_point_set (gcry_mpi_point_t point, gcry_mpi_t x, gcry_mpi_t y, gcry_mpi_t z); /* Store the projective coordinates X, Y, and Z into POINT and release X, Y, and Z. */ gcry_mpi_point_t gcry_mpi_point_snatch_set (gcry_mpi_point_t point, gcry_mpi_t x, gcry_mpi_t y, gcry_mpi_t z); /* Allocate a new context for elliptic curve operations based on the parameters given by KEYPARAM or using CURVENAME. */ gpg_error_t gcry_mpi_ec_new (gcry_ctx_t *r_ctx, gcry_sexp_t keyparam, const char *curvename); /* Get a named MPI from an elliptic curve context. */ gcry_mpi_t gcry_mpi_ec_get_mpi (const char *name, gcry_ctx_t ctx, int copy); /* Get a named point from an elliptic curve context. */ gcry_mpi_point_t gcry_mpi_ec_get_point (const char *name, gcry_ctx_t ctx, int copy); /* Store a named MPI into an elliptic curve context. */ gpg_error_t gcry_mpi_ec_set_mpi (const char *name, gcry_mpi_t newvalue, gcry_ctx_t ctx); /* Store a named point into an elliptic curve context. */ gpg_error_t gcry_mpi_ec_set_point (const char *name, gcry_mpi_point_t newvalue, gcry_ctx_t ctx); /* Decode and store VALUE into RESULT. */ gpg_error_t gcry_mpi_ec_decode_point (gcry_mpi_point_t result, gcry_mpi_t value, gcry_ctx_t ctx); /* Store the affine coordinates of POINT into X and Y. */ int gcry_mpi_ec_get_affine (gcry_mpi_t x, gcry_mpi_t y, gcry_mpi_point_t point, gcry_ctx_t ctx); /* W = 2 * U. */ void gcry_mpi_ec_dup (gcry_mpi_point_t w, gcry_mpi_point_t u, gcry_ctx_t ctx); /* W = U + V. */ void gcry_mpi_ec_add (gcry_mpi_point_t w, gcry_mpi_point_t u, gcry_mpi_point_t v, gcry_ctx_t ctx); /* W = U - V. */ void gcry_mpi_ec_sub (gcry_mpi_point_t w, gcry_mpi_point_t u, gcry_mpi_point_t v, gcry_ctx_t ctx); /* W = N * U. */ void gcry_mpi_ec_mul (gcry_mpi_point_t w, gcry_mpi_t n, gcry_mpi_point_t u, gcry_ctx_t ctx); /* Return true if POINT is on the curve described by CTX. */ int gcry_mpi_ec_curve_point (gcry_mpi_point_t w, gcry_ctx_t ctx); /* Return the number of bits required to represent A. */ unsigned int gcry_mpi_get_nbits (gcry_mpi_t a); /* Return true when bit number N (counting from 0) is set in A. */ int gcry_mpi_test_bit (gcry_mpi_t a, unsigned int n); /* Set bit number N in A. */ void gcry_mpi_set_bit (gcry_mpi_t a, unsigned int n); /* Clear bit number N in A. */ void gcry_mpi_clear_bit (gcry_mpi_t a, unsigned int n); /* Set bit number N in A and clear all bits greater than N. */ void gcry_mpi_set_highbit (gcry_mpi_t a, unsigned int n); /* Clear bit number N in A and all bits greater than N. */ void gcry_mpi_clear_highbit (gcry_mpi_t a, unsigned int n); /* Shift the value of A by N bits to the right and store the result in X. */ void gcry_mpi_rshift (gcry_mpi_t x, gcry_mpi_t a, unsigned int n); /* Shift the value of A by N bits to the left and store the result in X. */ void gcry_mpi_lshift (gcry_mpi_t x, gcry_mpi_t a, unsigned int n); /* Store NBITS of the value P points to in A and mark A as an opaque value. On success A received the the ownership of the value P. WARNING: Never use an opaque MPI for anything thing else than gcry_mpi_release, gcry_mpi_get_opaque. */ gcry_mpi_t gcry_mpi_set_opaque (gcry_mpi_t a, void *p, unsigned int nbits); /* Store NBITS of the value P points to in A and mark A as an opaque value. The function takes a copy of the provided value P. WARNING: Never use an opaque MPI for anything thing else than gcry_mpi_release, gcry_mpi_get_opaque. */ gcry_mpi_t gcry_mpi_set_opaque_copy (gcry_mpi_t a, const void *p, unsigned int nbits); /* Return a pointer to an opaque value stored in A and return its size in NBITS. Note that the returned pointer is still owned by A and that the function should never be used for an non-opaque MPI. */ void *gcry_mpi_get_opaque (gcry_mpi_t a, unsigned int *nbits); /* Set the FLAG for the big integer A. Currently only the flag GCRYMPI_FLAG_SECURE is allowed to convert A into an big intger stored in "secure" memory. */ void gcry_mpi_set_flag (gcry_mpi_t a, enum gcry_mpi_flag flag); /* Clear FLAG for the big integer A. Note that this function is currently useless as no flags are allowed. */ void gcry_mpi_clear_flag (gcry_mpi_t a, enum gcry_mpi_flag flag); /* Return true if the FLAG is set for A. */ int gcry_mpi_get_flag (gcry_mpi_t a, enum gcry_mpi_flag flag); /* Private function - do not use. */ gcry_mpi_t _gcry_mpi_get_const (int no); /* Unless the GCRYPT_NO_MPI_MACROS is used, provide a couple of convenience macros for the big integer functions. */ #ifndef GCRYPT_NO_MPI_MACROS #define mpi_new(n) gcry_mpi_new( (n) ) #define mpi_secure_new( n ) gcry_mpi_snew( (n) ) #define mpi_release(a) \ do \ { \ gcry_mpi_release ((a)); \ (a) = NULL; \ } \ while (0) #define mpi_copy( a ) gcry_mpi_copy( (a) ) #define mpi_snatch( w, u) gcry_mpi_snatch( (w), (u) ) #define mpi_set( w, u) gcry_mpi_set( (w), (u) ) #define mpi_set_ui( w, u) gcry_mpi_set_ui( (w), (u) ) #define mpi_get_ui( w, u) gcry_mpi_get_ui( (w), (u) ) #define mpi_abs( w ) gcry_mpi_abs( (w) ) #define mpi_neg( w, u) gcry_mpi_neg( (w), (u) ) #define mpi_cmp( u, v ) gcry_mpi_cmp( (u), (v) ) #define mpi_cmp_ui( u, v ) gcry_mpi_cmp_ui( (u), (v) ) #define mpi_is_neg( a ) gcry_mpi_is_neg ((a)) #define mpi_add_ui(w,u,v) gcry_mpi_add_ui((w),(u),(v)) #define mpi_add(w,u,v) gcry_mpi_add ((w),(u),(v)) #define mpi_addm(w,u,v,m) gcry_mpi_addm ((w),(u),(v),(m)) #define mpi_sub_ui(w,u,v) gcry_mpi_sub_ui ((w),(u),(v)) #define mpi_sub(w,u,v) gcry_mpi_sub ((w),(u),(v)) #define mpi_subm(w,u,v,m) gcry_mpi_subm ((w),(u),(v),(m)) #define mpi_mul_ui(w,u,v) gcry_mpi_mul_ui ((w),(u),(v)) #define mpi_mul_2exp(w,u,v) gcry_mpi_mul_2exp ((w),(u),(v)) #define mpi_mul(w,u,v) gcry_mpi_mul ((w),(u),(v)) #define mpi_mulm(w,u,v,m) gcry_mpi_mulm ((w),(u),(v),(m)) #define mpi_powm(w,b,e,m) gcry_mpi_powm ( (w), (b), (e), (m) ) #define mpi_tdiv(q,r,a,m) gcry_mpi_div ( (q), (r), (a), (m), 0) #define mpi_fdiv(q,r,a,m) gcry_mpi_div ( (q), (r), (a), (m), -1) #define mpi_mod(r,a,m) gcry_mpi_mod ((r), (a), (m)) #define mpi_gcd(g,a,b) gcry_mpi_gcd ( (g), (a), (b) ) #define mpi_invm(g,a,b) gcry_mpi_invm ( (g), (a), (b) ) #define mpi_point_new(n) gcry_mpi_point_new((n)) #define mpi_point_release(p) \ do \ { \ gcry_mpi_point_release ((p)); \ (p) = NULL; \ } \ while (0) #define mpi_point_copy(p) gcry_mpi_point_copy((p)) #define mpi_point_get(x,y,z,p) gcry_mpi_point_get((x),(y),(z),(p)) #define mpi_point_snatch_get(x,y,z,p) gcry_mpi_point_snatch_get((x),(y),(z),(p)) #define mpi_point_set(p,x,y,z) gcry_mpi_point_set((p),(x),(y),(z)) #define mpi_point_snatch_set(p,x,y,z) gcry_mpi_point_snatch_set((p),(x),(y),(z)) #define mpi_get_nbits(a) gcry_mpi_get_nbits ((a)) #define mpi_test_bit(a,b) gcry_mpi_test_bit ((a),(b)) #define mpi_set_bit(a,b) gcry_mpi_set_bit ((a),(b)) #define mpi_set_highbit(a,b) gcry_mpi_set_highbit ((a),(b)) #define mpi_clear_bit(a,b) gcry_mpi_clear_bit ((a),(b)) #define mpi_clear_highbit(a,b) gcry_mpi_clear_highbit ((a),(b)) #define mpi_rshift(a,b,c) gcry_mpi_rshift ((a),(b),(c)) #define mpi_lshift(a,b,c) gcry_mpi_lshift ((a),(b),(c)) #define mpi_set_opaque(a,b,c) gcry_mpi_set_opaque( (a), (b), (c) ) #define mpi_get_opaque(a,b) gcry_mpi_get_opaque( (a), (b) ) #endif /* GCRYPT_NO_MPI_MACROS */ /************************************ * * * Symmetric Cipher Functions * * * ************************************/ /* The data object used to hold a handle to an encryption object. */ struct gcry_cipher_handle; typedef struct gcry_cipher_handle *gcry_cipher_hd_t; #ifndef GCRYPT_NO_DEPRECATED typedef struct gcry_cipher_handle *GCRY_CIPHER_HD _GCRY_GCC_ATTR_DEPRECATED; typedef struct gcry_cipher_handle *GcryCipherHd _GCRY_GCC_ATTR_DEPRECATED; #endif /* All symmetric encryption algorithms are identified by their IDs. More IDs may be registered at runtime. */ enum gcry_cipher_algos { GCRY_CIPHER_NONE = 0, GCRY_CIPHER_IDEA = 1, GCRY_CIPHER_3DES = 2, GCRY_CIPHER_CAST5 = 3, GCRY_CIPHER_BLOWFISH = 4, GCRY_CIPHER_SAFER_SK128 = 5, GCRY_CIPHER_DES_SK = 6, GCRY_CIPHER_AES = 7, GCRY_CIPHER_AES192 = 8, GCRY_CIPHER_AES256 = 9, GCRY_CIPHER_TWOFISH = 10, /* Other cipher numbers are above 300 for OpenPGP reasons. */ GCRY_CIPHER_ARCFOUR = 301, /* Fully compatible with RSA's RC4 (tm). */ GCRY_CIPHER_DES = 302, /* Yes, this is single key 56 bit DES. */ GCRY_CIPHER_TWOFISH128 = 303, GCRY_CIPHER_SERPENT128 = 304, GCRY_CIPHER_SERPENT192 = 305, GCRY_CIPHER_SERPENT256 = 306, GCRY_CIPHER_RFC2268_40 = 307, /* Ron's Cipher 2 (40 bit). */ GCRY_CIPHER_RFC2268_128 = 308, /* Ron's Cipher 2 (128 bit). */ GCRY_CIPHER_SEED = 309, /* 128 bit cipher described in RFC4269. */ GCRY_CIPHER_CAMELLIA128 = 310, GCRY_CIPHER_CAMELLIA192 = 311, GCRY_CIPHER_CAMELLIA256 = 312, GCRY_CIPHER_SALSA20 = 313, GCRY_CIPHER_SALSA20R12 = 314, GCRY_CIPHER_GOST28147 = 315, GCRY_CIPHER_CHACHA20 = 316 }; /* The Rijndael algorithm is basically AES, so provide some macros. */ #define GCRY_CIPHER_AES128 GCRY_CIPHER_AES #define GCRY_CIPHER_RIJNDAEL GCRY_CIPHER_AES #define GCRY_CIPHER_RIJNDAEL128 GCRY_CIPHER_AES128 #define GCRY_CIPHER_RIJNDAEL192 GCRY_CIPHER_AES192 #define GCRY_CIPHER_RIJNDAEL256 GCRY_CIPHER_AES256 /* The supported encryption modes. Note that not all of them are supported for each algorithm. */ enum gcry_cipher_modes { GCRY_CIPHER_MODE_NONE = 0, /* Not yet specified. */ GCRY_CIPHER_MODE_ECB = 1, /* Electronic codebook. */ GCRY_CIPHER_MODE_CFB = 2, /* Cipher feedback. */ GCRY_CIPHER_MODE_CBC = 3, /* Cipher block chaining. */ GCRY_CIPHER_MODE_STREAM = 4, /* Used with stream ciphers. */ GCRY_CIPHER_MODE_OFB = 5, /* Outer feedback. */ GCRY_CIPHER_MODE_CTR = 6, /* Counter. */ GCRY_CIPHER_MODE_AESWRAP = 7, /* AES-WRAP algorithm. */ GCRY_CIPHER_MODE_CCM = 8, /* Counter with CBC-MAC. */ GCRY_CIPHER_MODE_GCM = 9, /* Galois Counter Mode. */ GCRY_CIPHER_MODE_POLY1305 = 10, /* Poly1305 based AEAD mode. */ GCRY_CIPHER_MODE_OCB = 11, /* OCB3 mode. */ GCRY_CIPHER_MODE_CFB8 = 12, /* Cipher feedback (8 bit mode). */ - GCRY_CIPHER_MODE_XTS = 13 /* XTS mode. */ + GCRY_CIPHER_MODE_XTS = 13, /* XTS mode. */ + GCRY_CIPHER_MODE_EAX = 14 /* EAX mode. */ }; /* Flags used with the open function. */ enum gcry_cipher_flags { GCRY_CIPHER_SECURE = 1, /* Allocate in secure memory. */ GCRY_CIPHER_ENABLE_SYNC = 2, /* Enable CFB sync mode. */ GCRY_CIPHER_CBC_CTS = 4, /* Enable CBC cipher text stealing (CTS). */ GCRY_CIPHER_CBC_MAC = 8 /* Enable CBC message auth. code (MAC). */ }; /* GCM works only with blocks of 128 bits */ #define GCRY_GCM_BLOCK_LEN (128 / 8) /* CCM works only with blocks of 128 bits. */ #define GCRY_CCM_BLOCK_LEN (128 / 8) /* OCB works only with blocks of 128 bits. */ #define GCRY_OCB_BLOCK_LEN (128 / 8) /* XTS works only with blocks of 128 bits. */ #define GCRY_XTS_BLOCK_LEN (128 / 8) /* Create a handle for algorithm ALGO to be used in MODE. FLAGS may be given as an bitwise OR of the gcry_cipher_flags values. */ gcry_error_t gcry_cipher_open (gcry_cipher_hd_t *handle, int algo, int mode, unsigned int flags); /* Close the cipher handle H and release all resource. */ void gcry_cipher_close (gcry_cipher_hd_t h); /* Perform various operations on the cipher object H. */ gcry_error_t gcry_cipher_ctl (gcry_cipher_hd_t h, int cmd, void *buffer, size_t buflen); /* Retrieve various information about the cipher object H. */ gcry_error_t gcry_cipher_info (gcry_cipher_hd_t h, int what, void *buffer, size_t *nbytes); /* Retrieve various information about the cipher algorithm ALGO. */ gcry_error_t gcry_cipher_algo_info (int algo, int what, void *buffer, size_t *nbytes); /* Map the cipher algorithm whose ID is contained in ALGORITHM to a string representation of the algorithm name. For unknown algorithm IDs this function returns "?". */ const char *gcry_cipher_algo_name (int algorithm) _GCRY_GCC_ATTR_PURE; /* Map the algorithm name NAME to an cipher algorithm ID. Return 0 if the algorithm name is not known. */ int gcry_cipher_map_name (const char *name) _GCRY_GCC_ATTR_PURE; /* Given an ASN.1 object identifier in standard IETF dotted decimal format in STRING, return the encryption mode associated with that OID or 0 if not known or applicable. */ int gcry_cipher_mode_from_oid (const char *string) _GCRY_GCC_ATTR_PURE; /* Encrypt the plaintext of size INLEN in IN using the cipher handle H into the buffer OUT which has an allocated length of OUTSIZE. For most algorithms it is possible to pass NULL for in and 0 for INLEN and do a in-place decryption of the data provided in OUT. */ gcry_error_t gcry_cipher_encrypt (gcry_cipher_hd_t h, void *out, size_t outsize, const void *in, size_t inlen); /* The counterpart to gcry_cipher_encrypt. */ gcry_error_t gcry_cipher_decrypt (gcry_cipher_hd_t h, void *out, size_t outsize, const void *in, size_t inlen); /* Set KEY of length KEYLEN bytes for the cipher handle HD. */ gcry_error_t gcry_cipher_setkey (gcry_cipher_hd_t hd, const void *key, size_t keylen); /* Set initialization vector IV of length IVLEN for the cipher handle HD. */ gcry_error_t gcry_cipher_setiv (gcry_cipher_hd_t hd, const void *iv, size_t ivlen); /* Provide additional authentication data for AEAD modes/ciphers. */ gcry_error_t gcry_cipher_authenticate (gcry_cipher_hd_t hd, const void *abuf, size_t abuflen); /* Get authentication tag for AEAD modes/ciphers. */ gcry_error_t gcry_cipher_gettag (gcry_cipher_hd_t hd, void *outtag, size_t taglen); /* Check authentication tag for AEAD modes/ciphers. */ gcry_error_t gcry_cipher_checktag (gcry_cipher_hd_t hd, const void *intag, size_t taglen); /* Reset the handle to the state after open. */ #define gcry_cipher_reset(h) gcry_cipher_ctl ((h), GCRYCTL_RESET, NULL, 0) /* Perform the OpenPGP sync operation if this is enabled for the cipher handle H. */ #define gcry_cipher_sync(h) gcry_cipher_ctl( (h), GCRYCTL_CFB_SYNC, NULL, 0) /* Enable or disable CTS in future calls to gcry_encrypt(). CBC mode only. */ #define gcry_cipher_cts(h,on) gcry_cipher_ctl( (h), GCRYCTL_SET_CBC_CTS, \ NULL, on ) #define gcry_cipher_set_sbox(h,oid) gcry_cipher_ctl( (h), GCRYCTL_SET_SBOX, \ (void *) oid, 0); /* Indicate to the encrypt and decrypt functions that the next call provides the final data. Only used with some modes. */ #define gcry_cipher_final(a) \ gcry_cipher_ctl ((a), GCRYCTL_FINALIZE, NULL, 0) /* Set counter for CTR mode. (CTR,CTRLEN) must denote a buffer of block size length, or (NULL,0) to set the CTR to the all-zero block. */ gpg_error_t gcry_cipher_setctr (gcry_cipher_hd_t hd, const void *ctr, size_t ctrlen); /* Retrieve the key length in bytes used with algorithm A. */ size_t gcry_cipher_get_algo_keylen (int algo); /* Retrieve the block length in bytes used with algorithm A. */ size_t gcry_cipher_get_algo_blklen (int algo); /* Return 0 if the algorithm A is available for use. */ #define gcry_cipher_test_algo(a) \ gcry_cipher_algo_info( (a), GCRYCTL_TEST_ALGO, NULL, NULL ) /************************************ * * * Asymmetric Cipher Functions * * * ************************************/ /* The algorithms and their IDs we support. */ enum gcry_pk_algos { GCRY_PK_RSA = 1, /* RSA */ GCRY_PK_RSA_E = 2, /* (deprecated: use 1). */ GCRY_PK_RSA_S = 3, /* (deprecated: use 1). */ GCRY_PK_ELG_E = 16, /* (deprecated: use 20). */ GCRY_PK_DSA = 17, /* Digital Signature Algorithm. */ GCRY_PK_ECC = 18, /* Generic ECC. */ GCRY_PK_ELG = 20, /* Elgamal */ GCRY_PK_ECDSA = 301, /* (only for external use). */ GCRY_PK_ECDH = 302, /* (only for external use). */ GCRY_PK_EDDSA = 303 /* (only for external use). */ }; /* Flags describing usage capabilities of a PK algorithm. */ #define GCRY_PK_USAGE_SIGN 1 /* Good for signatures. */ #define GCRY_PK_USAGE_ENCR 2 /* Good for encryption. */ #define GCRY_PK_USAGE_CERT 4 /* Good to certify other keys. */ #define GCRY_PK_USAGE_AUTH 8 /* Good for authentication. */ #define GCRY_PK_USAGE_UNKN 128 /* Unknown usage flag. */ /* Modes used with gcry_pubkey_get_sexp. */ #define GCRY_PK_GET_PUBKEY 1 #define GCRY_PK_GET_SECKEY 2 /* Encrypt the DATA using the public key PKEY and store the result as a newly created S-expression at RESULT. */ gcry_error_t gcry_pk_encrypt (gcry_sexp_t *result, gcry_sexp_t data, gcry_sexp_t pkey); /* Decrypt the DATA using the private key SKEY and store the result as a newly created S-expression at RESULT. */ gcry_error_t gcry_pk_decrypt (gcry_sexp_t *result, gcry_sexp_t data, gcry_sexp_t skey); /* Sign the DATA using the private key SKEY and store the result as a newly created S-expression at RESULT. */ gcry_error_t gcry_pk_sign (gcry_sexp_t *result, gcry_sexp_t data, gcry_sexp_t skey); /* Check the signature SIGVAL on DATA using the public key PKEY. */ gcry_error_t gcry_pk_verify (gcry_sexp_t sigval, gcry_sexp_t data, gcry_sexp_t pkey); /* Check that private KEY is sane. */ gcry_error_t gcry_pk_testkey (gcry_sexp_t key); /* Generate a new key pair according to the parameters given in S_PARMS. The new key pair is returned in as an S-expression in R_KEY. */ gcry_error_t gcry_pk_genkey (gcry_sexp_t *r_key, gcry_sexp_t s_parms); /* Catch all function for miscellaneous operations. */ gcry_error_t gcry_pk_ctl (int cmd, void *buffer, size_t buflen); /* Retrieve information about the public key algorithm ALGO. */ gcry_error_t gcry_pk_algo_info (int algo, int what, void *buffer, size_t *nbytes); /* Map the public key algorithm whose ID is contained in ALGORITHM to a string representation of the algorithm name. For unknown algorithm IDs this functions returns "?". */ const char *gcry_pk_algo_name (int algorithm) _GCRY_GCC_ATTR_PURE; /* Map the algorithm NAME to a public key algorithm Id. Return 0 if the algorithm name is not known. */ int gcry_pk_map_name (const char* name) _GCRY_GCC_ATTR_PURE; /* Return what is commonly referred as the key length for the given public or private KEY. */ unsigned int gcry_pk_get_nbits (gcry_sexp_t key) _GCRY_GCC_ATTR_PURE; /* Return the so called KEYGRIP which is the SHA-1 hash of the public key parameters expressed in a way depending on the algorithm. */ unsigned char *gcry_pk_get_keygrip (gcry_sexp_t key, unsigned char *array); /* Return the name of the curve matching KEY. */ const char *gcry_pk_get_curve (gcry_sexp_t key, int iterator, unsigned int *r_nbits); /* Return an S-expression with the parameters of the named ECC curve NAME. ALGO must be set to an ECC algorithm. */ gcry_sexp_t gcry_pk_get_param (int algo, const char *name); /* Return 0 if the public key algorithm A is available for use. */ #define gcry_pk_test_algo(a) \ gcry_pk_algo_info( (a), GCRYCTL_TEST_ALGO, NULL, NULL ) /* Return an S-expression representing the context CTX. */ gcry_error_t gcry_pubkey_get_sexp (gcry_sexp_t *r_sexp, int mode, gcry_ctx_t ctx); /************************************ * * * Cryptograhic Hash Functions * * * ************************************/ /* Algorithm IDs for the hash functions we know about. Not all of them are implemented. */ enum gcry_md_algos { GCRY_MD_NONE = 0, GCRY_MD_MD5 = 1, GCRY_MD_SHA1 = 2, GCRY_MD_RMD160 = 3, GCRY_MD_MD2 = 5, GCRY_MD_TIGER = 6, /* TIGER/192 as used by gpg <= 1.3.2. */ GCRY_MD_HAVAL = 7, /* HAVAL, 5 pass, 160 bit. */ GCRY_MD_SHA256 = 8, GCRY_MD_SHA384 = 9, GCRY_MD_SHA512 = 10, GCRY_MD_SHA224 = 11, GCRY_MD_MD4 = 301, GCRY_MD_CRC32 = 302, GCRY_MD_CRC32_RFC1510 = 303, GCRY_MD_CRC24_RFC2440 = 304, GCRY_MD_WHIRLPOOL = 305, GCRY_MD_TIGER1 = 306, /* TIGER fixed. */ GCRY_MD_TIGER2 = 307, /* TIGER2 variant. */ GCRY_MD_GOSTR3411_94 = 308, /* GOST R 34.11-94. */ GCRY_MD_STRIBOG256 = 309, /* GOST R 34.11-2012, 256 bit. */ GCRY_MD_STRIBOG512 = 310, /* GOST R 34.11-2012, 512 bit. */ GCRY_MD_GOSTR3411_CP = 311, /* GOST R 34.11-94 with CryptoPro-A S-Box. */ GCRY_MD_SHA3_224 = 312, GCRY_MD_SHA3_256 = 313, GCRY_MD_SHA3_384 = 314, GCRY_MD_SHA3_512 = 315, GCRY_MD_SHAKE128 = 316, GCRY_MD_SHAKE256 = 317, GCRY_MD_BLAKE2B_512 = 318, GCRY_MD_BLAKE2B_384 = 319, GCRY_MD_BLAKE2B_256 = 320, GCRY_MD_BLAKE2B_160 = 321, GCRY_MD_BLAKE2S_256 = 322, GCRY_MD_BLAKE2S_224 = 323, GCRY_MD_BLAKE2S_160 = 324, GCRY_MD_BLAKE2S_128 = 325, GCRY_MD_SM3 = 326, }; /* Flags used with the open function. */ enum gcry_md_flags { GCRY_MD_FLAG_SECURE = 1, /* Allocate all buffers in "secure" memory. */ GCRY_MD_FLAG_HMAC = 2, /* Make an HMAC out of this algorithm. */ GCRY_MD_FLAG_BUGEMU1 = 0x0100 }; /* (Forward declaration.) */ struct gcry_md_context; /* This object is used to hold a handle to a message digest object. This structure is private - only to be used by the public gcry_md_* macros. */ typedef struct gcry_md_handle { /* Actual context. */ struct gcry_md_context *ctx; /* Buffer management. */ int bufpos; int bufsize; unsigned char buf[1]; } *gcry_md_hd_t; /* Compatibility types, do not use them. */ #ifndef GCRYPT_NO_DEPRECATED typedef struct gcry_md_handle *GCRY_MD_HD _GCRY_GCC_ATTR_DEPRECATED; typedef struct gcry_md_handle *GcryMDHd _GCRY_GCC_ATTR_DEPRECATED; #endif /* Create a message digest object for algorithm ALGO. FLAGS may be given as an bitwise OR of the gcry_md_flags values. ALGO may be given as 0 if the algorithms to be used are later set using gcry_md_enable. */ gcry_error_t gcry_md_open (gcry_md_hd_t *h, int algo, unsigned int flags); /* Release the message digest object HD. */ void gcry_md_close (gcry_md_hd_t hd); /* Add the message digest algorithm ALGO to the digest object HD. */ gcry_error_t gcry_md_enable (gcry_md_hd_t hd, int algo); /* Create a new digest object as an exact copy of the object HD. */ gcry_error_t gcry_md_copy (gcry_md_hd_t *bhd, gcry_md_hd_t ahd); /* Reset the digest object HD to its initial state. */ void gcry_md_reset (gcry_md_hd_t hd); /* Perform various operations on the digest object HD. */ gcry_error_t gcry_md_ctl (gcry_md_hd_t hd, int cmd, void *buffer, size_t buflen); /* Pass LENGTH bytes of data in BUFFER to the digest object HD so that it can update the digest values. This is the actual hash function. */ void gcry_md_write (gcry_md_hd_t hd, const void *buffer, size_t length); /* Read out the final digest from HD return the digest value for algorithm ALGO. */ unsigned char *gcry_md_read (gcry_md_hd_t hd, int algo); /* Read more output from algorithm ALGO to BUFFER of size LENGTH from * digest object HD. Algorithm needs to be 'expendable-output function'. */ gpg_error_t gcry_md_extract (gcry_md_hd_t hd, int algo, void *buffer, size_t length); /* Convenience function to calculate the hash from the data in BUFFER of size LENGTH using the algorithm ALGO avoiding the creating of a hash object. The hash is returned in the caller provided buffer DIGEST which must be large enough to hold the digest of the given algorithm. */ void gcry_md_hash_buffer (int algo, void *digest, const void *buffer, size_t length); /* Convenience function to hash multiple buffers. */ gpg_error_t gcry_md_hash_buffers (int algo, unsigned int flags, void *digest, const gcry_buffer_t *iov, int iovcnt); /* Retrieve the algorithm used with HD. This does not work reliable if more than one algorithm is enabled in HD. */ int gcry_md_get_algo (gcry_md_hd_t hd); /* Retrieve the length in bytes of the digest yielded by algorithm ALGO. */ unsigned int gcry_md_get_algo_dlen (int algo); /* Return true if the the algorithm ALGO is enabled in the digest object A. */ int gcry_md_is_enabled (gcry_md_hd_t a, int algo); /* Return true if the digest object A is allocated in "secure" memory. */ int gcry_md_is_secure (gcry_md_hd_t a); /* Deprecated: Use gcry_md_is_enabled or gcry_md_is_secure. */ gcry_error_t gcry_md_info (gcry_md_hd_t h, int what, void *buffer, size_t *nbytes) _GCRY_ATTR_INTERNAL; /* Retrieve various information about the algorithm ALGO. */ gcry_error_t gcry_md_algo_info (int algo, int what, void *buffer, size_t *nbytes); /* Map the digest algorithm id ALGO to a string representation of the algorithm name. For unknown algorithms this function returns "?". */ const char *gcry_md_algo_name (int algo) _GCRY_GCC_ATTR_PURE; /* Map the algorithm NAME to a digest algorithm Id. Return 0 if the algorithm name is not known. */ int gcry_md_map_name (const char* name) _GCRY_GCC_ATTR_PURE; /* For use with the HMAC feature, the set MAC key to the KEY of KEYLEN bytes. */ gcry_error_t gcry_md_setkey (gcry_md_hd_t hd, const void *key, size_t keylen); /* Start or stop debugging for digest handle HD; i.e. create a file named dbgmd-. while hashing. If SUFFIX is NULL, debugging stops and the file will be closed. */ void gcry_md_debug (gcry_md_hd_t hd, const char *suffix); /* Update the hash(s) of H with the character C. This is a buffered version of the gcry_md_write function. */ #define gcry_md_putc(h,c) \ do { \ gcry_md_hd_t h__ = (h); \ if( (h__)->bufpos == (h__)->bufsize ) \ gcry_md_write( (h__), NULL, 0 ); \ (h__)->buf[(h__)->bufpos++] = (c) & 0xff; \ } while(0) /* Finalize the digest calculation. This is not really needed because gcry_md_read() does this implicitly. */ #define gcry_md_final(a) \ gcry_md_ctl ((a), GCRYCTL_FINALIZE, NULL, 0) /* Return 0 if the algorithm A is available for use. */ #define gcry_md_test_algo(a) \ gcry_md_algo_info( (a), GCRYCTL_TEST_ALGO, NULL, NULL ) /* Return an DER encoded ASN.1 OID for the algorithm A in buffer B. N must point to size_t variable with the available size of buffer B. After return it will receive the actual size of the returned OID. */ #define gcry_md_get_asnoid(a,b,n) \ gcry_md_algo_info((a), GCRYCTL_GET_ASNOID, (b), (n)) /********************************************** * * * Message Authentication Code Functions * * * **********************************************/ /* The data object used to hold a handle to an encryption object. */ struct gcry_mac_handle; typedef struct gcry_mac_handle *gcry_mac_hd_t; /* Algorithm IDs for the hash functions we know about. Not all of them are implemented. */ enum gcry_mac_algos { GCRY_MAC_NONE = 0, GCRY_MAC_HMAC_SHA256 = 101, GCRY_MAC_HMAC_SHA224 = 102, GCRY_MAC_HMAC_SHA512 = 103, GCRY_MAC_HMAC_SHA384 = 104, GCRY_MAC_HMAC_SHA1 = 105, GCRY_MAC_HMAC_MD5 = 106, GCRY_MAC_HMAC_MD4 = 107, GCRY_MAC_HMAC_RMD160 = 108, GCRY_MAC_HMAC_TIGER1 = 109, /* The fixed TIGER variant */ GCRY_MAC_HMAC_WHIRLPOOL = 110, GCRY_MAC_HMAC_GOSTR3411_94 = 111, GCRY_MAC_HMAC_STRIBOG256 = 112, GCRY_MAC_HMAC_STRIBOG512 = 113, GCRY_MAC_HMAC_MD2 = 114, GCRY_MAC_HMAC_SHA3_224 = 115, GCRY_MAC_HMAC_SHA3_256 = 116, GCRY_MAC_HMAC_SHA3_384 = 117, GCRY_MAC_HMAC_SHA3_512 = 118, GCRY_MAC_CMAC_AES = 201, GCRY_MAC_CMAC_3DES = 202, GCRY_MAC_CMAC_CAMELLIA = 203, GCRY_MAC_CMAC_CAST5 = 204, GCRY_MAC_CMAC_BLOWFISH = 205, GCRY_MAC_CMAC_TWOFISH = 206, GCRY_MAC_CMAC_SERPENT = 207, GCRY_MAC_CMAC_SEED = 208, GCRY_MAC_CMAC_RFC2268 = 209, GCRY_MAC_CMAC_IDEA = 210, GCRY_MAC_CMAC_GOST28147 = 211, GCRY_MAC_GMAC_AES = 401, GCRY_MAC_GMAC_CAMELLIA = 402, GCRY_MAC_GMAC_TWOFISH = 403, GCRY_MAC_GMAC_SERPENT = 404, GCRY_MAC_GMAC_SEED = 405, GCRY_MAC_POLY1305 = 501, GCRY_MAC_POLY1305_AES = 502, GCRY_MAC_POLY1305_CAMELLIA = 503, GCRY_MAC_POLY1305_TWOFISH = 504, GCRY_MAC_POLY1305_SERPENT = 505, GCRY_MAC_POLY1305_SEED = 506 }; /* Flags used with the open function. */ enum gcry_mac_flags { GCRY_MAC_FLAG_SECURE = 1 /* Allocate all buffers in "secure" memory. */ }; /* Create a MAC handle for algorithm ALGO. FLAGS may be given as an bitwise OR of the gcry_mac_flags values. CTX maybe NULL or gcry_ctx_t object to be associated with HANDLE. */ gcry_error_t gcry_mac_open (gcry_mac_hd_t *handle, int algo, unsigned int flags, gcry_ctx_t ctx); /* Close the MAC handle H and release all resource. */ void gcry_mac_close (gcry_mac_hd_t h); /* Perform various operations on the MAC object H. */ gcry_error_t gcry_mac_ctl (gcry_mac_hd_t h, int cmd, void *buffer, size_t buflen); /* Retrieve various information about the MAC algorithm ALGO. */ gcry_error_t gcry_mac_algo_info (int algo, int what, void *buffer, size_t *nbytes); /* Set KEY of length KEYLEN bytes for the MAC handle HD. */ gcry_error_t gcry_mac_setkey (gcry_mac_hd_t hd, const void *key, size_t keylen); /* Set initialization vector IV of length IVLEN for the MAC handle HD. */ gcry_error_t gcry_mac_setiv (gcry_mac_hd_t hd, const void *iv, size_t ivlen); /* Pass LENGTH bytes of data in BUFFER to the MAC object HD so that it can update the MAC values. */ gcry_error_t gcry_mac_write (gcry_mac_hd_t hd, const void *buffer, size_t length); /* Read out the final authentication code from the MAC object HD to BUFFER. */ gcry_error_t gcry_mac_read (gcry_mac_hd_t hd, void *buffer, size_t *buflen); /* Verify the final authentication code from the MAC object HD with BUFFER. */ gcry_error_t gcry_mac_verify (gcry_mac_hd_t hd, const void *buffer, size_t buflen); /* Retrieve the algorithm used with MAC. */ int gcry_mac_get_algo (gcry_mac_hd_t hd); /* Retrieve the length in bytes of the MAC yielded by algorithm ALGO. */ unsigned int gcry_mac_get_algo_maclen (int algo); /* Retrieve the default key length in bytes used with algorithm A. */ unsigned int gcry_mac_get_algo_keylen (int algo); /* Map the MAC algorithm whose ID is contained in ALGORITHM to a string representation of the algorithm name. For unknown algorithm IDs this function returns "?". */ const char *gcry_mac_algo_name (int algorithm) _GCRY_GCC_ATTR_PURE; /* Map the algorithm name NAME to an MAC algorithm ID. Return 0 if the algorithm name is not known. */ int gcry_mac_map_name (const char *name) _GCRY_GCC_ATTR_PURE; /* Reset the handle to the state after open/setkey. */ #define gcry_mac_reset(h) gcry_mac_ctl ((h), GCRYCTL_RESET, NULL, 0) /* Return 0 if the algorithm A is available for use. */ #define gcry_mac_test_algo(a) \ gcry_mac_algo_info( (a), GCRYCTL_TEST_ALGO, NULL, NULL ) /****************************** * * * Key Derivation Functions * * * ******************************/ /* Algorithm IDs for the KDFs. */ enum gcry_kdf_algos { GCRY_KDF_NONE = 0, GCRY_KDF_SIMPLE_S2K = 16, GCRY_KDF_SALTED_S2K = 17, GCRY_KDF_ITERSALTED_S2K = 19, GCRY_KDF_PBKDF1 = 33, GCRY_KDF_PBKDF2 = 34, GCRY_KDF_SCRYPT = 48 }; /* Derive a key from a passphrase. */ gpg_error_t gcry_kdf_derive (const void *passphrase, size_t passphraselen, int algo, int subalgo, const void *salt, size_t saltlen, unsigned long iterations, size_t keysize, void *keybuffer); /************************************ * * * Random Generating Functions * * * ************************************/ /* The type of the random number generator. */ enum gcry_rng_types { GCRY_RNG_TYPE_STANDARD = 1, /* The default CSPRNG generator. */ GCRY_RNG_TYPE_FIPS = 2, /* The FIPS X9.31 AES generator. */ GCRY_RNG_TYPE_SYSTEM = 3 /* The system's native generator. */ }; /* The possible values for the random quality. The rule of thumb is to use STRONG for session keys and VERY_STRONG for key material. WEAK is usually an alias for STRONG and should not be used anymore (except with gcry_mpi_randomize); use gcry_create_nonce instead. */ typedef enum gcry_random_level { GCRY_WEAK_RANDOM = 0, GCRY_STRONG_RANDOM = 1, GCRY_VERY_STRONG_RANDOM = 2 } gcry_random_level_t; /* Fill BUFFER with LENGTH bytes of random, using random numbers of quality LEVEL. */ void gcry_randomize (void *buffer, size_t length, enum gcry_random_level level); /* Add the external random from BUFFER with LENGTH bytes into the pool. QUALITY should either be -1 for unknown or in the range of 0 to 100 */ gcry_error_t gcry_random_add_bytes (const void *buffer, size_t length, int quality); /* If random numbers are used in an application, this macro should be called from time to time so that new stuff gets added to the internal pool of the RNG. */ #define gcry_fast_random_poll() gcry_control (GCRYCTL_FAST_POLL, NULL) /* Return NBYTES of allocated random using a random numbers of quality LEVEL. */ void *gcry_random_bytes (size_t nbytes, enum gcry_random_level level) _GCRY_GCC_ATTR_MALLOC; /* Return NBYTES of allocated random using a random numbers of quality LEVEL. The random numbers are created returned in "secure" memory. */ void *gcry_random_bytes_secure (size_t nbytes, enum gcry_random_level level) _GCRY_GCC_ATTR_MALLOC; /* Set the big integer W to a random value of NBITS using a random generator with quality LEVEL. Note that by using a level of GCRY_WEAK_RANDOM gcry_create_nonce is used internally. */ void gcry_mpi_randomize (gcry_mpi_t w, unsigned int nbits, enum gcry_random_level level); /* Create an unpredicable nonce of LENGTH bytes in BUFFER. */ void gcry_create_nonce (void *buffer, size_t length); /*******************************/ /* */ /* Prime Number Functions */ /* */ /*******************************/ /* Mode values passed to a gcry_prime_check_func_t. */ #define GCRY_PRIME_CHECK_AT_FINISH 0 #define GCRY_PRIME_CHECK_AT_GOT_PRIME 1 #define GCRY_PRIME_CHECK_AT_MAYBE_PRIME 2 /* The function should return 1 if the operation shall continue, 0 to reject the prime candidate. */ typedef int (*gcry_prime_check_func_t) (void *arg, int mode, gcry_mpi_t candidate); /* Flags for gcry_prime_generate(): */ /* Allocate prime numbers and factors in secure memory. */ #define GCRY_PRIME_FLAG_SECRET (1 << 0) /* Make sure that at least one prime factor is of size `FACTOR_BITS'. */ #define GCRY_PRIME_FLAG_SPECIAL_FACTOR (1 << 1) /* Generate a new prime number of PRIME_BITS bits and store it in PRIME. If FACTOR_BITS is non-zero, one of the prime factors of (prime - 1) / 2 must be FACTOR_BITS bits long. If FACTORS is non-zero, allocate a new, NULL-terminated array holding the prime factors and store it in FACTORS. FLAGS might be used to influence the prime number generation process. */ gcry_error_t gcry_prime_generate (gcry_mpi_t *prime, unsigned int prime_bits, unsigned int factor_bits, gcry_mpi_t **factors, gcry_prime_check_func_t cb_func, void *cb_arg, gcry_random_level_t random_level, unsigned int flags); /* Find a generator for PRIME where the factorization of (prime-1) is in the NULL terminated array FACTORS. Return the generator as a newly allocated MPI in R_G. If START_G is not NULL, use this as the start for the search. */ gcry_error_t gcry_prime_group_generator (gcry_mpi_t *r_g, gcry_mpi_t prime, gcry_mpi_t *factors, gcry_mpi_t start_g); /* Convenience function to release the FACTORS array. */ void gcry_prime_release_factors (gcry_mpi_t *factors); /* Check whether the number X is prime. */ gcry_error_t gcry_prime_check (gcry_mpi_t x, unsigned int flags); /************************************ * * * Miscellaneous Stuff * * * ************************************/ /* Release the context object CTX. */ void gcry_ctx_release (gcry_ctx_t ctx); /* Log data using Libgcrypt's own log interface. */ void gcry_log_debug (const char *fmt, ...) _GCRY_GCC_ATTR_PRINTF(1,2); void gcry_log_debughex (const char *text, const void *buffer, size_t length); void gcry_log_debugmpi (const char *text, gcry_mpi_t mpi); void gcry_log_debugpnt (const char *text, gcry_mpi_point_t point, gcry_ctx_t ctx); void gcry_log_debugsxp (const char *text, gcry_sexp_t sexp); char *gcry_get_config (int mode, const char *what); /* Log levels used by the internal logging facility. */ enum gcry_log_levels { GCRY_LOG_CONT = 0, /* (Continue the last log line.) */ GCRY_LOG_INFO = 10, GCRY_LOG_WARN = 20, GCRY_LOG_ERROR = 30, GCRY_LOG_FATAL = 40, GCRY_LOG_BUG = 50, GCRY_LOG_DEBUG = 100 }; /* Type for progress handlers. */ typedef void (*gcry_handler_progress_t) (void *, const char *, int, int, int); /* Type for memory allocation handlers. */ typedef void *(*gcry_handler_alloc_t) (size_t n); /* Type for secure memory check handlers. */ typedef int (*gcry_handler_secure_check_t) (const void *); /* Type for memory reallocation handlers. */ typedef void *(*gcry_handler_realloc_t) (void *p, size_t n); /* Type for memory free handlers. */ typedef void (*gcry_handler_free_t) (void *); /* Type for out-of-memory handlers. */ typedef int (*gcry_handler_no_mem_t) (void *, size_t, unsigned int); /* Type for fatal error handlers. */ typedef void (*gcry_handler_error_t) (void *, int, const char *); /* Type for logging handlers. */ typedef void (*gcry_handler_log_t) (void *, int, const char *, va_list); /* Certain operations can provide progress information. This function is used to register a handler for retrieving these information. */ void gcry_set_progress_handler (gcry_handler_progress_t cb, void *cb_data); /* Register a custom memory allocation functions. */ void gcry_set_allocation_handler ( gcry_handler_alloc_t func_alloc, gcry_handler_alloc_t func_alloc_secure, gcry_handler_secure_check_t func_secure_check, gcry_handler_realloc_t func_realloc, gcry_handler_free_t func_free); /* Register a function used instead of the internal out of memory handler. */ void gcry_set_outofcore_handler (gcry_handler_no_mem_t h, void *opaque); /* Register a function used instead of the internal fatal error handler. */ void gcry_set_fatalerror_handler (gcry_handler_error_t fnc, void *opaque); /* Register a function used instead of the internal logging facility. */ void gcry_set_log_handler (gcry_handler_log_t f, void *opaque); /* Reserved for future use. */ void gcry_set_gettext_handler (const char *(*f)(const char*)); /* Libgcrypt uses its own memory allocation. It is important to use gcry_free () to release memory allocated by libgcrypt. */ void *gcry_malloc (size_t n) _GCRY_GCC_ATTR_MALLOC; void *gcry_calloc (size_t n, size_t m) _GCRY_GCC_ATTR_MALLOC; void *gcry_malloc_secure (size_t n) _GCRY_GCC_ATTR_MALLOC; void *gcry_calloc_secure (size_t n, size_t m) _GCRY_GCC_ATTR_MALLOC; void *gcry_realloc (void *a, size_t n); char *gcry_strdup (const char *string) _GCRY_GCC_ATTR_MALLOC; void *gcry_xmalloc (size_t n) _GCRY_GCC_ATTR_MALLOC; void *gcry_xcalloc (size_t n, size_t m) _GCRY_GCC_ATTR_MALLOC; void *gcry_xmalloc_secure (size_t n) _GCRY_GCC_ATTR_MALLOC; void *gcry_xcalloc_secure (size_t n, size_t m) _GCRY_GCC_ATTR_MALLOC; void *gcry_xrealloc (void *a, size_t n); char *gcry_xstrdup (const char * a) _GCRY_GCC_ATTR_MALLOC; void gcry_free (void *a); /* Return true if A is allocated in "secure" memory. */ int gcry_is_secure (const void *a) _GCRY_GCC_ATTR_PURE; /* Return true if Libgcrypt is in FIPS mode. */ #define gcry_fips_mode_active() !!gcry_control (GCRYCTL_FIPS_MODE_P, 0) #if 0 /* (Keep Emacsens' auto-indent happy.) */ { #endif #ifdef __cplusplus } #endif #endif /* _GCRYPT_H */ /* @emacs_local_vars_begin@ @emacs_local_vars_read_only@ @emacs_local_vars_end@ */ diff --git a/tests/basic.c b/tests/basic.c index c2b42082..c883eb39 100644 --- a/tests/basic.c +++ b/tests/basic.c @@ -1,10495 +1,11031 @@ /* basic.c - basic regression tests * Copyright (C) 2001, 2002, 2003, 2005, 2008, * 2009 Free Software Foundation, Inc. * Copyright (C) 2013 g10 Code GmbH * * This file is part of Libgcrypt. * * Libgcrypt is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2.1 of * the License, or (at your option) any later version. * * Libgcrypt is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program; if not, see . */ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include #include #include "../src/gcrypt-int.h" #define PGM "basic" #include "t-common.h" typedef struct test_spec_pubkey_key { const char *secret; const char *public; const char *grip; } test_spec_pubkey_key_t; typedef struct test_spec_pubkey { int id; int flags; test_spec_pubkey_key_t key; } test_spec_pubkey_t; #define FLAG_CRYPT (1 << 0) #define FLAG_SIGN (1 << 1) #define FLAG_GRIP (1 << 2) static int in_fips_mode; #define MAX_DATA_LEN 128 static void mismatch (const void *expected, size_t expectedlen, const void *computed, size_t computedlen) { const unsigned char *p; fprintf (stderr, "expected:"); for (p = expected; expectedlen; p++, expectedlen--) fprintf (stderr, " %02x", *p); fprintf (stderr, "\ncomputed:"); for (p = computed; computedlen; p++, computedlen--) fprintf (stderr, " %02x", *p); fprintf (stderr, "\n"); } /* Convert STRING consisting of hex characters into its binary representation and return it as an allocated buffer. The valid length of the buffer is returned at R_LENGTH. The string is delimited by end of string. The function terminates on error. */ static void * hex2buffer (const char *string, size_t *r_length) { const char *s; unsigned char *buffer; size_t length; buffer = xmalloc (strlen(string)/2+1); length = 0; for (s=string; *s; s +=2 ) { if (!hexdigitp (s) || !hexdigitp (s+1)) die ("invalid hex digits in \"%s\"\n", string); ((unsigned char*)buffer)[length++] = xtoi_2 (s); } *r_length = length; return buffer; } static void show_sexp (const char *prefix, gcry_sexp_t a) { char *buf; size_t size; if (prefix) fputs (prefix, stderr); size = gcry_sexp_sprint (a, GCRYSEXP_FMT_ADVANCED, NULL, 0); buf = gcry_xmalloc (size); gcry_sexp_sprint (a, GCRYSEXP_FMT_ADVANCED, buf, size); fprintf (stderr, "%.*s", (int)size, buf); gcry_free (buf); } static void show_note (const char *format, ...) { va_list arg_ptr; if (!verbose && getenv ("srcdir")) fputs (" ", stderr); /* To align above "PASS: ". */ else fprintf (stderr, "%s: ", PGM); va_start (arg_ptr, format); vfprintf (stderr, format, arg_ptr); if (*format && format[strlen(format)-1] != '\n') putc ('\n', stderr); va_end (arg_ptr); } static void show_md_not_available (int algo) { static int list[100]; static int listlen; int i; if (!verbose && algo == GCRY_MD_MD2) return; /* Do not print the diagnostic for that one. */ for (i=0; i < listlen; i++) if (algo == list[i]) return; /* Note already printed. */ if (listlen < DIM (list)) list[listlen++] = algo; show_note ("hash algorithm %d not available - skipping tests", algo); } static void show_old_hmac_not_available (int algo) { static int list[100]; static int listlen; int i; if (!verbose && algo == GCRY_MD_MD2) return; /* Do not print the diagnostic for that one. */ for (i=0; i < listlen; i++) if (algo == list[i]) return; /* Note already printed. */ if (listlen < DIM (list)) list[listlen++] = algo; show_note ("hash algorithm %d for old HMAC API not available " "- skipping tests", algo); } static void show_mac_not_available (int algo) { static int list[100]; static int listlen; int i; if (!verbose && algo == GCRY_MD_MD2) return; /* Do not print the diagnostic for that one. */ for (i=0; i < listlen; i++) if (algo == list[i]) return; /* Note already printed. */ if (listlen < DIM (list)) list[listlen++] = algo; show_note ("MAC algorithm %d not available - skipping tests", algo); } void progress_handler (void *cb_data, const char *what, int printchar, int current, int total) { (void)cb_data; (void)what; (void)current; (void)total; if (printchar == '\n') fputs ( "", stdout); else putchar (printchar); fflush (stdout); } static void check_cbc_mac_cipher (void) { static const struct tv { int algo; char key[MAX_DATA_LEN]; unsigned char plaintext[MAX_DATA_LEN]; size_t plaintextlen; char mac[MAX_DATA_LEN]; } tv[] = { { GCRY_CIPHER_AES, "chicken teriyaki", "This is a sample plaintext for CBC MAC of sixtyfour bytes.......", 0, "\x23\x8f\x6d\xc7\x53\x6a\x62\x97\x11\xc4\xa5\x16\x43\xea\xb0\xb6" }, { GCRY_CIPHER_3DES, "abcdefghABCDEFGH01234567", "This is a sample plaintext for CBC MAC of sixtyfour bytes.......", 0, "\x5c\x11\xf0\x01\x47\xbd\x3d\x3a" }, { GCRY_CIPHER_DES, "abcdefgh", "This is a sample plaintext for CBC MAC of sixtyfour bytes.......", 0, "\xfa\x4b\xdf\x9d\xfa\xab\x01\x70" } }; gcry_cipher_hd_t hd; unsigned char out[MAX_DATA_LEN]; int i, blklen, keylen; gcry_error_t err = 0; if (verbose) fprintf (stderr, " Starting CBC MAC checks.\n"); for (i = 0; i < sizeof (tv) / sizeof (tv[0]); i++) { if (gcry_cipher_test_algo (tv[i].algo) && in_fips_mode) { if (verbose) fprintf (stderr, " algorithm %d not available in fips mode\n", tv[i].algo); continue; } err = gcry_cipher_open (&hd, tv[i].algo, GCRY_CIPHER_MODE_CBC, GCRY_CIPHER_CBC_MAC); if (!hd) { fail ("cbc-mac algo %d, gcry_cipher_open failed: %s\n", tv[i].algo, gpg_strerror (err)); return; } blklen = gcry_cipher_get_algo_blklen(tv[i].algo); if (!blklen) { fail ("cbc-mac algo %d, gcry_cipher_get_algo_blklen failed\n", tv[i].algo); gcry_cipher_close (hd); return; } keylen = gcry_cipher_get_algo_keylen (tv[i].algo); if (!keylen) { fail ("cbc-mac algo %d, gcry_cipher_get_algo_keylen failed\n", tv[i].algo); return; } err = gcry_cipher_setkey (hd, tv[i].key, keylen); if (err) { fail ("cbc-mac algo %d, gcry_cipher_setkey failed: %s\n", tv[i].algo, gpg_strerror (err)); gcry_cipher_close (hd); return; } err = gcry_cipher_setiv (hd, NULL, 0); if (err) { fail ("cbc-mac algo %d, gcry_cipher_setiv failed: %s\n", tv[i].algo, gpg_strerror (err)); gcry_cipher_close (hd); return; } if (verbose) fprintf (stderr, " checking CBC MAC for %s [%i]\n", gcry_cipher_algo_name (tv[i].algo), tv[i].algo); err = gcry_cipher_encrypt (hd, out, blklen, tv[i].plaintext, tv[i].plaintextlen ? tv[i].plaintextlen : strlen ((char*)tv[i].plaintext)); if (err) { fail ("cbc-mac algo %d, gcry_cipher_encrypt failed: %s\n", tv[i].algo, gpg_strerror (err)); gcry_cipher_close (hd); return; } #if 0 { int j; for (j = 0; j < gcry_cipher_get_algo_blklen (tv[i].algo); j++) printf ("\\x%02x", out[j] & 0xFF); printf ("\n"); } #endif if (memcmp (tv[i].mac, out, blklen)) fail ("cbc-mac algo %d, encrypt mismatch entry %d\n", tv[i].algo, i); gcry_cipher_close (hd); } if (verbose) fprintf (stderr, " Completed CBC MAC checks.\n"); } static void check_aes128_cbc_cts_cipher (void) { static const char key[128 / 8] = "chicken teriyaki"; static const unsigned char plaintext[] = "I would like the General Gau's Chicken, please, and wonton soup."; static const struct tv { unsigned char out[MAX_DATA_LEN]; int inlen; } tv[] = { { "\xc6\x35\x35\x68\xf2\xbf\x8c\xb4\xd8\xa5\x80\x36\x2d\xa7\xff\x7f" "\x97", 17 }, { "\xfc\x00\x78\x3e\x0e\xfd\xb2\xc1\xd4\x45\xd4\xc8\xef\xf7\xed\x22" "\x97\x68\x72\x68\xd6\xec\xcc\xc0\xc0\x7b\x25\xe2\x5e\xcf\xe5", 31 }, { "\x39\x31\x25\x23\xa7\x86\x62\xd5\xbe\x7f\xcb\xcc\x98\xeb\xf5\xa8" "\x97\x68\x72\x68\xd6\xec\xcc\xc0\xc0\x7b\x25\xe2\x5e\xcf\xe5\x84", 32 }, { "\x97\x68\x72\x68\xd6\xec\xcc\xc0\xc0\x7b\x25\xe2\x5e\xcf\xe5\x84" "\xb3\xff\xfd\x94\x0c\x16\xa1\x8c\x1b\x55\x49\xd2\xf8\x38\x02\x9e" "\x39\x31\x25\x23\xa7\x86\x62\xd5\xbe\x7f\xcb\xcc\x98\xeb\xf5", 47 }, { "\x97\x68\x72\x68\xd6\xec\xcc\xc0\xc0\x7b\x25\xe2\x5e\xcf\xe5\x84" "\x9d\xad\x8b\xbb\x96\xc4\xcd\xc0\x3b\xc1\x03\xe1\xa1\x94\xbb\xd8" "\x39\x31\x25\x23\xa7\x86\x62\xd5\xbe\x7f\xcb\xcc\x98\xeb\xf5\xa8", 48 }, { "\x97\x68\x72\x68\xd6\xec\xcc\xc0\xc0\x7b\x25\xe2\x5e\xcf\xe5\x84" "\x39\x31\x25\x23\xa7\x86\x62\xd5\xbe\x7f\xcb\xcc\x98\xeb\xf5\xa8" "\x48\x07\xef\xe8\x36\xee\x89\xa5\x26\x73\x0d\xbc\x2f\x7b\xc8\x40" "\x9d\xad\x8b\xbb\x96\xc4\xcd\xc0\x3b\xc1\x03\xe1\xa1\x94\xbb\xd8", 64 }, }; gcry_cipher_hd_t hd; unsigned char out[MAX_DATA_LEN]; int i; gcry_error_t err = 0; if (verbose) fprintf (stderr, " Starting AES128 CBC CTS checks.\n"); err = gcry_cipher_open (&hd, GCRY_CIPHER_AES, GCRY_CIPHER_MODE_CBC, GCRY_CIPHER_CBC_CTS); if (err) { fail ("aes-cbc-cts, gcry_cipher_open failed: %s\n", gpg_strerror (err)); return; } err = gcry_cipher_setkey (hd, key, 128 / 8); if (err) { fail ("aes-cbc-cts, gcry_cipher_setkey failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); return; } for (i = 0; i < sizeof (tv) / sizeof (tv[0]); i++) { err = gcry_cipher_setiv (hd, NULL, 0); if (err) { fail ("aes-cbc-cts, gcry_cipher_setiv failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); return; } if (verbose) fprintf (stderr, " checking encryption for length %i\n", tv[i].inlen); err = gcry_cipher_encrypt (hd, out, MAX_DATA_LEN, plaintext, tv[i].inlen); if (err) { fail ("aes-cbc-cts, gcry_cipher_encrypt failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); return; } if (memcmp (tv[i].out, out, tv[i].inlen)) fail ("aes-cbc-cts, encrypt mismatch entry %d\n", i); err = gcry_cipher_setiv (hd, NULL, 0); if (err) { fail ("aes-cbc-cts, gcry_cipher_setiv failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); return; } if (verbose) fprintf (stderr, " checking decryption for length %i\n", tv[i].inlen); err = gcry_cipher_decrypt (hd, out, tv[i].inlen, NULL, 0); if (err) { fail ("aes-cbc-cts, gcry_cipher_decrypt failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); return; } if (memcmp (plaintext, out, tv[i].inlen)) fail ("aes-cbc-cts, decrypt mismatch entry %d\n", i); } gcry_cipher_close (hd); if (verbose) fprintf (stderr, " Completed AES128 CBC CTS checks.\n"); } static void check_ctr_cipher (void) { static const struct tv { int algo; char key[MAX_DATA_LEN]; char ctr[MAX_DATA_LEN]; struct data { unsigned char plaintext[MAX_DATA_LEN]; int inlen; char out[MAX_DATA_LEN]; } data[8]; } tv[] = { /* http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf */ { GCRY_CIPHER_AES, "\x2b\x7e\x15\x16\x28\xae\xd2\xa6\xab\xf7\x15\x88\x09\xcf\x4f\x3c", "\xf0\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9\xfa\xfb\xfc\xfd\xfe\xff", { { "\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96\xe9\x3d\x7e\x11\x73\x93\x17\x2a", 16, "\x87\x4d\x61\x91\xb6\x20\xe3\x26\x1b\xef\x68\x64\x99\x0d\xb6\xce" }, { "\xae\x2d\x8a\x57\x1e\x03\xac\x9c\x9e\xb7\x6f\xac\x45\xaf\x8e\x51", 16, "\x98\x06\xf6\x6b\x79\x70\xfd\xff\x86\x17\x18\x7b\xb9\xff\xfd\xff" }, { "\x30\xc8\x1c\x46\xa3\x5c\xe4\x11\xe5\xfb\xc1\x19\x1a\x0a\x52\xef", 16, "\x5a\xe4\xdf\x3e\xdb\xd5\xd3\x5e\x5b\x4f\x09\x02\x0d\xb0\x3e\xab" }, { "\xf6\x9f\x24\x45\xdf\x4f\x9b\x17\xad\x2b\x41\x7b\xe6\x6c\x37\x10", 16, "\x1e\x03\x1d\xda\x2f\xbe\x03\xd1\x79\x21\x70\xa0\xf3\x00\x9c\xee" }, { "", 0, "" } } }, { GCRY_CIPHER_AES192, "\x8e\x73\xb0\xf7\xda\x0e\x64\x52\xc8\x10\xf3\x2b" "\x80\x90\x79\xe5\x62\xf8\xea\xd2\x52\x2c\x6b\x7b", "\xf0\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9\xfa\xfb\xfc\xfd\xfe\xff", { { "\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96\xe9\x3d\x7e\x11\x73\x93\x17\x2a", 16, "\x1a\xbc\x93\x24\x17\x52\x1c\xa2\x4f\x2b\x04\x59\xfe\x7e\x6e\x0b" }, { "\xae\x2d\x8a\x57\x1e\x03\xac\x9c\x9e\xb7\x6f\xac\x45\xaf\x8e\x51", 16, "\x09\x03\x39\xec\x0a\xa6\xfa\xef\xd5\xcc\xc2\xc6\xf4\xce\x8e\x94" }, { "\x30\xc8\x1c\x46\xa3\x5c\xe4\x11\xe5\xfb\xc1\x19\x1a\x0a\x52\xef", 16, "\x1e\x36\xb2\x6b\xd1\xeb\xc6\x70\xd1\xbd\x1d\x66\x56\x20\xab\xf7" }, { "\xf6\x9f\x24\x45\xdf\x4f\x9b\x17\xad\x2b\x41\x7b\xe6\x6c\x37\x10", 16, "\x4f\x78\xa7\xf6\xd2\x98\x09\x58\x5a\x97\xda\xec\x58\xc6\xb0\x50" }, { "", 0, "" } } }, { GCRY_CIPHER_AES256, "\x60\x3d\xeb\x10\x15\xca\x71\xbe\x2b\x73\xae\xf0\x85\x7d\x77\x81" "\x1f\x35\x2c\x07\x3b\x61\x08\xd7\x2d\x98\x10\xa3\x09\x14\xdf\xf4", "\xf0\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9\xfa\xfb\xfc\xfd\xfe\xff", { { "\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96\xe9\x3d\x7e\x11\x73\x93\x17\x2a", 16, "\x60\x1e\xc3\x13\x77\x57\x89\xa5\xb7\xa7\xf5\x04\xbb\xf3\xd2\x28" }, { "\xae\x2d\x8a\x57\x1e\x03\xac\x9c\x9e\xb7\x6f\xac\x45\xaf\x8e\x51", 16, "\xf4\x43\xe3\xca\x4d\x62\xb5\x9a\xca\x84\xe9\x90\xca\xca\xf5\xc5" }, { "\x30\xc8\x1c\x46\xa3\x5c\xe4\x11\xe5\xfb\xc1\x19\x1a\x0a\x52\xef", 16, "\x2b\x09\x30\xda\xa2\x3d\xe9\x4c\xe8\x70\x17\xba\x2d\x84\x98\x8d" }, { "\xf6\x9f\x24\x45\xdf\x4f\x9b\x17\xad\x2b\x41\x7b\xe6\x6c\x37\x10", 16, "\xdf\xc9\xc5\x8d\xb6\x7a\xad\xa6\x13\xc2\xdd\x08\x45\x79\x41\xa6" }, { "", 0, "" } } }, /* Some truncation tests. With a truncated second block and also with a single truncated block. */ { GCRY_CIPHER_AES, "\x2b\x7e\x15\x16\x28\xae\xd2\xa6\xab\xf7\x15\x88\x09\xcf\x4f\x3c", "\xf0\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9\xfa\xfb\xfc\xfd\xfe\xff", {{"\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96\xe9\x3d\x7e\x11\x73\x93\x17\x2a", 16, "\x87\x4d\x61\x91\xb6\x20\xe3\x26\x1b\xef\x68\x64\x99\x0d\xb6\xce" }, {"\xae\x2d\x8a\x57\x1e\x03\xac\x9c\x9e\xb7\x6f\xac\x45\xaf\x8e", 15, "\x98\x06\xf6\x6b\x79\x70\xfd\xff\x86\x17\x18\x7b\xb9\xff\xfd" }, {"", 0, "" } } }, { GCRY_CIPHER_AES, "\x2b\x7e\x15\x16\x28\xae\xd2\xa6\xab\xf7\x15\x88\x09\xcf\x4f\x3c", "\xf0\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9\xfa\xfb\xfc\xfd\xfe\xff", {{"\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96\xe9\x3d\x7e\x11\x73\x93\x17\x2a", 16, "\x87\x4d\x61\x91\xb6\x20\xe3\x26\x1b\xef\x68\x64\x99\x0d\xb6\xce" }, {"\xae", 1, "\x98" }, {"", 0, "" } } }, { GCRY_CIPHER_AES, "\x2b\x7e\x15\x16\x28\xae\xd2\xa6\xab\xf7\x15\x88\x09\xcf\x4f\x3c", "\xf0\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9\xfa\xfb\xfc\xfd\xfe\xff", {{"\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96\xe9\x3d\x7e\x11\x73\x93\x17", 15, "\x87\x4d\x61\x91\xb6\x20\xe3\x26\x1b\xef\x68\x64\x99\x0d\xb6" }, {"", 0, "" } } }, { GCRY_CIPHER_AES, "\x2b\x7e\x15\x16\x28\xae\xd2\xa6\xab\xf7\x15\x88\x09\xcf\x4f\x3c", "\xf0\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9\xfa\xfb\xfc\xfd\xfe\xff", {{"\x6b", 1, "\x87" }, {"", 0, "" } } }, /* Tests to see whether it works correctly as a stream cipher. */ { GCRY_CIPHER_AES, "\x2b\x7e\x15\x16\x28\xae\xd2\xa6\xab\xf7\x15\x88\x09\xcf\x4f\x3c", "\xf0\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9\xfa\xfb\xfc\xfd\xfe\xff", {{"\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96\xe9\x3d\x7e\x11\x73\x93\x17\x2a", 16, "\x87\x4d\x61\x91\xb6\x20\xe3\x26\x1b\xef\x68\x64\x99\x0d\xb6\xce" }, {"\xae\x2d\x8a\x57\x1e\x03\xac\x9c\x9e\xb7\x6f\xac\x45\xaf\x8e", 15, "\x98\x06\xf6\x6b\x79\x70\xfd\xff\x86\x17\x18\x7b\xb9\xff\xfd" }, {"\x51\x30\xc8\x1c\x46\xa3\x5c\xe4\x11\xe5\xfb\xc1\x19\x1a\x0a\x52\xef", 17, "\xff\x5a\xe4\xdf\x3e\xdb\xd5\xd3\x5e\x5b\x4f\x09\x02\x0d\xb0\x3e\xab" }, {"\xf6\x9f\x24\x45\xdf\x4f\x9b\x17\xad\x2b\x41\x7b\xe6\x6c\x37\x10", 16, "\x1e\x03\x1d\xda\x2f\xbe\x03\xd1\x79\x21\x70\xa0\xf3\x00\x9c\xee" }, { "", 0, "" } } }, { GCRY_CIPHER_AES, "\x2b\x7e\x15\x16\x28\xae\xd2\xa6\xab\xf7\x15\x88\x09\xcf\x4f\x3c", "\xf0\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9\xfa\xfb\xfc\xfd\xfe\xff", {{"\x6b", 1, "\x87" }, {"\xc1\xbe", 2, "\x4d\x61" }, {"\xe2\x2e\x40", 3, "\x91\xb6\x20" }, {"\x9f", 1, "\xe3" }, {"\x96\xe9\x3d\x7e\x11\x73\x93\x17\x2a", 9, "\x26\x1b\xef\x68\x64\x99\x0d\xb6\xce" }, {"\xae\x2d\x8a\x57\x1e\x03\xac\x9c\x9e\xb7\x6f\xac\x45\xaf\x8e", 15, "\x98\x06\xf6\x6b\x79\x70\xfd\xff\x86\x17\x18\x7b\xb9\xff\xfd" }, {"\x51\x30\xc8\x1c\x46\xa3\x5c\xe4\x11", 9, "\xff\x5a\xe4\xdf\x3e\xdb\xd5\xd3\x5e" }, { "", 0, "" } } }, #if USE_CAST5 /* A selfmade test vector using an 64 bit block cipher. */ { GCRY_CIPHER_CAST5, "\x2b\x7e\x15\x16\x28\xae\xd2\xa6\xab\xf7\x15\x88\x09\xcf\x4f\x3c", "\xf0\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8", {{"\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96\xe9\x3d\x7e\x11\x73\x93\x17\x2a", 16, "\xe8\xa7\xac\x68\xca\xca\xa0\x20\x10\xcb\x1b\xcc\x79\x2c\xc4\x48" }, {"\xae\x2d\x8a\x57\x1e\x03\xac\x9c", 8, "\x16\xe8\x72\x77\xb0\x98\x29\x68" }, {"\x9e\xb7\x6f\xac\x45\xaf\x8e\x51", 8, "\x9a\xb3\xa8\x03\x3b\xb4\x14\xba" }, {"\xae\x2d\x8a\x57\x1e\x03\xac\x9c\xa1\x00", 10, "\x31\x5e\xd3\xfb\x1b\x8d\xd1\xf9\xb0\x83" }, { "", 0, "" } } }, #endif /*USE_CAST5*/ { 0, "", "", { {"", 0, "" } } } }; gcry_cipher_hd_t hde, hdd; unsigned char out[MAX_DATA_LEN]; int i, j, keylen, blklen; gcry_error_t err = 0; size_t taglen2; if (verbose) fprintf (stderr, " Starting CTR cipher checks.\n"); for (i = 0; i < sizeof (tv) / sizeof (tv[0]); i++) { if (!tv[i].algo) continue; if (gcry_cipher_test_algo (tv[i].algo) && in_fips_mode) { if (verbose) fprintf (stderr, " algorithm %d not available in fips mode\n", tv[i].algo); continue; } err = gcry_cipher_open (&hde, tv[i].algo, GCRY_CIPHER_MODE_CTR, 0); if (!err) err = gcry_cipher_open (&hdd, tv[i].algo, GCRY_CIPHER_MODE_CTR, 0); if (err) { fail ("aes-ctr, gcry_cipher_open failed: %s\n", gpg_strerror (err)); return; } keylen = gcry_cipher_get_algo_keylen(tv[i].algo); if (!keylen) { fail ("aes-ctr, gcry_cipher_get_algo_keylen failed\n"); return; } err = gcry_cipher_setkey (hde, tv[i].key, keylen); if (!err) err = gcry_cipher_setkey (hdd, tv[i].key, keylen); if (err) { fail ("aes-ctr, gcry_cipher_setkey failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } blklen = gcry_cipher_get_algo_blklen(tv[i].algo); if (!blklen) { fail ("aes-ctr, gcry_cipher_get_algo_blklen failed\n"); return; } err = gcry_cipher_setctr (hde, tv[i].ctr, blklen); if (!err) err = gcry_cipher_setctr (hdd, tv[i].ctr, blklen); if (err) { fail ("aes-ctr, gcry_cipher_setctr failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } err = gcry_cipher_info (hde, GCRYCTL_GET_TAGLEN, NULL, &taglen2); if (gpg_err_code (err) != GPG_ERR_INV_CIPHER_MODE) { fail ("aes-ctr, gcryctl_get_taglen failed to fail (tv %d): %s\n", i, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } if (verbose) fprintf (stderr, " checking CTR mode for %s [%i]\n", gcry_cipher_algo_name (tv[i].algo), tv[i].algo); for (j = 0; tv[i].data[j].inlen; j++) { err = gcry_cipher_encrypt (hde, out, MAX_DATA_LEN, tv[i].data[j].plaintext, tv[i].data[j].inlen == -1 ? strlen ((char*)tv[i].data[j].plaintext) : tv[i].data[j].inlen); if (err) { fail ("aes-ctr, gcry_cipher_encrypt (%d, %d) failed: %s\n", i, j, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } if (memcmp (tv[i].data[j].out, out, tv[i].data[j].inlen)) { fail ("aes-ctr, encrypt mismatch entry %d:%d\n", i, j); mismatch (tv[i].data[j].out, tv[i].data[j].inlen, out, tv[i].data[j].inlen); } err = gcry_cipher_decrypt (hdd, out, tv[i].data[j].inlen, NULL, 0); if (err) { fail ("aes-ctr, gcry_cipher_decrypt (%d, %d) failed: %s\n", i, j, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } if (memcmp (tv[i].data[j].plaintext, out, tv[i].data[j].inlen)) { fail ("aes-ctr, decrypt mismatch entry %d:%d\n", i, j); mismatch (tv[i].data[j].plaintext, tv[i].data[j].inlen, out, tv[i].data[j].inlen); } } /* Now check that we get valid return codes back for good and bad inputs. */ err = gcry_cipher_encrypt (hde, out, MAX_DATA_LEN, "1234567890123456", 16); if (err) fail ("aes-ctr, encryption failed for valid input"); err = gcry_cipher_encrypt (hde, out, 15, "1234567890123456", 16); if (gpg_err_code (err) != GPG_ERR_BUFFER_TOO_SHORT) fail ("aes-ctr, too short output buffer returned wrong error: %s\n", gpg_strerror (err)); err = gcry_cipher_encrypt (hde, out, 0, "1234567890123456", 16); if (gpg_err_code (err) != GPG_ERR_BUFFER_TOO_SHORT) fail ("aes-ctr, 0 length output buffer returned wrong error: %s\n", gpg_strerror (err)); err = gcry_cipher_encrypt (hde, out, 16, "1234567890123456", 16); if (err) fail ("aes-ctr, correct length output buffer returned error: %s\n", gpg_strerror (err)); /* Again, now for decryption. */ err = gcry_cipher_decrypt (hde, out, MAX_DATA_LEN, "1234567890123456", 16); if (err) fail ("aes-ctr, decryption failed for valid input"); err = gcry_cipher_decrypt (hde, out, 15, "1234567890123456", 16); if (gpg_err_code (err) != GPG_ERR_BUFFER_TOO_SHORT) fail ("aes-ctr, too short output buffer returned wrong error: %s\n", gpg_strerror (err)); err = gcry_cipher_decrypt (hde, out, 0, "1234567890123456", 16); if (gpg_err_code (err) != GPG_ERR_BUFFER_TOO_SHORT) fail ("aes-ctr, 0 length output buffer returned wrong error: %s\n", gpg_strerror (err)); err = gcry_cipher_decrypt (hde, out, 16, "1234567890123456", 16); if (err) fail ("aes-ctr, correct length output buffer returned error: %s\n", gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); } if (verbose) fprintf (stderr, " Completed CTR cipher checks.