diff --git a/cipher/dsa.c b/cipher/dsa.c index d5b00912..e559f9f5 100644 --- a/cipher/dsa.c +++ b/cipher/dsa.c @@ -1,1456 +1,1456 @@ /* dsa.c - DSA signature algorithm * Copyright (C) 1998, 2000, 2001, 2002, 2003, * 2006, 2008 Free Software Foundation, Inc. * Copyright (C) 2013 g10 Code GmbH. * * This file is part of Libgcrypt. * * Libgcrypt is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2.1 of * the License, or (at your option) any later version. * * Libgcrypt is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program; if not, see . */ #include #include #include #include #include "g10lib.h" #include "mpi.h" #include "cipher.h" #include "pubkey-internal.h" typedef struct { gcry_mpi_t p; /* prime */ gcry_mpi_t q; /* group order */ gcry_mpi_t g; /* group generator */ gcry_mpi_t y; /* g^x mod p */ } DSA_public_key; typedef struct { gcry_mpi_t p; /* prime */ gcry_mpi_t q; /* group order */ gcry_mpi_t g; /* group generator */ gcry_mpi_t y; /* g^x mod p */ gcry_mpi_t x; /* secret exponent */ } DSA_secret_key; /* A structure used to hold domain parameters. */ typedef struct { gcry_mpi_t p; /* prime */ gcry_mpi_t q; /* group order */ gcry_mpi_t g; /* group generator */ } dsa_domain_t; static const char *dsa_names[] = { "dsa", "openpgp-dsa", NULL, }; /* A sample 1024 bit DSA key used for the selftests. Not anymore * used, kept only for reference. */ #if 0 static const char sample_secret_key_1024[] = "(private-key" " (dsa" " (p #00AD7C0025BA1A15F775F3F2D673718391D00456978D347B33D7B49E7F32EDAB" " 96273899DD8B2BB46CD6ECA263FAF04A28903503D59062A8865D2AE8ADFB5191" " CF36FFB562D0E2F5809801A1F675DAE59698A9E01EFE8D7DCFCA084F4C6F5A44" " 44D499A06FFAEA5E8EF5E01F2FD20A7B7EF3F6968AFBA1FB8D91F1559D52D8777B#)" " (q #00EB7B5751D25EBBB7BD59D920315FD840E19AEBF9#)" " (g #1574363387FDFD1DDF38F4FBE135BB20C7EE4772FB94C337AF86EA8E49666503" " AE04B6BE81A2F8DD095311E0217ACA698A11E6C5D33CCDAE71498ED35D13991E" " B02F09AB40BD8F4C5ED8C75DA779D0AE104BC34C960B002377068AB4B5A1F984" " 3FBA91F537F1B7CAC4D8DD6D89B0D863AF7025D549F9C765D2FC07EE208F8D15#)" " (y #64B11EF8871BE4AB572AA810D5D3CA11A6CDBC637A8014602C72960DB135BF46" " A1816A724C34F87330FC9E187C5D66897A04535CC2AC9164A7150ABFA8179827" " 6E45831AB811EEE848EBB24D9F5F2883B6E5DDC4C659DEF944DCFD80BF4D0A20" " 42CAA7DC289F0C5A9D155F02D3D551DB741A81695B74D4C8F477F9C7838EB0FB#)" " (x #11D54E4ADBD3034160F2CED4B7CD292A4EBF3EC0#)))"; /* A sample 1024 bit DSA key used for the selftests (public only). */ static const char sample_public_key_1024[] = "(public-key" " (dsa" " (p #00AD7C0025BA1A15F775F3F2D673718391D00456978D347B33D7B49E7F32EDAB" " 96273899DD8B2BB46CD6ECA263FAF04A28903503D59062A8865D2AE8ADFB5191" " CF36FFB562D0E2F5809801A1F675DAE59698A9E01EFE8D7DCFCA084F4C6F5A44" " 