\n"); } static void check_cfb_cipher (void) { static const struct tv { int algo; int cfb8; char key[MAX_DATA_LEN]; char iv[MAX_DATA_LEN]; struct data { unsigned char plaintext[MAX_DATA_LEN]; int inlen; char out[MAX_DATA_LEN]; } data[MAX_DATA_LEN]; } tv[] = { /* http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf */ { GCRY_CIPHER_AES, 0, "\x2b\x7e\x15\x16\x28\xae\xd2\xa6\xab\xf7\x15\x88\x09\xcf\x4f\x3c", "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f", { { "\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96\xe9\x3d\x7e\x11\x73\x93\x17\x2a", 16, "\x3b\x3f\xd9\x2e\xb7\x2d\xad\x20\x33\x34\x49\xf8\xe8\x3c\xfb\x4a" }, { "\xae\x2d\x8a\x57\x1e\x03\xac\x9c\x9e\xb7\x6f\xac\x45\xaf\x8e\x51", 16, "\xc8\xa6\x45\x37\xa0\xb3\xa9\x3f\xcd\xe3\xcd\xad\x9f\x1c\xe5\x8b"}, { "\x30\xc8\x1c\x46\xa3\x5c\xe4\x11\xe5\xfb\xc1\x19\x1a\x0a\x52\xef", 16, "\x26\x75\x1f\x67\xa3\xcb\xb1\x40\xb1\x80\x8c\xf1\x87\xa4\xf4\xdf" }, { "\xf6\x9f\x24\x45\xdf\x4f\x9b\x17\xad\x2b\x41\x7b\xe6\x6c\x37\x10", 16, "\xc0\x4b\x05\x35\x7c\x5d\x1c\x0e\xea\xc4\xc6\x6f\x9f\xf7\xf2\xe6" }, } }, { GCRY_CIPHER_AES192, 0, "\x8e\x73\xb0\xf7\xda\x0e\x64\x52\xc8\x10\xf3\x2b" "\x80\x90\x79\xe5\x62\xf8\xea\xd2\x52\x2c\x6b\x7b", "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f", { { "\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96\xe9\x3d\x7e\x11\x73\x93\x17\x2a", 16, "\xcd\xc8\x0d\x6f\xdd\xf1\x8c\xab\x34\xc2\x59\x09\xc9\x9a\x41\x74" }, { "\xae\x2d\x8a\x57\x1e\x03\xac\x9c\x9e\xb7\x6f\xac\x45\xaf\x8e\x51", 16, "\x67\xce\x7f\x7f\x81\x17\x36\x21\x96\x1a\x2b\x70\x17\x1d\x3d\x7a" }, { "\x30\xc8\x1c\x46\xa3\x5c\xe4\x11\xe5\xfb\xc1\x19\x1a\x0a\x52\xef", 16, "\x2e\x1e\x8a\x1d\xd5\x9b\x88\xb1\xc8\xe6\x0f\xed\x1e\xfa\xc4\xc9" }, { "\xf6\x9f\x24\x45\xdf\x4f\x9b\x17\xad\x2b\x41\x7b\xe6\x6c\x37\x10", 16, "\xc0\x5f\x9f\x9c\xa9\x83\x4f\xa0\x42\xae\x8f\xba\x58\x4b\x09\xff" }, } }, { GCRY_CIPHER_AES256, 0, "\x60\x3d\xeb\x10\x15\xca\x71\xbe\x2b\x73\xae\xf0\x85\x7d\x77\x81" "\x1f\x35\x2c\x07\x3b\x61\x08\xd7\x2d\x98\x10\xa3\x09\x14\xdf\xf4", "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f", { { "\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96\xe9\x3d\x7e\x11\x73\x93\x17\x2a", 16, "\xdc\x7e\x84\xbf\xda\x79\x16\x4b\x7e\xcd\x84\x86\x98\x5d\x38\x60" }, { "\xae\x2d\x8a\x57\x1e\x03\xac\x9c\x9e\xb7\x6f\xac\x45\xaf\x8e\x51", 16, "\x39\xff\xed\x14\x3b\x28\xb1\xc8\x32\x11\x3c\x63\x31\xe5\x40\x7b" }, { "\x30\xc8\x1c\x46\xa3\x5c\xe4\x11\xe5\xfb\xc1\x19\x1a\x0a\x52\xef", 16, "\xdf\x10\x13\x24\x15\xe5\x4b\x92\xa1\x3e\xd0\xa8\x26\x7a\xe2\xf9" }, { "\xf6\x9f\x24\x45\xdf\x4f\x9b\x17\xad\x2b\x41\x7b\xe6\x6c\x37\x10", 16, "\x75\xa3\x85\x74\x1a\xb9\xce\xf8\x20\x31\x62\x3d\x55\xb1\xe4\x71" } } }, { GCRY_CIPHER_AES, 1, "\x2b\x7e\x15\x16\x28\xae\xd2\xa6\xab\xf7\x15\x88\x09\xcf\x4f\x3c", "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f", { { "\x6b", 1, "\x3b"}, { "\xc1", 1, "\x79"}, { "\xbe", 1, "\x42"}, { "\xe2", 1, "\x4c"}, } }, { GCRY_CIPHER_AES192, 1, "\x8e\x73\xb0\xf7\xda\x0e\x64\x52\xc8\x10\xf3\x2b\x80\x90\x79\xe5" "\x62\xf8\xea\xd2\x52\x2c\x6b\x7b", "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f", { { "\x6b", 1, "\xcd"}, { "\xc1", 1, "\xa2"}, { "\xbe", 1, "\x52"}, { "\xe2", 1, "\x1e"}, } }, { GCRY_CIPHER_AES256, 1, "\x60\x3d\xeb\x10\x15\xca\x71\xbe\x2b\x73\xae\xf0\x85\x7d\x77\x81" "\x1f\x35\x2c\x07\x3b\x61\x08\xd7\x2d\x98\x10\xa3\x09\x14\xdf\xf4", "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f", { { "\x6b", 1, "\xdc"}, { "\xc1", 1, "\x1f"}, { "\xbe", 1, "\x1a"}, { "\xe2", 1, "\x85"}, } }, { GCRY_CIPHER_AES, 1, "\x3a\x6f\x91\x59\x26\x3f\xa6\xce\xf2\xa0\x75\xca\xfa\xce\x58\x17", "\x0f\xc2\x36\x62\xb7\xdb\xf7\x38\x27\xf0\xc7\xde\x32\x1c\xa3\x6e", { { "\x87\xef\xeb\x8d\x55\x9e\xd3\x36\x77\x28", 10, "\x8e\x9c\x50\x42\x56\x14\xd5\x40\xce\x11"}, } }, { GCRY_CIPHER_AES192, 1, "\x53\x7e\x7b\xf6\x61\xfd\x40\x24\xa0\x24\x61\x3f\x15\xb1\x36\x90" "\xf7\xd0\xc8\x47\xc1\xe1\x89\x65", "\x3a\x81\xf9\xd9\xd3\xc1\x55\xb0\xca\xad\x5d\x73\x34\x94\x76\xfc", { { "\xd3\xd8\xb9\xb9\x84\xad\xc2\x42\x37\xee", 10, "\x38\x79\xfe\xa7\x2a\xc9\x99\x29\xe5\x3a"}, } }, { GCRY_CIPHER_AES256, 1, "\xeb\xbb\x45\x66\xb5\xe1\x82\xe0\xf0\x72\x46\x6b\x0b\x31\x1d\xf3" "\x8f\x91\x75\xbc\x02\x13\xa5\x53\x0b\xce\x2e\xc4\xd7\x4f\x40\x0d", "\x09\x56\xa4\x8e\x01\x00\x2c\x9e\x16\x37\x6d\x6e\x30\x8d\xba\xd1", { { "\xb0\xfe\x25\xac\x8d\x3d\x28\xa2\xf4\x71", 10, "\x63\x8c\x68\x23\xe7\x25\x6f\xb5\x62\x6e"}, } }, { GCRY_CIPHER_3DES, 1, "\xe3\x34\x7a\x6b\x0b\xc1\x15\x2c\x64\x2a\x25\xcb\xd3\xbc\x31\xab" "\xfb\xa1\x62\xa8\x1f\x19\x7c\x15", "\xb7\x40\xcc\x21\xe9\x25\xe3\xc8", { { "\xdb\xe9\x15\xfc\xb3\x3b\xca\x18\xef\x14", 10, "\xf4\x80\x1a\x8d\x03\x9d\xb4\xca\x8f\xf6"}, } }, { GCRY_CIPHER_3DES, 1, "\x7c\xa2\x89\x38\xba\x6b\xec\x1f\xfe\xc7\x8f\x7c\xd6\x97\x61\x94" "\x7c\xa2\x89\x38\xba\x6b\xec\x1f", "\x95\x38\x96\x58\x6e\x49\xd3\x8f", { { "\x2e\xa9\x56\xd4\xa2\x11\xdb\x68\x59\xb7", 10, "\xf2\x0e\x53\x66\x74\xa6\x6f\xa7\x38\x05"}, } }, }; gcry_cipher_hd_t hde, hdd; unsigned char out[MAX_DATA_LEN]; int i, j, keylen, blklen, mode; gcry_error_t err = 0; if (verbose) fprintf (stderr, " Starting CFB checks.\n"); for (i = 0; i < sizeof (tv) / sizeof (tv[0]); i++) { if (gcry_cipher_test_algo (tv[i].algo) && in_fips_mode) { if (verbose) fprintf (stderr, " algorithm %d not available in fips mode\n", tv[i].algo); continue; } mode = tv[i].cfb8? GCRY_CIPHER_MODE_CFB8 : GCRY_CIPHER_MODE_CFB; if (verbose) fprintf (stderr, " checking CFB mode for %s [%i]\n", gcry_cipher_algo_name (tv[i].algo), tv[i].algo); err = gcry_cipher_open (&hde, tv[i].algo, mode, 0); if (!err) err = gcry_cipher_open (&hdd, tv[i].algo, mode, 0); if (err) { fail ("aes-cfb, gcry_cipher_open failed: %s\n", gpg_strerror (err)); return; } keylen = gcry_cipher_get_algo_keylen(tv[i].algo); if (!keylen) { fail ("aes-cfb, gcry_cipher_get_algo_keylen failed\n"); return; } err = gcry_cipher_setkey (hde, tv[i].key, keylen); if (!err) err = gcry_cipher_setkey (hdd, tv[i].key, keylen); if (err) { fail ("aes-cfb, gcry_cipher_setkey failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } blklen = gcry_cipher_get_algo_blklen(tv[i].algo); if (!blklen) { fail ("aes-cfb, gcry_cipher_get_algo_blklen failed\n"); return; } err = gcry_cipher_setiv (hde, tv[i].iv, blklen); if (!err) err = gcry_cipher_setiv (hdd, tv[i].iv, blklen); if (err) { fail ("aes-cfb, gcry_cipher_setiv failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } for (j = 0; tv[i].data[j].inlen; j++) { err = gcry_cipher_encrypt (hde, out, MAX_DATA_LEN, tv[i].data[j].plaintext, tv[i].data[j].inlen); if (err) { fail ("aes-cfb, gcry_cipher_encrypt (%d, %d) failed: %s\n", i, j, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } if (memcmp (tv[i].data[j].out, out, tv[i].data[j].inlen)) { fail ("aes-cfb, encrypt mismatch entry %d:%d\n", i, j); } err = gcry_cipher_decrypt (hdd, out, tv[i].data[j].inlen, NULL, 0); if (err) { fail ("aes-cfb, gcry_cipher_decrypt (%d, %d) failed: %s\n", i, j, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } if (memcmp (tv[i].data[j].plaintext, out, tv[i].data[j].inlen)) fail ("aes-cfb, decrypt mismatch entry %d:%d\n", i, j); } gcry_cipher_close (hde); gcry_cipher_close (hdd); } if (verbose) fprintf (stderr, " Completed CFB checks.\n"); } static void check_ofb_cipher (void) { static const struct tv { int algo; char key[MAX_DATA_LEN]; char iv[MAX_DATA_LEN]; struct data { unsigned char plaintext[MAX_DATA_LEN]; int inlen; char out[MAX_DATA_LEN]; } data[MAX_DATA_LEN]; } tv[] = { /* http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf */ { GCRY_CIPHER_AES, "\x2b\x7e\x15\x16\x28\xae\xd2\xa6\xab\xf7\x15\x88\x09\xcf\x4f\x3c", "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f", { { "\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96\xe9\x3d\x7e\x11\x73\x93\x17\x2a", 16, "\x3b\x3f\xd9\x2e\xb7\x2d\xad\x20\x33\x34\x49\xf8\xe8\x3c\xfb\x4a" }, { "\xae\x2d\x8a\x57\x1e\x03\xac\x9c\x9e\xb7\x6f\xac\x45\xaf\x8e\x51", 16, "\x77\x89\x50\x8d\x16\x91\x8f\x03\xf5\x3c\x52\xda\xc5\x4e\xd8\x25"}, { "\x30\xc8\x1c\x46\xa3\x5c\xe4\x11\xe5\xfb\xc1\x19\x1a\x0a\x52\xef", 16, "\x97\x40\x05\x1e\x9c\x5f\xec\xf6\x43\x44\xf7\xa8\x22\x60\xed\xcc" }, { "\xf6\x9f\x24\x45\xdf\x4f\x9b\x17\xad\x2b\x41\x7b\xe6\x6c\x37\x10", 16, "\x30\x4c\x65\x28\xf6\x59\xc7\x78\x66\xa5\x10\xd9\xc1\xd6\xae\x5e" }, } }, { GCRY_CIPHER_AES192, "\x8e\x73\xb0\xf7\xda\x0e\x64\x52\xc8\x10\xf3\x2b" "\x80\x90\x79\xe5\x62\xf8\xea\xd2\x52\x2c\x6b\x7b", "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f", { { "\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96\xe9\x3d\x7e\x11\x73\x93\x17\x2a", 16, "\xcd\xc8\x0d\x6f\xdd\xf1\x8c\xab\x34\xc2\x59\x09\xc9\x9a\x41\x74" }, { "\xae\x2d\x8a\x57\x1e\x03\xac\x9c\x9e\xb7\x6f\xac\x45\xaf\x8e\x51", 16, "\xfc\xc2\x8b\x8d\x4c\x63\x83\x7c\x09\xe8\x17\x00\xc1\x10\x04\x01" }, { "\x30\xc8\x1c\x46\xa3\x5c\xe4\x11\xe5\xfb\xc1\x19\x1a\x0a\x52\xef", 16, "\x8d\x9a\x9a\xea\xc0\xf6\x59\x6f\x55\x9c\x6d\x4d\xaf\x59\xa5\xf2" }, { "\xf6\x9f\x24\x45\xdf\x4f\x9b\x17\xad\x2b\x41\x7b\xe6\x6c\x37\x10", 16, "\x6d\x9f\x20\x08\x57\xca\x6c\x3e\x9c\xac\x52\x4b\xd9\xac\xc9\x2a" }, } }, { GCRY_CIPHER_AES256, "\x60\x3d\xeb\x10\x15\xca\x71\xbe\x2b\x73\xae\xf0\x85\x7d\x77\x81" "\x1f\x35\x2c\x07\x3b\x61\x08\xd7\x2d\x98\x10\xa3\x09\x14\xdf\xf4", "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f", { { "\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96\xe9\x3d\x7e\x11\x73\x93\x17\x2a", 16, "\xdc\x7e\x84\xbf\xda\x79\x16\x4b\x7e\xcd\x84\x86\x98\x5d\x38\x60" }, { "\xae\x2d\x8a\x57\x1e\x03\xac\x9c\x9e\xb7\x6f\xac\x45\xaf\x8e\x51", 16, "\x4f\xeb\xdc\x67\x40\xd2\x0b\x3a\xc8\x8f\x6a\xd8\x2a\x4f\xb0\x8d" }, { "\x30\xc8\x1c\x46\xa3\x5c\xe4\x11\xe5\xfb\xc1\x19\x1a\x0a\x52\xef", 16, "\x71\xab\x47\xa0\x86\xe8\x6e\xed\xf3\x9d\x1c\x5b\xba\x97\xc4\x08" }, { "\xf6\x9f\x24\x45\xdf\x4f\x9b\x17\xad\x2b\x41\x7b\xe6\x6c\x37\x10", 16, "\x01\x26\x14\x1d\x67\xf3\x7b\xe8\x53\x8f\x5a\x8b\xe7\x40\xe4\x84" } } } }; gcry_cipher_hd_t hde, hdd; unsigned char out[MAX_DATA_LEN]; int i, j, keylen, blklen; gcry_error_t err = 0; if (verbose) fprintf (stderr, " Starting OFB checks.\n"); for (i = 0; i < sizeof (tv) / sizeof (tv[0]); i++) { if (gcry_cipher_test_algo (tv[i].algo) && in_fips_mode) { if (verbose) fprintf (stderr, " algorithm %d not available in fips mode\n", tv[i].algo); continue; } if (verbose) fprintf (stderr, " checking OFB mode for %s [%i]\n", gcry_cipher_algo_name (tv[i].algo), tv[i].algo); err = gcry_cipher_open (&hde, tv[i].algo, GCRY_CIPHER_MODE_OFB, 0); if (!err) err = gcry_cipher_open (&hdd, tv[i].algo, GCRY_CIPHER_MODE_OFB, 0); if (err) { fail ("aes-ofb, gcry_cipher_open failed: %s\n", gpg_strerror (err)); return; } keylen = gcry_cipher_get_algo_keylen(tv[i].algo); if (!keylen) { fail ("aes-ofb, gcry_cipher_get_algo_keylen failed\n"); return; } err = gcry_cipher_setkey (hde, tv[i].key, keylen); if (!err) err = gcry_cipher_setkey (hdd, tv[i].key, keylen); if (err) { fail ("aes-ofb, gcry_cipher_setkey failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } blklen = gcry_cipher_get_algo_blklen(tv[i].algo); if (!blklen) { fail ("aes-ofb, gcry_cipher_get_algo_blklen failed\n"); return; } err = gcry_cipher_setiv (hde, tv[i].iv, blklen); if (!err) err = gcry_cipher_setiv (hdd, tv[i].iv, blklen); if (err) { fail ("aes-ofb, gcry_cipher_setiv failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } for (j = 0; tv[i].data[j].inlen; j++) { err = gcry_cipher_encrypt (hde, out, MAX_DATA_LEN, tv[i].data[j].plaintext, tv[i].data[j].inlen); if (err) { fail ("aes-ofb, gcry_cipher_encrypt (%d, %d) failed: %s\n", i, j, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } if (memcmp (tv[i].data[j].out, out, tv[i].data[j].inlen)) fail ("aes-ofb, encrypt mismatch entry %d:%d\n", i, j); err = gcry_cipher_decrypt (hdd, out, tv[i].data[j].inlen, NULL, 0); if (err) { fail ("aes-ofb, gcry_cipher_decrypt (%d, %d) failed: %s\n", i, j, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } if (memcmp (tv[i].data[j].plaintext, out, tv[i].data[j].inlen)) fail ("aes-ofb, decrypt mismatch entry %d:%d\n", i, j); } err = gcry_cipher_reset(hde); if (!err) err = gcry_cipher_reset(hdd); if (err) { fail ("aes-ofb, gcry_cipher_reset (%d, %d) failed: %s\n", i, j, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } /* gcry_cipher_reset clears the IV */ err = gcry_cipher_setiv (hde, tv[i].iv, blklen); if (!err) err = gcry_cipher_setiv (hdd, tv[i].iv, blklen); if (err) { fail ("aes-ofb, gcry_cipher_setiv failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } /* this time we encrypt and decrypt one byte at a time */ for (j = 0; tv[i].data[j].inlen; j++) { int byteNum; for (byteNum = 0; byteNum < tv[i].data[j].inlen; ++byteNum) { err = gcry_cipher_encrypt (hde, out+byteNum, 1, (tv[i].data[j].plaintext) + byteNum, 1); if (err) { fail ("aes-ofb, gcry_cipher_encrypt (%d, %d) failed: %s\n", i, j, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } } if (memcmp (tv[i].data[j].out, out, tv[i].data[j].inlen)) fail ("aes-ofb, encrypt mismatch entry %d:%d\n", i, j); for (byteNum = 0; byteNum < tv[i].data[j].inlen; ++byteNum) { err = gcry_cipher_decrypt (hdd, out+byteNum, 1, NULL, 0); if (err) { fail ("aes-ofb, gcry_cipher_decrypt (%d, %d) failed: %s\n", i, j, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } } if (memcmp (tv[i].data[j].plaintext, out, tv[i].data[j].inlen)) fail ("aes-ofb, decrypt mismatch entry %d:%d\n", i, j); } gcry_cipher_close (hde); gcry_cipher_close (hdd); } if (verbose) fprintf (stderr, " Completed OFB checks.\n"); } static void _check_gcm_cipher (unsigned int step) { - struct tv + static const struct tv { int algo; char key[MAX_DATA_LEN]; char iv[MAX_DATA_LEN]; int ivlen; unsigned char aad[MAX_DATA_LEN]; int aadlen; unsigned char plaintext[MAX_DATA_LEN]; int inlen; char out[MAX_DATA_LEN]; char tag[MAX_DATA_LEN]; int taglen; int should_fail; } tv[] = { /* http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf */ { GCRY_CIPHER_AES, "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 12, "", 0, "", 0, "", "\x58\xe2\xfc\xce\xfa\x7e\x30\x61\x36\x7f\x1d\x57\xa4\xe7\x45\x5a" }, { GCRY_CIPHER_AES, "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 12, "", 0, "", 0, "", "\x58\xe2\xfc\xce\xfa\x7e\x30\x61\x36\x7f\x1d\x57\xa4\xe7\x45", 15 }, { GCRY_CIPHER_AES, "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 12, "", 0, "", 0, "", "\x58\xe2\xfc\xce\xfa\x7e\x30\x61\x36\x7f\x1d\x57\xa4\xe7", 14 }, { GCRY_CIPHER_AES, "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 12, "", 0, "", 0, "", "\x58\xe2\xfc\xce\xfa\x7e\x30\x61\x36\x7f\x1d\x57\xa4", 13 }, { GCRY_CIPHER_AES, "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 12, "", 0, "", 0, "", "\x58\xe2\xfc\xce\xfa\x7e\x30\x61\x36\x7f\x1d\x57", 12 }, { GCRY_CIPHER_AES, "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 12, "", 0, "", 0, "", "\x58\xe2\xfc\xce\xfa\x7e\x30\x61\x36\x7f\x1d", 11, 1 }, { GCRY_CIPHER_AES, "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 12, "", 0, "", 0, "", "\x58\xe2\xfc\xce\xfa\x7e\x30\x61", 8 }, { GCRY_CIPHER_AES, "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 12, "", 0, "", 0, "", "\x58\xe2\xfc\xce", 4 }, { GCRY_CIPHER_AES, "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 12, "", 0, "", 0, "", "\x58", 1, 1 }, { GCRY_CIPHER_AES, "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 12, "", 0, "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16, "\x03\x88\xda\xce\x60\xb6\xa3\x92\xf3\x28\xc2\xb9\x71\xb2\xfe\x78", "\xab\x6e\x47\xd4\x2c\xec\x13\xbd\xf5\x3a\x67\xb2\x12\x57\xbd\xdf" }, { GCRY_CIPHER_AES, "\xfe\xff\xe9\x92\x86\x65\x73\x1c\x6d\x6a\x8f\x94\x67\x30\x83\x08", "\xca\xfe\xba\xbe\xfa\xce\xdb\xad\xde\xca\xf8\x88", 12, "", 0, "\xd9\x31\x32\x25\xf8\x84\x06\xe5\xa5\x59\x09\xc5\xaf\xf5\x26\x9a" "\x86\xa7\xa9\x53\x15\x34\xf7\xda\x2e\x4c\x30\x3d\x8a\x31\x8a\x72" "\x1c\x3c\x0c\x95\x95\x68\x09\x53\x2f\xcf\x0e\x24\x49\xa6\xb5\x25" "\xb1\x6a\xed\xf5\xaa\x0d\xe6\x57\xba\x63\x7b\x39\x1a\xaf\xd2\x55", 64, "\x42\x83\x1e\xc2\x21\x77\x74\x24\x4b\x72\x21\xb7\x84\xd0\xd4\x9c" "\xe3\xaa\x21\x2f\x2c\x02\xa4\xe0\x35\xc1\x7e\x23\x29\xac\xa1\x2e" "\x21\xd5\x14\xb2\x54\x66\x93\x1c\x7d\x8f\x6a\x5a\xac\x84\xaa\x05" "\x1b\xa3\x0b\x39\x6a\x0a\xac\x97\x3d\x58\xe0\x91\x47\x3f\x59\x85", "\x4d\x5c\x2a\xf3\x27\xcd\x64\xa6\x2c\xf3\x5a\xbd\x2b\xa6\xfa\xb4" }, { GCRY_CIPHER_AES, "\xfe\xff\xe9\x92\x86\x65\x73\x1c\x6d\x6a\x8f\x94\x67\x30\x83\x08", "\xca\xfe\xba\xbe\xfa\xce\xdb\xad\xde\xca\xf8\x88", 12, "\xfe\xed\xfa\xce\xde\xad\xbe\xef\xfe\xed\xfa\xce\xde\xad\xbe\xef" "\xab\xad\xda\xd2", 20, "\xd9\x31\x32\x25\xf8\x84\x06\xe5\xa5\x59\x09\xc5\xaf\xf5\x26\x9a" "\x86\xa7\xa9\x53\x15\x34\xf7\xda\x2e\x4c\x30\x3d\x8a\x31\x8a\x72" "\x1c\x3c\x0c\x95\x95\x68\x09\x53\x2f\xcf\x0e\x24\x49\xa6\xb5\x25" "\xb1\x6a\xed\xf5\xaa\x0d\xe6\x57\xba\x63\x7b\x39", 60, "\x42\x83\x1e\xc2\x21\x77\x74\x24\x4b\x72\x21\xb7\x84\xd0\xd4\x9c" "\xe3\xaa\x21\x2f\x2c\x02\xa4\xe0\x35\xc1\x7e\x23\x29\xac\xa1\x2e" "\x21\xd5\x14\xb2\x54\x66\x93\x1c\x7d\x8f\x6a\x5a\xac\x84\xaa\x05" "\x1b\xa3\x0b\x39\x6a\x0a\xac\x97\x3d\x58\xe0\x91\x47\x3f\x59\x85", "\x5b\xc9\x4f\xbc\x32\x21\xa5\xdb\x94\xfa\xe9\x5a\xe7\x12\x1a\x47" }, { GCRY_CIPHER_AES, "\xfe\xff\xe9\x92\x86\x65\x73\x1c\x6d\x6a\x8f\x94\x67\x30\x83\x08", "\xca\xfe\xba\xbe\xfa\xce\xdb\xad", 8, "\xfe\xed\xfa\xce\xde\xad\xbe\xef\xfe\xed\xfa\xce\xde\xad\xbe\xef" "\xab\xad\xda\xd2", 20, "\xd9\x31\x32\x25\xf8\x84\x06\xe5\xa5\x59\x09\xc5\xaf\xf5\x26\x9a" "\x86\xa7\xa9\x53\x15\x34\xf7\xda\x2e\x4c\x30\x3d\x8a\x31\x8a\x72" "\x1c\x3c\x0c\x95\x95\x68\x09\x53\x2f\xcf\x0e\x24\x49\xa6\xb5\x25" "\xb1\x6a\xed\xf5\xaa\x0d\xe6\x57\xba\x63\x7b\x39", 60, "\x61\x35\x3b\x4c\x28\x06\x93\x4a\x77\x7f\xf5\x1f\xa2\x2a\x47\x55" "\x69\x9b\x2a\x71\x4f\xcd\xc6\xf8\x37\x66\xe5\xf9\x7b\x6c\x74\x23" "\x73\x80\x69\x00\xe4\x9f\x24\xb2\x2b\x09\x75\x44\xd4\x89\x6b\x42" "\x49\x89\xb5\xe1\xeb\xac\x0f\x07\xc2\x3f\x45\x98", "\x36\x12\xd2\xe7\x9e\x3b\x07\x85\x56\x1b\xe1\x4a\xac\xa2\xfc\xcb" }, { GCRY_CIPHER_AES, "\xfe\xff\xe9\x92\x86\x65\x73\x1c\x6d\x6a\x8f\x94\x67\x30\x83\x08", "\x93\x13\x22\x5d\xf8\x84\x06\xe5\x55\x90\x9c\x5a\xff\x52\x69\xaa" "\x6a\x7a\x95\x38\x53\x4f\x7d\xa1\xe4\xc3\x03\xd2\xa3\x18\xa7\x28" "\xc3\xc0\xc9\x51\x56\x80\x95\x39\xfc\xf0\xe2\x42\x9a\x6b\x52\x54" "\x16\xae\xdb\xf5\xa0\xde\x6a\x57\xa6\x37\xb3\x9b", 60, "\xfe\xed\xfa\xce\xde\xad\xbe\xef\xfe\xed\xfa\xce\xde\xad\xbe\xef" "\xab\xad\xda\xd2", 20, "\xd9\x31\x32\x25\xf8\x84\x06\xe5\xa5\x59\x09\xc5\xaf\xf5\x26\x9a" "\x86\xa7\xa9\x53\x15\x34\xf7\xda\x2e\x4c\x30\x3d\x8a\x31\x8a\x72" "\x1c\x3c\x0c\x95\x95\x68\x09\x53\x2f\xcf\x0e\x24\x49\xa6\xb5\x25" "\xb1\x6a\xed\xf5\xaa\x0d\xe6\x57\xba\x63\x7b\x39", 60, "\x8c\xe2\x49\x98\x62\x56\x15\xb6\x03\xa0\x33\xac\xa1\x3f\xb8\x94" "\xbe\x91\x12\xa5\xc3\xa2\x11\xa8\xba\x26\x2a\x3c\xca\x7e\x2c\xa7" "\x01\xe4\xa9\xa4\xfb\xa4\x3c\x90\xcc\xdc\xb2\x81\xd4\x8c\x7c\x6f" "\xd6\x28\x75\xd2\xac\xa4\x17\x03\x4c\x34\xae\xe5", "\x61\x9c\xc5\xae\xff\xfe\x0b\xfa\x46\x2a\xf4\x3c\x16\x99\xd0\x50" }, { GCRY_CIPHER_AES192, "\xfe\xff\xe9\x92\x86\x65\x73\x1c\x6d\x6a\x8f\x94\x67\x30\x83\x08" "\xfe\xff\xe9\x92\x86\x65\x73\x1c", "\x93\x13\x22\x5d\xf8\x84\x06\xe5\x55\x90\x9c\x5a\xff\x52\x69\xaa" "\x6a\x7a\x95\x38\x53\x4f\x7d\xa1\xe4\xc3\x03\xd2\xa3\x18\xa7\x28" "\xc3\xc0\xc9\x51\x56\x80\x95\x39\xfc\xf0\xe2\x42\x9a\x6b\x52\x54" "\x16\xae\xdb\xf5\xa0\xde\x6a\x57\xa6\x37\xb3\x9b", 60, "\xfe\xed\xfa\xce\xde\xad\xbe\xef\xfe\xed\xfa\xce\xde\xad\xbe\xef" "\xab\xad\xda\xd2", 20, "\xd9\x31\x32\x25\xf8\x84\x06\xe5\xa5\x59\x09\xc5\xaf\xf5\x26\x9a" "\x86\xa7\xa9\x53\x15\x34\xf7\xda\x2e\x4c\x30\x3d\x8a\x31\x8a\x72" "\x1c\x3c\x0c\x95\x95\x68\x09\x53\x2f\xcf\x0e\x24\x49\xa6\xb5\x25" "\xb1\x6a\xed\xf5\xaa\x0d\xe6\x57\xba\x63\x7b\x39", 60, "\xd2\x7e\x88\x68\x1c\xe3\x24\x3c\x48\x30\x16\x5a\x8f\xdc\xf9\xff" "\x1d\xe9\xa1\xd8\xe6\xb4\x47\xef\x6e\xf7\xb7\x98\x28\x66\x6e\x45" "\x81\xe7\x90\x12\xaf\x34\xdd\xd9\xe2\xf0\x37\x58\x9b\x29\x2d\xb3" "\xe6\x7c\x03\x67\x45\xfa\x22\xe7\xe9\xb7\x37\x3b", "\xdc\xf5\x66\xff\x29\x1c\x25\xbb\xb8\x56\x8f\xc3\xd3\x76\xa6\xd9" }, { GCRY_CIPHER_AES256, "\xfe\xff\xe9\x92\x86\x65\x73\x1c\x6d\x6a\x8f\x94\x67\x30\x83\x08" "\xfe\xff\xe9\x92\x86\x65\x73\x1c\x6d\x6a\x8f\x94\x67\x30\x83\x08", "\x93\x13\x22\x5d\xf8\x84\x06\xe5\x55\x90\x9c\x5a\xff\x52\x69\xaa" "\x6a\x7a\x95\x38\x53\x4f\x7d\xa1\xe4\xc3\x03\xd2\xa3\x18\xa7\x28" "\xc3\xc0\xc9\x51\x56\x80\x95\x39\xfc\xf0\xe2\x42\x9a\x6b\x52\x54" "\x16\xae\xdb\xf5\xa0\xde\x6a\x57\xa6\x37\xb3\x9b", 60, "\xfe\xed\xfa\xce\xde\xad\xbe\xef\xfe\xed\xfa\xce\xde\xad\xbe\xef" "\xab\xad\xda\xd2", 20, "\xd9\x31\x32\x25\xf8\x84\x06\xe5\xa5\x59\x09\xc5\xaf\xf5\x26\x9a" "\x86\xa7\xa9\x53\x15\x34\xf7\xda\x2e\x4c\x30\x3d\x8a\x31\x8a\x72" "\x1c\x3c\x0c\x95\x95\x68\x09\x53\x2f\xcf\x0e\x24\x49\xa6\xb5\x25" "\xb1\x6a\xed\xf5\xaa\x0d\xe6\x57\xba\x63\x7b\x39", 60, "\x5a\x8d\xef\x2f\x0c\x9e\x53\xf1\xf7\x5d\x78\x53\x65\x9e\x2a\x20" "\xee\xb2\xb2\x2a\xaf\xde\x64\x19\xa0\x58\xab\x4f\x6f\x74\x6b\xf4" "\x0f\xc0\xc3\xb7\x80\xf2\x44\x45\x2d\xa3\xeb\xf1\xc5\xd8\x2c\xde" "\xa2\x41\x89\x97\x20\x0e\xf8\x2e\x44\xae\x7e\x3f", "\xa4\x4a\x82\x66\xee\x1c\x8e\xb0\xc8\xb5\xd4\xcf\x5a\xe9\xf1\x9a" } }; gcry_cipher_hd_t hde, hdd; unsigned char out[MAX_DATA_LEN]; unsigned char tag[GCRY_GCM_BLOCK_LEN]; int i, keylen; gcry_error_t err = 0; size_t pos, poslen, taglen2; int byteNum; if (verbose) fprintf (stderr, " Starting GCM checks.\n"); for (i = 0; i < sizeof (tv) / sizeof (tv[0]); i++) { if (gcry_cipher_test_algo (tv[i].algo) && in_fips_mode) { if (verbose) fprintf (stderr, " algorithm %d not available in fips mode\n", tv[i].algo); continue; } if (verbose) fprintf (stderr, " checking GCM mode for %s [%i]\n", gcry_cipher_algo_name (tv[i].algo), tv[i].algo); err = gcry_cipher_open (&hde, tv[i].algo, GCRY_CIPHER_MODE_GCM, 0); if (!err) err = gcry_cipher_open (&hdd, tv[i].algo, GCRY_CIPHER_MODE_GCM, 0); if (err) { fail ("aes-gcm, gcry_cipher_open failed: %s\n", gpg_strerror (err)); return; } keylen = gcry_cipher_get_algo_keylen(tv[i].algo); if (!keylen) { fail ("aes-gcm, gcry_cipher_get_algo_keylen failed\n"); return; } err = gcry_cipher_setkey (hde, tv[i].key, keylen); if (!err) err = gcry_cipher_setkey (hdd, tv[i].key, keylen); if (err) { fail ("aes-gcm, gcry_cipher_setkey failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } err = gcry_cipher_setiv (hde, tv[i].iv, tv[i].ivlen); if (!err) err = gcry_cipher_setiv (hdd, tv[i].iv, tv[i].ivlen); if (err) { fail ("aes-gcm, gcry_cipher_setiv failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } err = gcry_cipher_info (hde, GCRYCTL_GET_TAGLEN, NULL, &taglen2); if (err) { fail ("cipher-gcm, gcryctl_get_taglen failed (tv %d): %s\n", i, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } if (taglen2 != GCRY_GCM_BLOCK_LEN) { fail ("cipher-gcm, gcryctl_get_taglen returned bad length" " (tv %d): got=%zu want=%d\n", i, taglen2, GCRY_GCM_BLOCK_LEN); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } for (pos = 0; pos < tv[i].aadlen; pos += step) { poslen = (pos + step < tv[i].aadlen) ? step : tv[i].aadlen - pos; err = gcry_cipher_authenticate(hde, tv[i].aad + pos, poslen); if (err) { fail ("aes-gcm, gcry_cipher_authenticate (%d) (%lu:%d) failed: " "%s\n", i, (unsigned long) pos, step, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } err = gcry_cipher_authenticate(hdd, tv[i].aad + pos, poslen); if (err) { fail ("aes-gcm, de gcry_cipher_authenticate (%d) (%lu:%d) failed: " "%s\n", i, (unsigned long) pos, step, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } } for (pos = 0; pos < tv[i].inlen; pos += step) { poslen = (pos + step < tv[i].inlen) ? step : tv[i].inlen - pos; err = gcry_cipher_encrypt (hde, out + pos, poslen, tv[i].plaintext + pos, poslen); if (err) { fail ("aes-gcm, gcry_cipher_encrypt (%d) (%lu:%d) failed: %s\n", i, (unsigned long) pos, step, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } } if (memcmp (tv[i].out, out, tv[i].inlen)) fail ("aes-gcm, encrypt mismatch entry %d (step %d)\n", i, step); for (pos = 0; pos < tv[i].inlen; pos += step) { poslen = (pos + step < tv[i].inlen) ? step : tv[i].inlen - pos; err = gcry_cipher_decrypt (hdd, out + pos, poslen, NULL, 0); if (err) { fail ("aes-gcm, gcry_cipher_decrypt (%d) (%lu:%d) failed: %s\n", i, (unsigned long) pos, step, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } } if (memcmp (tv[i].plaintext, out, tv[i].inlen)) fail ("aes-gcm, decrypt mismatch entry %d (step %d)\n", i, step); taglen2 = tv[i].taglen ? tv[i].taglen : GCRY_GCM_BLOCK_LEN; err = gcry_cipher_gettag (hde, out, taglen2); if (err) { if (tv[i].should_fail) goto next_tv; fail ("aes-gcm, gcry_cipher_gettag(%d) failed: %s\n", i, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } if (memcmp (tv[i].tag, out, taglen2)) fail ("aes-gcm, encrypt tag mismatch entry %d\n", i); err = gcry_cipher_checktag (hdd, out, taglen2); if (err) { fail ("aes-gcm, gcry_cipher_checktag(%d) failed: %s\n", i, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } err = gcry_cipher_reset(hde); if (!err) err = gcry_cipher_reset(hdd); if (err) { fail ("aes-gcm, gcry_cipher_reset (%d) failed: %s\n", i, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } /* gcry_cipher_reset clears the IV */ err = gcry_cipher_setiv (hde, tv[i].iv, tv[i].ivlen); if (!err) err = gcry_cipher_setiv (hdd, tv[i].iv, tv[i].ivlen); if (err) { fail ("aes-gcm, gcry_cipher_setiv failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } /* this time we authenticate, encrypt and decrypt one byte at a time */ for (byteNum = 0; byteNum < tv[i].aadlen; ++byteNum) { err = gcry_cipher_authenticate(hde, tv[i].aad + byteNum, 1); if (err) { fail ("aes-gcm, gcry_cipher_authenticate (%d) (byte-buf) failed: " "%s\n", i, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } err = gcry_cipher_authenticate(hdd, tv[i].aad + byteNum, 1); if (err) { fail ("aes-gcm, de gcry_cipher_authenticate (%d) (byte-buf) " "failed: %s\n", i, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } } for (byteNum = 0; byteNum < tv[i].inlen; ++byteNum) { err = gcry_cipher_encrypt (hde, out+byteNum, 1, (tv[i].plaintext) + byteNum, 1); if (err) { fail ("aes-gcm, gcry_cipher_encrypt (%d) (byte-buf) failed: %s\n", i, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } } if (memcmp (tv[i].out, out, tv[i].inlen)) fail ("aes-gcm, encrypt mismatch entry %d, (byte-buf)\n", i); /* Test output to larger than 16-byte buffer. */ taglen2 = tv[i].taglen ? tv[i].taglen : GCRY_GCM_BLOCK_LEN + 1; err = gcry_cipher_gettag (hde, tag, taglen2); if (err) { if (tv[i].should_fail) goto next_tv; fail ("aes-gcm, gcry_cipher_gettag(%d, %lu) (byte-buf) failed: %s\n", i, (unsigned long) taglen2, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } taglen2 = tv[i].taglen ? tv[i].taglen : GCRY_GCM_BLOCK_LEN; if (memcmp (tv[i].tag, tag, taglen2)) fail ("aes-gcm, encrypt tag mismatch entry %d, (byte-buf)\n", i); for (byteNum = 0; byteNum < tv[i].inlen; ++byteNum) { err = gcry_cipher_decrypt (hdd, out+byteNum, 1, NULL, 0); if (err) { fail ("aes-gcm, gcry_cipher_decrypt (%d) (byte-buf) failed: %s\n", i, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } } if (memcmp (tv[i].plaintext, out, tv[i].inlen)) fail ("aes-gcm, decrypt mismatch entry %d\n", i); err = gcry_cipher_checktag (hdd, tag, taglen2); if (err) { fail ("aes-gcm, gcry_cipher_checktag(%d) (byte-buf) failed: %s\n", i, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } err = gcry_cipher_checktag (hdd, tag, 1); if (!err) { fail ("aes-gcm, gcry_cipher_checktag(%d) did not fail for invalid " " tag length of '%d'\n", i, 1); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } err = gcry_cipher_checktag (hdd, tag, 17); if (!err) { fail ("aes-gcm, gcry_cipher_checktag(%d) did not fail for invalid " " tag length of '%d'\n", i, 17); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } if (tv[i].should_fail) { fail ("aes-gcm, negative test succeeded %d\n", i); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } next_tv: gcry_cipher_close (hde); gcry_cipher_close (hdd); } if (verbose) fprintf (stderr, " Completed GCM checks.\n"); } static void check_gcm_cipher (void) { /* Large buffers, no splitting. */ _check_gcm_cipher(0xffffffff); /* Split input to one byte buffers. */ _check_gcm_cipher(1); /* Split input to 7 byte buffers. */ _check_gcm_cipher(7); /* Split input to 16 byte buffers. */ _check_gcm_cipher(16); } +static void +_check_eax_cipher (unsigned int step) +{ + static const struct tv + { + int algo; + char key[MAX_DATA_LEN]; + char nonce[MAX_DATA_LEN]; + int noncelen; + unsigned char header[MAX_DATA_LEN]; + int headerlen; + unsigned char plaintext[MAX_DATA_LEN]; + int inlen; + char out[MAX_DATA_LEN]; + char tag[MAX_DATA_LEN]; + int taglen; + int should_fail; + } tv[] = + { + /* Test vectors from http://www.cs.ucdavis.edu/~rogaway/papers/eax.pdf */ + { GCRY_CIPHER_AES, + "\x23\x39\x52\xDE\xE4\xD5\xED\x5F\x9B\x9C\x6D\x6F\xF8\x0F\xF4\x78", + "\x62\xEC\x67\xF9\xC3\xA4\xA4\x07\xFC\xB2\xA8\xC4\x90\x31\xA8\xB3", 16, + "\x6B\xFB\x91\x4F\xD0\x7E\xAE\x6B", 8, + "", + 0, + "", + "\xE0\x37\x83\x0E\x83\x89\xF2\x7B\x02\x5A\x2D\x65\x27\xE7\x9D\x01", 16, + 0 + }, + { GCRY_CIPHER_AES, + "\x91\x94\x5D\x3F\x4D\xCB\xEE\x0B\xF4\x5E\xF5\x22\x55\xF0\x95\xA4", + "\xBE\xCA\xF0\x43\xB0\xA2\x3D\x84\x31\x94\xBA\x97\x2C\x66\xDE\xBD", 16, + "\xFA\x3B\xFD\x48\x06\xEB\x53\xFA", 8, + "\xF7\xFB", + 2, + "\x19\xDD", + "\x5C\x4C\x93\x31\x04\x9D\x0B\xDA\xB0\x27\x74\x08\xF6\x79\x67\xE5", 16, + 0 + }, + { GCRY_CIPHER_AES, + "\x01\xF7\x4A\xD6\x40\x77\xF2\xE7\x04\xC0\xF6\x0A\xDA\x3D\xD5\x23", + "\x70\xC3\xDB\x4F\x0D\x26\x36\x84\x00\xA1\x0E\xD0\x5D\x2B\xFF\x5E", 16, + "\x23\x4A\x34\x63\xC1\x26\x4A\xC6", 8, + "\x1A\x47\xCB\x49\x33", + 5, + "\xD8\x51\xD5\xBA\xE0", + "\x3A\x59\xF2\x38\xA2\x3E\x39\x19\x9D\xC9\x26\x66\x26\xC4\x0F\x80", 16, + 0 + }, + { GCRY_CIPHER_AES, + "\xD0\x7C\xF6\xCB\xB7\xF3\x13\xBD\xDE\x66\xB7\x27\xAF\xD3\xC5\xE8", + "\x84\x08\xDF\xFF\x3C\x1A\x2B\x12\x92\xDC\x19\x9E\x46\xB7\xD6\x17", 16, + "\x33\xCC\xE2\xEA\xBF\xF5\xA7\x9D", 8, + "\x48\x1C\x9E\x39\xB1", + 5, + "\x63\x2A\x9D\x13\x1A", + "\xD4\xC1\x68\xA4\x22\x5D\x8E\x1F\xF7\x55\x93\x99\x74\xA7\xBE\xDE", 16, + 0 + }, + { GCRY_CIPHER_AES, + "\x35\xB6\xD0\x58\x00\x05\xBB\xC1\x2B\x05\x87\x12\x45\x57\xD2\xC2", + "\xFD\xB6\xB0\x66\x76\xEE\xDC\x5C\x61\xD7\x42\x76\xE1\xF8\xE8\x16", 16, + "\xAE\xB9\x6E\xAE\xBE\x29\x70\xE9", 8, + "\x40\xD0\xC0\x7D\xA5\xE4", + 6, + "\x07\x1D\xFE\x16\xC6\x75", + "\xCB\x06\x77\xE5\x36\xF7\x3A\xFE\x6A\x14\xB7\x4E\xE4\x98\x44\xDD", 16, + 0 + }, + { GCRY_CIPHER_AES, + "\xBD\x8E\x6E\x11\x47\x5E\x60\xB2\x68\x78\x4C\x38\xC6\x2F\xEB\x22", + "\x6E\xAC\x5C\x93\x07\x2D\x8E\x85\x13\xF7\x50\x93\x5E\x46\xDA\x1B", 16, + "\xD4\x48\x2D\x1C\xA7\x8D\xCE\x0F", 8, + "\x4D\xE3\xB3\x5C\x3F\xC0\x39\x24\x5B\xD1\xFB\x7D", + 12, + "\x83\x5B\xB4\xF1\x5D\x74\x3E\x35\x0E\x72\x84\x14", + "\xAB\xB8\x64\x4F\xD6\xCC\xB8\x69\x47\xC5\xE1\x05\x90\x21\x0A\x4F", 16, + 0 + }, + { GCRY_CIPHER_AES, + "\x7C\x77\xD6\xE8\x13\xBE\xD5\xAC\x98\xBA\xA4\x17\x47\x7A\x2E\x7D", + "\x1A\x8C\x98\xDC\xD7\x3D\x38\x39\x3B\x2B\xF1\x56\x9D\xEE\xFC\x19", 16, + "\x65\xD2\x01\x79\x90\xD6\x25\x28", 8, + "\x8B\x0A\x79\x30\x6C\x9C\xE7\xED\x99\xDA\xE4\xF8\x7F\x8D\xD6\x16\x36", + 17, + "\x02\x08\x3E\x39\x79\xDA\x01\x48\x12\xF5\x9F\x11\xD5\x26\x30\xDA\x30", + "\x13\x73\x27\xD1\x06\x49\xB0\xAA\x6E\x1C\x18\x1D\xB6\x17\xD7\xF2", 16, + 0 + }, + { GCRY_CIPHER_AES, + "\x5F\xFF\x20\xCA\xFA\xB1\x19\xCA\x2F\xC7\x35\x49\xE2\x0F\x5B\x0D", + "\xDD\xE5\x9B\x97\xD7\x22\x15\x6D\x4D\x9A\xFF\x2B\xC7\x55\x98\x26", 16, + "\x54\xB9\xF0\x4E\x6A\x09\x18\x9A", 8, + "\x1B\xDA\x12\x2B\xCE\x8A\x8D\xBA\xF1\x87\x7D\x96\x2B\x85\x92\xDD" + "\x2D\x56", + 18, + "\x2E\xC4\x7B\x2C\x49\x54\xA4\x89\xAF\xC7\xBA\x48\x97\xED\xCD\xAE" + "\x8C\xC3", + "\x3B\x60\x45\x05\x99\xBD\x02\xC9\x63\x82\x90\x2A\xEF\x7F\x83\x2A", 16, + 0 + }, + { GCRY_CIPHER_AES, + "\xA4\xA4\x78\x2B\xCF\xFD\x3E\xC5\xE7\xEF\x6D\x8C\x34\xA5\x61\x23", + "\xB7\x81\xFC\xF2\xF7\x5F\xA5\xA8\xDE\x97\xA9\xCA\x48\xE5\x22\xEC", 16, + "\x89\x9A\x17\x58\x97\x56\x1D\x7E", 8, + "\x6C\xF3\x67\x20\x87\x2B\x85\x13\xF6\xEA\xB1\xA8\xA4\x44\x38\xD5" + "\xEF\x11", + 18, + "\x0D\xE1\x8F\xD0\xFD\xD9\x1E\x7A\xF1\x9F\x1D\x8E\xE8\x73\x39\x38" + "\xB1\xE8", + "\xE7\xF6\xD2\x23\x16\x18\x10\x2F\xDB\x7F\xE5\x5F\xF1\x99\x17\x00", 16, + 0 + }, + { GCRY_CIPHER_AES, + "\x83\x95\xFC\xF1\xE9\x5B\xEB\xD6\x97\xBD\x01\x0B\xC7\x66\xAA\xC3", + "\x22\xE7\xAD\xD9\x3C\xFC\x63\x93\xC5\x7E\xC0\xB3\xC1\x7D\x6B\x44", 16, + "\x12\x67\x35\xFC\xC3\x20\xD2\x5A", 8, + "\xCA\x40\xD7\x44\x6E\x54\x5F\xFA\xED\x3B\xD1\x2A\x74\x0A\x65\x9F" + "\xFB\xBB\x3C\xEA\xB7", + 21, + "\xCB\x89\x20\xF8\x7A\x6C\x75\xCF\xF3\x96\x27\xB5\x6E\x3E\xD1\x97" + "\xC5\x52\xD2\x95\xA7", + "\xCF\xC4\x6A\xFC\x25\x3B\x46\x52\xB1\xAF\x37\x95\xB1\x24\xAB\x6E", 16, + 0 + }, + /* Negative test for bad tag. */ + { GCRY_CIPHER_AES, + "\x23\x39\x52\xDE\xE4\xD5\xED\x5F\x9B\x9C\x6D\x6F\xF8\x0F\xF4\x78", + "\x62\xEC\x67\xF9\xC3\xA4\xA4\x07\xFC\xB2\xA8\xC4\x90\x31\xA8\xB3", 16, + "\x6B\xFB\x91\x4F\xD0\x7E\xAE\x6B", 8, + "", + 0, + "", + "\x00\x37\x83\x0E\x83\x89\xF2\x7B\x02\x5A\x2D\x65\x27\xE7\x9D\x01", 16, + 1 + }, + /* Test vectors from libtomcrypt. */ + { + GCRY_CIPHER_AES, + "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f", + "", 0, + "", 0, + "", + 0, + "", + "\x9a\xd0\x7e\x7d\xbf\xf3\x01\xf5\x05\xde\x59\x6b\x96\x15\xdf\xff", 16, + 0 + }, + { + GCRY_CIPHER_AES, + "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f", + "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f", 16, + "", 0, + "", + 0, + "", + "\x1c\xe1\x0d\x3e\xff\xd4\xca\xdb\xe2\xe4\x4b\x58\xd6\x0a\xb9\xec", 16, + 0 + }, + { + GCRY_CIPHER_AES, + "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f", + "", 0, + "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f", 16, + "", + 0, + "", + "\x3a\x69\x8f\x7a\x27\x0e\x51\xb0\xf6\x5b\x3d\x3e\x47\x19\x3c\xff", 16, + 0 + }, + { + GCRY_CIPHER_AES, + "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f", + "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f", 16, + "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f", 16, + "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f" + "\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f", + 32, + "\x29\xd8\x78\xd1\xa3\xbe\x85\x7b\x6f\xb8\xc8\xea\x59\x50\xa7\x78" + "\x33\x1f\xbf\x2c\xcf\x33\x98\x6f\x35\xe8\xcf\x12\x1d\xcb\x30\xbc", + "\x4f\xbe\x03\x38\xbe\x1c\x8c\x7e\x1d\x7a\xe7\xe4\x5b\x92\xc5\x87", 16, + 0 + }, + { + GCRY_CIPHER_AES, + "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f", + "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e", 15, + "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d", 14, + "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f" + "\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c", + 29, + "\xdd\x25\xc7\x54\xc5\xb1\x7c\x59\x28\xb6\x9b\x73\x15\x5f\x7b\xb8" + "\x88\x8f\xaf\x37\x09\x1a\xd9\x2c\x8a\x24\xdb\x86\x8b", + "\x0d\x1a\x14\xe5\x22\x24\xff\xd2\x3a\x05\xfa\x02\xcd\xef\x52\xda", 16, + 0 + }, + }; + + gcry_cipher_hd_t hde, hdd; + unsigned char out[MAX_DATA_LEN]; + unsigned char tag[16]; + int i, keylen; + gcry_error_t err = 0; + size_t pos, poslen, taglen2; + int byteNum; + + if (verbose) + fprintf (stderr, " Starting EAX checks.\n"); + + for (i = 0; i < sizeof (tv) / sizeof (tv[0]); i++) + { + if (gcry_cipher_test_algo (tv[i].algo) && in_fips_mode) + { + if (verbose) + fprintf (stderr, " algorithm %d not available in fips mode\n", + tv[i].algo); + continue; + } + + if (verbose) + fprintf (stderr, " checking EAX mode for %s [%i]\n", + gcry_cipher_algo_name (tv[i].algo), + tv[i].algo); + err = gcry_cipher_open (&hde, tv[i].algo, GCRY_CIPHER_MODE_EAX, 0); + if (!err) + err = gcry_cipher_open (&hdd, tv[i].algo, GCRY_CIPHER_MODE_EAX, 0); + if (err) + { + fail ("aes-eax, gcry_cipher_open failed: %s\n", gpg_strerror (err)); + return; + } + + keylen = gcry_cipher_get_algo_keylen(tv[i].algo); + if (!keylen) + { + fail ("aes-eax, gcry_cipher_get_algo_keylen failed\n"); + return; + } + + err = gcry_cipher_setkey (hde, tv[i].key, keylen); + if (!err) + err = gcry_cipher_setkey (hdd, tv[i].key, keylen); + if (err) + { + fail ("aes-eax, gcry_cipher_setkey failed: %s\n", + gpg_strerror (err)); + gcry_cipher_close (hde); + gcry_cipher_close (hdd); + return; + } + + err = gcry_cipher_setiv (hde, tv[i].nonce, tv[i].noncelen); + if (!err) + err = gcry_cipher_setiv (hdd, tv[i].nonce, tv[i].noncelen); + if (err) + { + fail ("aes-eax, gcry_cipher_setiv failed: %s\n", + gpg_strerror (err)); + gcry_cipher_close (hde); + gcry_cipher_close (hdd); + return; + } + + err = gcry_cipher_info (hde, GCRYCTL_GET_TAGLEN, NULL, &taglen2); + if (err) + { + fail ("cipher-eax, gcryctl_get_taglen failed (tv %d): %s\n", + i, gpg_strerror (err)); + gcry_cipher_close (hde); + gcry_cipher_close (hdd); + return; + } + if (taglen2 != 16) + { + fail ("cipher-eax, gcryctl_get_taglen returned bad length" + " (tv %d): got=%zu want=%d\n", + i, taglen2, 16); + gcry_cipher_close (hde); + gcry_cipher_close (hdd); + return; + } + + for (pos = 0; pos < tv[i].headerlen; pos += step) + { + poslen = (pos + step < tv[i].headerlen) ? + step : tv[i].headerlen - pos; + + err = gcry_cipher_authenticate(hde, tv[i].header + pos, poslen); + if (err) + { + fail ("aes-eax, gcry_cipher_authenticate (%d) (%lu:%d) failed: " + "%s\n", i, (unsigned long) pos, step, gpg_strerror (err)); + gcry_cipher_close (hde); + gcry_cipher_close (hdd); + return; + } + err = gcry_cipher_authenticate(hdd, tv[i].header + pos, poslen); + if (err) + { + fail ("aes-eax, de gcry_cipher_authenticate (%d) (%lu:%d) failed: " + "%s\n", i, (unsigned long) pos, step, gpg_strerror (err)); + gcry_cipher_close (hde); + gcry_cipher_close (hdd); + return; + } + } + + for (pos = 0; pos < tv[i].inlen; pos += step) + { + poslen = (pos + step < tv[i].inlen) ? step : tv[i].inlen - pos; + + err = gcry_cipher_encrypt (hde, out + pos, poslen, + tv[i].plaintext + pos, poslen); + if (err) + { + fail ("aes-eax, gcry_cipher_encrypt (%d) (%lu:%d) failed: %s\n", + i, (unsigned long) pos, step, gpg_strerror (err)); + gcry_cipher_close (hde); + gcry_cipher_close (hdd); + return; + } + } + + if (memcmp (tv[i].out, out, tv[i].inlen)) + fail ("aes-eax, encrypt mismatch entry %d (step %d)\n", i, step); + + for (pos = 0; pos < tv[i].inlen; pos += step) + { + poslen = (pos + step < tv[i].inlen) ? step : tv[i].inlen - pos; + + err = gcry_cipher_decrypt (hdd, out + pos, poslen, NULL, 0); + if (err) + { + fail ("aes-eax, gcry_cipher_decrypt (%d) (%lu:%d) failed: %s\n", + i, (unsigned long) pos, step, gpg_strerror (err)); + gcry_cipher_close (hde); + gcry_cipher_close (hdd); + return; + } + } + + if (memcmp (tv[i].plaintext, out, tv[i].inlen)) + fail ("aes-eax, decrypt mismatch entry %d (step %d)\n", i, step); + + taglen2 = tv[i].taglen ? tv[i].taglen : 16; + + err = gcry_cipher_gettag (hde, out, taglen2); + if (err) + { + if (tv[i].should_fail) + goto next_tv; + + fail ("aes-eax, gcry_cipher_gettag(%d) failed: %s\n", + i, gpg_strerror (err)); + gcry_cipher_close (hde); + gcry_cipher_close (hdd); + return; + } + + if ((memcmp (tv[i].tag, out, taglen2) != 0) ^ tv[i].should_fail) + fail ("aes-eax, encrypt tag mismatch entry %d\n", i); + + err = gcry_cipher_checktag (hdd, tv[i].tag, taglen2); + if (err) + { + if (tv[i].should_fail) + goto next_tv; + + fail ("aes-eax, gcry_cipher_checktag(%d) failed: %s\n", + i, gpg_strerror (err)); + gcry_cipher_close (hde); + gcry_cipher_close (hdd); + return; + } + + err = gcry_cipher_reset(hde); + if (!err) + err = gcry_cipher_reset(hdd); + if (err) + { + fail ("aes-eax, gcry_cipher_reset (%d) failed: %s\n", + i, gpg_strerror (err)); + gcry_cipher_close (hde); + gcry_cipher_close (hdd); + return; + } + + /* gcry_cipher_reset clears the IV */ + err = gcry_cipher_setiv (hde, tv[i].nonce, tv[i].noncelen); + if (!err) + err = gcry_cipher_setiv (hdd, tv[i].nonce, tv[i].noncelen); + if (err) + { + fail ("aes-eax, gcry_cipher_setiv failed: %s\n", + gpg_strerror (err)); + gcry_cipher_close (hde); + gcry_cipher_close (hdd); + return; + } + + /* this time we authenticate, encrypt and decrypt one byte at a time */ + for (byteNum = 0; byteNum < tv[i].headerlen; ++byteNum) + { + err = gcry_cipher_authenticate(hde, tv[i].header + byteNum, 1); + if (err) + { + fail ("aes-eax, gcry_cipher_authenticate (%d) (byte-buf) failed: " + "%s\n", i, gpg_strerror (err)); + gcry_cipher_close (hde); + gcry_cipher_close (hdd); + return; + } + err = gcry_cipher_authenticate(hdd, tv[i].header + byteNum, 1); + if (err) + { + fail ("aes-eax, de gcry_cipher_authenticate (%d) (byte-buf) " + "failed: %s\n", i, gpg_strerror (err)); + gcry_cipher_close (hde); + gcry_cipher_close (hdd); + return; + } + } + + for (byteNum = 0; byteNum < tv[i].inlen; ++byteNum) + { + err = gcry_cipher_encrypt (hde, out+byteNum, 1, + (tv[i].plaintext) + byteNum, + 1); + if (err) + { + fail ("aes-eax, gcry_cipher_encrypt (%d) (byte-buf) failed: %s\n", + i, gpg_strerror (err)); + gcry_cipher_close (hde); + gcry_cipher_close (hdd); + return; + } + } + + if (memcmp (tv[i].out, out, tv[i].inlen)) + fail ("aes-eax, encrypt mismatch entry %d, (byte-buf)\n", i); + + /* Test output to larger than 16-byte buffer. */ + taglen2 = tv[i].taglen ? tv[i].taglen : 16 + 1; + + err = gcry_cipher_gettag (hde, tag, taglen2); + if (err) + { + if (tv[i].should_fail) + goto next_tv; + + fail ("aes-eax, gcry_cipher_gettag(%d, %lu) (byte-buf) failed: %s\n", + i, (unsigned long) taglen2, gpg_strerror (err)); + gcry_cipher_close (hde); + gcry_cipher_close (hdd); + return; + } + + taglen2 = tv[i].taglen ? tv[i].taglen : 16; + + if ((memcmp (tv[i].tag, tag, taglen2) != 0) ^ tv[i].should_fail) + fail ("aes-eax, encrypt tag mismatch entry %d, (byte-buf)\n", i); + + for (byteNum = 0; byteNum < tv[i].inlen; ++byteNum) + { + err = gcry_cipher_decrypt (hdd, out+byteNum, 1, NULL, 0); + if (err) + { + fail ("aes-eax, gcry_cipher_decrypt (%d) (byte-buf) failed: %s\n", + i, gpg_strerror (err)); + gcry_cipher_close (hde); + gcry_cipher_close (hdd); + return; + } + } + + if (memcmp (tv[i].plaintext, out, tv[i].inlen)) + fail ("aes-eax, decrypt mismatch entry %d\n", i); + + err = gcry_cipher_checktag (hdd, tv[i].tag, taglen2); + if (err) + { + if (tv[i].should_fail) + goto next_tv; + + fail ("aes-eax, gcry_cipher_checktag(%d) (byte-buf) failed: %s\n", + i, gpg_strerror (err)); + gcry_cipher_close (hde); + gcry_cipher_close (hdd); + return; + } + + err = gcry_cipher_checktag (hdd, tag, 17); + if (!err) + { + fail ("aes-eax, gcry_cipher_checktag(%d) did not fail for invalid " + " tag length of '%d'\n", i, 17); + gcry_cipher_close (hde); + gcry_cipher_close (hdd); + return; + } + + if (tv[i].should_fail) + { + fail ("aes-eax, negative test succeeded %d\n", i); + gcry_cipher_close (hde); + gcry_cipher_close (hdd); + return; + } + + next_tv: + gcry_cipher_close (hde); + gcry_cipher_close (hdd); + } + if (verbose) + fprintf (stderr, " Completed EAX checks.\n"); +} + + +static void +check_eax_cipher (void) +{ + /* Large buffers, no splitting. */ + _check_eax_cipher(0xffffffff); + /* Split input to one byte buffers. */ + _check_eax_cipher(1); + /* Split input to 7 byte buffers. */ + _check_eax_cipher(7); + /* Split input to 16 byte buffers. */ + _check_eax_cipher(16); +} + + static void _check_poly1305_cipher (unsigned int step) { - struct tv + static const struct tv { int algo; const char *key; const char *iv; int ivlen; const char *aad; int aadlen; const char *plaintext; int inlen; const char *out; const char *tag; } tv[] = { /* draft-irtf-cfrg-chacha20-poly1305-03 */ { GCRY_CIPHER_CHACHA20, "\x1c\x92\x40\xa5\xeb\x55\xd3\x8a\xf3\x33\x88\x86\x04\xf6\xb5\xf0" "\x47\x39\x17\xc1\x40\x2b\x80\x09\x9d\xca\x5c\xbc\x20\x70\x75\xc0", "\x00\x00\x00\x00\x01\x02\x03\x04\x05\x06\x07\x08", 12, "\xf3\x33\x88\x86\x00\x00\x00\x00\x00\x00\x4e\x91", 12, "\x49\x6e\x74\x65\x72\x6e\x65\x74\x2d\x44\x72\x61\x66\x74\x73\x20" "\x61\x72\x65\x20\x64\x72\x61\x66\x74\x20\x64\x6f\x63\x75\x6d\x65" "\x6e\x74\x73\x20\x76\x61\x6c\x69\x64\x20\x66\x6f\x72\x20\x61\x20" "\x6d\x61\x78\x69\x6d\x75\x6d\x20\x6f\x66\x20\x73\x69\x78\x20\x6d" "\x6f\x6e\x74\x68\x73\x20\x61\x6e\x64\x20\x6d\x61\x79\x20\x62\x65" "\x20\x75\x70\x64\x61\x74\x65\x64\x2c\x20\x72\x65\x70\x6c\x61\x63" "\x65\x64\x2c\x20\x6f\x72\x20\x6f\x62\x73\x6f\x6c\x65\x74\x65\x64" "\x20\x62\x79\x20\x6f\x74\x68\x65\x72\x20\x64\x6f\x63\x75\x6d\x65" "\x6e\x74\x73\x20\x61\x74\x20\x61\x6e\x79\x20\x74\x69\x6d\x65\x2e" "\x20\x49\x74\x20\x69\x73\x20\x69\x6e\x61\x70\x70\x72\x6f\x70\x72" "\x69\x61\x74\x65\x20\x74\x6f\x20\x75\x73\x65\x20\x49\x6e\x74\x65" "\x72\x6e\x65\x74\x2d\x44\x72\x61\x66\x74\x73\x20\x61\x73\x20\x72" "\x65\x66\x65\x72\x65\x6e\x63\x65\x20\x6d\x61\x74\x65\x72\x69\x61" "\x6c\x20\x6f\x72\x20\x74\x6f\x20\x63\x69\x74\x65\x20\x74\x68\x65" "\x6d\x20\x6f\x74\x68\x65\x72\x20\x74\x68\x61\x6e\x20\x61\x73\x20" "\x2f\xe2\x80\x9c\x77\x6f\x72\x6b\x20\x69\x6e\x20\x70\x72\x6f\x67" "\x72\x65\x73\x73\x2e\x2f\xe2\x80\x9d", 265, "\x64\xa0\x86\x15\x75\x86\x1a\xf4\x60\xf0\x62\xc7\x9b\xe6\x43\xbd" "\x5e\x80\x5c\xfd\x34\x5c\xf3\x89\xf1\x08\x67\x0a\xc7\x6c\x8c\xb2" "\x4c\x6c\xfc\x18\x75\x5d\x43\xee\xa0\x9e\xe9\x4e\x38\x2d\x26\xb0" "\xbd\xb7\xb7\x3c\x32\x1b\x01\x00\xd4\xf0\x3b\x7f\x35\x58\x94\xcf" "\x33\x2f\x83\x0e\x71\x0b\x97\xce\x98\xc8\xa8\x4a\xbd\x0b\x94\x81" "\x14\xad\x17\x6e\x00\x8d\x33\xbd\x60\xf9\x82\xb1\xff\x37\xc8\x55" "\x97\x97\xa0\x6e\xf4\xf0\xef\x61\xc1\x86\x32\x4e\x2b\x35\x06\x38" "\x36\x06\x90\x7b\x6a\x7c\x02\xb0\xf9\xf6\x15\x7b\x53\xc8\x67\xe4" "\xb9\x16\x6c\x76\x7b\x80\x4d\x46\xa5\x9b\x52\x16\xcd\xe7\xa4\xe9" "\x90\x40\xc5\xa4\x04\x33\x22\x5e\xe2\x82\xa1\xb0\xa0\x6c\x52\x3e" "\xaf\x45\x34\xd7\xf8\x3f\xa1\x15\x5b\x00\x47\x71\x8c\xbc\x54\x6a" "\x0d\x07\x2b\x04\xb3\x56\x4e\xea\x1b\x42\x22\x73\xf5\x48\x27\x1a" "\x0b\xb2\x31\x60\x53\xfa\x76\x99\x19\x55\xeb\xd6\x31\x59\x43\x4e" "\xce\xbb\x4e\x46\x6d\xae\x5a\x10\x73\xa6\x72\x76\x27\x09\x7a\x10" "\x49\xe6\x17\xd9\x1d\x36\x10\x94\xfa\x68\xf0\xff\x77\x98\x71\x30" "\x30\x5b\xea\xba\x2e\xda\x04\xdf\x99\x7b\x71\x4d\x6c\x6f\x2c\x29" "\xa6\xad\x5c\xb4\x02\x2b\x02\x70\x9b", "\xee\xad\x9d\x67\x89\x0c\xbb\x22\x39\x23\x36\xfe\xa1\x85\x1f\x38" }, /* draft-irtf-cfrg-chacha20-poly1305-03 */ { GCRY_CIPHER_CHACHA20, "\x80\x81\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f" "\x90\x91\x92\x93\x94\x95\x96\x97\x98\x99\x9a\x9b\x9c\x9d\x9e\x9f", "\x07\x00\x00\x00\x40\x41\x42\x43\x44\x45\x46\x47", 12, "\x50\x51\x52\x53\xc0\xc1\xc2\xc3\xc4\xc5\xc6\xc7", 12, "Ladies and Gentlemen of the class of '99: If I could offer you " "only one tip for the future, sunscreen would be it.", 114, "\xd3\x1a\x8d\x34\x64\x8e\x60\xdb\x7b\x86\xaf\xbc\x53\xef\x7e\xc2" "\xa4\xad\xed\x51\x29\x6e\x08\xfe\xa9\xe2\xb5\xa7\x36\xee\x62\xd6" "\x3d\xbe\xa4\x5e\x8c\xa9\x67\x12\x82\xfa\xfb\x69\xda\x92\x72\x8b" "\x1a\x71\xde\x0a\x9e\x06\x0b\x29\x05\xd6\xa5\xb6\x7e\xcd\x3b\x36" "\x92\xdd\xbd\x7f\x2d\x77\x8b\x8c\x98\x03\xae\xe3\x28\x09\x1b\x58" "\xfa\xb3\x24\xe4\xfa\xd6\x75\x94\x55\x85\x80\x8b\x48\x31\xd7\xbc" "\x3f\xf4\xde\xf0\x8e\x4b\x7a\x9d\xe5\x76\xd2\x65\x86\xce\xc6\x4b" "\x61\x16", "\x1a\xe1\x0b\x59\x4f\x09\xe2\x6a\x7e\x90\x2e\xcb\xd0\x60\x06\x91" }, }; gcry_cipher_hd_t hde, hdd; unsigned char out[1024]; unsigned char tag[16]; int i, keylen; gcry_error_t err = 0; size_t pos, poslen, taglen2; int byteNum; if (verbose) fprintf (stderr, " Starting POLY1305 checks.\n"); for (i = 0; i < sizeof (tv) / sizeof (tv[0]); i++) { if (verbose) fprintf (stderr, " checking POLY1305 mode for %s [%i]\n", gcry_cipher_algo_name (tv[i].algo), tv[i].algo); err = gcry_cipher_open (&hde, tv[i].algo, GCRY_CIPHER_MODE_POLY1305, 0); if (!err) err = gcry_cipher_open (&hdd, tv[i].algo, GCRY_CIPHER_MODE_POLY1305, 0); if (err) { fail ("poly1305, gcry_cipher_open failed: %s\n", gpg_strerror (err)); return; } keylen = gcry_cipher_get_algo_keylen(tv[i].algo); if (!keylen) { fail ("poly1305, gcry_cipher_get_algo_keylen failed\n"); return; } err = gcry_cipher_setkey (hde, tv[i].key, keylen); if (!err) err = gcry_cipher_setkey (hdd, tv[i].key, keylen); if (err) { fail ("poly1305, gcry_cipher_setkey failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } err = gcry_cipher_setiv (hde, tv[i].iv, tv[i].ivlen); if (!err) err = gcry_cipher_setiv (hdd, tv[i].iv, tv[i].ivlen); if (err) { fail ("poly1305, gcry_cipher_setiv failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } err = gcry_cipher_info (hde, GCRYCTL_GET_TAGLEN, NULL, &taglen2); if (err) { fail ("cipher-poly1305, gcryctl_get_taglen failed (tv %d): %s\n", i, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } if (taglen2 != 16) { fail ("cipher-poly1305, gcryctl_get_taglen returned bad length" " (tv %d): got=%zu want=%d\n", i, taglen2, 16); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } for (pos = 0; pos < tv[i].aadlen; pos += step) { poslen = (pos + step < tv[i].aadlen) ? step : tv[i].aadlen - pos; err = gcry_cipher_authenticate(hde, tv[i].aad + pos, poslen); if (err) { fail ("poly1305, gcry_cipher_authenticate (%d) (%lu:%d) failed: " "%s\n", i, (unsigned long) pos, step, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } err = gcry_cipher_authenticate(hdd, tv[i].aad + pos, poslen); if (err) { fail ("poly1305, de gcry_cipher_authenticate (%d) (%lu:%d) failed: " "%s\n", i, (unsigned long) pos, step, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } } for (pos = 0; pos < tv[i].inlen; pos += step) { poslen = (pos + step < tv[i].inlen) ? step : tv[i].inlen - pos; err = gcry_cipher_encrypt (hde, out + pos, poslen, tv[i].plaintext + pos, poslen); if (err) { fail ("poly1305, gcry_cipher_encrypt (%d) (%lu:%d) failed: %s\n", i, (unsigned long) pos, step, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } } if (memcmp (tv[i].out, out, tv[i].inlen)) fail ("poly1305, encrypt mismatch entry %d (step %d)\n", i, step); for (pos = 0; pos < tv[i].inlen; pos += step) { poslen = (pos + step < tv[i].inlen) ? step : tv[i].inlen - pos; err = gcry_cipher_decrypt (hdd, out + pos, poslen, NULL, 0); if (err) { fail ("poly1305, gcry_cipher_decrypt (%d) (%lu:%d) failed: %s\n", i, (unsigned long) pos, step, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } } if (memcmp (tv[i].plaintext, out, tv[i].inlen)) fail ("poly1305, decrypt mismatch entry %d (step %d)\n", i, step); err = gcry_cipher_gettag (hde, out, 16); if (err) { fail ("poly1305, gcry_cipher_gettag(%d) failed: %s\n", i, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } if (memcmp (tv[i].tag, out, 16)) fail ("poly1305, encrypt tag mismatch entry %d\n", i); err = gcry_cipher_checktag (hdd, out, 16); if (err) { fail ("poly1305, gcry_cipher_checktag(%d) failed: %s\n", i, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } err = gcry_cipher_reset(hde); if (!err) err = gcry_cipher_reset(hdd); if (err) { fail ("poly1305, gcry_cipher_reset (%d) failed: %s\n", i, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } /* gcry_cipher_reset clears the IV */ err = gcry_cipher_setiv (hde, tv[i].iv, tv[i].ivlen); if (!err) err = gcry_cipher_setiv (hdd, tv[i].iv, tv[i].ivlen); if (err) { fail ("poly1305, gcry_cipher_setiv failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } /* this time we authenticate, encrypt and decrypt one byte at a time */ for (byteNum = 0; byteNum < tv[i].aadlen; ++byteNum) { err = gcry_cipher_authenticate(hde, tv[i].aad + byteNum, 1); if (err) { fail ("poly1305, gcry_cipher_authenticate (%d) (byte-buf) failed: " "%s\n", i, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } err = gcry_cipher_authenticate(hdd, tv[i].aad + byteNum, 1); if (err) { fail ("poly1305, de gcry_cipher_authenticate (%d) (byte-buf) " "failed: %s\n", i, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } } for (byteNum = 0; byteNum < tv[i].inlen; ++byteNum) { err = gcry_cipher_encrypt (hde, out+byteNum, 1, (tv[i].plaintext) + byteNum, 1); if (err) { fail ("poly1305, gcry_cipher_encrypt (%d) (byte-buf) failed: %s\n", i, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } } if (memcmp (tv[i].out, out, tv[i].inlen)) fail ("poly1305, encrypt mismatch entry %d, (byte-buf)\n", i); err = gcry_cipher_gettag (hde, tag, 16); if (err) { fail ("poly1305, gcry_cipher_gettag(%d) (byte-buf) failed: %s\n", i, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } if (memcmp (tv[i].tag, tag, 16)) fail ("poly1305, encrypt tag mismatch entry %d, (byte-buf)\n", i); for (byteNum = 0; byteNum < tv[i].inlen; ++byteNum) { err = gcry_cipher_decrypt (hdd, out+byteNum, 1, NULL, 0); if (err) { fail ("poly1305, gcry_cipher_decrypt (%d) (byte-buf) failed: %s\n", i, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } } if (memcmp (tv[i].plaintext, out, tv[i].inlen)) fail ("poly1305, decrypt mismatch entry %d\n", i); err = gcry_cipher_checktag (hdd, tag, 16); if (err) { fail ("poly1305, gcry_cipher_checktag(%d) (byte-buf) failed: %s\n", i, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } gcry_cipher_close (hde); gcry_cipher_close (hdd); } if (verbose) fprintf (stderr, " Completed POLY1305 checks.\n"); } static void check_poly1305_cipher (void) { /* Large buffers, no splitting. */ _check_poly1305_cipher(0xffffffff); /* Split input to one byte buffers. */ _check_poly1305_cipher(1); /* Split input to 7 byte buffers. */ _check_poly1305_cipher(7); /* Split input to 16 byte buffers. */ _check_poly1305_cipher(16); } static void check_ccm_cipher (void) { static const struct tv { int algo; int keylen; const char *key; int noncelen; const char *nonce; int aadlen; const char *aad; int plainlen; const char *plaintext; int cipherlen; const char *ciphertext; } tv[] = { /* RFC 3610 */ { GCRY_CIPHER_AES, /* Packet Vector #1 */ 16, "\xC0\xC1\xC2\xC3\xC4\xC5\xC6\xC7\xC8\xC9\xCA\xCB\xCC\xCD\xCE\xCF", 13, "\x00\x00\x00\x03\x02\x01\x00\xA0\xA1\xA2\xA3\xA4\xA5", 8, "\x00\x01\x02\x03\x04\x05\x06\x07", 23, "\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1A\x1B\x1C\x1D\x1E", 31, "\x58\x8C\x97\x9A\x61\xC6\x63\xD2\xF0\x66\xD0\xC2\xC0\xF9\x89\x80\x6D\x5F\x6B\x61\xDA\xC3\x84\x17\xE8\xD1\x2C\xFD\xF9\x26\xE0"}, { GCRY_CIPHER_AES, /* Packet Vector #2 */ 16, "\xC0\xC1\xC2\xC3\xC4\xC5\xC6\xC7\xC8\xC9\xCA\xCB\xCC\xCD\xCE\xCF", 13, "\x00\x00\x00\x04\x03\x02\x01\xA0\xA1\xA2\xA3\xA4\xA5", 8, "\x00\x01\x02\x03\x04\x05\x06\x07", 24, "\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1A\x1B\x1C\x1D\x1E\x1F", 32, "\x72\xC9\x1A\x36\xE1\x35\xF8\xCF\x29\x1C\xA8\x94\x08\x5C\x87\xE3\xCC\x15\xC4\x39\xC9\xE4\x3A\x3B\xA0\x91\xD5\x6E\x10\x40\x09\x16"}, { GCRY_CIPHER_AES, /* Packet Vector #3 */ 16, "\xC0\xC1\xC2\xC3\xC4\xC5\xC6\xC7\xC8\xC9\xCA\xCB\xCC\xCD\xCE\xCF", 13, "\x00\x00\x00\x05\x04\x03\x02\xA0\xA1\xA2\xA3\xA4\xA5", 8, "\x00\x01\x02\x03\x04\x05\x06\x07", 25, "\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1A\x1B\x1C\x1D\x1E\x1F\x20", 33, "\x51\xB1\xE5\xF4\x4A\x19\x7D\x1D\xA4\x6B\x0F\x8E\x2D\x28\x2A\xE8\x71\xE8\x38\xBB\x64\xDA\x85\x96\x57\x4A\xDA\xA7\x6F\xBD\x9F\xB0\xC5"}, { GCRY_CIPHER_AES, /* Packet Vector #4 */ 16, "\xC0\xC1\xC2\xC3\xC4\xC5\xC6\xC7\xC8\xC9\xCA\xCB\xCC\xCD\xCE\xCF", 13, "\x00\x00\x00\x06\x05\x04\x03\xA0\xA1\xA2\xA3\xA4\xA5", 12, "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B", 19, "\x0C\x0D\x0E\x0F\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1A\x1B\x1C\x1D\x1E", 27, "\xA2\x8C\x68\x65\x93\x9A\x9A\x79\xFA\xAA\x5C\x4C\x2A\x9D\x4A\x91\xCD\xAC\x8C\x96\xC8\x61\xB9\xC9\xE6\x1E\xF1"}, { GCRY_CIPHER_AES, /* Packet Vector #5 */ 16, "\xC0\xC1\xC2\xC3\xC4\xC5\xC6\xC7\xC8\xC9\xCA\xCB\xCC\xCD\xCE\xCF", 13, "\x00\x00\x00\x07\x06\x05\x04\xA0\xA1\xA2\xA3\xA4\xA5", 12, "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B", 20, "\x0C\x0D\x0E\x0F\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1A\x1B\x1C\x1D\x1E\x1F", 28, "\xDC\xF1\xFB\x7B\x5D\x9E\x23\xFB\x9D\x4E\x13\x12\x53\x65\x8A\xD8\x6E\xBD\xCA\x3E\x51\xE8\x3F\x07\x7D\x9C\x2D\x93"}, { GCRY_CIPHER_AES, /* Packet Vector #6 */ 16, "\xC0\xC1\xC2\xC3\xC4\xC5\xC6\xC7\xC8\xC9\xCA\xCB\xCC\xCD\xCE\xCF", 13, "\x00\x00\x00\x08\x07\x06\x05\xA0\xA1\xA2\xA3\xA4\xA5", 12, "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B", 21, "\x0C\x0D\x0E\x0F\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1A\x1B\x1C\x1D\x1E\x1F\x20", 29, "\x6F\xC1\xB0\x11\xF0\x06\x56\x8B\x51\x71\xA4\x2D\x95\x3D\x46\x9B\x25\x70\xA4\xBD\x87\x40\x5A\x04\x43\xAC\x91\xCB\x94"}, { GCRY_CIPHER_AES, /* Packet Vector #7 */ 16, "\xC0\xC1\xC2\xC3\xC4\xC5\xC6\xC7\xC8\xC9\xCA\xCB\xCC\xCD\xCE\xCF", 13, "\x00\x00\x00\x09\x08\x07\x06\xA0\xA1\xA2\xA3\xA4\xA5", 8, "\x00\x01\x02\x03\x04\x05\x06\x07", 23, "\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1A\x1B\x1C\x1D\x1E", 33, "\x01\x35\xD1\xB2\xC9\x5F\x41\xD5\xD1\xD4\xFE\xC1\x85\xD1\x66\xB8\x09\x4E\x99\x9D\xFE\xD9\x6C\x04\x8C\x56\x60\x2C\x97\xAC\xBB\x74\x90"}, { GCRY_CIPHER_AES, /* Packet Vector #8 */ 16, "\xC0\xC1\xC2\xC3\xC4\xC5\xC6\xC7\xC8\xC9\xCA\xCB\xCC\xCD\xCE\xCF", 13, "\x00\x00\x00\x0A\x09\x08\x07\xA0\xA1\xA2\xA3\xA4\xA5", 8, "\x00\x01\x02\x03\x04\x05\x06\x07", 24, "\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1A\x1B\x1C\x1D\x1E\x1F", 34, "\x7B\x75\x39\x9A\xC0\x83\x1D\xD2\xF0\xBB\xD7\x58\x79\xA2\xFD\x8F\x6C\xAE\x6B\x6C\xD9\xB7\xDB\x24\xC1\x7B\x44\x33\xF4\x34\x96\x3F\x34\xB4"}, { GCRY_CIPHER_AES, /* Packet Vector #9 */ 16, "\xC0\xC1\xC2\xC3\xC4\xC5\xC6\xC7\xC8\xC9\xCA\xCB\xCC\xCD\xCE\xCF", 13, "\x00\x00\x00\x0B\x0A\x09\x08\xA0\xA1\xA2\xA3\xA4\xA5", 8, "\x00\x01\x02\x03\x04\x05\x06\x07", 25, "\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1A\x1B\x1C\x1D\x1E\x1F\x20", 35, "\x82\x53\x1A\x60\xCC\x24\x94\x5A\x4B\x82\x79\x18\x1A\xB5\xC8\x4D\xF2\x1C\xE7\xF9\xB7\x3F\x42\xE1\x97\xEA\x9C\x07\xE5\x6B\x5E\xB1\x7E\x5F\x4E"}, { GCRY_CIPHER_AES, /* Packet Vector #10 */ 16, "\xC0\xC1\xC2\xC3\xC4\xC5\xC6\xC7\xC8\xC9\xCA\xCB\xCC\xCD\xCE\xCF", 13, "\x00\x00\x00\x0C\x0B\x0A\x09\xA0\xA1\xA2\xA3\xA4\xA5", 12, "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B", 19, "\x0C\x0D\x0E\x0F\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1A\x1B\x1C\x1D\x1E", 29, "\x07\x34\x25\x94\x15\x77\x85\x15\x2B\x07\x40\x98\x33\x0A\xBB\x14\x1B\x94\x7B\x56\x6A\xA9\x40\x6B\x4D\x99\x99\x88\xDD"}, { GCRY_CIPHER_AES, /* Packet Vector #11 */ 16, "\xC0\xC1\xC2\xC3\xC4\xC5\xC6\xC7\xC8\xC9\xCA\xCB\xCC\xCD\xCE\xCF", 13, "\x00\x00\x00\x0D\x0C\x0B\x0A\xA0\xA1\xA2\xA3\xA4\xA5", 12, "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B", 20, "\x0C\x0D\x0E\x0F\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1A\x1B\x1C\x1D\x1E\x1F", 30, "\x67\x6B\xB2\x03\x80\xB0\xE3\x01\xE8\xAB\x79\x59\x0A\x39\x6D\xA7\x8B\x83\x49\x34\xF5\x3A\xA2\xE9\x10\x7A\x8B\x6C\x02\x2C"}, { GCRY_CIPHER_AES, /* Packet Vector #12 */ 16, "\xC0\xC1\xC2\xC3\xC4\xC5\xC6\xC7\xC8\xC9\xCA\xCB\xCC\xCD\xCE\xCF", 13, "\x00\x00\x00\x0E\x0D\x0C\x0B\xA0\xA1\xA2\xA3\xA4\xA5", 12, "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B", 21, "\x0C\x0D\x0E\x0F\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1A\x1B\x1C\x1D\x1E\x1F\x20", 31, "\xC0\xFF\xA0\xD6\xF0\x5B\xDB\x67\xF2\x4D\x43\xA4\x33\x8D\x2A\xA4\xBE\xD7\xB2\x0E\x43\xCD\x1A\xA3\x16\x62\xE7\xAD\x65\xD6\xDB"}, { GCRY_CIPHER_AES, /* Packet Vector #13 */ 16, "\xD7\x82\x8D\x13\xB2\xB0\xBD\xC3\x25\xA7\x62\x36\xDF\x93\xCC\x6B", 13, "\x00\x41\x2B\x4E\xA9\xCD\xBE\x3C\x96\x96\x76\x6C\xFA", 8, "\x0B\xE1\xA8\x8B\xAC\xE0\x18\xB1", 23, "\x08\xE8\xCF\x97\xD8\x20\xEA\x25\x84\x60\xE9\x6A\xD9\xCF\x52\x89\x05\x4D\x89\x5C\xEA\xC4\x7C", 31, "\x4C\xB9\x7F\x86\xA2\xA4\x68\x9A\x87\x79\x47\xAB\x80\x91\xEF\x53\x86\xA6\xFF\xBD\xD0\x80\xF8\xE7\x8C\xF7\xCB\x0C\xDD\xD7\xB3"}, { GCRY_CIPHER_AES, /* Packet Vector #14 */ 16, "\xD7\x82\x8D\x13\xB2\xB0\xBD\xC3\x25\xA7\x62\x36\xDF\x93\xCC\x6B", 13, "\x00\x33\x56\x8E\xF7\xB2\x63\x3C\x96\x96\x76\x6C\xFA", 8, "\x63\x01\x8F\x76\xDC\x8A\x1B\xCB", 24, "\x90\x20\xEA\x6F\x91\xBD\xD8\x5A\xFA\x00\x39\xBA\x4B\xAF\xF9\xBF\xB7\x9C\x70\x28\x94\x9C\xD0\xEC", 32, "\x4C\xCB\x1E\x7C\xA9\x81\xBE\xFA\xA0\x72\x6C\x55\xD3\x78\x06\x12\x98\xC8\x5C\x92\x81\x4A\xBC\x33\xC5\x2E\xE8\x1D\x7D\x77\xC0\x8A"}, { GCRY_CIPHER_AES, /* Packet Vector #15 */ 16, "\xD7\x82\x8D\x13\xB2\xB0\xBD\xC3\x25\xA7\x62\x36\xDF\x93\xCC\x6B", 13, "\x00\x10\x3F\xE4\x13\x36\x71\x3C\x96\x96\x76\x6C\xFA", 8, "\xAA\x6C\xFA\x36\xCA\xE8\x6B\x40", 25, "\xB9\x16\xE0\xEA\xCC\x1C\x00\xD7\xDC\xEC\x68\xEC\x0B\x3B\xBB\x1A\x02\xDE\x8A\x2D\x1A\xA3\x46\x13\x2E", 33, "\xB1\xD2\x3A\x22\x20\xDD\xC0\xAC\x90\x0D\x9A\xA0\x3C\x61\xFC\xF4\xA5\x59\xA4\x41\x77\x67\x08\x97\x08\xA7\x76\x79\x6E\xDB\x72\x35\x06"}, { GCRY_CIPHER_AES, /* Packet Vector #16 */ 16, "\xD7\x82\x8D\x13\xB2\xB0\xBD\xC3\x25\xA7\x62\x36\xDF\x93\xCC\x6B", 13, "\x00\x76\x4C\x63\xB8\x05\x8E\x3C\x96\x96\x76\x6C\xFA", 12, "\xD0\xD0\x73\x5C\x53\x1E\x1B\xEC\xF0\x49\xC2\x44", 19, "\x12\xDA\xAC\x56\x30\xEF\xA5\x39\x6F\x77\x0C\xE1\xA6\x6B\x21\xF7\xB2\x10\x1C", 27, "\x14\xD2\x53\xC3\x96\x7B\x70\x60\x9B\x7C\xBB\x7C\x49\x91\x60\x28\x32\x45\x26\x9A\x6F\x49\x97\x5B\xCA\xDE\xAF"}, { GCRY_CIPHER_AES, /* Packet Vector #17 */ 16, "\xD7\x82\x8D\x13\xB2\xB0\xBD\xC3\x25\xA7\x62\x36\xDF\x93\xCC\x6B", 13, "\x00\xF8\xB6\x78\x09\x4E\x3B\x3C\x96\x96\x76\x6C\xFA", 12, "\x77\xB6\x0F\x01\x1C\x03\xE1\x52\x58\x99\xBC\xAE", 20, "\xE8\x8B\x6A\x46\xC7\x8D\x63\xE5\x2E\xB8\xC5\x46\xEF\xB5\xDE\x6F\x75\xE9\xCC\x0D", 28, "\x55\x45\xFF\x1A\x08\x5E\xE2\xEF\xBF\x52\xB2\xE0\x4B\xEE\x1E\x23\x36\xC7\x3E\x3F\x76\x2C\x0C\x77\x44\xFE\x7E\x3C"}, { GCRY_CIPHER_AES, /* Packet Vector #18 */ 16, "\xD7\x82\x8D\x13\xB2\xB0\xBD\xC3\x25\xA7\x62\x36\xDF\x93\xCC\x6B", 13, "\x00\xD5\x60\x91\x2D\x3F\x70\x3C\x96\x96\x76\x6C\xFA", 12, "\xCD\x90\x44\xD2\xB7\x1F\xDB\x81\x20\xEA\x60\xC0", 21, "\x64\x35\xAC\xBA\xFB\x11\xA8\x2E\x2F\x07\x1D\x7C\xA4\xA5\xEB\xD9\x3A\x80\x3B\xA8\x7F", 29, "\x00\x97\x69\xEC\xAB\xDF\x48\x62\x55\x94\xC5\x92\x51\xE6\x03\x57\x22\x67\x5E\x04\xC8\x47\x09\x9E\x5A\xE0\x70\x45\x51"}, { GCRY_CIPHER_AES, /* Packet Vector #19 */ 16, "\xD7\x82\x8D\x13\xB2\xB0\xBD\xC3\x25\xA7\x62\x36\xDF\x93\xCC\x6B", 13, "\x00\x42\xFF\xF8\xF1\x95\x1C\x3C\x96\x96\x76\x6C\xFA", 8, "\xD8\x5B\xC7\xE6\x9F\x94\x4F\xB8", 23, "\x8A\x19\xB9\x50\xBC\xF7\x1A\x01\x8E\x5E\x67\x01\xC9\x17\x87\x65\x98\x09\xD6\x7D\xBE\xDD\x18", 33, "\xBC\x21\x8D\xAA\x94\x74\x27\xB6\xDB\x38\x6A\x99\xAC\x1A\xEF\x23\xAD\xE0\xB5\x29\x39\xCB\x6A\x63\x7C\xF9\xBE\xC2\x40\x88\x97\xC6\xBA"}, { GCRY_CIPHER_AES, /* Packet Vector #20 */ 16, "\xD7\x82\x8D\x13\xB2\xB0\xBD\xC3\x25\xA7\x62\x36\xDF\x93\xCC\x6B", 13, "\x00\x92\x0F\x40\xE5\x6C\xDC\x3C\x96\x96\x76\x6C\xFA", 8, "\x74\xA0\xEB\xC9\x06\x9F\x5B\x37", 24, "\x17\x61\x43\x3C\x37\xC5\xA3\x5F\xC1\xF3\x9F\x40\x63\x02\xEB\x90\x7C\x61\x63\xBE\x38\xC9\x84\x37", 34, "\x58\x10\xE6\xFD\x25\x87\x40\x22\xE8\x03\x61\xA4\x78\xE3\xE9\xCF\x48\x4A\xB0\x4F\x44\x7E\xFF\xF6\xF0\xA4\x77\xCC\x2F\xC9\xBF\x54\x89\x44"}, { GCRY_CIPHER_AES, /* Packet Vector #21 */ 16, "\xD7\x82\x8D\x13\xB2\xB0\xBD\xC3\x25\xA7\x62\x36\xDF\x93\xCC\x6B", 13, "\x00\x27\xCA\x0C\x71\x20\xBC\x3C\x96\x96\x76\x6C\xFA", 8, "\x44\xA3\xAA\x3A\xAE\x64\x75\xCA", 25, "\xA4\x34\xA8\xE5\x85\x00\xC6\xE4\x15\x30\x53\x88\x62\xD6\x86\xEA\x9E\x81\x30\x1B\x5A\xE4\x22\x6B\xFA", 35, "\xF2\xBE\xED\x7B\xC5\x09\x8E\x83\xFE\xB5\xB3\x16\x08\xF8\xE2\x9C\x38\x81\x9A\x89\xC8\xE7\x76\xF1\x54\x4D\x41\x51\xA4\xED\x3A\x8B\x87\xB9\xCE"}, { GCRY_CIPHER_AES, /* Packet Vector #22 */ 16, "\xD7\x82\x8D\x13\xB2\xB0\xBD\xC3\x25\xA7\x62\x36\xDF\x93\xCC\x6B", 13, "\x00\x5B\x8C\xCB\xCD\x9A\xF8\x3C\x96\x96\x76\x6C\xFA", 12, "\xEC\x46\xBB\x63\xB0\x25\x20\xC3\x3C\x49\xFD\x70", 19, "\xB9\x6B\x49\xE2\x1D\x62\x17\x41\x63\x28\x75\xDB\x7F\x6C\x92\x43\xD2\xD7\xC2", 29, "\x31\xD7\x50\xA0\x9D\xA3\xED\x7F\xDD\xD4\x9A\x20\x32\xAA\xBF\x17\xEC\x8E\xBF\x7D\x22\xC8\x08\x8C\x66\x6B\xE5\xC1\x97"}, { GCRY_CIPHER_AES, /* Packet Vector #23 */ 16, "\xD7\x82\x8D\x13\xB2\xB0\xBD\xC3\x25\xA7\x62\x36\xDF\x93\xCC\x6B", 13, "\x00\x3E\xBE\x94\x04\x4B\x9A\x3C\x96\x96\x76\x6C\xFA", 12, "\x47\xA6\x5A\xC7\x8B\x3D\x59\x42\x27\xE8\x5E\x71", 20, "\xE2\xFC\xFB\xB8\x80\x44\x2C\x73\x1B\xF9\x51\x67\xC8\xFF\xD7\x89\x5E\x33\x70\x76", 30, "\xE8\x82\xF1\xDB\xD3\x8C\xE3\xED\xA7\xC2\x3F\x04\xDD\x65\x07\x1E\xB4\x13\x42\xAC\xDF\x7E\x00\xDC\xCE\xC7\xAE\x52\x98\x7D"}, { GCRY_CIPHER_AES, /* Packet Vector #24 */ 16, "\xD7\x82\x8D\x13\xB2\xB0\xBD\xC3\x25\xA7\x62\x36\xDF\x93\xCC\x6B", 13, "\x00\x8D\x49\x3B\x30\xAE\x8B\x3C\x96\x96\x76\x6C\xFA", 12, "\x6E\x37\xA6\xEF\x54\x6D\x95\x5D\x34\xAB\x60\x59", 21, "\xAB\xF2\x1C\x0B\x02\xFE\xB8\x8F\x85\x6D\xF4\xA3\x73\x81\xBC\xE3\xCC\x12\x85\x17\xD4", 31, "\xF3\x29\x05\xB8\x8A\x64\x1B\x04\xB9\xC9\xFF\xB5\x8C\xC3\x90\x90\x0F\x3D\xA1\x2A\xB1\x6D\xCE\x9E\x82\xEF\xA1\x6D\xA6\x20\x59"}, /* RFC 5528 */ { GCRY_CIPHER_CAMELLIA128, /* Packet Vector #1 */ 16, "\xC0\xC1\xC2\xC3\xC4\xC5\xC6\xC7\xC8\xC9\xCA\xCB\xCC\xCD\xCE\xCF", 13, "\x00\x00\x00\x03\x02\x01\x00\xA0\xA1\xA2\xA3\xA4\xA5", 8, "\x00\x01\x02\x03\x04\x05\x06\x07", 23, "\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1A\x1B\x1C\x1D\x1E", 31, "\xBA\x73\x71\x85\xE7\x19\x31\x04\x92\xF3\x8A\x5F\x12\x51\xDA\x55\xFA\xFB\xC9\x49\x84\x8A\x0D\xFC\xAE\xCE\x74\x6B\x3D\xB9\xAD"}, { GCRY_CIPHER_CAMELLIA128, /* Packet Vector #2 */ 16, "\xC0\xC1\xC2\xC3\xC4\xC5\xC6\xC7\xC8\xC9\xCA\xCB\xCC\xCD\xCE\xCF", 13, "\x00\x00\x00\x04\x03\x02\x01\xA0\xA1\xA2\xA3\xA4\xA5", 8, "\x00\x01\x02\x03\x04\x05\x06\x07", 24, "\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1A\x1B\x1C\x1D\x1E\x1F", 32, "\x5D\x25\x64\xBF\x8E\xAF\xE1\xD9\x95\x26\xEC\x01\x6D\x1B\xF0\x42\x4C\xFB\xD2\xCD\x62\x84\x8F\x33\x60\xB2\x29\x5D\xF2\x42\x83\xE8"}, { GCRY_CIPHER_CAMELLIA128, /* Packet Vector #3 */ 16, "\xC0\xC1\xC2\xC3\xC4\xC5\xC6\xC7\xC8\xC9\xCA\xCB\xCC\xCD\xCE\xCF", 13, "\x00\x00\x00\x05\x04\x03\x02\xA0\xA1\xA2\xA3\xA4\xA5", 8, "\x00\x01\x02\x03\x04\x05\x06\x07", 25, "\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1A\x1B\x1C\x1D\x1E\x1F\x20", 33, "\x81\xF6\x63\xD6\xC7\x78\x78\x17\xF9\x20\x36\x08\xB9\x82\xAD\x15\xDC\x2B\xBD\x87\xD7\x56\xF7\x92\x04\xF5\x51\xD6\x68\x2F\x23\xAA\x46"}, { GCRY_CIPHER_CAMELLIA128, /* Packet Vector #4 */ 16, "\xC0\xC1\xC2\xC3\xC4\xC5\xC6\xC7\xC8\xC9\xCA\xCB\xCC\xCD\xCE\xCF", 13, "\x00\x00\x00\x06\x05\x04\x03\xA0\xA1\xA2\xA3\xA4\xA5", 12, "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B", 19, "\x0C\x0D\x0E\x0F\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1A\x1B\x1C\x1D\x1E", 27, "\xCA\xEF\x1E\x82\x72\x11\xB0\x8F\x7B\xD9\x0F\x08\xC7\x72\x88\xC0\x70\xA4\xA0\x8B\x3A\x93\x3A\x63\xE4\x97\xA0"}, { GCRY_CIPHER_CAMELLIA128, /* Packet Vector #5 */ 16, "\xC0\xC1\xC2\xC3\xC4\xC5\xC6\xC7\xC8\xC9\xCA\xCB\xCC\xCD\xCE\xCF", 13, "\x00\x00\x00\x07\x06\x05\x04\xA0\xA1\xA2\xA3\xA4\xA5", 12, "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B", 20, "\x0C\x0D\x0E\x0F\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1A\x1B\x1C\x1D\x1E\x1F", 28, "\x2A\xD3\xBA\xD9\x4F\xC5\x2E\x92\xBE\x43\x8E\x82\x7C\x10\x23\xB9\x6A\x8A\x77\x25\x8F\xA1\x7B\xA7\xF3\x31\xDB\x09"}, { GCRY_CIPHER_CAMELLIA128, /* Packet Vector #6 */ 16, "\xC0\xC1\xC2\xC3\xC4\xC5\xC6\xC7\xC8\xC9\xCA\xCB\xCC\xCD\xCE\xCF", 13, "\x00\x00\x00\x08\x07\x06\x05\xA0\xA1\xA2\xA3\xA4\xA5", 12, "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B", 21, "\x0C\x0D\x0E\x0F\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1A\x1B\x1C\x1D\x1E\x1F\x20", 29, "\xFE\xA5\x48\x0B\xA5\x3F\xA8\xD3\xC3\x44\x22\xAA\xCE\x4D\xE6\x7F\xFA\x3B\xB7\x3B\xAB\xAB\x36\xA1\xEE\x4F\xE0\xFE\x28"}, { GCRY_CIPHER_CAMELLIA128, /* Packet Vector #7 */ 16, "\xC0\xC1\xC2\xC3\xC4\xC5\xC6\xC7\xC8\xC9\xCA\xCB\xCC\xCD\xCE\xCF", 13, "\x00\x00\x00\x09\x08\x07\x06\xA0\xA1\xA2\xA3\xA4\xA5", 8, "\x00\x01\x02\x03\x04\x05\x06\x07", 23, "\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1A\x1B\x1C\x1D\x1E", 33, "\x54\x53\x20\x26\xE5\x4C\x11\x9A\x8D\x36\xD9\xEC\x6E\x1E\xD9\x74\x16\xC8\x70\x8C\x4B\x5C\x2C\xAC\xAF\xA3\xBC\xCF\x7A\x4E\xBF\x95\x73"}, { GCRY_CIPHER_CAMELLIA128, /* Packet Vector #8 */ 16, "\xC0\xC1\xC2\xC3\xC4\xC5\xC6\xC7\xC8\xC9\xCA\xCB\xCC\xCD\xCE\xCF", 13, "\x00\x00\x00\x0A\x09\x08\x07\xA0\xA1\xA2\xA3\xA4\xA5", 8, "\x00\x01\x02\x03\x04\x05\x06\x07", 24, "\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1A\x1B\x1C\x1D\x1E\x1F", 34, "\x8A\xD1\x9B\x00\x1A\x87\xD1\x48\xF4\xD9\x2B\xEF\x34\x52\x5C\xCC\xE3\xA6\x3C\x65\x12\xA6\xF5\x75\x73\x88\xE4\x91\x3E\xF1\x47\x01\xF4\x41"}, { GCRY_CIPHER_CAMELLIA128, /* Packet Vector #9 */ 16, "\xC0\xC1\xC2\xC3\xC4\xC5\xC6\xC7\xC8\xC9\xCA\xCB\xCC\xCD\xCE\xCF", 13, "\x00\x00\x00\x0B\x0A\x09\x08\xA0\xA1\xA2\xA3\xA4\xA5", 8, "\x00\x01\x02\x03\x04\x05\x06\x07", 25, "\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1A\x1B\x1C\x1D\x1E\x1F\x20", 35, "\x5D\xB0\x8D\x62\x40\x7E\x6E\x31\xD6\x0F\x9C\xA2\xC6\x04\x74\x21\x9A\xC0\xBE\x50\xC0\xD4\xA5\x77\x87\x94\xD6\xE2\x30\xCD\x25\xC9\xFE\xBF\x87"}, { GCRY_CIPHER_CAMELLIA128, /* Packet Vector #10 */ 16, "\xC0\xC1\xC2\xC3\xC4\xC5\xC6\xC7\xC8\xC9\xCA\xCB\xCC\xCD\xCE\xCF", 13, "\x00\x00\x00\x0C\x0B\x0A\x09\xA0\xA1\xA2\xA3\xA4\xA5", 12, "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B", 19, "\x0C\x0D\x0E\x0F\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1A\x1B\x1C\x1D\x1E", 29, "\xDB\x11\x8C\xCE\xC1\xB8\x76\x1C\x87\x7C\xD8\x96\x3A\x67\xD6\xF3\xBB\xBC\x5C\xD0\x92\x99\xEB\x11\xF3\x12\xF2\x32\x37"}, { GCRY_CIPHER_CAMELLIA128, /* Packet Vector #11 */ 16, "\xC0\xC1\xC2\xC3\xC4\xC5\xC6\xC7\xC8\xC9\xCA\xCB\xCC\xCD\xCE\xCF", 13, "\x00\x00\x00\x0D\x0C\x0B\x0A\xA0\xA1\xA2\xA3\xA4\xA5", 12, "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B", 20, "\x0C\x0D\x0E\x0F\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1A\x1B\x1C\x1D\x1E\x1F", 30, "\x7C\xC8\x3D\x8D\xC4\x91\x03\x52\x5B\x48\x3D\xC5\xCA\x7E\xA9\xAB\x81\x2B\x70\x56\x07\x9D\xAF\xFA\xDA\x16\xCC\xCF\x2C\x4E"}, { GCRY_CIPHER_CAMELLIA128, /* Packet Vector #12 */ 16, "\xC0\xC1\xC2\xC3\xC4\xC5\xC6\xC7\xC8\xC9\xCA\xCB\xCC\xCD\xCE\xCF", 13, "\x00\x00\x00\x0E\x0D\x0C\x0B\xA0\xA1\xA2\xA3\xA4\xA5", 12, "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B", 21, "\x0C\x0D\x0E\x0F\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1A\x1B\x1C\x1D\x1E\x1F\x20", 31, "\x2C\xD3\x5B\x88\x20\xD2\x3E\x7A\xA3\x51\xB0\xE9\x2F\xC7\x93\x67\x23\x8B\x2C\xC7\x48\xCB\xB9\x4C\x29\x47\x79\x3D\x64\xAF\x75"}, { GCRY_CIPHER_CAMELLIA128, /* Packet Vector #13 */ 16, "\xD7\x5C\x27\x78\x07\x8C\xA9\x3D\x97\x1F\x96\xFD\xE7\x20\xF4\xCD", 13, "\x00\xA9\x70\x11\x0E\x19\x27\xB1\x60\xB6\xA3\x1C\x1C", 8, "\x6B\x7F\x46\x45\x07\xFA\xE4\x96", 23, "\xC6\xB5\xF3\xE6\xCA\x23\x11\xAE\xF7\x47\x2B\x20\x3E\x73\x5E\xA5\x61\xAD\xB1\x7D\x56\xC5\xA3", 31, "\xA4\x35\xD7\x27\x34\x8D\xDD\x22\x90\x7F\x7E\xB8\xF5\xFD\xBB\x4D\x93\x9D\xA6\x52\x4D\xB4\xF6\x45\x58\xC0\x2D\x25\xB1\x27\xEE"}, { GCRY_CIPHER_CAMELLIA128, /* Packet Vector #14 */ 16, "\xD7\x5C\x27\x78\x07\x8C\xA9\x3D\x97\x1F\x96\xFD\xE7\x20\xF4\xCD", 13, "\x00\x83\xCD\x8C\xE0\xCB\x42\xB1\x60\xB6\xA3\x1C\x1C", 8, "\x98\x66\x05\xB4\x3D\xF1\x5D\xE7", 24, "\x01\xF6\xCE\x67\x64\xC5\x74\x48\x3B\xB0\x2E\x6B\xBF\x1E\x0A\xBD\x26\xA2\x25\x72\xB4\xD8\x0E\xE7", 32, "\x8A\xE0\x52\x50\x8F\xBE\xCA\x93\x2E\x34\x6F\x05\xE0\xDC\x0D\xFB\xCF\x93\x9E\xAF\xFA\x3E\x58\x7C\x86\x7D\x6E\x1C\x48\x70\x38\x06"}, { GCRY_CIPHER_CAMELLIA128, /* Packet Vector #15 */ 16, "\xD7\x5C\x27\x78\x07\x8C\xA9\x3D\x97\x1F\x96\xFD\xE7\x20\xF4\xCD", 13, "\x00\x5F\x54\x95\x0B\x18\xF2\xB1\x60\xB6\xA3\x1C\x1C", 8, "\x48\xF2\xE7\xE1\xA7\x67\x1A\x51", 25, "\xCD\xF1\xD8\x40\x6F\xC2\xE9\x01\x49\x53\x89\x70\x05\xFB\xFB\x8B\xA5\x72\x76\xF9\x24\x04\x60\x8E\x08", 33, "\x08\xB6\x7E\xE2\x1C\x8B\xF2\x6E\x47\x3E\x40\x85\x99\xE9\xC0\x83\x6D\x6A\xF0\xBB\x18\xDF\x55\x46\x6C\xA8\x08\x78\xA7\x90\x47\x6D\xE5"}, { GCRY_CIPHER_CAMELLIA128, /* Packet Vector #16 */ 16, "\xD7\x5C\x27\x78\x07\x8C\xA9\x3D\x97\x1F\x96\xFD\xE7\x20\xF4\xCD", 13, "\x00\xEC\x60\x08\x63\x31\x9A\xB1\x60\xB6\xA3\x1C\x1C", 12, "\xDE\x97\xDF\x3B\x8C\xBD\x6D\x8E\x50\x30\xDA\x4C", 19, "\xB0\x05\xDC\xFA\x0B\x59\x18\x14\x26\xA9\x61\x68\x5A\x99\x3D\x8C\x43\x18\x5B", 27, "\x63\xB7\x8B\x49\x67\xB1\x9E\xDB\xB7\x33\xCD\x11\x14\xF6\x4E\xB2\x26\x08\x93\x68\xC3\x54\x82\x8D\x95\x0C\xC5"}, { GCRY_CIPHER_CAMELLIA128, /* Packet Vector #17 */ 16, "\xD7\x5C\x27\x78\x07\x8C\xA9\x3D\x97\x1F\x96\xFD\xE7\x20\xF4\xCD", 13, "\x00\x60\xCF\xF1\xA3\x1E\xA1\xB1\x60\xB6\xA3\x1C\x1C", 12, "\xA5\xEE\x93\xE4\x57\xDF\x05\x46\x6E\x78\x2D\xCF", 20, "\x2E\x20\x21\x12\x98\x10\x5F\x12\x9D\x5E\xD9\x5B\x93\xF7\x2D\x30\xB2\xFA\xCC\xD7", 28, "\x0B\xC6\xBB\xE2\xA8\xB9\x09\xF4\x62\x9E\xE6\xDC\x14\x8D\xA4\x44\x10\xE1\x8A\xF4\x31\x47\x38\x32\x76\xF6\x6A\x9F"}, { GCRY_CIPHER_CAMELLIA128, /* Packet Vector #18 */ 16, "\xD7\x5C\x27\x78\x07\x8C\xA9\x3D\x97\x1F\x96\xFD\xE7\x20\xF4\xCD", 13, "\x00\x0F\x85\xCD\x99\x5C\x97\xB1\x60\xB6\xA3\x1C\x1C", 12, "\x24\xAA\x1B\xF9\xA5\xCD\x87\x61\x82\xA2\x50\x74", 21, "\x26\x45\x94\x1E\x75\x63\x2D\x34\x91\xAF\x0F\xC0\xC9\x87\x6C\x3B\xE4\xAA\x74\x68\xC9", 29, "\x22\x2A\xD6\x32\xFA\x31\xD6\xAF\x97\x0C\x34\x5F\x7E\x77\xCA\x3B\xD0\xDC\x25\xB3\x40\xA1\xA3\xD3\x1F\x8D\x4B\x44\xB7"}, { GCRY_CIPHER_CAMELLIA128, /* Packet Vector #19 */ 16, "\xD7\x5C\x27\x78\x07\x8C\xA9\x3D\x97\x1F\x96\xFD\xE7\x20\xF4\xCD", 13, "\x00\xC2\x9B\x2C\xAA\xC4\xCD\xB1\x60\xB6\xA3\x1C\x1C", 8, "\x69\x19\x46\xB9\xCA\x07\xBE\x87", 23, "\x07\x01\x35\xA6\x43\x7C\x9D\xB1\x20\xCD\x61\xD8\xF6\xC3\x9C\x3E\xA1\x25\xFD\x95\xA0\xD2\x3D", 33, "\x05\xB8\xE1\xB9\xC4\x9C\xFD\x56\xCF\x13\x0A\xA6\x25\x1D\xC2\xEC\xC0\x6C\xCC\x50\x8F\xE6\x97\xA0\x06\x6D\x57\xC8\x4B\xEC\x18\x27\x68"}, { GCRY_CIPHER_CAMELLIA128, /* Packet Vector #20 */ 16, "\xD7\x5C\x27\x78\x07\x8C\xA9\x3D\x97\x1F\x96\xFD\xE7\x20\xF4\xCD", 13, "\x00\x2C\x6B\x75\x95\xEE\x62\xB1\x60\xB6\xA3\x1C\x1C", 8, "\xD0\xC5\x4E\xCB\x84\x62\x7D\xC4", 24, "\xC8\xC0\x88\x0E\x6C\x63\x6E\x20\x09\x3D\xD6\x59\x42\x17\xD2\xE1\x88\x77\xDB\x26\x4E\x71\xA5\xCC", 34, "\x54\xCE\xB9\x68\xDE\xE2\x36\x11\x57\x5E\xC0\x03\xDF\xAA\x1C\xD4\x88\x49\xBD\xF5\xAE\x2E\xDB\x6B\x7F\xA7\x75\xB1\x50\xED\x43\x83\xC5\xA9"}, { GCRY_CIPHER_CAMELLIA128, /* Packet Vector #21 */ 16, "\xD7\x5C\x27\x78\x07\x8C\xA9\x3D\x97\x1F\x96\xFD\xE7\x20\xF4\xCD", 13, "\x00\xC5\x3C\xD4\xC2\xAA\x24\xB1\x60\xB6\xA3\x1C\x1C", 8, "\xE2\x85\xE0\xE4\x80\x8C\xDA\x3D", 25, "\xF7\x5D\xAA\x07\x10\xC4\xE6\x42\x97\x79\x4D\xC2\xB7\xD2\xA2\x07\x57\xB1\xAA\x4E\x44\x80\x02\xFF\xAB", 35, "\xB1\x40\x45\x46\xBF\x66\x72\x10\xCA\x28\xE3\x09\xB3\x9B\xD6\xCA\x7E\x9F\xC8\x28\x5F\xE6\x98\xD4\x3C\xD2\x0A\x02\xE0\xBD\xCA\xED\x20\x10\xD3"}, { GCRY_CIPHER_CAMELLIA128, /* Packet Vector #22 */ 16, "\xD7\x5C\x27\x78\x07\x8C\xA9\x3D\x97\x1F\x96\xFD\xE7\x20\xF4\xCD", 13, "\x00\xBE\xE9\x26\x7F\xBA\xDC\xB1\x60\xB6\xA3\x1C\x1C", 12, "\x6C\xAE\xF9\x94\x11\x41\x57\x0D\x7C\x81\x34\x05", 19, "\xC2\x38\x82\x2F\xAC\x5F\x98\xFF\x92\x94\x05\xB0\xAD\x12\x7A\x4E\x41\x85\x4E", 29, "\x94\xC8\x95\x9C\x11\x56\x9A\x29\x78\x31\xA7\x21\x00\x58\x57\xAB\x61\xB8\x7A\x2D\xEA\x09\x36\xB6\xEB\x5F\x62\x5F\x5D"}, { GCRY_CIPHER_CAMELLIA128, /* Packet Vector #23 */ 16, "\xD7\x5C\x27\x78\x07\x8C\xA9\x3D\x97\x1F\x96\xFD\xE7\x20\xF4\xCD", 13, "\x00\xDF\xA8\xB1\x24\x50\x07\xB1\x60\xB6\xA3\x1C\x1C", 12, "\x36\xA5\x2C\xF1\x6B\x19\xA2\x03\x7A\xB7\x01\x1E", 20, "\x4D\xBF\x3E\x77\x4A\xD2\x45\xE5\xD5\x89\x1F\x9D\x1C\x32\xA0\xAE\x02\x2C\x85\xD7", 30, "\x58\x69\xE3\xAA\xD2\x44\x7C\x74\xE0\xFC\x05\xF9\xA4\xEA\x74\x57\x7F\x4D\xE8\xCA\x89\x24\x76\x42\x96\xAD\x04\x11\x9C\xE7"}, { GCRY_CIPHER_CAMELLIA128, /* Packet Vector #24 */ 16, "\xD7\x5C\x27\x78\x07\x8C\xA9\x3D\x97\x1F\x96\xFD\xE7\x20\xF4\xCD", 13, "\x00\x3B\x8F\xD8\xD3\xA9\x37\xB1\x60\xB6\xA3\x1C\x1C", 12, "\xA4\xD4\x99\xF7\x84\x19\x72\x8C\x19\x17\x8B\x0C", 21, "\x9D\xC9\xED\xAE\x2F\xF5\xDF\x86\x36\xE8\xC6\xDE\x0E\xED\x55\xF7\x86\x7E\x33\x33\x7D", 31, "\x4B\x19\x81\x56\x39\x3B\x0F\x77\x96\x08\x6A\xAF\xB4\x54\xF8\xC3\xF0\x34\xCC\xA9\x66\x94\x5F\x1F\xCE\xA7\xE1\x1B\xEE\x6A\x2F"} }; static const int cut[] = { 0, 1, 8, 10, 16, 19, -1 }; gcry_cipher_hd_t hde, hdd; unsigned char out[MAX_DATA_LEN]; u64 ctl_params[3]; int split, aadsplit; size_t j, i, keylen, blklen, authlen, taglen2; gcry_error_t err = 0; if (verbose) fprintf (stderr, " Starting CCM checks.\n"); for (i = 0; i < sizeof (tv) / sizeof (tv[0]); i++) { if (gcry_cipher_test_algo (tv[i].algo) && in_fips_mode) { if (verbose) fprintf (stderr, " algorithm %d not available in fips mode\n", tv[i].algo); continue; } if (verbose) fprintf (stderr, " checking CCM mode for %s [%i]\n", gcry_cipher_algo_name (tv[i].algo), tv[i].algo); for (j = 0; j < sizeof (cut) / sizeof (cut[0]); j++) { split = cut[j] < 0 ? tv[i].plainlen : cut[j]; if (tv[i].plainlen < split) continue; err = gcry_cipher_open (&hde, tv[i].algo, GCRY_CIPHER_MODE_CCM, 0); if (!err) err = gcry_cipher_open (&hdd, tv[i].algo, GCRY_CIPHER_MODE_CCM, 0); if (err) { fail ("cipher-ccm, gcry_cipher_open failed: %s\n", gpg_strerror (err)); return; } keylen = gcry_cipher_get_algo_keylen(tv[i].algo); if (!keylen) { fail ("cipher-ccm, gcry_cipher_get_algo_keylen failed\n"); return; } err = gcry_cipher_setkey (hde, tv[i].key, keylen); if (!err) err = gcry_cipher_setkey (hdd, tv[i].key, keylen); if (err) { fail ("cipher-ccm, gcry_cipher_setkey failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } blklen = gcry_cipher_get_algo_blklen(tv[i].algo); if (!blklen) { fail ("cipher-ccm, gcry_cipher_get_algo_blklen failed\n"); return; } err = gcry_cipher_setiv (hde, tv[i].nonce, tv[i].noncelen); if (!err) err = gcry_cipher_setiv (hdd, tv[i].nonce, tv[i].noncelen); if (err) { fail ("cipher-ccm, gcry_cipher_setiv failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } authlen = tv[i].cipherlen - tv[i].plainlen; ctl_params[0] = tv[i].plainlen; /* encryptedlen */ ctl_params[1] = tv[i].aadlen; /* aadlen */ ctl_params[2] = authlen; /* authtaglen */ err = gcry_cipher_ctl (hde, GCRYCTL_SET_CCM_LENGTHS, ctl_params, sizeof(ctl_params)); if (!err) err = gcry_cipher_ctl (hdd, GCRYCTL_SET_CCM_LENGTHS, ctl_params, sizeof(ctl_params)); if (err) { fail ("cipher-ccm, gcry_cipher_ctl GCRYCTL_SET_CCM_LENGTHS " "failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } err = gcry_cipher_info (hde, GCRYCTL_GET_TAGLEN, NULL, &taglen2); if (err) { fail ("cipher-ccm, gcryctl_get_taglen failed (tv %lu): %s\n", (unsigned long) i, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } if (taglen2 != authlen) { fail ("cipher-ccm, gcryctl_get_taglen returned bad length" " (tv %lu): got=%zu want=%zu\n", (unsigned long) i, taglen2, authlen); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } aadsplit = split > tv[i].aadlen ? 0 : split; err = gcry_cipher_authenticate (hde, tv[i].aad, tv[i].aadlen - aadsplit); if (!err) err = gcry_cipher_authenticate (hde, &tv[i].aad[tv[i].aadlen - aadsplit], aadsplit); if (!err) err = gcry_cipher_authenticate (hdd, tv[i].aad, tv[i].aadlen - aadsplit); if (!err) err = gcry_cipher_authenticate (hdd, &tv[i].aad[tv[i].aadlen - aadsplit], aadsplit); if (err) { fail ("cipher-ccm, gcry_cipher_authenticate failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } err = gcry_cipher_encrypt (hde, out, MAX_DATA_LEN, tv[i].plaintext, tv[i].plainlen - split); if (!err) err = gcry_cipher_encrypt (hde, &out[tv[i].plainlen - split], MAX_DATA_LEN - (tv[i].plainlen - split), &tv[i].plaintext[tv[i].plainlen - split], split); if (err) { fail ("cipher-ccm, gcry_cipher_encrypt (%lu:%lu) failed: %s\n", (unsigned long) i, (unsigned long) j, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } err = gcry_cipher_gettag (hde, &out[tv[i].plainlen], authlen); if (err) { fail ("cipher-ccm, gcry_cipher_gettag (%lu:%lu) failed: %s\n", (unsigned long) i, (unsigned long) j, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } if (memcmp (tv[i].ciphertext, out, tv[i].cipherlen)) fail ("cipher-ccm, encrypt mismatch entry %lu:%lu\n", (unsigned long) i, (unsigned long) j); err = gcry_cipher_decrypt (hdd, out, tv[i].plainlen - split, NULL, 0); if (!err) err = gcry_cipher_decrypt (hdd, &out[tv[i].plainlen - split], split, NULL, 0); if (err) { fail ("cipher-ccm, gcry_cipher_decrypt (%lu:%lu) failed: %s\n", (unsigned long) i, (unsigned long) j, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } if (memcmp (tv[i].plaintext, out, tv[i].plainlen)) fail ("cipher-ccm, decrypt mismatch entry %lu:%lu\n", (unsigned long) i, (unsigned long) j); err = gcry_cipher_checktag (hdd, &out[tv[i].plainlen], authlen); if (err) { fail ("cipher-ccm, gcry_cipher_checktag (%lu:%lu) failed: %s\n", (unsigned long) i, (unsigned long) j, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } gcry_cipher_close (hde); gcry_cipher_close (hdd); } } /* Large buffer tests. */ /* Test encoding of aadlen > 0xfeff. */ { static const char key[]={0x40,0x41,0x42,0x43,0x44,0x45,0x46,0x47, 0x48,0x49,0x4a,0x4b,0x4c,0x4d,0x4e,0x4f}; static const char iv[]={0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x17,0x18,0x19}; static const char tag[]={0x9C,0x76,0xE7,0x33,0xD5,0x15,0xB3,0x6C, 0xBA,0x76,0x95,0xF7,0xFB,0x91}; char buf[1024]; size_t enclen = 0x20000; size_t aadlen = 0x20000; size_t taglen = sizeof(tag); err = gcry_cipher_open (&hde, GCRY_CIPHER_AES, GCRY_CIPHER_MODE_CCM, 0); if (err) { fail ("cipher-ccm-large, gcry_cipher_open failed: %s\n", gpg_strerror (err)); return; } err = gcry_cipher_setkey (hde, key, sizeof (key)); if (err) { fail ("cipher-ccm-large, gcry_cipher_setkey failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hde); return; } err = gcry_cipher_setiv (hde, iv, sizeof (iv)); if (err) { fail ("cipher-ccm-large, gcry_cipher_setiv failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hde); return; } ctl_params[0] = enclen; /* encryptedlen */ ctl_params[1] = aadlen; /* aadlen */ ctl_params[2] = taglen; /* authtaglen */ err = gcry_cipher_ctl (hde, GCRYCTL_SET_CCM_LENGTHS, ctl_params, sizeof(ctl_params)); if (err) { fail ("cipher-ccm-large, gcry_cipher_ctl GCRYCTL_SET_CCM_LENGTHS " "failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hde); return; } memset (buf, 0xaa, sizeof(buf)); for (i = 0; i < aadlen; i += sizeof(buf)) { err = gcry_cipher_authenticate (hde, buf, sizeof (buf)); if (err) { fail ("cipher-ccm-large, gcry_cipher_authenticate failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hde); return; } } for (i = 0; i < enclen; i += sizeof(buf)) { memset (buf, 0xee, sizeof(buf)); err = gcry_cipher_encrypt (hde, buf, sizeof (buf), NULL, 0); if (err) { fail ("cipher-ccm-large, gcry_cipher_encrypt failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hde); return; } } err = gcry_cipher_gettag (hde, buf, taglen); if (err) { fail ("cipher-ccm-large, gcry_cipher_gettag failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hde); return; } if (memcmp (buf, tag, taglen) != 0) fail ("cipher-ccm-large, encrypt mismatch entry\n"); gcry_cipher_close (hde); } #if 0 /* Test encoding of aadlen > 0xffffffff. */ { static const char key[]={0x40,0x41,0x42,0x43,0x44,0x45,0x46,0x47, 0x48,0x49,0x4a,0x4b,0x4c,0x4d,0x4e,0x4f}; static const char iv[]={0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x17,0x18,0x19}; static const char tag[]={0x01,0xB2,0xC3,0x4A,0xA6,0x6A,0x07,0x6D, 0xBC,0xBD,0xEA,0x17,0xD3,0x73,0xD7,0xD4}; char buf[1024]; size_t enclen = (size_t)0xffffffff + 1 + 1024; size_t aadlen = (size_t)0xffffffff + 1 + 1024; size_t taglen = sizeof(tag); err = gcry_cipher_open (&hde, GCRY_CIPHER_AES, GCRY_CIPHER_MODE_CCM, 0); if (err) { fail ("cipher-ccm-huge, gcry_cipher_open failed: %s\n", gpg_strerror (err)); return; } err = gcry_cipher_setkey (hde, key, sizeof (key)); if (err) { fail ("cipher-ccm-huge, gcry_cipher_setkey failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hde); return; } err = gcry_cipher_setiv (hde, iv, sizeof (iv)); if (err) { fail ("cipher-ccm-huge, gcry_cipher_setiv failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hde); return; } ctl_params[0] = enclen; /* encryptedlen */ ctl_params[1] = aadlen; /* aadlen */ ctl_params[2] = taglen; /* authtaglen */ err = gcry_cipher_ctl (hde, GCRYCTL_SET_CCM_LENGTHS, ctl_params, sizeof(ctl_params)); if (err) { fail ("cipher-ccm-huge, gcry_cipher_ctl GCRYCTL_SET_CCM_LENGTHS failed:" "%s\n", gpg_strerror (err)); gcry_cipher_close (hde); return; } memset (buf, 0xaa, sizeof(buf)); for (i = 0; i < aadlen; i += sizeof(buf)) { err = gcry_cipher_authenticate (hde, buf, sizeof (buf)); if (err) { fail ("cipher-ccm-huge, gcry_cipher_authenticate failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hde); return; } } for (i = 0; i < enclen; i += sizeof(buf)) { memset (buf, 0xee, sizeof(buf)); err = gcry_cipher_encrypt (hde, buf, sizeof (buf), NULL, 0); if (err) { fail ("cipher-ccm-huge, gcry_cipher_encrypt failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hde); return; } } err = gcry_cipher_gettag (hde, buf, taglen); if (err) { fail ("cipher-ccm-huge, gcry_cipher_gettag failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hde); return; } if (memcmp (buf, tag, taglen) != 0) fail ("cipher-ccm-huge, encrypt mismatch entry\n"); gcry_cipher_close (hde); } if (verbose) fprintf (stderr, " Completed CCM checks.\n"); #endif } static void do_check_ocb_cipher (int inplace) { /* Note that we use hex strings and not binary strings in TV. That makes it easier to maintain the test vectors. */ static const struct { int algo; int taglen; /* 16, 12, or 8 bytes */ const char *key; /* NULL means "000102030405060708090A0B0C0D0E0F" */ const char *nonce; const char *aad; const char *plain; const char *ciph; } tv[] = { /* The RFC-7253 test vectos*/ { GCRY_CIPHER_AES, 16, NULL, "BBAA99887766554433221100", "", "", "785407BFFFC8AD9EDCC5520AC9111EE6" }, { GCRY_CIPHER_AES, 16, NULL, "BBAA99887766554433221101", "0001020304050607", "0001020304050607", "6820B3657B6F615A5725BDA0D3B4EB3A257C9AF1F8F03009" }, { GCRY_CIPHER_AES, 16, NULL, "BBAA99887766554433221102", "0001020304050607", "", "81017F8203F081277152FADE694A0A00" }, { GCRY_CIPHER_AES, 16, NULL, "BBAA99887766554433221103", "", "0001020304050607", "45DD69F8F5AAE72414054CD1F35D82760B2CD00D2F99BFA9" }, { GCRY_CIPHER_AES, 16, NULL, "BBAA99887766554433221104", "000102030405060708090A0B0C0D0E0F", "000102030405060708090A0B0C0D0E0F", "571D535B60B277188BE5147170A9A22C3AD7A4FF3835B8C5" "701C1CCEC8FC3358" }, { GCRY_CIPHER_AES, 16, NULL, "BBAA99887766554433221105", "000102030405060708090A0B0C0D0E0F", "", "8CF761B6902EF764462AD86498CA6B97" }, { GCRY_CIPHER_AES, 16, NULL, "BBAA99887766554433221106", "", "000102030405060708090A0B0C0D0E0F", "5CE88EC2E0692706A915C00AEB8B2396F40E1C743F52436B" "DF06D8FA1ECA343D" }, { GCRY_CIPHER_AES, 16, NULL, "BBAA99887766554433221107", "000102030405060708090A0B0C0D0E0F1011121314151617", "000102030405060708090A0B0C0D0E0F1011121314151617", "1CA2207308C87C010756104D8840CE1952F09673A448A122" "C92C62241051F57356D7F3C90BB0E07F" }, { GCRY_CIPHER_AES, 16, NULL, "BBAA99887766554433221108", "000102030405060708090A0B0C0D0E0F1011121314151617", "", "6DC225A071FC1B9F7C69F93B0F1E10DE" }, { GCRY_CIPHER_AES, 16, NULL, "BBAA99887766554433221109", "", "000102030405060708090A0B0C0D0E0F1011121314151617", "221BD0DE7FA6FE993ECCD769460A0AF2D6CDED0C395B1C3C" "E725F32494B9F914D85C0B1EB38357FF" }, { GCRY_CIPHER_AES, 16, NULL, "BBAA9988776655443322110A", "000102030405060708090A0B0C0D0E0F1011121314151617" "18191A1B1C1D1E1F", "000102030405060708090A0B0C0D0E0F1011121314151617" "18191A1B1C1D1E1F", "BD6F6C496201C69296C11EFD138A467ABD3C707924B964DE" "AFFC40319AF5A48540FBBA186C5553C68AD9F592A79A4240" }, { GCRY_CIPHER_AES, 16, NULL, "BBAA9988776655443322110B", "000102030405060708090A0B0C0D0E0F1011121314151617" "18191A1B1C1D1E1F", "", "FE80690BEE8A485D11F32965BC9D2A32" }, { GCRY_CIPHER_AES, 16, NULL, "BBAA9988776655443322110C", "", "000102030405060708090A0B0C0D0E0F1011121314151617" "18191A1B1C1D1E1F", "2942BFC773BDA23CABC6ACFD9BFD5835BD300F0973792EF4" "6040C53F1432BCDFB5E1DDE3BC18A5F840B52E653444D5DF" }, { GCRY_CIPHER_AES, 16, NULL, "BBAA9988776655443322110D", "000102030405060708090A0B0C0D0E0F1011121314151617" "18191A1B1C1D1E1F2021222324252627", "000102030405060708090A0B0C0D0E0F1011121314151617" "18191A1B1C1D1E1F2021222324252627", "D5CA91748410C1751FF8A2F618255B68A0A12E093FF45460" "6E59F9C1D0DDC54B65E8628E568BAD7AED07BA06A4A69483" "A7035490C5769E60" }, { GCRY_CIPHER_AES, 16, NULL, "BBAA9988776655443322110E", "000102030405060708090A0B0C0D0E0F1011121314151617" "18191A1B1C1D1E1F2021222324252627", "", "C5CD9D1850C141E358649994EE701B68" }, { GCRY_CIPHER_AES, 16, NULL, "BBAA9988776655443322110F", "", "000102030405060708090A0B0C0D0E0F1011121314151617" "18191A1B1C1D1E1F2021222324252627", "4412923493C57D5DE0D700F753CCE0D1D2D95060122E9F15" "A5DDBFC5787E50B5CC55EE507BCB084E479AD363AC366B95" "A98CA5F3000B1479" }, { GCRY_CIPHER_AES, 12, "0F0E0D0C0B0A09080706050403020100", "BBAA9988776655443322110D", "000102030405060708090A0B0C0D0E0F1011121314151617" "18191A1B1C1D1E1F2021222324252627", "000102030405060708090A0B0C0D0E0F1011121314151617" "18191A1B1C1D1E1F2021222324252627", "1792A4E31E0755FB03E31B22116E6C2DDF9EFD6E33D536F1" "A0124B0A55BAE884ED93481529C76B6AD0C515F4D1CDD4FD" "AC4F02AA" } }; gpg_error_t err = 0; gcry_cipher_hd_t hde, hdd; unsigned char out[MAX_DATA_LEN]; unsigned char tag[16]; int tidx; if (verbose) fprintf (stderr, " Starting OCB checks.\n"); for (tidx = 0; tidx < DIM (tv); tidx++) { char *key, *nonce, *aad, *ciph, *plain; size_t keylen, noncelen, aadlen, ciphlen, plainlen; int taglen; size_t taglen2; if (verbose) fprintf (stderr, " checking OCB mode for %s [%i] (tv %d)\n", gcry_cipher_algo_name (tv[tidx].algo), tv[tidx].algo, tidx); /* Convert to hex strings to binary. */ key = hex2buffer (tv[tidx].key? tv[tidx].key /* */: "000102030405060708090A0B0C0D0E0F", &keylen); nonce = hex2buffer (tv[tidx].nonce, &noncelen); aad = hex2buffer (tv[tidx].aad, &aadlen); plain = hex2buffer (tv[tidx].plain, &plainlen); ciph = hex2buffer (tv[tidx].ciph, &ciphlen); /* Check that our test vectors are sane. */ assert (plainlen <= sizeof out); assert (tv[tidx].taglen <= ciphlen); assert (tv[tidx].taglen <= sizeof tag); err = gcry_cipher_open (&hde, tv[tidx].algo, GCRY_CIPHER_MODE_OCB, 0); if (!err) err = gcry_cipher_open (&hdd, tv[tidx].algo, GCRY_CIPHER_MODE_OCB, 0); if (err) { fail ("cipher-ocb, gcry_cipher_open failed (tv %d): %s\n", tidx, gpg_strerror (err)); return; } /* Set the taglen. For the first handle we do this only for a non-default taglen. For the second handle we check that we can also set to the default taglen. */ taglen = tv[tidx].taglen; if (taglen != 16) { err = gcry_cipher_ctl (hde, GCRYCTL_SET_TAGLEN, &taglen, sizeof taglen); if (err) { fail ("cipher-ocb, gcryctl_set_taglen failed (tv %d): %s\n", tidx, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } } err = gcry_cipher_ctl (hdd, GCRYCTL_SET_TAGLEN, &taglen, sizeof taglen); if (err) { fail ("cipher-ocb, gcryctl_set_taglen failed (tv %d): %s\n", tidx, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } err = gcry_cipher_info (hde, GCRYCTL_GET_TAGLEN, NULL, &taglen2); if (err) { fail ("cipher-ocb, gcryctl_get_taglen failed (tv %d): %s\n", tidx, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } if (taglen2 != tv[tidx].taglen) { fail ("cipher-ocb, gcryctl_get_taglen returned bad length (tv %d): " "got=%zu want=%d\n", tidx, taglen2, tv[tidx].taglen); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } err = gcry_cipher_setkey (hde, key, keylen); if (!err) err = gcry_cipher_setkey (hdd, key, keylen); if (err) { fail ("cipher-ocb, gcry_cipher_setkey failed (tv %d): %s\n", tidx, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } err = gcry_cipher_setiv (hde, nonce, noncelen); if (!err) err = gcry_cipher_setiv (hdd, nonce, noncelen); if (err) { fail ("cipher-ocb, gcry_cipher_setiv failed (tv %d): %s\n", tidx, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } err = gcry_cipher_authenticate (hde, aad, aadlen); if (err) { fail ("cipher-ocb, gcry_cipher_authenticate failed (tv %d): %s\n", tidx, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } err = gcry_cipher_final (hde); if (!err) { if (inplace) { memcpy(out, plain, plainlen); err = gcry_cipher_encrypt (hde, out, plainlen, NULL, 0); } else { err = gcry_cipher_encrypt (hde, out, MAX_DATA_LEN, plain, plainlen); } } if (err) { fail ("cipher-ocb, gcry_cipher_encrypt failed (tv %d): %s\n", tidx, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } /* Check that the encrypt output matches the expected cipher text without the tag (i.e. at the length of plaintext). */ if (memcmp (ciph, out, plainlen)) { mismatch (ciph, plainlen, out, plainlen); fail ("cipher-ocb, encrypt data mismatch (tv %d)\n", tidx); } /* Check that the tag matches TAGLEN bytes from the end of the expected ciphertext. */ err = gcry_cipher_gettag (hde, tag, tv[tidx].taglen); if (err) { fail ("cipher_ocb, gcry_cipher_gettag failed (tv %d): %s\n", tidx, gpg_strerror (err)); } if (memcmp (ciph + ciphlen - tv[tidx].taglen, tag, tv[tidx].taglen)) { mismatch (ciph + ciphlen - tv[tidx].taglen, tv[tidx].taglen, tag, tv[tidx].taglen); fail ("cipher-ocb, encrypt tag mismatch (tv %d)\n", tidx); } err = gcry_cipher_authenticate (hdd, aad, aadlen); if (err) { fail ("cipher-ocb, gcry_cipher_authenticate failed (tv %d): %s\n", tidx, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } /* Now for the decryption. */ err = gcry_cipher_final (hdd); if (!err) { if (inplace) { err = gcry_cipher_decrypt (hdd, out, plainlen, NULL, 0); } else { unsigned char tmp[MAX_DATA_LEN]; memcpy(tmp, out, plainlen); err = gcry_cipher_decrypt (hdd, out, plainlen, tmp, plainlen); } } if (err) { fail ("cipher-ocb, gcry_cipher_decrypt (tv %d) failed: %s\n", tidx, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } /* We still have TAG from the encryption. */ err = gcry_cipher_checktag (hdd, tag, tv[tidx].taglen); if (err) { fail ("cipher-ocb, gcry_cipher_checktag failed (tv %d): %s\n", tidx, gpg_strerror (err)); } /* Check that the decrypt output matches the original plaintext. */ if (memcmp (plain, out, plainlen)) { mismatch (plain, plainlen, out, plainlen); fail ("cipher-ocb, decrypt data mismatch (tv %d)\n", tidx); } /* Check that gettag also works for decryption. */ err = gcry_cipher_gettag (hdd, tag, tv[tidx].taglen); if (err) { fail ("cipher_ocb, decrypt gettag failed (tv %d): %s\n", tidx, gpg_strerror (err)); } if (memcmp (ciph + ciphlen - tv[tidx].taglen, tag, tv[tidx].taglen)) { mismatch (ciph + ciphlen - tv[tidx].taglen, tv[tidx].taglen, tag, tv[tidx].taglen); fail ("cipher-ocb, decrypt tag mismatch (tv %d)\n", tidx); } gcry_cipher_close (hde); gcry_cipher_close (hdd); xfree (nonce); xfree (aad); xfree (ciph); xfree (plain); xfree (key); } if (verbose) fprintf (stderr, " Completed OCB checks.\n"); } static void check_ocb_cipher_largebuf_split (int algo, int keylen, const char *tagexpect, unsigned int splitpos) { static const unsigned char key[32] = "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F" "\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1A\x1B\x1C\x1D\x1E\x1F"; static const unsigned char nonce[12] = "\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F\x00\x01\x02\x03"; const size_t buflen = 1024 * 1024 * 2 + 32; unsigned char *inbuf; unsigned char *outbuf; gpg_error_t err = 0; gcry_cipher_hd_t hde, hdd; unsigned char tag[16]; int i; inbuf = xmalloc(buflen); if (!inbuf) { fail ("out-of-memory\n"); return; } outbuf = xmalloc(buflen); if (!outbuf) { fail ("out-of-memory\n"); xfree(inbuf); return; } for (i = 0; i < buflen; i++) inbuf[i] = 'a'; err = gcry_cipher_open (&hde, algo, GCRY_CIPHER_MODE_OCB, 0); if (!err) err = gcry_cipher_open (&hdd, algo, GCRY_CIPHER_MODE_OCB, 0); if (err) { fail ("cipher-ocb, gcry_cipher_open failed (large, algo %d): %s\n", algo, gpg_strerror (err)); goto out_free; } err = gcry_cipher_setkey (hde, key, keylen); if (!err) err = gcry_cipher_setkey (hdd, key, keylen); if (err) { fail ("cipher-ocb, gcry_cipher_setkey failed (large, algo %d): %s\n", algo, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); goto out_free; } err = gcry_cipher_setiv (hde, nonce, 12); if (!err) err = gcry_cipher_setiv (hdd, nonce, 12); if (err) { fail ("cipher-ocb, gcry_cipher_setiv failed (large, algo %d): %s\n", algo, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); goto out_free; } if (splitpos) { err = gcry_cipher_authenticate (hde, inbuf, splitpos); } if (!err) { err = gcry_cipher_authenticate (hde, inbuf + splitpos, buflen - splitpos); } if (err) { fail ("cipher-ocb, gcry_cipher_authenticate failed (large, algo %d): %s\n", algo, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); goto out_free; } if (splitpos) { err = gcry_cipher_encrypt (hde, outbuf, splitpos, inbuf, splitpos); } if (!err) { err = gcry_cipher_final (hde); if (!err) { err = gcry_cipher_encrypt (hde, outbuf + splitpos, buflen - splitpos, inbuf + splitpos, buflen - splitpos); } } if (err) { fail ("cipher-ocb, gcry_cipher_encrypt failed (large, algo %d): %s\n", algo, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); goto out_free; } /* Check that the tag matches. */ err = gcry_cipher_gettag (hde, tag, 16); if (err) { fail ("cipher_ocb, gcry_cipher_gettag failed (large, algo %d): %s\n", algo, gpg_strerror (err)); } if (memcmp (tagexpect, tag, 16)) { mismatch (tagexpect, 16, tag, 16); fail ("cipher-ocb, encrypt tag mismatch (large, algo %d)\n", algo); } err = gcry_cipher_authenticate (hdd, inbuf, buflen); if (err) { fail ("cipher-ocb, gcry_cipher_authenticate failed (large, algo %d): %s\n", algo, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); goto out_free; } /* Now for the decryption. */ if (splitpos) { err = gcry_cipher_decrypt (hdd, outbuf, splitpos, NULL, 0); } if (!err) { err = gcry_cipher_final (hdd); if (!err) { err = gcry_cipher_decrypt (hdd, outbuf + splitpos, buflen - splitpos, NULL, 0); } } if (err) { fail ("cipher-ocb, gcry_cipher_decrypt (large, algo %d) failed: %s\n", algo, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); goto out_free; } /* We still have TAG from the encryption. */ err = gcry_cipher_checktag (hdd, tag, 16); if (err) { fail ("cipher-ocb, gcry_cipher_checktag failed (large, algo %d): %s\n", algo, gpg_strerror (err)); } /* Check that the decrypt output matches the original plaintext. */ if (memcmp (inbuf, outbuf, buflen)) { /*mismatch (inbuf, buflen, outbuf, buflen);*/ fail ("cipher-ocb, decrypt data mismatch (large, algo %d)\n", algo); } /* Check that gettag also works for decryption. */ err = gcry_cipher_gettag (hdd, tag, 16); if (err) { fail ("cipher_ocb, decrypt gettag failed (large, algo %d): %s\n", algo, gpg_strerror (err)); } if (memcmp (tagexpect, tag, 16)) { mismatch (tagexpect, 16, tag, 16); fail ("cipher-ocb, decrypt tag mismatch (large, algo %d)\n", algo); } gcry_cipher_close (hde); gcry_cipher_close (hdd); out_free: xfree(outbuf); xfree(inbuf); } static void check_ocb_cipher_largebuf (int algo, int keylen, const char *tagexpect) { unsigned int split; for (split = 0; split < 32 * 16; split = split * 2 + 16) { check_ocb_cipher_largebuf_split(algo, keylen, tagexpect, split); } } static void check_ocb_cipher_splitaad (void) { const char t_nonce[] = ("BBAA9988776655443322110D"); const char t_plain[] = ("000102030405060708090A0B0C0D0E0F1011121314151617" "18191A1B1C1D1E1F2021222324252627"); const char t_ciph[] = ("D5CA91748410C1751FF8A2F618255B68A0A12E093FF45460" "6E59F9C1D0DDC54B65E8628E568BAD7AED07BA06A4A69483" "A7035490C5769E60"); struct { const char *aad0; const char *aad1; const char *aad2; const char *aad3; } tv[] = { { "000102030405060708090A0B0C0D0E0F" "101112131415161718191A1B1C1D1E1F2021222324252627" }, { "000102030405060708090A0B0C0D0E0F", "101112131415161718191A1B1C1D1E1F", "2021222324252627" }, { "000102030405060708090A0B0C0D0E0F", "1011121314151617", "18191A1B1C1D1E1F", "2021222324252627" }, { "000102030405060708090A0B0C0D0E0F", "101112131415161718191A1B1C1D1E1F", "20", "21222324252627" }, { "000102030405060708090A0B0C0D0E0F", "101112131415161718191A1B1C1D1E1F", "2021", "222324252627" }, { "000102030405060708090A0B0C0D0E0F", "101112131415161718191A1B1C1D1E1F", "202122", "2324252627" }, { "000102030405060708090A0B0C0D0E0F", "101112131415161718191A1B1C1D1E1F", "20212223", "24252627" }, { "000102030405060708090A0B0C0D0E0F", "101112131415161718191A1B1C1D1E1F", "2021222324", "252627" }, { "000102030405060708090A0B0C0D0E0F", "101112131415161718191A1B1C1D1E1F", "202122232425", "2627" }, { "000102030405060708090A0B0C0D0E0F", "101112131415161718191A1B1C1D1E1F", "20212223242526" "27" }, { "000102030405060708090A0B0C0D0E0F", "1011121314151617", "18191A1B1C1D1E1F2021222324252627" }, { "00", "0102030405060708090A0B0C0D0E0F", "1011121314151617", "18191A1B1C1D1E1F2021222324252627" }, { "0001", "02030405060708090A0B0C0D0E0F", "1011121314151617", "18191A1B1C1D1E1F2021222324252627" }, { "000102030405060708090A0B0C0D", "0E0F", "1011121314151617", "18191A1B1C1D1E1F2021222324252627" }, { "000102030405060708090A0B0C0D0E", "0F", "1011121314151617", "18191A1B1C1D1E1F2021222324252627" }, { "000102030405060708090A0B0C0D0E", "0F101112131415161718191A1B1C1D1E1F20212223242526", "27" } }; gpg_error_t err = 0; gcry_cipher_hd_t hde; unsigned char out[MAX_DATA_LEN]; unsigned char tag[16]; int tidx; char *key, *nonce, *ciph, *plain; size_t keylen, noncelen, ciphlen, plainlen; int i; /* Convert to hex strings to binary. */ key = hex2buffer ("000102030405060708090A0B0C0D0E0F", &keylen); nonce = hex2buffer (t_nonce, &noncelen); plain = hex2buffer (t_plain, &plainlen); ciph = hex2buffer (t_ciph, &ciphlen); /* Check that our test vectors are sane. */ assert (plainlen <= sizeof out); assert (16 <= ciphlen); assert (16 <= sizeof tag); for (tidx = 0; tidx < DIM (tv); tidx++) { char *aad[4]; size_t aadlen[4]; if (verbose) fprintf (stderr, " checking OCB aad split (tv %d)\n", tidx); aad[0] = tv[tidx].aad0? hex2buffer (tv[tidx].aad0, aadlen+0) : NULL; aad[1] = tv[tidx].aad1? hex2buffer (tv[tidx].aad1, aadlen+1) : NULL; aad[2] = tv[tidx].aad2? hex2buffer (tv[tidx].aad2, aadlen+2) : NULL; aad[3] = tv[tidx].aad3? hex2buffer (tv[tidx].aad3, aadlen+3) : NULL; err = gcry_cipher_open (&hde, GCRY_CIPHER_AES, GCRY_CIPHER_MODE_OCB, 0); if (err) { fail ("cipher-ocb-splitadd, gcry_cipher_open failed: %s\n", gpg_strerror (err)); return; } err = gcry_cipher_setkey (hde, key, keylen); if (err) { fail ("cipher-ocb-splitaad, gcry_cipher_setkey failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hde); return; } err = gcry_cipher_setiv (hde, nonce, noncelen); if (err) { fail ("cipher-ocb-splitaad, gcry_cipher_setiv failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hde); return; } for (i=0; i < DIM (aad); i++) { if (!aad[i]) continue; err = gcry_cipher_authenticate (hde, aad[i], aadlen[i]); if (err) { fail ("cipher-ocb-splitaad," " gcry_cipher_authenticate failed (tv=%d,i=%d): %s\n", tidx, i, gpg_strerror (err)); gcry_cipher_close (hde); return; } } err = gcry_cipher_final (hde); if (!err) err = gcry_cipher_encrypt (hde, out, MAX_DATA_LEN, plain, plainlen); if (err) { fail ("cipher-ocb-splitaad, gcry_cipher_encrypt failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hde); return; } /* Check that the encrypt output matches the expected cipher text without the tag (i.e. at the length of plaintext). */ if (memcmp (ciph, out, plainlen)) { mismatch (ciph, plainlen, out, plainlen); fail ("cipher-ocb-splitaad, encrypt data mismatch\n"); } /* Check that the tag matches TAGLEN bytes from the end of the expected ciphertext. */ err = gcry_cipher_gettag (hde, tag, 16); if (err) { fail ("cipher-ocb-splitaad, gcry_cipher_gettag failed: %s\n", gpg_strerror (err)); } if (memcmp (ciph + ciphlen - 16, tag, 16)) { mismatch (ciph + ciphlen - 16, 16, tag, 16); fail ("cipher-ocb-splitaad, encrypt tag mismatch\n"); } gcry_cipher_close (hde); xfree (aad[0]); xfree (aad[1]); xfree (aad[2]); xfree (aad[3]); } xfree (nonce); xfree (ciph); xfree (plain); xfree (key); } static void check_ocb_cipher (void) { /* Check OCB cipher with separate destination and source buffers for * encryption/decryption. */ do_check_ocb_cipher(0); /* Check OCB cipher with inplace encrypt/decrypt. */ do_check_ocb_cipher(1); /* Check large buffer encryption/decryption. */ check_ocb_cipher_largebuf(GCRY_CIPHER_AES, 16, "\xf5\xf3\x12\x7d\x58\x2d\x96\xe8" "\x33\xfd\x7a\x4f\x42\x60\x5d\x20"); check_ocb_cipher_largebuf(GCRY_CIPHER_AES256, 32, "\xfa\x26\xa5\xbf\xf6\x7d\x3a\x8d" "\xfe\x96\x67\xc9\xc8\x41\x03\x51"); check_ocb_cipher_largebuf(GCRY_CIPHER_CAMELLIA128, 16, "\x28\x23\x38\x45\x2b\xfd\x42\x45" "\x43\x64\x7e\x67\x7f\xf4\x8b\xcd"); check_ocb_cipher_largebuf(GCRY_CIPHER_CAMELLIA192, 24, "\xee\xca\xe5\x39\x27\x2d\x33\xe7" "\x79\x74\xb0\x1d\x37\x12\xd5\x6c"); check_ocb_cipher_largebuf(GCRY_CIPHER_CAMELLIA256, 32, "\x39\x39\xd0\x2d\x05\x68\x74\xee" "\x18\x6b\xea\x3d\x0b\xd3\x58\xae"); check_ocb_cipher_largebuf(GCRY_CIPHER_TWOFISH, 16, "\x63\xe3\x0e\xb9\x11\x6f\x14\xba" "\x79\xe4\xa7\x9e\xad\x3c\x02\x0c"); check_ocb_cipher_largebuf(GCRY_CIPHER_TWOFISH, 32, "\xf6\xd4\xfe\x4e\x50\x85\x13\x59" "\x69\x0e\x4c\x67\x3e\xdd\x47\x90"); check_ocb_cipher_largebuf(GCRY_CIPHER_SERPENT128, 16, "\x3c\xfb\x66\x14\x3c\xc8\x6c\x67" "\x26\xb8\x23\xeb\xaf\x43\x98\x69"); check_ocb_cipher_largebuf(GCRY_CIPHER_SERPENT192, 24, "\x5e\x62\x27\xc5\x32\xc3\x1d\xe6" "\x2e\x65\xe7\xd6\xfb\x05\xd7\xb2"); check_ocb_cipher_largebuf(GCRY_CIPHER_SERPENT256, 32, "\xe7\x8b\xe6\xd4\x2f\x7a\x36\x4c" "\xba\xee\x20\xe2\x68\xf4\xcb\xcc"); /* Check that the AAD data is correctly buffered. */ check_ocb_cipher_splitaad (); } static void do_check_xts_cipher (int inplace) { /* Note that we use hex strings and not binary strings in TV. That makes it easier to maintain the test vectors. */ static const struct { int algo; const char *key; /* NULL means "000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F" */ const char *iv; const char *plain; const char *ciph; } tv[] = { /* CAVS; hex/XTSGenAES128.rsp; COUNT=100 */ { GCRY_CIPHER_AES, "bcb6613c495de4bdad9c19f04e4b3915f9ecb379e1a575b633337e934fca1050", "64981173159d58ac355a20120c8e81f1", "189acacee06dfa7c94484c7dae59e166", "7900191d0f19a97668fdba9def84eedc" }, /* CAVS; hex/XTSGenAES128.rsp; COUNT=101 */ { GCRY_CIPHER_AES, "b7b93f516aef295eff3a29d837cf1f135347e8a21dae616ff5062b2e8d78ce5e", "873edea653b643bd8bcf51403197ed14", "236f8a5b58dd55f6194ed70c4ac1a17f1fe60ec9a6c454d087ccb77d6b638c47", "22e6a3c6379dcf7599b052b5a749c7f78ad8a11b9f1aa9430cf3aef445682e19" }, /* CAVS; hex/XTSGenAES128.rsp; COUNT=301 */ { GCRY_CIPHER_AES, "394c97881abd989d29c703e48a72b397a7acf51b59649eeea9b33274d8541df4", "4b15c684a152d485fe9937d39b168c29", "2f3b9dcfbae729583b1d1ffdd16bb6fe2757329435662a78f0", "f3473802e38a3ffef4d4fb8e6aa266ebde553a64528a06463e" }, /* CAVS; hex/XTSGenAES128.rsp; COUNT=500 */ { GCRY_CIPHER_AES, "783a83ec52a27405dff9de4c57f9c979b360b6a5df88d67ec1a052e6f582a717", "886e975b29bdf6f0c01bb47f61f6f0f5", "b04d84da856b9a59ce2d626746f689a8051dacd6bce3b990aa901e4030648879", "f941039ebab8cac39d59247cbbcb4d816c726daed11577692c55e4ac6d3e6820" }, /* CAVS; hex/XTSGenAES256.rsp; COUNT=1 */ { GCRY_CIPHER_AES256, "1ea661c58d943a0e4801e42f4b0947149e7f9f8e3e68d0c7505210bd311a0e7c" "d6e13ffdf2418d8d1911c004cda58da3d619b7e2b9141e58318eea392cf41b08", "adf8d92627464ad2f0428e84a9f87564", "2eedea52cd8215e1acc647e810bbc3642e87287f8d2e57e36c0a24fbc12a202e", "cbaad0e2f6cea3f50b37f934d46a9b130b9d54f07e34f36af793e86f73c6d7db" }, /* CAVS; hex/XTSGenAES256.rsp; COUNT=101 */ { GCRY_CIPHER_AES256, "266c336b3b01489f3267f52835fd92f674374b88b4e1ebd2d36a5f457581d9d0" "42c3eef7b0b7e5137b086496b4d9e6ac658d7196a23f23f036172fdb8faee527", "06b209a7a22f486ecbfadb0f3137ba42", "ca7d65ef8d3dfad345b61ccddca1ad81de830b9e86c7b426d76cb7db766852d9" "81c6b21409399d78f42cc0b33a7bbb06", "c73256870cc2f4dd57acc74b5456dbd776912a128bc1f77d72cdebbf270044b7" "a43ceed29025e1e8be211fa3c3ed002d" }, /* CAVS; hex/XTSGenAES256.rsp; COUNT=401 */ { GCRY_CIPHER_AES256, "33e89e817ff8d037d6ac5a2296657503f20885d94c483e26449066bd9284d130" "2dbdbb4b66b6b9f4687f13dd028eb6aa528ca91deb9c5f40db93218806033801", "a78c04335ab7498a52b81ed74b48e6cf", "14c3ac31291b075f40788247c3019e88c7b40bac3832da45bbc6c4fe7461371b" "4dfffb63f71c9f8edb98f28ff4f33121", "dead7e587519bc78c70d99279fbe3d9b1ad13cdaae69824e0ab8135413230bfd" "b13babe8f986fbb30d46ab5ec56b916e" }, /* From https://github.com/heisencoder/XTS-AES/blob/master/testvals/ */ { GCRY_CIPHER_AES, "fffefdfcfbfaf9f8f7f6f5f4f3f2f1f0fffefdfcfbfaf9f8f7f6f5f4f3f2f1f0", "9a785634120000000000000000000000", "000102030405060708090a0b0c0d0e0f10", "7fb2e8beccbb5c118aa52ddca31220bb1b" }, { GCRY_CIPHER_AES, "fffefdfcfbfaf9f8f7f6f5f4f3f2f1f0bfbebdbcbbbab9b8b7b6b5b4b3b2b1b0", "9a785634120000000000000000000000", "000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e", "d05bc090a8e04f1b3d3ecdd5baec0fd4edbf9dace45d6f6a7306e64be5dd82" }, { GCRY_CIPHER_AES, "2718281828459045235360287471352631415926535897932384626433832795", "00000000000000000000000000000000", "000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F" "20212223", "27A7479BEFA1D476489F308CD4CFA6E288F548E5C4239F91712A587E2B05AC3D" "A96E4BBE" }, { GCRY_CIPHER_AES256, "2718281828459045235360287471352662497757247093699959574966967627" "3141592653589793238462643383279502884197169399375105820974944592", "11000000000000000000000000000000", "3A060A8CAD115A6F44572E3759E43C8F8832FEDC28A8E35B357B5CF3EDBEF788" "CAD8BFCB23", "6D1C78A8BAD91DB2924C507CCEDE835F5BADD157DA0AF55C98BBC28CF676F9FA" "61618FA696" }, { GCRY_CIPHER_AES256, "2718281828459045235360287471352662497757247093699959574966967627" "3141592653589793238462643383279502884197169399375105820974944592", "11000000000000000000000000000000", "3A060A8CAD115A6F44572E3759E43C8F8832FEDC28A8E35B357B5CF3EDBEF788" "CAD8BFCB23", "6D1C78A8BAD91DB2924C507CCEDE835F5BADD157DA0AF55C98BBC28CF676F9FA" "61618FA696" }, { GCRY_CIPHER_AES, "e0e1e2e3e4e5e6e7e8e9eaebecedeeefc0c1c2c3c4c5c6c7c8c9cacbcccdcecf", "21436587a90000000000000000000000", "000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f" "202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f" "404142434445464748494a4b4c4d4e4f505152535455565758595a5b5c5d5e5f" "606162636465666768696a6b6c6d6e6f707172737475767778797a7b7c7d7e7f" "808182838485868788898a8b8c8d8e8f909192939495969798999a9b9c9d9e9f" "a0a1a2a3a4a5a6a7a8a9aaabacadaeafb0b1b2b3b4b5b6b7b8b9babbbcbdbebf" "c0c1c2c3c4c5c6c7c8c9cacbcccdcecfd0d1d2d3d4d5d6d7d8d9dadbdcdddedf" "e0e1e2e3e4e5e6e7e8e9eaebecedeeeff0f1f2f3f4f5f6f7f8f9fafbfcfdfeff" "000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f" "202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f" "404142434445464748494a4b4c4d4e4f505152535455565758595a5b5c5d5e5f" "606162636465666768696a6b6c6d6e6f707172737475767778797a7b7c7d7e7f" "808182838485868788898a8b8c8d8e8f909192939495969798999a9b9c9d9e9f" "a0a1a2a3a4a5a6a7a8a9aaabacadaeafb0b1b2b3b4b5b6b7b8b9babbbcbdbebf" "c0c1c2c3c4c5c6c7c8c9cacbcccdcecfd0d1d2d3d4d5d6d7d8d9dadbdcdddedf" "e0e1e2e3e4e5e6e7e8e9eaebecedeeeff0f1f2f3f4f5f6f7f8f9fafbfcfdfeff" "0001020304050607", "38b45812ef43a05bd957e545907e223b954ab4aaf088303ad910eadf14b42be6" "8b2461149d8c8ba85f992be970bc621f1b06573f63e867bf5875acafa04e42cc" "bd7bd3c2a0fb1fff791ec5ec36c66ae4ac1e806d81fbf709dbe29e471fad3854" "9c8e66f5345d7c1eb94f405d1ec785cc6f6a68f6254dd8339f9d84057e01a177" "41990482999516b5611a38f41bb6478e6f173f320805dd71b1932fc333cb9ee3" "9936beea9ad96fa10fb4112b901734ddad40bc1878995f8e11aee7d141a2f5d4" "8b7a4e1e7f0b2c04830e69a4fd1378411c2f287edf48c6c4e5c247a19680f7fe" "41cefbd49b582106e3616cbbe4dfb2344b2ae9519391f3e0fb4922254b1d6d2d" "19c6d4d537b3a26f3bcc51588b32f3eca0829b6a5ac72578fb814fb43cf80d64" "a233e3f997a3f02683342f2b33d25b492536b93becb2f5e1a8b82f5b88334272" "9e8ae09d16938841a21a97fb543eea3bbff59f13c1a18449e398701c1ad51648" "346cbc04c27bb2da3b93a1372ccae548fb53bee476f9e9c91773b1bb19828394" "d55d3e1a20ed69113a860b6829ffa847224604435070221b257e8dff783615d2" "cae4803a93aa4334ab482a0afac9c0aeda70b45a481df5dec5df8cc0f423c77a" "5fd46cd312021d4b438862419a791be03bb4d97c0e59578542531ba466a83baf" "92cefc151b5cc1611a167893819b63fb37ec662bc0fc907db74a94468a55a7bc" "8a6b18e86de60290" }, { GCRY_CIPHER_AES256, "2718281828459045235360287471352662497757247093699959574966967627" "3141592653589793238462643383279502884197169399375105820974944592", "ffffffff000000000000000000000000", "000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f" "202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f" "404142434445464748494a4b4c4d4e4f505152535455565758595a5b5c5d5e5f" "606162636465666768696a6b6c6d6e6f707172737475767778797a7b7c7d7e7f" "808182838485868788898a8b8c8d8e8f909192939495969798999a9b9c9d9e9f" "a0a1a2a3a4a5a6a7a8a9aaabacadaeafb0b1b2b3b4b5b6b7b8b9babbbcbdbebf" "c0c1c2c3c4c5c6c7c8c9cacbcccdcecfd0d1d2d3d4d5d6d7d8d9dadbdcdddedf" "e0e1e2e3e4e5e6e7e8e9eaebecedeeeff0f1f2f3f4f5f6f7f8f9fafbfcfdfeff" "000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f" "202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f" "404142434445464748494a4b4c4d4e4f505152535455565758595a5b5c5d5e5f" "606162636465666768696a6b6c6d6e6f707172737475767778797a7b7c7d7e7f" "808182838485868788898a8b8c8d8e8f909192939495969798999a9b9c9d9e9f" "a0a1a2a3a4a5a6a7a8a9aaabacadaeafb0b1b2b3b4b5b6b7b8b9babbbcbdbebf" "c0c1c2c3c4c5c6c7c8c9cacbcccdcecfd0d1d2d3d4d5d6d7d8d9dadbdcdddedf" "e0e1e2e3e4e5e6e7e8e9eaebecedeeeff0f1f2f3f4f5f6f7f8f9fafbfcfdfeff", "bf53d2dade78e822a4d949a9bc6766b01b06a8ef70d26748c6a7fc36d80ae4c5" "520f7c4ab0ac8544424fa405162fef5a6b7f229498063618d39f0003cb5fb8d1" "c86b643497da1ff945c8d3bedeca4f479702a7a735f043ddb1d6aaade3c4a0ac" "7ca7f3fa5279bef56f82cd7a2f38672e824814e10700300a055e1630b8f1cb0e" "919f5e942010a416e2bf48cb46993d3cb6a51c19bacf864785a00bc2ecff15d3" "50875b246ed53e68be6f55bd7e05cfc2b2ed6432198a6444b6d8c247fab941f5" "69768b5c429366f1d3f00f0345b96123d56204c01c63b22ce78baf116e525ed9" "0fdea39fa469494d3866c31e05f295ff21fea8d4e6e13d67e47ce722e9698a1c" "1048d68ebcde76b86fcf976eab8aa9790268b7068e017a8b9b749409514f1053" "027fd16c3786ea1bac5f15cb79711ee2abe82f5cf8b13ae73030ef5b9e4457e7" "5d1304f988d62dd6fc4b94ed38ba831da4b7634971b6cd8ec325d9c61c00f1df" "73627ed3745a5e8489f3a95c69639c32cd6e1d537a85f75cc844726e8a72fc00" "77ad22000f1d5078f6b866318c668f1ad03d5a5fced5219f2eabbd0aa5c0f460" "d183f04404a0d6f469558e81fab24a167905ab4c7878502ad3e38fdbe62a4155" "6cec37325759533ce8f25f367c87bb5578d667ae93f9e2fd99bcbc5f2fbba88c" "f6516139420fcff3b7361d86322c4bd84c82f335abb152c4a93411373aaa8220" } }; gpg_error_t err = 0; gcry_cipher_hd_t hde, hdd; int tidx; int got_err = 0; if (verbose) fprintf (stderr, " Starting XTS checks.\n"); for (tidx = 0; !got_err && tidx < DIM (tv); tidx++) { const char *hexkey = tv[tidx].key; char *key, *iv, *ciph, *plain, *out; size_t keylen, ivlen, ciphlen, plainlen, outlen; if (verbose) fprintf (stderr, " checking XTS mode for %s [%i] (tv %d)\n", gcry_cipher_algo_name (tv[tidx].algo), tv[tidx].algo, tidx); if (!hexkey) hexkey = "000102030405060708090A0B0C0D0E0F" "101112131415161718191A1B1C1D1E1F"; /* Convert to hex strings to binary. */ key = hex2buffer (hexkey, &keylen); iv = hex2buffer (tv[tidx].iv, &ivlen); plain = hex2buffer (tv[tidx].plain, &plainlen); ciph = hex2buffer (tv[tidx].ciph, &ciphlen); outlen = plainlen + 5; out = xmalloc (outlen); assert (plainlen == ciphlen); assert (plainlen <= outlen); assert (out); err = gcry_cipher_open (&hde, tv[tidx].algo, GCRY_CIPHER_MODE_XTS, 0); if (!err) err = gcry_cipher_open (&hdd, tv[tidx].algo, GCRY_CIPHER_MODE_XTS, 0); if (err) { fail ("cipher-xts, gcry_cipher_open failed (tv %d): %s\n", tidx, gpg_strerror (err)); return; } err = gcry_cipher_setkey (hde, key, keylen); if (err && in_fips_mode && memcmp(key, key + keylen/2, keylen/2) == 0) { /* Since both halves of key are the same, fail to set key in FIPS mode is expected. */ goto next_tv; } if (!err) err = gcry_cipher_setkey (hdd, key, keylen); if (err) { fail ("cipher-xts, gcry_cipher_setkey failed (tv %d): %s\n", tidx, gpg_strerror (err)); goto err_out; } err = gcry_cipher_setiv (hde, iv, ivlen); if (!err) err = gcry_cipher_setiv (hdd, iv, ivlen); if (err) { fail ("cipher-xts, gcry_cipher_setiv failed (tv %d): %s\n", tidx, gpg_strerror (err)); goto err_out; } if (inplace) { memcpy(out, plain, plainlen); err = gcry_cipher_encrypt (hde, out, plainlen, NULL, 0); } else { err = gcry_cipher_encrypt (hde, out, outlen, plain, plainlen); } if (err) { fail ("cipher-xts, gcry_cipher_encrypt failed (tv %d): %s\n", tidx, gpg_strerror (err)); goto err_out; } /* Check that the encrypt output matches the expected cipher text. */ if (memcmp (ciph, out, plainlen)) { mismatch (ciph, plainlen, out, plainlen); fail ("cipher-xts, encrypt data mismatch (tv %d)\n", tidx); } /* Now for the decryption. */ if (inplace) { err = gcry_cipher_decrypt (hdd, out, plainlen, NULL, 0); } else { memcpy(ciph, out, ciphlen); err = gcry_cipher_decrypt (hdd, out, plainlen, ciph, ciphlen); } if (err) { fail ("cipher-xts, gcry_cipher_decrypt (tv %d) failed: %s\n", tidx, gpg_strerror (err)); goto err_out; } /* Check that the decrypt output matches the expected plain text. */ if (memcmp (plain, out, plainlen)) { mismatch (plain, plainlen, out, plainlen); fail ("cipher-xts, decrypt data mismatch (tv %d)\n", tidx); } if (0) { err_out: got_err = 1; } next_tv: gcry_cipher_close (hde); gcry_cipher_close (hdd); xfree (iv); xfree (ciph); xfree (plain); xfree (key); xfree (out); } if (verbose) fprintf (stderr, " Completed XTS checks.\n"); } static void check_xts_cipher (void) { /* Check XTS cipher with separate destination and source buffers for * encryption/decryption. */ do_check_xts_cipher(0); /* Check XTS cipher with inplace encrypt/decrypt. */ do_check_xts_cipher(1); } static void check_gost28147_cipher (void) { #if USE_GOST28147 static const struct { char key[MAX_DATA_LEN]; const char *oid; unsigned char plaintext[MAX_DATA_LEN]; int inlen; char out[MAX_DATA_LEN]; } tv[] = { { "\x81\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f\x80" "\xd1\xd2\xd3\xd4\xd5\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf\xd0", "1.2.643.7.1.2.5.1.1", "\x01\x02\x03\x04\x05\x06\x07\x08", 8, "\xce\x5a\x5e\xd7\xe0\x57\x7a\x5f", }, { "\x81\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f\x80" "\xd1\xd2\xd3\xd4\xd5\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf\xd0", "1.2.643.2.2.31.0", "\x01\x02\x03\x04\x05\x06\x07\x08", 8, "\x98\x56\xcf\x8b\xfc\xc2\x82\xf4", }, { "\x81\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f\x80" "\xd1\xd2\xd3\xd4\xd5\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf\xd0", "1.2.643.2.2.31.1", "\x01\x02\x03\x04\x05\x06\x07\x08", 8, "\x66\x81\x84\xae\xdc\x48\xc9\x17", }, { "\x81\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f\x80" "\xd1\xd2\xd3\xd4\xd5\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf\xd0", "1.2.643.2.2.31.2", "\x01\x02\x03\x04\x05\x06\x07\x08", 8, "\xdb\xee\x81\x14\x7b\x74\xb0\xf2", }, { "\x81\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f\x80" "\xd1\xd2\xd3\xd4\xd5\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf\xd0", "1.2.643.2.2.31.3", "\x01\x02\x03\x04\x05\x06\x07\x08", 8, "\x31\xa3\x85\x9d\x0a\xee\xb8\x0e", }, { "\x81\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f\x80" "\xd1\xd2\xd3\xd4\xd5\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf\xd0", "1.2.643.2.2.31.4", "\x01\x02\x03\x04\x05\x06\x07\x08", 8, "\xb1\x32\x3e\x0b\x21\x73\xcb\xd1", }, { "\x81\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f\x80" "\xd1\xd2\xd3\xd4\xd5\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf\xd0", "1.2.643.2.2.30.0", "\x01\x02\x03\x04\x05\x06\x07\x08", 8, "\xce\xd5\x2a\x7f\xf7\xf2\x60\xd5", }, { "\x81\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f\x80" "\xd1\xd2\xd3\xd4\xd5\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf\xd0", "1.2.643.2.2.30.1", "\x01\x02\x03\x04\x05\x06\x07\x08", 8, "\xe4\x21\x75\xe1\x69\x22\xd0\xa8", } }; gcry_cipher_hd_t hde, hdd; unsigned char out[MAX_DATA_LEN]; int i, keylen; gcry_error_t err = 0; if (verbose) fprintf (stderr, " Starting GOST28147 cipher checks.\n"); keylen = gcry_cipher_get_algo_keylen(GCRY_CIPHER_GOST28147); if (!keylen) { fail ("gost28147, gcry_cipher_get_algo_keylen failed\n"); return; } for (i = 0; i < sizeof (tv) / sizeof (tv[0]); i++) { err = gcry_cipher_open (&hde, GCRY_CIPHER_GOST28147, GCRY_CIPHER_MODE_ECB, 0); if (!err) err = gcry_cipher_open (&hdd, GCRY_CIPHER_GOST28147, GCRY_CIPHER_MODE_ECB, 0); if (err) { fail ("gost28147, gcry_cipher_open failed: %s\n", gpg_strerror (err)); return; } err = gcry_cipher_setkey (hde, tv[i].key, keylen); if (!err) err = gcry_cipher_setkey (hdd, tv[i].key, keylen); if (err) { fail ("gost28147, gcry_cipher_setkey failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } err = gcry_cipher_set_sbox (hde, tv[i].oid); if (!err) err = gcry_cipher_set_sbox (hdd, tv[i].oid); if (err) { fail ("gost28147, gcry_cipher_set_sbox failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } err = gcry_cipher_encrypt (hde, out, MAX_DATA_LEN, tv[i].plaintext, tv[i].inlen == -1 ? strlen ((char*)tv[i].plaintext) : tv[i].inlen); if (err) { fail ("gost28147, gcry_cipher_encrypt (%d) failed: %s\n", i, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } if (memcmp (tv[i].out, out, tv[i].inlen)) { fail ("gost28147, encrypt mismatch entry %d\n", i); mismatch (tv[i].out, tv[i].inlen, out, tv[i].inlen); } err = gcry_cipher_decrypt (hdd, out, tv[i].inlen, NULL, 0); if (err) { fail ("gost28147, gcry_cipher_decrypt (%d) failed: %s\n", i, gpg_strerror (err)); gcry_cipher_close (hde); gcry_cipher_close (hdd); return; } if (memcmp (tv[i].plaintext, out, tv[i].inlen)) { fail ("gost28147, decrypt mismatch entry %d\n", i); mismatch (tv[i].plaintext, tv[i].inlen, out, tv[i].inlen); } gcry_cipher_close (hde); gcry_cipher_close (hdd); } #endif } static void check_stream_cipher (void) { static const struct tv { const char *name; int algo; int keylen; int ivlen; const char *key; const char *iv; struct data { int inlen; const char *plaintext; const char *out; } data[MAX_DATA_LEN]; } tv[] = { #ifdef USE_SALSA20 { "Salsa20 128 bit, test 1", GCRY_CIPHER_SALSA20, 16, 8, "\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\x00\x00\x00\x00\x00\x00\x00\x00", { { 8, "\x00\x00\x00\x00\x00\x00\x00\x00", "\x4D\xFA\x5E\x48\x1D\xA2\x3E\xA0" } } }, { "Salsa20 128 bit, test 2", GCRY_CIPHER_SALSA20, 16, 8, "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\x80\x00\x00\x00\x00\x00\x00\x00", { { 8, "\x00\x00\x00\x00\x00\x00\x00\x00", "\xB6\x6C\x1E\x44\x46\xDD\x95\x57" } } }, { "Salsa20 128 bit, test 3", GCRY_CIPHER_SALSA20, 16, 8, "\x00\x53\xA6\xF9\x4C\x9F\xF2\x45\x98\xEB\x3E\x91\xE4\x37\x8A\xDD", "\x0D\x74\xDB\x42\xA9\x10\x77\xDE", { { 8, "\x00\x00\x00\x00\x00\x00\x00\x00", "\x05\xE1\xE7\xBE\xB6\x97\xD9\x99" } } }, { "Salsa20 256 bit, test 1", GCRY_CIPHER_SALSA20, 32, 8, "\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\x00\x00\x00\x00\x00\x00\x00\x00", { { 8, "\x00\x00\x00\x00\x00\x00\x00\x00", "\xE3\xBE\x8F\xDD\x8B\xEC\xA2\xE3" } } }, { "Salsa20 256 bit, test 2", GCRY_CIPHER_SALSA20, 32, 8, "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\x80\x00\x00\x00\x00\x00\x00\x00", { { 8, "\x00\x00\x00\x00\x00\x00\x00\x00", "\x2A\xBA\x3D\xC4\x5B\x49\x47\x00" } } }, { "Salsa20 256 bit, ecrypt verified, set 6, vector 0", GCRY_CIPHER_SALSA20, 32, 8, "\x00\x53\xA6\xF9\x4C\x9F\xF2\x45\x98\xEB\x3E\x91\xE4\x37\x8A\xDD" "\x30\x83\xD6\x29\x7C\xCF\x22\x75\xC8\x1B\x6E\xC1\x14\x67\xBA\x0D", "\x0D\x74\xDB\x42\xA9\x10\x77\xDE", { { 8, "\x00\x00\x00\x00\x00\x00\x00\x00", "\xF5\xFA\xD5\x3F\x79\xF9\xDF\x58" }, { 64, "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\xF5\xFA\xD5\x3F\x79\xF9\xDF\x58\xC4\xAE\xA0\xD0\xED\x9A\x96\x01" "\xF2\x78\x11\x2C\xA7\x18\x0D\x56\x5B\x42\x0A\x48\x01\x96\x70\xEA" "\xF2\x4C\xE4\x93\xA8\x62\x63\xF6\x77\xB4\x6A\xCE\x19\x24\x77\x3D" "\x2B\xB2\x55\x71\xE1\xAA\x85\x93\x75\x8F\xC3\x82\xB1\x28\x0B\x71" } } }, { "Salsa20/12 128 bit, test 1", GCRY_CIPHER_SALSA20R12, 16, 8, "\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\x00\x00\x00\x00\x00\x00\x00\x00", { { 8, "\x00\x00\x00\x00\x00\x00\x00\x00", "\xFC\x20\x7D\xBF\xC7\x6C\x5E\x17" } } }, { "Salsa20/12 128 bit, test 2", GCRY_CIPHER_SALSA20R12, 16, 8, "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\x80\x00\x00\x00\x00\x00\x00\x00", { { 8, "\x00\x00\x00\x00\x00\x00\x00\x00", "\x08\x28\x39\x9A\x6F\xEF\x20\xDA" } } }, { "Salsa20/12 128 bit, test 3", GCRY_CIPHER_SALSA20R12, 16, 8, "\x00\x53\xA6\xF9\x4C\x9F\xF2\x45\x98\xEB\x3E\x91\xE4\x37\x8A\xDD", "\x0D\x74\xDB\x42\xA9\x10\x77\xDE", { { 8, "\x00\x00\x00\x00\x00\x00\x00\x00", "\xAD\x9E\x60\xE6\xD2\xA2\x64\xB8" } } }, { "Salsa20/12 256 bit, test 1", GCRY_CIPHER_SALSA20R12, 32, 8, "\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\x00\x00\x00\x00\x00\x00\x00\x00", { { 8, "\x00\x00\x00\x00\x00\x00\x00\x00", "\xAF\xE4\x11\xED\x1C\x4E\x07\xE4" } } }, { "Salsa20/12 256 bit, test 2", GCRY_CIPHER_SALSA20R12, 32, 8, "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\x80\x00\x00\x00\x00\x00\x00\x00", { { 8, "\x00\x00\x00\x00\x00\x00\x00\x00", "\x17\x2C\x51\x92\xCB\x6E\x64\x5B" } } }, { "Salsa20/12 256 bit, ecrypt verified, set 6, vector 0", GCRY_CIPHER_SALSA20R12, 32, 8, "\x00\x53\xA6\xF9\x4C\x9F\xF2\x45\x98\xEB\x3E\x91\xE4\x37\x8A\xDD" "\x30\x83\xD6\x29\x7C\xCF\x22\x75\xC8\x1B\x6E\xC1\x14\x67\xBA\x0D", "\x0D\x74\xDB\x42\xA9\x10\x77\xDE", { { 8, "\x00\x00\x00\x00\x00\x00\x00\x00", "\x52\xE2\x0C\xF8\x77\x5A\xE8\x82" }, { 64, "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\x52\xE2\x0C\xF8\x77\x5A\xE8\x82\xF2\x00\xC2\x99\x9F\xE4\xBA\x31" "\xA7\xA1\x8F\x1D\x5C\x97\x16\x19\x1D\x12\x31\x75\xE1\x47\xBD\x4E" "\x8C\xA6\xED\x16\x6C\xE0\xFC\x8E\x65\xA5\xCA\x60\x84\x20\xFC\x65" "\x44\xC9\x70\x0A\x0F\x21\x38\xE8\xC1\xA2\x86\xFB\x8C\x1F\xBF\xA0" } } }, #endif /*USE_SALSA20*/ #ifdef USE_CHACHA20 /* From draft-strombergson-chacha-test-vectors-01 */ { "ChaCha20 128 bit, TC1", GCRY_CIPHER_CHACHA20, 16, 8, "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\x00\x00\x00\x00\x00\x00\x00\x00", { { 8, "\x00\x00\x00\x00\x00\x00\x00\x00", "\x89\x67\x09\x52\x60\x83\x64\xfd" }, { 112, "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\x89\x67\x09\x52\x60\x83\x64\xfd\x00\xb2\xf9\x09\x36\xf0\x31\xc8" "\xe7\x56\xe1\x5d\xba\x04\xb8\x49\x3d\x00\x42\x92\x59\xb2\x0f\x46" "\xcc\x04\xf1\x11\x24\x6b\x6c\x2c\xe0\x66\xbe\x3b\xfb\x32\xd9\xaa" "\x0f\xdd\xfb\xc1\x21\x23\xd4\xb9\xe4\x4f\x34\xdc\xa0\x5a\x10\x3f" "\x6c\xd1\x35\xc2\x87\x8c\x83\x2b\x58\x96\xb1\x34\xf6\x14\x2a\x9d" "\x4d\x8d\x0d\x8f\x10\x26\xd2\x0a\x0a\x81\x51\x2c\xbc\xe6\xe9\x75" "\x8a\x71\x43\xd0\x21\x97\x80\x22\xa3\x84\x14\x1a\x80\xce\xa3\x06" }, { 128, "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\x89\x67\x09\x52\x60\x83\x64\xfd\x00\xb2\xf9\x09\x36\xf0\x31\xc8" "\xe7\x56\xe1\x5d\xba\x04\xb8\x49\x3d\x00\x42\x92\x59\xb2\x0f\x46" "\xcc\x04\xf1\x11\x24\x6b\x6c\x2c\xe0\x66\xbe\x3b\xfb\x32\xd9\xaa" "\x0f\xdd\xfb\xc1\x21\x23\xd4\xb9\xe4\x4f\x34\xdc\xa0\x5a\x10\x3f" "\x6c\xd1\x35\xc2\x87\x8c\x83\x2b\x58\x96\xb1\x34\xf6\x14\x2a\x9d" "\x4d\x8d\x0d\x8f\x10\x26\xd2\x0a\x0a\x81\x51\x2c\xbc\xe6\xe9\x75" "\x8a\x71\x43\xd0\x21\x97\x80\x22\xa3\x84\x14\x1a\x80\xce\xa3\x06" "\x2f\x41\xf6\x7a\x75\x2e\x66\xad\x34\x11\x98\x4c\x78\x7e\x30\xad" } } }, { "ChaCha20 256 bit, TC1", GCRY_CIPHER_CHACHA20, 32, 8, "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\x00\x00\x00\x00\x00\x00\x00\x00", { { 8, "\x00\x00\x00\x00\x00\x00\x00\x00", "\x76\xb8\xe0\xad\xa0\xf1\x3d\x90" }, { 112, "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\x76\xb8\xe0\xad\xa0\xf1\x3d\x90\x40\x5d\x6a\xe5\x53\x86\xbd\x28" "\xbd\xd2\x19\xb8\xa0\x8d\xed\x1a\xa8\x36\xef\xcc\x8b\x77\x0d\xc7" "\xda\x41\x59\x7c\x51\x57\x48\x8d\x77\x24\xe0\x3f\xb8\xd8\x4a\x37" "\x6a\x43\xb8\xf4\x15\x18\xa1\x1c\xc3\x87\xb6\x69\xb2\xee\x65\x86" "\x9f\x07\xe7\xbe\x55\x51\x38\x7a\x98\xba\x97\x7c\x73\x2d\x08\x0d" "\xcb\x0f\x29\xa0\x48\xe3\x65\x69\x12\xc6\x53\x3e\x32\xee\x7a\xed" "\x29\xb7\x21\x76\x9c\xe6\x4e\x43\xd5\x71\x33\xb0\x74\xd8\x39\xd5" }, { 128, "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\x76\xb8\xe0\xad\xa0\xf1\x3d\x90\x40\x5d\x6a\xe5\x53\x86\xbd\x28" "\xbd\xd2\x19\xb8\xa0\x8d\xed\x1a\xa8\x36\xef\xcc\x8b\x77\x0d\xc7" "\xda\x41\x59\x7c\x51\x57\x48\x8d\x77\x24\xe0\x3f\xb8\xd8\x4a\x37" "\x6a\x43\xb8\xf4\x15\x18\xa1\x1c\xc3\x87\xb6\x69\xb2\xee\x65\x86" "\x9f\x07\xe7\xbe\x55\x51\x38\x7a\x98\xba\x97\x7c\x73\x2d\x08\x0d" "\xcb\x0f\x29\xa0\x48\xe3\x65\x69\x12\xc6\x53\x3e\x32\xee\x7a\xed" "\x29\xb7\x21\x76\x9c\xe6\x4e\x43\xd5\x71\x33\xb0\x74\xd8\x39\xd5" "\x31\xed\x1f\x28\x51\x0a\xfb\x45\xac\xe1\x0a\x1f\x4b\x79\x4d\x6f" } } }, { "ChaCha20 256 bit, TC2", GCRY_CIPHER_CHACHA20, 32, 8, "\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\x00\x00\x00\x00\x00\x00\x00\x00", { { 128, "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\xc5\xd3\x0a\x7c\xe1\xec\x11\x93\x78\xc8\x4f\x48\x7d\x77\x5a\x85" "\x42\xf1\x3e\xce\x23\x8a\x94\x55\xe8\x22\x9e\x88\x8d\xe8\x5b\xbd" "\x29\xeb\x63\xd0\xa1\x7a\x5b\x99\x9b\x52\xda\x22\xbe\x40\x23\xeb" "\x07\x62\x0a\x54\xf6\xfa\x6a\xd8\x73\x7b\x71\xeb\x04\x64\xda\xc0" "\x10\xf6\x56\xe6\xd1\xfd\x55\x05\x3e\x50\xc4\x87\x5c\x99\x30\xa3" "\x3f\x6d\x02\x63\xbd\x14\xdf\xd6\xab\x8c\x70\x52\x1c\x19\x33\x8b" "\x23\x08\xb9\x5c\xf8\xd0\xbb\x7d\x20\x2d\x21\x02\x78\x0e\xa3\x52" "\x8f\x1c\xb4\x85\x60\xf7\x6b\x20\xf3\x82\xb9\x42\x50\x0f\xce\xac" } } }, { "ChaCha20 256 bit, TC3", GCRY_CIPHER_CHACHA20, 32, 8, "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\x01\x00\x00\x00\x00\x00\x00\x00", { { 128, "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\xef\x3f\xdf\xd6\xc6\x15\x78\xfb\xf5\xcf\x35\xbd\x3d\xd3\x3b\x80" "\x09\x63\x16\x34\xd2\x1e\x42\xac\x33\x96\x0b\xd1\x38\xe5\x0d\x32" "\x11\x1e\x4c\xaf\x23\x7e\xe5\x3c\xa8\xad\x64\x26\x19\x4a\x88\x54" "\x5d\xdc\x49\x7a\x0b\x46\x6e\x7d\x6b\xbd\xb0\x04\x1b\x2f\x58\x6b" "\x53\x05\xe5\xe4\x4a\xff\x19\xb2\x35\x93\x61\x44\x67\x5e\xfb\xe4" "\x40\x9e\xb7\xe8\xe5\xf1\x43\x0f\x5f\x58\x36\xae\xb4\x9b\xb5\x32" "\x8b\x01\x7c\x4b\x9d\xc1\x1f\x8a\x03\x86\x3f\xa8\x03\xdc\x71\xd5" "\x72\x6b\x2b\x6b\x31\xaa\x32\x70\x8a\xfe\x5a\xf1\xd6\xb6\x90\x58" } } }, { "ChaCha20 256 bit, TC4", GCRY_CIPHER_CHACHA20, 32, 8, "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff", "\xff\xff\xff\xff\xff\xff\xff\xff", { { 128, "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\xd9\xbf\x3f\x6b\xce\x6e\xd0\xb5\x42\x54\x55\x77\x67\xfb\x57\x44" "\x3d\xd4\x77\x89\x11\xb6\x06\x05\x5c\x39\xcc\x25\xe6\x74\xb8\x36" "\x3f\xea\xbc\x57\xfd\xe5\x4f\x79\x0c\x52\xc8\xae\x43\x24\x0b\x79" "\xd4\x90\x42\xb7\x77\xbf\xd6\xcb\x80\xe9\x31\x27\x0b\x7f\x50\xeb" "\x5b\xac\x2a\xcd\x86\xa8\x36\xc5\xdc\x98\xc1\x16\xc1\x21\x7e\xc3" "\x1d\x3a\x63\xa9\x45\x13\x19\xf0\x97\xf3\xb4\xd6\xda\xb0\x77\x87" "\x19\x47\x7d\x24\xd2\x4b\x40\x3a\x12\x24\x1d\x7c\xca\x06\x4f\x79" "\x0f\x1d\x51\xcc\xaf\xf6\xb1\x66\x7d\x4b\xbc\xa1\x95\x8c\x43\x06" } } }, { "ChaCha20 256 bit, TC5", GCRY_CIPHER_CHACHA20, 32, 8, "\x55\x55\x55\x55\x55\x55\x55\x55\x55\x55\x55\x55\x55\x55\x55\x55" "\x55\x55\x55\x55\x55\x55\x55\x55\x55\x55\x55\x55\x55\x55\x55\x55", "\x55\x55\x55\x55\x55\x55\x55\x55", { { 128, "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\xbe\xa9\x41\x1a\xa4\x53\xc5\x43\x4a\x5a\xe8\xc9\x28\x62\xf5\x64" "\x39\x68\x55\xa9\xea\x6e\x22\xd6\xd3\xb5\x0a\xe1\xb3\x66\x33\x11" "\xa4\xa3\x60\x6c\x67\x1d\x60\x5c\xe1\x6c\x3a\xec\xe8\xe6\x1e\xa1" "\x45\xc5\x97\x75\x01\x7b\xee\x2f\xa6\xf8\x8a\xfc\x75\x80\x69\xf7" "\xe0\xb8\xf6\x76\xe6\x44\x21\x6f\x4d\x2a\x34\x22\xd7\xfa\x36\xc6" "\xc4\x93\x1a\xca\x95\x0e\x9d\xa4\x27\x88\xe6\xd0\xb6\xd1\xcd\x83" "\x8e\xf6\x52\xe9\x7b\x14\x5b\x14\x87\x1e\xae\x6c\x68\x04\xc7\x00" "\x4d\xb5\xac\x2f\xce\x4c\x68\xc7\x26\xd0\x04\xb1\x0f\xca\xba\x86" } } }, { "ChaCha20 256 bit, TC6", GCRY_CIPHER_CHACHA20, 32, 8, "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa", "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa", { { 128, "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\x9a\xa2\xa9\xf6\x56\xef\xde\x5a\xa7\x59\x1c\x5f\xed\x4b\x35\xae" "\xa2\x89\x5d\xec\x7c\xb4\x54\x3b\x9e\x9f\x21\xf5\xe7\xbc\xbc\xf3" "\xc4\x3c\x74\x8a\x97\x08\x88\xf8\x24\x83\x93\xa0\x9d\x43\xe0\xb7" "\xe1\x64\xbc\x4d\x0b\x0f\xb2\x40\xa2\xd7\x21\x15\xc4\x80\x89\x06" "\x72\x18\x44\x89\x44\x05\x45\xd0\x21\xd9\x7e\xf6\xb6\x93\xdf\xe5" "\xb2\xc1\x32\xd4\x7e\x6f\x04\x1c\x90\x63\x65\x1f\x96\xb6\x23\xe6" "\x2a\x11\x99\x9a\x23\xb6\xf7\xc4\x61\xb2\x15\x30\x26\xad\x5e\x86" "\x6a\x2e\x59\x7e\xd0\x7b\x84\x01\xde\xc6\x3a\x09\x34\xc6\xb2\xa9" } } }, { "ChaCha20 256 bit, TC7", GCRY_CIPHER_CHACHA20, 32, 8, "\x00\x11\x22\x33\x44\x55\x66\x77\x88\x99\xaa\xbb\xcc\xdd\xee\xff" "\xff\xee\xdd\xcc\xbb\xaa\x99\x88\x77\x66\x55\x44\x33\x22\x11\x00", "\x0f\x1e\x2d\x3c\x4b\x5a\x69\x78", { { 128, "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\x9f\xad\xf4\x09\xc0\x08\x11\xd0\x04\x31\xd6\x7e\xfb\xd8\x8f\xba" "\x59\x21\x8d\x5d\x67\x08\xb1\xd6\x85\x86\x3f\xab\xbb\x0e\x96\x1e" "\xea\x48\x0f\xd6\xfb\x53\x2b\xfd\x49\x4b\x21\x51\x01\x50\x57\x42" "\x3a\xb6\x0a\x63\xfe\x4f\x55\xf7\xa2\x12\xe2\x16\x7c\xca\xb9\x31" "\xfb\xfd\x29\xcf\x7b\xc1\xd2\x79\xed\xdf\x25\xdd\x31\x6b\xb8\x84" "\x3d\x6e\xde\xe0\xbd\x1e\xf1\x21\xd1\x2f\xa1\x7c\xbc\x2c\x57\x4c" "\xcc\xab\x5e\x27\x51\x67\xb0\x8b\xd6\x86\xf8\xa0\x9d\xf8\x7e\xc3" "\xff\xb3\x53\x61\xb9\x4e\xbf\xa1\x3f\xec\x0e\x48\x89\xd1\x8d\xa5" } } }, { "ChaCha20 256 bit, TC8", GCRY_CIPHER_CHACHA20, 32, 8, "\xc4\x6e\xc1\xb1\x8c\xe8\xa8\x78\x72\x5a\x37\xe7\x80\xdf\xb7\x35" "\x1f\x68\xed\x2e\x19\x4c\x79\xfb\xc6\xae\xbe\xe1\xa6\x67\x97\x5d", "\x1a\xda\x31\xd5\xcf\x68\x82\x21", { { 128, "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\xf6\x3a\x89\xb7\x5c\x22\x71\xf9\x36\x88\x16\x54\x2b\xa5\x2f\x06" "\xed\x49\x24\x17\x92\x30\x2b\x00\xb5\xe8\xf8\x0a\xe9\xa4\x73\xaf" "\xc2\x5b\x21\x8f\x51\x9a\xf0\xfd\xd4\x06\x36\x2e\x8d\x69\xde\x7f" "\x54\xc6\x04\xa6\xe0\x0f\x35\x3f\x11\x0f\x77\x1b\xdc\xa8\xab\x92" "\xe5\xfb\xc3\x4e\x60\xa1\xd9\xa9\xdb\x17\x34\x5b\x0a\x40\x27\x36" "\x85\x3b\xf9\x10\xb0\x60\xbd\xf1\xf8\x97\xb6\x29\x0f\x01\xd1\x38" "\xae\x2c\x4c\x90\x22\x5b\xa9\xea\x14\xd5\x18\xf5\x59\x29\xde\xa0" "\x98\xca\x7a\x6c\xcf\xe6\x12\x27\x05\x3c\x84\xe4\x9a\x4a\x33\x32" }, { 127, "\xf6\x3a\x89\xb7\x5c\x22\x71\xf9\x36\x88\x16\x54\x2b\xa5\x2f\x06" "\xed\x49\x24\x17\x92\x30\x2b\x00\xb5\xe8\xf8\x0a\xe9\xa4\x73\xaf" "\xc2\x5b\x21\x8f\x51\x9a\xf0\xfd\xd4\x06\x36\x2e\x8d\x69\xde\x7f" "\x54\xc6\x04\xa6\xe0\x0f\x35\x3f\x11\x0f\x77\x1b\xdc\xa8\xab\x92" "\xe5\xfb\xc3\x4e\x60\xa1\xd9\xa9\xdb\x17\x34\x5b\x0a\x40\x27\x36" "\x85\x3b\xf9\x10\xb0\x60\xbd\xf1\xf8\x97\xb6\x29\x0f\x01\xd1\x38" "\xae\x2c\x4c\x90\x22\x5b\xa9\xea\x14\xd5\x18\xf5\x59\x29\xde\xa0" "\x98\xca\x7a\x6c\xcf\xe6\x12\x27\x05\x3c\x84\xe4\x9a\x4a\x33", "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" } } }, /* from draft-nir-cfrg-chacha20-poly1305-02 */ { "ChaCha20 256 bit, IV96-bit", GCRY_CIPHER_CHACHA20, 32, 12, "\x80\x81\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f" "\x90\x91\x92\x93\x94\x95\x96\x97\x98\x99\x9a\x9b\x9c\x9d\x9e\x9f", "\x07\x00\x00\x00\x40\x41\x42\x43\x44\x45\x46\x47", { { 64, "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\x7b\xac\x2b\x25\x2d\xb4\x47\xaf\x09\xb6\x7a\x55\xa4\xe9\x55\x84" "\x0a\xe1\xd6\x73\x10\x75\xd9\xeb\x2a\x93\x75\x78\x3e\xd5\x53\xff" "\xa2\x7e\xcc\xde\xad\xdb\x4d\xb4\xd1\x17\x9c\xe4\xc9\x0b\x43\xd8" "\xbc\xb7\x94\x8c\x4b\x4b\x7d\x8b\x7d\xf6\x27\x39\x32\xa4\x69\x16" }, }, }, #endif /*USE_CHACHA20*/ }; gcry_cipher_hd_t hde, hdd; unsigned char out[MAX_DATA_LEN]; int i, j; gcry_error_t err = 0; if (verbose) fprintf (stderr, " Starting stream cipher checks.\n"); for (i = 0; i < sizeof (tv) / sizeof (tv[0]); i++) { if (gcry_cipher_test_algo (tv[i].algo) && in_fips_mode) { if (verbose) fprintf (stderr, " algorithm %d not available in fips mode\n", tv[i].algo); continue; } if (verbose) fprintf (stderr, " checking stream mode for %s [%i] (%s)\n", gcry_cipher_algo_name (tv[i].algo), tv[i].algo, tv[i].name); if (gcry_cipher_get_algo_blklen(tv[i].algo) != 1) { fail ("stream, gcry_cipher_get_algo_blklen: bad block length\n"); continue; } err = gcry_cipher_open (&hde, tv[i].algo, GCRY_CIPHER_MODE_STREAM, 0); if (!err) err = gcry_cipher_open (&hdd, tv[i].algo, GCRY_CIPHER_MODE_STREAM, 0); if (err) { fail ("stream, gcry_cipher_open for stream mode failed: %s\n", gpg_strerror (err)); continue; } /* Now loop over all the data samples. */ for (j = 0; tv[i].data[j].inlen; j++) { err = gcry_cipher_setkey (hde, tv[i].key, tv[i].keylen); if (!err) err = gcry_cipher_setkey (hdd, tv[i].key, tv[i].keylen); if (err) { fail ("stream, gcry_cipher_setkey failed: %s\n", gpg_strerror (err)); goto next; } err = gcry_cipher_setiv (hde, tv[i].iv, tv[i].ivlen); if (!err) err = gcry_cipher_setiv (hdd, tv[i].iv, tv[i].ivlen); if (err) { fail ("stream, gcry_cipher_setiv failed: %s\n", gpg_strerror (err)); goto next; } err = gcry_cipher_encrypt (hde, out, MAX_DATA_LEN, tv[i].data[j].plaintext, tv[i].data[j].inlen); if (err) { fail ("stream, gcry_cipher_encrypt (%d, %d) failed: %s\n", i, j, gpg_strerror (err)); goto next; } if (memcmp (tv[i].data[j].out, out, tv[i].data[j].inlen)) { fail ("stream, encrypt mismatch entry %d:%d\n", i, j); mismatch (tv[i].data[j].out, tv[i].data[j].inlen, out, tv[i].data[j].inlen); } err = gcry_cipher_decrypt (hdd, out, tv[i].data[j].inlen, NULL, 0); if (err) { fail ("stream, gcry_cipher_decrypt (%d, %d) failed: %s\n", i, j, gpg_strerror (err)); goto next; } if (memcmp (tv[i].data[j].plaintext, out, tv[i].data[j].inlen)) fail ("stream, decrypt mismatch entry %d:%d\n", i, j); } /* This time we encrypt and decrypt one byte at a time */ for (j = 0; tv[i].data[j].inlen; j++) { int byteNum; err = gcry_cipher_setkey (hde, tv[i].key, tv[i].keylen); if (!err) err = gcry_cipher_setkey (hdd, tv[i].key, tv[i].keylen); if (err) { fail ("stream, gcry_cipher_setkey failed: %s\n", gpg_strerror (err)); goto next; } err = gcry_cipher_setiv (hde, tv[i].iv, tv[i].ivlen); if (!err) err = gcry_cipher_setiv (hdd, tv[i].iv, tv[i].ivlen); if (err) { fail ("stream, gcry_cipher_setiv failed: %s\n", gpg_strerror (err)); goto next; } for (byteNum = 0; byteNum < tv[i].data[j].inlen; ++byteNum) { err = gcry_cipher_encrypt (hde, out+byteNum, 1, (tv[i].data[j].plaintext) + byteNum, 1); if (err) { fail ("stream, gcry_cipher_encrypt (%d, %d) failed: %s\n", i, j, gpg_strerror (err)); goto next; } } if (memcmp (tv[i].data[j].out, out, tv[i].data[j].inlen)) fail ("stream, encrypt mismatch entry %d:%d (byte-wise)\n", i, j); for (byteNum = 0; byteNum < tv[i].data[j].inlen; ++byteNum) { err = gcry_cipher_decrypt (hdd, out+byteNum, 1, NULL, 0); if (err) { fail ("stream, gcry_cipher_decrypt (%d, %d) failed: %s\n", i, j, gpg_strerror (err)); goto next; } } if (memcmp (tv[i].data[j].plaintext, out, tv[i].data[j].inlen)) fail ("stream, decrypt mismatch entry %d:%d (byte-wise)\n", i, j); } next: gcry_cipher_close (hde); gcry_cipher_close (hdd); } if (verbose) fprintf (stderr, " Completed stream cipher checks.\n"); } static void check_stream_cipher_large_block (void) { static const struct tv { const char *name; int algo; int keylen; int ivlen; const char *key; const char *iv; struct data { int offset, length; const char *result; } data[MAX_DATA_LEN]; } tv[] = { #ifdef USE_SALSA20 { "Salsa20 256 bit, ecrypt verified, set 6, vector 0", GCRY_CIPHER_SALSA20, 32, 8, "\x00\x53\xA6\xF9\x4C\x9F\xF2\x45\x98\xEB\x3E\x91\xE4\x37\x8A\xDD" "\x30\x83\xD6\x29\x7C\xCF\x22\x75\xC8\x1B\x6E\xC1\x14\x67\xBA\x0D", "\x0D\x74\xDB\x42\xA9\x10\x77\xDE", { { 0, 64, "\xF5\xFA\xD5\x3F\x79\xF9\xDF\x58\xC4\xAE\xA0\xD0\xED\x9A\x96\x01" "\xF2\x78\x11\x2C\xA7\x18\x0D\x56\x5B\x42\x0A\x48\x01\x96\x70\xEA" "\xF2\x4C\xE4\x93\xA8\x62\x63\xF6\x77\xB4\x6A\xCE\x19\x24\x77\x3D" "\x2B\xB2\x55\x71\xE1\xAA\x85\x93\x75\x8F\xC3\x82\xB1\x28\x0B\x71" }, { 65472, 64, "\xB7\x0C\x50\x13\x9C\x63\x33\x2E\xF6\xE7\x7A\xC5\x43\x38\xA4\x07" "\x9B\x82\xBE\xC9\xF9\xA4\x03\xDF\xEA\x82\x1B\x83\xF7\x86\x07\x91" "\x65\x0E\xF1\xB2\x48\x9D\x05\x90\xB1\xDE\x77\x2E\xED\xA4\xE3\xBC" "\xD6\x0F\xA7\xCE\x9C\xD6\x23\xD9\xD2\xFD\x57\x58\xB8\x65\x3E\x70" }, { 65536, 64, "\x81\x58\x2C\x65\xD7\x56\x2B\x80\xAE\xC2\xF1\xA6\x73\xA9\xD0\x1C" "\x9F\x89\x2A\x23\xD4\x91\x9F\x6A\xB4\x7B\x91\x54\xE0\x8E\x69\x9B" "\x41\x17\xD7\xC6\x66\x47\x7B\x60\xF8\x39\x14\x81\x68\x2F\x5D\x95" "\xD9\x66\x23\xDB\xC4\x89\xD8\x8D\xAA\x69\x56\xB9\xF0\x64\x6B\x6E" }, { 131008, 64, "\xA1\x3F\xFA\x12\x08\xF8\xBF\x50\x90\x08\x86\xFA\xAB\x40\xFD\x10" "\xE8\xCA\xA3\x06\xE6\x3D\xF3\x95\x36\xA1\x56\x4F\xB7\x60\xB2\x42" "\xA9\xD6\xA4\x62\x8C\xDC\x87\x87\x62\x83\x4E\x27\xA5\x41\xDA\x2A" "\x5E\x3B\x34\x45\x98\x9C\x76\xF6\x11\xE0\xFE\xC6\xD9\x1A\xCA\xCC" } } }, { "Salsa20 256 bit, ecrypt verified, set 6, vector 1", GCRY_CIPHER_SALSA20, 32, 8, "\x05\x58\xAB\xFE\x51\xA4\xF7\x4A\x9D\xF0\x43\x96\xE9\x3C\x8F\xE2" "\x35\x88\xDB\x2E\x81\xD4\x27\x7A\xCD\x20\x73\xC6\x19\x6C\xBF\x12", "\x16\x7D\xE4\x4B\xB2\x19\x80\xE7", { { 0, 64, "\x39\x44\xF6\xDC\x9F\x85\xB1\x28\x08\x38\x79\xFD\xF1\x90\xF7\xDE" "\xE4\x05\x3A\x07\xBC\x09\x89\x6D\x51\xD0\x69\x0B\xD4\xDA\x4A\xC1" "\x06\x2F\x1E\x47\xD3\xD0\x71\x6F\x80\xA9\xB4\xD8\x5E\x6D\x60\x85" "\xEE\x06\x94\x76\x01\xC8\x5F\x1A\x27\xA2\xF7\x6E\x45\xA6\xAA\x87" }, { 65472, 64, "\x36\xE0\x3B\x4B\x54\xB0\xB2\xE0\x4D\x06\x9E\x69\x00\x82\xC8\xC5" "\x92\xDF\x56\xE6\x33\xF5\xD8\xC7\x68\x2A\x02\xA6\x5E\xCD\x13\x71" "\x8C\xA4\x35\x2A\xAC\xCB\x0D\xA2\x0E\xD6\xBB\xBA\x62\xE1\x77\xF2" "\x10\xE3\x56\x0E\x63\xBB\x82\x2C\x41\x58\xCA\xA8\x06\xA8\x8C\x82" }, { 65536, 64, "\x1B\x77\x9E\x7A\x91\x7C\x8C\x26\x03\x9F\xFB\x23\xCF\x0E\xF8\xE0" "\x8A\x1A\x13\xB4\x3A\xCD\xD9\x40\x2C\xF5\xDF\x38\x50\x10\x98\xDF" "\xC9\x45\xA6\xCC\x69\xA6\xA1\x73\x67\xBC\x03\x43\x1A\x86\xB3\xED" "\x04\xB0\x24\x5B\x56\x37\x9B\xF9\x97\xE2\x58\x00\xAD\x83\x7D\x7D" }, { 131008, 64, "\x7E\xC6\xDA\xE8\x1A\x10\x5E\x67\x17\x2A\x0B\x8C\x4B\xBE\x7D\x06" "\xA7\xA8\x75\x9F\x91\x4F\xBE\xB1\xAF\x62\xC8\xA5\x52\xEF\x4A\x4F" "\x56\x96\x7E\xA2\x9C\x74\x71\xF4\x6F\x3B\x07\xF7\xA3\x74\x6E\x95" "\x3D\x31\x58\x21\xB8\x5B\x6E\x8C\xB4\x01\x22\xB9\x66\x35\x31\x3C" } } }, { "Salsa20 256 bit, ecrypt verified, set 6, vector 2", GCRY_CIPHER_SALSA20, 32, 8, "\x0A\x5D\xB0\x03\x56\xA9\xFC\x4F\xA2\xF5\x48\x9B\xEE\x41\x94\xE7" "\x3A\x8D\xE0\x33\x86\xD9\x2C\x7F\xD2\x25\x78\xCB\x1E\x71\xC4\x17", "\x1F\x86\xED\x54\xBB\x22\x89\xF0", { { 0, 64, "\x3F\xE8\x5D\x5B\xB1\x96\x0A\x82\x48\x0B\x5E\x6F\x4E\x96\x5A\x44" "\x60\xD7\xA5\x45\x01\x66\x4F\x7D\x60\xB5\x4B\x06\x10\x0A\x37\xFF" "\xDC\xF6\xBD\xE5\xCE\x3F\x48\x86\xBA\x77\xDD\x5B\x44\xE9\x56\x44" "\xE4\x0A\x8A\xC6\x58\x01\x15\x5D\xB9\x0F\x02\x52\x2B\x64\x40\x23" }, { 65472, 64, "\xC8\xD6\xE5\x4C\x29\xCA\x20\x40\x18\xA8\x30\xE2\x66\xCE\xEE\x0D" "\x03\x7D\xC4\x7E\x92\x19\x47\x30\x2A\xCE\x40\xD1\xB9\x96\xA6\xD8" "\x0B\x59\x86\x77\xF3\x35\x2F\x1D\xAA\x6D\x98\x88\xF8\x91\xAD\x95" "\xA1\xC3\x2F\xFE\xB7\x1B\xB8\x61\xE8\xB0\x70\x58\x51\x51\x71\xC9" }, { 65536, 64, "\xB7\x9F\xD7\x76\x54\x2B\x46\x20\xEF\xCB\x88\x44\x95\x99\xF2\x34" "\x03\xE7\x4A\x6E\x91\xCA\xCC\x50\xA0\x5A\x8F\x8F\x3C\x0D\xEA\x8B" "\x00\xE1\xA5\xE6\x08\x1F\x55\x26\xAE\x97\x5B\x3B\xC0\x45\x0F\x1A" "\x0C\x8B\x66\xF8\x08\xF1\x90\x4B\x97\x13\x61\x13\x7C\x93\x15\x6F" }, { 131008, 64, "\x79\x98\x20\x4F\xED\x70\xCE\x8E\x0D\x02\x7B\x20\x66\x35\xC0\x8C" "\x8B\xC4\x43\x62\x26\x08\x97\x0E\x40\xE3\xAE\xDF\x3C\xE7\x90\xAE" "\xED\xF8\x9F\x92\x26\x71\xB4\x53\x78\xE2\xCD\x03\xF6\xF6\x23\x56" "\x52\x9C\x41\x58\xB7\xFF\x41\xEE\x85\x4B\x12\x35\x37\x39\x88\xC8" } } }, { "Salsa20 256 bit, ecrypt verified, set 6, vector 3", GCRY_CIPHER_SALSA20, 32, 8, "\x0F\x62\xB5\x08\x5B\xAE\x01\x54\xA7\xFA\x4D\xA0\xF3\x46\x99\xEC" "\x3F\x92\xE5\x38\x8B\xDE\x31\x84\xD7\x2A\x7D\xD0\x23\x76\xC9\x1C", "\x28\x8F\xF6\x5D\xC4\x2B\x92\xF9", { { 0, 64, "\x5E\x5E\x71\xF9\x01\x99\x34\x03\x04\xAB\xB2\x2A\x37\xB6\x62\x5B" "\xF8\x83\xFB\x89\xCE\x3B\x21\xF5\x4A\x10\xB8\x10\x66\xEF\x87\xDA" "\x30\xB7\x76\x99\xAA\x73\x79\xDA\x59\x5C\x77\xDD\x59\x54\x2D\xA2" "\x08\xE5\x95\x4F\x89\xE4\x0E\xB7\xAA\x80\xA8\x4A\x61\x76\x66\x3F" }, { 65472, 64, "\x2D\xA2\x17\x4B\xD1\x50\xA1\xDF\xEC\x17\x96\xE9\x21\xE9\xD6\xE2" "\x4E\xCF\x02\x09\xBC\xBE\xA4\xF9\x83\x70\xFC\xE6\x29\x05\x6F\x64" "\x91\x72\x83\x43\x6E\x2D\x3F\x45\x55\x62\x25\x30\x7D\x5C\xC5\xA5" "\x65\x32\x5D\x89\x93\xB3\x7F\x16\x54\x19\x5C\x24\x0B\xF7\x5B\x16" }, { 65536, 64, "\xAB\xF3\x9A\x21\x0E\xEE\x89\x59\x8B\x71\x33\x37\x70\x56\xC2\xFE" "\xF4\x2D\xA7\x31\x32\x75\x63\xFB\x67\xC7\xBE\xDB\x27\xF3\x8C\x7C" "\x5A\x3F\xC2\x18\x3A\x4C\x6B\x27\x7F\x90\x11\x52\x47\x2C\x6B\x2A" "\xBC\xF5\xE3\x4C\xBE\x31\x5E\x81\xFD\x3D\x18\x0B\x5D\x66\xCB\x6C" }, { 131008, 64, "\x1B\xA8\x9D\xBD\x3F\x98\x83\x97\x28\xF5\x67\x91\xD5\xB7\xCE\x23" "\x50\x36\xDE\x84\x3C\xCC\xAB\x03\x90\xB8\xB5\x86\x2F\x1E\x45\x96" "\xAE\x8A\x16\xFB\x23\xDA\x99\x7F\x37\x1F\x4E\x0A\xAC\xC2\x6D\xB8" "\xEB\x31\x4E\xD4\x70\xB1\xAF\x6B\x9F\x8D\x69\xDD\x79\xA9\xD7\x50" } } }, { "Salsa20/12 256 bit, ecrypt verified, set 6, vector 0", GCRY_CIPHER_SALSA20R12, 32, 8, "\x00\x53\xA6\xF9\x4C\x9F\xF2\x45\x98\xEB\x3E\x91\xE4\x37\x8A\xDD" "\x30\x83\xD6\x29\x7C\xCF\x22\x75\xC8\x1B\x6E\xC1\x14\x67\xBA\x0D", "\x0D\x74\xDB\x42\xA9\x10\x77\xDE", { { 0, 64, "\x52\xE2\x0C\xF8\x77\x5A\xE8\x82\xF2\x00\xC2\x99\x9F\xE4\xBA\x31" "\xA7\xA1\x8F\x1D\x5C\x97\x16\x19\x1D\x12\x31\x75\xE1\x47\xBD\x4E" "\x8C\xA6\xED\x16\x6C\xE0\xFC\x8E\x65\xA5\xCA\x60\x84\x20\xFC\x65" "\x44\xC9\x70\x0A\x0F\x21\x38\xE8\xC1\xA2\x86\xFB\x8C\x1F\xBF\xA0" }, { 65472, 64, "\x8F\xBC\x9F\xE8\x69\x1B\xD4\xF0\x82\xB4\x7F\x54\x05\xED\xFB\xC1" "\x6F\x4D\x5A\x12\xDD\xCB\x2D\x75\x4E\x8A\x99\x98\xD0\xB2\x19\x55" "\x7D\xFE\x29\x84\xF4\xA1\xD2\xDD\xA7\x6B\x95\x96\x92\x8C\xCE\x05" "\x56\xF5\x00\x66\xCD\x59\x9E\x44\xEF\x5C\x14\xB2\x26\x68\x3A\xEF" }, { 65536, 64, "\xBC\xBD\x01\xDD\x28\x96\x1C\xC7\xAD\x30\x47\x38\x6C\xBC\xC6\x7C" "\x10\x8D\x6A\xF1\x11\x67\xE4\x0D\x7A\xE1\xB2\xFC\x45\x18\xA8\x67" "\xEF\xE4\x02\x65\x1D\x1D\x88\x51\xC4\xFD\x23\x30\xC5\x97\xB3\x6A" "\x46\xD5\x68\x9E\x00\xFC\x96\xFE\xCF\x9C\xE3\xE2\x21\x1D\x44\xBE" }, { 131008, 64, "\x91\x66\xF3\x1C\xD8\x5B\x5B\xB1\x8F\xC6\x14\xE5\x4E\x4A\xD6\x7F" "\xB8\x65\x8E\x3B\xF9\xFB\x19\xB7\xA8\x2F\x0F\xE7\xDC\x90\x2D\xF5" "\x63\xC6\xAC\x4F\x44\x67\x48\xC4\xBC\x3E\x14\x05\xE1\x24\x82\x0D" "\xC4\x09\x41\x99\x8F\x44\xA8\x10\xE7\x22\x78\x7F\xCD\x47\x78\x4C" } } }, { "Salsa20/12 256 bit, ecrypt verified, set 6, vector 1", GCRY_CIPHER_SALSA20R12, 32, 8, "\x05\x58\xAB\xFE\x51\xA4\xF7\x4A\x9D\xF0\x43\x96\xE9\x3C\x8F\xE2" "\x35\x88\xDB\x2E\x81\xD4\x27\x7A\xCD\x20\x73\xC6\x19\x6C\xBF\x12", "\x16\x7D\xE4\x4B\xB2\x19\x80\xE7", { { 0, 64, "\xC0\x75\x60\xB3\xE7\x76\xB4\x71\xC5\xE2\x93\x14\x26\xCA\xF1\xED" "\x3A\xE4\xB8\x67\x08\x76\x82\xCA\x9D\xFD\xC2\xBA\xE8\x93\x50\xBD" "\x84\x82\x1C\xAE\xFF\x85\xAA\xC4\x9D\x74\x35\xA7\xD9\x88\x93\x52" "\xF5\x27\x9E\x36\x12\x3F\x41\x72\x8A\x14\xEF\x26\x9F\xCB\x94\x4B" }, { 65472, 64, "\xEE\xD1\xBB\x58\xF9\x0C\x89\xE0\x5C\xC6\x8B\x2D\xB6\x05\x58\x49" "\xB3\xD2\xB1\x87\xB7\xF0\x2F\x9A\x24\xCE\x34\x2A\xF0\xFC\x47\xA3" "\x74\xBD\x75\x90\xFB\xF4\xFD\x9E\xE5\x9B\x1A\x38\x1E\xBF\xD2\x29" "\xAD\x2A\x29\x01\xB3\xFB\x61\x08\x12\x90\x0B\x92\x30\xE6\x22\xE9" }, { 65536, 64, "\x70\xF0\x49\x3A\x1B\x62\x53\xCC\x5E\xD3\x45\x0A\x31\xCF\x37\x7D" "\x83\x4B\xAD\x20\x72\x30\x29\x27\xCC\xD8\x30\x10\x4B\xD3\x05\xFF" "\x59\xD2\x94\x17\xB2\x32\x88\x4E\xC9\x59\x19\x4D\x60\x47\xC3\xDD" "\x66\x56\xC4\x7E\x32\x00\x64\xEB\x01\x44\xF7\x34\x1B\xC3\xD6\x97" }, { 131008, 64, "\xD2\xCC\xF7\xC1\xAF\x2A\xB4\x66\xE6\x27\xDB\x44\x08\x40\x96\x9A" "\xBD\xAB\x68\xD8\x86\xAE\x6A\x38\xA1\x3F\xEE\x17\x50\xCA\x97\xB5" "\xD3\x31\x5B\x84\x08\x47\x28\x86\x2F\xBC\xC7\xD4\xA9\x7C\x75\xC8" "\x65\x5F\xF9\xD6\xBB\xC2\x61\x88\x63\x6F\x3E\xDF\xE1\x5C\x7D\x30" } } }, { "Salsa20/12 256 bit, ecrypt verified, set 6, vector 2", GCRY_CIPHER_SALSA20R12, 32, 8, "\x0A\x5D\xB0\x03\x56\xA9\xFC\x4F\xA2\xF5\x48\x9B\xEE\x41\x94\xE7" "\x3A\x8D\xE0\x33\x86\xD9\x2C\x7F\xD2\x25\x78\xCB\x1E\x71\xC4\x17", "\x1F\x86\xED\x54\xBB\x22\x89\xF0", { { 0, 64, "\x51\x22\x52\x91\x01\x90\xD1\x54\xD1\x4D\x0B\x92\x32\xB8\x84\x31" "\x8C\xCB\x43\x81\x9B\xD5\x42\x19\x32\xC0\x3A\x13\xF0\x7B\x40\x10" "\x83\xD7\x89\x72\x5A\xA9\xDA\x0B\x41\xCB\x62\x24\x94\x5E\xDC\xB0" "\xFB\x6F\xD7\xC2\x34\x22\x35\xC9\x70\xF6\x4E\x10\x1C\x25\x68\x64" }, { 65472, 64, "\x97\x96\x74\x55\x84\x0A\x4A\xE5\xC1\xCA\xCE\x49\x15\x19\x13\x8A" "\xA3\x5E\x5F\x02\x40\x7D\x4A\x1F\xE5\x08\x6D\x35\xF3\x55\x1E\xF4" "\x77\xD9\x28\x9D\x17\x23\x79\x7C\x1A\x49\xEC\x26\x62\x9A\xFA\xDC" "\x56\xA0\x38\xA3\x8C\x75\x88\x1B\x62\x17\xFD\x74\x67\x25\x59\x09" }, { 65536, 64, "\x1B\xF8\x2E\x3D\x5C\x54\xDA\xAB\xCF\x84\x15\xF8\xA2\xA1\xA2\x2E" "\x86\x88\x06\x33\x4F\xF3\x11\x36\x04\x74\x1C\x1D\xF2\xB9\x84\x0F" "\x87\xDE\xEF\xB0\x07\x23\xA8\xA1\xB2\x4A\x4D\xA1\x7E\xCD\xAD\x00" "\x01\xF9\x79\xDD\xAE\x2D\xF0\xC5\xE1\xE5\x32\xC4\x8F\x8E\x0D\x34" }, { 131008, 64, "\x06\xD8\x4F\x6A\x71\x34\x84\x20\x32\x9F\xCD\x0C\x41\x75\x9A\xD1" "\x8F\x99\x57\xA3\x8F\x22\x89\x3B\xA5\x58\xC5\x05\x11\x97\x28\x5C" "\x6B\xE2\xFD\x6C\x96\xA5\xC6\x62\xAF\xD3\x11\x78\xE7\x0F\x96\x0A" "\xAB\x3F\x47\x96\x23\xA4\x44\xB6\x81\x91\xE4\xC5\x28\x46\x93\x88" } } }, { "Salsa20/12 256 bit, ecrypt verified, set 6, vector 3", GCRY_CIPHER_SALSA20R12, 32, 8, "\x0F\x62\xB5\x08\x5B\xAE\x01\x54\xA7\xFA\x4D\xA0\xF3\x46\x99\xEC" "\x3F\x92\xE5\x38\x8B\xDE\x31\x84\xD7\x2A\x7D\xD0\x23\x76\xC9\x1C", "\x28\x8F\xF6\x5D\xC4\x2B\x92\xF9", { { 0, 64, "\x99\xDB\x33\xAD\x11\xCE\x0C\xCB\x3B\xFD\xBF\x8D\x0C\x18\x16\x04" "\x52\xD0\x14\xCD\xE9\x89\xB4\xC4\x11\xA5\x59\xFF\x7C\x20\xA1\x69" "\xE6\xDC\x99\x09\xD8\x16\xBE\xCE\xDC\x40\x63\xCE\x07\xCE\xA8\x28" "\xF4\x4B\xF9\xB6\xC9\xA0\xA0\xB2\x00\xE1\xB5\x2A\xF4\x18\x59\xC5" }, { 65472, 64, "\x2F\xF2\x02\x64\xEE\xAF\x47\xAB\x7D\x57\xC3\x62\x24\x53\x54\x51" "\x73\x5A\xC8\x36\xD3\x2D\xD2\x8A\xE6\x36\x45\xCE\x95\x2F\x7F\xDB" "\xE6\x68\x9C\x69\x59\x77\xB1\xC7\x6E\x60\xDD\x5B\x27\xAC\xA4\x76" "\xD2\x62\x0F\xDC\x93\x13\xE8\x48\x9B\xA5\x6A\x70\xC9\xF4\xC3\xA8" }, { 65536, 64, "\xEB\x30\xCD\xA7\x27\xC0\xF8\xB7\xE4\x5D\x5E\xF3\x0D\xB7\xCB\xE0" "\x21\xF2\x29\x1E\x5F\x56\x93\x8D\x56\xF6\x87\xB7\x37\xC3\xB4\x27" "\x54\x5C\x56\xA6\xD3\xA0\xBF\x2B\x2F\x47\xB4\x84\x93\xFA\xE4\x5E" "\xD5\x0C\x2E\x9B\xBE\x49\xFD\x92\xD6\x7C\x76\x49\x05\x5F\x06\xFD" }, { 131008, 64, "\x0E\xBF\x6C\xC3\xCB\xCB\xE7\x4E\x6E\xE8\x07\x47\x1B\x49\x2A\x67" "\x39\xA5\x2F\x57\x11\x31\xA2\x50\xBC\xDF\xA0\x76\xA2\x65\x90\xD7" "\xED\xE6\x75\x1C\x03\x26\xA0\x2C\xB1\x1C\x58\x77\x35\x52\x80\x4F" "\xD8\x68\x67\x15\x35\x5C\x5A\x5C\xC5\x91\x96\x3A\x75\xE9\x94\xB4" } } } #endif /*USE_SALSA20*/ }; char zeroes[512]; gcry_cipher_hd_t hde; unsigned char *buffer; unsigned char *p; size_t buffersize; unsigned int n; int i, j; gcry_error_t err = 0; if (verbose) fprintf (stderr, " Starting large block stream cipher checks.\n"); memset (zeroes, 0, 512); buffersize = 128 * 1024; buffer = gcry_xmalloc (buffersize+1024); memset (buffer+buffersize, 0x5a, 1024); for (i = 0; i < sizeof (tv) / sizeof (tv[0]); i++) { if (gcry_cipher_test_algo (tv[i].algo) && in_fips_mode) { if (verbose) fprintf (stderr, " algorithm %d not available in fips mode\n", tv[i].algo); continue; } if (verbose) fprintf (stderr, " checking large block stream for %s [%i] (%s)\n", gcry_cipher_algo_name (tv[i].algo), tv[i].algo, tv[i].name); err = gcry_cipher_open (&hde, tv[i].algo, GCRY_CIPHER_MODE_STREAM, 0); if (err) { fail ("large stream, gcry_cipher_open for stream mode failed: %s\n", gpg_strerror (err)); continue; } err = gcry_cipher_setkey (hde, tv[i].key, tv[i].keylen); if (err) { fail ("large stream, gcry_cipher_setkey failed: %s\n", gpg_strerror (err)); goto next; } err = gcry_cipher_setiv (hde, tv[i].iv, tv[i].ivlen); if (err) { fail ("large stream, gcry_cipher_setiv failed: %s\n", gpg_strerror (err)); goto next; } for (j=0, p=buffer; j < buffersize/512; j++, p += 512) { err = gcry_cipher_encrypt (hde, p, 512, zeroes, 512); if (err) { fail ("large stream, " "gcry_cipher_encrypt (%d) block %d failed: %s\n", i, j, gpg_strerror (err)); goto next; } } for (j=0, p=buffer+buffersize; j < 1024; j++, p++) if (*p != 0x5a) die ("large stream, buffer corrupted at j=%d\n", j); /* Now loop over all the data samples. */ for (j = 0; tv[i].data[j].length; j++) { assert (tv[i].data[j].offset + tv[i].data[j].length <= buffersize); if (memcmp (tv[i].data[j].result, buffer + tv[i].data[j].offset, tv[i].data[j].length)) { fail ("large stream, encrypt mismatch entry %d:%d\n", i, j); mismatch (tv[i].data[j].result, tv[i].data[j].length, buffer + tv[i].data[j].offset, tv[i].data[j].length); } } /* * Let's do the same thing again but using changing block sizes. */ err = gcry_cipher_setkey (hde, tv[i].key, tv[i].keylen); if (err) { fail ("large stream, gcry_cipher_setkey failed: %s\n", gpg_strerror (err)); goto next; } err = gcry_cipher_setiv (hde, tv[i].iv, tv[i].ivlen); if (err) { fail ("large stream, gcry_cipher_setiv failed: %s\n", gpg_strerror (err)); goto next; } for (n=0, p=buffer, j = 0; n < buffersize; n += j, p += j) { switch (j) { case 0: j = 1; break; case 1: j = 64; break; case 64: j= 384; break; case 384: j = 63; break; case 63: j = 512; break; case 512: j = 32; break; case 32: j = 503; break; default: j = 509; break; } if ( n + j >= buffersize ) j = buffersize - n; assert (j <= 512); err = gcry_cipher_encrypt (hde, p, j, zeroes, j); if (err) { fail ("large stream, " "gcry_cipher_encrypt (%d) offset %u failed: %s\n", i, n, gpg_strerror (err)); goto next; } } for (j=0, p=buffer+buffersize; j < 1024; j++, p++) if (*p != 0x5a) die ("large stream, buffer corrupted at j=%d (line %d)\n", j, __LINE__); /* Now loop over all the data samples. */ for (j = 0; tv[i].data[j].length; j++) { assert (tv[i].data[j].offset + tv[i].data[j].length <= buffersize); if (memcmp (tv[i].data[j].result, buffer + tv[i].data[j].offset, tv[i].data[j].length)) { fail ("large stream var, encrypt mismatch entry %d:%d\n", i, j); mismatch (tv[i].data[j].result, tv[i].data[j].length, buffer + tv[i].data[j].offset, tv[i].data[j].length); } } next: gcry_cipher_close (hde); } gcry_free (buffer); if (verbose) fprintf (stderr, " Completed large block stream cipher checks.\n"); } /* Check that our bulk encryption functions work properly. */ static void check_bulk_cipher_modes (void) { static const struct { int algo; int mode; const char *key; int keylen; const char *iv; int ivlen; char t1_hash[20]; } tv[] = { { GCRY_CIPHER_AES, GCRY_CIPHER_MODE_CFB, "abcdefghijklmnop", 16, "1234567890123456", 16, /*[0]*/ { 0x53, 0xda, 0x27, 0x3c, 0x78, 0x3d, 0x54, 0x66, 0x19, 0x63, 0xd7, 0xe6, 0x20, 0x10, 0xcd, 0xc0, 0x5a, 0x0b, 0x06, 0xcc } }, { GCRY_CIPHER_AES192, GCRY_CIPHER_MODE_CFB, "abcdefghijklmnopABCDEFG", 24, "1234567890123456", 16, /*[1]*/ { 0xc7, 0xb1, 0xd0, 0x09, 0x95, 0x04, 0x34, 0x61, 0x2b, 0xd9, 0xcb, 0xb3, 0xc7, 0xcb, 0xef, 0xea, 0x16, 0x19, 0x9b, 0x3e } }, { GCRY_CIPHER_AES256, GCRY_CIPHER_MODE_CFB, "abcdefghijklmnopABCDEFGHIJKLMNOP", 32, "1234567890123456", 16, /*[2]*/ { 0x31, 0xe1, 0x1f, 0x63, 0x65, 0x47, 0x8c, 0x3f, 0x53, 0xdb, 0xd9, 0x4d, 0x91, 0x1d, 0x02, 0x9c, 0x05, 0x25, 0x58, 0x29 } }, { GCRY_CIPHER_AES, GCRY_CIPHER_MODE_CBC, "abcdefghijklmnop", 16, "1234567890123456", 16, /*[3]*/ { 0xdc, 0x0c, 0xc2, 0xd9, 0x6b, 0x47, 0xf9, 0xeb, 0x06, 0xb4, 0x2f, 0x6e, 0xec, 0x72, 0xbf, 0x55, 0x26, 0x7f, 0xa9, 0x97 } }, { GCRY_CIPHER_AES192, GCRY_CIPHER_MODE_CBC, "abcdefghijklmnopABCDEFG", 24, "1234567890123456", 16, /*[4]*/ { 0x2b, 0x90, 0x9b, 0xe6, 0x40, 0xab, 0x6e, 0xc2, 0xc5, 0xb1, 0x87, 0xf5, 0x43, 0x84, 0x7b, 0x04, 0x06, 0x47, 0xd1, 0x8f } }, { GCRY_CIPHER_AES256, GCRY_CIPHER_MODE_CBC, "abcdefghijklmnopABCDEFGHIJKLMNOP", 32, "1234567890123456", 16, /*[5]*/ { 0xaa, 0xa8, 0xdf, 0x03, 0xb0, 0xba, 0xc4, 0xe3, 0xc1, 0x02, 0x38, 0x31, 0x8d, 0x86, 0xcb, 0x49, 0x6d, 0xad, 0xae, 0x01 } }, { GCRY_CIPHER_AES, GCRY_CIPHER_MODE_OFB, "abcdefghijklmnop", 16, "1234567890123456", 16, /*[6]*/ { 0x65, 0xfe, 0xde, 0x48, 0xd0, 0xa1, 0xa6, 0xf9, 0x24, 0x6b, 0x52, 0x5f, 0x21, 0x8a, 0x6f, 0xc7, 0x70, 0x3b, 0xd8, 0x4a } }, { GCRY_CIPHER_AES192, GCRY_CIPHER_MODE_OFB, "abcdefghijklmnopABCDEFG", 24, "1234567890123456", 16, /*[7]*/ { 0x59, 0x5b, 0x02, 0xa2, 0x88, 0xc0, 0xbe, 0x94, 0x43, 0xaa, 0x39, 0xf6, 0xbd, 0xcc, 0x83, 0x99, 0xee, 0x00, 0xa1, 0x91 } }, { GCRY_CIPHER_AES256, GCRY_CIPHER_MODE_OFB, "abcdefghijklmnopABCDEFGHIJKLMNOP", 32, "1234567890123456", 16, /*[8]*/ { 0x38, 0x8c, 0xe1, 0xe2, 0xbe, 0x67, 0x60, 0xe8, 0xeb, 0xce, 0xd0, 0xc6, 0xaa, 0xd6, 0xf6, 0x26, 0x15, 0x56, 0xd0, 0x2b } }, { GCRY_CIPHER_AES, GCRY_CIPHER_MODE_CTR, "abcdefghijklmnop", 16, "1234567890123456", 16, /*[9]*/ { 0x9a, 0x48, 0x94, 0xd6, 0x50, 0x46, 0x81, 0xdb, 0x68, 0x34, 0x3b, 0xc5, 0x9e, 0x66, 0x94, 0x81, 0x98, 0xa0, 0xf9, 0xff } }, { GCRY_CIPHER_AES192, GCRY_CIPHER_MODE_CTR, "abcdefghijklmnopABCDEFG", 24, "1234567890123456", 16, /*[10]*/ { 0x2c, 0x2c, 0xd3, 0x75, 0x81, 0x2a, 0x59, 0x07, 0xeb, 0x08, 0xce, 0x28, 0x4c, 0x0c, 0x6a, 0xa8, 0x8f, 0xa3, 0x98, 0x7e } }, { GCRY_CIPHER_AES256, GCRY_CIPHER_MODE_CTR, "abcdefghijklmnopABCDEFGHIJKLMNOP", 32, "1234567890123456", 16, /*[11]*/ { 0x64, 0xce, 0x73, 0x03, 0xc7, 0x89, 0x99, 0x1f, 0xf1, 0xce, 0xfe, 0xfb, 0xb9, 0x42, 0x30, 0xdf, 0xbb, 0x68, 0x6f, 0xd3 } }, { GCRY_CIPHER_AES, GCRY_CIPHER_MODE_ECB, "abcdefghijklmnop", 16, "1234567890123456", 16, /*[12]*/ { 0x51, 0xae, 0xf5, 0xac, 0x22, 0xa0, 0xba, 0x11, 0xc5, 0xaa, 0xb4, 0x70, 0x99, 0xce, 0x18, 0x08, 0x12, 0x9b, 0xb1, 0xc5 } }, { GCRY_CIPHER_AES192, GCRY_CIPHER_MODE_ECB, "abcdefghijklmnopABCDEFG", 24, "1234567890123456", 16, /*[13]*/ { 0x57, 0x91, 0xea, 0x48, 0xd8, 0xbf, 0x9e, 0xc1, 0xae, 0x33, 0xb3, 0xfd, 0xf7, 0x7a, 0xeb, 0x30, 0xb1, 0x62, 0x0d, 0x82 } }, { GCRY_CIPHER_AES256, GCRY_CIPHER_MODE_ECB, "abcdefghijklmnopABCDEFGHIJKLMNOP", 32, "1234567890123456", 16, /*[14]*/ { 0x2d, 0x71, 0x54, 0xb9, 0xc5, 0x28, 0x76, 0xff, 0x76, 0xb5, 0x99, 0x37, 0x99, 0x9d, 0xf7, 0x10, 0x6d, 0x86, 0x4f, 0x3f } }, { GCRY_CIPHER_AES128, GCRY_CIPHER_MODE_XTS, "abcdefghijklmnopABCDEFGHIJKLMNOP", 32, "1234567890123456", 16, /*[15]*/ { 0x71, 0x46, 0x40, 0xb0, 0xed, 0x6f, 0xc4, 0x82, 0x2b, 0x3f, 0xb6, 0xf7, 0x81, 0x08, 0x4c, 0x8b, 0xc1, 0x66, 0x4c, 0x1b } }, { GCRY_CIPHER_AES256, GCRY_CIPHER_MODE_XTS, "abcdefghijklmnopABCDEFGHIJKLMNOP_abcdefghijklmnopABCDEFGHIJKLMNO", 64, "1234567890123456", 16, /*[16]*/ { 0x8e, 0xbc, 0xa5, 0x21, 0x0a, 0x4b, 0x53, 0x14, 0x79, 0x81, 0x25, 0xad, 0x24, 0x45, 0x98, 0xbd, 0x9f, 0x27, 0x5f, 0x01 } } }; gcry_cipher_hd_t hde = NULL; gcry_cipher_hd_t hdd = NULL; unsigned char *buffer_base, *outbuf_base; /* Allocated buffers. */ unsigned char *buffer, *outbuf; /* Aligned buffers. */ size_t buflen; unsigned char hash[20]; int i, j, keylen, blklen; gcry_error_t err = 0; if (verbose) fprintf (stderr, "Starting bulk cipher checks.\n"); buflen = 16*100; /* We check a 1600 byte buffer. */ buffer_base = gcry_xmalloc (buflen+16); buffer = buffer_base + (16 - ((size_t)buffer_base & 0x0f)); outbuf_base = gcry_xmalloc (buflen+16); outbuf = outbuf_base + (16 - ((size_t)outbuf_base & 0x0f)); for (i = 0; i < DIM (tv); i++) { if (verbose) fprintf (stderr, " checking bulk encryption for %s [%i], mode %d\n", gcry_cipher_algo_name (tv[i].algo), tv[i].algo, tv[i].mode); err = gcry_cipher_open (&hde, tv[i].algo, tv[i].mode, 0); if (!err) err = gcry_cipher_open (&hdd, tv[i].algo, tv[i].mode, 0); if (err) { fail ("gcry_cipher_open failed: %s\n", gpg_strerror (err)); goto leave; } keylen = gcry_cipher_get_algo_keylen(tv[i].algo); if (!keylen) { fail ("gcry_cipher_get_algo_keylen failed\n"); goto leave; } err = gcry_cipher_setkey (hde, tv[i].key, tv[i].keylen); if (!err) err = gcry_cipher_setkey (hdd, tv[i].key, tv[i].keylen); if (err) { fail ("gcry_cipher_setkey failed: %s\n", gpg_strerror (err)); goto leave; } blklen = gcry_cipher_get_algo_blklen(tv[i].algo); if (!blklen) { fail ("gcry_cipher_get_algo_blklen failed\n"); goto leave; } err = gcry_cipher_setiv (hde, tv[i].iv, tv[i].ivlen); if (!err) err = gcry_cipher_setiv (hdd, tv[i].iv, tv[i].ivlen); if (err) { fail ("gcry_cipher_setiv failed: %s\n", gpg_strerror (err)); goto leave; } /* Fill the buffer with our test pattern. */ for (j=0; j < buflen; j++) buffer[j] = ((j & 0xff) ^ ((j >> 8) & 0xff)); err = gcry_cipher_encrypt (hde, outbuf, buflen, buffer, buflen); if (err) { fail ("gcry_cipher_encrypt (algo %d, mode %d) failed: %s\n", tv[i].algo, tv[i].mode, gpg_strerror (err)); goto leave; } gcry_md_hash_buffer (GCRY_MD_SHA1, hash, outbuf, buflen); #if 0 printf ("/*[%d]*/\n", i); fputs (" {", stdout); for (j=0; j < 20; j++) printf (" 0x%02x%c%s", hash[j], j==19? ' ':',', j == 9? "\n ":""); puts ("}"); #endif if (memcmp (hash, tv[i].t1_hash, 20)) fail ("encrypt mismatch (algo %d, mode %d)\n", tv[i].algo, tv[i].mode); err = gcry_cipher_decrypt (hdd, outbuf, buflen, NULL, 0); if (err) { fail ("gcry_cipher_decrypt (algo %d, mode %d) failed: %s\n", tv[i].algo, tv[i].mode, gpg_strerror (err)); goto leave; } if (memcmp (buffer, outbuf, buflen)) fail ("decrypt mismatch (algo %d, mode %d)\n", tv[i].algo, tv[i].mode); gcry_cipher_close (hde); hde = NULL; gcry_cipher_close (hdd); hdd = NULL; } if (verbose) fprintf (stderr, "Completed bulk cipher checks.\n"); leave: gcry_cipher_close (hde); gcry_cipher_close (hdd); gcry_free (buffer_base); gcry_free (outbuf_base); } static unsigned int get_algo_mode_blklen (int algo, int mode) { unsigned int blklen = gcry_cipher_get_algo_blklen(algo); /* Some modes override blklen. */ switch (mode) { case GCRY_CIPHER_MODE_STREAM: case GCRY_CIPHER_MODE_OFB: case GCRY_CIPHER_MODE_CTR: case GCRY_CIPHER_MODE_CCM: case GCRY_CIPHER_MODE_GCM: + case GCRY_CIPHER_MODE_EAX: case GCRY_CIPHER_MODE_POLY1305: return 1; } return blklen; } static int check_one_cipher_core_reset (gcry_cipher_hd_t hd, int algo, int mode, int pass, int nplain) { static const unsigned char iv[8] = { 0, 1, 2, 3, 4, 5, 6, 7 }; u64 ctl_params[3]; int err; gcry_cipher_reset (hd); if (mode == GCRY_CIPHER_MODE_OCB || mode == GCRY_CIPHER_MODE_CCM) { err = gcry_cipher_setiv (hd, iv, sizeof(iv)); if (err) { fail ("pass %d, algo %d, mode %d, gcry_cipher_setiv failed: %s\n", pass, algo, mode, gpg_strerror (err)); gcry_cipher_close (hd); return -1; } } if (mode == GCRY_CIPHER_MODE_CCM) { ctl_params[0] = nplain; /* encryptedlen */ ctl_params[1] = 0; /* aadlen */ ctl_params[2] = 16; /* authtaglen */ err = gcry_cipher_ctl (hd, GCRYCTL_SET_CCM_LENGTHS, ctl_params, sizeof(ctl_params)); if (err) { fail ("pass %d, algo %d, mode %d, gcry_cipher_ctl " "GCRYCTL_SET_CCM_LENGTHS failed: %s\n", pass, algo, mode, gpg_strerror (err)); gcry_cipher_close (hd); return -1; } } return 0; } /* The core of the cipher check. In addition to the parameters passed to check_one_cipher it also receives the KEY and the plain data. PASS is printed with error messages. The function returns 0 on success. */ static int check_one_cipher_core (int algo, int mode, int flags, const char *key, size_t nkey, const unsigned char *plain, size_t nplain, int bufshift, int pass) { gcry_cipher_hd_t hd; unsigned char in_buffer[1040+1], out_buffer[1040+1]; unsigned char enc_result[1040]; unsigned char *in, *out; int keylen; gcry_error_t err = 0; unsigned int blklen; unsigned int piecelen; unsigned int pos; blklen = get_algo_mode_blklen(algo, mode); assert (nkey == 64); assert (nplain == 1040); assert (sizeof(in_buffer) == nplain + 1); assert (sizeof(out_buffer) == sizeof(in_buffer)); assert (blklen > 0); if ((mode == GCRY_CIPHER_MODE_CBC && (flags & GCRY_CIPHER_CBC_CTS)) || mode == GCRY_CIPHER_MODE_XTS) { - /* Input cannot be split in to multiple operations with CTS . */ + /* Input cannot be split in to multiple operations with CTS. */ blklen = nplain; } if (!bufshift) { in = in_buffer; out = out_buffer; } else if (bufshift == 1) { in = in_buffer+1; out = out_buffer; } else if (bufshift == 2) { in = in_buffer+1; out = out_buffer+1; } else { in = in_buffer; out = out_buffer+1; } keylen = gcry_cipher_get_algo_keylen (algo); if (!keylen) { fail ("pass %d, algo %d, mode %d, gcry_cipher_get_algo_keylen failed\n", pass, algo, mode); return -1; } if (keylen < 40 / 8 || keylen > 32) { fail ("pass %d, algo %d, mode %d, keylength problem (%d)\n", pass, algo, mode, keylen); return -1; } if (mode == GCRY_CIPHER_MODE_XTS) { keylen *= 2; } err = gcry_cipher_open (&hd, algo, mode, flags); if (err) { fail ("pass %d, algo %d, mode %d, gcry_cipher_open failed: %s\n", pass, algo, mode, gpg_strerror (err)); return -1; } err = gcry_cipher_setkey (hd, key, keylen); if (err) { fail ("pass %d, algo %d, mode %d, gcry_cipher_setkey failed: %s\n", pass, algo, mode, gpg_strerror (err)); gcry_cipher_close (hd); return -1; } if (check_one_cipher_core_reset (hd, algo, mode, pass, nplain) < 0) return -1; err = gcry_cipher_encrypt (hd, out, nplain, plain, nplain); if (err) { fail ("pass %d, algo %d, mode %d, gcry_cipher_encrypt failed: %s\n", pass, algo, mode, gpg_strerror (err)); gcry_cipher_close (hd); return -1; } memcpy (enc_result, out, nplain); if (check_one_cipher_core_reset (hd, algo, mode, pass, nplain) < 0) return -1; err = gcry_cipher_decrypt (hd, in, nplain, out, nplain); if (err) { fail ("pass %d, algo %d, mode %d, gcry_cipher_decrypt failed: %s\n", pass, algo, mode, gpg_strerror (err)); gcry_cipher_close (hd); return -1; } if (memcmp (plain, in, nplain)) fail ("pass %d, algo %d, mode %d, encrypt-decrypt mismatch\n", pass, algo, mode); /* Again, using in-place encryption. */ if (check_one_cipher_core_reset (hd, algo, mode, pass, nplain) < 0) return -1; memcpy (out, plain, nplain); err = gcry_cipher_encrypt (hd, out, nplain, NULL, 0); if (err) { fail ("pass %d, algo %d, mode %d, in-place, gcry_cipher_encrypt failed:" " %s\n", pass, algo, mode, gpg_strerror (err)); gcry_cipher_close (hd); return -1; } if (memcmp (enc_result, out, nplain)) fail ("pass %d, algo %d, mode %d, in-place, encrypt mismatch\n", pass, algo, mode); if (check_one_cipher_core_reset (hd, algo, mode, pass, nplain) < 0) return -1; err = gcry_cipher_decrypt (hd, out, nplain, NULL, 0); if (err) { fail ("pass %d, algo %d, mode %d, in-place, gcry_cipher_decrypt failed:" " %s\n", pass, algo, mode, gpg_strerror (err)); gcry_cipher_close (hd); return -1; } if (memcmp (plain, out, nplain)) fail ("pass %d, algo %d, mode %d, in-place, encrypt-decrypt mismatch\n", pass, algo, mode); /* Again, splitting encryption in multiple operations. */ if (check_one_cipher_core_reset (hd, algo, mode, pass, nplain) < 0) return -1; piecelen = blklen; pos = 0; while (pos < nplain) { if (piecelen > nplain - pos) piecelen = nplain - pos; err = gcry_cipher_encrypt (hd, out + pos, piecelen, plain + pos, piecelen); if (err) { fail ("pass %d, algo %d, mode %d, split-buffer (pos: %d, " "piecelen: %d), gcry_cipher_encrypt failed: %s\n", pass, algo, mode, pos, piecelen, gpg_strerror (err)); gcry_cipher_close (hd); return -1; } pos += piecelen; piecelen = piecelen * 2 - ((piecelen != blklen) ? blklen : 0); } if (memcmp (enc_result, out, nplain)) fail ("pass %d, algo %d, mode %d, split-buffer, encrypt mismatch\n", pass, algo, mode); if (check_one_cipher_core_reset (hd, algo, mode, pass, nplain) < 0) return -1; piecelen = blklen; pos = 0; while (pos < nplain) { if (piecelen > nplain - pos) piecelen = nplain - pos; err = gcry_cipher_decrypt (hd, in + pos, piecelen, out + pos, piecelen); if (err) { fail ("pass %d, algo %d, mode %d, split-buffer (pos: %d, " "piecelen: %d), gcry_cipher_decrypt failed: %s\n", pass, algo, mode, pos, piecelen, gpg_strerror (err)); gcry_cipher_close (hd); return -1; } pos += piecelen; piecelen = piecelen * 2 - ((piecelen != blklen) ? blklen : 0); } if (memcmp (plain, in, nplain)) fail ("pass %d, algo %d, mode %d, split-buffer, encrypt-decrypt mismatch\n", pass, algo, mode); /* Again, using in-place encryption and splitting encryption in multiple * operations. */ if (check_one_cipher_core_reset (hd, algo, mode, pass, nplain) < 0) return -1; piecelen = blklen; pos = 0; while (pos < nplain) { if (piecelen > nplain - pos) piecelen = nplain - pos; memcpy (out + pos, plain + pos, piecelen); err = gcry_cipher_encrypt (hd, out + pos, piecelen, NULL, 0); if (err) { fail ("pass %d, algo %d, mode %d, in-place split-buffer (pos: %d, " "piecelen: %d), gcry_cipher_encrypt failed: %s\n", pass, algo, mode, pos, piecelen, gpg_strerror (err)); gcry_cipher_close (hd); return -1; } pos += piecelen; piecelen = piecelen * 2 - ((piecelen != blklen) ? blklen : 0); } if (memcmp (enc_result, out, nplain)) fail ("pass %d, algo %d, mode %d, in-place split-buffer, encrypt mismatch\n", pass, algo, mode); if (check_one_cipher_core_reset (hd, algo, mode, pass, nplain) < 0) return -1; piecelen = blklen; pos = 0; while (pos < nplain) { if (piecelen > nplain - pos) piecelen = nplain - pos; err = gcry_cipher_decrypt (hd, out + pos, piecelen, NULL, 0); if (err) { fail ("pass %d, algo %d, mode %d, in-place split-buffer (pos: %d, " "piecelen: %d), gcry_cipher_decrypt failed: %s\n", pass, algo, mode, pos, piecelen, gpg_strerror (err)); gcry_cipher_close (hd); return -1; } pos += piecelen; piecelen = piecelen * 2 - ((piecelen != blklen) ? blklen : 0); } if (memcmp (plain, out, nplain)) fail ("pass %d, algo %d, mode %d, in-place split-buffer, encrypt-decrypt" " mismatch\n", pass, algo, mode); gcry_cipher_close (hd); return 0; } static void check_one_cipher (int algo, int mode, int flags) { char key[64+1]; unsigned char plain[1040+1]; int bufshift, i; for (bufshift=0; bufshift < 4; bufshift++) { /* Pass 0: Standard test. */ memcpy (key, "0123456789abcdef.,;/[]{}-=ABCDEF_" "0123456789abcdef.,;/[]{}-=ABCDEF", 64); memcpy (plain, "foobar42FOOBAR17", 16); for (i = 16; i < 1040; i += 16) { memcpy (&plain[i], &plain[i-16], 16); if (!++plain[i+7]) plain[i+6]++; if (!++plain[i+15]) plain[i+14]++; } if (check_one_cipher_core (algo, mode, flags, key, 64, plain, 1040, bufshift, 0+10*bufshift)) return; /* Pass 1: Key not aligned. */ memmove (key+1, key, 64); if (check_one_cipher_core (algo, mode, flags, key+1, 64, plain, 1040, bufshift, 1+10*bufshift)) return; /* Pass 2: Key not aligned and data not aligned. */ memmove (plain+1, plain, 1040); if (check_one_cipher_core (algo, mode, flags, key+1, 64, plain+1, 1040, bufshift, 2+10*bufshift)) return; /* Pass 3: Key aligned and data not aligned. */ memmove (key, key+1, 64); if (check_one_cipher_core (algo, mode, flags, key, 64, plain+1, 1040, bufshift, 3+10*bufshift)) return; } return; } static void check_ciphers (void) { static const int algos[] = { #if USE_BLOWFISH GCRY_CIPHER_BLOWFISH, #endif #if USE_DES GCRY_CIPHER_DES, GCRY_CIPHER_3DES, #endif #if USE_CAST5 GCRY_CIPHER_CAST5, #endif #if USE_AES GCRY_CIPHER_AES, GCRY_CIPHER_AES192, GCRY_CIPHER_AES256, #endif #if USE_TWOFISH GCRY_CIPHER_TWOFISH, GCRY_CIPHER_TWOFISH128, #endif #if USE_SERPENT GCRY_CIPHER_SERPENT128, GCRY_CIPHER_SERPENT192, GCRY_CIPHER_SERPENT256, #endif #if USE_RFC2268 GCRY_CIPHER_RFC2268_40, #endif #if USE_SEED GCRY_CIPHER_SEED, #endif #if USE_CAMELLIA GCRY_CIPHER_CAMELLIA128, GCRY_CIPHER_CAMELLIA192, GCRY_CIPHER_CAMELLIA256, #endif #if USE_IDEA GCRY_CIPHER_IDEA, #endif #if USE_GOST28147 GCRY_CIPHER_GOST28147, #endif 0 }; static const int algos2[] = { #if USE_ARCFOUR GCRY_CIPHER_ARCFOUR, #endif #if USE_SALSA20 GCRY_CIPHER_SALSA20, GCRY_CIPHER_SALSA20R12, #endif #if USE_CHACHA20 GCRY_CIPHER_CHACHA20, #endif 0 }; int i; if (verbose) fprintf (stderr, "Starting Cipher checks.\n"); for (i = 0; algos[i]; i++) { if (gcry_cipher_test_algo (algos[i]) && in_fips_mode) { if (verbose) fprintf (stderr, " algorithm %d not available in fips mode\n", algos[i]); continue; } if (verbose) fprintf (stderr, " checking %s [%i]\n", gcry_cipher_algo_name (algos[i]), gcry_cipher_map_name (gcry_cipher_algo_name (algos[i]))); check_one_cipher (algos[i], GCRY_CIPHER_MODE_ECB, 0); check_one_cipher (algos[i], GCRY_CIPHER_MODE_CFB, 0); check_one_cipher (algos[i], GCRY_CIPHER_MODE_CFB8, 0); check_one_cipher (algos[i], GCRY_CIPHER_MODE_OFB, 0); check_one_cipher (algos[i], GCRY_CIPHER_MODE_CBC, 0); check_one_cipher (algos[i], GCRY_CIPHER_MODE_CBC, GCRY_CIPHER_CBC_CTS); check_one_cipher (algos[i], GCRY_CIPHER_MODE_CTR, 0); + check_one_cipher (algos[i], GCRY_CIPHER_MODE_EAX, 0); if (gcry_cipher_get_algo_blklen (algos[i]) == GCRY_CCM_BLOCK_LEN) check_one_cipher (algos[i], GCRY_CIPHER_MODE_CCM, 0); if (gcry_cipher_get_algo_blklen (algos[i]) == GCRY_GCM_BLOCK_LEN) check_one_cipher (algos[i], GCRY_CIPHER_MODE_GCM, 0); if (gcry_cipher_get_algo_blklen (algos[i]) == GCRY_OCB_BLOCK_LEN) check_one_cipher (algos[i], GCRY_CIPHER_MODE_OCB, 0); if (gcry_cipher_get_algo_blklen (algos[i]) == GCRY_XTS_BLOCK_LEN) check_one_cipher (algos[i], GCRY_CIPHER_MODE_XTS, 0); } for (i = 0; algos2[i]; i++) { if (gcry_cipher_test_algo (algos2[i]) && in_fips_mode) { if (verbose) fprintf (stderr, " algorithm %d not available in fips mode\n", algos2[i]); continue; } if (verbose) fprintf (stderr, " checking %s\n", gcry_cipher_algo_name (algos2[i])); check_one_cipher (algos2[i], GCRY_CIPHER_MODE_STREAM, 0); if (algos2[i] == GCRY_CIPHER_CHACHA20) check_one_cipher (algos2[i], GCRY_CIPHER_MODE_POLY1305, 0); } /* we have now run all cipher's selftests */ if (verbose) fprintf (stderr, "Completed Cipher checks.\n"); /* TODO: add some extra encryption to test the higher level functions */ } static void check_cipher_modes(void) { if (verbose) fprintf (stderr, "Starting Cipher Mode checks.\n"); check_aes128_cbc_cts_cipher (); check_cbc_mac_cipher (); check_ctr_cipher (); check_cfb_cipher (); check_ofb_cipher (); check_ccm_cipher (); check_gcm_cipher (); check_poly1305_cipher (); check_ocb_cipher (); check_xts_cipher (); + check_eax_cipher (); check_gost28147_cipher (); check_stream_cipher (); check_stream_cipher_large_block (); if (verbose) fprintf (stderr, "Completed Cipher Mode checks.\n"); } static void fillbuf_count (char *buf, size_t buflen, unsigned char pos) { while (buflen--) *((unsigned char *)(buf++)) = pos++; } static void check_one_md (int algo, const char *data, int len, const char *expect, int elen, const char *key, int klen) { gcry_md_hd_t hd, hd2; unsigned char *p; int mdlen; int i; int xof = 0; gcry_error_t err = 0; err = gcry_md_open (&hd, algo, 0); if (err) { fail ("algo %d, gcry_md_open failed: %s\n", algo, gpg_strerror (err)); return; } mdlen = gcry_md_get_algo_dlen (algo); if (mdlen < 1 || mdlen > 500) { if (mdlen == 0 && (algo == GCRY_MD_SHAKE128 || algo == GCRY_MD_SHAKE256)) { xof = 1; } else { gcry_md_close (hd); fail ("algo %d, gcry_md_get_algo_dlen failed: %d\n", algo, mdlen); return; } } if (key && klen) { err = gcry_md_setkey (hd, key, klen); if (err) { gcry_md_close (hd); fail ("algo %d, gcry_md_setkey failed: %s\n", algo, gpg_strerror (err)); return; } } if ((*data == '!' && !data[1]) || /* hash one million times a "a" */ (*data == '?' && !data[1])) /* hash million byte data-set with byte pattern 0x00,0x01,0x02,... */ { char aaa[1000]; size_t left = 1000 * 1000; size_t startlen = 1; size_t piecelen = startlen; if (*data == '!') memset (aaa, 'a', 1000); /* Write in chuck with all sizes 1 to 1000 (500500 bytes) */ for (i = 1; i <= 1000 && left > 0; i++) { piecelen = i; if (piecelen > sizeof(aaa)) piecelen = sizeof(aaa); if (piecelen > left) piecelen = left; if (*data == '?') fillbuf_count(aaa, piecelen, 1000 * 1000 - left); gcry_md_write (hd, aaa, piecelen); left -= piecelen; } /* Write in odd size chunks so that we test the buffering. */ while (left > 0) { if (piecelen > sizeof(aaa)) piecelen = sizeof(aaa); if (piecelen > left) piecelen = left; if (*data == '?') fillbuf_count(aaa, piecelen, 1000 * 1000 - left); gcry_md_write (hd, aaa, piecelen); left -= piecelen; if (piecelen == sizeof(aaa)) piecelen = ++startlen; else piecelen = piecelen * 2 - ((piecelen != startlen) ? startlen : 0); } } else gcry_md_write (hd, data, len); err = gcry_md_copy (&hd2, hd); if (err) { fail ("algo %d, gcry_md_copy failed: %s\n", algo, gpg_strerror (err)); } gcry_md_close (hd); if (!xof) { p = gcry_md_read (hd2, algo); if (memcmp (p, expect, mdlen)) { printf ("computed: "); for (i = 0; i < mdlen; i++) printf ("%02x ", p[i] & 0xFF); printf ("\nexpected: "); for (i = 0; i < mdlen; i++) printf ("%02x ", expect[i] & 0xFF); printf ("\n"); fail ("algo %d, digest mismatch\n", algo); } } else { char buf[1000]; int outmax = sizeof(buf) > elen ? elen : sizeof(buf); err = gcry_md_copy (&hd, hd2); if (err) { fail ("algo %d, gcry_md_copy failed: %s\n", algo, gpg_strerror (err)); } err = gcry_md_extract(hd2, algo, buf, outmax); if (err) { fail ("algo %d, gcry_md_extract failed: %s\n", algo, gpg_strerror (err)); } if (memcmp (buf, expect, outmax)) { printf ("computed: "); for (i = 0; i < outmax; i++) printf ("%02x ", buf[i] & 0xFF); printf ("\nexpected: "); for (i = 0; i < outmax; i++) printf ("%02x ", expect[i] & 0xFF); printf ("\n"); fail ("algo %d, digest mismatch\n", algo); } memset(buf, 0, sizeof(buf)); /* Extract one byte at time. */ for (i = 0; i < outmax && !err; i++) err = gcry_md_extract(hd, algo, &buf[i], 1); if (err) { fail ("algo %d, gcry_md_extract failed: %s\n", algo, gpg_strerror (err)); } if (memcmp (buf, expect, outmax)) { printf ("computed: "); for (i = 0; i < outmax; i++) printf ("%02x ", buf[i] & 0xFF); printf ("\nexpected: "); for (i = 0; i < outmax; i++) printf ("%02x ", expect[i] & 0xFF); printf ("\n"); fail ("algo %d, digest mismatch\n", algo); } if (*data == '!' && !data[1]) { int crcalgo = GCRY_MD_RMD160; gcry_md_hd_t crc1, crc2; size_t startlen; size_t piecelen; size_t left; const unsigned char *p1, *p2; int crclen; crclen = gcry_md_get_algo_dlen (crcalgo); err = gcry_md_open (&crc1, crcalgo, 0); if (err) { fail ("algo %d, crcalgo: %d, gcry_md_open failed: %s\n", algo, crcalgo, gpg_strerror (err)); return; } err = gcry_md_open (&crc2, crcalgo, 0); if (err) { fail ("algo %d, crcalgo: %d, gcry_md_open failed: %s\n", algo, crcalgo, gpg_strerror (err)); return; } /* Extract large chucks, total 1000000 additional bytes. */ for (i = 0; i < 1000; i++) { err = gcry_md_extract(hd, algo, buf, 1000); if (!err) gcry_md_write(crc1, buf, 1000); } if (err) { fail ("algo %d, gcry_md_extract failed: %s\n", algo, gpg_strerror (err)); } /* Extract in odd size chunks, total 1000000 additional bytes. */ left = 1000 * 1000; startlen = 1; piecelen = startlen; while (!err && left > 0) { if (piecelen > sizeof(buf)) piecelen = sizeof(buf); if (piecelen > left) piecelen = left; err = gcry_md_extract (hd2, algo, buf, piecelen); if (!err) gcry_md_write(crc2, buf, piecelen); if (err) { fail ("algo %d, gcry_md_extract failed: %s\n", algo, gpg_strerror (err)); } left -= piecelen; if (piecelen == sizeof(buf)) piecelen = ++startlen; else piecelen = piecelen * 2 - ((piecelen != startlen) ? startlen : 0); } p1 = gcry_md_read (crc1, crcalgo); p2 = gcry_md_read (crc2, crcalgo); if (memcmp (p1, p2, crclen)) { printf ("computed: "); for (i = 0; i < crclen; i++) printf ("%02x ", p2[i] & 0xFF); printf ("\nexpected: "); for (i = 0; i < crclen; i++) printf ("%02x ", p1[i] & 0xFF); printf ("\n"); fail ("algo %d, large xof output mismatch\n", algo); } gcry_md_close (crc1); gcry_md_close (crc2); } gcry_md_close (hd); } gcry_md_close (hd2); } static void check_one_md_multi (int algo, const char *data, int len, const char *expect) { gpg_error_t err; gcry_buffer_t iov[3]; int iovcnt; char digest[64]; int mdlen; int i; mdlen = gcry_md_get_algo_dlen (algo); if (mdlen < 1 || mdlen > 64) { if (mdlen == 0 && (algo == GCRY_MD_SHAKE128 || algo == GCRY_MD_SHAKE256)) return; fail ("check_one_md_multi: algo %d, gcry_md_get_algo_dlen failed: %d\n", algo, mdlen); return; } if (*data == '!' && !data[1]) return; /* We can't do that here. */ if (*data == '?' && !data[1]) return; /* We can't do that here. */ memset (iov, 0, sizeof iov); iov[0].data = (void*)data; if (len) { iov[0].len = 1; len--; data++; } iovcnt = 1; if (len >= 4) { iov[iovcnt].data = (void*)data; iov[iovcnt].len = 4; iovcnt++; data += 4; len -= 4; } iov[iovcnt].data = (void*)data; iov[iovcnt].len = len; iovcnt++; assert (iovcnt <= DIM (iov)); err = gcry_md_hash_buffers (algo, 0, digest, iov, iovcnt); if (err) { fail ("check_one_md_multi: algo %d, gcry_hash_buffers failed: %s\n", algo, gpg_strerror (err)); return; } if (memcmp (digest, expect, mdlen)) { printf ("computed: "); for (i = 0; i < mdlen; i++) printf ("%02x ", digest[i] & 0xFF); printf ("\nexpected: "); for (i = 0; i < mdlen; i++) printf ("%02x ", expect[i] & 0xFF); printf ("\n"); fail ("check_one_md_multi: algo %d, digest mismatch\n", algo); } } static void check_digests (void) { static const char blake2_data_vector[] = "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f" "\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f" "\x20\x21\x22\x23\x24\x25\x26\x27\x28\x29\x2a\x2b\x2c\x2d\x2e\x2f" "\x30\x31\x32\x33\x34\x35\x36\x37\x38\x39\x3a\x3b\x3c\x3d\x3e\x3f" "\x40\x41\x42\x43\x44\x45\x46\x47\x48\x49\x4a\x4b\x4c\x4d\x4e\x4f" "\x50\x51\x52\x53\x54\x55\x56\x57\x58\x59\x5a\x5b\x5c\x5d\x5e\x5f" "\x60\x61\x62\x63\x64\x65\x66\x67\x68\x69\x6a\x6b\x6c\x6d\x6e\x6f" "\x70\x71\x72\x73\x74\x75\x76\x77\x78\x79\x7a\x7b\x7c\x7d\x7e\x7f" "\x80\x81\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f" "\x90\x91\x92\x93\x94\x95\x96\x97\x98\x99\x9a\x9b\x9c\x9d\x9e\x9f" "\xa0\xa1\xa2\xa3\xa4\xa5\xa6\xa7\xa8\xa9\xaa\xab\xac\xad\xae\xaf" "\xb0\xb1\xb2\xb3\xb4\xb5\xb6\xb7\xb8\xb9\xba\xbb\xbc\xbd\xbe\xbf" "\xc0\xc1\xc2\xc3\xc4\xc5\xc6\xc7\xc8\xc9\xca\xcb\xcc\xcd\xce\xcf" "\xd0\xd1\xd2\xd3\xd4\xd5\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf" "\xe0\xe1\xe2\xe3\xe4\xe5\xe6\xe7\xe8\xe9\xea\xeb\xec\xed\xee\xef" "\xf0\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9\xfa\xfb\xfc\xfd\xfe\xff"; static const struct algos { int md; const char *data; const char *expect; int datalen; int expectlen; const char *key; int keylen; } algos[] = { { GCRY_MD_MD2, "", "\x83\x50\xe5\xa3\xe2\x4c\x15\x3d\xf2\x27\x5c\x9f\x80\x69\x27\x73" }, { GCRY_MD_MD2, "a", "\x32\xec\x01\xec\x4a\x6d\xac\x72\xc0\xab\x96\xfb\x34\xc0\xb5\xd1" }, { GCRY_MD_MD2, "message digest", "\xab\x4f\x49\x6b\xfb\x2a\x53\x0b\x21\x9f\xf3\x30\x31\xfe\x06\xb0" }, { GCRY_MD_MD4, "", "\x31\xD6\xCF\xE0\xD1\x6A\xE9\x31\xB7\x3C\x59\xD7\xE0\xC0\x89\xC0" }, { GCRY_MD_MD4, "a", "\xbd\xe5\x2c\xb3\x1d\xe3\x3e\x46\x24\x5e\x05\xfb\xdb\xd6\xfb\x24" }, { GCRY_MD_MD4, "message digest", "\xd9\x13\x0a\x81\x64\x54\x9f\xe8\x18\x87\x48\x06\xe1\xc7\x01\x4b" }, { GCRY_MD_MD5, "", "\xD4\x1D\x8C\xD9\x8F\x00\xB2\x04\xE9\x80\x09\x98\xEC\xF8\x42\x7E" }, { GCRY_MD_MD5, "a", "\x0C\xC1\x75\xB9\xC0\xF1\xB6\xA8\x31\xC3\x99\xE2\x69\x77\x26\x61" }, { GCRY_MD_MD5, "abc", "\x90\x01\x50\x98\x3C\xD2\x4F\xB0\xD6\x96\x3F\x7D\x28\xE1\x7F\x72" }, { GCRY_MD_MD5, "message digest", "\xF9\x6B\x69\x7D\x7C\xB7\x93\x8D\x52\x5A\x2F\x31\xAA\xF1\x61\xD0" }, { GCRY_MD_MD5, "Libgcrypt is free software; you can redistribute it and/or modif" "y it under the terms of the GNU Lesser general Public License as" " published by the Free Software Foundation; either version 2.1 o" "f the License, or (at your option) any later version.\nLibgcrypt" " is distributed in the hope that it will be useful, but WITHOUT " "ANY WARRANTY; without even the implied warranty of MERCHANTABILI" "TY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser Gene" "ral Public License for more details.", "\xc4\x1a\x5c\x0b\x44\x5f\xba\x1a\xda\xbc\xc0\x38\x0e\x0c\x9e\x33" }, { GCRY_MD_MD5, "!", "\x77\x07\xd6\xae\x4e\x02\x7c\x70\xee\xa2\xa9\x35\xc2\x29\x6f\x21" }, { GCRY_MD_MD5, "?", "\x5c\x72\x5c\xbc\x2d\xbb\xe1\x14\x81\x59\xe9\xd9\xcf\x90\x64\x8f" }, { GCRY_MD_SHA1, "abc", "\xA9\x99\x3E\x36\x47\x06\x81\x6A\xBA\x3E" "\x25\x71\x78\x50\xC2\x6C\x9C\xD0\xD8\x9D" }, { GCRY_MD_SHA1, "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", "\x84\x98\x3E\x44\x1C\x3B\xD2\x6E\xBA\xAE" "\x4A\xA1\xF9\x51\x29\xE5\xE5\x46\x70\xF1" }, { GCRY_MD_SHA1, "!" /* kludge for "a"*1000000 */ , "\x34\xAA\x97\x3C\xD4\xC4\xDA\xA4\xF6\x1E" "\xEB\x2B\xDB\xAD\x27\x31\x65\x34\x01\x6F" }, { GCRY_MD_SHA1, "?" /* kludge for "\x00\x01\x02"..."\xfe\xff\x00\x01"... (length 1000000) */ , "\x5f\x8d\x3c\x4f\x12\xf0\x49\x9e\x28\x73" "\x79\xec\x97\x3b\x98\x4c\x94\x75\xaa\x8f" }, { GCRY_MD_SHA1, "Libgcrypt is free software; you can redistribute it and/or modif" "y it under the terms of the GNU Lesser general Public License as" " published by the Free Software Foundation; either version 2.1 o" "f the License, or (at your option) any later version.\nLibgcrypt" " is distributed in the hope that it will be useful, but WITHOUT " "ANY WARRANTY; without even the implied warranty of MERCHANTABILI" "TY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser Gene" "ral Public License for more details.", "\xf5\xd9\xcb\x66\x91\xb4\x7a\x7c\x60\x35\xe2\x1c\x38\x26\x52\x13" "\x8e\xd5\xe5\xdf" }, /* From RFC3874 */ { GCRY_MD_SHA224, "abc", "\x23\x09\x7d\x22\x34\x05\xd8\x22\x86\x42\xa4\x77\xbd\xa2\x55\xb3" "\x2a\xad\xbc\xe4\xbd\xa0\xb3\xf7\xe3\x6c\x9d\xa7" }, { GCRY_MD_SHA224, "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", "\x75\x38\x8b\x16\x51\x27\x76\xcc\x5d\xba\x5d\xa1\xfd\x89\x01\x50" "\xb0\xc6\x45\x5c\xb4\xf5\x8b\x19\x52\x52\x25\x25" }, { GCRY_MD_SHA224, "!", "\x20\x79\x46\x55\x98\x0c\x91\xd8\xbb\xb4\xc1\xea\x97\x61\x8a\x4b" "\xf0\x3f\x42\x58\x19\x48\xb2\xee\x4e\xe7\xad\x67" }, { GCRY_MD_SHA224, "?", "\xfa\xb9\xf0\xdf\x12\xfe\xa1\x1a\x34\x78\x96\x31\xe6\x53\x48\xbf" "\x3b\xca\x70\x78\xf2\x44\xdf\x62\xab\x27\xb8\xda" }, { GCRY_MD_SHA224, "Libgcrypt is free software; you can redistribute it and/or modif" "y it under the terms of the GNU Lesser general Public License as" " published by the Free Software Foundation; either version 2.1 o" "f the License, or (at your option) any later version.\nLibgcrypt" " is distributed in the hope that it will be useful, but WITHOUT " "ANY WARRANTY; without even the implied warranty of MERCHANTABILI" "TY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser Gene" "ral Public License for more details.", "\x80\xf0\x60\x79\xb0\xe9\x65\xab\x8a\x76\xbf\x6e\x88\x64\x75\xe7" "\xfd\xf0\xc2\x4c\xf6\xf2\xa6\x01\xed\x50\x71\x08" }, { GCRY_MD_SHA256, "abc", "\xba\x78\x16\xbf\x8f\x01\xcf\xea\x41\x41\x40\xde\x5d\xae\x22\x23" "\xb0\x03\x61\xa3\x96\x17\x7a\x9c\xb4\x10\xff\x61\xf2\x00\x15\xad" }, { GCRY_MD_SHA256, "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", "\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39" "\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1" }, { GCRY_MD_SHA256, "!", "\xcd\xc7\x6e\x5c\x99\x14\xfb\x92\x81\xa1\xc7\xe2\x84\xd7\x3e\x67" "\xf1\x80\x9a\x48\xa4\x97\x20\x0e\x04\x6d\x39\xcc\xc7\x11\x2c\xd0" }, { GCRY_MD_SHA256, "?", "\x67\x87\x0d\xfc\x9c\x64\xe7\xaa\x27\x0a\x3f\x7e\x80\x51\xae\x65" "\xd2\x07\xf9\x3f\xc3\xdf\x04\xd7\x57\x2e\x63\x65\xaf\x69\xcd\x0d" }, { GCRY_MD_SHA256, "Libgcrypt is free software; you can redistribute it and/or modif" "y it under the terms of the GNU Lesser general Public License as" " published by the Free Software Foundation; either version 2.1 o" "f the License, or (at your option) any later version.\nLibgcrypt" " is distributed in the hope that it will be useful, but WITHOUT " "ANY WARRANTY; without even the implied warranty of MERCHANTABILI" "TY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser Gene" "ral Public License for more details.", "\xb0\x18\x70\x67\xb8\xac\x68\x50\xec\x95\x43\x77\xb5\x44\x5b\x0f" "\x2e\xbd\x40\xc9\xdc\x2a\x2c\x33\x8b\x53\xeb\x3e\x9e\x01\xd7\x02" }, { GCRY_MD_SHA384, "abc", "\xcb\x00\x75\x3f\x45\xa3\x5e\x8b\xb5\xa0\x3d\x69\x9a\xc6\x50\x07" "\x27\x2c\x32\xab\x0e\xde\xd1\x63\x1a\x8b\x60\x5a\x43\xff\x5b\xed" "\x80\x86\x07\x2b\xa1\xe7\xcc\x23\x58\xba\xec\xa1\x34\xc8\x25\xa7" }, { GCRY_MD_SHA384, "Libgcrypt is free software; you can redistribute it and/or modif" "y it under the terms of the GNU Lesser general Public License as" " published by the Free Software Foundation; either version 2.1 o" "f the License, or (at your option) any later version.\nLibgcrypt" " is distributed in the hope that it will be useful, but WITHOUT " "ANY WARRANTY; without even the implied warranty of MERCHANTABILI" "TY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser Gene" "ral Public License for more details.", "\xe4\x6d\xb4\x28\x33\x77\x99\x49\x94\x0f\xcf\x87\xc2\x2f\x30\xd6" "\x06\x24\x82\x9d\x80\x64\x8a\x07\xa1\x20\x8f\x5f\xf3\x85\xb3\xaa" "\x39\xb8\x61\x00\xfc\x7f\x18\xc6\x82\x23\x4b\x45\xfa\xf1\xbc\x69" }, { GCRY_MD_SHA384, "!", "\x9d\x0e\x18\x09\x71\x64\x74\xcb\x08\x6e\x83\x4e\x31\x0a\x4a\x1c" "\xed\x14\x9e\x9c\x00\xf2\x48\x52\x79\x72\xce\xc5\x70\x4c\x2a\x5b" "\x07\xb8\xb3\xdc\x38\xec\xc4\xeb\xae\x97\xdd\xd8\x7f\x3d\x89\x85" }, { GCRY_MD_SHA384, "?", "\xfa\x77\xbb\x86\x3a\xd5\xae\x88\xa9\x9c\x5e\xda\xb5\xc7\xcb\x40" "\xcd\xf4\x30\xef\xa8\x1b\x23\x7b\xa9\xde\xfd\x81\x12\xf6\x7e\xed" "\xa7\xd2\x27\x91\xd1\xbc\x76\x44\x57\x59\x71\x11\xe6\x8a\x2c\xde" }, { GCRY_MD_SHA512, "abc", "\xDD\xAF\x35\xA1\x93\x61\x7A\xBA\xCC\x41\x73\x49\xAE\x20\x41\x31" "\x12\xE6\xFA\x4E\x89\xA9\x7E\xA2\x0A\x9E\xEE\xE6\x4B\x55\xD3\x9A" "\x21\x92\x99\x2A\x27\x4F\xC1\xA8\x36\xBA\x3C\x23\xA3\xFE\xEB\xBD" "\x45\x4D\x44\x23\x64\x3C\xE8\x0E\x2A\x9A\xC9\x4F\xA5\x4C\xA4\x9F" }, { GCRY_MD_SHA512, "Libgcrypt is free software; you can redistribute it and/or modif" "y it under the terms of the GNU Lesser general Public License as" " published by the Free Software Foundation; either version 2.1 o" "f the License, or (at your option) any later version.\nLibgcrypt" " is distributed in the hope that it will be useful, but WITHOUT " "ANY WARRANTY; without even the implied warranty of MERCHANTABILI" "TY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser Gene" "ral Public License for more details.", "\x72\x8c\xde\xd8\xe4\xd7\xb6\xa5\x0f\xde\x6b\x4d\x33\xaf\x15\x19" "\xdd\xec\x62\x0f\xf7\x1a\x1e\x10\x32\x05\x02\xa6\xb0\x1f\x70\x37" "\xbc\xd7\x15\xed\x71\x6c\x78\x20\xc8\x54\x87\xd0\x66\x6a\x17\x83" "\x05\x61\x92\xbe\xcc\x8f\x3b\xbf\x11\x72\x22\x69\x23\x5b\x48\x5c" }, { GCRY_MD_SHA512, "!", "\xe7\x18\x48\x3d\x0c\xe7\x69\x64\x4e\x2e\x42\xc7\xbc\x15\xb4\x63" "\x8e\x1f\x98\xb1\x3b\x20\x44\x28\x56\x32\xa8\x03\xaf\xa9\x73\xeb" "\xde\x0f\xf2\x44\x87\x7e\xa6\x0a\x4c\xb0\x43\x2c\xe5\x77\xc3\x1b" "\xeb\x00\x9c\x5c\x2c\x49\xaa\x2e\x4e\xad\xb2\x17\xad\x8c\xc0\x9b" }, { GCRY_MD_SHA512, "?", "\x91\xe9\x42\x4e\xa9\xdc\x44\x01\x40\x64\xa4\x5a\x69\xcc\xac\xa3" "\x74\xee\x78\xeb\x79\x1f\x94\x38\x5b\x73\xef\xf8\xfd\x5d\x74\xd8" "\x51\x36\xfe\x63\x52\xde\x07\x70\x95\xd6\x78\x2b\x7b\x46\x8a\x2c" "\x30\x0f\x48\x0c\x74\x43\x06\xdb\xa3\x8d\x64\x3d\xe9\xa1\xa7\x72" }, { GCRY_MD_SHA3_224, "abc", "\xe6\x42\x82\x4c\x3f\x8c\xf2\x4a\xd0\x92\x34\xee\x7d\x3c\x76\x6f" "\xc9\xa3\xa5\x16\x8d\x0c\x94\xad\x73\xb4\x6f\xdf" }, { GCRY_MD_SHA3_256, "abc", "\x3a\x98\x5d\xa7\x4f\xe2\x25\xb2\x04\x5c\x17\x2d\x6b\xd3\x90\xbd" "\x85\x5f\x08\x6e\x3e\x9d\x52\x5b\x46\xbf\xe2\x45\x11\x43\x15\x32" }, { GCRY_MD_SHA3_384, "abc", "\xec\x01\x49\x82\x88\x51\x6f\xc9\x26\x45\x9f\x58\xe2\xc6\xad\x8d" "\xf9\xb4\x73\xcb\x0f\xc0\x8c\x25\x96\xda\x7c\xf0\xe4\x9b\xe4\xb2" "\x98\xd8\x8c\xea\x92\x7a\xc7\xf5\x39\xf1\xed\xf2\x28\x37\x6d\x25" }, { GCRY_MD_SHA3_512, "abc", "\xb7\x51\x85\x0b\x1a\x57\x16\x8a\x56\x93\xcd\x92\x4b\x6b\x09\x6e" "\x08\xf6\x21\x82\x74\x44\xf7\x0d\x88\x4f\x5d\x02\x40\xd2\x71\x2e" "\x10\xe1\x16\xe9\x19\x2a\xf3\xc9\x1a\x7e\xc5\x76\x47\xe3\x93\x40" "\x57\x34\x0b\x4c\xf4\x08\xd5\xa5\x65\x92\xf8\x27\x4e\xec\x53\xf0" }, { GCRY_MD_SHA3_224, "", "\x6b\x4e\x03\x42\x36\x67\xdb\xb7\x3b\x6e\x15\x45\x4f\x0e\xb1\xab" "\xd4\x59\x7f\x9a\x1b\x07\x8e\x3f\x5b\x5a\x6b\xc7" }, { GCRY_MD_SHA3_256, "", "\xa7\xff\xc6\xf8\xbf\x1e\xd7\x66\x51\xc1\x47\x56\xa0\x61\xd6\x62" "\xf5\x80\xff\x4d\xe4\x3b\x49\xfa\x82\xd8\x0a\x4b\x80\xf8\x43\x4a" }, { GCRY_MD_SHA3_384, "", "\x0c\x63\xa7\x5b\x84\x5e\x4f\x7d\x01\x10\x7d\x85\x2e\x4c\x24\x85" "\xc5\x1a\x50\xaa\xaa\x94\xfc\x61\x99\x5e\x71\xbb\xee\x98\x3a\x2a" "\xc3\x71\x38\x31\x26\x4a\xdb\x47\xfb\x6b\xd1\xe0\x58\xd5\xf0\x04" }, { GCRY_MD_SHA3_512, "", "\xa6\x9f\x73\xcc\xa2\x3a\x9a\xc5\xc8\xb5\x67\xdc\x18\x5a\x75\x6e" "\x97\xc9\x82\x16\x4f\xe2\x58\x59\xe0\xd1\xdc\xc1\x47\x5c\x80\xa6" "\x15\xb2\x12\x3a\xf1\xf5\xf9\x4c\x11\xe3\xe9\x40\x2c\x3a\xc5\x58" "\xf5\x00\x19\x9d\x95\xb6\xd3\xe3\x01\x75\x85\x86\x28\x1d\xcd\x26" }, { GCRY_MD_SHA3_224, "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlm" "nomnopnopq", "\x8a\x24\x10\x8b\x15\x4a\xda\x21\xc9\xfd\x55\x74\x49\x44\x79\xba" "\x5c\x7e\x7a\xb7\x6e\xf2\x64\xea\xd0\xfc\xce\x33" }, { GCRY_MD_SHA3_256, "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlm" "nomnopnopq", "\x41\xc0\xdb\xa2\xa9\xd6\x24\x08\x49\x10\x03\x76\xa8\x23\x5e\x2c" "\x82\xe1\xb9\x99\x8a\x99\x9e\x21\xdb\x32\xdd\x97\x49\x6d\x33\x76" }, { GCRY_MD_SHA3_384, "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlm" "nomnopnopq", "\x99\x1c\x66\x57\x55\xeb\x3a\x4b\x6b\xbd\xfb\x75\xc7\x8a\x49\x2e" "\x8c\x56\xa2\x2c\x5c\x4d\x7e\x42\x9b\xfd\xbc\x32\xb9\xd4\xad\x5a" "\xa0\x4a\x1f\x07\x6e\x62\xfe\xa1\x9e\xef\x51\xac\xd0\x65\x7c\x22" }, { GCRY_MD_SHA3_512, "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlm" "nomnopnopq", "\x04\xa3\x71\xe8\x4e\xcf\xb5\xb8\xb7\x7c\xb4\x86\x10\xfc\xa8\x18" "\x2d\xd4\x57\xce\x6f\x32\x6a\x0f\xd3\xd7\xec\x2f\x1e\x91\x63\x6d" "\xee\x69\x1f\xbe\x0c\x98\x53\x02\xba\x1b\x0d\x8d\xc7\x8c\x08\x63" "\x46\xb5\x33\xb4\x9c\x03\x0d\x99\xa2\x7d\xaf\x11\x39\xd6\xe7\x5e" }, { GCRY_MD_SHA3_224, "abcdefghbcdefghicdefghijdefghijkefghijklfghijk" "lmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu", "\x54\x3e\x68\x68\xe1\x66\x6c\x1a\x64\x36\x30\xdf\x77\x36\x7a\xe5" "\xa6\x2a\x85\x07\x0a\x51\xc1\x4c\xbf\x66\x5c\xbc" }, { GCRY_MD_SHA3_256, "abcdefghbcdefghicdefghijdefghijkefghijklfghijk" "lmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu", "\x91\x6f\x60\x61\xfe\x87\x97\x41\xca\x64\x69\xb4\x39\x71\xdf\xdb" "\x28\xb1\xa3\x2d\xc3\x6c\xb3\x25\x4e\x81\x2b\xe2\x7a\xad\x1d\x18" }, { GCRY_MD_SHA3_384, "abcdefghbcdefghicdefghijdefghijkefghijklfghijk" "lmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu", "\x79\x40\x7d\x3b\x59\x16\xb5\x9c\x3e\x30\xb0\x98\x22\x97\x47\x91" "\xc3\x13\xfb\x9e\xcc\x84\x9e\x40\x6f\x23\x59\x2d\x04\xf6\x25\xdc" "\x8c\x70\x9b\x98\xb4\x3b\x38\x52\xb3\x37\x21\x61\x79\xaa\x7f\xc7" }, { GCRY_MD_SHA3_512, "abcdefghbcdefghicdefghijdefghijkefghijklfghijk" "lmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu", "\xaf\xeb\xb2\xef\x54\x2e\x65\x79\xc5\x0c\xad\x06\xd2\xe5\x78\xf9" "\xf8\xdd\x68\x81\xd7\xdc\x82\x4d\x26\x36\x0f\xee\xbf\x18\xa4\xfa" "\x73\xe3\x26\x11\x22\x94\x8e\xfc\xfd\x49\x2e\x74\xe8\x2e\x21\x89" "\xed\x0f\xb4\x40\xd1\x87\xf3\x82\x27\x0c\xb4\x55\xf2\x1d\xd1\x85" }, { GCRY_MD_SHA3_224, "!", "\xd6\x93\x35\xb9\x33\x25\x19\x2e\x51\x6a\x91\x2e\x6d\x19\xa1\x5c" "\xb5\x1c\x6e\xd5\xc1\x52\x43\xe7\xa7\xfd\x65\x3c" }, { GCRY_MD_SHA3_256, "!", "\x5c\x88\x75\xae\x47\x4a\x36\x34\xba\x4f\xd5\x5e\xc8\x5b\xff\xd6" "\x61\xf3\x2a\xca\x75\xc6\xd6\x99\xd0\xcd\xcb\x6c\x11\x58\x91\xc1" }, { GCRY_MD_SHA3_384, "!", "\xee\xe9\xe2\x4d\x78\xc1\x85\x53\x37\x98\x34\x51\xdf\x97\xc8\xad" "\x9e\xed\xf2\x56\xc6\x33\x4f\x8e\x94\x8d\x25\x2d\x5e\x0e\x76\x84" "\x7a\xa0\x77\x4d\xdb\x90\xa8\x42\x19\x0d\x2c\x55\x8b\x4b\x83\x40" }, { GCRY_MD_SHA3_512, "!", "\x3c\x3a\x87\x6d\xa1\x40\x34\xab\x60\x62\x7c\x07\x7b\xb9\x8f\x7e" "\x12\x0a\x2a\x53\x70\x21\x2d\xff\xb3\x38\x5a\x18\xd4\xf3\x88\x59" "\xed\x31\x1d\x0a\x9d\x51\x41\xce\x9c\xc5\xc6\x6e\xe6\x89\xb2\x66" "\xa8\xaa\x18\xac\xe8\x28\x2a\x0e\x0d\xb5\x96\xc9\x0b\x0a\x7b\x87" }, { GCRY_MD_SHA3_224, "?", "\x1b\xd1\xc6\x12\x02\x35\x52\x8b\x44\x7e\x16\x39\x20\x05\xec\x67" "\x2d\x57\x20\xe0\x90\xc9\x78\x08\x86\x4f\x1b\xd0" }, { GCRY_MD_SHA3_256, "?", "\xfe\xb7\xf4\x76\x78\x97\x48\x2f\xe2\x29\x1b\x66\x85\xc1\x7b\x45" "\xc5\x08\xed\x82\x50\xcc\x5d\x99\x96\xd2\xc3\x82\x1a\xa8\xd4\xa7" }, { GCRY_MD_SHA3_384, "?", "\x45\x1f\x0b\x93\x4b\xca\x3e\x65\x93\xd4\xaa\x8c\x18\xc1\x04\x84" "\x12\xd5\x1e\x35\xe1\x05\xd9\x77\x3f\xc1\x08\x8b\x77\x36\xad\x4a" "\x33\x70\xaf\x49\x8b\xea\x4c\x5c\x52\xe7\x5b\xed\x31\x74\x57\x12" }, { GCRY_MD_SHA3_512, "?", "\xa2\xee\xb5\x6f\x2a\x87\xa5\xb3\x9b\xd9\x1c\xf0\xaa\xdf\xb1\xd5" "\xad\x0a\x1a\xaa\xd3\x63\x81\xcf\xb8\x7c\x36\xa7\x80\x3b\x03\xd6" "\x31\x5c\x5d\x33\x8e\x52\xb1\x42\x4d\x27\x1c\xa2\xa5\xf2\xc5\x97" "\x10\x12\xe5\xee\x86\xa3\xcc\xaf\x91\x7a\x94\x28\x65\xea\x66\xe3" }, { GCRY_MD_RMD160, "", "\x9c\x11\x85\xa5\xc5\xe9\xfc\x54\x61\x28" "\x08\x97\x7e\xe8\xf5\x48\xb2\x25\x8d\x31" }, { GCRY_MD_RMD160, "a", "\x0b\xdc\x9d\x2d\x25\x6b\x3e\xe9\xda\xae" "\x34\x7b\xe6\xf4\xdc\x83\x5a\x46\x7f\xfe" }, { GCRY_MD_RMD160, "abc", "\x8e\xb2\x08\xf7\xe0\x5d\x98\x7a\x9b\x04" "\x4a\x8e\x98\xc6\xb0\x87\xf1\x5a\x0b\xfc" }, { GCRY_MD_RMD160, "message digest", "\x5d\x06\x89\xef\x49\xd2\xfa\xe5\x72\xb8" "\x81\xb1\x23\xa8\x5f\xfa\x21\x59\x5f\x36" }, { GCRY_MD_RMD160, "Libgcrypt is free software; you can redistribute it and/or modif" "y it under the terms of the GNU Lesser general Public License as" " published by the Free Software Foundation; either version 2.1 o" "f the License, or (at your option) any later version.\nLibgcrypt" " is distributed in the hope that it will be useful, but WITHOUT " "ANY WARRANTY; without even the implied warranty of MERCHANTABILI" "TY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser Gene" "ral Public License for more details.", "\x06\x6d\x3c\x4e\xc9\xba\x89\x75\x16\x90\x96\x4e\xfd\x43\x07\xde" "\x04\xca\x69\x6b" }, { GCRY_MD_RMD160, "!", "\x52\x78\x32\x43\xc1\x69\x7b\xdb\xe1\x6d\x37\xf9\x7f\x68\xf0\x83" "\x25\xdc\x15\x28" }, { GCRY_MD_RMD160, "?", "\x68\x14\x86\x70\x3d\x51\x4e\x36\x68\x50\xf8\xb3\x00\x75\xda\x49" "\x0a\xaa\x2c\xf6" }, { GCRY_MD_CRC32, "", "\x00\x00\x00\x00" }, { GCRY_MD_CRC32, "foo", "\x8c\x73\x65\x21" }, { GCRY_MD_CRC32, "Libgcrypt is free software; you can redistribute it and/or modif" "y it under the terms of the GNU Lesser general Public License as" " published by the Free Software Foundation; either version 2.1 o" "f the License, or (at your option) any later version.\nLibgcrypt" " is distributed in the hope that it will be useful, but WITHOUT " "ANY WARRANTY; without even the implied warranty of MERCHANTABILI" "TY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser Gene" "ral Public License for more details.", "\x4A\x53\x7D\x67" }, { GCRY_MD_CRC32, "123456789", "\xcb\xf4\x39\x26" }, { GCRY_MD_CRC32, "!", "\xdc\x25\xbf\xbc" }, { GCRY_MD_CRC32, "?", "\x61\x82\x29\x1B" }, { GCRY_MD_CRC32_RFC1510, "", "\x00\x00\x00\x00" }, { GCRY_MD_CRC32_RFC1510, "foo", "\x73\x32\xbc\x33" }, { GCRY_MD_CRC32_RFC1510, "test0123456789", "\xb8\x3e\x88\xd6" }, { GCRY_MD_CRC32_RFC1510, "MASSACHVSETTS INSTITVTE OF TECHNOLOGY", "\xe3\x41\x80\xf7" }, { GCRY_MD_CRC32_RFC1510, "\x80\x00", "\x3b\x83\x98\x4b", 2 }, { GCRY_MD_CRC32_RFC1510, "\x00\x08", "\x0e\xdb\x88\x32", 2 }, { GCRY_MD_CRC32_RFC1510, "\x00\x80", "\xed\xb8\x83\x20", 2 }, { GCRY_MD_CRC32_RFC1510, "\x80", "\xed\xb8\x83\x20" }, { GCRY_MD_CRC32_RFC1510, "\x80\x00\x00\x00", "\xed\x59\xb6\x3b", 4 }, { GCRY_MD_CRC32_RFC1510, "\x00\x00\x00\x01", "\x77\x07\x30\x96", 4 }, { GCRY_MD_CRC32_RFC1510, "123456789", "\x2d\xfd\x2d\x88" }, { GCRY_MD_CRC32_RFC1510, "!", "\xce\x5c\x74\x22" }, { GCRY_MD_CRC32_RFC1510, "?", "\x73\xfb\xe2\x85" }, { GCRY_MD_CRC24_RFC2440, "", "\xb7\x04\xce" }, { GCRY_MD_CRC24_RFC2440, "foo", "\x4f\xc2\x55" }, { GCRY_MD_CRC24_RFC2440, "123456789", "\x21\xcf\x02" }, { GCRY_MD_CRC24_RFC2440, "!", "\xa5\xcb\x6b" }, { GCRY_MD_CRC24_RFC2440, "?", "\x7f\x67\x03" }, { GCRY_MD_TIGER, "", "\x24\xF0\x13\x0C\x63\xAC\x93\x32\x16\x16\x6E\x76" "\xB1\xBB\x92\x5F\xF3\x73\xDE\x2D\x49\x58\x4E\x7A" }, { GCRY_MD_TIGER, "abc", "\xF2\x58\xC1\xE8\x84\x14\xAB\x2A\x52\x7A\xB5\x41" "\xFF\xC5\xB8\xBF\x93\x5F\x7B\x95\x1C\x13\x29\x51" }, { GCRY_MD_TIGER, "Tiger", "\x9F\x00\xF5\x99\x07\x23\x00\xDD\x27\x6A\xBB\x38" "\xC8\xEB\x6D\xEC\x37\x79\x0C\x11\x6F\x9D\x2B\xDF" }, { GCRY_MD_TIGER, "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefg" "hijklmnopqrstuvwxyz0123456789+-", "\x87\xFB\x2A\x90\x83\x85\x1C\xF7\x47\x0D\x2C\xF8" "\x10\xE6\xDF\x9E\xB5\x86\x44\x50\x34\xA5\xA3\x86" }, { GCRY_MD_TIGER, "ABCDEFGHIJKLMNOPQRSTUVWXYZ=abcdef" "ghijklmnopqrstuvwxyz+0123456789", "\x46\x7D\xB8\x08\x63\xEB\xCE\x48\x8D\xF1\xCD\x12" "\x61\x65\x5D\xE9\x57\x89\x65\x65\x97\x5F\x91\x97" }, { GCRY_MD_TIGER, "Tiger - A Fast New Hash Function, " "by Ross Anderson and Eli Biham", "\x0C\x41\x0A\x04\x29\x68\x86\x8A\x16\x71\xDA\x5A" "\x3F\xD2\x9A\x72\x5E\xC1\xE4\x57\xD3\xCD\xB3\x03" }, { GCRY_MD_TIGER, "Tiger - A Fast New Hash Function, " "by Ross Anderson and Eli Biham, proceedings of Fa" "st Software Encryption 3, Cambridge.", "\xEB\xF5\x91\xD5\xAF\xA6\x55\xCE\x7F\x22\x89\x4F" "\xF8\x7F\x54\xAC\x89\xC8\x11\xB6\xB0\xDA\x31\x93" }, { GCRY_MD_TIGER, "Tiger - A Fast New Hash Function, " "by Ross Anderson and Eli Biham, proceedings of Fa" "st Software Encryption 3, Cambridge, 1996.", "\x3D\x9A\xEB\x03\xD1\xBD\x1A\x63\x57\xB2\x77\x4D" "\xFD\x6D\x5B\x24\xDD\x68\x15\x1D\x50\x39\x74\xFC" }, { GCRY_MD_TIGER, "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefgh" "ijklmnopqrstuvwxyz0123456789+-ABCDEFGHIJKLMNOPQRS" "TUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+-", "\x00\xB8\x3E\xB4\xE5\x34\x40\xC5\x76\xAC\x6A\xAE" "\xE0\xA7\x48\x58\x25\xFD\x15\xE7\x0A\x59\xFF\xE4" }, { GCRY_MD_TIGER1, "", "\x32\x93\xAC\x63\x0C\x13\xF0\x24\x5F\x92\xBB\xB1" "\x76\x6E\x16\x16\x7A\x4E\x58\x49\x2D\xDE\x73\xF3" }, { GCRY_MD_TIGER1, "a", "\x77\xBE\xFB\xEF\x2E\x7E\xF8\xAB\x2E\xC8\xF9\x3B" "\xF5\x87\xA7\xFC\x61\x3E\x24\x7F\x5F\x24\x78\x09" }, { GCRY_MD_TIGER1, "abc", "\x2A\xAB\x14\x84\xE8\xC1\x58\xF2\xBF\xB8\xC5\xFF" "\x41\xB5\x7A\x52\x51\x29\x13\x1C\x95\x7B\x5F\x93" }, { GCRY_MD_TIGER1, "message digest", "\xD9\x81\xF8\xCB\x78\x20\x1A\x95\x0D\xCF\x30\x48" "\x75\x1E\x44\x1C\x51\x7F\xCA\x1A\xA5\x5A\x29\xF6" }, { GCRY_MD_TIGER1, "abcdefghijklmnopqrstuvwxyz", "\x17\x14\xA4\x72\xEE\xE5\x7D\x30\x04\x04\x12\xBF" "\xCC\x55\x03\x2A\x0B\x11\x60\x2F\xF3\x7B\xEE\xE9" }, { GCRY_MD_TIGER1, "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", "\x0F\x7B\xF9\xA1\x9B\x9C\x58\xF2\xB7\x61\x0D\xF7" "\xE8\x4F\x0A\xC3\xA7\x1C\x63\x1E\x7B\x53\xF7\x8E" }, { GCRY_MD_TIGER1, "ABCDEFGHIJKLMNOPQRSTUVWXYZ" "abcdefghijklmnopqrstuvwxyz" "0123456789", "\x8D\xCE\xA6\x80\xA1\x75\x83\xEE\x50\x2B\xA3\x8A" "\x3C\x36\x86\x51\x89\x0F\xFB\xCC\xDC\x49\xA8\xCC" }, { GCRY_MD_TIGER1, "1234567890" "1234567890" "1234567890" "1234567890" "1234567890" "1234567890" "1234567890" "1234567890", "\x1C\x14\x79\x55\x29\xFD\x9F\x20\x7A\x95\x8F\x84" "\xC5\x2F\x11\xE8\x87\xFA\x0C\xAB\xDF\xD9\x1B\xFD" }, { GCRY_MD_TIGER1, "!", "\x6D\xB0\xE2\x72\x9C\xBE\xAD\x93\xD7\x15\xC6\xA7" "\xD3\x63\x02\xE9\xB3\xCE\xE0\xD2\xBC\x31\x4B\x41" }, { GCRY_MD_TIGER1, "Libgcrypt is free software; you can redistribute it and/or modif" "y it under the terms of the GNU Lesser general Public License as" " published by the Free Software Foundation; either version 2.1 o" "f the License, or (at your option) any later version.\nLibgcrypt" " is distributed in the hope that it will be useful, but WITHOUT " "ANY WARRANTY; without even the implied warranty of MERCHANTABILI" "TY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser Gene" "ral Public License for more details.", "\x60\xee\xdf\x95\x39\xc8\x44\x94\x64\xdc\xdf\x3d\x2e\x1c\xe5\x79" "\x6a\x95\xbd\x30\x68\x8c\x7e\xb8" }, { GCRY_MD_TIGER1, "?", "\x4b\xe2\x3f\x23\xf5\x34\xbe\xbf\x97\x42\x95\x80" "\x54\xe4\x6c\x12\x64\x85\x44\x0a\xa9\x49\x9b\x65" }, { GCRY_MD_TIGER2, "", "\x44\x41\xBE\x75\xF6\x01\x87\x73\xC2\x06\xC2\x27" "\x45\x37\x4B\x92\x4A\xA8\x31\x3F\xEF\x91\x9F\x41" }, { GCRY_MD_TIGER2, "a", "\x67\xE6\xAE\x8E\x9E\x96\x89\x99\xF7\x0A\x23\xE7" "\x2A\xEA\xA9\x25\x1C\xBC\x7C\x78\xA7\x91\x66\x36" }, { GCRY_MD_TIGER2, "abc", "\xF6\x8D\x7B\xC5\xAF\x4B\x43\xA0\x6E\x04\x8D\x78" "\x29\x56\x0D\x4A\x94\x15\x65\x8B\xB0\xB1\xF3\xBF" }, { GCRY_MD_TIGER2, "message digest", "\xE2\x94\x19\xA1\xB5\xFA\x25\x9D\xE8\x00\x5E\x7D" "\xE7\x50\x78\xEA\x81\xA5\x42\xEF\x25\x52\x46\x2D" }, { GCRY_MD_TIGER2, "abcdefghijklmnopqrstuvwxyz", "\xF5\xB6\xB6\xA7\x8C\x40\x5C\x85\x47\xE9\x1C\xD8" "\x62\x4C\xB8\xBE\x83\xFC\x80\x4A\x47\x44\x88\xFD" }, { GCRY_MD_TIGER2, "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", "\xA6\x73\x7F\x39\x97\xE8\xFB\xB6\x3D\x20\xD2\xDF" "\x88\xF8\x63\x76\xB5\xFE\x2D\x5C\xE3\x66\x46\xA9" }, { GCRY_MD_TIGER2, "ABCDEFGHIJKLMNOPQRSTUVWXYZ" "abcdefghijklmnopqrstuvwxyz" "0123456789", "\xEA\x9A\xB6\x22\x8C\xEE\x7B\x51\xB7\x75\x44\xFC" "\xA6\x06\x6C\x8C\xBB\x5B\xBA\xE6\x31\x95\x05\xCD" }, { GCRY_MD_TIGER2, "1234567890" "1234567890" "1234567890" "1234567890" "1234567890" "1234567890" "1234567890" "1234567890", "\xD8\x52\x78\x11\x53\x29\xEB\xAA\x0E\xEC\x85\xEC" "\xDC\x53\x96\xFD\xA8\xAA\x3A\x58\x20\x94\x2F\xFF" }, { GCRY_MD_TIGER2, "!", "\xE0\x68\x28\x1F\x06\x0F\x55\x16\x28\xCC\x57\x15" "\xB9\xD0\x22\x67\x96\x91\x4D\x45\xF7\x71\x7C\xF4" }, { GCRY_MD_WHIRLPOOL, "", "\x19\xFA\x61\xD7\x55\x22\xA4\x66\x9B\x44\xE3\x9C\x1D\x2E\x17\x26" "\xC5\x30\x23\x21\x30\xD4\x07\xF8\x9A\xFE\xE0\x96\x49\x97\xF7\xA7" "\x3E\x83\xBE\x69\x8B\x28\x8F\xEB\xCF\x88\xE3\xE0\x3C\x4F\x07\x57" "\xEA\x89\x64\xE5\x9B\x63\xD9\x37\x08\xB1\x38\xCC\x42\xA6\x6E\xB3" }, { GCRY_MD_WHIRLPOOL, "a", "\x8A\xCA\x26\x02\x79\x2A\xEC\x6F\x11\xA6\x72\x06\x53\x1F\xB7\xD7" "\xF0\xDF\xF5\x94\x13\x14\x5E\x69\x73\xC4\x50\x01\xD0\x08\x7B\x42" "\xD1\x1B\xC6\x45\x41\x3A\xEF\xF6\x3A\x42\x39\x1A\x39\x14\x5A\x59" "\x1A\x92\x20\x0D\x56\x01\x95\xE5\x3B\x47\x85\x84\xFD\xAE\x23\x1A" }, { GCRY_MD_WHIRLPOOL, "?", "\x88\xf0\x78\x6d\x0d\x47\xe5\x32\x1f\x88\xb1\x48\x05\x53\x58\x7d" "\x19\x4b\x32\x9b\xf1\xfb\x17\xc5\x98\x3a\x87\xa2\x48\x61\x3d\x2b" "\xb2\xbc\x9f\x0d\xd2\x14\x37\x30\x55\x30\x91\xa7\xb8\x0c\x0f\x80" "\x7c\x7b\x94\xf6\x55\xf6\x0b\x12\x85\x0c\x8e\x6d\x17\x5b\x1e\x71" }, { GCRY_MD_WHIRLPOOL, "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789", "\xDC\x37\xE0\x08\xCF\x9E\xE6\x9B\xF1\x1F\x00\xED\x9A\xBA\x26\x90" "\x1D\xD7\xC2\x8C\xDE\xC0\x66\xCC\x6A\xF4\x2E\x40\xF8\x2F\x3A\x1E" "\x08\xEB\xA2\x66\x29\x12\x9D\x8F\xB7\xCB\x57\x21\x1B\x92\x81\xA6" "\x55\x17\xCC\x87\x9D\x7B\x96\x21\x42\xC6\x5F\x5A\x7A\xF0\x14\x67" }, { GCRY_MD_WHIRLPOOL, "!", "\x0C\x99\x00\x5B\xEB\x57\xEF\xF5\x0A\x7C\xF0\x05\x56\x0D\xDF\x5D" "\x29\x05\x7F\xD8\x6B\x20\xBF\xD6\x2D\xEC\xA0\xF1\xCC\xEA\x4A\xF5" "\x1F\xC1\x54\x90\xED\xDC\x47\xAF\x32\xBB\x2B\x66\xC3\x4F\xF9\xAD" "\x8C\x60\x08\xAD\x67\x7F\x77\x12\x69\x53\xB2\x26\xE4\xED\x8B\x01" }, { GCRY_MD_WHIRLPOOL, "Libgcrypt is free software; you can redistribute it and/or modif" "y it under the terms of the GNU Lesser general Public License as" " published by the Free Software Foundation; either version 2.1 o" "f the License, or (at your option) any later version.\nLibgcrypt" " is distributed in the hope that it will be useful, but WITHOUT " "ANY WARRANTY; without even the implied warranty of MERCHANTABILI" "TY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser Gene" "ral Public License for more details.", "\xcd\x4a\xa4\xaf\xf6\x7f\xec\xce\xbb\x6c\xdf\x91\x96\xe1\xf3\xf6" "\x78\xe2\x8e\x3a\x76\xcf\x06\xc7\xa1\x20\x7b\x81\x32\x60\xf7\x8e" "\x68\x19\x62\x33\x4f\xe5\x0a\x24\xfb\x9e\x74\x03\x74\xe4\x61\x29" "\x6f\xb3\x13\xe6\x7e\xc2\x88\x99\x9e\xfb\xe7\x9d\x11\x30\x89\xd2" }, { GCRY_MD_GOSTR3411_94, "This is message, length=32 bytes", "\xB1\xC4\x66\xD3\x75\x19\xB8\x2E\x83\x19\x81\x9F\xF3\x25\x95\xE0" "\x47\xA2\x8C\xB6\xF8\x3E\xFF\x1C\x69\x16\xA8\x15\xA6\x37\xFF\xFA" }, { GCRY_MD_GOSTR3411_94, "Suppose the original message has length = 50 bytes", "\x47\x1A\xBA\x57\xA6\x0A\x77\x0D\x3A\x76\x13\x06\x35\xC1\xFB\xEA" "\x4E\xF1\x4D\xE5\x1F\x78\xB4\xAE\x57\xDD\x89\x3B\x62\xF5\x52\x08" }, { GCRY_MD_GOSTR3411_94, "", "\xCE\x85\xB9\x9C\xC4\x67\x52\xFF\xFE\xE3\x5C\xAB\x9A\x7B\x02\x78" "\xAB\xB4\xC2\xD2\x05\x5C\xFF\x68\x5A\xF4\x91\x2C\x49\x49\x0F\x8D" }, { GCRY_MD_GOSTR3411_94, "!", "\x5C\x00\xCC\xC2\x73\x4C\xDD\x33\x32\xD3\xD4\x74\x95\x76\xE3\xC1" "\xA7\xDB\xAF\x0E\x7E\xA7\x4E\x9F\xA6\x02\x41\x3C\x90\xA1\x29\xFA" }, { GCRY_MD_GOSTR3411_94, "Libgcrypt is free software; you can redistribute it and/or modif" "y it under the terms of the GNU Lesser general Public License as" " published by the Free Software Foundation; either version 2.1 o" "f the License, or (at your option) any later version.\nLibgcrypt" " is distributed in the hope that it will be useful, but WITHOUT " "ANY WARRANTY; without even the implied warranty of MERCHANTABILI" "TY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser Gene" "ral Public License for more details.", "\x00\x0c\x85\xc8\x54\xd2\x9a\x6e\x47\x2e\xff\xa4\xa2\xe7\xd0\x2e" "\x8a\xcc\x14\x53\xb4\x87\xc8\x5c\x95\x9a\x3e\x85\x8c\x7d\x6e\x0c" }, { GCRY_MD_STRIBOG512, "012345678901234567890123456789012345678901234567890123456789012", "\x1b\x54\xd0\x1a\x4a\xf5\xb9\xd5\xcc\x3d\x86\xd6\x8d\x28\x54\x62" "\xb1\x9a\xbc\x24\x75\x22\x2f\x35\xc0\x85\x12\x2b\xe4\xba\x1f\xfa" "\x00\xad\x30\xf8\x76\x7b\x3a\x82\x38\x4c\x65\x74\xf0\x24\xc3\x11" "\xe2\xa4\x81\x33\x2b\x08\xef\x7f\x41\x79\x78\x91\xc1\x64\x6f\x48" }, { GCRY_MD_STRIBOG256, "012345678901234567890123456789012345678901234567890123456789012", "\x9d\x15\x1e\xef\xd8\x59\x0b\x89\xda\xa6\xba\x6c\xb7\x4a\xf9\x27" "\x5d\xd0\x51\x02\x6b\xb1\x49\xa4\x52\xfd\x84\xe5\xe5\x7b\x55\x00" }, { GCRY_MD_STRIBOG512, "\xd1\xe5\x20\xe2\xe5\xf2\xf0\xe8\x2c\x20\xd1\xf2\xf0\xe8\xe1\xee" "\xe6\xe8\x20\xe2\xed\xf3\xf6\xe8\x2c\x20\xe2\xe5\xfe\xf2\xfa\x20" "\xf1\x20\xec\xee\xf0\xff\x20\xf1\xf2\xf0\xe5\xeb\xe0\xec\xe8\x20" "\xed\xe0\x20\xf5\xf0\xe0\xe1\xf0\xfb\xff\x20\xef\xeb\xfa\xea\xfb" "\x20\xc8\xe3\xee\xf0\xe5\xe2\xfb", "\x1e\x88\xe6\x22\x26\xbf\xca\x6f\x99\x94\xf1\xf2\xd5\x15\x69\xe0" "\xda\xf8\x47\x5a\x3b\x0f\xe6\x1a\x53\x00\xee\xe4\x6d\x96\x13\x76" "\x03\x5f\xe8\x35\x49\xad\xa2\xb8\x62\x0f\xcd\x7c\x49\x6c\xe5\xb3" "\x3f\x0c\xb9\xdd\xdc\x2b\x64\x60\x14\x3b\x03\xda\xba\xc9\xfb\x28" }, { GCRY_MD_STRIBOG256, "\xd1\xe5\x20\xe2\xe5\xf2\xf0\xe8\x2c\x20\xd1\xf2\xf0\xe8\xe1\xee" "\xe6\xe8\x20\xe2\xed\xf3\xf6\xe8\x2c\x20\xe2\xe5\xfe\xf2\xfa\x20" "\xf1\x20\xec\xee\xf0\xff\x20\xf1\xf2\xf0\xe5\xeb\xe0\xec\xe8\x20" "\xed\xe0\x20\xf5\xf0\xe0\xe1\xf0\xfb\xff\x20\xef\xeb\xfa\xea\xfb" "\x20\xc8\xe3\xee\xf0\xe5\xe2\xfb", "\x9d\xd2\xfe\x4e\x90\x40\x9e\x5d\xa8\x7f\x53\x97\x6d\x74\x05\xb0" "\xc0\xca\xc6\x28\xfc\x66\x9a\x74\x1d\x50\x06\x3c\x55\x7e\x8f\x50" }, #include "./sha3-224.h" #include "./sha3-256.h" #include "./sha3-384.h" #include "./sha3-512.h" { GCRY_MD_SHAKE128, "", "\x7F\x9C\x2B\xA4\xE8\x8F\x82\x7D\x61\x60\x45\x50\x76\x05\x85\x3E" "\xD7\x3B\x80\x93\xF6\xEF\xBC\x88\xEB\x1A\x6E\xAC\xFA\x66\xEF\x26" "\x3C\xB1\xEE\xA9\x88\x00\x4B\x93\x10\x3C\xFB\x0A\xEE\xFD\x2A\x68" "\x6E\x01\xFA\x4A\x58\xE8\xA3\x63\x9C\xA8\xA1\xE3\xF9\xAE\x57\xE2" "\x35\xB8\xCC\x87\x3C\x23\xDC\x62\xB8\xD2\x60\x16\x9A\xFA\x2F\x75" "\xAB\x91\x6A\x58\xD9\x74\x91\x88\x35\xD2\x5E\x6A\x43\x50\x85\xB2" "\xBA\xDF\xD6\xDF\xAA\xC3\x59\xA5\xEF\xBB\x7B\xCC\x4B\x59\xD5\x38" "\xDF\x9A\x04\x30\x2E\x10\xC8\xBC\x1C\xBF\x1A\x0B\x3A\x51\x20\xEA" "\x17\xCD\xA7\xCF\xAD\x76\x5F\x56\x23\x47\x4D\x36\x8C\xCC\xA8\xAF" "\x00\x07\xCD\x9F\x5E\x4C\x84\x9F\x16\x7A\x58\x0B\x14\xAA\xBD\xEF" "\xAE\xE7\xEE\xF4\x7C\xB0\xFC\xA9\x76\x7B\xE1\xFD\xA6\x94\x19\xDF" "\xB9\x27\xE9\xDF\x07\x34\x8B\x19\x66\x91\xAB\xAE\xB5\x80\xB3\x2D" "\xEF\x58\x53\x8B\x8D\x23\xF8\x77\x32\xEA\x63\xB0\x2B\x4F\xA0\xF4" "\x87\x33\x60\xE2\x84\x19\x28\xCD\x60\xDD\x4C\xEE\x8C\xC0\xD4\xC9" "\x22\xA9\x61\x88\xD0\x32\x67\x5C\x8A\xC8\x50\x93\x3C\x7A\xFF\x15" "\x33\xB9\x4C\x83\x4A\xDB\xB6\x9C\x61\x15\xBA\xD4\x69\x2D\x86\x19" "\xF9\x0B\x0C\xDF\x8A\x7B\x9C\x26\x40\x29\xAC\x18\x5B\x70\xB8\x3F" "\x28\x01\xF2\xF4\xB3\xF7\x0C\x59\x3E\xA3\xAE\xEB\x61\x3A\x7F\x1B" "\x1D\xE3\x3F\xD7\x50\x81\xF5\x92\x30\x5F\x2E\x45\x26\xED\xC0\x96" "\x31\xB1\x09\x58\xF4\x64\xD8\x89\xF3\x1B\xA0\x10\x25\x0F\xDA\x7F" "\x13\x68\xEC\x29\x67\xFC\x84\xEF\x2A\xE9\xAF\xF2\x68\xE0\xB1\x70" "\x0A\xFF\xC6\x82\x0B\x52\x3A\x3D\x91\x71\x35\xF2\xDF\xF2\xEE\x06" "\xBF\xE7\x2B\x31\x24\x72\x1D\x4A\x26\xC0\x4E\x53\xA7\x5E\x30\xE7" "\x3A\x7A\x9C\x4A\x95\xD9\x1C\x55\xD4\x95\xE9\xF5\x1D\xD0\xB5\xE9" "\xD8\x3C\x6D\x5E\x8C\xE8\x03\xAA\x62\xB8\xD6\x54\xDB\x53\xD0\x9B" "\x8D\xCF\xF2\x73\xCD\xFE\xB5\x73\xFA\xD8\xBC\xD4\x55\x78\xBE\xC2" "\xE7\x70\xD0\x1E\xFD\xE8\x6E\x72\x1A\x3F\x7C\x6C\xCE\x27\x5D\xAB" "\xE6\xE2\x14\x3F\x1A\xF1\x8D\xA7\xEF\xDD\xC4\xC7\xB7\x0B\x5E\x34" "\x5D\xB9\x3C\xC9\x36\xBE\xA3\x23\x49\x1C\xCB\x38\xA3\x88\xF5\x46" "\xA9\xFF\x00\xDD\x4E\x13\x00\xB9\xB2\x15\x3D\x20\x41\xD2\x05\xB4" "\x43\xE4\x1B\x45\xA6\x53\xF2\xA5\xC4\x49\x2C\x1A\xDD\x54\x45\x12" "\xDD\xA2\x52\x98\x33\x46\x2B\x71\xA4\x1A\x45\xBE\x97\x29\x0B\x6F", 0, 512, }, { GCRY_MD_SHAKE128, "\x5A\xAB\x62\x75\x6D\x30\x7A\x66\x9D\x14\x6A\xBA\x98\x8D\x90\x74" "\xC5\xA1\x59\xB3\xDE\x85\x15\x1A\x81\x9B\x11\x7C\xA1\xFF\x65\x97" "\xF6\x15\x6E\x80\xFD\xD2\x8C\x9C\x31\x76\x83\x51\x64\xD3\x7D\xA7" "\xDA\x11\xD9\x4E\x09\xAD\xD7\x70\xB6\x8A\x6E\x08\x1C\xD2\x2C\xA0" "\xC0\x04\xBF\xE7\xCD\x28\x3B\xF4\x3A\x58\x8D\xA9\x1F\x50\x9B\x27" "\xA6\x58\x4C\x47\x4A\x4A\x2F\x3E\xE0\xF1\xF5\x64\x47\x37\x92\x40" "\xA5\xAB\x1F\xB7\x7F\xDC\xA4\x9B\x30\x5F\x07\xBA\x86\xB6\x27\x56" "\xFB\x9E\xFB\x4F\xC2\x25\xC8\x68\x45\xF0\x26\xEA\x54\x20\x76\xB9" "\x1A\x0B\xC2\xCD\xD1\x36\xE1\x22\xC6\x59\xBE\x25\x9D\x98\xE5\x84" "\x1D\xF4\xC2\xF6\x03\x30\xD4\xD8\xCD\xEE\x7B\xF1\xA0\xA2\x44\x52" "\x4E\xEC\xC6\x8F\xF2\xAE\xF5\xBF\x00\x69\xC9\xE8\x7A\x11\xC6\xE5" "\x19\xDE\x1A\x40\x62\xA1\x0C\x83\x83\x73\x88\xF7\xEF\x58\x59\x8A" "\x38\x46\xF4\x9D\x49\x96\x82\xB6\x83\xC4\xA0\x62\xB4\x21\x59\x4F" "\xAF\xBC\x13\x83\xC9\x43\xBA\x83\xBD\xEF\x51\x5E\xFC\xF1\x0D", "\xF0\x71\x5D\xE3\x56\x92\xFD\x70\x12\x3D\xC6\x83\x68\xD0\xFE\xEC" "\x06\xA0\xC7\x4C\xF8\xAD\xB0\x5D\xDC\x25\x54\x87\xB1\xA8\xD4\xD1" "\x21\x3E\x9E\xAB\xAF\x41\xF1\x16\x17\x19\xD0\x65\xD7\x94\xB7\x50" "\xF8\x4B\xE3\x2A\x32\x34\xB4\xD5\x36\x46\x0D\x55\x20\x68\x8A\x5A" "\x79\xA1\x7A\x4B\xA8\x98\x7F\xCB\x61\xBF\x7D\xAA\x8B\x54\x7B\xF5" "\xC1\xCE\x36\xB5\x6A\x73\x25\x7D\xBB\xF1\xBA\xBB\x64\xF2\x49\xBD" "\xCE\xB6\x7B\xA1\xC8\x88\x37\x0A\x96\x3D\xFD\x6B\x6A\x2A\xDE\x2C" "\xEF\xD1\x4C\x32\x52\xCB\x37\x58\x52\x0F\x0C\x65\xF4\x52\x46\x82" "\x77\x24\x99\x46\x3A\xE1\xA3\x41\x80\x01\x83\xAA\x60\xEF\xA0\x51" "\x18\xA2\x82\x01\x74\x4F\x7B\xA0\xB0\xA3\x92\x8D\xD7\xC0\x26\x3F" "\xD2\x64\xB7\xCD\x7B\x2E\x2E\x09\xB3\x22\xBF\xCE\xA8\xEE\xD0\x42" "\x75\x79\x5B\xE7\xC0\xF0\x0E\x11\x38\x27\x37\x0D\x05\x1D\x50\x26" "\x95\x80\x30\x00\x05\xAC\x12\x88\xFE\xA6\xCD\x9A\xE9\xF4\xF3\x7C" "\xE0\xF8\xAC\xE8\xBF\x3E\xBE\x1D\x70\x56\x25\x59\x54\xC7\x61\x93" "\x1D\x3C\x42\xED\x62\xF7\xF1\xCE\x1B\x94\x5C\xDE\xCC\x0A\x74\x32" "\x2D\x7F\x64\xD6\x00\x4F\xF2\x16\x84\x14\x93\x07\x28\x8B\x44\x8E" "\x45\x43\x34\x75\xB1\xEA\x13\x14\xB0\x0F\x1F\xC4\x50\x08\x9A\x9D" "\x1F\x77\x10\xC6\xD7\x65\x2E\xCF\x65\x4F\x3B\x48\x7D\x02\x83\xD4" "\xD8\xA2\x8E\xFB\x50\x66\xC4\x25\x0D\x5A\xD6\x98\xE1\x5D\xBA\x88" "\xE9\x25\xE4\xDE\x99\xB6\x9B\xC3\x83\xAC\x80\x45\xB7\xF1\x02\x2A" "\xDD\x39\xD4\x43\x54\x6A\xE0\x92\x4F\x13\xF4\x89\x60\x96\xDF\xDF" "\x37\xCA\x72\x20\x79\x87\xC4\xA7\x70\x5A\x7A\xBE\x72\x4B\x7F\xA1" "\x0C\x90\x9F\x39\x25\x44\x9F\x01\x0D\x61\xE2\x07\xAD\xD9\x52\x19" "\x07\x1A\xCE\xED\xB9\xB9\xDC\xED\x32\xA9\xE1\x23\x56\x1D\x60\x82" "\xD4\x6A\xEF\xAE\x07\xEE\x1B\xD1\x32\x76\x5E\x3E\x51\x3C\x66\x50" "\x1B\x38\x7A\xB2\xEE\x09\xA0\x4A\xE6\x3E\x25\x80\x85\x17\xAF\xEA" "\x3E\x05\x11\x69\xCF\xD2\xFF\xF8\xC5\x85\x8E\x2D\x96\x23\x89\x7C" "\x9E\x85\x17\x5A\xC5\xA8\x63\x94\xCD\x0A\x32\xA0\xA6\x2A\x8F\x5D" "\x6C\xCC\xBF\x49\x3D\xAA\x43\xF7\x83\x62\xBB\xCA\x40\xAD\xF7\x33" "\xF8\x71\xE0\xC0\x09\x98\xD9\xBF\xD6\x88\x06\x56\x66\x6C\xD7\xBE" "\x4F\xE9\x89\x2C\x61\xDC\xD5\xCD\x23\xA5\xE4\x27\x7E\xEE\x8B\x4A" "\xFD\x29\xB6\x9B\xBA\x55\x66\x0A\x21\x71\x12\xFF\x6E\x34\x56\xB1", 223, 512, }, { GCRY_MD_SHAKE128, "!", "\x9d\x22\x2c\x79\xc4\xff\x9d\x09\x2c\xf6\xca\x86\x14\x3a\xa4\x11" "\xe3\x69\x97\x38\x08\xef\x97\x09\x32\x55\x82\x6c\x55\x72\xef\x58" "\x42\x4c\x4b\x5c\x28\x47\x5f\xfd\xcf\x98\x16\x63\x86\x7f\xec\x63" "\x21\xc1\x26\x2e\x38\x7b\xcc\xf8\xca\x67\x68\x84\xc4\xa9\xd0\xc1" "\x3b\xfa\x68\x69\x76\x3d\x5a\xe4\xbb\xc9\xb3\xcc\xd0\x9d\x1c\xa5" "\xea\x74\x46\x53\x8d\x69\xb3\xfb\x98\xc7\x2b\x59\xa2\xb4\x81\x7d" "\xb5\xea\xdd\x90\x11\xf9\x0f\xa7\x10\x91\x93\x1f\x81\x34\xf4\xf0" "\x0b\x56\x2e\x2f\xe1\x05\x93\x72\x70\x36\x1c\x19\x09\x86\x2a\xd4" "\x50\x46\xe3\x93\x2f\x5d\xd3\x11\xec\x72\xfe\xc5\xf8\xfb\x8f\x60" "\xb4\x5a\x3b\xee\x3f\x85\xbb\xf7\xfc\xed\xc6\xa5\x55\x67\x76\x48" "\xe0\x65\x4b\x38\x19\x41\xa8\x6b\xd3\xe5\x12\x65\x7b\x0d\x57\xa7" "\x99\x1f\xc4\x54\x3f\x89\xd8\x29\x04\x92\x22\x2c\xe4\xa3\x3e\x17" "\x60\x2b\x3b\x99\xc0\x09\xf7\x65\x5f\x87\x53\x5c\xda\xa3\x71\x6f" "\x58\xc4\x7b\x8a\x15\x7a\xd1\x95\xf0\x28\x09\xf2\x75\x00\xb9\x25" "\x49\x79\x31\x1c\x6b\xb4\x15\x96\x8c\xd1\x04\x31\x16\x9a\x27\xd5" "\xa8\xd6\x1e\x13\xa6\xb8\xb7\x7a\xf1\xf8\xb6\xdd\x2e\xef\xde\xa0" "\x40\x78\x96\x80\x49\x0b\x5e\xdc\xb1\xd3\xe5\x38\xa4\x66\xf7\x57" "\xad\x71\x8f\xe1\xfd\x9f\xae\xef\xa4\x72\x46\xad\x5e\x36\x7f\x87" "\xd3\xb4\x85\x0d\x44\x86\xeb\x21\x99\xe9\x4a\x79\x79\xe2\x09\x1a" "\xbc\xdf\x3b\xc1\x33\x79\xc8\x96\xdc\xeb\x79\xa8\xfd\x08\xf1\x10" "\x73\xf3\x3e\x3f\x99\x23\x22\xb3\x12\x02\xde\xe2\x34\x33\x0c\xf3" "\x30\x4a\x58\x8f\x0d\x59\xda\xe4\xe6\x3b\xa2\xac\x3c\xe6\x82\xcc" "\x19\xd4\xe3\x41\x67\x8c\xc3\xa6\x7a\x47\xc1\x13\xb4\xdb\x89\x0f" "\x30\xa9\x2a\xa0\x8a\x1f\x6d\xc8\xfb\x64\x63\xf8\x03\x8c\x2b\x40" "\xb2\x53\x00\x77\xb2\x36\xce\x88\xaf\xcc\xcd\xa0\x8a\xd6\xd7\x5e" "\xee\x18\x99\xb1\x0c\xd8\x00\xc2\xce\x53\x72\xbf\xf2\x2e\xe3\xa3" "\x39\xd4\xb9\xc1\xa2\xf5\xf4\xb8\x20\xf6\x87\xe5\x51\x9b\xd0\x5b" "\x1f\xc5\xda\x0e\xb4\x53\x36\x81\x4f\x48\x13\x2c\x64\x0e\x66\xc3" "\xa0\x2a\x22\xe6\x35\x98\xf9\x4f\x22\xf3\x51\x84\x11\x04\x46\xb6" "\x48\xcf\x84\x74\xf3\x0c\x43\xea\xd5\x83\x09\xfb\x25\x90\x16\x09" "\xe2\x41\x87\xe8\x01\xc8\x09\x56\x1a\x64\x80\x94\x50\xe6\x03\xc4" "\xa8\x03\x95\x25\xc4\x76\xb5\x8e\x32\xce\x2c\x47\xb3\x7d\xa5\x91", 0, 512, }, { GCRY_MD_SHAKE256, "", "\x46\xB9\xDD\x2B\x0B\xA8\x8D\x13\x23\x3B\x3F\xEB\x74\x3E\xEB\x24" "\x3F\xCD\x52\xEA\x62\xB8\x1B\x82\xB5\x0C\x27\x64\x6E\xD5\x76\x2F" "\xD7\x5D\xC4\xDD\xD8\xC0\xF2\x00\xCB\x05\x01\x9D\x67\xB5\x92\xF6" "\xFC\x82\x1C\x49\x47\x9A\xB4\x86\x40\x29\x2E\xAC\xB3\xB7\xC4\xBE" "\x14\x1E\x96\x61\x6F\xB1\x39\x57\x69\x2C\xC7\xED\xD0\xB4\x5A\xE3" "\xDC\x07\x22\x3C\x8E\x92\x93\x7B\xEF\x84\xBC\x0E\xAB\x86\x28\x53" "\x34\x9E\xC7\x55\x46\xF5\x8F\xB7\xC2\x77\x5C\x38\x46\x2C\x50\x10" "\xD8\x46\xC1\x85\xC1\x51\x11\xE5\x95\x52\x2A\x6B\xCD\x16\xCF\x86" "\xF3\xD1\x22\x10\x9E\x3B\x1F\xDD\x94\x3B\x6A\xEC\x46\x8A\x2D\x62" "\x1A\x7C\x06\xC6\xA9\x57\xC6\x2B\x54\xDA\xFC\x3B\xE8\x75\x67\xD6" "\x77\x23\x13\x95\xF6\x14\x72\x93\xB6\x8C\xEA\xB7\xA9\xE0\xC5\x8D" "\x86\x4E\x8E\xFD\xE4\xE1\xB9\xA4\x6C\xBE\x85\x47\x13\x67\x2F\x5C" "\xAA\xAE\x31\x4E\xD9\x08\x3D\xAB\x4B\x09\x9F\x8E\x30\x0F\x01\xB8" "\x65\x0F\x1F\x4B\x1D\x8F\xCF\x3F\x3C\xB5\x3F\xB8\xE9\xEB\x2E\xA2" "\x03\xBD\xC9\x70\xF5\x0A\xE5\x54\x28\xA9\x1F\x7F\x53\xAC\x26\x6B" "\x28\x41\x9C\x37\x78\xA1\x5F\xD2\x48\xD3\x39\xED\xE7\x85\xFB\x7F" "\x5A\x1A\xAA\x96\xD3\x13\xEA\xCC\x89\x09\x36\xC1\x73\xCD\xCD\x0F" "\xAB\x88\x2C\x45\x75\x5F\xEB\x3A\xED\x96\xD4\x77\xFF\x96\x39\x0B" "\xF9\xA6\x6D\x13\x68\xB2\x08\xE2\x1F\x7C\x10\xD0\x4A\x3D\xBD\x4E" "\x36\x06\x33\xE5\xDB\x4B\x60\x26\x01\xC1\x4C\xEA\x73\x7D\xB3\xDC" "\xF7\x22\x63\x2C\xC7\x78\x51\xCB\xDD\xE2\xAA\xF0\xA3\x3A\x07\xB3" "\x73\x44\x5D\xF4\x90\xCC\x8F\xC1\xE4\x16\x0F\xF1\x18\x37\x8F\x11" "\xF0\x47\x7D\xE0\x55\xA8\x1A\x9E\xDA\x57\xA4\xA2\xCF\xB0\xC8\x39" "\x29\xD3\x10\x91\x2F\x72\x9E\xC6\xCF\xA3\x6C\x6A\xC6\xA7\x58\x37" "\x14\x30\x45\xD7\x91\xCC\x85\xEF\xF5\xB2\x19\x32\xF2\x38\x61\xBC" "\xF2\x3A\x52\xB5\xDA\x67\xEA\xF7\xBA\xAE\x0F\x5F\xB1\x36\x9D\xB7" "\x8F\x3A\xC4\x5F\x8C\x4A\xC5\x67\x1D\x85\x73\x5C\xDD\xDB\x09\xD2" "\xB1\xE3\x4A\x1F\xC0\x66\xFF\x4A\x16\x2C\xB2\x63\xD6\x54\x12\x74" "\xAE\x2F\xCC\x86\x5F\x61\x8A\xBE\x27\xC1\x24\xCD\x8B\x07\x4C\xCD" "\x51\x63\x01\xB9\x18\x75\x82\x4D\x09\x95\x8F\x34\x1E\xF2\x74\xBD" "\xAB\x0B\xAE\x31\x63\x39\x89\x43\x04\xE3\x58\x77\xB0\xC2\x8A\x9B" "\x1F\xD1\x66\xC7\x96\xB9\xCC\x25\x8A\x06\x4A\x8F\x57\xE2\x7F\x2A", 0, 512, }, { GCRY_MD_SHAKE256, "\xB3\x2D\x95\xB0\xB9\xAA\xD2\xA8\x81\x6D\xE6\xD0\x6D\x1F\x86\x00" "\x85\x05\xBD\x8C\x14\x12\x4F\x6E\x9A\x16\x3B\x5A\x2A\xDE\x55\xF8" "\x35\xD0\xEC\x38\x80\xEF\x50\x70\x0D\x3B\x25\xE4\x2C\xC0\xAF\x05" "\x0C\xCD\x1B\xE5\xE5\x55\xB2\x30\x87\xE0\x4D\x7B\xF9\x81\x36\x22" "\x78\x0C\x73\x13\xA1\x95\x4F\x87\x40\xB6\xEE\x2D\x3F\x71\xF7\x68" "\xDD\x41\x7F\x52\x04\x82\xBD\x3A\x08\xD4\xF2\x22\xB4\xEE\x9D\xBD" "\x01\x54\x47\xB3\x35\x07\xDD\x50\xF3\xAB\x42\x47\xC5\xDE\x9A\x8A" "\xBD\x62\xA8\xDE\xCE\xA0\x1E\x3B\x87\xC8\xB9\x27\xF5\xB0\x8B\xEB" "\x37\x67\x4C\x6F\x8E\x38\x0C\x04", "\xCC\x2E\xAA\x04\xEE\xF8\x47\x9C\xDA\xE8\x56\x6E\xB8\xFF\xA1\x10" "\x0A\x40\x79\x95\xBF\x99\x9A\xE9\x7E\xDE\x52\x66\x81\xDC\x34\x90" "\x61\x6F\x28\x44\x2D\x20\xDA\x92\x12\x4C\xE0\x81\x58\x8B\x81\x49" "\x1A\xED\xF6\x5C\xAA\xF0\xD2\x7E\x82\xA4\xB0\xE1\xD1\xCA\xB2\x38" "\x33\x32\x8F\x1B\x8D\xA4\x30\xC8\xA0\x87\x66\xA8\x63\x70\xFA\x84" "\x8A\x79\xB5\x99\x8D\xB3\xCF\xFD\x05\x7B\x96\xE1\xE2\xEE\x0E\xF2" "\x29\xEC\xA1\x33\xC1\x55\x48\xF9\x83\x99\x02\x04\x37\x30\xE4\x4B" "\xC5\x2C\x39\xFA\xDC\x1D\xDE\xEA\xD9\x5F\x99\x39\xF2\x20\xCA\x30" "\x06\x61\x54\x0D\xF7\xED\xD9\xAF\x37\x8A\x5D\x4A\x19\xB2\xB9\x3E" "\x6C\x78\xF4\x9C\x35\x33\x43\xA0\xB5\xF1\x19\x13\x2B\x53\x12\xD0" "\x04\x83\x1D\x01\x76\x9A\x31\x6D\x2F\x51\xBF\x64\xCC\xB2\x0A\x21" "\xC2\xCF\x7A\xC8\xFB\x6F\x6E\x90\x70\x61\x26\xBD\xAE\x06\x11\xDD" "\x13\x96\x2E\x8B\x53\xD6\xEA\xE2\x6C\x7B\x0D\x25\x51\xDA\xF6\x24" "\x8E\x9D\x65\x81\x73\x82\xB0\x4D\x23\x39\x2D\x10\x8E\x4D\x34\x43" "\xDE\x5A\xDC\x72\x73\xC7\x21\xA8\xF8\x32\x0E\xCF\xE8\x17\x7A\xC0" "\x67\xCA\x8A\x50\x16\x9A\x6E\x73\x00\x0E\xBC\xDC\x1E\x4E\xE6\x33" "\x9F\xC8\x67\xC3\xD7\xAE\xAB\x84\x14\x63\x98\xD7\xBA\xDE\x12\x1D" "\x19\x89\xFA\x45\x73\x35\x56\x4E\x97\x57\x70\xA3\xA0\x02\x59\xCA" "\x08\x70\x61\x08\x26\x1A\xA2\xD3\x4D\xE0\x0F\x8C\xAC\x7D\x45\xD3" "\x5E\x5A\xA6\x3E\xA6\x9E\x1D\x1A\x2F\x7D\xAB\x39\x00\xD5\x1E\x0B" "\xC6\x53\x48\xA2\x55\x54\x00\x70\x39\xA5\x2C\x3C\x30\x99\x80\xD1" "\x7C\xAD\x20\xF1\x15\x63\x10\xA3\x9C\xD3\x93\x76\x0C\xFE\x58\xF6" "\xF8\xAD\xE4\x21\x31\x28\x82\x80\xA3\x5E\x1D\xB8\x70\x81\x83\xB9" "\x1C\xFA\xF5\x82\x7E\x96\xB0\xF7\x74\xC4\x50\x93\xB4\x17\xAF\xF9" "\xDD\x64\x17\xE5\x99\x64\xA0\x1B\xD2\xA6\x12\xFF\xCF\xBA\x18\xA0" "\xF1\x93\xDB\x29\x7B\x9A\x6C\xC1\xD2\x70\xD9\x7A\xAE\x8F\x8A\x3A" "\x6B\x26\x69\x5A\xB6\x64\x31\xC2\x02\xE1\x39\xD6\x3D\xD3\xA2\x47" "\x78\x67\x6C\xEF\xE3\xE2\x1B\x02\xEC\x4E\x8F\x5C\xFD\x66\x58\x7A" "\x12\xB4\x40\x78\xFC\xD3\x9E\xEE\x44\xBB\xEF\x4A\x94\x9A\x63\xC0" "\xDF\xD5\x8C\xF2\xFB\x2C\xD5\xF0\x02\xE2\xB0\x21\x92\x66\xCF\xC0" "\x31\x81\x74\x86\xDE\x70\xB4\x28\x5A\x8A\x70\xF3\xD3\x8A\x61\xD3" "\x15\x5D\x99\xAA\xF4\xC2\x53\x90\xD7\x36\x45\xAB\x3E\x8D\x80\xF0", 136, 512, }, { GCRY_MD_SHAKE256, "!", "\x35\x78\xa7\xa4\xca\x91\x37\x56\x9c\xdf\x76\xed\x61\x7d\x31\xbb" "\x99\x4f\xca\x9c\x1b\xbf\x8b\x18\x40\x13\xde\x82\x34\xdf\xd1\x3a" "\x3f\xd1\x24\xd4\xdf\x76\xc0\xa5\x39\xee\x7d\xd2\xf6\xe1\xec\x34" "\x61\x24\xc8\x15\xd9\x41\x0e\x14\x5e\xb5\x61\xbc\xd9\x7b\x18\xab" "\x6c\xe8\xd5\x55\x3e\x0e\xab\x3d\x1f\x7d\xfb\x8f\x9d\xee\xfe\x16" "\x84\x7e\x21\x92\xf6\xf6\x1f\xb8\x2f\xb9\x0d\xde\x60\xb1\x90\x63" "\xc5\x6a\x4c\x55\xcd\xd7\xb6\x72\xb7\x5b\xf5\x15\xad\xbf\xe2\x04" "\x90\x3c\x8c\x00\x36\xde\x54\xa2\x99\x9a\x92\x0d\xe9\x0f\x66\xd7" "\xff\x6e\xc8\xe4\xc9\x3d\x24\xae\x34\x6f\xdc\xb3\xa5\xa5\xbd\x57" "\x39\xec\x15\xa6\xed\xdb\x5c\xe5\xb0\x2d\xa5\x30\x39\xfa\xc6\x3e" "\x19\x55\x5f\xaa\x2e\xdd\xc6\x93\xb1\xf0\xc2\xa6\xfc\xbe\x7c\x0a" "\x0a\x09\x1d\x0e\xe7\x00\xd7\x32\x2e\x4b\x0f\xf0\x95\x90\xde\x16" "\x64\x22\xf9\xea\xd5\xda\x4c\x99\x3d\x60\x5f\xe4\xd9\xc6\x34\x84" "\x3a\xa1\x78\xb1\x76\x72\xc6\x56\x8c\x8a\x2e\x62\xab\xeb\xea\x2c" "\x21\xc3\x02\xbd\x36\x6a\xd6\x98\x95\x9e\x1f\x6e\x43\x4a\xf1\x55" "\x56\x8b\x27\x34\xd8\x37\x9f\xcd\x3f\xfe\x64\x89\xba\xff\xa6\xd7" "\x11\x09\x44\x2e\x1b\x34\x4f\x13\x8a\x09\xca\xe3\xe2\xd3\x94\x2e" "\xee\x82\x8f\xc4\x7e\x64\xde\xb5\xe0\x0a\x02\x4a\xe1\xf2\xc0\x77" "\xe6\xb7\xb1\x33\xf6\xc1\xde\x91\x30\x92\xd4\xe8\x29\xec\xd2\xb2" "\xef\x28\xca\x80\x20\x82\x1e\x2b\x8b\xe5\x17\xd9\x3e\xd0\x88\x36" "\xf6\xf0\x66\xcc\x3d\x03\xb6\x25\xd8\x49\x7f\x29\xdb\xc1\xc3\x9e" "\x6f\xe4\x63\x22\x6f\x85\xc1\x28\xa2\xc2\x98\x88\x11\x2e\x06\xa9" "\x9c\x5d\x17\xb2\x5e\x90\x0d\x20\x4f\x39\x72\x31\xcd\xf7\x9c\x31" "\x34\x46\x53\x2d\xad\x07\xf4\xc0\xbd\x9f\xba\x1d\xd4\x13\xd8\xa7" "\xe6\xcb\xc0\xa0\x86\x2c\xc7\x69\x23\x9a\x89\xf9\xdb\x08\x5b\x78" "\xa0\x54\x59\x6a\xd7\x08\x0d\xdf\x96\x01\x9b\x73\x99\xb5\x03\x48" "\x0e\x5a\x65\xa2\x20\x8d\x74\x72\x4c\x98\x7d\x32\x5e\x9b\x0e\x82" "\xfe\xcd\x4f\x27\xf3\x13\x5b\x1d\x9e\x27\xb4\x8e\x69\xdd\x6f\x59" "\x62\xb8\xa6\x3b\x48\x92\x1e\xc8\xee\x53\x86\x9f\x1a\xc1\xc8\x18" "\x23\x87\xee\x0d\x6c\xfe\xf6\x53\xff\x8b\xf6\x05\xf1\x47\x04\xb7" "\x1b\xeb\x65\x53\xf2\x81\xfa\x75\x69\x48\xc4\x38\x49\x4b\x19\xb4" "\xee\x69\xa5\x43\x6b\x22\x2b\xc9\x88\xed\xa4\xac\x60\x00\x24\xc9", 0, 512, }, { GCRY_MD_BLAKE2B_512, "abc", "\xBA\x80\xA5\x3F\x98\x1C\x4D\x0D\x6A\x27\x97\xB6\x9F\x12\xF6\xE9" "\x4C\x21\x2F\x14\x68\x5A\xC4\xB7\x4B\x12\xBB\x6F\xDB\xFF\xA2\xD1" "\x7D\x87\xC5\x39\x2A\xAB\x79\x2D\xC2\x52\xD5\xDE\x45\x33\xCC\x95" "\x18\xD3\x8A\xA8\xDB\xF1\x92\x5A\xB9\x23\x86\xED\xD4\x00\x99\x23" }, { GCRY_MD_BLAKE2B_512, "\x00", "\x96\x1f\x6d\xd1\xe4\xdd\x30\xf6\x39\x01\x69\x0c\x51\x2e\x78\xe4" "\xb4\x5e\x47\x42\xed\x19\x7c\x3c\x5e\x45\xc5\x49\xfd\x25\xf2\xe4" "\x18\x7b\x0b\xc9\xfe\x30\x49\x2b\x16\xb0\xd0\xbc\x4e\xf9\xb0\xf3" "\x4c\x70\x03\xfa\xc0\x9a\x5e\xf1\x53\x2e\x69\x43\x02\x34\xce\xbd", 1, 64, "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f" "\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f" "\x20\x21\x22\x23\x24\x25\x26\x27\x28\x29\x2a\x2b\x2c\x2d\x2e\x2f" "\x30\x31\x32\x33\x34\x35\x36\x37\x38\x39\x3a\x3b\x3c\x3d\x3e\x3f", 64 }, #include "./blake2b.h" { GCRY_MD_BLAKE2B_160, "", "\xad\x75\xea\xd7\x9f\x71\x21\xd1\xf0\x8a\xfe\x59\x99\x27\xa5\xa3" "\x8b\xe1\xb1\x79", 0, 20, "\x65\x65\xcb\x30\xfb\x2c\x28\x54\x7c\xd0\x4c\x1d\x6a\x88\xf2\x7a" "\x6d\xe8\x55\x3d", 20 }, { GCRY_MD_BLAKE2B_160, "\x9c\x9c\x38", "\x82\x79\x9d\x7b\xe8\xf4\xd1\x69\xfb\x85\xe6\x63\x6a\x7b\x6c\x50" "\xa0\x1f\x70\xa2", 3, 20, "\x65\x65\xcb\x30\xfb\x2c\x28\x54\x7c\xd0\x4c\x1d\x6a\x88\xf2\x7a" "\x6d\xe8\x55\x3d", 20 }, { GCRY_MD_BLAKE2B_256, "", "\x89\x36\x29\x47\x52\x79\xdf\xd8\x2a\x84\x1a\x8f\x21\xa3\x72\xed" "\x30\xcc\xb8\xae\x34\x62\xe1\x90\x7f\x50\x66\x3f\x3c\x03\x66\x83", 0, 32, "\xd5\xd5\xab\x80\x2c\xad\xd9\x86\x60\xe7\x47\x2f\x77\xa6\x1d\xc4" "\xe2\xa6\x88\x2f\xb7\xe6\x9e\x85\x23\xa9\xcd\x76\x43\xb9\xfd\xb7", 32 }, { GCRY_MD_BLAKE2B_256, "\x9c\x9c\x38", "\x01\x6a\x18\xbb\x10\xe0\xc3\xa5\xe5\x9f\xce\xfd\x1a\x40\x7a\xb7" "\xf1\xc0\x36\x1b\x3f\x98\x34\x77\x42\x54\xd3\xf0\x4c\xda\x38\x98", 3, 32, "\xd5\xd5\xab\x80\x2c\xad\xd9\x86\x60\xe7\x47\x2f\x77\xa6\x1d\xc4" "\xe2\xa6\x88\x2f\xb7\xe6\x9e\x85\x23\xa9\xcd\x76\x43\xb9\xfd\xb7", 32 }, { GCRY_MD_BLAKE2B_384, "", "\xd7\x2c\x9b\x4a\x73\x4e\xb2\x07\xe9\xdd\xbf\xf0\x0b\x10\xc3\x70" "\xc8\x9d\x67\xd7\x96\xc3\xa7\xb9\x68\x15\xa9\x53\x92\x1b\xb2\x97" "\x59\xd2\x9d\x25\x63\xf3\xda\x4d\x7f\x3e\xa4\xa6\xe3\x4c\x32\x6b", 0, 48, "\xc0\xc0\x80\x41\xc2\x03\xc6\xca\x90\x5b\xeb\x46\x32\x79\xac\x26" "\xd3\xf9\xcc\xc6\x93\x5a\xed\x48\x35\x7d\xb3\x31\xe5\x16\xfb\x12" "\x0e\x21\x2f\x51\x80\xd1\x52\x24\x77\x9c\x13\xaf\xc3\x73\x37\xaa", 48 }, { GCRY_MD_BLAKE2B_384, "\x9c\x9c\x38", "\xef\x46\xfa\x54\xa2\xc2\x20\xda\x06\xa8\x4c\x77\x6e\x87\xdd\x0a" "\x21\xee\xb5\xe9\x40\x1a\x0a\x78\x11\x19\x74\x18\xfe\x92\x70\x15" "\x77\xd0\xa8\x53\x24\x48\xe8\xb8\x53\x6a\xa6\xc7\x42\xcd\x2c\x62", 3, 48, "\xc0\xc0\x80\x41\xc2\x03\xc6\xca\x90\x5b\xeb\x46\x32\x79\xac\x26" "\xd3\xf9\xcc\xc6\x93\x5a\xed\x48\x35\x7d\xb3\x31\xe5\x16\xfb\x12" "\x0e\x21\x2f\x51\x80\xd1\x52\x24\x77\x9c\x13\xaf\xc3\x73\x37\xaa", 48 }, { GCRY_MD_BLAKE2B_512, "", "\xd7\x4b\xf3\x1e\x5c\xe5\xd8\xa2\x5d\x09\x21\x52\x53\xca\xd2\xf8" "\xd2\xfd\xa9\x10\x09\x30\x16\x05\xa6\x8c\xc3\x86\x5b\xb7\x93\x5b" "\xca\xff\x6f\x2a\xf6\x43\xa7\x76\x99\xe8\x02\x61\xa1\xfd\x2c\x80" "\xe8\x37\xb5\x62\x32\xf7\xb1\x46\x43\x4a\xa7\x4d\x71\x18\xbb\x16", 0, 64, "\xab\xab\x56\x01\x58\x5a\xb3\x0d\xc1\xce\x8f\x5e\xee\x4d\x3b\x88" "\xc4\x4c\x11\x5e\x6f\xcd\x3d\x0a\x47\x52\x9a\xec\x86\x73\xfa\x6e" "\x68\xd6\x3f\x16\x55\x6b\xc1\x2d\xef\x1d\x0c\x29\x35\x5f\x94\xf3" "\x88\x7c\x04\x81\x86\x07\x8e\x95\x23\xb9\xdd\x97\x74\x0c\x80\x8c", 64 }, { GCRY_MD_BLAKE2B_512, "\x9c\x9c\x38", "\x70\xfc\x57\xe1\x49\x5f\xe4\x39\x0d\x38\xa1\xd3\x97\x05\xee\xf6" "\xaa\xbb\xd2\x64\xc7\xce\x66\x11\x8d\x0a\x87\xd4\x25\x94\xb3\x87" "\xdc\x50\x18\x8b\xba\x61\xf0\x91\xd6\xb3\x4f\xf5\x4e\x09\x1e\x70" "\x24\x01\x83\xcd\xb9\x21\x1f\x14\x39\x77\x5c\xc6\xe6\xe9\x35\x73", 3, 64, "\xab\xab\x56\x01\x58\x5a\xb3\x0d\xc1\xce\x8f\x5e\xee\x4d\x3b\x88" "\xc4\x4c\x11\x5e\x6f\xcd\x3d\x0a\x47\x52\x9a\xec\x86\x73\xfa\x6e" "\x68\xd6\x3f\x16\x55\x6b\xc1\x2d\xef\x1d\x0c\x29\x35\x5f\x94\xf3" "\x88\x7c\x04\x81\x86\x07\x8e\x95\x23\xb9\xdd\x97\x74\x0c\x80\x8c", 64 }, { GCRY_MD_BLAKE2B_512, "!", "\x98\xfb\x3e\xfb\x72\x06\xfd\x19\xeb\xf6\x9b\x6f\x31\x2c\xf7\xb6" "\x4e\x3b\x94\xdb\xe1\xa1\x71\x07\x91\x39\x75\xa7\x93\xf1\x77\xe1" "\xd0\x77\x60\x9d\x7f\xba\x36\x3c\xbb\xa0\x0d\x05\xf7\xaa\x4e\x4f" "\xa8\x71\x5d\x64\x28\x10\x4c\x0a\x75\x64\x3b\x0f\xf3\xfd\x3e\xaf" }, { GCRY_MD_BLAKE2B_512, "?", "\xae\x9c\xf5\x7a\xc2\xff\x7b\x37\x7a\x5b\xb5\xcc\x2e\x62\x92\x20" "\xa9\xba\x0a\x09\xc2\x2a\x0f\xdb\xd9\xa3\xae\xd6\x32\xc1\x72\x0e" "\x6d\x82\x9f\x74\x7f\xba\x12\xe8\x31\xa2\x45\x8d\xf0\x73\x4e\xe0" "\x12\x27\x52\xd3\xe2\x2c\x36\xc4\x42\x89\x3b\xcd\xd1\xbd\xd9\x08" }, { GCRY_MD_BLAKE2B_384, "?", "\x22\x66\x8e\x05\x81\x44\x52\xa5\x23\x84\xce\x67\xd4\xad\x0e\x03" "\xdf\xe7\x1a\xc1\x56\x9d\x95\x4a\xd2\x22\x7a\x70\x2a\xfe\x6c\x68" "\x5c\x7d\x65\x30\x2b\xc0\xde\xc6\xea\x72\x1e\xdd\x46\xdf\xb2\x08" }, { GCRY_MD_BLAKE2B_256, "?", "\xfa\x11\x30\xd8\xba\x8a\x4c\x5a\x0e\x6f\x4f\x4c\xd2\xd1\x38\x0c" "\xb9\x22\x2a\xbd\xf6\x20\x70\xf8\x02\x1b\x34\xdd\xd7\x24\x92\x1b" }, { GCRY_MD_BLAKE2B_160, "?", "\xe7\x86\x08\x31\xf8\x96\x8d\x64\x9b\xe0\x15\x68\x33\xf3\xbd\x2a" "\x5f\x0b\xdb\x40" }, { GCRY_MD_BLAKE2S_256, "abc", "\x50\x8C\x5E\x8C\x32\x7C\x14\xE2\xE1\xA7\x2B\xA3\x4E\xEB\x45\x2F" "\x37\x45\x8B\x20\x9E\xD6\x3A\x29\x4D\x99\x9B\x4C\x86\x67\x59\x82" }, #include "./blake2s.h" { GCRY_MD_BLAKE2S_128, "", "\x84\x89\x68\xb3\x59\x01\xe9\x57\x9a\x4d\xbf\x28\xdf\x99\xec\x23", 0, 16, "\xea\xea\xd5\xc0\x96\x56\xec\x43\x30\x73\xa3\x17\xbb\xd3\x8e\x62", 16 }, { GCRY_MD_BLAKE2S_128, "\x9c\x9c\x38", "\x2e\xbb\x18\x78\xda\x34\x05\xad\x98\x1a\x33\x06\x50\x35\xd3\x75", 3, 16, "\xea\xea\xd5\xc0\x96\x56\xec\x43\x30\x73\xa3\x17\xbb\xd3\x8e\x62", 16 }, { GCRY_MD_BLAKE2S_128, "\xab\xab\x56\x01\x58\x5a\xb3\x0d\xc1\xce\x8f\x5e\xee\x4d\x3b\x88" "\xc4\x4c\x11\x5e\x6f\xcd\x3d\x0a\x47\x52\x9a\xec\x86\x73\xfa\x6e" "\x68\xd6\x3f\x16\x55\x6b\xc1\x2d\xef\x1d\x0c\x29\x35\x5f\x94\xf3" "\x88\x7c\x04\x81\x86\x07\x8e\x95\x23\xb9\xdd\x97\x74\x0c\x80\x8c", "\x3c\xd4\xea\xd7\x88\x0b\x8e\x82\xde\x07\x9c\x1f\xad\x34\x17\xd4", 64, 16, "\xea\xea\xd5\xc0\x96\x56\xec\x43\x30\x73\xa3\x17\xbb\xd3\x8e\x62", 16 }, { GCRY_MD_BLAKE2S_128, "\x8a\x8a\x14\x9e\xb2\x50\x02\x52\x54\xa6\xfa\xa0\x9a\x3a\xd4\x0e" "\xe3\xf2\xd5\xc7\x9d\x64\x02\x66\x68\xcf\x38\x08\x41\x49\x8a\xd3" "\x5e\x32\x90\xc2\x53\x15\x68\x7e\xe6\x65\x4b\xb0\xfc\xad\xaa\x58" "\x02\x5b\x5e\xb9\x18\xd1\xe9\xbb\xa5\x61\x07\x68\x70\xd9\x49\x22" "\x6b", "\xee\x92\xc5\x25\x4c\x29\x7a\x88\xe6\x9a\x23\x69\x56\xb6\x7c\xee", 65, 16, "\xea\xea\xd5\xc0\x96\x56\xec\x43\x30\x73\xa3\x17\xbb\xd3\x8e\x62", 16 }, { GCRY_MD_BLAKE2S_160, "", "\x68\x64\x48\x80\x0c\x80\xc6\xd0\x4f\xb7\x3f\xc1\x7f\xa0\x8c\xa2" "\x39\x03\xe1\xe9", 0, 20, "\x65\x65\xcb\x30\xfb\x2c\x28\x54\x7c\xd0\x4c\x1d\x6a\x88\xf2\x7a" "\x6d\xe8\x55\x3d", 20 }, { GCRY_MD_BLAKE2S_160, "\x9c\x9c\x38", "\xba\xb3\x5b\x8c\x87\x04\x1a\x00\x24\x44\xa5\xca\x45\x13\x2d\x75" "\xef\xd3\x4c\xb9", 3, 20, "\x65\x65\xcb\x30\xfb\x2c\x28\x54\x7c\xd0\x4c\x1d\x6a\x88\xf2\x7a" "\x6d\xe8\x55\x3d", 20 }, { GCRY_MD_BLAKE2S_160, "\xab\xab\x56\x01\x58\x5a\xb3\x0d\xc1\xce\x8f\x5e\xee\x4d\x3b\x88" "\xc4\x4c\x11\x5e\x6f\xcd\x3d\x0a\x47\x52\x9a\xec\x86\x73\xfa\x6e" "\x68\xd6\x3f\x16\x55\x6b\xc1\x2d\xef\x1d\x0c\x29\x35\x5f\x94\xf3" "\x88\x7c\x04\x81\x86\x07\x8e\x95\x23\xb9\xdd\x97\x74\x0c\x80\x8c", "\xe8\xc3\xf1\xdb\x1c\xf8\xe9\xd1\xb5\x4a\x54\x0a\xdc\xe7\x18\x13" "\x0f\xf4\x12\x98", 64, 20, "\x65\x65\xcb\x30\xfb\x2c\x28\x54\x7c\xd0\x4c\x1d\x6a\x88\xf2\x7a" "\x6d\xe8\x55\x3d", 20 }, { GCRY_MD_BLAKE2S_160, "\x8a\x8a\x14\x9e\xb2\x50\x02\x52\x54\xa6\xfa\xa0\x9a\x3a\xd4\x0e" "\xe3\xf2\xd5\xc7\x9d\x64\x02\x66\x68\xcf\x38\x08\x41\x49\x8a\xd3" "\x5e\x32\x90\xc2\x53\x15\x68\x7e\xe6\x65\x4b\xb0\xfc\xad\xaa\x58" "\x02\x5b\x5e\xb9\x18\xd1\xe9\xbb\xa5\x61\x07\x68\x70\xd9\x49\x22" "\x6b", "\x59\x02\xf8\x38\x18\x77\x9c\xd8\x13\x40\x0f\xd6\xbb\x23\x04\x1b" "\x64\x9a\x57\xa7", 65, 20, "\x65\x65\xcb\x30\xfb\x2c\x28\x54\x7c\xd0\x4c\x1d\x6a\x88\xf2\x7a" "\x6d\xe8\x55\x3d", 20 }, { GCRY_MD_BLAKE2S_224, "", "\xa8\x66\x86\x63\x35\x3a\xe0\x8f\x4e\x4b\x6b\x1e\xcb\x43\x19\xc8" "\x2b\x41\x3f\x5e\xe5\x43\x95\x9c\xa5\x9a\x73\x1b", 0, 28, "\x5a\x5a\xb5\x10\xc6\xd7\x9e\x76\x14\x8a\x9e\x29\xc8\xf1\xba\xab" "\x65\x11\x77\x89\x00\x89\x8a\x14\x9f\xb4\x53\x07", 28 }, { GCRY_MD_BLAKE2S_224, "\x9c\x9c\x38", "\x1a\x34\x9d\xc1\x51\xbd\x8b\xa2\xa7\xa6\x6b\xe4\x93\x98\x51\x88" "\x33\x49\x71\x02\x09\xb1\x20\x85\x8c\x4c\x67\xb8", 3, 28, "\x5a\x5a\xb5\x10\xc6\xd7\x9e\x76\x14\x8a\x9e\x29\xc8\xf1\xba\xab" "\x65\x11\x77\x89\x00\x89\x8a\x14\x9f\xb4\x53\x07", 28 }, { GCRY_MD_BLAKE2S_224, "\xab\xab\x56\x01\x58\x5a\xb3\x0d\xc1\xce\x8f\x5e\xee\x4d\x3b\x88" "\xc4\x4c\x11\x5e\x6f\xcd\x3d\x0a\x47\x52\x9a\xec\x86\x73\xfa\x6e" "\x68\xd6\x3f\x16\x55\x6b\xc1\x2d\xef\x1d\x0c\x29\x35\x5f\x94\xf3" "\x88\x7c\x04\x81\x86\x07\x8e\x95\x23\xb9\xdd\x97\x74\x0c\x80\x8c", "\x3a\x0e\xd5\x46\x95\x8c\xd6\xf9\x7c\x38\xd0\xe7\x1c\xfd\xd4\xc5" "\x67\x6d\x5c\xcc\x35\x06\xec\x87\x87\x09\x26\x39", 64, 28, "\x5a\x5a\xb5\x10\xc6\xd7\x9e\x76\x14\x8a\x9e\x29\xc8\xf1\xba\xab" "\x65\x11\x77\x89\x00\x89\x8a\x14\x9f\xb4\x53\x07", 28 }, { GCRY_MD_BLAKE2S_224, "\x8a\x8a\x14\x9e\xb2\x50\x02\x52\x54\xa6\xfa\xa0\x9a\x3a\xd4\x0e" "\xe3\xf2\xd5\xc7\x9d\x64\x02\x66\x68\xcf\x38\x08\x41\x49\x8a\xd3" "\x5e\x32\x90\xc2\x53\x15\x68\x7e\xe6\x65\x4b\xb0\xfc\xad\xaa\x58" "\x02\x5b\x5e\xb9\x18\xd1\xe9\xbb\xa5\x61\x07\x68\x70\xd9\x49\x22" "\x6b", "\x63\xd7\x98\xcc\x8e\xe3\x00\x45\x2f\xd8\x19\x83\x02\x94\x7f\xf1" "\xb3\x82\x73\xaa\x19\xae\x72\x8b\x1f\x64\xbe\x88", 65, 28, "\x5a\x5a\xb5\x10\xc6\xd7\x9e\x76\x14\x8a\x9e\x29\xc8\xf1\xba\xab" "\x65\x11\x77\x89\x00\x89\x8a\x14\x9f\xb4\x53\x07", 28 }, { GCRY_MD_BLAKE2S_256, "", "\x98\xf3\x21\xe5\x43\xb8\x07\x35\x27\x9c\x86\x1c\x36\x33\x9b\x43" "\x45\x50\xc6\x9d\x23\xc6\xc8\xff\x96\xbf\x4e\x03\x86\x10\x24\xfd", 0, 32, "\xd5\xd5\xab\x80\x2c\xad\xd9\x86\x60\xe7\x47\x2f\x77\xa6\x1d\xc4" "\xe2\xa6\x88\x2f\xb7\xe6\x9e\x85\x23\xa9\xcd\x76\x43\xb9\xfd\xb7", 32 }, { GCRY_MD_BLAKE2S_256, "\x9c\x9c\x38", "\x7b\x10\xa3\x67\xb8\x5d\x29\x9a\x91\x27\x37\x05\x9d\x05\x9d\x3d" "\xe6\x42\xa3\x19\x04\x57\x01\xb6\x25\x0b\xfd\x3c\x6c\xb9\x4f\x87", 3, 32, "\xd5\xd5\xab\x80\x2c\xad\xd9\x86\x60\xe7\x47\x2f\x77\xa6\x1d\xc4" "\xe2\xa6\x88\x2f\xb7\xe6\x9e\x85\x23\xa9\xcd\x76\x43\xb9\xfd\xb7", 32 }, { GCRY_MD_BLAKE2S_256, "\xab\xab\x56\x01\x58\x5a\xb3\x0d\xc1\xce\x8f\x5e\xee\x4d\x3b\x88" "\xc4\x4c\x11\x5e\x6f\xcd\x3d\x0a\x47\x52\x9a\xec\x86\x73\xfa\x6e" "\x68\xd6\x3f\x16\x55\x6b\xc1\x2d\xef\x1d\x0c\x29\x35\x5f\x94\xf3" "\x88\x7c\x04\x81\x86\x07\x8e\x95\x23\xb9\xdd\x97\x74\x0c\x80\x8c", "\xd7\x8b\x98\x28\x54\x4c\xc1\x62\x9e\xab\x7d\xfe\xb1\xfa\xdd\x2b" "\xed\x98\x1c\xe6\x5f\xef\xd8\x08\x42\x9a\x11\x1e\x97\x44\x92\xa3", 64, 32, "\xd5\xd5\xab\x80\x2c\xad\xd9\x86\x60\xe7\x47\x2f\x77\xa6\x1d\xc4" "\xe2\xa6\x88\x2f\xb7\xe6\x9e\x85\x23\xa9\xcd\x76\x43\xb9\xfd\xb7", 32 }, { GCRY_MD_BLAKE2S_256, "\x8a\x8a\x14\x9e\xb2\x50\x02\x52\x54\xa6\xfa\xa0\x9a\x3a\xd4\x0e" "\xe3\xf2\xd5\xc7\x9d\x64\x02\x66\x68\xcf\x38\x08\x41\x49\x8a\xd3" "\x5e\x32\x90\xc2\x53\x15\x68\x7e\xe6\x65\x4b\xb0\xfc\xad\xaa\x58" "\x02\x5b\x5e\xb9\x18\xd1\xe9\xbb\xa5\x61\x07\x68\x70\xd9\x49\x22" "\x6b", "\x1b\x9e\x26\x9a\x90\xf8\x73\x51\x73\xbc\x4f\x65\xce\x29\x2c\x61" "\x16\x65\xc7\xb0\x72\x07\xa8\x0b\xfb\x2e\xea\x12\x7d\x97\xcd\x06", 65, 32, "\xd5\xd5\xab\x80\x2c\xad\xd9\x86\x60\xe7\x47\x2f\x77\xa6\x1d\xc4" "\xe2\xa6\x88\x2f\xb7\xe6\x9e\x85\x23\xa9\xcd\x76\x43\xb9\xfd\xb7", 32 }, { GCRY_MD_BLAKE2S_256, "!", "\xbe\xc0\xc0\xe6\xcd\xe5\xb6\x7a\xcb\x73\xb8\x1f\x79\xa6\x7a\x40" "\x79\xae\x1c\x60\xda\xc9\xd2\x66\x1a\xf1\x8e\x9f\x8b\x50\xdf\xa5" }, { GCRY_MD_BLAKE2S_256, "?", "\xdc\x5a\xe7\x1b\xd4\x63\xa1\xf8\x4d\x73\x33\x44\x63\x6b\xa6\x87" "\xe6\xbd\xf4\xba\xed\xc3\xef\xc8\xb3\x86\x55\xbb\x08\x56\x3e\xdb" }, { GCRY_MD_BLAKE2S_224, "?", "\x2e\x34\x7d\x6b\xcc\x80\xbe\xc3\xf8\x61\x35\x6a\x88\x27\xcd\x84" "\x32\xd4\xd4\x05\xe0\x43\x20\x58\xc7\xb6\xda\xa3" }, { GCRY_MD_BLAKE2S_160, "?", "\xaa\x83\xe1\xcd\x8d\x4e\x9c\xb7\xf4\x6b\x43\xe1\xbc\x6f\x73\x3b" "\x0e\xfc\x29\xde" }, { GCRY_MD_BLAKE2S_128, "?", "\x70\x0b\x8a\x71\x1d\x34\x0a\xf0\x13\x93\x19\x93\x5e\xd7\x54\x9c" }, { GCRY_MD_SM3, "abc", "\x66\xc7\xf0\xf4\x62\xee\xed\xd9\xd1\xf2\xd4\x6b\xdc\x10\xe4\xe2" "\x41\x67\xc4\x87\x5c\xf2\xf7\xa2\x29\x7d\xa0\x2b\x8f\x4b\xa8\xe0" }, { GCRY_MD_SM3, "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", "\x63\x9b\x6c\xc5\xe6\x4d\x9e\x37\xa3\x90\xb1\x92\xdf\x4f\xa1\xea" "\x07\x20\xab\x74\x7f\xf6\x92\xb9\xf3\x8c\x4e\x66\xad\x7b\x8c\x05" }, { GCRY_MD_SM3, "!", "\xc8\xaa\xf8\x94\x29\x55\x40\x29\xe2\x31\x94\x1a\x2a\xcc\x0a\xd6" "\x1f\xf2\xa5\xac\xd8\xfa\xdd\x25\x84\x7a\x3a\x73\x2b\x3b\x02\xc3" }, { GCRY_MD_SM3, "?", "\x3a\x3f\x53\xfc\x96\xc2\xde\xb2\xd9\x12\x3a\x1b\xd8\x47\x71\x28" "\xbc\x5d\x5e\x94\xea\x08\x86\x3d\xfb\xe4\x00\x5a\xd9\xed\x79\x26" }, { GCRY_MD_SM3, "Libgcrypt is free software; you can redistribute it and/or modif" "y it under the terms of the GNU Lesser general Public License as" " published by the Free Software Foundation; either version 2.1 o" "f the License, or (at your option) any later version.\nLibgcrypt" " is distributed in the hope that it will be useful, but WITHOUT " "ANY WARRANTY; without even the implied warranty of MERCHANTABILI" "TY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser Gene" "ral Public License for more details.", "\x8b\x91\x3f\x0e\x85\xae\x43\x25\x6d\x28\x38\x6c\x09\x5c\xc7\x72" "\xcc\x2e\x78\x89\x7e\x2e\x4e\x5a\x3d\xf6\x55\xfe\x87\xbe\xa6\xbc" }, { 0 } }; gcry_error_t err; int i; if (verbose) fprintf (stderr, "Starting hash checks.\n"); for (i = 0; algos[i].md; i++) { if (gcry_md_test_algo (algos[i].md)) { show_md_not_available (algos[i].md); continue; } if (gcry_md_test_algo (algos[i].md) && in_fips_mode) { if (verbose) fprintf (stderr, " algorithm %d not available in fips mode\n", algos[i].md); continue; } if (verbose) fprintf (stderr, " checking %s [%i] for length %d\n", gcry_md_algo_name (algos[i].md), algos[i].md, (!strcmp (algos[i].data, "!") || !strcmp (algos[i].data, "?"))? 1000000 : (int)strlen(algos[i].data)); check_one_md (algos[i].md, algos[i].data, algos[i].datalen > 0 ? algos[i].datalen : strlen (algos[i].data), algos[i].expect, algos[i].expectlen, algos[i].key, algos[i].keylen); if (algos[i].key && algos[i].keylen) continue; check_one_md_multi (algos[i].md, algos[i].data, algos[i].datalen > 0 ? algos[i].datalen : strlen (algos[i].data), algos[i].expect); } /* Check the Whirlpool bug emulation. */ if (!gcry_md_test_algo (GCRY_MD_WHIRLPOOL) && !in_fips_mode) { static const char expect[] = "\x35\x28\xd6\x4c\x56\x2c\x55\x2e\x3b\x91\x93\x95\x7b\xdd\xcc\x6e" "\x6f\xb7\xbf\x76\x22\x9c\xc6\x23\xda\x3e\x09\x9b\x36\xe8\x6d\x76" "\x2f\x94\x3b\x0c\x63\xa0\xba\xa3\x4d\x66\x71\xe6\x5d\x26\x67\x28" "\x36\x1f\x0e\x1a\x40\xf0\xce\x83\x50\x90\x1f\xfa\x3f\xed\x6f\xfd"; gcry_md_hd_t hd; int algo = GCRY_MD_WHIRLPOOL; unsigned char *p; int mdlen; err = gcry_md_open (&hd, GCRY_MD_WHIRLPOOL, GCRY_MD_FLAG_BUGEMU1); if (err) { fail ("algo %d, gcry_md_open failed: %s\n", algo, gpg_strerror (err)); goto leave; } mdlen = gcry_md_get_algo_dlen (algo); if (mdlen < 1 || mdlen > 500) { fail ("algo %d, gcry_md_get_algo_dlen failed: %d\n", algo, mdlen); gcry_md_close (hd); goto leave; } /* Hash 62 byes in chunks. */ gcry_md_write (hd, "1234567890", 10); gcry_md_write (hd, "1234567890123456789012345678901234567890123456789012", 52); p = gcry_md_read (hd, algo); if (memcmp (p, expect, mdlen)) { printf ("computed: "); for (i = 0; i < mdlen; i++) printf ("%02x ", p[i] & 0xFF); printf ("\nexpected: "); for (i = 0; i < mdlen; i++) printf ("%02x ", expect[i] & 0xFF); printf ("\n"); fail ("algo %d, digest mismatch\n", algo); } gcry_md_close (hd); } leave: if (verbose) fprintf (stderr, "Completed hash checks.\n"); } static void check_one_hmac (int algo, const char *data, int datalen, const char *key, int keylen, const char *expect) { gcry_md_hd_t hd, hd2; unsigned char *p; int mdlen; int i; gcry_error_t err = 0; err = gcry_md_open (&hd, algo, GCRY_MD_FLAG_HMAC); if (err) { fail ("algo %d, gcry_md_open failed: %s\n", algo, gpg_strerror (err)); return; } mdlen = gcry_md_get_algo_dlen (algo); if (mdlen < 1 || mdlen > 500) { fail ("algo %d, gcry_md_get_algo_dlen failed: %d\n", algo, mdlen); return; } gcry_md_setkey( hd, key, keylen ); gcry_md_write (hd, data, datalen); err = gcry_md_copy (&hd2, hd); if (err) { fail ("algo %d, gcry_md_copy failed: %s\n", algo, gpg_strerror (err)); } gcry_md_close (hd); p = gcry_md_read (hd2, algo); if (!p) fail("algo %d, hmac gcry_md_read failed\n", algo); if (memcmp (p, expect, mdlen)) { printf ("computed: "); for (i = 0; i < mdlen; i++) printf ("%02x ", p[i] & 0xFF); printf ("\nexpected: "); for (i = 0; i < mdlen; i++) printf ("%02x ", expect[i] & 0xFF); printf ("\n"); fail ("algo %d, digest mismatch\n", algo); } gcry_md_close (hd2); } static void check_hmac (void) { static const struct algos { int md; const char *data; const char *key; const char *expect; } algos[] = { { GCRY_MD_MD5, "what do ya want for nothing?", "Jefe", "\x75\x0c\x78\x3e\x6a\xb0\xb5\x03\xea\xa8\x6e\x31\x0a\x5d\xb7\x38" }, { GCRY_MD_MD5, "Hi There", "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b", "\x92\x94\x72\x7a\x36\x38\xbb\x1c\x13\xf4\x8e\xf8\x15\x8b\xfc\x9d" }, { GCRY_MD_MD5, "\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd" "\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd" "\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd" "\xdd\xdd\xdd\xdd\xdd", "\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA", "\x56\xbe\x34\x52\x1d\x14\x4c\x88\xdb\xb8\xc7\x33\xf0\xe8\xb3\xf6" }, { GCRY_MD_MD5, "\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd" "\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd" "\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd" "\xcd\xcd\xcd\xcd\xcd", "\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f" "\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19", "\x69\x7e\xaf\x0a\xca\x3a\x3a\xea\x3a\x75\x16\x47\x46\xff\xaa\x79" }, { GCRY_MD_MD5, "Test With Truncation", "\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c", "\x56\x46\x1e\xf2\x34\x2e\xdc\x00\xf9\xba\xb9\x95\x69\x0e\xfd\x4c" }, { GCRY_MD_MD5, "Test Using Larger Than Block-Size Key - Hash Key First", "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa", "\x6b\x1a\xb7\xfe\x4b\xd7\xbf\x8f\x0b\x62\xe6\xce\x61\xb9\xd0\xcd" }, { GCRY_MD_MD5, "Test Using Larger Than Block-Size Key and Larger Than One Block-Size Data", "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa", "\x6f\x63\x0f\xad\x67\xcd\xa0\xee\x1f\xb1\xf5\x62\xdb\x3a\xa5\x3e", }, { GCRY_MD_SHA256, "what do ya want for nothing?", "Jefe", "\x5b\xdc\xc1\x46\xbf\x60\x75\x4e\x6a\x04\x24\x26\x08\x95\x75\xc7\x5a" "\x00\x3f\x08\x9d\x27\x39\x83\x9d\xec\x58\xb9\x64\xec\x38\x43" }, { GCRY_MD_SHA256, "Hi There", "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b" "\x0b\x0b\x0b", "\xb0\x34\x4c\x61\xd8\xdb\x38\x53\x5c\xa8\xaf\xce\xaf\x0b\xf1\x2b\x88" "\x1d\xc2\x00\xc9\x83\x3d\xa7\x26\xe9\x37\x6c\x2e\x32\xcf\xf7" }, { GCRY_MD_SHA256, "\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd" "\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd" "\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd" "\xdd\xdd\xdd\xdd\xdd", "\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA" "\xAA\xAA\xAA\xAA", "\x77\x3e\xa9\x1e\x36\x80\x0e\x46\x85\x4d\xb8\xeb\xd0\x91\x81\xa7" "\x29\x59\x09\x8b\x3e\xf8\xc1\x22\xd9\x63\x55\x14\xce\xd5\x65\xfe" }, { GCRY_MD_SHA256, "\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd" "\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd" "\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd" "\xcd\xcd\xcd\xcd\xcd", "\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f" "\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19", "\x82\x55\x8a\x38\x9a\x44\x3c\x0e\xa4\xcc\x81\x98\x99\xf2\x08" "\x3a\x85\xf0\xfa\xa3\xe5\x78\xf8\x07\x7a\x2e\x3f\xf4\x67\x29\x66\x5b" }, { GCRY_MD_SHA256, "Test Using Larger Than Block-Size Key - Hash Key First", "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa", "\x60\xe4\x31\x59\x1e\xe0\xb6\x7f\x0d\x8a\x26\xaa\xcb\xf5\xb7\x7f" "\x8e\x0b\xc6\x21\x37\x28\xc5\x14\x05\x46\x04\x0f\x0e\xe3\x7f\x54" }, { GCRY_MD_SHA256, "This is a test using a larger than block-size key and a larger than block-size data. The key needs to be hashed before being used by the HMAC algorithm.", "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa", "\x9b\x09\xff\xa7\x1b\x94\x2f\xcb\x27\x63\x5f\xbc\xd5\xb0\xe9\x44" "\xbf\xdc\x63\x64\x4f\x07\x13\x93\x8a\x7f\x51\x53\x5c\x3a\x35\xe2" }, { GCRY_MD_SHA224, "what do ya want for nothing?", "Jefe", "\xa3\x0e\x01\x09\x8b\xc6\xdb\xbf\x45\x69\x0f\x3a\x7e\x9e\x6d\x0f" "\x8b\xbe\xa2\xa3\x9e\x61\x48\x00\x8f\xd0\x5e\x44" }, { GCRY_MD_SHA224, "Hi There", "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b" "\x0b\x0b\x0b", "\x89\x6f\xb1\x12\x8a\xbb\xdf\x19\x68\x32\x10\x7c\xd4\x9d\xf3\x3f\x47" "\xb4\xb1\x16\x99\x12\xba\x4f\x53\x68\x4b\x22" }, { GCRY_MD_SHA224, "\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd" "\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd" "\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd" "\xdd\xdd\xdd\xdd\xdd", "\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA" "\xAA\xAA\xAA\xAA", "\x7f\xb3\xcb\x35\x88\xc6\xc1\xf6\xff\xa9\x69\x4d\x7d\x6a\xd2\x64" "\x93\x65\xb0\xc1\xf6\x5d\x69\xd1\xec\x83\x33\xea" }, { GCRY_MD_SHA224, "\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd" "\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd" "\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd" "\xcd\xcd\xcd\xcd\xcd", "\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f" "\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19", "\x6c\x11\x50\x68\x74\x01\x3c\xac\x6a\x2a\xbc\x1b\xb3\x82\x62" "\x7c\xec\x6a\x90\xd8\x6e\xfc\x01\x2d\xe7\xaf\xec\x5a" }, { GCRY_MD_SHA224, "Test Using Larger Than Block-Size Key - Hash Key First", "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa", "\x95\xe9\xa0\xdb\x96\x20\x95\xad\xae\xbe\x9b\x2d\x6f\x0d\xbc\xe2" "\xd4\x99\xf1\x12\xf2\xd2\xb7\x27\x3f\xa6\x87\x0e" }, { GCRY_MD_SHA224, "This is a test using a larger than block-size key and a larger than block-size data. The key needs to be hashed before being used by the HMAC algorithm.", "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa", "\x3a\x85\x41\x66\xac\x5d\x9f\x02\x3f\x54\xd5\x17\xd0\xb3\x9d\xbd" "\x94\x67\x70\xdb\x9c\x2b\x95\xc9\xf6\xf5\x65\xd1" }, { GCRY_MD_SHA384, "what do ya want for nothing?", "Jefe", "\xaf\x45\xd2\xe3\x76\x48\x40\x31\x61\x7f\x78\xd2\xb5\x8a\x6b\x1b" "\x9c\x7e\xf4\x64\xf5\xa0\x1b\x47\xe4\x2e\xc3\x73\x63\x22\x44\x5e" "\x8e\x22\x40\xca\x5e\x69\xe2\xc7\x8b\x32\x39\xec\xfa\xb2\x16\x49" }, { GCRY_MD_SHA384, "Hi There", "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b" "\x0b\x0b\x0b", "\xaf\xd0\x39\x44\xd8\x48\x95\x62\x6b\x08\x25\xf4\xab\x46\x90\x7f\x15" "\xf9\xda\xdb\xe4\x10\x1e\xc6\x82\xaa\x03\x4c\x7c\xeb\xc5\x9c\xfa\xea" "\x9e\xa9\x07\x6e\xde\x7f\x4a\xf1\x52\xe8\xb2\xfa\x9c\xb6" }, { GCRY_MD_SHA384, "\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd" "\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd" "\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd" "\xdd\xdd\xdd\xdd\xdd", "\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA" "\xAA\xAA\xAA\xAA", "\x88\x06\x26\x08\xd3\xe6\xad\x8a\x0a\xa2\xac\xe0\x14\xc8\xa8\x6f" "\x0a\xa6\x35\xd9\x47\xac\x9f\xeb\xe8\x3e\xf4\xe5\x59\x66\x14\x4b" "\x2a\x5a\xb3\x9d\xc1\x38\x14\xb9\x4e\x3a\xb6\xe1\x01\xa3\x4f\x27" }, { GCRY_MD_SHA384, "\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd" "\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd" "\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd" "\xcd\xcd\xcd\xcd\xcd", "\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f" "\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19", "\x3e\x8a\x69\xb7\x78\x3c\x25\x85\x19\x33\xab\x62\x90\xaf\x6c\xa7" "\x7a\x99\x81\x48\x08\x50\x00\x9c\xc5\x57\x7c\x6e\x1f\x57\x3b\x4e" "\x68\x01\xdd\x23\xc4\xa7\xd6\x79\xcc\xf8\xa3\x86\xc6\x74\xcf\xfb" }, { GCRY_MD_SHA384, "Test Using Larger Than Block-Size Key - Hash Key First", "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa", "\x4e\xce\x08\x44\x85\x81\x3e\x90\x88\xd2\xc6\x3a\x04\x1b\xc5\xb4" "\x4f\x9e\xf1\x01\x2a\x2b\x58\x8f\x3c\xd1\x1f\x05\x03\x3a\xc4\xc6" "\x0c\x2e\xf6\xab\x40\x30\xfe\x82\x96\x24\x8d\xf1\x63\xf4\x49\x52" }, { GCRY_MD_SHA384, "This is a test using a larger than block-size key and a larger than block-size data. The key needs to be hashed before being used by the HMAC algorithm.", "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa", "\x66\x17\x17\x8e\x94\x1f\x02\x0d\x35\x1e\x2f\x25\x4e\x8f\xd3\x2c" "\x60\x24\x20\xfe\xb0\xb8\xfb\x9a\xdc\xce\xbb\x82\x46\x1e\x99\xc5" "\xa6\x78\xcc\x31\xe7\x99\x17\x6d\x38\x60\xe6\x11\x0c\x46\x52\x3e" }, { GCRY_MD_SHA512, "what do ya want for nothing?", "Jefe", "\x16\x4b\x7a\x7b\xfc\xf8\x19\xe2\xe3\x95\xfb\xe7\x3b\x56\xe0\xa3" "\x87\xbd\x64\x22\x2e\x83\x1f\xd6\x10\x27\x0c\xd7\xea\x25\x05\x54" "\x97\x58\xbf\x75\xc0\x5a\x99\x4a\x6d\x03\x4f\x65\xf8\xf0\xe6\xfd" "\xca\xea\xb1\xa3\x4d\x4a\x6b\x4b\x63\x6e\x07\x0a\x38\xbc\xe7\x37" }, { GCRY_MD_SHA512, "Hi There", "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b" "\x0b\x0b\x0b", "\x87\xaa\x7c\xde\xa5\xef\x61\x9d\x4f\xf0\xb4\x24\x1a\x1d\x6c\xb0" "\x23\x79\xf4\xe2\xce\x4e\xc2\x78\x7a\xd0\xb3\x05\x45\xe1\x7c\xde" "\xda\xa8\x33\xb7\xd6\xb8\xa7\x02\x03\x8b\x27\x4e\xae\xa3\xf4\xe4" "\xbe\x9d\x91\x4e\xeb\x61\xf1\x70\x2e\x69\x6c\x20\x3a\x12\x68\x54" }, { GCRY_MD_SHA512, "\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd" "\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd" "\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd" "\xdd\xdd\xdd\xdd\xdd", "\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA" "\xAA\xAA\xAA\xAA", "\xfa\x73\xb0\x08\x9d\x56\xa2\x84\xef\xb0\xf0\x75\x6c\x89\x0b\xe9" "\xb1\xb5\xdb\xdd\x8e\xe8\x1a\x36\x55\xf8\x3e\x33\xb2\x27\x9d\x39" "\xbf\x3e\x84\x82\x79\xa7\x22\xc8\x06\xb4\x85\xa4\x7e\x67\xc8\x07" "\xb9\x46\xa3\x37\xbe\xe8\x94\x26\x74\x27\x88\x59\xe1\x32\x92\xfb" }, { GCRY_MD_SHA512, "\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd" "\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd" "\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd" "\xcd\xcd\xcd\xcd\xcd", "\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f" "\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19", "\xb0\xba\x46\x56\x37\x45\x8c\x69\x90\xe5\xa8\xc5\xf6\x1d\x4a\xf7" "\xe5\x76\xd9\x7f\xf9\x4b\x87\x2d\xe7\x6f\x80\x50\x36\x1e\xe3\xdb" "\xa9\x1c\xa5\xc1\x1a\xa2\x5e\xb4\xd6\x79\x27\x5c\xc5\x78\x80\x63" "\xa5\xf1\x97\x41\x12\x0c\x4f\x2d\xe2\xad\xeb\xeb\x10\xa2\x98\xdd" }, { GCRY_MD_SHA512, "Test Using Larger Than Block-Size Key - Hash Key First", "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa", "\x80\xb2\x42\x63\xc7\xc1\xa3\xeb\xb7\x14\x93\xc1\xdd\x7b\xe8\xb4" "\x9b\x46\xd1\xf4\x1b\x4a\xee\xc1\x12\x1b\x01\x37\x83\xf8\xf3\x52" "\x6b\x56\xd0\x37\xe0\x5f\x25\x98\xbd\x0f\xd2\x21\x5d\x6a\x1e\x52" "\x95\xe6\x4f\x73\xf6\x3f\x0a\xec\x8b\x91\x5a\x98\x5d\x78\x65\x98" }, { GCRY_MD_SHA512, "This is a test using a larger than block-size key and a larger than block-size data. The key needs to be hashed before being used by the HMAC algorithm.", "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa", "\xe3\x7b\x6a\x77\x5d\xc8\x7d\xba\xa4\xdf\xa9\xf9\x6e\x5e\x3f\xfd" "\xde\xbd\x71\xf8\x86\x72\x89\x86\x5d\xf5\xa3\x2d\x20\xcd\xc9\x44" "\xb6\x02\x2c\xac\x3c\x49\x82\xb1\x0d\x5e\xeb\x55\xc3\xe4\xde\x15" "\x13\x46\x76\xfb\x6d\xe0\x44\x60\x65\xc9\x74\x40\xfa\x8c\x6a\x58" }, { 0 }, }; int i; if (verbose) fprintf (stderr, "Starting hashed MAC checks.\n"); for (i = 0; algos[i].md; i++) { if (gcry_md_test_algo (algos[i].md)) { show_old_hmac_not_available (algos[i].md); continue; } if (gcry_md_test_algo (algos[i].md) && in_fips_mode) { if (verbose) fprintf (stderr, " algorithm %d not available in fips mode\n", algos[i].md); continue; } if (verbose) fprintf (stderr, " checking %s [%i] for %d byte key and %d byte data\n", gcry_md_algo_name (algos[i].md), algos[i].md, (int)strlen(algos[i].key), (int)strlen(algos[i].data)); check_one_hmac (algos[i].md, algos[i].data, strlen (algos[i].data), algos[i].key, strlen(algos[i].key), algos[i].expect); } if (verbose) fprintf (stderr, "Completed hashed MAC checks.\n"); } static void check_one_mac (int algo, const char *data, int datalen, const char *key, int keylen, const char *iv, int ivlen, const char *expect, int test_buffering) { gcry_mac_hd_t hd; unsigned char *p; unsigned int maclen; size_t macoutlen; int i; gcry_error_t err = 0; if (test_buffering) { if ((*data == '!' && !data[1]) || (*data == '?' && !data[1])) { return; /* Skip. */ } } err = gcry_mac_open (&hd, algo, 0, NULL); if (err) { fail ("algo %d, gcry_mac_open failed: %s\n", algo, gpg_strerror (err)); return; } i = gcry_mac_get_algo (hd); if (i != algo) { fail ("algo %d, gcry_mac_get_algo failed: %d\n", algo, i); } maclen = gcry_mac_get_algo_maclen (algo); if (maclen < 1 || maclen > 500) { fail ("algo %d, gcry_mac_get_algo_maclen failed: %d\n", algo, maclen); return; } p = malloc(maclen); if (!p) { fail ("algo %d, could not malloc %d bytes\n", algo, maclen); return; } err = gcry_mac_setkey (hd, key, keylen); if (err) fail("algo %d, mac gcry_mac_setkey failed: %s\n", algo, gpg_strerror (err)); if (err) goto out; if (ivlen && iv) { err = gcry_mac_setiv (hd, iv, ivlen); if (err) fail("algo %d, mac gcry_mac_ivkey failed: %s\n", algo, gpg_strerror (err)); if (err) goto out; } if (test_buffering) { for (i = 0; i < datalen; i++) { err = gcry_mac_write (hd, &data[i], 1); if (err) fail("algo %d, mac gcry_mac_write [buf-offset: %d] failed: %s\n", algo, i, gpg_strerror (err)); if (err) goto out; } } else { if ((*data == '!' && !data[1]) || /* hash one million times a "a" */ (*data == '?' && !data[1])) /* hash million byte data-set with byte pattern 0x00,0x01,0x02,... */ { char aaa[1000]; size_t left = 1000 * 1000; size_t startlen = 1; size_t piecelen = startlen; if (*data == '!') memset (aaa, 'a', 1000); /* Write in chuck with all sizes 1 to 1000 (500500 bytes) */ for (i = 1; i <= 1000 && left > 0; i++) { piecelen = i; if (piecelen > sizeof(aaa)) piecelen = sizeof(aaa); if (piecelen > left) piecelen = left; if (*data == '?') fillbuf_count(aaa, piecelen, 1000 * 1000 - left); gcry_mac_write (hd, aaa, piecelen); left -= piecelen; } /* Write in odd size chunks so that we test the buffering. */ while (left > 0) { if (piecelen > sizeof(aaa)) piecelen = sizeof(aaa); if (piecelen > left) piecelen = left; if (*data == '?') fillbuf_count(aaa, piecelen, 1000 * 1000 - left); gcry_mac_write (hd, aaa, piecelen); left -= piecelen; if (piecelen == sizeof(aaa)) piecelen = ++startlen; else piecelen = piecelen * 2 - ((piecelen != startlen) ? startlen : 0); } } else { err = gcry_mac_write (hd, data, datalen); } if (err) fail("algo %d, mac gcry_mac_write failed: %s\n", algo, gpg_strerror (err)); if (err) goto out; } err = gcry_mac_verify (hd, expect, maclen); if (err) fail("algo %d, mac gcry_mac_verify failed: %s\n", algo, gpg_strerror (err)); macoutlen = maclen; err = gcry_mac_read (hd, p, &macoutlen); if (err) fail("algo %d, mac gcry_mac_read failed: %s\n", algo, gpg_strerror (err)); if (err) goto out; if (memcmp (p, expect, maclen)) { printf ("computed: "); for (i = 0; i < maclen; i++) printf ("%02x ", p[i] & 0xFF); printf ("\nexpected: "); for (i = 0; i < maclen; i++) printf ("%02x ", expect[i] & 0xFF); printf ("\n"); fail ("algo %d, digest mismatch\n", algo); } if (err) goto out; out: free (p); gcry_mac_close (hd); } static void check_mac (void) { static const struct algos { int algo; const char *data; const char *key; const char *expect; const char *iv; unsigned int dlen; unsigned int klen; } algos[] = { { GCRY_MAC_HMAC_MD5, "what do ya want for nothing?", "Jefe", "\x75\x0c\x78\x3e\x6a\xb0\xb5\x03\xea\xa8\x6e\x31\x0a\x5d\xb7\x38" }, { GCRY_MAC_HMAC_MD5, "Hi There", "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b", "\x92\x94\x72\x7a\x36\x38\xbb\x1c\x13\xf4\x8e\xf8\x15\x8b\xfc\x9d" }, { GCRY_MAC_HMAC_MD5, "\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd" "\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd" "\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd" "\xdd\xdd\xdd\xdd\xdd", "\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA", "\x56\xbe\x34\x52\x1d\x14\x4c\x88\xdb\xb8\xc7\x33\xf0\xe8\xb3\xf6" }, { GCRY_MAC_HMAC_MD5, "\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd" "\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd" "\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd" "\xcd\xcd\xcd\xcd\xcd", "\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f" "\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19", "\x69\x7e\xaf\x0a\xca\x3a\x3a\xea\x3a\x75\x16\x47\x46\xff\xaa\x79" }, { GCRY_MAC_HMAC_MD5, "Test With Truncation", "\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c", "\x56\x46\x1e\xf2\x34\x2e\xdc\x00\xf9\xba\xb9\x95\x69\x0e\xfd\x4c" }, { GCRY_MAC_HMAC_MD5, "Test Using Larger Than Block-Size Key - Hash Key First", "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa", "\x6b\x1a\xb7\xfe\x4b\xd7\xbf\x8f\x0b\x62\xe6\xce\x61\xb9\xd0\xcd" }, { GCRY_MAC_HMAC_MD5, "Test Using Larger Than Block-Size Key and Larger Than One Block-Size Data", "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa", "\x6f\x63\x0f\xad\x67\xcd\xa0\xee\x1f\xb1\xf5\x62\xdb\x3a\xa5\x3e", }, { GCRY_MAC_HMAC_MD5, "?", "????????????????", "\x7e\x28\xf8\x8e\xf4\x6c\x48\x30\xa2\x0c\xe3\xe1\x42\xd4\xb5\x6b" }, { GCRY_MAC_HMAC_SHA256, "what do ya want for nothing?", "Jefe", "\x5b\xdc\xc1\x46\xbf\x60\x75\x4e\x6a\x04\x24\x26\x08\x95\x75\xc7\x5a" "\x00\x3f\x08\x9d\x27\x39\x83\x9d\xec\x58\xb9\x64\xec\x38\x43" }, { GCRY_MAC_HMAC_SHA256, "Hi There", "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b" "\x0b\x0b\x0b", "\xb0\x34\x4c\x61\xd8\xdb\x38\x53\x5c\xa8\xaf\xce\xaf\x0b\xf1\x2b\x88" "\x1d\xc2\x00\xc9\x83\x3d\xa7\x26\xe9\x37\x6c\x2e\x32\xcf\xf7" }, { GCRY_MAC_HMAC_SHA256, "\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd" "\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd" "\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd" "\xdd\xdd\xdd\xdd\xdd", "\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA" "\xAA\xAA\xAA\xAA", "\x77\x3e\xa9\x1e\x36\x80\x0e\x46\x85\x4d\xb8\xeb\xd0\x91\x81\xa7" "\x29\x59\x09\x8b\x3e\xf8\xc1\x22\xd9\x63\x55\x14\xce\xd5\x65\xfe" }, { GCRY_MAC_HMAC_SHA256, "\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd" "\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd" "\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd" "\xcd\xcd\xcd\xcd\xcd", "\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f" "\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19", "\x82\x55\x8a\x38\x9a\x44\x3c\x0e\xa4\xcc\x81\x98\x99\xf2\x08" "\x3a\x85\xf0\xfa\xa3\xe5\x78\xf8\x07\x7a\x2e\x3f\xf4\x67\x29\x66\x5b" }, { GCRY_MAC_HMAC_SHA256, "Test Using Larger Than Block-Size Key - Hash Key First", "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa", "\x60\xe4\x31\x59\x1e\xe0\xb6\x7f\x0d\x8a\x26\xaa\xcb\xf5\xb7\x7f" "\x8e\x0b\xc6\x21\x37\x28\xc5\x14\x05\x46\x04\x0f\x0e\xe3\x7f\x54" }, { GCRY_MAC_HMAC_SHA256, "This is a test using a larger than block-size key and a larger than block-size data. The key needs to be hashed before being used by the HMAC algorithm.", "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa", "\x9b\x09\xff\xa7\x1b\x94\x2f\xcb\x27\x63\x5f\xbc\xd5\xb0\xe9\x44" "\xbf\xdc\x63\x64\x4f\x07\x13\x93\x8a\x7f\x51\x53\x5c\x3a\x35\xe2" }, { GCRY_MAC_HMAC_SHA256, "?", "????????????????", "\x1c\x0e\x57\xad\x4a\x02\xd2\x30\xce\x7e\xf8\x08\x23\x25\x71\x5e" "\x16\x9b\x30\xca\xc3\xf4\x99\xc5\x1d\x4c\x25\x32\xa9\xf2\x15\x28" }, { GCRY_MAC_HMAC_SHA224, "what do ya want for nothing?", "Jefe", "\xa3\x0e\x01\x09\x8b\xc6\xdb\xbf\x45\x69\x0f\x3a\x7e\x9e\x6d\x0f" "\x8b\xbe\xa2\xa3\x9e\x61\x48\x00\x8f\xd0\x5e\x44" }, { GCRY_MAC_HMAC_SHA224, "Hi There", "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b" "\x0b\x0b\x0b", "\x89\x6f\xb1\x12\x8a\xbb\xdf\x19\x68\x32\x10\x7c\xd4\x9d\xf3\x3f\x47" "\xb4\xb1\x16\x99\x12\xba\x4f\x53\x68\x4b\x22" }, { GCRY_MAC_HMAC_SHA224, "\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd" "\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd" "\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd" "\xdd\xdd\xdd\xdd\xdd", "\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA" "\xAA\xAA\xAA\xAA", "\x7f\xb3\xcb\x35\x88\xc6\xc1\xf6\xff\xa9\x69\x4d\x7d\x6a\xd2\x64" "\x93\x65\xb0\xc1\xf6\x5d\x69\xd1\xec\x83\x33\xea" }, { GCRY_MAC_HMAC_SHA224, "\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd" "\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd" "\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd" "\xcd\xcd\xcd\xcd\xcd", "\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f" "\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19", "\x6c\x11\x50\x68\x74\x01\x3c\xac\x6a\x2a\xbc\x1b\xb3\x82\x62" "\x7c\xec\x6a\x90\xd8\x6e\xfc\x01\x2d\xe7\xaf\xec\x5a" }, { GCRY_MAC_HMAC_SHA224, "Test Using Larger Than Block-Size Key - Hash Key First", "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa", "\x95\xe9\xa0\xdb\x96\x20\x95\xad\xae\xbe\x9b\x2d\x6f\x0d\xbc\xe2" "\xd4\x99\xf1\x12\xf2\xd2\xb7\x27\x3f\xa6\x87\x0e" }, { GCRY_MAC_HMAC_SHA224, "This is a test using a larger than block-size key and a larger than block-size data. The key needs to be hashed before being used by the HMAC algorithm.", "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa", "\x3a\x85\x41\x66\xac\x5d\x9f\x02\x3f\x54\xd5\x17\xd0\xb3\x9d\xbd" "\x94\x67\x70\xdb\x9c\x2b\x95\xc9\xf6\xf5\x65\xd1" }, { GCRY_MAC_HMAC_SHA224, "?", "????????????????", "\xc1\x88\xaf\xcf\xce\x51\xa2\x14\x3d\xc1\xaf\x93\xcc\x2b\xe9\x4d" "\x39\x55\x90\x4c\x46\x70\xfc\xc2\x04\xcf\xab\xfa" }, { GCRY_MAC_HMAC_SHA384, "what do ya want for nothing?", "Jefe", "\xaf\x45\xd2\xe3\x76\x48\x40\x31\x61\x7f\x78\xd2\xb5\x8a\x6b\x1b" "\x9c\x7e\xf4\x64\xf5\xa0\x1b\x47\xe4\x2e\xc3\x73\x63\x22\x44\x5e" "\x8e\x22\x40\xca\x5e\x69\xe2\xc7\x8b\x32\x39\xec\xfa\xb2\x16\x49" }, { GCRY_MAC_HMAC_SHA384, "Hi There", "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b" "\x0b\x0b\x0b", "\xaf\xd0\x39\x44\xd8\x48\x95\x62\x6b\x08\x25\xf4\xab\x46\x90\x7f\x15" "\xf9\xda\xdb\xe4\x10\x1e\xc6\x82\xaa\x03\x4c\x7c\xeb\xc5\x9c\xfa\xea" "\x9e\xa9\x07\x6e\xde\x7f\x4a\xf1\x52\xe8\xb2\xfa\x9c\xb6" }, { GCRY_MAC_HMAC_SHA384, "\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd" "\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd" "\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd" "\xdd\xdd\xdd\xdd\xdd", "\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA" "\xAA\xAA\xAA\xAA", "\x88\x06\x26\x08\xd3\xe6\xad\x8a\x0a\xa2\xac\xe0\x14\xc8\xa8\x6f" "\x0a\xa6\x35\xd9\x47\xac\x9f\xeb\xe8\x3e\xf4\xe5\x59\x66\x14\x4b" "\x2a\x5a\xb3\x9d\xc1\x38\x14\xb9\x4e\x3a\xb6\xe1\x01\xa3\x4f\x27" }, { GCRY_MAC_HMAC_SHA384, "\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd" "\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd" "\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd" "\xcd\xcd\xcd\xcd\xcd", "\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f" "\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19", "\x3e\x8a\x69\xb7\x78\x3c\x25\x85\x19\x33\xab\x62\x90\xaf\x6c\xa7" "\x7a\x99\x81\x48\x08\x50\x00\x9c\xc5\x57\x7c\x6e\x1f\x57\x3b\x4e" "\x68\x01\xdd\x23\xc4\xa7\xd6\x79\xcc\xf8\xa3\x86\xc6\x74\xcf\xfb" }, { GCRY_MAC_HMAC_SHA384, "Test Using Larger Than Block-Size Key - Hash Key First", "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa", "\x4e\xce\x08\x44\x85\x81\x3e\x90\x88\xd2\xc6\x3a\x04\x1b\xc5\xb4" "\x4f\x9e\xf1\x01\x2a\x2b\x58\x8f\x3c\xd1\x1f\x05\x03\x3a\xc4\xc6" "\x0c\x2e\xf6\xab\x40\x30\xfe\x82\x96\x24\x8d\xf1\x63\xf4\x49\x52" }, { GCRY_MAC_HMAC_SHA384, "This is a test using a larger than block-size key and a larger than block-size data. The key needs to be hashed before being used by the HMAC algorithm.", "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa", "\x66\x17\x17\x8e\x94\x1f\x02\x0d\x35\x1e\x2f\x25\x4e\x8f\xd3\x2c" "\x60\x24\x20\xfe\xb0\xb8\xfb\x9a\xdc\xce\xbb\x82\x46\x1e\x99\xc5" "\xa6\x78\xcc\x31\xe7\x99\x17\x6d\x38\x60\xe6\x11\x0c\x46\x52\x3e" }, { GCRY_MAC_HMAC_SHA384, "?", "????????????????", "\xe7\x96\x29\xa3\x40\x5f\x1e\x6e\x92\xa5\xdb\xa5\xc6\xe9\x60\xa8" "\xf5\xd1\x6d\xcb\x10\xec\x30\x2f\x6b\x9c\x37\xe0\xea\xf1\x53\x28" "\x08\x01\x9b\xe3\x4a\x43\xc6\xc2\x2b\x0c\xd9\x43\x64\x35\x25\x78" }, { GCRY_MAC_HMAC_SHA512, "what do ya want for nothing?", "Jefe", "\x16\x4b\x7a\x7b\xfc\xf8\x19\xe2\xe3\x95\xfb\xe7\x3b\x56\xe0\xa3" "\x87\xbd\x64\x22\x2e\x83\x1f\xd6\x10\x27\x0c\xd7\xea\x25\x05\x54" "\x97\x58\xbf\x75\xc0\x5a\x99\x4a\x6d\x03\x4f\x65\xf8\xf0\xe6\xfd" "\xca\xea\xb1\xa3\x4d\x4a\x6b\x4b\x63\x6e\x07\x0a\x38\xbc\xe7\x37" }, { GCRY_MAC_HMAC_SHA512, "Hi There", "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b" "\x0b\x0b\x0b", "\x87\xaa\x7c\xde\xa5\xef\x61\x9d\x4f\xf0\xb4\x24\x1a\x1d\x6c\xb0" "\x23\x79\xf4\xe2\xce\x4e\xc2\x78\x7a\xd0\xb3\x05\x45\xe1\x7c\xde" "\xda\xa8\x33\xb7\xd6\xb8\xa7\x02\x03\x8b\x27\x4e\xae\xa3\xf4\xe4" "\xbe\x9d\x91\x4e\xeb\x61\xf1\x70\x2e\x69\x6c\x20\x3a\x12\x68\x54" }, { GCRY_MAC_HMAC_SHA512, "\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd" "\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd" "\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd" "\xdd\xdd\xdd\xdd\xdd", "\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA" "\xAA\xAA\xAA\xAA", "\xfa\x73\xb0\x08\x9d\x56\xa2\x84\xef\xb0\xf0\x75\x6c\x89\x0b\xe9" "\xb1\xb5\xdb\xdd\x8e\xe8\x1a\x36\x55\xf8\x3e\x33\xb2\x27\x9d\x39" "\xbf\x3e\x84\x82\x79\xa7\x22\xc8\x06\xb4\x85\xa4\x7e\x67\xc8\x07" "\xb9\x46\xa3\x37\xbe\xe8\x94\x26\x74\x27\x88\x59\xe1\x32\x92\xfb" }, { GCRY_MAC_HMAC_SHA512, "\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd" "\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd" "\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd" "\xcd\xcd\xcd\xcd\xcd", "\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f" "\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19", "\xb0\xba\x46\x56\x37\x45\x8c\x69\x90\xe5\xa8\xc5\xf6\x1d\x4a\xf7" "\xe5\x76\xd9\x7f\xf9\x4b\x87\x2d\xe7\x6f\x80\x50\x36\x1e\xe3\xdb" "\xa9\x1c\xa5\xc1\x1a\xa2\x5e\xb4\xd6\x79\x27\x5c\xc5\x78\x80\x63" "\xa5\xf1\x97\x41\x12\x0c\x4f\x2d\xe2\xad\xeb\xeb\x10\xa2\x98\xdd" }, { GCRY_MAC_HMAC_SHA512, "Test Using Larger Than Block-Size Key - Hash Key First", "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa", "\x80\xb2\x42\x63\xc7\xc1\xa3\xeb\xb7\x14\x93\xc1\xdd\x7b\xe8\xb4" "\x9b\x46\xd1\xf4\x1b\x4a\xee\xc1\x12\x1b\x01\x37\x83\xf8\xf3\x52" "\x6b\x56\xd0\x37\xe0\x5f\x25\x98\xbd\x0f\xd2\x21\x5d\x6a\x1e\x52" "\x95\xe6\x4f\x73\xf6\x3f\x0a\xec\x8b\x91\x5a\x98\x5d\x78\x65\x98" }, { GCRY_MAC_HMAC_SHA512, "This is a test using a larger than block-size key and a larger than block-size data. The key needs to be hashed before being used by the HMAC algorithm.", "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa", "\xe3\x7b\x6a\x77\x5d\xc8\x7d\xba\xa4\xdf\xa9\xf9\x6e\x5e\x3f\xfd" "\xde\xbd\x71\xf8\x86\x72\x89\x86\x5d\xf5\xa3\x2d\x20\xcd\xc9\x44" "\xb6\x02\x2c\xac\x3c\x49\x82\xb1\x0d\x5e\xeb\x55\xc3\xe4\xde\x15" "\x13\x46\x76\xfb\x6d\xe0\x44\x60\x65\xc9\x74\x40\xfa\x8c\x6a\x58" }, { GCRY_MAC_HMAC_SHA512, "?", "????????????????", "\xd4\x43\x61\xfa\x3d\x3d\x57\xd6\xac\xc3\x9f\x1c\x3d\xd9\x26\x84" "\x1f\xfc\x4d\xf2\xbf\x78\x87\x72\x5e\x6c\x3e\x00\x6d\x39\x5f\xfa" "\xd7\x3a\xf7\x83\xb7\xb5\x61\xbd\xfb\x33\xe0\x03\x97\xa7\x72\x79" "\x66\x66\xbf\xbd\x44\xfa\x04\x01\x1b\xc1\x48\x1d\x9e\xde\x5b\x8e" }, /* HMAC-SHA3 test vectors from * http://wolfgang-ehrhardt.de/hmac-sha3-testvectors.html */ { GCRY_MAC_HMAC_SHA3_224, "Hi There", "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b" "\x0b\x0b\x0b", "\x3b\x16\x54\x6b\xbc\x7b\xe2\x70\x6a\x03\x1d\xca\xfd\x56\x37\x3d" "\x98\x84\x36\x76\x41\xd8\xc5\x9a\xf3\xc8\x60\xf7" }, { GCRY_MAC_HMAC_SHA3_256, "Hi There", "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b" "\x0b\x0b\x0b", "\xba\x85\x19\x23\x10\xdf\xfa\x96\xe2\xa3\xa4\x0e\x69\x77\x43\x51" "\x14\x0b\xb7\x18\x5e\x12\x02\xcd\xcc\x91\x75\x89\xf9\x5e\x16\xbb" }, { GCRY_MAC_HMAC_SHA3_512, "Hi There", "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b" "\x0b\x0b\x0b", "\xeb\x3f\xbd\x4b\x2e\xaa\xb8\xf5\xc5\x04\xbd\x3a\x41\x46\x5a\xac" "\xec\x15\x77\x0a\x7c\xab\xac\x53\x1e\x48\x2f\x86\x0b\x5e\xc7\xba" "\x47\xcc\xb2\xc6\xf2\xaf\xce\x8f\x88\xd2\x2b\x6d\xc6\x13\x80\xf2" "\x3a\x66\x8f\xd3\x88\x8b\xb8\x05\x37\xc0\xa0\xb8\x64\x07\x68\x9e" }, { GCRY_MAC_HMAC_SHA3_224, "what do ya want for nothing?", "Jefe", "\x7f\xdb\x8d\xd8\x8b\xd2\xf6\x0d\x1b\x79\x86\x34\xad\x38\x68\x11" "\xc2\xcf\xc8\x5b\xfa\xf5\xd5\x2b\xba\xce\x5e\x66" }, { GCRY_MAC_HMAC_SHA3_256, "what do ya want for nothing?", "Jefe", "\xc7\xd4\x07\x2e\x78\x88\x77\xae\x35\x96\xbb\xb0\xda\x73\xb8\x87" "\xc9\x17\x1f\x93\x09\x5b\x29\x4a\xe8\x57\xfb\xe2\x64\x5e\x1b\xa5" }, { GCRY_MAC_HMAC_SHA3_384, "what do ya want for nothing?", "Jefe", "\xf1\x10\x1f\x8c\xbf\x97\x66\xfd\x67\x64\xd2\xed\x61\x90\x3f\x21" "\xca\x9b\x18\xf5\x7c\xf3\xe1\xa2\x3c\xa1\x35\x08\xa9\x32\x43\xce" "\x48\xc0\x45\xdc\x00\x7f\x26\xa2\x1b\x3f\x5e\x0e\x9d\xf4\xc2\x0a" }, { GCRY_MAC_HMAC_SHA3_512, "what do ya want for nothing?", "Jefe", "\x5a\x4b\xfe\xab\x61\x66\x42\x7c\x7a\x36\x47\xb7\x47\x29\x2b\x83" "\x84\x53\x7c\xdb\x89\xaf\xb3\xbf\x56\x65\xe4\xc5\xe7\x09\x35\x0b" "\x28\x7b\xae\xc9\x21\xfd\x7c\xa0\xee\x7a\x0c\x31\xd0\x22\xa9\x5e" "\x1f\xc9\x2b\xa9\xd7\x7d\xf8\x83\x96\x02\x75\xbe\xb4\xe6\x20\x24" }, { GCRY_MAC_HMAC_SHA3_224, "Test Using Larger Than Block-Size Key - Hash Key First", "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa", "\xb9\x6d\x73\x0c\x14\x8c\x2d\xaa\xd8\x64\x9d\x83\xde\xfa\xa3\x71" "\x97\x38\xd3\x47\x75\x39\x7b\x75\x71\xc3\x85\x15" }, { GCRY_MAC_HMAC_SHA3_256, "Test Using Larger Than Block-Size Key - Hash Key First", "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa", "\xa6\x07\x2f\x86\xde\x52\xb3\x8b\xb3\x49\xfe\x84\xcd\x6d\x97\xfb" "\x6a\x37\xc4\xc0\xf6\x2a\xae\x93\x98\x11\x93\xa7\x22\x9d\x34\x67" }, { GCRY_MAC_HMAC_SHA3_384, "Test Using Larger Than Block-Size Key - Hash Key First", "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa", "\x71\x3d\xff\x03\x02\xc8\x50\x86\xec\x5a\xd0\x76\x8d\xd6\x5a\x13" "\xdd\xd7\x90\x68\xd8\xd4\xc6\x21\x2b\x71\x2e\x41\x64\x94\x49\x11" "\x14\x80\x23\x00\x44\x18\x5a\x99\x10\x3e\xd8\x20\x04\xdd\xbf\xcc" }, { GCRY_MAC_HMAC_SHA3_512, "Test Using Larger Than Block-Size Key - Hash Key First", "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa", "\xb1\x48\x35\xc8\x19\xa2\x90\xef\xb0\x10\xac\xe6\xd8\x56\x8d\xc6" "\xb8\x4d\xe6\x0b\xc4\x9b\x00\x4c\x3b\x13\xed\xa7\x63\x58\x94\x51" "\xe5\xdd\x74\x29\x28\x84\xd1\xbd\xce\x64\xe6\xb9\x19\xdd\x61\xdc" "\x9c\x56\xa2\x82\xa8\x1c\x0b\xd1\x4f\x1f\x36\x5b\x49\xb8\x3a\x5b" }, { GCRY_MAC_HMAC_SHA3_224, "This is a test using a larger than block-size key and a larger " "than block-size data. The key needs to be hashed before being " "used by the HMAC algorithm.", "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa", "\xc7\x9c\x9b\x09\x34\x24\xe5\x88\xa9\x87\x8b\xbc\xb0\x89\xe0\x18" "\x27\x00\x96\xe9\xb4\xb1\xa9\xe8\x22\x0c\x86\x6a" }, { GCRY_MAC_HMAC_SHA3_256, "This is a test using a larger than block-size key and a larger " "than block-size data. The key needs to be hashed before being " "used by the HMAC algorithm.", "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa", "\xe6\xa3\x6d\x9b\x91\x5f\x86\xa0\x93\xca\xc7\xd1\x10\xe9\xe0\x4c" "\xf1\xd6\x10\x0d\x30\x47\x55\x09\xc2\x47\x5f\x57\x1b\x75\x8b\x5a" }, { GCRY_MAC_HMAC_SHA3_384, "This is a test using a larger than block-size key and a larger " "than block-size data. The key needs to be hashed before being " "used by the HMAC algorithm.", "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa", "\xca\xd1\x8a\x8f\xf6\xc4\xcc\x3a\xd4\x87\xb9\x5f\x97\x69\xe9\xb6" "\x1c\x06\x2a\xef\xd6\x95\x25\x69\xe6\xe6\x42\x18\x97\x05\x4c\xfc" "\x70\xb5\xfd\xc6\x60\x5c\x18\x45\x71\x12\xfc\x6a\xaa\xd4\x55\x85" }, { GCRY_MAC_HMAC_SHA3_512, "This is a test using a larger than block-size key and a larger " "than block-size data. The key needs to be hashed before being " "used by the HMAC algorithm.", "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa", "\xdc\x03\x0e\xe7\x88\x70\x34\xf3\x2c\xf4\x02\xdf\x34\x62\x2f\x31" "\x1f\x3e\x6c\xf0\x48\x60\xc6\xbb\xd7\xfa\x48\x86\x74\x78\x2b\x46" "\x59\xfd\xbd\xf3\xfd\x87\x78\x52\x88\x5c\xfe\x6e\x22\x18\x5f\xe7" "\xb2\xee\x95\x20\x43\x62\x9b\xc9\xd5\xf3\x29\x8a\x41\xd0\x2c\x66" }, { GCRY_MAC_HMAC_SHA3_224, "?", "????????????????", "\x80\x2b\x3c\x84\xfe\x3e\x01\x22\x14\xf8\xba\x74\x79\xfd\xb5\x02" "\xea\x0c\x06\xa4\x7e\x01\xe3\x2c\xc7\x24\x89\xc3" }, { GCRY_MAC_HMAC_SHA3_256, "?", "????????????????", "\x6c\x7c\x96\x5b\x19\xba\xcd\x61\x69\x8a\x2c\x7a\x2b\x96\xa1\xc3" "\x33\xa0\x3c\x5d\x54\x87\x37\x60\xc8\x2f\xa2\xa6\x12\x38\x8d\x1b" }, { GCRY_MAC_HMAC_SHA3_384, "?", "????????????????", "\xc0\x20\xd0\x9b\xa7\xb9\xd5\xb8\xa6\xa4\xba\x20\x55\xd9\x0b\x35" "\x8b\xe0\xb7\xec\x1e\x9f\xe6\xb9\xbd\xd5\xe9\x9b\xfc\x0a\x11\x3a" "\x15\x41\xed\xfd\xef\x30\x8d\x03\xb8\xca\x3a\xa8\xc7\x2d\x89\x32" }, { GCRY_MAC_HMAC_SHA3_512, "?", "????????????????", "\xb4\xef\x24\xd2\x07\xa7\x01\xb3\xe1\x81\x11\x22\x93\x83\x64\xe0" "\x5e\xad\x03\xb7\x43\x4f\x87\xa1\x14\x8e\x17\x8f\x2a\x97\x7d\xe8" "\xbd\xb0\x37\x3b\x67\xb9\x97\x36\xa5\x82\x9b\xdc\x0d\xe4\x5a\x8c" "\x5e\xda\xb5\xca\xea\xa9\xb4\x6e\xba\xca\x25\xc8\xbf\xa1\x0e\xb0" }, { GCRY_MAC_HMAC_STRIBOG256, "\x01\x26\xbd\xb8\x78\x00\xaf\x21\x43\x41\x45\x65\x63\x78\x01\x00", "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f" "\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f", "\xa1\xaa\x5f\x7d\xe4\x02\xd7\xb3\xd3\x23\xf2\x99\x1c\x8d\x45\x34" "\x01\x31\x37\x01\x0a\x83\x75\x4f\xd0\xaf\x6d\x7c\xd4\x92\x2e\xd9", NULL, 16, 32 }, { GCRY_MAC_HMAC_STRIBOG512, "\x01\x26\xbd\xb8\x78\x00\xaf\x21\x43\x41\x45\x65\x63\x78\x01\x00", "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f" "\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f", "\xa5\x9b\xab\x22\xec\xae\x19\xc6\x5f\xbd\xe6\xe5\xf4\xe9\xf5\xd8" "\x54\x9d\x31\xf0\x37\xf9\xdf\x9b\x90\x55\x00\xe1\x71\x92\x3a\x77" "\x3d\x5f\x15\x30\xf2\xed\x7e\x96\x4c\xb2\xee\xdc\x29\xe9\xad\x2f" "\x3a\xfe\x93\xb2\x81\x4f\x79\xf5\x00\x0f\xfc\x03\x66\xc2\x51\xe6", NULL, 16, 32 }, /* CMAC AES and DES test vectors from http://web.archive.org/web/20130930212819/http://csrc.nist.gov/publica\ tions/nistpubs/800-38B/Updated_CMAC_Examples.pdf */ { GCRY_MAC_CMAC_AES, "", "\x2b\x7e\x15\x16\x28\xae\xd2\xa6\xab\xf7\x15\x88\x09\xcf\x4f\x3c", "\xbb\x1d\x69\x29\xe9\x59\x37\x28\x7f\xa3\x7d\x12\x9b\x75\x67\x46" }, { GCRY_MAC_CMAC_AES, "\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96\xe9\x3d\x7e\x11\x73\x93\x17\x2a", "\x2b\x7e\x15\x16\x28\xae\xd2\xa6\xab\xf7\x15\x88\x09\xcf\x4f\x3c", "\x07\x0a\x16\xb4\x6b\x4d\x41\x44\xf7\x9b\xdd\x9d\xd0\x4a\x28\x7c" }, { GCRY_MAC_CMAC_AES, "\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96\xe9\x3d\x7e\x11\x73\x93\x17\x2a" "\xae\x2d\x8a\x57\x1e\x03\xac\x9c\x9e\xb7\x6f\xac\x45\xaf\x8e\x51" "\x30\xc8\x1c\x46\xa3\x5c\xe4\x11", "\x2b\x7e\x15\x16\x28\xae\xd2\xa6\xab\xf7\x15\x88\x09\xcf\x4f\x3c", "\xdf\xa6\x67\x47\xde\x9a\xe6\x30\x30\xca\x32\x61\x14\x97\xc8\x27" }, { GCRY_MAC_CMAC_AES, "\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96\xe9\x3d\x7e\x11\x73\x93\x17\x2a" "\xae\x2d\x8a\x57\x1e\x03\xac\x9c\x9e\xb7\x6f\xac\x45\xaf\x8e\x51" "\x30\xc8\x1c\x46\xa3\x5c\xe4\x11\xe5\xfb\xc1\x19\x1a\x0a\x52\xef" "\xf6\x9f\x24\x45\xdf\x4f\x9b\x17\xad\x2b\x41\x7b\xe6\x6c\x37\x10", "\x2b\x7e\x15\x16\x28\xae\xd2\xa6\xab\xf7\x15\x88\x09\xcf\x4f\x3c", "\x51\xf0\xbe\xbf\x7e\x3b\x9d\x92\xfc\x49\x74\x17\x79\x36\x3c\xfe" }, { GCRY_MAC_CMAC_AES, "", "\x8e\x73\xb0\xf7\xda\x0e\x64\x52\xc8\x10\xf3\x2b\x80\x90\x79\xe5" "\x62\xf8\xea\xd2\x52\x2c\x6b\x7b", "\xd1\x7d\xdf\x46\xad\xaa\xcd\xe5\x31\xca\xc4\x83\xde\x7a\x93\x67" }, { GCRY_MAC_CMAC_AES, "\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96\xe9\x3d\x7e\x11\x73\x93\x17\x2a", "\x8e\x73\xb0\xf7\xda\x0e\x64\x52\xc8\x10\xf3\x2b\x80\x90\x79\xe5" "\x62\xf8\xea\xd2\x52\x2c\x6b\x7b", "\x9e\x99\xa7\xbf\x31\xe7\x10\x90\x06\x62\xf6\x5e\x61\x7c\x51\x84" }, { GCRY_MAC_CMAC_AES, "\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96\xe9\x3d\x7e\x11\x73\x93\x17\x2a" "\xae\x2d\x8a\x57\x1e\x03\xac\x9c\x9e\xb7\x6f\xac\x45\xaf\x8e\x51" "\x30\xc8\x1c\x46\xa3\x5c\xe4\x11", "\x8e\x73\xb0\xf7\xda\x0e\x64\x52\xc8\x10\xf3\x2b\x80\x90\x79\xe5" "\x62\xf8\xea\xd2\x52\x2c\x6b\x7b", "\x8a\x1d\xe5\xbe\x2e\xb3\x1a\xad\x08\x9a\x82\xe6\xee\x90\x8b\x0e" }, { GCRY_MAC_CMAC_AES, "\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96\xe9\x3d\x7e\x11\x73\x93\x17\x2a" "\xae\x2d\x8a\x57\x1e\x03\xac\x9c\x9e\xb7\x6f\xac\x45\xaf\x8e\x51" "\x30\xc8\x1c\x46\xa3\x5c\xe4\x11\xe5\xfb\xc1\x19\x1a\x0a\x52\xef" "\xf6\x9f\x24\x45\xdf\x4f\x9b\x17\xad\x2b\x41\x7b\xe6\x6c\x37\x10", "\x8e\x73\xb0\xf7\xda\x0e\x64\x52\xc8\x10\xf3\x2b\x80\x90\x79\xe5" "\x62\xf8\xea\xd2\x52\x2c\x6b\x7b", "\xa1\xd5\xdf\x0e\xed\x79\x0f\x79\x4d\x77\x58\x96\x59\xf3\x9a\x11" }, { GCRY_MAC_CMAC_AES, "", "\x60\x3d\xeb\x10\x15\xca\x71\xbe\x2b\x73\xae\xf0\x85\x7d\x77\x81" "\x1f\x35\x2c\x07\x3b\x61\x08\xd7\x2d\x98\x10\xa3\x09\x14\xdf\xf4", "\x02\x89\x62\xf6\x1b\x7b\xf8\x9e\xfc\x6b\x55\x1f\x46\x67\xd9\x83" }, { GCRY_MAC_CMAC_AES, "\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96\xe9\x3d\x7e\x11\x73\x93\x17\x2a", "\x60\x3d\xeb\x10\x15\xca\x71\xbe\x2b\x73\xae\xf0\x85\x7d\x77\x81" "\x1f\x35\x2c\x07\x3b\x61\x08\xd7\x2d\x98\x10\xa3\x09\x14\xdf\xf4", "\x28\xa7\x02\x3f\x45\x2e\x8f\x82\xbd\x4b\xf2\x8d\x8c\x37\xc3\x5c" }, { GCRY_MAC_CMAC_AES, "\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96\xe9\x3d\x7e\x11\x73\x93\x17\x2a" "\xae\x2d\x8a\x57\x1e\x03\xac\x9c\x9e\xb7\x6f\xac\x45\xaf\x8e\x51" "\x30\xc8\x1c\x46\xa3\x5c\xe4\x11", "\x60\x3d\xeb\x10\x15\xca\x71\xbe\x2b\x73\xae\xf0\x85\x7d\x77\x81" "\x1f\x35\x2c\x07\x3b\x61\x08\xd7\x2d\x98\x10\xa3\x09\x14\xdf\xf4", "\xaa\xf3\xd8\xf1\xde\x56\x40\xc2\x32\xf5\xb1\x69\xb9\xc9\x11\xe6" }, { GCRY_MAC_CMAC_AES, "\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96\xe9\x3d\x7e\x11\x73\x93\x17\x2a" "\xae\x2d\x8a\x57\x1e\x03\xac\x9c\x9e\xb7\x6f\xac\x45\xaf\x8e\x51" "\x30\xc8\x1c\x46\xa3\x5c\xe4\x11\xe5\xfb\xc1\x19\x1a\x0a\x52\xef" "\xf6\x9f\x24\x45\xdf\x4f\x9b\x17\xad\x2b\x41\x7b\xe6\x6c\x37\x10", "\x60\x3d\xeb\x10\x15\xca\x71\xbe\x2b\x73\xae\xf0\x85\x7d\x77\x81" "\x1f\x35\x2c\x07\x3b\x61\x08\xd7\x2d\x98\x10\xa3\x09\x14\xdf\xf4", "\xe1\x99\x21\x90\x54\x9f\x6e\xd5\x69\x6a\x2c\x05\x6c\x31\x54\x10" }, { GCRY_MAC_CMAC_AES, "?", "????????????????????????????????", "\x9f\x72\x73\x68\xb0\x49\x2e\xb1\x35\xa0\x1d\xf9\xa8\x0a\xf6\xee" }, { GCRY_MAC_CMAC_3DES, "", "\x8a\xa8\x3b\xf8\xcb\xda\x10\x62\x0b\xc1\xbf\x19\xfb\xb6\xcd\x58" "\xbc\x31\x3d\x4a\x37\x1c\xa8\xb5", "\xb7\xa6\x88\xe1\x22\xff\xaf\x95" }, { GCRY_MAC_CMAC_3DES, "\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96", "\x8a\xa8\x3b\xf8\xcb\xda\x10\x62\x0b\xc1\xbf\x19\xfb\xb6\xcd\x58" "\xbc\x31\x3d\x4a\x37\x1c\xa8\xb5", "\x8e\x8f\x29\x31\x36\x28\x37\x97" }, { GCRY_MAC_CMAC_3DES, "\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96\xe9\x3d\x7e\x11\x73\x93\x17\x2a" "\xae\x2d\x8a\x57", "\x8a\xa8\x3b\xf8\xcb\xda\x10\x62\x0b\xc1\xbf\x19\xfb\xb6\xcd\x58" "\xbc\x31\x3d\x4a\x37\x1c\xa8\xb5", "\x74\x3d\xdb\xe0\xce\x2d\xc2\xed" }, { GCRY_MAC_CMAC_3DES, "\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96\xe9\x3d\x7e\x11\x73\x93\x17\x2a" "\xae\x2d\x8a\x57\x1e\x03\xac\x9c\x9e\xb7\x6f\xac\x45\xaf\x8e\x51", "\x8a\xa8\x3b\xf8\xcb\xda\x10\x62\x0b\xc1\xbf\x19\xfb\xb6\xcd\x58" "\xbc\x31\x3d\x4a\x37\x1c\xa8\xb5", "\x33\xe6\xb1\x09\x24\x00\xea\xe5" }, { GCRY_MAC_CMAC_3DES, "", "\x4c\xf1\x51\x34\xa2\x85\x0d\xd5\x8a\x3d\x10\xba\x80\x57\x0d\x38" "\x4c\xf1\x51\x34\xa2\x85\x0d\xd5", "\xbd\x2e\xbf\x9a\x3b\xa0\x03\x61" }, { GCRY_MAC_CMAC_3DES, "\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96", "\x4c\xf1\x51\x34\xa2\x85\x0d\xd5\x8a\x3d\x10\xba\x80\x57\x0d\x38" "\x4c\xf1\x51\x34\xa2\x85\x0d\xd5", "\x4f\xf2\xab\x81\x3c\x53\xce\x83" }, { GCRY_MAC_CMAC_3DES, "\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96\xe9\x3d\x7e\x11\x73\x93\x17\x2a" "\xae\x2d\x8a\x57", "\x4c\xf1\x51\x34\xa2\x85\x0d\xd5\x8a\x3d\x10\xba\x80\x57\x0d\x38" "\x4c\xf1\x51\x34\xa2\x85\x0d\xd5", "\x62\xdd\x1b\x47\x19\x02\xbd\x4e" }, { GCRY_MAC_CMAC_3DES, "\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96\xe9\x3d\x7e\x11\x73\x93\x17\x2a" "\xae\x2d\x8a\x57\x1e\x03\xac\x9c\x9e\xb7\x6f\xac\x45\xaf\x8e\x51", "\x4c\xf1\x51\x34\xa2\x85\x0d\xd5\x8a\x3d\x10\xba\x80\x57\x0d\x38" "\x4c\xf1\x51\x34\xa2\x85\x0d\xd5", "\x31\xb1\xe4\x31\xda\xbc\x4e\xb8" }, { GCRY_MAC_CMAC_3DES, "?", "????????????????????????", "\xc1\x38\x13\xb2\x31\x8f\x3a\xdf" }, /* CMAC Camellia test vectors from http://tools.ietf.org/html/draft-kato-ipsec-camellia-cmac96and128-05 */ { GCRY_MAC_CMAC_CAMELLIA, "", "\x2b\x7e\x15\x16\x28\xae\xd2\xa6\xab\xf7\x15\x88\x09\xcf\x4f\x3c", "\xba\x92\x57\x82\xaa\xa1\xf5\xd9\xa0\x0f\x89\x64\x80\x94\xfc\x71" }, { GCRY_MAC_CMAC_CAMELLIA, "\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96\xe9\x3d\x7e\x11\x73\x93\x17\x2a", "\x2b\x7e\x15\x16\x28\xae\xd2\xa6\xab\xf7\x15\x88\x09\xcf\x4f\x3c", "\x6d\x96\x28\x54\xa3\xb9\xfd\xa5\x6d\x7d\x45\xa9\x5e\xe1\x79\x93" }, { GCRY_MAC_CMAC_CAMELLIA, "\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96\xe9\x3d\x7e\x11\x73\x93\x17\x2a" "\xae\x2d\x8a\x57\x1e\x03\xac\x9c\x9e\xb7\x6f\xac\x45\xaf\x8e\x51" "\x30\xc8\x1c\x46\xa3\x5c\xe4\x11", "\x2b\x7e\x15\x16\x28\xae\xd2\xa6\xab\xf7\x15\x88\x09\xcf\x4f\x3c", "\x5c\x18\xd1\x19\xcc\xd6\x76\x61\x44\xac\x18\x66\x13\x1d\x9f\x22" }, { GCRY_MAC_CMAC_CAMELLIA, "\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96\xe9\x3d\x7e\x11\x73\x93\x17\x2a" "\xae\x2d\x8a\x57\x1e\x03\xac\x9c\x9e\xb7\x6f\xac\x45\xaf\x8e\x51" "\x30\xc8\x1c\x46\xa3\x5c\xe4\x11\xe5\xfb\xc1\x19\x1a\x0a\x52\xef" "\xf6\x9f\x24\x45\xdf\x4f\x9b\x17\xad\x2b\x41\x7b\xe6\x6c\x37\x10", "\x2b\x7e\x15\x16\x28\xae\xd2\xa6\xab\xf7\x15\x88\x09\xcf\x4f\x3c", "\xc2\x69\x9a\x6e\xba\x55\xce\x9d\x93\x9a\x8a\x4e\x19\x46\x6e\xe9" }, { GCRY_MAC_CMAC_CAMELLIA, "?", "????????????????????????????????", "\xba\x8a\x5a\x8d\xa7\x54\x26\x83\x3e\xb1\x20\xb5\x45\xd0\x9f\x4e" }, /* http://csrc.nist.gov/groups/STM/cavp/documents/mac/gcmtestvectors.zip */ { GCRY_MAC_GMAC_AES, "", "\x11\x75\x4c\xd7\x2a\xec\x30\x9b\xf5\x2f\x76\x87\x21\x2e\x89\x57", "\x25\x03\x27\xc6\x74\xaa\xf4\x77\xae\xf2\x67\x57\x48\xcf\x69\x71", "\x3c\x81\x9d\x9a\x9b\xed\x08\x76\x15\x03\x0b\x65" }, { GCRY_MAC_GMAC_AES, "\x2b\x63\x26\x64\x29\x67\x4a\xb5\xe2\xea\xff\x63\x9c\x23\x14\x66" "\x2f\x92\x57\x4b\x29\x8f\x57\x7a\xcf\x7d\x6f\x99\x1a\x87\x92\x1f" "\xc2\x32\xea\xfc\xc7\xb1\x46\x48\x96\x63\x2d\x6c\x8a\xbe\x88\xc2" "\xcc\xa4\x04\xdb\xf8\x7c\x20\x6a\x19\xd3\x73\xed\x99\x50\x17\x34" "\x69\x13\x4d\x7c\x14\xc2\x84\x7d\xf2\x4a\x88\xc1\xc5\x3b\x4d\xe4" "\x9d\xb3\x66\x39\x2b\x6d\xc6\x51\x27\x6e", "\x0f\x3b\x17\xde\xae\x62\x13\x64\x55\x4a\xe5\x39\xdb\x09\xde\x11", "\xff\xb0\xbb\x6d\xfc\x23\x58\x75\x4f\x17\x78\x48\x5b\x59\x65\x7f", "\xa7\xf6\x07\x4c\xda\x56\x1c\xd2\xaa\x15\xba\x8c\x2f\xa6\x39\x42" "\x59\x3e\x7c\xcf\x45\xc2\x9a\x57\xda\xd8\xa6\xe2\xea\x63\x54\xce" "\x8a\xde\x39\xdd\xde\x4a\xc4\x5b\xbd\xc6\x63\xf0\xa5\x37\xc9\x48" "\x18\x23\x5a\x73\xd8\xa0\x8b\xd8\x98\xab\xd0\x99\xe1\x5c\x08\x8c" "\x6e\x21\x17\x5a\xf4\xe9\xa4\x99\x70\x12\x82\xed\x32\x81\x50\xa6" "\xd9\x90\xe8\xec\x87\x85\xce\x26\x1b\xe1\xb8\x3f\xd8\x59\x1e\x57" "\x76\x5f\x3d\xc1\x11\x3f\xd0\x2a\x40\xf5\x01\x6a\xd0\xd0\xed\xc4" "\x92\x9a\x02\xe0\x17\xb2\xc5\xf4\x18\xd2\x96\xab\xd6\xc2\xea\x2e" }, { GCRY_MAC_GMAC_AES, "\x61\x14\x60\x11\x90\xf6\xef\x5e\x59\x23\x5d\xc0\x42\x8c\x09\xe3" "\x27\x0b\x19\xea", "\x15\xa4\x14\x46\x6a\x7f\x90\xea\x32\xbf\xd7\xf6\xe5\x8b\xfa\x06" "\xe9\x07\xfc\x41\x66\x89\xd9\x60\x39\x45\xd7\x94\x54\xd4\x23\x17", "\x19\x6e\x0e\x01\x0f\x08\x56\xf9\x82\xb4\x08\x92\x41\xd6\x24\x84", "\xab" }, { GCRY_MAC_GMAC_AES, "\x8b\x5c\x12\x4b\xef\x6e\x2f\x0f\xe4\xd8\xc9\x5c\xd5\xfa\x4c\xf1", "\x41\xc5\xda\x86\x67\xef\x72\x52\x20\xff\xe3\x9a\xe0\xac\x59\x0a" "\xc9\xfc\xa7\x29\xab\x60\xad\xa0", "\x20\x4b\xdb\x1b\xd6\x21\x54\xbf\x08\x92\x2a\xaa\x54\xee\xd7\x05", "\x05\xad\x13\xa5\xe2\xc2\xab\x66\x7e\x1a\x6f\xbc" }, { GCRY_MAC_GMAC_AES, "?", "????????????????????????????????", "\x84\x37\xc3\x42\xae\xf5\xd0\x40\xd3\x73\x90\xa9\x36\xed\x8a\x12" }, /* from NaCl */ { GCRY_MAC_POLY1305, "\x8e\x99\x3b\x9f\x48\x68\x12\x73\xc2\x96\x50\xba\x32\xfc\x76\xce" "\x48\x33\x2e\xa7\x16\x4d\x96\xa4\x47\x6f\xb8\xc5\x31\xa1\x18\x6a" "\xc0\xdf\xc1\x7c\x98\xdc\xe8\x7b\x4d\xa7\xf0\x11\xec\x48\xc9\x72" "\x71\xd2\xc2\x0f\x9b\x92\x8f\xe2\x27\x0d\x6f\xb8\x63\xd5\x17\x38" "\xb4\x8e\xee\xe3\x14\xa7\xcc\x8a\xb9\x32\x16\x45\x48\xe5\x26\xae" "\x90\x22\x43\x68\x51\x7a\xcf\xea\xbd\x6b\xb3\x73\x2b\xc0\xe9\xda" "\x99\x83\x2b\x61\xca\x01\xb6\xde\x56\x24\x4a\x9e\x88\xd5\xf9\xb3" "\x79\x73\xf6\x22\xa4\x3d\x14\xa6\x59\x9b\x1f\x65\x4c\xb4\x5a\x74" "\xe3\x55\xa5", "\xee\xa6\xa7\x25\x1c\x1e\x72\x91\x6d\x11\xc2\xcb\x21\x4d\x3c\x25" "\x25\x39\x12\x1d\x8e\x23\x4e\x65\x2d\x65\x1f\xa4\xc8\xcf\xf8\x80", "\xf3\xff\xc7\x70\x3f\x94\x00\xe5\x2a\x7d\xfb\x4b\x3d\x33\x05\xd9" }, /* from draft-nir-cfrg-chacha20-poly1305-03 */ { GCRY_MAC_POLY1305, "Cryptographic Forum Research Group", "\x85\xd6\xbe\x78\x57\x55\x6d\x33\x7f\x44\x52\xfe\x42\xd5\x06\xa8" "\x01\x03\x80\x8a\xfb\x0d\xb2\xfd\x4a\xbf\xf6\xaf\x41\x49\xf5\x1b", "\xa8\x06\x1d\xc1\x30\x51\x36\xc6\xc2\x2b\x8b\xaf\x0c\x01\x27\xa9" }, { GCRY_MAC_POLY1305, "'Twas brillig, and the slithy toves\n" "Did gyre and gimble in the wabe:\n" "All mimsy were the borogoves,\n" "And the mome raths outgrabe.", "\x1c\x92\x40\xa5\xeb\x55\xd3\x8a\xf3\x33\x88\x86\x04\xf6\xb5\xf0" "\x47\x39\x17\xc1\x40\x2b\x80\x09\x9d\xca\x5c\xbc\x20\x70\x75\xc0", "\x45\x41\x66\x9a\x7e\xaa\xee\x61\xe7\x08\xdc\x7c\xbc\xc5\xeb\x62" }, { GCRY_MAC_POLY1305, "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", NULL, 191, 32 }, { GCRY_MAC_POLY1305, "Any submission to the IETF intended by the Contributor for " "publication as all or part of an IETF Internet-Draft or RFC and " "any statement made within the context of an IETF activity is " "considered an \"IETF Contribution\". Such statements include " "oral statements in IETF sessions, as well as written and " "electronic communications made at any time or place, which are " "addressed to", "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x36\xe5\xf6\xb5\xc5\xe0\x60\x70\xf0\xef\xca\x96\x22\x7a\x86\x3e", "\x36\xe5\xf6\xb5\xc5\xe0\x60\x70\xf0\xef\xca\x96\x22\x7a\x86\x3e", NULL, 0, 32 }, { GCRY_MAC_POLY1305, "Any submission to the IETF intended by the Contributor for " "publication as all or part of an IETF Internet-Draft or RFC and " "any statement made within the context of an IETF activity is " "considered an \"IETF Contribution\". Such statements include " "oral statements in IETF sessions, as well as written and " "electronic communications made at any time or place, which are " "addressed to", "\x36\xe5\xf6\xb5\xc5\xe0\x60\x70\xf0\xef\xca\x96\x22\x7a\x86\x3e" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\xf3\x47\x7e\x7c\xd9\x54\x17\xaf\x89\xa6\xb8\x79\x4c\x31\x0c\xf0", NULL, 0, 32 }, /* draft-irtf-cfrg-chacha20-poly1305-01 */ /* TV#5 */ { GCRY_MAC_POLY1305, "\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF", "\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", NULL, 16, 32 }, /* TV#6 */ { GCRY_MAC_POLY1305, "\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF", "\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", NULL, 16, 32 }, /* TV#7 */ { GCRY_MAC_POLY1305, "\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF" "\xF0\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF" "\x11\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", NULL, 48, 32 }, /* TV#8 */ { GCRY_MAC_POLY1305, "\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF" "\xFB\xFE\xFE\xFE\xFE\xFE\xFE\xFE\xFE\xFE\xFE\xFE\xFE\xFE\xFE\xFE" "\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01", "\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", NULL, 48, 32 }, /* TV#9 */ { GCRY_MAC_POLY1305, "\xFD\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF", "\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\xFA\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF", NULL, 16, 32 }, /* TV#10 */ { GCRY_MAC_POLY1305, "\xE3\x35\x94\xD7\x50\x5E\x43\xB9\x00\x00\x00\x00\x00\x00\x00\x00" "\x33\x94\xD7\x50\x5E\x43\x79\xCD\x01\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\x01\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\x14\x00\x00\x00\x00\x00\x00\x00\x55\x00\x00\x00\x00\x00\x00\x00", NULL, 64, 32 }, /* TV#11 */ { GCRY_MAC_POLY1305, "\xE3\x35\x94\xD7\x50\x5E\x43\xB9\x00\x00\x00\x00\x00\x00\x00\x00" "\x33\x94\xD7\x50\x5E\x43\x79\xCD\x01\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\x01\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", "\x13\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", NULL, 48, 32 }, /* from http://cr.yp.to/mac/poly1305-20050329.pdf */ { GCRY_MAC_POLY1305, "\xf3\xf6", "\x85\x1f\xc4\x0c\x34\x67\xac\x0b\xe0\x5c\xc2\x04\x04\xf3\xf7\x00" "\x58\x0b\x3b\x0f\x94\x47\xbb\x1e\x69\xd0\x95\xb5\x92\x8b\x6d\xbc", "\xf4\xc6\x33\xc3\x04\x4f\xc1\x45\xf8\x4f\x33\x5c\xb8\x19\x53\xde", NULL, 0, 32 }, { GCRY_MAC_POLY1305, "", "\xa0\xf3\x08\x00\x00\xf4\x64\x00\xd0\xc7\xe9\x07\x6c\x83\x44\x03" "\xdd\x3f\xab\x22\x51\xf1\x1a\xc7\x59\xf0\x88\x71\x29\xcc\x2e\xe7", "\xdd\x3f\xab\x22\x51\xf1\x1a\xc7\x59\xf0\x88\x71\x29\xcc\x2e\xe7", NULL, 0, 32 }, { GCRY_MAC_POLY1305, "\x66\x3c\xea\x19\x0f\xfb\x83\xd8\x95\x93\xf3\xf4\x76\xb6\xbc\x24" "\xd7\xe6\x79\x10\x7e\xa2\x6a\xdb\x8c\xaf\x66\x52\xd0\x65\x61\x36", "\x48\x44\x3d\x0b\xb0\xd2\x11\x09\xc8\x9a\x10\x0b\x5c\xe2\xc2\x08" "\x83\x14\x9c\x69\xb5\x61\xdd\x88\x29\x8a\x17\x98\xb1\x07\x16\xef", "\x0e\xe1\xc1\x6b\xb7\x3f\x0f\x4f\xd1\x98\x81\x75\x3c\x01\xcd\xbe", NULL, 0, 32 }, { GCRY_MAC_POLY1305, "\xab\x08\x12\x72\x4a\x7f\x1e\x34\x27\x42\xcb\xed\x37\x4d\x94\xd1" "\x36\xc6\xb8\x79\x5d\x45\xb3\x81\x98\x30\xf2\xc0\x44\x91\xfa\xf0" "\x99\x0c\x62\xe4\x8b\x80\x18\xb2\xc3\xe4\xa0\xfa\x31\x34\xcb\x67" "\xfa\x83\xe1\x58\xc9\x94\xd9\x61\xc4\xcb\x21\x09\x5c\x1b\xf9", "\x12\x97\x6a\x08\xc4\x42\x6d\x0c\xe8\xa8\x24\x07\xc4\xf4\x82\x07" "\x80\xf8\xc2\x0a\xa7\x12\x02\xd1\xe2\x91\x79\xcb\xcb\x55\x5a\x57", "\x51\x54\xad\x0d\x2c\xb2\x6e\x01\x27\x4f\xc5\x11\x48\x49\x1f\x1b" }, { GCRY_MAC_POLY1305, "?", "????????????????????????????????", "\xc3\x88\xce\x8a\x52\xd6\xe7\x21\x86\xfa\xaa\x5d\x2d\x16\xf9\xa3" }, /* from http://cr.yp.to/mac/poly1305-20050329.pdf */ { GCRY_MAC_POLY1305_AES, "\xf3\xf6", "\xec\x07\x4c\x83\x55\x80\x74\x17\x01\x42\x5b\x62\x32\x35\xad\xd6" "\x85\x1f\xc4\x0c\x34\x67\xac\x0b\xe0\x5c\xc2\x04\x04\xf3\xf7\x00", "\xf4\xc6\x33\xc3\x04\x4f\xc1\x45\xf8\x4f\x33\x5c\xb8\x19\x53\xde", "\xfb\x44\x73\x50\xc4\xe8\x68\xc5\x2a\xc3\x27\x5c\xf9\xd4\x32\x7e", 0, 32 }, { GCRY_MAC_POLY1305_AES, "", "\x75\xde\xaa\x25\xc0\x9f\x20\x8e\x1d\xc4\xce\x6b\x5c\xad\x3f\xbf" "\xa0\xf3\x08\x00\x00\xf4\x64\x00\xd0\xc7\xe9\x07\x6c\x83\x44\x03", "\xdd\x3f\xab\x22\x51\xf1\x1a\xc7\x59\xf0\x88\x71\x29\xcc\x2e\xe7", "\x61\xee\x09\x21\x8d\x29\xb0\xaa\xed\x7e\x15\x4a\x2c\x55\x09\xcc", 0, 32 }, { GCRY_MAC_POLY1305_AES, "\x66\x3c\xea\x19\x0f\xfb\x83\xd8\x95\x93\xf3\xf4\x76\xb6\xbc\x24" "\xd7\xe6\x79\x10\x7e\xa2\x6a\xdb\x8c\xaf\x66\x52\xd0\x65\x61\x36", "\x6a\xcb\x5f\x61\xa7\x17\x6d\xd3\x20\xc5\xc1\xeb\x2e\xdc\xdc\x74" "\x48\x44\x3d\x0b\xb0\xd2\x11\x09\xc8\x9a\x10\x0b\x5c\xe2\xc2\x08", "\x0e\xe1\xc1\x6b\xb7\x3f\x0f\x4f\xd1\x98\x81\x75\x3c\x01\xcd\xbe", "\xae\x21\x2a\x55\x39\x97\x29\x59\x5d\xea\x45\x8b\xc6\x21\xff\x0e", 0, 32 }, { GCRY_MAC_POLY1305_AES, "\xab\x08\x12\x72\x4a\x7f\x1e\x34\x27\x42\xcb\xed\x37\x4d\x94\xd1" "\x36\xc6\xb8\x79\x5d\x45\xb3\x81\x98\x30\xf2\xc0\x44\x91\xfa\xf0" "\x99\x0c\x62\xe4\x8b\x80\x18\xb2\xc3\xe4\xa0\xfa\x31\x34\xcb\x67" "\xfa\x83\xe1\x58\xc9\x94\xd9\x61\xc4\xcb\x21\x09\x5c\x1b\xf9", "\xe1\xa5\x66\x8a\x4d\x5b\x66\xa5\xf6\x8c\xc5\x42\x4e\xd5\x98\x2d" "\x12\x97\x6a\x08\xc4\x42\x6d\x0c\xe8\xa8\x24\x07\xc4\xf4\x82\x07", "\x51\x54\xad\x0d\x2c\xb2\x6e\x01\x27\x4f\xc5\x11\x48\x49\x1f\x1b", "\x9a\xe8\x31\xe7\x43\x97\x8d\x3a\x23\x52\x7c\x71\x28\x14\x9e\x3a", 0, 32 }, { GCRY_MAC_POLY1305_AES, "?", "????????????????????????????????", "\x9d\xeb\xb0\xcd\x24\x90\xd3\x9b\x47\x78\x37\x0a\x81\xf2\x83\x2a", "\x61\xee\x09\x21\x8d\x29\xb0\xaa\xed\x7e\x15\x4a\x2c\x55\x09\xcc", 0, 32 }, { 0 }, }; int i; if (verbose) fprintf (stderr, "Starting MAC checks.\n"); for (i = 0; algos[i].algo; i++) { size_t klen, dlen; if (gcry_mac_test_algo (algos[i].algo)) { show_mac_not_available (algos[i].algo); continue; } if (gcry_mac_test_algo (algos[i].algo) && in_fips_mode) { if (verbose) fprintf (stderr, " algorithm %d not available in fips mode\n", algos[i].algo); continue; } if (verbose) fprintf (stderr, " checking %s [%i] for %d byte key and %d byte data\n", gcry_mac_algo_name (algos[i].algo), algos[i].algo, (int)strlen(algos[i].key), (!strcmp(algos[i].data, "!") || !strcmp(algos[i].data, "?")) ? 1000000 : (int)strlen(algos[i].data)); klen = algos[i].klen ? algos[i].klen : strlen(algos[i].key); dlen = algos[i].dlen ? algos[i].dlen : strlen (algos[i].data); check_one_mac (algos[i].algo, algos[i].data, dlen, algos[i].key, klen, algos[i].iv, algos[i].iv ? strlen(algos[i].iv) : 0, algos[i].expect, 0); check_one_mac (algos[i].algo, algos[i].data, dlen, algos[i].key, klen, algos[i].iv, algos[i].iv ? strlen(algos[i].iv) : 0, algos[i].expect, 1); } if (verbose) fprintf (stderr, "Completed MAC checks.\n"); } /* Check that the signature SIG matches the hash HASH. PKEY is the public key used for the verification. BADHASH is a hash value which should result in a bad signature status. */ static void verify_one_signature (gcry_sexp_t pkey, gcry_sexp_t hash, gcry_sexp_t badhash, gcry_sexp_t sig) { gcry_error_t rc; rc = gcry_pk_verify (sig, hash, pkey); if (rc) fail ("gcry_pk_verify failed: %s\n", gpg_strerror (rc)); rc = gcry_pk_verify (sig, badhash, pkey); if (gcry_err_code (rc) != GPG_ERR_BAD_SIGNATURE) fail ("gcry_pk_verify failed to detect a bad signature: %s\n", gpg_strerror (rc)); } /* Test the public key sign function using the private ket SKEY. PKEY is used for verification. */ static void check_pubkey_sign (int n, gcry_sexp_t skey, gcry_sexp_t pkey, int algo) { gcry_error_t rc; gcry_sexp_t sig, badhash, hash; int dataidx; static const char baddata[] = "(data\n (flags pkcs1)\n" " (hash sha1 #11223344556677889900AABBCCDDEEFF10203041#))\n"; static const struct { const char *data; int algo; int expected_rc; } datas[] = { { "(data\n (flags pkcs1)\n" " (hash sha1 #11223344556677889900AABBCCDDEEFF10203040#))\n", GCRY_PK_RSA, 0 }, { "(data\n (flags pkcs1-raw)\n" " (hash sha1 #11223344556677889900AABBCCDDEEFF10203040#))\n", GCRY_PK_RSA, GPG_ERR_CONFLICT }, { "(data\n (flags oaep)\n" " (hash sha1 #11223344556677889900AABBCCDDEEFF10203040#))\n", 0, GPG_ERR_CONFLICT }, /* This test is to see whether hash algorithms not hard wired in pubkey.c are detected: */ { "(data\n (flags pkcs1)\n" " (hash oid.1.3.14.3.2.29 " " #11223344556677889900AABBCCDDEEFF10203040#))\n", GCRY_PK_RSA, 0 }, { "(data\n (flags )\n" " (hash sha1 #11223344556677889900AABBCCDDEEFF10203040#))\n", 0, GPG_ERR_CONFLICT }, { "(data\n (flags pkcs1)\n" " (hash foo #11223344556677889900AABBCCDDEEFF10203040#))\n", GCRY_PK_RSA, GPG_ERR_DIGEST_ALGO }, { "(data\n (flags )\n" " (value #11223344556677889900AA#))\n", 0, 0 }, { "(data\n (flags )\n" " (value #0090223344556677889900AA#))\n", 0, 0 }, { "(data\n (flags raw)\n" " (value #11223344556677889900AA#))\n", 0, 0 }, { "(data\n (flags pkcs1)\n" " (value #11223344556677889900AA#))\n", GCRY_PK_RSA, GPG_ERR_CONFLICT }, { "(data\n (flags pkcs1-raw)\n" " (value #11223344556677889900AA#))\n", GCRY_PK_RSA, 0 }, { "(data\n (flags raw foo)\n" " (value #11223344556677889900AA#))\n", 0, GPG_ERR_INV_FLAG }, { "(data\n (flags pss)\n" " (hash sha1 #11223344556677889900AABBCCDDEEFF10203040#))\n", GCRY_PK_RSA, 0 }, { "(data\n (flags pss)\n" " (hash sha1 #11223344556677889900AABBCCDDEEFF10203040#)\n" " (random-override #4253647587980912233445566778899019283747#))\n", GCRY_PK_RSA, 0 }, { NULL } }; rc = gcry_sexp_sscan (&badhash, NULL, baddata, strlen (baddata)); if (rc) die ("converting data failed: %s\n", gpg_strerror (rc)); for (dataidx = 0; datas[dataidx].data; dataidx++) { if (datas[dataidx].algo && datas[dataidx].algo != algo) continue; if (verbose) fprintf (stderr, " test %d, signature test %d (%s)\n", n, dataidx, gcry_pk_algo_name (algo)); rc = gcry_sexp_sscan (&hash, NULL, datas[dataidx].data, strlen (datas[dataidx].data)); if (rc) die ("converting data failed: %s\n", gpg_strerror (rc)); rc = gcry_pk_sign (&sig, hash, skey); if (gcry_err_code (rc) != datas[dataidx].expected_rc) fail ("gcry_pk_sign failed: %s\n", gpg_strerror (rc)); if (!rc) verify_one_signature (pkey, hash, badhash, sig); gcry_sexp_release (sig); sig = NULL; gcry_sexp_release (hash); hash = NULL; } gcry_sexp_release (badhash); } /* Test the public key sign function using the private ket SKEY. PKEY is used for verification. This variant is only used for ECDSA. */ static void check_pubkey_sign_ecdsa (int n, gcry_sexp_t skey, gcry_sexp_t pkey) { gcry_error_t rc; gcry_sexp_t sig, badhash, hash; unsigned int nbits; int dataidx; static const struct { unsigned int nbits; const char *data; int expected_rc; const char *baddata; int dummy; } datas[] = { { 192, "(data (flags raw)\n" " (value #00112233445566778899AABBCCDDEEFF0001020304050607#))", 0, "(data (flags raw)\n" " (value #80112233445566778899AABBCCDDEEFF0001020304050607#))", 0 }, { 256, "(data (flags raw)\n" " (value #00112233445566778899AABBCCDDEEFF" /* */ "000102030405060708090A0B0C0D0E0F#))", 0, "(data (flags raw)\n" " (value #80112233445566778899AABBCCDDEEFF" /* */ "000102030405060708090A0B0C0D0E0F#))", 0 }, { 256, "(data (flags raw)\n" " (hash sha256 #00112233445566778899AABBCCDDEEFF" /* */ "000102030405060708090A0B0C0D0E0F#))", 0, "(data (flags raw)\n" " (hash sha256 #80112233445566778899AABBCCDDEEFF" /* */ "000102030405060708090A0B0C0D0E0F#))", 0 }, { 256, "(data (flags gost)\n" " (value #00112233445566778899AABBCCDDEEFF" /* */ "000102030405060708090A0B0C0D0E0F#))", 0, "(data (flags gost)\n" " (value #80112233445566778899AABBCCDDEEFF" /* */ "000102030405060708090A0B0C0D0E0F#))", 0 }, { 512, "(data (flags gost)\n" " (value #00112233445566778899AABBCCDDEEFF" /* */ "000102030405060708090A0B0C0D0E0F" /* */ "000102030405060708090A0B0C0D0E0F" /* */ "000102030405060708090A0B0C0D0E0F#))", 0, "(data (flags gost)\n" " (value #80112233445566778899AABBCCDDEEFF" /* */ "000102030405060708090A0B0C0D0E0F" /* */ "000102030405060708090A0B0C0D0E0F" /* */ "000102030405060708090A0B0C0D0E0F#))", 0 }, { 0, NULL } }; nbits = gcry_pk_get_nbits (skey); for (dataidx = 0; datas[dataidx].data; dataidx++) { if (datas[dataidx].nbits != nbits) continue; if (verbose) fprintf (stderr, " test %d, signature test %d (%u bit ecdsa)\n", n, dataidx, nbits); rc = gcry_sexp_sscan (&hash, NULL, datas[dataidx].data, strlen (datas[dataidx].data)); if (rc) die ("converting data failed: %s\n", gpg_strerror (rc)); rc = gcry_sexp_sscan (&badhash, NULL, datas[dataidx].baddata, strlen (datas[dataidx].baddata)); if (rc) die ("converting data failed: %s\n", gpg_strerror (rc)); rc = gcry_pk_sign (&sig, hash, skey); if (gcry_err_code (rc) != datas[dataidx].expected_rc) fail ("gcry_pk_sign failed: %s\n", gpg_strerror (rc)); if (!rc && verbose > 1) show_sexp ("ECDSA signature:\n", sig); if (!rc) verify_one_signature (pkey, hash, badhash, sig); gcry_sexp_release (sig); sig = NULL; gcry_sexp_release (badhash); badhash = NULL; gcry_sexp_release (hash); hash = NULL; } } static void check_pubkey_crypt (int n, gcry_sexp_t skey, gcry_sexp_t pkey, int algo) { gcry_error_t rc; gcry_sexp_t plain = NULL; gcry_sexp_t ciph = NULL; gcry_sexp_t data = NULL; int dataidx; static const struct { int algo; /* If not 0 run test only if ALGO matches. */ const char *data; const char *hint; int unpadded; int encrypt_expected_rc; int decrypt_expected_rc; int special; } datas[] = { { GCRY_PK_RSA, "(data\n (flags pkcs1)\n" " (value #11223344556677889900AA#))\n", NULL, 0, 0, 0 }, { GCRY_PK_RSA, "(data\n (flags pkcs1)\n" " (value #11223344556677889900AA#))\n", "(flags pkcs1)", 1, 0, 0 }, { GCRY_PK_RSA, "(data\n (flags oaep)\n" " (value #11223344556677889900AA#))\n", "(flags oaep)", 1, 0, 0 }, { GCRY_PK_RSA, "(data\n (flags oaep)\n (hash-algo sha1)\n" " (value #11223344556677889900AA#))\n", "(flags oaep)(hash-algo sha1)", 1, 0, 0 }, { GCRY_PK_RSA, "(data\n (flags oaep)\n (hash-algo sha1)\n (label \"test\")\n" " (value #11223344556677889900AA#))\n", "(flags oaep)(hash-algo sha1)(label \"test\")", 1, 0, 0 }, { GCRY_PK_RSA, "(data\n (flags oaep)\n (hash-algo sha1)\n (label \"test\")\n" " (value #11223344556677889900AA#)\n" " (random-override #4253647587980912233445566778899019283747#))\n", "(flags oaep)(hash-algo sha1)(label \"test\")", 1, 0, 0 }, { 0, "(data\n (flags )\n" " (value #11223344556677889900AA#))\n", NULL, 1, 0, 0 }, { 0, "(data\n (flags )\n" " (value #0090223344556677889900AA#))\n", NULL, 1, 0, 0 }, { 0, "(data\n (flags raw)\n" " (value #11223344556677889900AA#))\n", NULL, 1, 0, 0 }, { GCRY_PK_RSA, "(data\n (flags pkcs1)\n" " (hash sha1 #11223344556677889900AABBCCDDEEFF10203040#))\n", NULL, 0, GPG_ERR_CONFLICT, 0}, { 0, "(data\n (flags raw foo)\n" " (hash sha1 #11223344556677889900AABBCCDDEEFF10203040#))\n", NULL, 0, GPG_ERR_INV_FLAG, 0}, { 0, "(data\n (flags raw)\n" " (value #11223344556677889900AA#))\n", "(flags oaep)", 1, 0, GPG_ERR_ENCODING_PROBLEM, 1 }, { GCRY_PK_RSA, "(data\n (flags oaep)\n" " (value #11223344556677889900AA#))\n", "(flags pkcs1)", 1, 0, GPG_ERR_ENCODING_PROBLEM, 1 }, { 0, "(data\n (flags pss)\n" " (value #11223344556677889900AA#))\n", NULL, 0, GPG_ERR_CONFLICT }, { 0, NULL } }; (void)n; for (dataidx = 0; datas[dataidx].data; dataidx++) { if (datas[dataidx].algo && datas[dataidx].algo != algo) continue; if (verbose) fprintf (stderr, " encryption/decryption test %d (algo %d)\n", dataidx, algo); rc = gcry_sexp_sscan (&data, NULL, datas[dataidx].data, strlen (datas[dataidx].data)); if (rc) die ("converting data failed: %s\n", gpg_strerror (rc)); rc = gcry_pk_encrypt (&ciph, data, pkey); if (gcry_err_code (rc) != datas[dataidx].encrypt_expected_rc) fail ("gcry_pk_encrypt failed: %s\n", gpg_strerror (rc)); if (!rc) { int expect_mismatch = 0; /* Insert decoding hint to CIPH. */ if (datas[dataidx].hint) { size_t hint_len, len; char *hint, *buf; gcry_sexp_t list; /* Convert decoding hint into canonical sexp. */ hint_len = gcry_sexp_new (&list, datas[dataidx].hint, strlen (datas[dataidx].hint), 1); hint_len = gcry_sexp_sprint (list, GCRYSEXP_FMT_CANON, NULL, 0); hint = gcry_malloc (hint_len); if (!hint) die ("can't allocate memory\n"); hint_len = gcry_sexp_sprint (list, GCRYSEXP_FMT_CANON, hint, hint_len); gcry_sexp_release (list); /* Convert CIPH into canonical sexp. */ len = gcry_sexp_sprint (ciph, GCRYSEXP_FMT_CANON, NULL, 0); buf = gcry_malloc (len + hint_len); if (!buf) die ("can't allocate memory\n"); len = gcry_sexp_sprint (ciph, GCRYSEXP_FMT_CANON, buf, len); /* assert (!strcmp (buf, "(7:enc-val", 10)); */ /* Copy decoding hint into CIPH. */ memmove (buf + 10 + hint_len, buf + 10, len - 10); memcpy (buf + 10, hint, hint_len); gcry_free (hint); gcry_sexp_new (&list, buf, len + hint_len, 1); gcry_free (buf); gcry_sexp_release (ciph); ciph = list; } rc = gcry_pk_decrypt (&plain, ciph, skey); if (!rc && datas[dataidx].special == 1) { /* It may happen that OAEP formatted data which is decrypted as pkcs#1 data returns a valid pkcs#1 frame. However, the returned value will not be identical - thus we expect a mismatch and test further on whether this mismatch actually happened. */ expect_mismatch = 1; } else if (gcry_err_code (rc) != datas[dataidx].decrypt_expected_rc) { if (verbose) { show_sexp (" data:\n", data); show_sexp (" ciph:\n", ciph); show_sexp (" key:\n", skey); } fail ("gcry_pk_decrypt failed: expected %d (%s), got %d (%s)\n", datas[dataidx].decrypt_expected_rc, gpg_strerror (datas[dataidx].decrypt_expected_rc), rc, gpg_strerror (rc)); } if (!rc && datas[dataidx].unpadded) { gcry_sexp_t p1, p2; p1 = gcry_sexp_find_token (data, "value", 0); p2 = gcry_sexp_find_token (plain, "value", 0); if (p1 && p2) { const char *s1, *s2; size_t n1, n2; s1 = gcry_sexp_nth_data (p1, 1, &n1); s2 = gcry_sexp_nth_data (p2, 1, &n2); if (n1 != n2 || memcmp (s1, s2, n1)) { if (expect_mismatch) expect_mismatch = 0; else fail ("gcry_pk_encrypt/gcry_pk_decrypt " "do not roundtrip\n"); } } if (expect_mismatch) fail ("gcry_pk_encrypt/gcry_pk_decrypt " "expected mismatch did not happen\n"); gcry_sexp_release (p1); gcry_sexp_release (p2); } } gcry_sexp_release (plain); plain = NULL; gcry_sexp_release (ciph); ciph = NULL; gcry_sexp_release (data); data = NULL; } } static void check_pubkey_grip (int n, const unsigned char *grip, gcry_sexp_t skey, gcry_sexp_t pkey, int algo) { unsigned char sgrip[20], pgrip[20]; (void)algo; if (!gcry_pk_get_keygrip (skey, sgrip)) die ("get keygrip for private RSA key failed\n"); if (!gcry_pk_get_keygrip (pkey, pgrip)) die ("[%i] get keygrip for public RSA key failed\n", n); if (memcmp (sgrip, pgrip, 20)) fail ("[%i] keygrips don't match\n", n); if (memcmp (sgrip, grip, 20)) fail ("wrong keygrip for RSA key\n"); } static void do_check_one_pubkey (int n, gcry_sexp_t skey, gcry_sexp_t pkey, const unsigned char *grip, int algo, int flags) { if (flags & FLAG_SIGN) { if (algo == GCRY_PK_ECDSA) check_pubkey_sign_ecdsa (n, skey, pkey); else check_pubkey_sign (n, skey, pkey, algo); } if (flags & FLAG_CRYPT) check_pubkey_crypt (n, skey, pkey, algo); if (grip && (flags & FLAG_GRIP)) check_pubkey_grip (n, grip, skey, pkey, algo); } static void check_one_pubkey (int n, test_spec_pubkey_t spec) { gcry_error_t err = GPG_ERR_NO_ERROR; gcry_sexp_t skey, pkey; err = gcry_sexp_sscan (&skey, NULL, spec.key.secret, strlen (spec.key.secret)); if (!err) err = gcry_sexp_sscan (&pkey, NULL, spec.key.public, strlen (spec.key.public)); if (err) die ("converting sample key failed: %s\n", gpg_strerror (err)); do_check_one_pubkey (n, skey, pkey, (const unsigned char*)spec.key.grip, spec.id, spec.flags); gcry_sexp_release (skey); gcry_sexp_release (pkey); } static void get_keys_new (gcry_sexp_t *pkey, gcry_sexp_t *skey) { gcry_sexp_t key_spec, key, pub_key, sec_key; int rc; if (verbose) fprintf (stderr, " generating RSA key:"); rc = gcry_sexp_new (&key_spec, in_fips_mode ? "(genkey (rsa (nbits 4:2048)))" : "(genkey (rsa (nbits 4:1024)(transient-key)))", 0, 1); if (rc) die ("error creating S-expression: %s\n", gpg_strerror (rc)); rc = gcry_pk_genkey (&key, key_spec); gcry_sexp_release (key_spec); if (rc) die ("error generating RSA key: %s\n", gpg_strerror (rc)); pub_key = gcry_sexp_find_token (key, "public-key", 0); if (! pub_key) die ("public part missing in key\n"); sec_key = gcry_sexp_find_token (key, "private-key", 0); if (! sec_key) die ("private part missing in key\n"); gcry_sexp_release (key); *pkey = pub_key; *skey = sec_key; } static void check_one_pubkey_new (int n) { gcry_sexp_t skey, pkey; get_keys_new (&pkey, &skey); do_check_one_pubkey (n, skey, pkey, NULL, GCRY_PK_RSA, FLAG_SIGN | FLAG_CRYPT); gcry_sexp_release (pkey); gcry_sexp_release (skey); } /* Run all tests for the public key functions. */ static void check_pubkey (void) { static const test_spec_pubkey_t pubkeys[] = { { GCRY_PK_RSA, FLAG_CRYPT | FLAG_SIGN, { "(private-key\n" " (rsa\n" " (n #00e0ce96f90b6c9e02f3922beada93fe50a875eac6bcc18bb9a9cf2e84965caa" " 2d1ff95a7f542465c6c0c19d276e4526ce048868a7a914fd343cc3a87dd74291" " ffc565506d5bbb25cbac6a0e2dd1f8bcaab0d4a29c2f37c950f363484bf269f7" " 891440464baf79827e03a36e70b814938eebdc63e964247be75dc58b014b7ea2" " 51#)\n" " (e #010001#)\n" " (d #046129F2489D71579BE0A75FE029BD6CDB574EBF57EA8A5B0FDA942CAB943B11" " 7D7BB95E5D28875E0F9FC5FCC06A72F6D502464DABDED78EF6B716177B83D5BD" " C543DC5D3FED932E59F5897E92E6F58A0F33424106A3B6FA2CBF877510E4AC21" " C3EE47851E97D12996222AC3566D4CCB0B83D164074ABF7DE655FC2446DA1781" " #)\n" " (p #00e861b700e17e8afe6837e7512e35b6ca11d0ae47d8b85161c67baf64377213" " fe52d772f2035b3ca830af41d8a4120e1c1c70d12cc22f00d28d31dd48a8d424" " f1#)\n" " (q #00f7a7ca5367c661f8e62df34f0d05c10c88e5492348dd7bddc942c9a8f369f9" " 35a07785d2db805215ed786e4285df1658eed3ce84f469b81b50d358407b4ad3" " 61#)\n" " (u #304559a9ead56d2309d203811a641bb1a09626bc8eb36fffa23c968ec5bd891e" " ebbafc73ae666e01ba7c8990bae06cc2bbe10b75e69fcacb353a6473079d8e9b" " #)))\n", "(public-key\n" " (rsa\n" " (n #00e0ce96f90b6c9e02f3922beada93fe50a875eac6bcc18bb9a9cf2e84965caa" " 2d1ff95a7f542465c6c0c19d276e4526ce048868a7a914fd343cc3a87dd74291" " ffc565506d5bbb25cbac6a0e2dd1f8bcaab0d4a29c2f37c950f363484bf269f7" " 891440464baf79827e03a36e70b814938eebdc63e964247be75dc58b014b7ea2" " 51#)\n" " (e #010001#)))\n", "\x32\x10\x0c\x27\x17\x3e\xf6\xe9\xc4\xe9" "\xa2\x5d\x3d\x69\xf8\x6d\x37\xa4\xf9\x39"} }, { GCRY_PK_DSA, FLAG_SIGN, { "(private-key\n" " (DSA\n" " (p #00AD7C0025BA1A15F775F3F2D673718391D00456978D347B33D7B49E7F32EDAB" " 96273899DD8B2BB46CD6ECA263FAF04A28903503D59062A8865D2AE8ADFB5191" " CF36FFB562D0E2F5809801A1F675DAE59698A9E01EFE8D7DCFCA084F4C6F5A44" " 44D499A06FFAEA5E8EF5E01F2FD20A7B7EF3F6968AFBA1FB8D91F1559D52D877" " 7B#)\n" " (q #00EB7B5751D25EBBB7BD59D920315FD840E19AEBF9#)\n" " (g #1574363387FDFD1DDF38F4FBE135BB20C7EE4772FB94C337AF86EA8E49666503" " AE04B6BE81A2F8DD095311E0217ACA698A11E6C5D33CCDAE71498ED35D13991E" " B02F09AB40BD8F4C5ED8C75DA779D0AE104BC34C960B002377068AB4B5A1F984" " 3FBA91F537F1B7CAC4D8DD6D89B0D863AF7025D549F9C765D2FC07EE208F8D15" " #)\n" " (y #64B11EF8871BE4AB572AA810D5D3CA11A6CDBC637A8014602C72960DB135BF46" " A1816A724C34F87330FC9E187C5D66897A04535CC2AC9164A7150ABFA8179827" " 6E45831AB811EEE848EBB24D9F5F2883B6E5DDC4C659DEF944DCFD80BF4D0A20" " 42CAA7DC289F0C5A9D155F02D3D551DB741A81695B74D4C8F477F9C7838EB0FB" " #)\n" " (x #11D54E4ADBD3034160F2CED4B7CD292A4EBF3EC0#)))\n", "(public-key\n" " (DSA\n" " (p #00AD7C0025BA1A15F775F3F2D673718391D00456978D347B33D7B49E7F32EDAB" " 96273899DD8B2BB46CD6ECA263FAF04A28903503D59062A8865D2AE8ADFB5191" " CF36FFB562D0E2F5809801A1F675DAE59698A9E01EFE8D7DCFCA084F4C6F5A44" " 44D499A06FFAEA5E8EF5E01F2FD20A7B7EF3F6968AFBA1FB8D91F1559D52D877" " 7B#)\n" " (q #00EB7B5751D25EBBB7BD59D920315FD840E19AEBF9#)\n" " (g #1574363387FDFD1DDF38F4FBE135BB20C7EE4772FB94C337AF86EA8E49666503" " AE04B6BE81A2F8DD095311E0217ACA698A11E6C5D33CCDAE71498ED35D13991E" " B02F09AB40BD8F4C5ED8C75DA779D0AE104BC34C960B002377068AB4B5A1F984" " 3FBA91F537F1B7CAC4D8DD6D89B0D863AF7025D549F9C765D2FC07EE208F8D15" " #)\n" " (y #64B11EF8871BE4AB572AA810D5D3CA11A6CDBC637A8014602C72960DB135BF46" " A1816A724C34F87330FC9E187C5D66897A04535CC2AC9164A7150ABFA8179827" " 6E45831AB811EEE848EBB24D9F5F2883B6E5DDC4C659DEF944DCFD80BF4D0A20" " 42CAA7DC289F0C5A9D155F02D3D551DB741A81695B74D4C8F477F9C7838EB0FB" " #)))\n", "\xc6\x39\x83\x1a\x43\xe5\x05\x5d\xc6\xd8" "\x4a\xa6\xf9\xeb\x23\xbf\xa9\x12\x2d\x5b" } }, { GCRY_PK_ELG, FLAG_SIGN | FLAG_CRYPT, { "(private-key\n" " (ELG\n" " (p #00B93B93386375F06C2D38560F3B9C6D6D7B7506B20C1773F73F8DE56E6CD65D" " F48DFAAA1E93F57A2789B168362A0F787320499F0B2461D3A4268757A7B27517" " B7D203654A0CD484DEC6AF60C85FEB84AAC382EAF2047061FE5DAB81A20A0797" " 6E87359889BAE3B3600ED718BE61D4FC993CC8098A703DD0DC942E965E8F18D2" " A7#)\n" " (g #05#)\n" " (y #72DAB3E83C9F7DD9A931FDECDC6522C0D36A6F0A0FEC955C5AC3C09175BBFF2B" " E588DB593DC2E420201BEB3AC17536918417C497AC0F8657855380C1FCF11C5B" " D20DB4BEE9BDF916648DE6D6E419FA446C513AAB81C30CB7B34D6007637BE675" " 56CE6473E9F9EE9B9FADD275D001563336F2186F424DEC6199A0F758F6A00FF4" " #)\n" " (x #03C28900087B38DABF4A0AB98ACEA39BB674D6557096C01D72E31C16BDD32214" " #)))\n", "(public-key\n" " (ELG\n" " (p #00B93B93386375F06C2D38560F3B9C6D6D7B7506B20C1773F73F8DE56E6CD65D" " F48DFAAA1E93F57A2789B168362A0F787320499F0B2461D3A4268757A7B27517" " B7D203654A0CD484DEC6AF60C85FEB84AAC382EAF2047061FE5DAB81A20A0797" " 6E87359889BAE3B3600ED718BE61D4FC993CC8098A703DD0DC942E965E8F18D2" " A7#)\n" " (g #05#)\n" " (y #72DAB3E83C9F7DD9A931FDECDC6522C0D36A6F0A0FEC955C5AC3C09175BBFF2B" " E588DB593DC2E420201BEB3AC17536918417C497AC0F8657855380C1FCF11C5B" " D20DB4BEE9BDF916648DE6D6E419FA446C513AAB81C30CB7B34D6007637BE675" " 56CE6473E9F9EE9B9FADD275D001563336F2186F424DEC6199A0F758F6A00FF4" " #)))\n", "\xa7\x99\x61\xeb\x88\x83\xd2\xf4\x05\xc8" "\x4f\xba\x06\xf8\x78\x09\xbc\x1e\x20\xe5" } }, { /* ECDSA test. */ GCRY_PK_ECDSA, FLAG_SIGN, { "(private-key\n" " (ecdsa\n" " (curve nistp192)\n" " (q #048532093BA023F4D55C0424FA3AF9367E05F309DC34CDC3FE" " C13CA9E617C6C8487BFF6A726E3C4F277913D97117939966#)\n" " (d #00D4EF27E32F8AD8E2A1C6DDEBB1D235A69E3CEF9BCE90273D#)))\n", "(public-key\n" " (ecdsa\n" " (curve nistp192)\n" " (q #048532093BA023F4D55C0424FA3AF9367E05F309DC34CDC3FE" " C13CA9E617C6C8487BFF6A726E3C4F277913D97117939966#)))\n", "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" } }, { /* ECDSA test with the public key algorithm given as "ecc". */ GCRY_PK_ECDSA, FLAG_SIGN, { "(private-key\n" " (ecdsa\n" " (curve nistp192)\n" " (q #048532093BA023F4D55C0424FA3AF9367E05F309DC34CDC3FE" " C13CA9E617C6C8487BFF6A726E3C4F277913D97117939966#)\n" " (d #00D4EF27E32F8AD8E2A1C6DDEBB1D235A69E3CEF9BCE90273D#)))\n", "(public-key\n" " (ecc\n" " (curve nistp192)\n" " (q #048532093BA023F4D55C0424FA3AF9367E05F309DC34CDC3FE" " C13CA9E617C6C8487BFF6A726E3C4F277913D97117939966#)))\n", "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" } }, { /* ECDSA test with the private key algorithm given as "ecc". */ GCRY_PK_ECDSA, FLAG_SIGN, { "(private-key\n" " (ecc\n" " (curve nistp192)\n" " (q #048532093BA023F4D55C0424FA3AF9367E05F309DC34CDC3FE" " C13CA9E617C6C8487BFF6A726E3C4F277913D97117939966#)\n" " (d #00D4EF27E32F8AD8E2A1C6DDEBB1D235A69E3CEF9BCE90273D#)))\n", "(public-key\n" " (ecdsa\n" " (curve nistp192)\n" " (q #048532093BA023F4D55C0424FA3AF9367E05F309DC34CDC3FE" " C13CA9E617C6C8487BFF6A726E3C4F277913D97117939966#)))\n", "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" } }, { /* ECDSA test with the key algorithms given as "ecc". */ GCRY_PK_ECDSA, FLAG_SIGN, { "(private-key\n" " (ecc\n" " (curve nistp192)\n" " (q #048532093BA023F4D55C0424FA3AF9367E05F309DC34CDC3FE" " C13CA9E617C6C8487BFF6A726E3C4F277913D97117939966#)\n" " (d #00D4EF27E32F8AD8E2A1C6DDEBB1D235A69E3CEF9BCE90273D#)))\n", "(public-key\n" " (ecc\n" " (curve nistp192)\n" " (q #048532093BA023F4D55C0424FA3AF9367E05F309DC34CDC3FE" " C13CA9E617C6C8487BFF6A726E3C4F277913D97117939966#)))\n", "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" } }, { /* ECDSA test 256 bit. */ GCRY_PK_ECDSA, FLAG_SIGN, { "(private-key\n" " (ecc\n" " (curve nistp256)\n" " (q #04D4F6A6738D9B8D3A7075C1E4EE95015FC0C9B7E4272D2B" " EB6644D3609FC781B71F9A8072F58CB66AE2F89BB1245187" " 3ABF7D91F9E1FBF96BF2F70E73AAC9A283#)\n" " (d #5A1EF0035118F19F3110FB81813D3547BCE1E5BCE77D1F74" " 4715E1D5BBE70378#)))\n", "(public-key\n" " (ecc\n" " (curve nistp256)\n" " (q #04D4F6A6738D9B8D3A7075C1E4EE95015FC0C9B7E4272D2B" " EB6644D3609FC781B71F9A8072F58CB66AE2F89BB1245187" " 3ABF7D91F9E1FBF96BF2F70E73AAC9A283#)))\n", "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" } }, { /* GOST R 34.10-2001/2012 test 256 bit. */ GCRY_PK_ECDSA, FLAG_SIGN, { "(private-key\n" " (ecc\n" " (curve GOST2001-test)\n" " (q #047F2B49E270DB6D90D8595BEC458B50C58585BA1D4E9B78" " 8F6689DBD8E56FD80B26F1B489D6701DD185C8413A977B3C" " BBAF64D1C593D26627DFFB101A87FF77DA#)\n" " (d #7A929ADE789BB9BE10ED359DD39A72C11B60961F49397EEE" " 1D19CE9891EC3B28#)))\n", "(public-key\n" " (ecc\n" " (curve GOST2001-test)\n" " (q #047F2B49E270DB6D90D8595BEC458B50C58585BA1D4E9B78" " 8F6689DBD8E56FD80B26F1B489D6701DD185C8413A977B3C" " BBAF64D1C593D26627DFFB101A87FF77DA#)))\n", "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" } }, { /* GOST R 34.10-2012 test 512 bit. */ GCRY_PK_ECDSA, FLAG_SIGN, { "(private-key\n" " (ecc\n" " (curve GOST2012-test)\n" " (q #04115DC5BC96760C7B48598D8AB9E740D4C4A85A65BE33C1" " 815B5C320C854621DD5A515856D13314AF69BC5B924C8B" " 4DDFF75C45415C1D9DD9DD33612CD530EFE137C7C90CD4" " 0B0F5621DC3AC1B751CFA0E2634FA0503B3D52639F5D7F" " B72AFD61EA199441D943FFE7F0C70A2759A3CDB84C114E" " 1F9339FDF27F35ECA93677BEEC#)\n" " (d #0BA6048AADAE241BA40936D47756D7C93091A0E851466970" " 0EE7508E508B102072E8123B2200A0563322DAD2827E2714" " A2636B7BFD18AADFC62967821FA18DD4#)))\n", "(public-key\n" " (ecc\n" " (curve GOST2012-test)\n" " (q #04115DC5BC96760C7B48598D8AB9E740D4C4A85A65BE33C1" " 815B5C320C854621DD5A515856D13314AF69BC5B924C8B" " 4DDFF75C45415C1D9DD9DD33612CD530EFE137C7C90CD4" " 0B0F5621DC3AC1B751CFA0E2634FA0503B3D52639F5D7F" " B72AFD61EA199441D943FFE7F0C70A2759A3CDB84C114E" " 1F9339FDF27F35ECA93677BEEC#)))\n" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" } }, { /* secp256k1 test 256 bit. */ GCRY_PK_ECDSA, FLAG_SIGN, { "(private-key\n" " (ecc\n" " (curve secp256k1)\n" " (q #0439A36013301597DAEF41FBE593A02CC513D0B55527EC2D" " F1050E2E8FF49C85C23CBE7DED0E7CE6A594896B8F62888F" " DBC5C8821305E2EA42BF01E37300116281#)\n" " (d #E8F32E723DECF4051AEFAC8E2C93C9C5B214313817CDB01A" " 1494B917C8436B35#)))\n", "(public-key\n" " (ecc\n" " (curve secp256k1)\n" " (q #0439A36013301597DAEF41FBE593A02CC513D0B55527EC2D" " F1050E2E8FF49C85C23CBE7DED0E7CE6A594896B8F62888F" " DBC5C8821305E2EA42BF01E37300116281#)))\n" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" } } }; int i; if (verbose) fprintf (stderr, "Starting public key checks.\n"); for (i = 0; i < sizeof (pubkeys) / sizeof (*pubkeys); i++) if (pubkeys[i].id) { if (gcry_pk_test_algo (pubkeys[i].id) && in_fips_mode) { if (verbose) fprintf (stderr, " algorithm %d not available in fips mode\n", pubkeys[i].id); continue; } check_one_pubkey (i, pubkeys[i]); } if (verbose) fprintf (stderr, "Completed public key checks.\n"); if (verbose) fprintf (stderr, "Starting additional public key checks.\n"); for (i = 0; i < sizeof (pubkeys) / sizeof (*pubkeys); i++) if (pubkeys[i].id) { if (gcry_pk_test_algo (pubkeys[i].id) && in_fips_mode) { if (verbose) fprintf (stderr, " algorithm %d not available in fips mode\n", pubkeys[i].id); continue; } check_one_pubkey_new (i); } if (verbose) fprintf (stderr, "Completed additional public key checks.\n"); } int main (int argc, char **argv) { gpg_error_t err; int last_argc = -1; int use_fips = 0; int selftest_only = 0; int pubkey_only = 0; int cipher_modes_only = 0; int loop = 0; unsigned int loopcount = 0; if (argc) { argc--; argv++; } while (argc && last_argc != argc ) { last_argc = argc; if (!strcmp (*argv, "--")) { argc--; argv++; break; } else if (!strcmp (*argv, "--verbose")) { verbose++; argc--; argv++; } else if (!strcmp (*argv, "--debug")) { verbose = debug = 1; argc--; argv++; } else if (!strcmp (*argv, "--fips")) { use_fips = 1; argc--; argv++; } else if (!strcmp (*argv, "--selftest")) { selftest_only = 1; verbose += 2; argc--; argv++; } else if (!strcmp (*argv, "--pubkey")) { pubkey_only = 1; argc--; argv++; } else if (!strcmp (*argv, "--cipher-modes")) { cipher_modes_only = 1; argc--; argv++; } else if (!strcmp (*argv, "--die")) { die_on_error = 1; argc--; argv++; } else if (!strcmp (*argv, "--loop")) { argc--; argv++; if (argc) { loop = atoi (*argv); argc--; argv++; } } else if (!strcmp (*argv, "--disable-hwf")) { argc--; argv++; if (argc) { if (gcry_control (GCRYCTL_DISABLE_HWF, *argv, NULL)) fprintf (stderr, PGM ": unknown hardware feature `%s' - option ignored\n", *argv); argc--; argv++; } } } xgcry_control (GCRYCTL_SET_VERBOSITY, (int)verbose); if (use_fips) xgcry_control (GCRYCTL_FORCE_FIPS_MODE, 0); /* Check that we test exactly our version - including the patchlevel. */ if (strcmp (GCRYPT_VERSION, gcry_check_version (NULL))) die ("version mismatch; pgm=%s, library=%s\n", GCRYPT_VERSION,gcry_check_version (NULL)); if ( gcry_fips_mode_active () ) in_fips_mode = 1; if (!in_fips_mode) xgcry_control (GCRYCTL_DISABLE_SECMEM, 0); if (verbose) gcry_set_progress_handler (progress_handler, NULL); xgcry_control (GCRYCTL_INITIALIZATION_FINISHED, 0); if (debug) xgcry_control (GCRYCTL_SET_DEBUG_FLAGS, 1u, 0); /* No valuable keys are create, so we can speed up our RNG. */ xgcry_control (GCRYCTL_ENABLE_QUICK_RANDOM, 0); do { if (pubkey_only) check_pubkey (); else if (cipher_modes_only) { check_ciphers (); check_cipher_modes (); } else if (!selftest_only) { check_ciphers (); check_cipher_modes (); check_bulk_cipher_modes (); check_digests (); check_hmac (); check_mac (); check_pubkey (); } loopcount++; if (loop) { fprintf (stderr, "Test iteration %u completed.\n", loopcount); if (loop != -1) loop--; } } while (loop); if (in_fips_mode && !selftest_only) { /* If we are in fips mode do some more tests. */ gcry_md_hd_t md; /* First trigger a self-test. */ xgcry_control (GCRYCTL_FORCE_FIPS_MODE, 0); if (!gcry_control (GCRYCTL_OPERATIONAL_P, 0)) fail ("not in operational state after self-test\n"); /* Get us into the error state. */ err = gcry_md_open (&md, GCRY_MD_SHA1, 0); if (err) fail ("failed to open SHA-1 hash context: %s\n", gpg_strerror (err)); else { err = gcry_md_enable (md, GCRY_MD_SHA256); if (err) fail ("failed to add SHA-256 hash context: %s\n", gpg_strerror (err)); else { /* gcry_md_get_algo is only defined for a context with just one digest algorithm. With our setup it should put the oibrary intoerror state. */ fputs ("Note: Two lines with error messages follow " "- this is expected\n", stderr); gcry_md_get_algo (md); gcry_md_close (md); if (gcry_control (GCRYCTL_OPERATIONAL_P, 0)) fail ("expected error state but still in operational state\n"); else { /* Now run a self-test and to get back into operational state. */ xgcry_control (GCRYCTL_FORCE_FIPS_MODE, 0); if (!gcry_control (GCRYCTL_OPERATIONAL_P, 0)) fail ("did not reach operational after error " "and self-test\n"); } } } } else { /* If in standard mode, run selftests. */ if (gcry_control (GCRYCTL_SELFTEST, 0)) fail ("running self-test failed\n"); } if (verbose) fprintf (stderr, "\nAll tests completed. Errors: %i\n", error_count); if (in_fips_mode && !gcry_fips_mode_active ()) fprintf (stderr, "FIPS mode is not anymore active\n"); return error_count ? 1 : 0; } diff --git a/tests/bench-slope.c b/tests/bench-slope.c index 75e6e43d..e34104f7 100644 --- a/tests/bench-slope.c +++ b/tests/bench-slope.c @@ -1,2088 +1,2138 @@ /* bench-slope.c - for libgcrypt * Copyright (C) 2013 Jussi Kivilinna * * This file is part of Libgcrypt. * * Libgcrypt is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser general Public License as * published by the Free Software Foundation; either version 2.1 of * the License, or (at your option) any later version. * * Libgcrypt is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program; if not, see . */ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include #include #ifdef _GCRYPT_IN_LIBGCRYPT # include "../src/gcrypt-int.h" # include "../compat/libcompat.h" #else # include #endif #ifndef STR #define STR(v) #v #define STR2(v) STR(v) #endif #define PGM "bench-slope" #include "t-common.h" static int verbose; static int csv_mode; static int unaligned_mode; static int num_measurement_repetitions; /* CPU Ghz value provided by user, allows constructing cycles/byte and other results. */ static double cpu_ghz = -1; /* Whether we are running as part of the regression test suite. */ static int in_regression_test; /* The name of the currently printed section. */ static char *current_section_name; /* The name of the currently printed algorithm. */ static char *current_algo_name; /* The name of the currently printed mode. */ static char *current_mode_name; /*************************************** Default parameters for measurements. */ /* Start at small buffer size, to get reasonable timer calibration for fast * implementations (AES-NI etc). Sixteen selected to support the largest block * size of current set cipher blocks. */ #define BUF_START_SIZE 16 /* From ~0 to ~4kbytes give comparable results with results from academia * (SUPERCOP). */ #define BUF_END_SIZE (BUF_START_SIZE + 4096) /* With 128 byte steps, we get (4096)/64 = 64 data points. */ #define BUF_STEP_SIZE 64 /* Number of repeated measurements at each data point. The median of these * measurements is selected as data point further analysis. */ #define NUM_MEASUREMENT_REPETITIONS 64 /**************************************************** High-resolution timers. */ /* This benchmarking module needs needs high resolution timer. */ #undef NO_GET_NSEC_TIME #if defined(_WIN32) struct nsec_time { LARGE_INTEGER perf_count; }; static void get_nsec_time (struct nsec_time *t) { BOOL ok; ok = QueryPerformanceCounter (&t->perf_count); assert (ok); } static double get_time_nsec_diff (struct nsec_time *start, struct nsec_time *end) { static double nsecs_per_count = 0.0; double nsecs; if (nsecs_per_count == 0.0) { LARGE_INTEGER perf_freq; BOOL ok; /* Get counts per second. */ ok = QueryPerformanceFrequency (&perf_freq); assert (ok); nsecs_per_count = 1.0 / perf_freq.QuadPart; nsecs_per_count *= 1000000.0 * 1000.0; /* sec => nsec */ assert (nsecs_per_count > 0.0); } nsecs = end->perf_count.QuadPart - start->perf_count.QuadPart; /* counts */ nsecs *= nsecs_per_count; /* counts * (nsecs / count) => nsecs */ return nsecs; } #elif defined(HAVE_CLOCK_GETTIME) struct nsec_time { struct timespec ts; }; static void get_nsec_time (struct nsec_time *t) { int err; err = clock_gettime (CLOCK_REALTIME, &t->ts); assert (err == 0); } static double get_time_nsec_diff (struct nsec_time *start, struct nsec_time *end) { double nsecs; nsecs = end->ts.tv_sec - start->ts.tv_sec; nsecs *= 1000000.0 * 1000.0; /* sec => nsec */ /* This way we don't have to care if tv_nsec unsigned or signed. */ if (end->ts.tv_nsec >= start->ts.tv_nsec) nsecs += end->ts.tv_nsec - start->ts.tv_nsec; else nsecs -= start->ts.tv_nsec - end->ts.tv_nsec; return nsecs; } #elif defined(HAVE_GETTIMEOFDAY) struct nsec_time { struct timeval tv; }; static void get_nsec_time (struct nsec_time *t) { int err; err = gettimeofday (&t->tv, NULL); assert (err == 0); } static double get_time_nsec_diff (struct nsec_time *start, struct nsec_time *end) { double nsecs; nsecs = end->tv.tv_sec - start->tv.tv_sec; nsecs *= 1000000; /* sec => µsec */ /* This way we don't have to care if tv_usec unsigned or signed. */ if (end->tv.tv_usec >= start->tv.tv_usec) nsecs += end->tv.tv_usec - start->tv.tv_usec; else nsecs -= start->tv.tv_usec - end->tv.tv_usec; nsecs *= 1000; /* µsec => nsec */ return nsecs; } #else #define NO_GET_NSEC_TIME 1 #endif /* If no high resolution timer found, provide dummy bench-slope. */ #ifdef NO_GET_NSEC_TIME int main (void) { /* No nsec timer => SKIP test. */ return 77; } #else /* !NO_GET_NSEC_TIME */ /********************************************** Slope benchmarking framework. */ struct bench_obj { const struct bench_ops *ops; unsigned int num_measure_repetitions; unsigned int min_bufsize; unsigned int max_bufsize; unsigned int step_size; void *priv; }; typedef int (*const bench_initialize_t) (struct bench_obj * obj); typedef void (*const bench_finalize_t) (struct bench_obj * obj); typedef void (*const bench_do_run_t) (struct bench_obj * obj, void *buffer, size_t buflen); struct bench_ops { bench_initialize_t initialize; bench_finalize_t finalize; bench_do_run_t do_run; }; double get_slope (double (*const get_x) (unsigned int idx, void *priv), void *get_x_priv, double y_points[], unsigned int npoints, double *overhead) { double sumx, sumy, sumx2, sumy2, sumxy; unsigned int i; double b, a; sumx = sumy = sumx2 = sumy2 = sumxy = 0; for (i = 0; i < npoints; i++) { double x, y; x = get_x (i, get_x_priv); /* bytes */ y = y_points[i]; /* nsecs */ sumx += x; sumy += y; sumx2 += x * x; /*sumy2 += y * y;*/ sumxy += x * y; } b = (npoints * sumxy - sumx * sumy) / (npoints * sumx2 - sumx * sumx); a = (sumy - b * sumx) / npoints; if (overhead) *overhead = a; /* nsecs */ return b; /* nsecs per byte */ } double get_bench_obj_point_x (unsigned int idx, void *priv) { struct bench_obj *obj = priv; return (double) (obj->min_bufsize + (idx * obj->step_size)); } unsigned int get_num_measurements (struct bench_obj *obj) { unsigned int buf_range = obj->max_bufsize - obj->min_bufsize; unsigned int num = buf_range / obj->step_size + 1; while (obj->min_bufsize + (num * obj->step_size) > obj->max_bufsize) num--; return num + 1; } static int double_cmp (const void *_a, const void *_b) { const double *a, *b; a = _a; b = _b; if (*a > *b) return 1; if (*a < *b) return -1; return 0; } double do_bench_obj_measurement (struct bench_obj *obj, void *buffer, size_t buflen, double *measurement_raw, unsigned int loop_iterations) { const unsigned int num_repetitions = obj->num_measure_repetitions; const bench_do_run_t do_run = obj->ops->do_run; struct nsec_time start, end; unsigned int rep, loop; double res; if (num_repetitions < 1 || loop_iterations < 1) return 0.0; for (rep = 0; rep < num_repetitions; rep++) { get_nsec_time (&start); for (loop = 0; loop < loop_iterations; loop++) do_run (obj, buffer, buflen); get_nsec_time (&end); measurement_raw[rep] = get_time_nsec_diff (&start, &end); } /* Return median of repeated measurements. */ qsort (measurement_raw, num_repetitions, sizeof (measurement_raw[0]), double_cmp); if (num_repetitions % 2 == 1) return measurement_raw[num_repetitions / 2]; res = measurement_raw[num_repetitions / 2] + measurement_raw[num_repetitions / 2 - 1]; return res / 2; } unsigned int adjust_loop_iterations_to_timer_accuracy (struct bench_obj *obj, void *buffer, double *measurement_raw) { const double increase_thres = 3.0; double tmp, nsecs; unsigned int loop_iterations; unsigned int test_bufsize; test_bufsize = obj->min_bufsize; if (test_bufsize == 0) test_bufsize += obj->step_size; loop_iterations = 0; do { /* Increase loop iterations until we get other results than zero. */ nsecs = do_bench_obj_measurement (obj, buffer, test_bufsize, measurement_raw, ++loop_iterations); } while (nsecs < 1.0 - 0.1); do { /* Increase loop iterations until we get reasonable increase for elapsed time. */ tmp = do_bench_obj_measurement (obj, buffer, test_bufsize, measurement_raw, ++loop_iterations); } while (tmp < nsecs * (increase_thres - 0.1)); return loop_iterations; } /* Benchmark and return linear regression slope in nanoseconds per byte. */ double do_slope_benchmark (struct bench_obj *obj) { unsigned int num_measurements; double *measurements = NULL; double *measurement_raw = NULL; double slope, overhead; unsigned int loop_iterations, midx, i; unsigned char *real_buffer = NULL; unsigned char *buffer; size_t cur_bufsize; int err; err = obj->ops->initialize (obj); if (err < 0) return -1; num_measurements = get_num_measurements (obj); measurements = calloc (num_measurements, sizeof (*measurements)); if (!measurements) goto err_free; measurement_raw = calloc (obj->num_measure_repetitions, sizeof (*measurement_raw)); if (!measurement_raw) goto err_free; if (num_measurements < 1 || obj->num_measure_repetitions < 1 || obj->max_bufsize < 1 || obj->min_bufsize > obj->max_bufsize) goto err_free; real_buffer = malloc (obj->max_bufsize + 128 + unaligned_mode); if (!real_buffer) goto err_free; /* Get aligned buffer */ buffer = real_buffer; buffer += 128 - ((real_buffer - (unsigned char *) 0) & (128 - 1)); if (unaligned_mode) buffer += unaligned_mode; /* Make buffer unaligned */ for (i = 0; i < obj->max_bufsize; i++) buffer[i] = 0x55 ^ (-i); /* Adjust number of loop iterations up to timer accuracy. */ loop_iterations = adjust_loop_iterations_to_timer_accuracy (obj, buffer, measurement_raw); /* Perform measurements */ for (midx = 0, cur_bufsize = obj->min_bufsize; cur_bufsize <= obj->max_bufsize; cur_bufsize += obj->step_size, midx++) { measurements[midx] = do_bench_obj_measurement (obj, buffer, cur_bufsize, measurement_raw, loop_iterations); measurements[midx] /= loop_iterations; } assert (midx == num_measurements); slope = get_slope (&get_bench_obj_point_x, obj, measurements, num_measurements, &overhead); free (measurement_raw); free (measurements); free (real_buffer); obj->ops->finalize (obj); return slope; err_free: if (measurement_raw) free (measurement_raw); if (measurements) free (measurements); if (real_buffer) free (real_buffer); obj->ops->finalize (obj); return -1; } /********************************************************** Printing results. */ static void double_to_str (char *out, size_t outlen, double value) { const char *fmt; if (value < 1.0) fmt = "%.3f"; else if (value < 100.0) fmt = "%.2f"; else fmt = "%.1f"; snprintf (out, outlen, fmt, value); } static void bench_print_result_csv (double nsecs_per_byte) { double cycles_per_byte, mbytes_per_sec; char nsecpbyte_buf[16]; char mbpsec_buf[16]; char cpbyte_buf[16]; *cpbyte_buf = 0; double_to_str (nsecpbyte_buf, sizeof (nsecpbyte_buf), nsecs_per_byte); /* If user didn't provide CPU speed, we cannot show cycles/byte results. */ if (cpu_ghz > 0.0) { cycles_per_byte = nsecs_per_byte * cpu_ghz; double_to_str (cpbyte_buf, sizeof (cpbyte_buf), cycles_per_byte); } mbytes_per_sec = (1000.0 * 1000.0 * 1000.0) / (nsecs_per_byte * 1024 * 1024); double_to_str (mbpsec_buf, sizeof (mbpsec_buf), mbytes_per_sec); /* We print two empty fields to allow for future enhancements. */ printf ("%s,%s,%s,,,%s,ns/B,%s,MiB/s,%s,c/B\n", current_section_name, current_algo_name? current_algo_name : "", current_mode_name? current_mode_name : "", nsecpbyte_buf, mbpsec_buf, cpbyte_buf); } static void bench_print_result_std (double nsecs_per_byte) { double cycles_per_byte, mbytes_per_sec; char nsecpbyte_buf[16]; char mbpsec_buf[16]; char cpbyte_buf[16]; double_to_str (nsecpbyte_buf, sizeof (nsecpbyte_buf), nsecs_per_byte); /* If user didn't provide CPU speed, we cannot show cycles/byte results. */ if (cpu_ghz > 0.0) { cycles_per_byte = nsecs_per_byte * cpu_ghz; double_to_str (cpbyte_buf, sizeof (cpbyte_buf), cycles_per_byte); } else strcpy (cpbyte_buf, "-"); mbytes_per_sec = (1000.0 * 1000.0 * 1000.0) / (nsecs_per_byte * 1024 * 1024); double_to_str (mbpsec_buf, sizeof (mbpsec_buf), mbytes_per_sec); printf ("%9s ns/B %9s MiB/s %9s c/B\n", nsecpbyte_buf, mbpsec_buf, cpbyte_buf); } static void bench_print_result (double nsecs_per_byte) { if (csv_mode) bench_print_result_csv (nsecs_per_byte); else bench_print_result_std (nsecs_per_byte); } static void bench_print_section (const char *section_name, const char *print_name) { if (csv_mode) { gcry_free (current_section_name); current_section_name = gcry_xstrdup (section_name); } else printf ("%s:\n", print_name); } static void bench_print_header (int algo_width, const char *algo_name) { if (csv_mode) { gcry_free (current_algo_name); current_algo_name = gcry_xstrdup (algo_name); } else { if (algo_width < 0) printf (" %-*s | ", -algo_width, algo_name); else printf (" %-*s | ", algo_width, algo_name); printf ("%14s %15s %13s\n", "nanosecs/byte", "mebibytes/sec", "cycles/byte"); } } static void bench_print_algo (int algo_width, const char *algo_name) { if (csv_mode) { gcry_free (current_algo_name); current_algo_name = gcry_xstrdup (algo_name); } else { if (algo_width < 0) printf (" %-*s | ", -algo_width, algo_name); else printf (" %-*s | ", algo_width, algo_name); } } static void bench_print_mode (int width, const char *mode_name) { if (csv_mode) { gcry_free (current_mode_name); current_mode_name = gcry_xstrdup (mode_name); } else { if (width < 0) printf (" %-*s | ", -width, mode_name); else printf (" %*s | ", width, mode_name); fflush (stdout); } } static void bench_print_footer (int algo_width) { if (!csv_mode) printf (" %-*s =\n", algo_width, ""); } /********************************************************* Cipher benchmarks. */ struct bench_cipher_mode { int mode; const char *name; struct bench_ops *ops; int algo; }; static int bench_encrypt_init (struct bench_obj *obj) { struct bench_cipher_mode *mode = obj->priv; gcry_cipher_hd_t hd; int err, keylen; obj->min_bufsize = BUF_START_SIZE; obj->max_bufsize = BUF_END_SIZE; obj->step_size = BUF_STEP_SIZE; obj->num_measure_repetitions = num_measurement_repetitions; err = gcry_cipher_open (&hd, mode->algo, mode->mode, 0); if (err) { fprintf (stderr, PGM ": error opening cipher `%s'\n", gcry_cipher_algo_name (mode->algo)); exit (1); } keylen = gcry_cipher_get_algo_keylen (mode->algo); if (keylen) { char key[keylen]; int i; for (i = 0; i < keylen; i++) key[i] = 0x33 ^ (11 - i); err = gcry_cipher_setkey (hd, key, keylen); if (err) { fprintf (stderr, PGM ": gcry_cipher_setkey failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } } else { fprintf (stderr, PGM ": failed to get key length for algorithm `%s'\n", gcry_cipher_algo_name (mode->algo)); gcry_cipher_close (hd); exit (1); } obj->priv = hd; return 0; } static void bench_encrypt_free (struct bench_obj *obj) { gcry_cipher_hd_t hd = obj->priv; gcry_cipher_close (hd); } static void bench_encrypt_do_bench (struct bench_obj *obj, void *buf, size_t buflen) { gcry_cipher_hd_t hd = obj->priv; int err; err = gcry_cipher_encrypt (hd, buf, buflen, buf, buflen); if (err) { fprintf (stderr, PGM ": gcry_cipher_encrypt failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } } static void bench_decrypt_do_bench (struct bench_obj *obj, void *buf, size_t buflen) { gcry_cipher_hd_t hd = obj->priv; int err; err = gcry_cipher_decrypt (hd, buf, buflen, buf, buflen); if (err) { fprintf (stderr, PGM ": gcry_cipher_encrypt failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } } static struct bench_ops encrypt_ops = { &bench_encrypt_init, &bench_encrypt_free, &bench_encrypt_do_bench }; static struct bench_ops decrypt_ops = { &bench_encrypt_init, &bench_encrypt_free, &bench_decrypt_do_bench }; static int bench_xts_encrypt_init (struct bench_obj *obj) { struct bench_cipher_mode *mode = obj->priv; gcry_cipher_hd_t hd; int err, keylen; /* For XTS, benchmark with typical data-unit size (512 byte sectors). */ obj->min_bufsize = 512; obj->max_bufsize = 16 * obj->min_bufsize; obj->step_size = obj->min_bufsize; obj->num_measure_repetitions = num_measurement_repetitions; err = gcry_cipher_open (&hd, mode->algo, mode->mode, 0); if (err) { fprintf (stderr, PGM ": error opening cipher `%s'\n", gcry_cipher_algo_name (mode->algo)); exit (1); } /* Double key-length for XTS. */ keylen = gcry_cipher_get_algo_keylen (mode->algo) * 2; if (keylen) { char key[keylen]; int i; for (i = 0; i < keylen; i++) key[i] = 0x33 ^ (11 - i); err = gcry_cipher_setkey (hd, key, keylen); if (err) { fprintf (stderr, PGM ": gcry_cipher_setkey failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } } else { fprintf (stderr, PGM ": failed to get key length for algorithm `%s'\n", gcry_cipher_algo_name (mode->algo)); gcry_cipher_close (hd); exit (1); } obj->priv = hd; return 0; } static void bench_xts_encrypt_do_bench (struct bench_obj *obj, void *buf, size_t buflen) { gcry_cipher_hd_t hd = obj->priv; unsigned int pos; static const char tweak[16] = { 0xff, 0xff, 0xfe, }; size_t sectorlen = obj->step_size; char *cbuf = buf; int err; gcry_cipher_setiv (hd, tweak, sizeof (tweak)); /* Process each sector separately. */ for (pos = 0; pos < buflen; pos += sectorlen, cbuf += sectorlen) { err = gcry_cipher_encrypt (hd, cbuf, sectorlen, cbuf, sectorlen); if (err) { fprintf (stderr, PGM ": gcry_cipher_encrypt failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } } } static void bench_xts_decrypt_do_bench (struct bench_obj *obj, void *buf, size_t buflen) { gcry_cipher_hd_t hd = obj->priv; unsigned int pos; static const char tweak[16] = { 0xff, 0xff, 0xfe, }; size_t sectorlen = obj->step_size; char *cbuf = buf; int err; gcry_cipher_setiv (hd, tweak, sizeof (tweak)); /* Process each sector separately. */ for (pos = 0; pos < buflen; pos += sectorlen, cbuf += sectorlen) { err = gcry_cipher_decrypt (hd, cbuf, sectorlen, cbuf, sectorlen); if (err) { fprintf (stderr, PGM ": gcry_cipher_encrypt failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } } } static struct bench_ops xts_encrypt_ops = { &bench_xts_encrypt_init, &bench_encrypt_free, &bench_xts_encrypt_do_bench }; static struct bench_ops xts_decrypt_ops = { &bench_xts_encrypt_init, &bench_encrypt_free, &bench_xts_decrypt_do_bench }; static void bench_ccm_encrypt_do_bench (struct bench_obj *obj, void *buf, size_t buflen) { gcry_cipher_hd_t hd = obj->priv; int err; char tag[8]; char nonce[11] = { 0x80, 0x01, }; u64 params[3]; gcry_cipher_setiv (hd, nonce, sizeof (nonce)); /* Set CCM lengths */ params[0] = buflen; params[1] = 0; /*aadlen */ params[2] = sizeof (tag); err = gcry_cipher_ctl (hd, GCRYCTL_SET_CCM_LENGTHS, params, sizeof (params)); if (err) { fprintf (stderr, PGM ": gcry_cipher_ctl failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } err = gcry_cipher_encrypt (hd, buf, buflen, buf, buflen); if (err) { fprintf (stderr, PGM ": gcry_cipher_encrypt failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } err = gcry_cipher_gettag (hd, tag, sizeof (tag)); if (err) { fprintf (stderr, PGM ": gcry_cipher_gettag failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } } static void bench_ccm_decrypt_do_bench (struct bench_obj *obj, void *buf, size_t buflen) { gcry_cipher_hd_t hd = obj->priv; int err; char tag[8] = { 0, }; char nonce[11] = { 0x80, 0x01, }; u64 params[3]; gcry_cipher_setiv (hd, nonce, sizeof (nonce)); /* Set CCM lengths */ params[0] = buflen; params[1] = 0; /*aadlen */ params[2] = sizeof (tag); err = gcry_cipher_ctl (hd, GCRYCTL_SET_CCM_LENGTHS, params, sizeof (params)); if (err) { fprintf (stderr, PGM ": gcry_cipher_ctl failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } err = gcry_cipher_decrypt (hd, buf, buflen, buf, buflen); if (err) { fprintf (stderr, PGM ": gcry_cipher_encrypt failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } err = gcry_cipher_checktag (hd, tag, sizeof (tag)); if (gpg_err_code (err) == GPG_ERR_CHECKSUM) err = gpg_error (GPG_ERR_NO_ERROR); if (err) { fprintf (stderr, PGM ": gcry_cipher_gettag failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } } static void bench_ccm_authenticate_do_bench (struct bench_obj *obj, void *buf, size_t buflen) { gcry_cipher_hd_t hd = obj->priv; int err; char tag[8] = { 0, }; char nonce[11] = { 0x80, 0x01, }; u64 params[3]; char data = 0xff; gcry_cipher_setiv (hd, nonce, sizeof (nonce)); /* Set CCM lengths */ params[0] = sizeof (data); /*datalen */ params[1] = buflen; /*aadlen */ params[2] = sizeof (tag); err = gcry_cipher_ctl (hd, GCRYCTL_SET_CCM_LENGTHS, params, sizeof (params)); if (err) { fprintf (stderr, PGM ": gcry_cipher_ctl failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } err = gcry_cipher_authenticate (hd, buf, buflen); if (err) { fprintf (stderr, PGM ": gcry_cipher_authenticate failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } err = gcry_cipher_encrypt (hd, &data, sizeof (data), &data, sizeof (data)); if (err) { fprintf (stderr, PGM ": gcry_cipher_encrypt failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } err = gcry_cipher_gettag (hd, tag, sizeof (tag)); if (err) { fprintf (stderr, PGM ": gcry_cipher_gettag failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } } static struct bench_ops ccm_encrypt_ops = { &bench_encrypt_init, &bench_encrypt_free, &bench_ccm_encrypt_do_bench }; static struct bench_ops ccm_decrypt_ops = { &bench_encrypt_init, &bench_encrypt_free, &bench_ccm_decrypt_do_bench }; static struct bench_ops ccm_authenticate_ops = { &bench_encrypt_init, &bench_encrypt_free, &bench_ccm_authenticate_do_bench }; static void bench_aead_encrypt_do_bench (struct bench_obj *obj, void *buf, size_t buflen, const char *nonce, size_t noncelen) { gcry_cipher_hd_t hd = obj->priv; int err; char tag[16]; gcry_cipher_setiv (hd, nonce, noncelen); gcry_cipher_final (hd); err = gcry_cipher_encrypt (hd, buf, buflen, buf, buflen); if (err) { fprintf (stderr, PGM ": gcry_cipher_encrypt failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } err = gcry_cipher_gettag (hd, tag, sizeof (tag)); if (err) { fprintf (stderr, PGM ": gcry_cipher_gettag failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } } static void bench_aead_decrypt_do_bench (struct bench_obj *obj, void *buf, size_t buflen, const char *nonce, size_t noncelen) { gcry_cipher_hd_t hd = obj->priv; int err; char tag[16] = { 0, }; gcry_cipher_setiv (hd, nonce, noncelen); gcry_cipher_final (hd); err = gcry_cipher_decrypt (hd, buf, buflen, buf, buflen); if (err) { fprintf (stderr, PGM ": gcry_cipher_encrypt failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } err = gcry_cipher_checktag (hd, tag, sizeof (tag)); if (gpg_err_code (err) == GPG_ERR_CHECKSUM) err = gpg_error (GPG_ERR_NO_ERROR); if (err) { fprintf (stderr, PGM ": gcry_cipher_gettag failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } } static void bench_aead_authenticate_do_bench (struct bench_obj *obj, void *buf, size_t buflen, const char *nonce, size_t noncelen) { gcry_cipher_hd_t hd = obj->priv; int err; char tag[16] = { 0, }; char data = 0xff; err = gcry_cipher_setiv (hd, nonce, noncelen); if (err) { fprintf (stderr, PGM ": gcry_cipher_setiv failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } err = gcry_cipher_authenticate (hd, buf, buflen); if (err) { fprintf (stderr, PGM ": gcry_cipher_authenticate failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } gcry_cipher_final (hd); err = gcry_cipher_encrypt (hd, &data, sizeof (data), &data, sizeof (data)); if (err) { fprintf (stderr, PGM ": gcry_cipher_encrypt failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } err = gcry_cipher_gettag (hd, tag, sizeof (tag)); if (err) { fprintf (stderr, PGM ": gcry_cipher_gettag failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } } static void bench_gcm_encrypt_do_bench (struct bench_obj *obj, void *buf, size_t buflen) { char nonce[12] = { 0xca, 0xfe, 0xba, 0xbe, 0xfa, 0xce, 0xdb, 0xad, 0xde, 0xca, 0xf8, 0x88 }; bench_aead_encrypt_do_bench (obj, buf, buflen, nonce, sizeof(nonce)); } static void bench_gcm_decrypt_do_bench (struct bench_obj *obj, void *buf, size_t buflen) { char nonce[12] = { 0xca, 0xfe, 0xba, 0xbe, 0xfa, 0xce, 0xdb, 0xad, 0xde, 0xca, 0xf8, 0x88 }; bench_aead_decrypt_do_bench (obj, buf, buflen, nonce, sizeof(nonce)); } static void bench_gcm_authenticate_do_bench (struct bench_obj *obj, void *buf, size_t buflen) { char nonce[12] = { 0xca, 0xfe, 0xba, 0xbe, 0xfa, 0xce, 0xdb, 0xad, 0xde, 0xca, 0xf8, 0x88 }; bench_aead_authenticate_do_bench (obj, buf, buflen, nonce, sizeof(nonce)); } static struct bench_ops gcm_encrypt_ops = { &bench_encrypt_init, &bench_encrypt_free, &bench_gcm_encrypt_do_bench }; static struct bench_ops gcm_decrypt_ops = { &bench_encrypt_init, &bench_encrypt_free, &bench_gcm_decrypt_do_bench }; static struct bench_ops gcm_authenticate_ops = { &bench_encrypt_init, &bench_encrypt_free, &bench_gcm_authenticate_do_bench }; static void bench_ocb_encrypt_do_bench (struct bench_obj *obj, void *buf, size_t buflen) { char nonce[15] = { 0xca, 0xfe, 0xba, 0xbe, 0xfa, 0xce, 0xdb, 0xad, 0xde, 0xca, 0xf8, 0x88, 0x00, 0x00, 0x01 }; bench_aead_encrypt_do_bench (obj, buf, buflen, nonce, sizeof(nonce)); } static void bench_ocb_decrypt_do_bench (struct bench_obj *obj, void *buf, size_t buflen) { char nonce[15] = { 0xca, 0xfe, 0xba, 0xbe, 0xfa, 0xce, 0xdb, 0xad, 0xde, 0xca, 0xf8, 0x88, 0x00, 0x00, 0x01 }; bench_aead_decrypt_do_bench (obj, buf, buflen, nonce, sizeof(nonce)); } static void bench_ocb_authenticate_do_bench (struct bench_obj *obj, void *buf, size_t buflen) { char nonce[15] = { 0xca, 0xfe, 0xba, 0xbe, 0xfa, 0xce, 0xdb, 0xad, 0xde, 0xca, 0xf8, 0x88, 0x00, 0x00, 0x01 }; bench_aead_authenticate_do_bench (obj, buf, buflen, nonce, sizeof(nonce)); } static struct bench_ops ocb_encrypt_ops = { &bench_encrypt_init, &bench_encrypt_free, &bench_ocb_encrypt_do_bench }; static struct bench_ops ocb_decrypt_ops = { &bench_encrypt_init, &bench_encrypt_free, &bench_ocb_decrypt_do_bench }; static struct bench_ops ocb_authenticate_ops = { &bench_encrypt_init, &bench_encrypt_free, &bench_ocb_authenticate_do_bench }; +static void +bench_eax_encrypt_do_bench (struct bench_obj *obj, void *buf, + size_t buflen) +{ + char nonce[16] = { 0xca, 0xfe, 0xba, 0xbe, 0xfa, 0xce, + 0xdb, 0xad, 0xde, 0xca, 0xf8, 0x88, + 0x00, 0x00, 0x01, 0x00 }; + bench_aead_encrypt_do_bench (obj, buf, buflen, nonce, sizeof(nonce)); +} + +static void +bench_eax_decrypt_do_bench (struct bench_obj *obj, void *buf, + size_t buflen) +{ + char nonce[16] = { 0xca, 0xfe, 0xba, 0xbe, 0xfa, 0xce, + 0xdb, 0xad, 0xde, 0xca, 0xf8, 0x88, + 0x00, 0x00, 0x01, 0x00 }; + bench_aead_decrypt_do_bench (obj, buf, buflen, nonce, sizeof(nonce)); +} + +static void +bench_eax_authenticate_do_bench (struct bench_obj *obj, void *buf, + size_t buflen) +{ + char nonce[16] = { 0xca, 0xfe, 0xba, 0xbe, 0xfa, 0xce, + 0xdb, 0xad, 0xde, 0xca, 0xf8, 0x88, + 0x00, 0x00, 0x01, 0x00 }; + bench_aead_authenticate_do_bench (obj, buf, buflen, nonce, sizeof(nonce)); +} + +static struct bench_ops eax_encrypt_ops = { + &bench_encrypt_init, + &bench_encrypt_free, + &bench_eax_encrypt_do_bench +}; + +static struct bench_ops eax_decrypt_ops = { + &bench_encrypt_init, + &bench_encrypt_free, + &bench_eax_decrypt_do_bench +}; + +static struct bench_ops eax_authenticate_ops = { + &bench_encrypt_init, + &bench_encrypt_free, + &bench_eax_authenticate_do_bench +}; static void bench_poly1305_encrypt_do_bench (struct bench_obj *obj, void *buf, size_t buflen) { char nonce[8] = { 0xca, 0xfe, 0xba, 0xbe, 0xfa, 0xce, 0xdb, 0xad }; bench_aead_encrypt_do_bench (obj, buf, buflen, nonce, sizeof(nonce)); } static void bench_poly1305_decrypt_do_bench (struct bench_obj *obj, void *buf, size_t buflen) { char nonce[8] = { 0xca, 0xfe, 0xba, 0xbe, 0xfa, 0xce, 0xdb, 0xad }; bench_aead_decrypt_do_bench (obj, buf, buflen, nonce, sizeof(nonce)); } static void bench_poly1305_authenticate_do_bench (struct bench_obj *obj, void *buf, size_t buflen) { char nonce[8] = { 0xca, 0xfe, 0xba, 0xbe, 0xfa, 0xce, 0xdb, 0xad }; bench_aead_authenticate_do_bench (obj, buf, buflen, nonce, sizeof(nonce)); } static struct bench_ops poly1305_encrypt_ops = { &bench_encrypt_init, &bench_encrypt_free, &bench_poly1305_encrypt_do_bench }; static struct bench_ops poly1305_decrypt_ops = { &bench_encrypt_init, &bench_encrypt_free, &bench_poly1305_decrypt_do_bench }; static struct bench_ops poly1305_authenticate_ops = { &bench_encrypt_init, &bench_encrypt_free, &bench_poly1305_authenticate_do_bench }; static struct bench_cipher_mode cipher_modes[] = { {GCRY_CIPHER_MODE_ECB, "ECB enc", &encrypt_ops}, {GCRY_CIPHER_MODE_ECB, "ECB dec", &decrypt_ops}, {GCRY_CIPHER_MODE_CBC, "CBC enc", &encrypt_ops}, {GCRY_CIPHER_MODE_CBC, "CBC dec", &decrypt_ops}, {GCRY_CIPHER_MODE_CFB, "CFB enc", &encrypt_ops}, {GCRY_CIPHER_MODE_CFB, "CFB dec", &decrypt_ops}, {GCRY_CIPHER_MODE_OFB, "OFB enc", &encrypt_ops}, {GCRY_CIPHER_MODE_OFB, "OFB dec", &decrypt_ops}, {GCRY_CIPHER_MODE_CTR, "CTR enc", &encrypt_ops}, {GCRY_CIPHER_MODE_CTR, "CTR dec", &decrypt_ops}, {GCRY_CIPHER_MODE_XTS, "XTS enc", &xts_encrypt_ops}, {GCRY_CIPHER_MODE_XTS, "XTS dec", &xts_decrypt_ops}, {GCRY_CIPHER_MODE_CCM, "CCM enc", &ccm_encrypt_ops}, {GCRY_CIPHER_MODE_CCM, "CCM dec", &ccm_decrypt_ops}, {GCRY_CIPHER_MODE_CCM, "CCM auth", &ccm_authenticate_ops}, + {GCRY_CIPHER_MODE_EAX, "EAX enc", &eax_encrypt_ops}, + {GCRY_CIPHER_MODE_EAX, "EAX dec", &eax_decrypt_ops}, + {GCRY_CIPHER_MODE_EAX, "EAX auth", &eax_authenticate_ops}, {GCRY_CIPHER_MODE_GCM, "GCM enc", &gcm_encrypt_ops}, {GCRY_CIPHER_MODE_GCM, "GCM dec", &gcm_decrypt_ops}, {GCRY_CIPHER_MODE_GCM, "GCM auth", &gcm_authenticate_ops}, {GCRY_CIPHER_MODE_OCB, "OCB enc", &ocb_encrypt_ops}, {GCRY_CIPHER_MODE_OCB, "OCB dec", &ocb_decrypt_ops}, {GCRY_CIPHER_MODE_OCB, "OCB auth", &ocb_authenticate_ops}, {GCRY_CIPHER_MODE_POLY1305, "POLY1305 enc", &poly1305_encrypt_ops}, {GCRY_CIPHER_MODE_POLY1305, "POLY1305 dec", &poly1305_decrypt_ops}, {GCRY_CIPHER_MODE_POLY1305, "POLY1305 auth", &poly1305_authenticate_ops}, {0}, }; static void cipher_bench_one (int algo, struct bench_cipher_mode *pmode) { struct bench_cipher_mode mode = *pmode; struct bench_obj obj = { 0 }; double result; unsigned int blklen; mode.algo = algo; /* Check if this mode is ok */ blklen = gcry_cipher_get_algo_blklen (algo); if (!blklen) return; /* Stream cipher? Only test with "ECB" and POLY1305. */ if (blklen == 1 && (mode.mode != GCRY_CIPHER_MODE_ECB && mode.mode != GCRY_CIPHER_MODE_POLY1305)) return; if (blklen == 1 && mode.mode == GCRY_CIPHER_MODE_ECB) { mode.mode = GCRY_CIPHER_MODE_STREAM; mode.name = mode.ops == &encrypt_ops ? "STREAM enc" : "STREAM dec"; } /* Poly1305 has restriction for cipher algorithm */ if (mode.mode == GCRY_CIPHER_MODE_POLY1305 && algo != GCRY_CIPHER_CHACHA20) return; /* CCM has restrictions for block-size */ if (mode.mode == GCRY_CIPHER_MODE_CCM && blklen != GCRY_CCM_BLOCK_LEN) return; /* GCM has restrictions for block-size */ if (mode.mode == GCRY_CIPHER_MODE_GCM && blklen != GCRY_GCM_BLOCK_LEN) return; /* XTS has restrictions for block-size */ if (mode.mode == GCRY_CIPHER_MODE_XTS && blklen != GCRY_XTS_BLOCK_LEN) return; /* Our OCB implementation has restrictions for block-size. */ if (mode.mode == GCRY_CIPHER_MODE_OCB && blklen != GCRY_OCB_BLOCK_LEN) return; bench_print_mode (14, mode.name); obj.ops = mode.ops; obj.priv = &mode; result = do_slope_benchmark (&obj); bench_print_result (result); } static void _cipher_bench (int algo) { const char *algoname; int i; algoname = gcry_cipher_algo_name (algo); bench_print_header (14, algoname); for (i = 0; cipher_modes[i].mode; i++) cipher_bench_one (algo, &cipher_modes[i]); bench_print_footer (14); } void cipher_bench (char **argv, int argc) { int i, algo; bench_print_section ("cipher", "Cipher"); if (argv && argc) { for (i = 0; i < argc; i++) { algo = gcry_cipher_map_name (argv[i]); if (algo) _cipher_bench (algo); } } else { for (i = 1; i < 400; i++) if (!gcry_cipher_test_algo (i)) _cipher_bench (i); } } /*********************************************************** Hash benchmarks. */ struct bench_hash_mode { const char *name; struct bench_ops *ops; int algo; }; static int bench_hash_init (struct bench_obj *obj) { struct bench_hash_mode *mode = obj->priv; gcry_md_hd_t hd; int err; obj->min_bufsize = BUF_START_SIZE; obj->max_bufsize = BUF_END_SIZE; obj->step_size = BUF_STEP_SIZE; obj->num_measure_repetitions = num_measurement_repetitions; err = gcry_md_open (&hd, mode->algo, 0); if (err) { fprintf (stderr, PGM ": error opening hash `%s'\n", gcry_md_algo_name (mode->algo)); exit (1); } obj->priv = hd; return 0; } static void bench_hash_free (struct bench_obj *obj) { gcry_md_hd_t hd = obj->priv; gcry_md_close (hd); } static void bench_hash_do_bench (struct bench_obj *obj, void *buf, size_t buflen) { gcry_md_hd_t hd = obj->priv; gcry_md_reset (hd); gcry_md_write (hd, buf, buflen); gcry_md_final (hd); } static struct bench_ops hash_ops = { &bench_hash_init, &bench_hash_free, &bench_hash_do_bench }; static struct bench_hash_mode hash_modes[] = { {"", &hash_ops}, {0}, }; static void hash_bench_one (int algo, struct bench_hash_mode *pmode) { struct bench_hash_mode mode = *pmode; struct bench_obj obj = { 0 }; double result; mode.algo = algo; if (mode.name[0] == '\0') bench_print_algo (-14, gcry_md_algo_name (algo)); else bench_print_algo (14, mode.name); obj.ops = mode.ops; obj.priv = &mode; result = do_slope_benchmark (&obj); bench_print_result (result); } static void _hash_bench (int algo) { int i; for (i = 0; hash_modes[i].name; i++) hash_bench_one (algo, &hash_modes[i]); } void hash_bench (char **argv, int argc) { int i, algo; bench_print_section ("hash", "Hash"); bench_print_header (14, ""); if (argv && argc) { for (i = 0; i < argc; i++) { algo = gcry_md_map_name (argv[i]); if (algo) _hash_bench (algo); } } else { for (i = 1; i < 400; i++) if (!gcry_md_test_algo (i)) _hash_bench (i); } bench_print_footer (14); } /************************************************************ MAC benchmarks. */ struct bench_mac_mode { const char *name; struct bench_ops *ops; int algo; }; static int bench_mac_init (struct bench_obj *obj) { struct bench_mac_mode *mode = obj->priv; gcry_mac_hd_t hd; int err; unsigned int keylen; void *key; obj->min_bufsize = BUF_START_SIZE; obj->max_bufsize = BUF_END_SIZE; obj->step_size = BUF_STEP_SIZE; obj->num_measure_repetitions = num_measurement_repetitions; keylen = gcry_mac_get_algo_keylen (mode->algo); if (keylen == 0) keylen = 32; key = malloc (keylen); if (!key) { fprintf (stderr, PGM ": couldn't allocate %d bytes\n", keylen); exit (1); } memset(key, 42, keylen); err = gcry_mac_open (&hd, mode->algo, 0, NULL); if (err) { fprintf (stderr, PGM ": error opening mac `%s'\n", gcry_mac_algo_name (mode->algo)); free (key); exit (1); } err = gcry_mac_setkey (hd, key, keylen); if (err) { fprintf (stderr, PGM ": error setting key for mac `%s'\n", gcry_mac_algo_name (mode->algo)); free (key); exit (1); } switch (mode->algo) { default: break; case GCRY_MAC_POLY1305_AES: case GCRY_MAC_POLY1305_CAMELLIA: case GCRY_MAC_POLY1305_TWOFISH: case GCRY_MAC_POLY1305_SERPENT: case GCRY_MAC_POLY1305_SEED: gcry_mac_setiv (hd, key, 16); break; } obj->priv = hd; free (key); return 0; } static void bench_mac_free (struct bench_obj *obj) { gcry_mac_hd_t hd = obj->priv; gcry_mac_close (hd); } static void bench_mac_do_bench (struct bench_obj *obj, void *buf, size_t buflen) { gcry_mac_hd_t hd = obj->priv; size_t bs; char b; gcry_mac_reset (hd); gcry_mac_write (hd, buf, buflen); bs = sizeof(b); gcry_mac_read (hd, &b, &bs); } static struct bench_ops mac_ops = { &bench_mac_init, &bench_mac_free, &bench_mac_do_bench }; static struct bench_mac_mode mac_modes[] = { {"", &mac_ops}, {0}, }; static void mac_bench_one (int algo, struct bench_mac_mode *pmode) { struct bench_mac_mode mode = *pmode; struct bench_obj obj = { 0 }; double result; mode.algo = algo; if (mode.name[0] == '\0') bench_print_algo (-18, gcry_mac_algo_name (algo)); else bench_print_algo (18, mode.name); obj.ops = mode.ops; obj.priv = &mode; result = do_slope_benchmark (&obj); bench_print_result (result); } static void _mac_bench (int algo) { int i; for (i = 0; mac_modes[i].name; i++) mac_bench_one (algo, &mac_modes[i]); } void mac_bench (char **argv, int argc) { int i, algo; bench_print_section ("mac", "MAC"); bench_print_header (18, ""); if (argv && argc) { for (i = 0; i < argc; i++) { algo = gcry_mac_map_name (argv[i]); if (algo) _mac_bench (algo); } } else { for (i = 1; i < 600; i++) if (!gcry_mac_test_algo (i)) _mac_bench (i); } bench_print_footer (18); } /************************************************************ KDF benchmarks. */ struct bench_kdf_mode { struct bench_ops *ops; int algo; int subalgo; }; static int bench_kdf_init (struct bench_obj *obj) { struct bench_kdf_mode *mode = obj->priv; if (mode->algo == GCRY_KDF_PBKDF2) { obj->min_bufsize = 2; obj->max_bufsize = 2 * 32; obj->step_size = 2; } obj->num_measure_repetitions = num_measurement_repetitions; return 0; } static void bench_kdf_free (struct bench_obj *obj) { (void)obj; } static void bench_kdf_do_bench (struct bench_obj *obj, void *buf, size_t buflen) { struct bench_kdf_mode *mode = obj->priv; char keybuf[16]; (void)buf; if (mode->algo == GCRY_KDF_PBKDF2) { gcry_kdf_derive("qwerty", 6, mode->algo, mode->subalgo, "01234567", 8, buflen, sizeof(keybuf), keybuf); } } static struct bench_ops kdf_ops = { &bench_kdf_init, &bench_kdf_free, &bench_kdf_do_bench }; static void kdf_bench_one (int algo, int subalgo) { struct bench_kdf_mode mode = { &kdf_ops }; struct bench_obj obj = { 0 }; double nsecs_per_iteration; double cycles_per_iteration; char algo_name[32]; char nsecpiter_buf[16]; char cpiter_buf[16]; mode.algo = algo; mode.subalgo = subalgo; switch (subalgo) { case GCRY_MD_CRC32: case GCRY_MD_CRC32_RFC1510: case GCRY_MD_CRC24_RFC2440: case GCRY_MD_MD4: /* Skip CRC32s. */ return; } if (gcry_md_get_algo_dlen (subalgo) == 0) { /* Skip XOFs */ return; } *algo_name = 0; if (algo == GCRY_KDF_PBKDF2) { snprintf (algo_name, sizeof(algo_name), "PBKDF2-HMAC-%s", gcry_md_algo_name (subalgo)); } bench_print_algo (-24, algo_name); obj.ops = mode.ops; obj.priv = &mode; nsecs_per_iteration = do_slope_benchmark (&obj); strcpy(cpiter_buf, csv_mode ? "" : "-"); double_to_str (nsecpiter_buf, sizeof (nsecpiter_buf), nsecs_per_iteration); /* If user didn't provide CPU speed, we cannot show cycles/iter results. */ if (cpu_ghz > 0.0) { cycles_per_iteration = nsecs_per_iteration * cpu_ghz; double_to_str (cpiter_buf, sizeof (cpiter_buf), cycles_per_iteration); } if (csv_mode) { printf ("%s,%s,%s,,,,,,,,,%s,ns/iter,%s,c/iter\n", current_section_name, current_algo_name ? current_algo_name : "", current_mode_name ? current_mode_name : "", nsecpiter_buf, cpiter_buf); } else { printf ("%14s %13s\n", nsecpiter_buf, cpiter_buf); } } void kdf_bench (char **argv, int argc) { char algo_name[32]; int i, j; bench_print_section ("kdf", "KDF"); if (!csv_mode) { printf (" %-*s | ", 24, ""); printf ("%14s %13s\n", "nanosecs/iter", "cycles/iter"); } if (argv && argc) { for (i = 0; i < argc; i++) { for (j = 1; j < 400; j++) { if (gcry_md_test_algo (j)) continue; snprintf (algo_name, sizeof(algo_name), "PBKDF2-HMAC-%s", gcry_md_algo_name (j)); if (!strcmp(argv[i], algo_name)) kdf_bench_one (GCRY_KDF_PBKDF2, j); } } } else { for (i = 1; i < 400; i++) if (!gcry_md_test_algo (i)) kdf_bench_one (GCRY_KDF_PBKDF2, i); } bench_print_footer (24); } /************************************************************** Main program. */ void print_help (void) { static const char *help_lines[] = { "usage: bench-slope [options] [hash|mac|cipher|kdf [algonames]]", "", " options:", " --cpu-mhz Set CPU speed for calculating cycles", " per bytes results.", " --disable-hwf Disable hardware acceleration feature(s)", " for benchmarking.", " --repetitions Use N repetitions (default " STR2(NUM_MEASUREMENT_REPETITIONS) ")", " --unaligned Use unaligned input buffers.", " --csv Use CSV output format", NULL }; const char **line; for (line = help_lines; *line; line++) fprintf (stdout, "%s\n", *line); } /* Warm up CPU. */ static void warm_up_cpu (void) { struct nsec_time start, end; get_nsec_time (&start); do { get_nsec_time (&end); } while (get_time_nsec_diff (&start, &end) < 1000.0 * 1000.0 * 1000.0); } int main (int argc, char **argv) { int last_argc = -1; if (argc) { argc--; argv++; } /* We skip this test if we are running under the test suite (no args and srcdir defined) and GCRYPT_NO_BENCHMARKS is set. */ if (!argc && getenv ("srcdir") && getenv ("GCRYPT_NO_BENCHMARKS")) exit (77); if (getenv ("GCRYPT_IN_REGRESSION_TEST")) { in_regression_test = 1; num_measurement_repetitions = 2; } else num_measurement_repetitions = NUM_MEASUREMENT_REPETITIONS; while (argc && last_argc != argc) { last_argc = argc; if (!strcmp (*argv, "--")) { argc--; argv++; break; } else if (!strcmp (*argv, "--help")) { print_help (); exit (0); } else if (!strcmp (*argv, "--verbose")) { verbose++; argc--; argv++; } else if (!strcmp (*argv, "--debug")) { verbose += 2; debug++; argc--; argv++; } else if (!strcmp (*argv, "--csv")) { csv_mode = 1; argc--; argv++; } else if (!strcmp (*argv, "--unaligned")) { unaligned_mode = 1; argc--; argv++; } else if (!strcmp (*argv, "--disable-hwf")) { argc--; argv++; if (argc) { if (gcry_control (GCRYCTL_DISABLE_HWF, *argv, NULL)) fprintf (stderr, PGM ": unknown hardware feature `%s' - option ignored\n", *argv); argc--; argv++; } } else if (!strcmp (*argv, "--cpu-mhz")) { argc--; argv++; if (argc) { cpu_ghz = atof (*argv); cpu_ghz /= 1000; /* Mhz => Ghz */ argc--; argv++; } } else if (!strcmp (*argv, "--repetitions")) { argc--; argv++; if (argc) { num_measurement_repetitions = atof (*argv); if (num_measurement_repetitions < 2) { fprintf (stderr, PGM ": value for --repetitions too small - using %d\n", NUM_MEASUREMENT_REPETITIONS); num_measurement_repetitions = NUM_MEASUREMENT_REPETITIONS; } argc--; argv++; } } } xgcry_control (GCRYCTL_SET_VERBOSITY, (int) verbose); if (!gcry_check_version (GCRYPT_VERSION)) { fprintf (stderr, PGM ": version mismatch; pgm=%s, library=%s\n", GCRYPT_VERSION, gcry_check_version (NULL)); exit (1); } if (debug) xgcry_control (GCRYCTL_SET_DEBUG_FLAGS, 1u, 0); xgcry_control (GCRYCTL_DISABLE_SECMEM, 0); xgcry_control (GCRYCTL_INITIALIZATION_FINISHED, 0); xgcry_control (GCRYCTL_ENABLE_QUICK_RANDOM, 0); if (in_regression_test) fputs ("Note: " PGM " running in quick regression test mode.\n", stdout); if (!argc) { warm_up_cpu (); hash_bench (NULL, 0); mac_bench (NULL, 0); cipher_bench (NULL, 0); kdf_bench (NULL, 0); } else if (!strcmp (*argv, "hash")) { argc--; argv++; warm_up_cpu (); hash_bench ((argc == 0) ? NULL : argv, argc); } else if (!strcmp (*argv, "mac")) { argc--; argv++; warm_up_cpu (); mac_bench ((argc == 0) ? NULL : argv, argc); } else if (!strcmp (*argv, "cipher")) { argc--; argv++; warm_up_cpu (); cipher_bench ((argc == 0) ? NULL : argv, argc); } else if (!strcmp (*argv, "kdf")) { argc--; argv++; warm_up_cpu (); kdf_bench ((argc == 0) ? NULL : argv, argc); } else { fprintf (stderr, PGM ": unknown argument: %s\n", *argv); print_help (); } return 0; } #endif /* !NO_GET_NSEC_TIME */ diff --git a/tests/benchmark.c b/tests/benchmark.c index 44a8711d..59ea32c6 100644 --- a/tests/benchmark.c +++ b/tests/benchmark.c @@ -1,1957 +1,1959 @@ /* benchmark.c - for libgcrypt * Copyright (C) 2002, 2004, 2005, 2006, 2008 Free Software Foundation, Inc. * * This file is part of Libgcrypt. * * Libgcrypt is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser general Public License as * published by the Free Software Foundation; either version 2.1 of * the License, or (at your option) any later version. * * Libgcrypt is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program; if not, see . */ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #ifdef _GCRYPT_IN_LIBGCRYPT # include "../src/gcrypt-int.h" # include "../compat/libcompat.h" #else # include #endif #include "stopwatch.h" #define PGM "benchmark" #include "t-common.h" /* Do encryption tests with large buffers. */ static int large_buffers; /* Number of cipher repetitions. */ static int cipher_repetitions; /* Number of hash repetitions. */ static int hash_repetitions; /* Number of hash repetitions. */ static int mac_repetitions; /* Alignment of the buffers. */ static int buffer_alignment; /* Whether to include the keysetup in the cipher timings. */ static int cipher_with_keysetup; /* Whether fips mode was active at startup. */ static int in_fips_mode; /* Whether we are running as part of the regression test suite. */ static int in_regression_test; /* Whether --progress is in use. */ static int with_progress; /* Runtime flag to switch to a different progress output. */ static int single_char_progress; static const char sample_private_dsa_key_1024[] = "(private-key\n" " (dsa\n" " (p #00A126202D592214C5A8F6016E2C3F4256052ACB1CB17D88E64B1293FAF08F5E4685" "03E6F68366B326A56284370EB2103E92D8346A163E44A08FDC422AC8E9E44268557A" "853539A6AF39353A59CE5E78FD98B57D0F3E3A7EBC8A256AC9A775BA59689F3004BF" "C3035730C4C0C51626C5D7F5852637EC589BB29DAB46C161572E4B#)\n" " (q #00DEB5A296421887179ECA1762884DE2AF8185AFC5#)\n" " (g #3958B34AE7747194ECBD312F8FEE8CBE3918E94DF9FD11E2912E56318F33BDC38622" "B18DDFF393074BCA8BAACF50DF27AEE529F3E8AEECE55C398DAB3A5E04C2EA142312" "FACA2FE7F0A88884F8DAC3979EE67598F9A383B2A2325F035C796F352A5C3CDF2CB3" "85AD24EC52A6E55247E1BB37D260F79E617D2A4446415B6AD79A#)\n" " (y #519E9FE9AB0545A6724E74603B7B04E48DC1437E0284A11EA605A7BA8AB1CF354FD4" "ECC93880AC293391C69B558AD84E7AAFA88F11D028CF3A378F241D6B056A90C588F6" "66F68D27262B4DA84657D15057D371BCEC1F6504032507D5B881E45FC93A1B973155" "D91C57219D090C3ACD75E7C2B9F1176A208AC03D6C12AC28A271#)\n" " (x #4186F8A58C5DF46C5BCFC7006BEEBF05E93C0CA7#)\n" "))\n"; static const char sample_public_dsa_key_1024[] = "(public-key\n" " (dsa\n" " (p #00A126202D592214C5A8F6016E2C3F4256052ACB1CB17D88E64B1293FAF08F5E4685" "03E6F68366B326A56284370EB2103E92D8346A163E44A08FDC422AC8E9E44268557A" "853539A6AF39353A59CE5E78FD98B57D0F3E3A7EBC8A256AC9A775BA59689F3004BF" "C3035730C4C0C51626C5D7F5852637EC589BB29DAB46C161572E4B#)\n" " (q #00DEB5A296421887179ECA1762884DE2AF8185AFC5#)\n" " (g #3958B34AE7747194ECBD312F8FEE8CBE3918E94DF9FD11E2912E56318F33BDC38622" "B18DDFF393074BCA8BAACF50DF27AEE529F3E8AEECE55C398DAB3A5E04C2EA142312" "FACA2FE7F0A88884F8DAC3979EE67598F9A383B2A2325F035C796F352A5C3CDF2CB3" "85AD24EC52A6E55247E1BB37D260F79E617D2A4446415B6AD79A#)\n" " (y #519E9FE9AB0545A6724E74603B7B04E48DC1437E0284A11EA605A7BA8AB1CF354FD4" "ECC93880AC293391C69B558AD84E7AAFA88F11D028CF3A378F241D6B056A90C588F6" "66F68D27262B4DA84657D15057D371BCEC1F6504032507D5B881E45FC93A1B973155" "D91C57219D090C3ACD75E7C2B9F1176A208AC03D6C12AC28A271#)\n" "))\n"; static const char sample_private_dsa_key_2048[] = "(private-key\n" " (dsa\n" " (p #00B54636673962B64F7DC23C71ACEF6E7331796F607560B194DFCC0CA370E858A365" "A413152FB6EB8C664BD171AC316FE5B381CD084D07377571599880A068EF1382D85C" "308B4E9DEAC12D66DE5C4A826EBEB5ED94A62E7301E18927E890589A2F230272A150" "C118BC3DC2965AE0D05BE4F65C6137B2BA7EDABB192C3070D202C10AA3F534574970" "71454DB8A73DDB6511A5BA98EF1450FD90DE5BAAFC9FD3AC22EBEA612DD075BB7405" "D56866D125E33982C046808F7CEBA8E5C0B9F19A6FE451461660A1CBA9EF68891179" "0256A573D3B8F35A5C7A0C6C31F2DB90E25A26845252AD9E485EF2D339E7B5890CD4" "2F9C9F315ED409171EC35CA04CC06B275577B3#)\n" " (q #00DA67989167FDAC4AE3DF9247A716859A30C0CF9C5A6DBA01EABA3481#)\n" " (g #48E35DA584A089D05142AA63603FDB00D131B07A0781E2D5A8F9614D2B33D3E40A78" "98A9E10CDBB612CF093F95A3E10D09566726F2C12823836B2D9CD974BB695665F3B3" "5D219A9724B87F380BD5207EDA0AE38C79E8F18122C3F76E4CEB0ABED3250914987F" "B30D4B9E19C04C28A5D4F45560AF586F6A1B41751EAD90AE7F044F4E2A4A50C1F508" "4FC202463F478F678B9A19392F0D2961C5391C546EF365368BB46410C9C1CEE96E9F" "0C953570C2ED06328B11C90E86E57CAA7FA5ABAA278E22A4C8C08E16EE59F484EC44" "2CF55535BAA2C6BEA8833A555372BEFE1E665D3C7DAEF58061D5136331EF4EB61BC3" "6EE4425A553AF8885FEA15A88135BE133520#)\n" " (y #66E0D1A69D663466F8FEF2B7C0878DAC93C36A2FB2C05E0306A53B926021D4B92A1C" "2FA6860061E88E78CBBBA49B0E12700F07DBF86F72CEB2927EDAC0C7E3969C3A47BB" "4E0AE93D8BB3313E93CC7A72DFEEE442EFBC81B3B2AEC9D8DCBE21220FB760201D79" "328C41C773866587A44B6954767D022A88072900E964089D9B17133603056C985C4F" "8A0B648F297F8D2C3CB43E4371DC6002B5B12CCC085BDB2CFC5074A0587566187EE3" "E11A2A459BD94726248BB8D6CC62938E11E284C2C183576FBB51749EB238C4360923" "79C08CE1C8CD77EB57404CE9B4744395ACF721487450BADE3220576F2F816248B0A7" "14A264330AECCB24DE2A1107847B23490897#)\n" " (x #477BD14676E22563C5ABA68025CEBA2A48D485F5B2D4AD4C0EBBD6D0#)\n" "))\n"; static const char sample_public_dsa_key_2048[] = "(public-key\n" " (dsa\n" " (p #00B54636673962B64F7DC23C71ACEF6E7331796F607560B194DFCC0CA370E858A365" "A413152FB6EB8C664BD171AC316FE5B381CD084D07377571599880A068EF1382D85C" "308B4E9DEAC12D66DE5C4A826EBEB5ED94A62E7301E18927E890589A2F230272A150" "C118BC3DC2965AE0D05BE4F65C6137B2BA7EDABB192C3070D202C10AA3F534574970" "71454DB8A73DDB6511A5BA98EF1450FD90DE5BAAFC9FD3AC22EBEA612DD075BB7405" "D56866D125E33982C046808F7CEBA8E5C0B9F19A6FE451461660A1CBA9EF68891179" "0256A573D3B8F35A5C7A0C6C31F2DB90E25A26845252AD9E485EF2D339E7B5890CD4" "2F9C9F315ED409171EC35CA04CC06B275577B3#)\n" " (q #00DA67989167FDAC4AE3DF9247A716859A30C0CF9C5A6DBA01EABA3481#)\n" " (g #48E35DA584A089D05142AA63603FDB00D131B07A0781E2D5A8F9614D2B33D3E40A78" "98A9E10CDBB612CF093F95A3E10D09566726F2C12823836B2D9CD974BB695665F3B3" "5D219A9724B87F380BD5207EDA0AE38C79E8F18122C3F76E4CEB0ABED3250914987F" "B30D4B9E19C04C28A5D4F45560AF586F6A1B41751EAD90AE7F044F4E2A4A50C1F508" "4FC202463F478F678B9A19392F0D2961C5391C546EF365368BB46410C9C1CEE96E9F" "0C953570C2ED06328B11C90E86E57CAA7FA5ABAA278E22A4C8C08E16EE59F484EC44" "2CF55535BAA2C6BEA8833A555372BEFE1E665D3C7DAEF58061D5136331EF4EB61BC3" "6EE4425A553AF8885FEA15A88135BE133520#)\n" " (y #66E0D1A69D663466F8FEF2B7C0878DAC93C36A2FB2C05E0306A53B926021D4B92A1C" "2FA6860061E88E78CBBBA49B0E12700F07DBF86F72CEB2927EDAC0C7E3969C3A47BB" "4E0AE93D8BB3313E93CC7A72DFEEE442EFBC81B3B2AEC9D8DCBE21220FB760201D79" "328C41C773866587A44B6954767D022A88072900E964089D9B17133603056C985C4F" "8A0B648F297F8D2C3CB43E4371DC6002B5B12CCC085BDB2CFC5074A0587566187EE3" "E11A2A459BD94726248BB8D6CC62938E11E284C2C183576FBB51749EB238C4360923" "79C08CE1C8CD77EB57404CE9B4744395ACF721487450BADE3220576F2F816248B0A7" "14A264330AECCB24DE2A1107847B23490897#)\n" "))\n"; static const char sample_private_dsa_key_3072[] = "(private-key\n" " (dsa\n" " (p #00BA73E148AEA5E8B64878AF5BE712B8302B9671C5F3EEB7722A9D0D9868D048C938" "877C91C335C7819292E69C7D34264F1578E32EC2DA8408DF75D0EB76E0D3030B84B5" "62D8EF93AB53BAB6B8A5DE464F5CA87AEA43BDCF0FB0B7815AA3114CFC84FD916A83" "B3D5FD78390189332232E9D037D215313FD002FF46C048B66703F87FAE092AAA0988" "AC745336EBE672A01DEDBD52395783579B67CF3AE1D6F1602CCCB12154FA0E00AE46" "0D9B289CF709194625BCB919B11038DEFC50ADBBA20C3F320078E4E9529B4F6848E2" "AB5E6278DB961FE226F2EEBD201E071C48C5BEF98B4D9BEE42C1C7102D893EBF8902" "D7A91266340AFD6CE1D09E52282FFF5B97EAFA3886A3FCF84FF76D1E06538D0D8E60" "B3332145785E07D29A5965382DE3470D1D888447FA9C00A2373378FC3FA7B9F7D17E" "95A6A5AE1397BE46D976EF2C96E89913AC4A09351CA661BF6F67E30407DA846946C7" "62D9BAA6B77825097D3E7B886456BB32E3E74516BF3FD93D71B257AA8F723E01CE33" "8015353D3778B02B892AF7#)\n" " (q #00BFF3F3CC18FA018A5B8155A8695E1E4939660D5E4759322C39D50F3B93E5F68B#)\n" " (g #6CCFD8219F5FCE8EF2BEF3262929787140847E38674B1EF8DB20255E212CB6330EC4" "DFE8A26AB7ECC5760DEB9BBF59A2B2821D510F1868172222867558B8D204E889C474" "7CA30FBF9D8CF41AE5D5BD845174641101593849FF333E6C93A6550931B2B9D56B98" "9CAB01729D9D736FA6D24A74D2DDE1E9E648D141473E443DD6BBF0B3CAB64F9FE4FC" "134B2EB57437789F75C744DF1FA67FA8A64603E5441BC7ECE29E00BDF262BDC81E8C" "7330A18A412DE38E7546D342B89A0AF675A89E6BEF00540EB107A2FE74EA402B0D89" "F5C02918DEEEAF8B8737AC866B09B50810AB8D8668834A1B9E1E53866E2B0A926FAB" "120A0CDE5B3715FFFE6ACD1AB73588DCC1EC4CE9392FE57F8D1D35811200CB07A0E6" "374E2C4B0AEB7E3D077B8545C0E438DCC0F1AE81E186930E99EBC5B91B77E92803E0" "21602887851A4FFDB3A7896AC655A0901218C121C5CBB0931E7D5EAC243F37711B5F" "D5A62B1B38A83F03D8F6703D8B98DF367FC8A76990335F62173A5391836F0F2413EC" "4997AF9EB55C6660B01A#)\n" " (y #2320B22434C5DB832B4EC267CC52E78DD5CCFA911E8F0804E7E7F32B186B2D4167AE" "4AA6869822E76400492D6A193B0535322C72B0B7AA4A87E33044FDC84BE24C64A053" "A37655EE9EABDCDC1FDF63F3F1C677CEB41595DF7DEFE9178D85A3D621B4E4775492" "8C0A58D2458D06F9562E4DE2FE6129A64063A99E88E54485B97484A28188C4D33F15" "DDC903B6CEA0135E3E3D27B4EA39319696305CE93D7BA7BE00367DBE3AAF43491E71" "CBF254744A5567F5D70090D6139E0C990239627B3A1C5B20B6F9F6374B8D8D8A8997" "437265BE1E3B4810D4B09254400DE287A0DFFBAEF339E48D422B1D41A37E642BC026" "73314701C8FA9792845C129351A87A945A03E6C895860E51D6FB8B7340A94D1A8A7B" "FA85AC83B4B14E73AB86CB96C236C8BFB0978B61B2367A7FE4F7891070F56C78D5DD" "F5576BFE5BE4F333A4E2664E79528B3294907AADD63F4F2E7AA8147B928D8CD69765" "3DB98C4297CB678046ED55C0DBE60BF7142C594603E4D705DC3D17270F9F086EC561" "2703D518D8D49FF0EBE6#)\n" " (x #00A9FFFC88E67D6F7B810E291C050BAFEA7FC4A75E8D2F16CFED3416FD77607232#)\n" "))\n"; static const char sample_public_dsa_key_3072[] = "(public-key\n" " (dsa\n" " (p #00BA73E148AEA5E8B64878AF5BE712B8302B9671C5F3EEB7722A9D0D9868D048C938" "877C91C335C7819292E69C7D34264F1578E32EC2DA8408DF75D0EB76E0D3030B84B5" "62D8EF93AB53BAB6B8A5DE464F5CA87AEA43BDCF0FB0B7815AA3114CFC84FD916A83" "B3D5FD78390189332232E9D037D215313FD002FF46C048B66703F87FAE092AAA0988" "AC745336EBE672A01DEDBD52395783579B67CF3AE1D6F1602CCCB12154FA0E00AE46" "0D9B289CF709194625BCB919B11038DEFC50ADBBA20C3F320078E4E9529B4F6848E2" "AB5E6278DB961FE226F2EEBD201E071C48C5BEF98B4D9BEE42C1C7102D893EBF8902" "D7A91266340AFD6CE1D09E52282FFF5B97EAFA3886A3FCF84FF76D1E06538D0D8E60" "B3332145785E07D29A5965382DE3470D1D888447FA9C00A2373378FC3FA7B9F7D17E" "95A6A5AE1397BE46D976EF2C96E89913AC4A09351CA661BF6F67E30407DA846946C7" "62D9BAA6B77825097D3E7B886456BB32E3E74516BF3FD93D71B257AA8F723E01CE33" "8015353D3778B02B892AF7#)\n" " (q #00BFF3F3CC18FA018A5B8155A8695E1E4939660D5E4759322C39D50F3B93E5F68B#)\n" " (g #6CCFD8219F5FCE8EF2BEF3262929787140847E38674B1EF8DB20255E212CB6330EC4" "DFE8A26AB7ECC5760DEB9BBF59A2B2821D510F1868172222867558B8D204E889C474" "7CA30FBF9D8CF41AE5D5BD845174641101593849FF333E6C93A6550931B2B9D56B98" "9CAB01729D9D736FA6D24A74D2DDE1E9E648D141473E443DD6BBF0B3CAB64F9FE4FC" "134B2EB57437789F75C744DF1FA67FA8A64603E5441BC7ECE29E00BDF262BDC81E8C" "7330A18A412DE38E7546D342B89A0AF675A89E6BEF00540EB107A2FE74EA402B0D89" "F5C02918DEEEAF8B8737AC866B09B50810AB8D8668834A1B9E1E53866E2B0A926FAB" "120A0CDE5B3715FFFE6ACD1AB73588DCC1EC4CE9392FE57F8D1D35811200CB07A0E6" "374E2C4B0AEB7E3D077B8545C0E438DCC0F1AE81E186930E99EBC5B91B77E92803E0" "21602887851A4FFDB3A7896AC655A0901218C121C5CBB0931E7D5EAC243F37711B5F" "D5A62B1B38A83F03D8F6703D8B98DF367FC8A76990335F62173A5391836F0F2413EC" "4997AF9EB55C6660B01A#)\n" " (y #2320B22434C5DB832B4EC267CC52E78DD5CCFA911E8F0804E7E7F32B186B2D4167AE" "4AA6869822E76400492D6A193B0535322C72B0B7AA4A87E33044FDC84BE24C64A053" "A37655EE9EABDCDC1FDF63F3F1C677CEB41595DF7DEFE9178D85A3D621B4E4775492" "8C0A58D2458D06F9562E4DE2FE6129A64063A99E88E54485B97484A28188C4D33F15" "DDC903B6CEA0135E3E3D27B4EA39319696305CE93D7BA7BE00367DBE3AAF43491E71" "CBF254744A5567F5D70090D6139E0C990239627B3A1C5B20B6F9F6374B8D8D8A8997" "437265BE1E3B4810D4B09254400DE287A0DFFBAEF339E48D422B1D41A37E642BC026" "73314701C8FA9792845C129351A87A945A03E6C895860E51D6FB8B7340A94D1A8A7B" "FA85AC83B4B14E73AB86CB96C236C8BFB0978B61B2367A7FE4F7891070F56C78D5DD" "F5576BFE5BE4F333A4E2664E79528B3294907AADD63F4F2E7AA8147B928D8CD69765" "3DB98C4297CB678046ED55C0DBE60BF7142C594603E4D705DC3D17270F9F086EC561" "2703D518D8D49FF0EBE6#)\n" "))\n"; static const char sample_public_elg_key_1024[] = "(public-key" " (elg" " (p #00F7CC7C08AF096B620C545C9353B1140D698FF8BE2D97A3515C17C7F8DABCDB8FB6" "64A46416C90C530C18DF5ABB6C1DDE3AE2FA9DDC9CE40DF644CDE2E759F6DE43F31A" "EEEBC136A460B3E4B0A8F99326A335145B19F4C81B13804894B7D2A30F78A8A7D7F4" "52B83836FDB0DE90BE327FB5E5318757BEF5FE0FC3A5461CBEA0D3#)" " (g #06#)" " (y #36B38FB63E3340A0DD8A0468E9FAA512A32DA010BF7110201D0A3DF1B8FEA0E16F3C" "80374584E554804B96EAA8C270FE531F75D0DBD81BA65640EDB1F76D46C27D2925B7" "3EC3B295CDAEEF242904A84D74FB2879425F82D4C5B59BB49A992F85D574168DED85" "D227600BBEF7AF0B8F0DEB785528370E4C4B3E4D65C536122A5A#)" " ))"; static const char sample_private_elg_key_1024[] = "(private-key" " (elg" " (p #00F7CC7C08AF096B620C545C9353B1140D698FF8BE2D97A3515C17C7F8DABCDB8FB6" "64A46416C90C530C18DF5ABB6C1DDE3AE2FA9DDC9CE40DF644CDE2E759F6DE43F31A" "EEEBC136A460B3E4B0A8F99326A335145B19F4C81B13804894B7D2A30F78A8A7D7F4" "52B83836FDB0DE90BE327FB5E5318757BEF5FE0FC3A5461CBEA0D3#)" " (g #06#)" " (y #36B38FB63E3340A0DD8A0468E9FAA512A32DA010BF7110201D0A3DF1B8FEA0E16F3C" "80374584E554804B96EAA8C270FE531F75D0DBD81BA65640EDB1F76D46C27D2925B7" "3EC3B295CDAEEF242904A84D74FB2879425F82D4C5B59BB49A992F85D574168DED85" "D227600BBEF7AF0B8F0DEB785528370E4C4B3E4D65C536122A5A#)" " (x #03656C6186FCD27D4A4B1F5010DC0D2AE7833B501E423FCD51DE5EB6D80DACFE#)" " ))"; static const char sample_public_elg_key_2048[] = "(public-key" " (elg" " (p #00BE5A2BB4E562D7B644E3D01321CB818DBA27295C339FC2C47EAE9823225EE1E7B6" "38C5DE300E931080E09CC89A18C9D180C16559FEF0D89D6A09534BB86489CCCEE30D" "C18E007A8726BB99F2B2D90D2694597757B120CD2435C0098AD1B74C20004C25BA97" "73EAA4FBEC594EE17F8B25867EEB0F9F857C751116ADED68ADA2A1E9F9F4F40D18F0" "EC1221CA6A746FC5F4CDA2B8B5D0AB83834564ACF6FDBB1AB01D4BFBD1E2C0108FF5" "5FB3190C6D6DA4D95EA683EFA44935CFBC0BF5C6118ACC3768AEA9A98D06024841B8" "D07C234289D22A5E3948F199C397AA991C59A55BEA0C01E91902E039116946FEA135" "768011AF6B622C5AF366EF0196FC4EAEAA8127#)" " (g #07#)" " (y #5AFF87BC23D8B97AA62897A5C1CDFFA86C59F39EDBD6012B6F333CE23D872009B8C8" "D1E220E18CFCADFE0AA16346BA2EA132472FFEC746D11C6E758896052313BB501210" "2389C683A25A3464E9B35A192BAE0A3BB99C973126F7560D968C4A754901DC967354" "D61A90ACD56D90DCC4337AFB71FAE3FD18C60EB0D6DD173877DF5DB5199C4931FE4E" "5046F814422580E1162798406FC6554781142DBB7922D4B5B37A111F23761636090F" "6212681E133365191CF15753AE737F17943ED4B7506DE0A85C3B6D63227F9D65ADF8" "2C3DF0676C8F43B5B1C07D9AD4E6D0C812401D7DA7B9484DBA8CD3B73B19A95EB237" "D493E092AEA2371AA904009C8960B0969D12#)" " ))"; static const char sample_private_elg_key_2048[] = "(private-key" " (elg" " (p #00BE5A2BB4E562D7B644E3D01321CB818DBA27295C339FC2C47EAE9823225EE1E7B6" "38C5DE300E931080E09CC89A18C9D180C16559FEF0D89D6A09534BB86489CCCEE30D" "C18E007A8726BB99F2B2D90D2694597757B120CD2435C0098AD1B74C20004C25BA97" "73EAA4FBEC594EE17F8B25867EEB0F9F857C751116ADED68ADA2A1E9F9F4F40D18F0" "EC1221CA6A746FC5F4CDA2B8B5D0AB83834564ACF6FDBB1AB01D4BFBD1E2C0108FF5" "5FB3190C6D6DA4D95EA683EFA44935CFBC0BF5C6118ACC3768AEA9A98D06024841B8" "D07C234289D22A5E3948F199C397AA991C59A55BEA0C01E91902E039116946FEA135" "768011AF6B622C5AF366EF0196FC4EAEAA8127#)" " (g #07#)" " (y #5AFF87BC23D8B97AA62897A5C1CDFFA86C59F39EDBD6012B6F333CE23D872009B8C8" "D1E220E18CFCADFE0AA16346BA2EA132472FFEC746D11C6E758896052313BB501210" "2389C683A25A3464E9B35A192BAE0A3BB99C973126F7560D968C4A754901DC967354" "D61A90ACD56D90DCC4337AFB71FAE3FD18C60EB0D6DD173877DF5DB5199C4931FE4E" "5046F814422580E1162798406FC6554781142DBB7922D4B5B37A111F23761636090F" "6212681E133365191CF15753AE737F17943ED4B7506DE0A85C3B6D63227F9D65ADF8" "2C3DF0676C8F43B5B1C07D9AD4E6D0C812401D7DA7B9484DBA8CD3B73B19A95EB237" "D493E092AEA2371AA904009C8960B0969D12#)" " (x #0628C3903972C55BDC1BC4223075616D3F3BA57D55532DDB40CB14CF72070E0D28BF" "D0402B9088D25ED8FC#)" " ))"; static const char sample_public_elg_key_3072[] = "(public-key" " (elg" " (p #008EAA3497AFE3706E1A57FFA52E68C64C500731B58EBAFEB51C4A20AB15BA57FA72" "BA1510A4703D5AA6F05DB67E4A776F92AD08800577DC686D00B793167A5D79C997E0" "5B9A9E5974B4B68B4D71ED8EC37F2F45235D901997D72915643F058E712AA18275A2" "C6F9F7C2B9B7CD1E814D215F12A840800B546AEF2A2E6C077CDD1A322738FFD36DB2" "FA5420B5848EED870BC1A6CF55040AE8D2A5945F11AE2BCBE107B41A59EFDBD3B05C" "F4C876C02C9AEAE22CD4C86806A415302936E4C1E5AA59DBBCCD2F83C20941A29888" "A70ADB94D3B8A6489C46BF2C5219CD9FD2341EA21D4E68A4ECC468FD09D215FE96D4" "7AEA12FD22B2456D2CC13672FC7E9772A365C68668157C51E46966B6A1831C429BA0" "D513519713C49C13C5FC7C14BE0A117627B204C4478D0A93C6B57929E448C9B65BF2" "390E04BC5940320C0262FC1A221E7C796493432239A6F12BC62C5CF32E8ADBC1730C" "84C6E6E6BD95AF62835941F3F344AF46BFE5A8F629D5FA699FE37EF8B8C6A2484E42" "D226206FDF7D1FB93A5457#)" " (g #0B#)" " (y #18E734FF645AE169079AEAFC78772371089AD3088627ECF77034AFBDF33ADF594AAF" "3288F6979E0DB59CE3D2F0FEE031DFF187F1E4549D3C79668794CB19C14481ECDE2D" "D50861AB674F87A011D50D35F28E424D0D2353850899C2CDD0CC8FDBFC5A0CA395F0" "E605D46CBDD140DBEF426EBD638C9ADD83C195C45CE84ED2D2B21B87800C783A4F79" "12226FEFBDA01C66B254534A51765AF09687275AA80C5DFBA143A6262E47C547D7E2" "289413F8C5C56AED3FA7E5DF5526958E2294FE318AF590C0E720029C202563E6E686" "9EC810F39A859262FB6047C1D418CAA9047A00BDB127B44B69CF6BC8E6B3709B4C23" "79783C5F8457EFE23EDA6FF00D1DDCC29268FC4A6C18577BE2B7004089CBB824027A" "A53C86B51DB054CC83B4F50C8923E2E9431F0A77D741237226CC68591083A2E40171" "5C7B74100BB74003E2264F8B44A0B0BC5404C44218ABE65C04AA573877506CE4F48C" "9E3F8AD1CD8DD9F285DD015C2FC5DEBCFA5779AD87F0BBC62E9EC6246021AB450DB9" "4DDDEFAFD2C7C66E235D#)" " ))"; static const char sample_private_elg_key_3072[] = "(private-key" " (elg" " (p #008EAA3497AFE3706E1A57FFA52E68C64C500731B58EBAFEB51C4A20AB15BA57FA72" "BA1510A4703D5AA6F05DB67E4A776F92AD08800577DC686D00B793167A5D79C997E0" "5B9A9E5974B4B68B4D71ED8EC37F2F45235D901997D72915643F058E712AA18275A2" "C6F9F7C2B9B7CD1E814D215F12A840800B546AEF2A2E6C077CDD1A322738FFD36DB2" "FA5420B5848EED870BC1A6CF55040AE8D2A5945F11AE2BCBE107B41A59EFDBD3B05C" "F4C876C02C9AEAE22CD4C86806A415302936E4C1E5AA59DBBCCD2F83C20941A29888" "A70ADB94D3B8A6489C46BF2C5219CD9FD2341EA21D4E68A4ECC468FD09D215FE96D4" "7AEA12FD22B2456D2CC13672FC7E9772A365C68668157C51E46966B6A1831C429BA0" "D513519713C49C13C5FC7C14BE0A117627B204C4478D0A93C6B57929E448C9B65BF2" "390E04BC5940320C0262FC1A221E7C796493432239A6F12BC62C5CF32E8ADBC1730C" "84C6E6E6BD95AF62835941F3F344AF46BFE5A8F629D5FA699FE37EF8B8C6A2484E42" "D226206FDF7D1FB93A5457#)" " (g #0B#)" " (y #18E734FF645AE169079AEAFC78772371089AD3088627ECF77034AFBDF33ADF594AAF" "3288F6979E0DB59CE3D2F0FEE031DFF187F1E4549D3C79668794CB19C14481ECDE2D" "D50861AB674F87A011D50D35F28E424D0D2353850899C2CDD0CC8FDBFC5A0CA395F0" "E605D46CBDD140DBEF426EBD638C9ADD83C195C45CE84ED2D2B21B87800C783A4F79" "12226FEFBDA01C66B254534A51765AF09687275AA80C5DFBA143A6262E47C547D7E2" "289413F8C5C56AED3FA7E5DF5526958E2294FE318AF590C0E720029C202563E6E686" "9EC810F39A859262FB6047C1D418CAA9047A00BDB127B44B69CF6BC8E6B3709B4C23" "79783C5F8457EFE23EDA6FF00D1DDCC29268FC4A6C18577BE2B7004089CBB824027A" "A53C86B51DB054CC83B4F50C8923E2E9431F0A77D741237226CC68591083A2E40171" "5C7B74100BB74003E2264F8B44A0B0BC5404C44218ABE65C04AA573877506CE4F48C" "9E3F8AD1CD8DD9F285DD015C2FC5DEBCFA5779AD87F0BBC62E9EC6246021AB450DB9" "4DDDEFAFD2C7C66E235D#)" " (x #03A73F0389E470AAC831B039F8AA0C4EBD3A47DD083E32EEA08E4911236CD597C272" "9823D47A51C8535DA52FE6DAB3E8D1C20D#)" " ))"; #define BUG() do {fprintf ( stderr, "Ooops at %s:%d\n", __FILE__ , __LINE__ );\ exit(2);} while(0) static void show_sexp (const char *prefix, gcry_sexp_t a) { char *buf; size_t size; fputs (prefix, stderr); size = gcry_sexp_sprint (a, GCRYSEXP_FMT_ADVANCED, NULL, 0); buf = malloc (size); if (!buf) die ("out of core\n"); gcry_sexp_sprint (a, GCRYSEXP_FMT_ADVANCED, buf, size); fprintf (stderr, "%.*s", (int)size, buf); } static void progress_cb (void *cb_data, const char *what, int printchar, int current, int total) { (void)cb_data; if (single_char_progress) { fputc (printchar, stdout); fflush (stderr); } else { fprintf (stderr, PGM ": progress (%s %c %d %d)\n", what, printchar, current, total); fflush (stderr); } } static void random_bench (int very_strong) { char buf[128]; int i; printf ("%-10s", "random"); if (!very_strong) { start_timer (); for (i=0; i < 100; i++) gcry_randomize (buf, sizeof buf, GCRY_STRONG_RANDOM); stop_timer (); printf (" %s", elapsed_time (1)); } start_timer (); for (i=0; i < 100; i++) gcry_randomize (buf, 8, very_strong? GCRY_VERY_STRONG_RANDOM:GCRY_STRONG_RANDOM); stop_timer (); printf (" %s", elapsed_time (1)); putchar ('\n'); if (verbose) xgcry_control (GCRYCTL_DUMP_RANDOM_STATS); } static void md_bench ( const char *algoname ) { int algo; gcry_md_hd_t hd; int i, j, repcount; char buf_base[1000+15]; size_t bufsize = 1000; char *buf; char *largebuf_base; char *largebuf; char digest[512/8]; gcry_error_t err = GPG_ERR_NO_ERROR; if (!algoname) { for (i=1; i < 400; i++) if (in_fips_mode && i == GCRY_MD_MD5) ; /* Don't use MD5 in fips mode. */ else if ( !gcry_md_test_algo (i) ) md_bench (gcry_md_algo_name (i)); return; } buf = buf_base + ((16 - ((size_t)buf_base & 0x0f)) % buffer_alignment); algo = gcry_md_map_name (algoname); if (!algo) { fprintf (stderr, PGM ": invalid hash algorithm `%s'\n", algoname); exit (1); } err = gcry_md_open (&hd, algo, 0); if (err) { fprintf (stderr, PGM ": error opening hash algorithm `%s'\n", algoname); exit (1); } for (i=0; i < bufsize; i++) buf[i] = i; printf ("%-12s", gcry_md_algo_name (algo)); start_timer (); for (repcount=0; repcount < hash_repetitions; repcount++) for (i=0; i < 1000; i++) gcry_md_write (hd, buf, bufsize); gcry_md_final (hd); stop_timer (); printf (" %s", elapsed_time (1)); fflush (stdout); gcry_md_reset (hd); start_timer (); for (repcount=0; repcount < hash_repetitions; repcount++) for (i=0; i < 10000; i++) gcry_md_write (hd, buf, bufsize/10); gcry_md_final (hd); stop_timer (); printf (" %s", elapsed_time (1)); fflush (stdout); gcry_md_reset (hd); start_timer (); for (repcount=0; repcount < hash_repetitions; repcount++) for (i=0; i < 1000000; i++) gcry_md_write (hd, buf, 1); gcry_md_final (hd); stop_timer (); printf (" %s", elapsed_time (1)); fflush (stdout); start_timer (); for (repcount=0; repcount < hash_repetitions; repcount++) for (i=0; i < 1000; i++) for (j=0; j < bufsize; j++) gcry_md_putc (hd, buf[j]); gcry_md_final (hd); stop_timer (); printf (" %s", elapsed_time (1)); fflush (stdout); gcry_md_close (hd); /* Now 100 hash operations on 10000 bytes using the fast function. We initialize the buffer so that all memory pages are committed and we have repeatable values. */ if (gcry_md_get_algo_dlen (algo) > sizeof digest) die ("digest buffer too short\n"); if (gcry_md_get_algo_dlen (algo)) { largebuf_base = malloc (10000+15); if (!largebuf_base) die ("out of core\n"); largebuf = (largebuf_base + ((16 - ((size_t)largebuf_base & 0x0f)) % buffer_alignment)); for (i=0; i < 10000; i++) largebuf[i] = i; start_timer (); for (repcount=0; repcount < hash_repetitions; repcount++) for (i=0; i < 100; i++) gcry_md_hash_buffer (algo, digest, largebuf, 10000); stop_timer (); printf (" %s", elapsed_time (1)); free (largebuf_base); } putchar ('\n'); fflush (stdout); } static void mac_bench ( const char *algoname ) { int algo; gcry_mac_hd_t hd; int step, pos, j, i, repcount; char buf_base[1000+15]; size_t bufsize = 1000; char *buf; char mac[3][512]; char key[512]; unsigned int maclen, keylen; size_t macoutlen; gcry_error_t err = GPG_ERR_NO_ERROR; if (!algoname) { for (i=1; i < 600; i++) if (in_fips_mode && i == GCRY_MAC_HMAC_MD5) ; /* Don't use MD5 in fips mode. */ else if ( !gcry_mac_test_algo (i) ) mac_bench (gcry_mac_algo_name (i)); return; } buf = buf_base + ((16 - ((size_t)buf_base & 0x0f)) % buffer_alignment); algo = gcry_mac_map_name (algoname); if (!algo) { fprintf (stderr, PGM ": invalid hash algorithm `%s'\n", algoname); exit (1); } maclen = gcry_mac_get_algo_maclen (algo); if (maclen > sizeof(mac)) maclen = sizeof(mac); keylen = gcry_mac_get_algo_keylen (algo); if (keylen == 0) keylen = 32; if (keylen > sizeof(key)) keylen = sizeof(key); for (i=0; i < keylen; i++) key[i] = (keylen - i) ^ 0x54; err = gcry_mac_open (&hd, algo, 0, NULL); if (err) { fprintf (stderr, PGM ": error opening mac algorithm `%s': %s\n", algoname, gpg_strerror (err)); exit (1); } err = gcry_mac_setkey (hd, key, keylen); if (err) { fprintf (stderr, PGM ": error setting key for mac algorithm `%s': %s\n", algoname, gpg_strerror (err)); exit (1); } for (i=0; i < bufsize; i++) buf[i] = i; if (algo >= GCRY_MAC_POLY1305_AES && algo <= GCRY_MAC_POLY1305_SEED) { static const char iv[16] = { 1, 2, 3, 4, }; err = gcry_mac_setiv(hd, iv, sizeof(iv)); if (err) { fprintf (stderr, PGM ": error setting nonce for mac algorithm `%s': %s\n", algoname, gpg_strerror (err)); exit (1); } } printf ("%-20s", gcry_mac_algo_name (algo)); start_timer (); for (repcount=0; repcount < mac_repetitions; repcount++) for (i=0; i < 1000; i++) gcry_mac_write (hd, buf, bufsize); macoutlen = maclen; gcry_mac_read (hd, mac[0], &macoutlen); stop_timer (); printf (" %s", elapsed_time (1)); fflush (stdout); gcry_mac_reset (hd); start_timer (); for (repcount=0; repcount < mac_repetitions; repcount++) for (i=0; i < 1000; i++) for (step=bufsize/10, pos=0, j=0; j < 10; j++, pos+=step) gcry_mac_write (hd, &buf[pos], step); macoutlen = maclen; gcry_mac_read (hd, mac[1], &macoutlen); stop_timer (); printf (" %s", elapsed_time (1)); fflush (stdout); gcry_mac_reset (hd); start_timer (); for (repcount=0; repcount < mac_repetitions; repcount++) for (i=0; i < 1000; i++) for (step=bufsize/100, pos=0, j=0; j < 100; j++, pos+=step) gcry_mac_write (hd, &buf[pos], step); macoutlen = maclen; gcry_mac_read (hd, mac[2], &macoutlen); stop_timer (); printf (" %s", elapsed_time (1)); fflush (stdout); gcry_mac_close (hd); for (i=1; i < 3; i++) { if (memcmp(mac[i-1], mac[i], maclen)) { fprintf (stderr, PGM ": mac mismatch with algorithm `%s'\n", algoname); exit(1); } } putchar ('\n'); fflush (stdout); } static void ccm_aead_init(gcry_cipher_hd_t hd, size_t buflen, int authlen) { const int _L = 4; const int noncelen = 15 - _L; char nonce[noncelen]; u64 params[3]; gcry_error_t err = GPG_ERR_NO_ERROR; memset (nonce, 0x33, noncelen); err = gcry_cipher_setiv (hd, nonce, noncelen); if (err) { fprintf (stderr, "gcry_cipher_setiv failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } params[0] = buflen; /* encryptedlen */ params[1] = 0; /* aadlen */ params[2] = authlen; /* authtaglen */ err = gcry_cipher_ctl (hd, GCRYCTL_SET_CCM_LENGTHS, params, sizeof(params)); if (err) { fprintf (stderr, "gcry_cipher_setiv failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } } static void cipher_bench ( const char *algoname ) { static int header_printed; int algo; gcry_cipher_hd_t hd; int i; int keylen, blklen; char key[128]; char *outbuf, *buf; char *raw_outbuf, *raw_buf; size_t allocated_buflen, buflen; int repetitions; static const struct { int mode; const char *name; int blocked; void (* const aead_init)(gcry_cipher_hd_t hd, size_t buflen, int authlen); int req_blocksize; int authlen; int noncelen; int doublekey; } modes[] = { { GCRY_CIPHER_MODE_ECB, " ECB/Stream", 1 }, { GCRY_CIPHER_MODE_CBC, " CBC", 1 }, { GCRY_CIPHER_MODE_CFB, " CFB", 0 }, { GCRY_CIPHER_MODE_OFB, " OFB", 0 }, { GCRY_CIPHER_MODE_CTR, " CTR", 0 }, { GCRY_CIPHER_MODE_XTS, " XTS", 0, NULL, GCRY_XTS_BLOCK_LEN, 0, 0, 1 }, { GCRY_CIPHER_MODE_CCM, " CCM", 0, ccm_aead_init, GCRY_CCM_BLOCK_LEN, 8 }, { GCRY_CIPHER_MODE_GCM, " GCM", 0, NULL, GCRY_GCM_BLOCK_LEN, GCRY_GCM_BLOCK_LEN }, { GCRY_CIPHER_MODE_OCB, " OCB", 1, NULL, 16, 16, 15 }, + { GCRY_CIPHER_MODE_EAX, " EAX", 0, + NULL, 0, 8, 8 }, { GCRY_CIPHER_MODE_STREAM, "", 0 }, {0} }; int modeidx; gcry_error_t err = GPG_ERR_NO_ERROR; if (!algoname) { for (i=1; i < 400; i++) if ( !gcry_cipher_test_algo (i) ) cipher_bench (gcry_cipher_algo_name (i)); return; } if (large_buffers) { allocated_buflen = 1024 * 100; repetitions = 10; } else { allocated_buflen = 1024; repetitions = 1000; } repetitions *= cipher_repetitions; raw_buf = gcry_xcalloc (allocated_buflen+15, 1); buf = (raw_buf + ((16 - ((size_t)raw_buf & 0x0f)) % buffer_alignment)); outbuf = raw_outbuf = gcry_xmalloc (allocated_buflen+15); outbuf = (raw_outbuf + ((16 - ((size_t)raw_outbuf & 0x0f)) % buffer_alignment)); if (!header_printed) { if (cipher_repetitions != 1) printf ("Running each test %d times.\n", cipher_repetitions); printf ("%-12s", ""); for (modeidx=0; modes[modeidx].mode; modeidx++) if (*modes[modeidx].name) printf (" %-15s", modes[modeidx].name ); putchar ('\n'); printf ("%-12s", ""); for (modeidx=0; modes[modeidx].mode; modeidx++) if (*modes[modeidx].name) printf (" ---------------" ); putchar ('\n'); header_printed = 1; } algo = gcry_cipher_map_name (algoname); if (!algo) { fprintf (stderr, PGM ": invalid cipher algorithm `%s'\n", algoname); exit (1); } keylen = gcry_cipher_get_algo_keylen (algo); if (!keylen) { fprintf (stderr, PGM ": failed to get key length for algorithm `%s'\n", algoname); exit (1); } if ( keylen * 2 > sizeof key ) { fprintf (stderr, PGM ": algo %d, keylength problem (%d)\n", algo, keylen ); exit (1); } for (i=0; i < keylen * 2; i++) key[i] = i + (clock () & 0xff); blklen = gcry_cipher_get_algo_blklen (algo); if (!blklen) { fprintf (stderr, PGM ": failed to get block length for algorithm `%s'\n", algoname); exit (1); } printf ("%-12s", gcry_cipher_algo_name (algo)); fflush (stdout); for (modeidx=0; modes[modeidx].mode; modeidx++) { size_t modekeylen = keylen * (!!modes[modeidx].doublekey + 1); if ((blklen > 1 && modes[modeidx].mode == GCRY_CIPHER_MODE_STREAM) || (blklen == 1 && modes[modeidx].mode != GCRY_CIPHER_MODE_STREAM)) continue; if (modes[modeidx].req_blocksize > 0 && blklen != modes[modeidx].req_blocksize) { printf (" %7s %7s", "-", "-" ); continue; } for (i=0; i < sizeof buf; i++) buf[i] = i; err = gcry_cipher_open (&hd, algo, modes[modeidx].mode, 0); if (err) { fprintf (stderr, PGM ": error opening cipher `%s'\n", algoname); exit (1); } if (!cipher_with_keysetup) { err = gcry_cipher_setkey (hd, key, modekeylen); if (err) { fprintf (stderr, "gcry_cipher_setkey failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } } buflen = allocated_buflen; if (modes[modeidx].blocked) buflen = (buflen / blklen) * blklen; start_timer (); for (i=err=0; !err && i < repetitions; i++) { if (cipher_with_keysetup) { err = gcry_cipher_setkey (hd, key, modekeylen); if (err) { fprintf (stderr, "gcry_cipher_setkey failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } } if (modes[modeidx].noncelen) { char nonce[100]; size_t noncelen; noncelen = modes[modeidx].noncelen; if (noncelen > sizeof nonce) noncelen = sizeof nonce; memset (nonce, 42, noncelen); err = gcry_cipher_setiv (hd, nonce, noncelen); if (err) { fprintf (stderr, "gcry_cipher_setiv failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } } if (modes[modeidx].aead_init) { (*modes[modeidx].aead_init) (hd, buflen, modes[modeidx].authlen); gcry_cipher_final (hd); err = gcry_cipher_encrypt (hd, outbuf, buflen, buf, buflen); if (err) break; err = gcry_cipher_gettag (hd, outbuf, modes[modeidx].authlen); } else { err = gcry_cipher_encrypt (hd, outbuf, buflen, buf, buflen); } } stop_timer (); printf (" %s", elapsed_time (1)); fflush (stdout); gcry_cipher_close (hd); if (err) { fprintf (stderr, "gcry_cipher_encrypt failed: %s\n", gpg_strerror (err) ); exit (1); } err = gcry_cipher_open (&hd, algo, modes[modeidx].mode, 0); if (err) { fprintf (stderr, PGM ": error opening cipher `%s'/n", algoname); exit (1); } if (!cipher_with_keysetup) { err = gcry_cipher_setkey (hd, key, modekeylen); if (err) { fprintf (stderr, "gcry_cipher_setkey failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } } start_timer (); for (i=err=0; !err && i < repetitions; i++) { if (cipher_with_keysetup) { err = gcry_cipher_setkey (hd, key, modekeylen); if (err) { fprintf (stderr, "gcry_cipher_setkey failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } } if (modes[modeidx].noncelen) { char nonce[100]; size_t noncelen; noncelen = modes[modeidx].noncelen; if (noncelen > sizeof nonce) noncelen = sizeof nonce; memset (nonce, 42, noncelen); err = gcry_cipher_setiv (hd, nonce, noncelen); if (err) { fprintf (stderr, "gcry_cipher_setiv failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } } if (modes[modeidx].aead_init) { (*modes[modeidx].aead_init) (hd, buflen, modes[modeidx].authlen); gcry_cipher_final (hd); err = gcry_cipher_decrypt (hd, outbuf, buflen, buf, buflen); if (err) break; err = gcry_cipher_checktag (hd, outbuf, modes[modeidx].authlen); if (gpg_err_code (err) == GPG_ERR_CHECKSUM) err = 0; } else { gcry_cipher_final (hd); err = gcry_cipher_decrypt (hd, outbuf, buflen, buf, buflen); } } stop_timer (); printf (" %s", elapsed_time (1)); fflush (stdout); gcry_cipher_close (hd); if (err) { fprintf (stderr, "gcry_cipher_decrypt failed: %s\n", gpg_strerror (err) ); exit (1); } } putchar ('\n'); gcry_free (raw_buf); gcry_free (raw_outbuf); } static void rsa_bench (int iterations, int print_header, int no_blinding) { gpg_error_t err; int p_sizes[] = { 1024, 2048, 3072, 4096 }; int testno; if (print_header) printf ("Algorithm generate %4d*priv %4d*public\n" "------------------------------------------------\n", iterations, iterations ); for (testno=0; testno < DIM (p_sizes); testno++) { gcry_sexp_t key_spec, key_pair, pub_key, sec_key; gcry_mpi_t x; gcry_sexp_t data; gcry_sexp_t sig = NULL; int count; unsigned nbits = p_sizes[testno]; printf ("RSA %3d bit ", nbits); fflush (stdout); if (in_fips_mode && !(nbits == 2048 || nbits == 3072)) { puts ("[skipped in fips mode]"); continue; } err = gcry_sexp_build (&key_spec, NULL, gcry_fips_mode_active () ? "(genkey (RSA (nbits %d)))" : "(genkey (RSA (nbits %d)(transient-key)))", nbits); if (err) die ("creating S-expression failed: %s\n", gcry_strerror (err)); start_timer (); err = gcry_pk_genkey (&key_pair, key_spec); if (err) die ("creating %d bit RSA key failed: %s\n", nbits, gcry_strerror (err)); pub_key = gcry_sexp_find_token (key_pair, "public-key", 0); if (! pub_key) die ("public part missing in key\n"); sec_key = gcry_sexp_find_token (key_pair, "private-key", 0); if (! sec_key) die ("private part missing in key\n"); gcry_sexp_release (key_pair); gcry_sexp_release (key_spec); stop_timer (); printf (" %s", elapsed_time (1)); fflush (stdout); x = gcry_mpi_new (nbits); gcry_mpi_randomize (x, nbits-8, GCRY_WEAK_RANDOM); err = gcry_sexp_build (&data, NULL, "(data (flags raw) (value %m))", x); gcry_mpi_release (x); if (err) die ("converting data failed: %s\n", gcry_strerror (err)); start_timer (); for (count=0; count < iterations; count++) { gcry_sexp_release (sig); err = gcry_pk_sign (&sig, data, sec_key); if (err) die ("signing failed (%d): %s\n", count, gpg_strerror (err)); } stop_timer (); printf (" %s", elapsed_time (1)); fflush (stdout); start_timer (); for (count=0; count < iterations; count++) { err = gcry_pk_verify (sig, data, pub_key); if (err) { putchar ('\n'); show_sexp ("seckey:\n", sec_key); show_sexp ("data:\n", data); show_sexp ("sig:\n", sig); die ("verify failed (%d): %s\n", count, gpg_strerror (err)); } } stop_timer (); printf (" %s", elapsed_time (1)); if (no_blinding) { fflush (stdout); x = gcry_mpi_new (nbits); gcry_mpi_randomize (x, nbits-8, GCRY_WEAK_RANDOM); err = gcry_sexp_build (&data, NULL, "(data (flags no-blinding) (value %m))", x); gcry_mpi_release (x); if (err) die ("converting data failed: %s\n", gcry_strerror (err)); start_timer (); for (count=0; count < iterations; count++) { gcry_sexp_release (sig); err = gcry_pk_sign (&sig, data, sec_key); if (err) die ("signing failed (%d): %s\n", count, gpg_strerror (err)); } stop_timer (); printf (" %s", elapsed_time (1)); fflush (stdout); } putchar ('\n'); fflush (stdout); gcry_sexp_release (sig); gcry_sexp_release (data); gcry_sexp_release (sec_key); gcry_sexp_release (pub_key); } } static void elg_bench (int iterations, int print_header) { gpg_error_t err; gcry_sexp_t pub_key[3], sec_key[3]; int p_sizes[3] = { 1024, 2048, 3072 }; gcry_sexp_t data = NULL; gcry_sexp_t enc = NULL; gcry_sexp_t plain = NULL; int i, j; err = gcry_sexp_sscan (pub_key+0, NULL, sample_public_elg_key_1024, strlen (sample_public_elg_key_1024)); if (!err) err = gcry_sexp_sscan (sec_key+0, NULL, sample_private_elg_key_1024, strlen (sample_private_elg_key_1024)); if (!err) err = gcry_sexp_sscan (pub_key+1, NULL, sample_public_elg_key_2048, strlen (sample_public_elg_key_2048)); if (!err) err = gcry_sexp_sscan (sec_key+1, NULL, sample_private_elg_key_2048, strlen (sample_private_elg_key_2048)); if (!err) err = gcry_sexp_sscan (pub_key+2, NULL, sample_public_elg_key_3072, strlen (sample_public_elg_key_3072)); if (!err) err = gcry_sexp_sscan (sec_key+2, NULL, sample_private_elg_key_3072, strlen (sample_private_elg_key_3072)); if (err) { fprintf (stderr, PGM ": converting sample keys failed: %s\n", gcry_strerror (err)); exit (1); } if (print_header) printf ("Algorithm generate %4d*priv %4d*public\n" "------------------------------------------------\n", iterations, iterations ); for (i=0; i < DIM (p_sizes); i++) { char timerbuf1[100]; { gcry_mpi_t x = gcry_mpi_new (p_sizes[i]); gcry_mpi_randomize (x, p_sizes[i] - 16, GCRY_WEAK_RANDOM); err = gcry_sexp_build (&data, NULL, "(data (flags raw) (value %m))", x); gcry_mpi_release (x); } if (err) { fprintf (stderr, PGM ": converting data failed: %s\n", gcry_strerror (err)); exit (1); } printf ("ELG %d bit -", p_sizes[i]); fflush (stdout); start_timer (); for (j=0; j < iterations; j++) { gcry_sexp_release (enc); err = gcry_pk_encrypt (&enc, data, pub_key[i]); if (err) { putchar ('\n'); fprintf (stderr, PGM ": encrypt failed: %s\n", gpg_strerror (err)); exit (1); } } stop_timer (); snprintf (timerbuf1, sizeof timerbuf1, " %s", elapsed_time (1)); fflush (stdout); start_timer (); for (j=0; j < iterations; j++) { gcry_sexp_release (plain); err = gcry_pk_decrypt (&plain, enc, sec_key[i]); if (err) { putchar ('\n'); fprintf (stderr, PGM ": decrypt failed: %s\n", gpg_strerror (err)); exit (1); } } stop_timer (); printf (" %s %s\n", elapsed_time (1), timerbuf1); fflush (stdout); gcry_sexp_release (plain); plain = NULL; gcry_sexp_release (enc); enc = NULL; gcry_sexp_release (data); data = NULL; } for (i=0; i < DIM (p_sizes); i++) { gcry_sexp_release (sec_key[i]); gcry_sexp_release (pub_key[i]); } } static void dsa_bench (int iterations, int print_header) { gpg_error_t err; gcry_sexp_t pub_key[3], sec_key[3]; int p_sizes[3] = { 1024, 2048, 3072 }; int q_sizes[3] = { 160, 224, 256 }; gcry_sexp_t data; gcry_sexp_t sig = NULL; int i, j; err = gcry_sexp_sscan (pub_key+0, NULL, sample_public_dsa_key_1024, strlen (sample_public_dsa_key_1024)); if (!err) err = gcry_sexp_sscan (sec_key+0, NULL, sample_private_dsa_key_1024, strlen (sample_private_dsa_key_1024)); if (!err) err = gcry_sexp_sscan (pub_key+1, NULL, sample_public_dsa_key_2048, strlen (sample_public_dsa_key_2048)); if (!err) err = gcry_sexp_sscan (sec_key+1, NULL, sample_private_dsa_key_2048, strlen (sample_private_dsa_key_2048)); if (!err) err = gcry_sexp_sscan (pub_key+2, NULL, sample_public_dsa_key_3072, strlen (sample_public_dsa_key_3072)); if (!err) err = gcry_sexp_sscan (sec_key+2, NULL, sample_private_dsa_key_3072, strlen (sample_private_dsa_key_3072)); if (err) { fprintf (stderr, PGM ": converting sample keys failed: %s\n", gcry_strerror (err)); exit (1); } if (print_header) printf ("Algorithm generate %4d*priv %4d*public\n" "------------------------------------------------\n", iterations, iterations ); for (i=0; i < DIM (q_sizes); i++) { gcry_mpi_t x; x = gcry_mpi_new (q_sizes[i]); gcry_mpi_randomize (x, q_sizes[i], GCRY_WEAK_RANDOM); err = gcry_sexp_build (&data, NULL, "(data (flags raw) (value %m))", x); gcry_mpi_release (x); if (err) { fprintf (stderr, PGM ": converting data failed: %s\n", gcry_strerror (err)); exit (1); } printf ("DSA %d/%d -", p_sizes[i], q_sizes[i]); fflush (stdout); start_timer (); for (j=0; j < iterations; j++) { gcry_sexp_release (sig); err = gcry_pk_sign (&sig, data, sec_key[i]); if (err) { putchar ('\n'); fprintf (stderr, PGM ": signing failed: %s\n", gpg_strerror (err)); exit (1); } } stop_timer (); printf (" %s", elapsed_time (1)); fflush (stdout); start_timer (); for (j=0; j < iterations; j++) { err = gcry_pk_verify (sig, data, pub_key[i]); if (err) { putchar ('\n'); fprintf (stderr, PGM ": verify failed: %s\n", gpg_strerror (err)); exit (1); } } stop_timer (); printf (" %s\n", elapsed_time (1)); fflush (stdout); gcry_sexp_release (sig); gcry_sexp_release (data); sig = NULL; } for (i=0; i < DIM (q_sizes); i++) { gcry_sexp_release (sec_key[i]); gcry_sexp_release (pub_key[i]); } } static void ecc_bench (int iterations, int print_header) { #if USE_ECC gpg_error_t err; const char *p_sizes[] = { "192", "224", "256", "384", "521", "Ed25519", "gost256", "gost512" }; int testno; if (print_header) printf ("Algorithm generate %4d*priv %4d*public\n" "------------------------------------------------\n", iterations, iterations ); for (testno=0; testno < DIM (p_sizes); testno++) { gcry_sexp_t key_spec, key_pair, pub_key, sec_key; gcry_mpi_t x; gcry_sexp_t data; gcry_sexp_t sig = NULL; int count; int p_size; int is_ed25519; int is_gost; is_ed25519 = !strcmp (p_sizes[testno], "Ed25519"); is_gost = !strncmp (p_sizes[testno], "gost", 4); /* Only P-{224,256,384,521} are allowed in fips mode */ if (gcry_fips_mode_active() && (is_ed25519 || is_gost || !strcmp (p_sizes[testno], "192"))) continue; if (is_ed25519) { p_size = 256; printf ("EdDSA Ed25519 "); fflush (stdout); } else if (is_gost) { p_size = atoi (p_sizes[testno] + 4); printf ("GOST %3d bit ", p_size); fflush (stdout); } else { p_size = atoi (p_sizes[testno]); printf ("ECDSA %3d bit ", p_size); } fflush (stdout); if (is_ed25519) err = gcry_sexp_build (&key_spec, NULL, "(genkey (ecdsa (curve \"Ed25519\")" "(flags eddsa)))"); else if (is_gost) err = gcry_sexp_build (&key_spec, NULL, "(genkey (ecdsa (curve %s)))", p_size == 256 ? "GOST2001-test" : "GOST2012-test"); else err = gcry_sexp_build (&key_spec, NULL, "(genkey (ECDSA (nbits %d)))", p_size); if (err) die ("creating S-expression failed: %s\n", gcry_strerror (err)); start_timer (); err = gcry_pk_genkey (&key_pair, key_spec); if (err) die ("creating %d bit ECC key failed: %s\n", p_size, gcry_strerror (err)); if (verbose > 2) show_sexp ("ECC key:\n", key_pair); pub_key = gcry_sexp_find_token (key_pair, "public-key", 0); if (! pub_key) die ("public part missing in key\n"); sec_key = gcry_sexp_find_token (key_pair, "private-key", 0); if (! sec_key) die ("private part missing in key\n"); gcry_sexp_release (key_pair); gcry_sexp_release (key_spec); stop_timer (); printf (" %s", elapsed_time (1)); fflush (stdout); x = gcry_mpi_new (p_size); gcry_mpi_randomize (x, p_size, GCRY_WEAK_RANDOM); if (is_ed25519) err = gcry_sexp_build (&data, NULL, "(data (flags eddsa)(hash-algo sha512)" " (value %m))", x); else if (is_gost) err = gcry_sexp_build (&data, NULL, "(data (flags gost) (value %m))", x); else err = gcry_sexp_build (&data, NULL, "(data (flags raw) (value %m))", x); gcry_mpi_release (x); if (err) die ("converting data failed: %s\n", gcry_strerror (err)); start_timer (); for (count=0; count < iterations; count++) { gcry_sexp_release (sig); err = gcry_pk_sign (&sig, data, sec_key); if (err) { if (verbose) { putc ('\n', stderr); show_sexp ("signing key:\n", sec_key); show_sexp ("signed data:\n", data); } die ("signing failed: %s\n", gpg_strerror (err)); } } stop_timer (); printf (" %s", elapsed_time (1)); fflush (stdout); start_timer (); for (count=0; count < iterations; count++) { err = gcry_pk_verify (sig, data, pub_key); if (err) { putchar ('\n'); show_sexp ("seckey:\n", sec_key); show_sexp ("data:\n", data); show_sexp ("sig:\n", sig); die ("verify failed: %s\n", gpg_strerror (err)); } } stop_timer (); printf (" %s\n", elapsed_time (1)); fflush (stdout); gcry_sexp_release (sig); gcry_sexp_release (data); gcry_sexp_release (sec_key); gcry_sexp_release (pub_key); } #endif /*USE_ECC*/ } static void do_powm ( const char *n_str, const char *e_str, const char *m_str) { gcry_mpi_t e, n, msg, cip; gcry_error_t err; int i; err = gcry_mpi_scan (&n, GCRYMPI_FMT_HEX, n_str, 0, 0); if (err) BUG (); err = gcry_mpi_scan (&e, GCRYMPI_FMT_HEX, e_str, 0, 0); if (err) BUG (); err = gcry_mpi_scan (&msg, GCRYMPI_FMT_HEX, m_str, 0, 0); if (err) BUG (); cip = gcry_mpi_new (0); start_timer (); for (i=0; i < 1000; i++) gcry_mpi_powm (cip, msg, e, n); stop_timer (); printf (" %s", elapsed_time (1)); fflush (stdout); /* { */ /* char *buf; */ /* if (gcry_mpi_aprint (GCRYMPI_FMT_HEX, (void**)&buf, NULL, cip)) */ /* BUG (); */ /* printf ("result: %s\n", buf); */ /* gcry_free (buf); */ /* } */ gcry_mpi_release (cip); gcry_mpi_release (msg); gcry_mpi_release (n); gcry_mpi_release (e); } static void mpi_bench (void) { printf ("%-10s", "powm"); fflush (stdout); do_powm ( "20A94417D4D5EF2B2DA99165C7DC87DADB3979B72961AF90D09D59BA24CB9A10166FDCCC9C659F2B9626EC23F3FA425F564A072BA941B03FA81767CC289E4", "29", "B870187A323F1ECD5B8A0B4249507335A1C4CE8394F38FD76B08C78A42C58F6EA136ACF90DFE8603697B1694A3D81114D6117AC1811979C51C4DD013D52F8" ); do_powm ( "20A94417D4D5EF2B2DA99165C7DC87DADB3979B72961AF90D09D59BA24CB9A10166FDCCC9C659F2B9626EC23F3FA425F564A072BA941B03FA81767CC289E41071F0246879A442658FBD18C1771571E7073EEEB2160BA0CBFB3404D627069A6CFBD53867AD2D9D40231648000787B5C84176B4336144644AE71A403CA40716", "29", "B870187A323F1ECD5B8A0B4249507335A1C4CE8394F38FD76B08C78A42C58F6EA136ACF90DFE8603697B1694A3D81114D6117AC1811979C51C4DD013D52F8FC4EE4BB446B83E48ABED7DB81CBF5E81DE4759E8D68AC985846D999F96B0D8A80E5C69D272C766AB8A23B40D50A4FA889FBC2BD2624222D8EB297F4BAEF8593847" ); do_powm ( "20A94417D4D5EF2B2DA99165C7DC87DADB3979B72961AF90D09D59BA24CB9A10166FDCCC9C659F2B9626EC23F3FA425F564A072BA941B03FA81767CC289E41071F0246879A442658FBD18C1771571E7073EEEB2160BA0CBFB3404D627069A6CFBD53867AD2D9D40231648000787B5C84176B4336144644AE71A403CA4071620A94417D4D5EF2B2DA99165C7DC87DADB3979B72961AF90D09D59BA24CB9A10166FDCCC9C659F2B9626EC23F3FA425F564A072BA941B03FA81767CC289E41071F0246879A442658FBD18C1771571E7073EEEB2160BA0CBFB3404D627069A6CFBD53867AD2D9D40231648000787B5C84176B4336144644AE71A403CA40716", "29", "B870187A323F1ECD5B8A0B4249507335A1C4CE8394F38FD76B08C78A42C58F6EA136ACF90DFE8603697B1694A3D81114D6117AC1811979C51C4DD013D52F8FC4EE4BB446B83E48ABED7DB81CBF5E81DE4759E8D68AC985846D999F96B0D8A80E5C69D272C766AB8A23B40D50A4FA889FBC2BD2624222D8EB297F4BAEF8593847B870187A323F1ECD5B8A0B4249507335A1C4CE8394F38FD76B08C78A42C58F6EA136ACF90DFE8603697B1694A3D81114D6117AC1811979C51C4DD013D52F8FC4EE4BB446B83E48ABED7DB81CBF5E81DE4759E8D68AC985846D999F96B0D8A80E5C69D272C766AB8A23B40D50A4FA889FBC2BD2624222D8EB297F4BAEF8593847" ); putchar ('\n'); } static void prime_bench (void) { gpg_error_t err; int i; gcry_mpi_t prime; int old_prog = single_char_progress; single_char_progress = 1; if (!with_progress) printf ("%-10s", "prime"); fflush (stdout); start_timer (); for (i=0; i < 10; i++) { if (with_progress) fputs ("primegen ", stdout); err = gcry_prime_generate (&prime, 1024, 0, NULL, NULL, NULL, GCRY_WEAK_RANDOM, GCRY_PRIME_FLAG_SECRET); if (with_progress) { fputc ('\n', stdout); fflush (stdout); } if (err) { fprintf (stderr, PGM ": error creating prime: %s\n", gpg_strerror (err)); exit (1); } gcry_mpi_release (prime); } stop_timer (); if (with_progress) printf ("%-10s", "prime"); printf (" %s\n", elapsed_time (1)); fflush (stdout); single_char_progress = old_prog; } int main( int argc, char **argv ) { int last_argc = -1; int no_blinding = 0; int use_random_daemon = 0; int use_secmem = 0; int pk_count = 100; buffer_alignment = 1; if (argc) { argc--; argv++; } /* We skip this test if we are running under the test suite (no args and srcdir defined) and GCRYPT_NO_BENCHMARKS is set. */ if (!argc && getenv ("srcdir") && getenv ("GCRYPT_NO_BENCHMARKS")) exit (77); if (getenv ("GCRYPT_IN_REGRESSION_TEST")) { in_regression_test = 1; pk_count = 10; } while (argc && last_argc != argc ) { last_argc = argc; if (!strcmp (*argv, "--")) { argc--; argv++; break; } else if (!strcmp (*argv, "--help")) { fputs ("usage: benchmark " "[md|mac|cipher|random|mpi|rsa|dsa|ecc|prime [algonames]]\n", stdout); exit (0); } else if (!strcmp (*argv, "--verbose")) { verbose++; argc--; argv++; } else if (!strcmp (*argv, "--debug")) { verbose += 2; debug++; argc--; argv++; } else if (!strcmp (*argv, "--use-random-daemon")) { use_random_daemon = 1; argc--; argv++; } else if (!strcmp (*argv, "--use-secmem")) { use_secmem = 1; argc--; argv++; } else if (!strcmp (*argv, "--prefer-standard-rng")) { /* This is anyway the default, but we may want to use it for debugging. */ xgcry_control (GCRYCTL_SET_PREFERRED_RNG_TYPE, GCRY_RNG_TYPE_STANDARD); argc--; argv++; } else if (!strcmp (*argv, "--prefer-fips-rng")) { xgcry_control (GCRYCTL_SET_PREFERRED_RNG_TYPE, GCRY_RNG_TYPE_FIPS); argc--; argv++; } else if (!strcmp (*argv, "--prefer-system-rng")) { xgcry_control (GCRYCTL_SET_PREFERRED_RNG_TYPE, GCRY_RNG_TYPE_SYSTEM); argc--; argv++; } else if (!strcmp (*argv, "--no-blinding")) { no_blinding = 1; argc--; argv++; } else if (!strcmp (*argv, "--large-buffers")) { large_buffers = 1; argc--; argv++; } else if (!strcmp (*argv, "--cipher-repetitions")) { argc--; argv++; if (argc) { cipher_repetitions = atoi(*argv); argc--; argv++; } } else if (!strcmp (*argv, "--cipher-with-keysetup")) { cipher_with_keysetup = 1; argc--; argv++; } else if (!strcmp (*argv, "--hash-repetitions")) { argc--; argv++; if (argc) { hash_repetitions = atoi(*argv); argc--; argv++; } } else if (!strcmp (*argv, "--mac-repetitions")) { argc--; argv++; if (argc) { mac_repetitions = atoi(*argv); argc--; argv++; } } else if (!strcmp (*argv, "--pk-count")) { argc--; argv++; if (argc) { pk_count = atoi(*argv); argc--; argv++; } } else if (!strcmp (*argv, "--alignment")) { argc--; argv++; if (argc) { buffer_alignment = atoi(*argv); argc--; argv++; } } else if (!strcmp (*argv, "--disable-hwf")) { argc--; argv++; if (argc) { if (gcry_control (GCRYCTL_DISABLE_HWF, *argv, NULL)) fprintf (stderr, PGM ": unknown hardware feature `%s'" " - option ignored\n", *argv); argc--; argv++; } } else if (!strcmp (*argv, "--fips")) { argc--; argv++; /* This command needs to be called before gcry_check_version. */ xgcry_control (GCRYCTL_FORCE_FIPS_MODE, 0); } else if (!strcmp (*argv, "--progress")) { argc--; argv++; with_progress = 1; } } if (buffer_alignment < 1 || buffer_alignment > 16) die ("value for --alignment must be in the range 1 to 16\n"); xgcry_control (GCRYCTL_SET_VERBOSITY, (int)verbose); if (!gcry_check_version (GCRYPT_VERSION)) { fprintf (stderr, PGM ": version mismatch; pgm=%s, library=%s\n", GCRYPT_VERSION, gcry_check_version (NULL)); exit (1); } if (debug) xgcry_control (GCRYCTL_SET_DEBUG_FLAGS, 1u , 0); if (gcry_fips_mode_active ()) in_fips_mode = 1; else if (!use_secmem) xgcry_control (GCRYCTL_DISABLE_SECMEM, 0); if (use_random_daemon) xgcry_control (GCRYCTL_USE_RANDOM_DAEMON, 1); if (with_progress) gcry_set_progress_handler (progress_cb, NULL); xgcry_control (GCRYCTL_INITIALIZATION_FINISHED, 0); if (cipher_repetitions < 1) cipher_repetitions = 1; if (hash_repetitions < 1) hash_repetitions = 1; if (mac_repetitions < 1) mac_repetitions = 1; if (in_regression_test) fputs ("Note: " PGM " running in quick regression test mode.\n", stdout); if ( !argc ) { xgcry_control (GCRYCTL_ENABLE_QUICK_RANDOM, 0); md_bench (NULL); putchar ('\n'); mac_bench (NULL); putchar ('\n'); cipher_bench (NULL); putchar ('\n'); rsa_bench (pk_count, 1, no_blinding); elg_bench (pk_count, 0); dsa_bench (pk_count, 0); ecc_bench (pk_count, 0); putchar ('\n'); mpi_bench (); putchar ('\n'); random_bench (0); } else if ( !strcmp (*argv, "random") || !strcmp (*argv, "strongrandom")) { if (argc == 1) random_bench ((**argv == 's')); else if (argc == 2) { xgcry_control (GCRYCTL_SET_RANDOM_SEED_FILE, argv[1]); random_bench ((**argv == 's')); xgcry_control (GCRYCTL_UPDATE_RANDOM_SEED_FILE); } else fputs ("usage: benchmark [strong]random [seedfile]\n", stdout); } else if ( !strcmp (*argv, "md")) { if (argc == 1) md_bench (NULL); else for (argc--, argv++; argc; argc--, argv++) md_bench ( *argv ); } else if ( !strcmp (*argv, "mac")) { if (argc == 1) mac_bench (NULL); else for (argc--, argv++; argc; argc--, argv++) mac_bench ( *argv ); } else if ( !strcmp (*argv, "cipher")) { if (argc == 1) cipher_bench (NULL); else for (argc--, argv++; argc; argc--, argv++) cipher_bench ( *argv ); } else if ( !strcmp (*argv, "mpi")) { mpi_bench (); } else if ( !strcmp (*argv, "pubkey")) { xgcry_control (GCRYCTL_ENABLE_QUICK_RANDOM, 0); rsa_bench (pk_count, 1, no_blinding); elg_bench (pk_count, 0); dsa_bench (pk_count, 0); ecc_bench (pk_count, 0); } else if ( !strcmp (*argv, "rsa")) { xgcry_control (GCRYCTL_ENABLE_QUICK_RANDOM, 0); rsa_bench (pk_count, 1, no_blinding); } else if ( !strcmp (*argv, "elg")) { xgcry_control (GCRYCTL_ENABLE_QUICK_RANDOM, 0); elg_bench (pk_count, 1); } else if ( !strcmp (*argv, "dsa")) { xgcry_control (GCRYCTL_ENABLE_QUICK_RANDOM, 0); dsa_bench (pk_count, 1); } else if ( !strcmp (*argv, "ecc")) { xgcry_control (GCRYCTL_ENABLE_QUICK_RANDOM, 0); ecc_bench (pk_count, 1); } else if ( !strcmp (*argv, "prime")) { xgcry_control (GCRYCTL_ENABLE_QUICK_RANDOM, 0); prime_bench (); } else { fprintf (stderr, PGM ": bad arguments\n"); return 1; } if (in_fips_mode && !gcry_fips_mode_active ()) fprintf (stderr, PGM ": FIPS mode is not anymore active\n"); return 0; }