44D499A06FFAEA5E8EF5E01F2FD20A7B7EF3F6968AFBA1FB8D91F1559D52D8777B#)" " (q #00EB7B5751D25EBBB7BD59D920315FD840E19AEBF9#)" " (g #1574363387FDFD1DDF38F4FBE135BB20C7EE4772FB94C337AF86EA8E49666503" " AE04B6BE81A2F8DD095311E0217ACA698A11E6C5D33CCDAE71498ED35D13991E" " B02F09AB40BD8F4C5ED8C75DA779D0AE104BC34C960B002377068AB4B5A1F984" " 3FBA91F537F1B7CAC4D8DD6D89B0D863AF7025D549F9C765D2FC07EE208F8D15#)" " (y #64B11EF8871BE4AB572AA810D5D3CA11A6CDBC637A8014602C72960DB135BF46" " A1816A724C34F87330FC9E187C5D66897A04535CC2AC9164A7150ABFA8179827" " 6E45831AB811EEE848EBB24D9F5F2883B6E5DDC4C659DEF944DCFD80BF4D0A20" " 42CAA7DC289F0C5A9D155F02D3D551DB741A81695B74D4C8F477F9C7838EB0FB#)))"; #endif /*0*/ /* 2048 DSA key from RFC 6979 A.2.2 */ static const char sample_public_key_2048[] = "(public-key" " (dsa" " (p #9DB6FB5951B66BB6FE1E140F1D2CE5502374161FD6538DF1648218642F0B5C48C8F7A41AADFA187324B87674FA1822B00F1ECF8136943D7C55757264E5A1A44FFE012E9936E00C1D3E9310B01C7D179805D3058B2A9F4BB6F9716BFE6117C6B5B3CC4D9BE341104AD4A80AD6C94E005F4B993E14F091EB51743BF33050C38DE235567E1B34C3D6A5C0CEAA1A0F368213C3D19843D0B4B09DCB9FC72D39C8DE41F1BF14D4BB4563CA28371621CAD3324B6A2D392145BEBFAC748805236F5CA2FE92B871CD8F9C36D3292B5509CA8CAA77A2ADFC7BFD77DDA6F71125A7456FEA153E433256A2261C6A06ED3693797E7995FAD5AABBCFBE3EDA2741E375404AE25B#)" " (q #F2C3119374CE76C9356990B465374A17F23F9ED35089BD969F61C6DDE9998C1F#)" " (g #5C7FF6B06F8F143FE8288433493E4769C4D988ACE5BE25A0E24809670716C613D7B0CEE6932F8FAA7C44D2CB24523DA53FBE4F6EC3595892D1AA58C4328A06C46A15662E7EAA703A1DECF8BBB2D05DBE2EB956C142A338661D10461C0D135472085057F3494309FFA73C611F78B32ADBB5740C361C9F35BE90997DB2014E2EF5AA61782F52ABEB8BD6432C4DD097BC5423B285DAFB60DC364E8161F4A2A35ACA3A10B1C4D203CC76A470A33AFDCBDD92959859ABD8B56E1725252D78EAC66E71BA9AE3F1DD2487199874393CD4D832186800654760E1E34C09E4D155179F9EC0DC4473F996BDCE6EED1CABED8B6F116F7AD9CF505DF0F998E34AB27514B0FFE7#)" " (y #667098C654426C78D7F8201EAC6C203EF030D43605032C2F1FA937E5237DBD949F34A0A2564FE126DC8B715C5141802CE0979C8246463C40E6B6BDAA2513FA611728716C2E4FD53BC95B89E69949D96512E873B9C8F8DFD499CC312882561ADECB31F658E934C0C197F2C4D96B05CBAD67381E7B768891E4DA3843D24D94CDFB5126E9B8BF21E8358EE0E0A30EF13FD6A664C0DCE3731F7FB49A4845A4FD8254687972A2D382599C9BAC4E0ED7998193078913032558134976410B89D2C171D123AC35FD977219597AA7D15C1A9A428E59194F75C721EBCBCFAE44696A499AFA74E04299F132026601638CB87AB79190D4A0986315DA8EEC6561C938996BEADF#)))"; static const char sample_secret_key_2048[] = "(private-key" " (dsa" " (p #9DB6FB5951B66BB6FE1E140F1D2CE5502374161FD6538DF1648218642F0B5C48C8F7A41AADFA187324B87674FA1822B00F1ECF8136943D7C55757264E5A1A44FFE012E9936E00C1D3E9310B01C7D179805D3058B2A9F4BB6F9716BFE6117C6B5B3CC4D9BE341104AD4A80AD6C94E005F4B993E14F091EB51743BF33050C38DE235567E1B34C3D6A5C0CEAA1A0F368213C3D19843D0B4B09DCB9FC72D39C8DE41F1BF14D4BB4563CA28371621CAD3324B6A2D392145BEBFAC748805236F5CA2FE92B871CD8F9C36D3292B5509CA8CAA77A2ADFC7BFD77DDA6F71125A7456FEA153E433256A2261C6A06ED3693797E7995FAD5AABBCFBE3EDA2741E375404AE25B#)" " (q #F2C3119374CE76C9356990B465374A17F23F9ED35089BD969F61C6DDE9998C1F#)" " (g #5C7FF6B06F8F143FE8288433493E4769C4D988ACE5BE25A0E24809670716C613D7B0CEE6932F8FAA7C44D2CB24523DA53FBE4F6EC3595892D1AA58C4328A06C46A15662E7EAA703A1DECF8BBB2D05DBE2EB956C142A338661D10461C0D135472085057F3494309FFA73C611F78B32ADBB5740C361C9F35BE90997DB2014E2EF5AA61782F52ABEB8BD6432C4DD097BC5423B285DAFB60DC364E8161F4A2A35ACA3A10B1C4D203CC76A470A33AFDCBDD92959859ABD8B56E1725252D78EAC66E71BA9AE3F1DD2487199874393CD4D832186800654760E1E34C09E4D155179F9EC0DC4473F996BDCE6EED1CABED8B6F116F7AD9CF505DF0F998E34AB27514B0FFE7#)" " (y #667098C654426C78D7F8201EAC6C203EF030D43605032C2F1FA937E5237DBD949F34A0A2564FE126DC8B715C5141802CE0979C8246463C40E6B6BDAA2513FA611728716C2E4FD53BC95B89E69949D96512E873B9C8F8DFD499CC312882561ADECB31F658E934C0C197F2C4D96B05CBAD67381E7B768891E4DA3843D24D94CDFB5126E9B8BF21E8358EE0E0A30EF13FD6A664C0DCE3731F7FB49A4845A4FD8254687972A2D382599C9BAC4E0ED7998193078913032558134976410B89D2C171D123AC35FD977219597AA7D15C1A9A428E59194F75C721EBCBCFAE44696A499AFA74E04299F132026601638CB87AB79190D4A0986315DA8EEC6561C938996BEADF#)" " (x #69C7548C21D0DFEA6B9A51C9EAD4E27C33D3B3F180316E5BCAB92C933F0E4DBC#)))"; static int test_keys (DSA_secret_key *sk, unsigned int qbits); static int check_secret_key (DSA_secret_key *sk); static gpg_err_code_t generate (DSA_secret_key *sk, unsigned int nbits, unsigned int qbits, int transient_key, dsa_domain_t *domain, gcry_mpi_t **ret_factors); static gpg_err_code_t sign (gcry_mpi_t r, gcry_mpi_t s, gcry_mpi_t input, gcry_mpi_t k, DSA_secret_key *skey, int flags, int hashalgo); static gpg_err_code_t verify (gcry_mpi_t r, gcry_mpi_t s, gcry_mpi_t input, DSA_public_key *pkey, int flags, int hashalgo); static unsigned int dsa_get_nbits (gcry_sexp_t parms); static void (*progress_cb) (void *,const char *, int, int, int ); static void *progress_cb_data; /* Check the DSA key length is acceptable for key generation or usage */ static gpg_err_code_t dsa_check_keysize (unsigned int nbits) { if (fips_mode () && nbits < 2048) return GPG_ERR_INV_VALUE; return 0; } void _gcry_register_pk_dsa_progress (void (*cb) (void *, const char *, int, int, int), void *cb_data) { progress_cb = cb; progress_cb_data = cb_data; } static void progress (int c) { if (progress_cb) progress_cb (progress_cb_data, "pk_dsa", c, 0, 0); } /* Check that a freshly generated key actually works. Returns 0 on success. */ static int test_keys (DSA_secret_key *sk, unsigned int qbits) { int result = -1; /* Default to failure. */ DSA_public_key pk; gcry_mpi_t data = mpi_new (qbits); gcry_mpi_t sig_a = mpi_new (qbits); gcry_mpi_t sig_b = mpi_new (qbits); /* Put the relevant parameters into a public key structure. */ pk.p = sk->p; pk.q = sk->q; pk.g = sk->g; pk.y = sk->y; /* Create a random plaintext. */ _gcry_mpi_randomize (data, qbits, GCRY_WEAK_RANDOM); /* Sign DATA using the secret key. */ sign (sig_a, sig_b, data, NULL, sk, 0, 0); /* Verify the signature using the public key. */ if ( verify (sig_a, sig_b, data, &pk, 0, 0) ) goto leave; /* Signature does not match. */ /* Modify the data and check that the signing fails. */ mpi_add_ui (data, data, 1); if ( !verify (sig_a, sig_b, data, &pk, 0, 0) ) goto leave; /* Signature matches but should not. */ result = 0; /* The test succeeded. */ leave: _gcry_mpi_release (sig_b); _gcry_mpi_release (sig_a); _gcry_mpi_release (data); return result; } /* Generate a DSA key pair with a key of size NBITS. If transient_key is true the key is generated using the standard RNG and not the very secure one. Returns: 2 structures filled with all needed values and an array with the n-1 factors of (p-1) */ static gpg_err_code_t generate (DSA_secret_key *sk, unsigned int nbits, unsigned int qbits, int transient_key, dsa_domain_t *domain, gcry_mpi_t **ret_factors ) { gpg_err_code_t rc; gcry_mpi_t p; /* the prime */ gcry_mpi_t q; /* the 160 bit prime factor */ gcry_mpi_t g; /* the generator */ gcry_mpi_t y; /* g^x mod p */ gcry_mpi_t x; /* the secret exponent */ gcry_mpi_t h, e; /* helper */ unsigned char *rndbuf; gcry_random_level_t random_level; if (qbits) ; /* Caller supplied qbits. Use this value. */ else if ( nbits >= 512 && nbits <= 1024 ) qbits = 160; else if ( nbits == 2048 ) qbits = 224; else if ( nbits == 3072 ) qbits = 256; else if ( nbits == 7680 ) qbits = 384; else if ( nbits == 15360 ) qbits = 512; else return GPG_ERR_INV_VALUE; if (qbits < 160 || qbits > 512 || (qbits%8) ) return GPG_ERR_INV_VALUE; if (nbits < 2*qbits || nbits > 15360) return GPG_ERR_INV_VALUE; if (domain->p && domain->q && domain->g) { /* Domain parameters are given; use them. */ p = mpi_copy (domain->p); q = mpi_copy (domain->q); g = mpi_copy (domain->g); gcry_assert (mpi_get_nbits (p) == nbits); gcry_assert (mpi_get_nbits (q) == qbits); h = mpi_alloc (0); e = NULL; } else { /* Generate new domain parameters. */ rc = _gcry_generate_elg_prime (1, nbits, qbits, NULL, &p, ret_factors); if (rc) return rc; /* Get q out of factors. */ q = mpi_copy ((*ret_factors)[0]); gcry_assert (mpi_get_nbits (q) == qbits); /* Find a generator g (h and e are helpers). e = (p-1)/q */ e = mpi_alloc (mpi_get_nlimbs (p)); mpi_sub_ui (e, p, 1); mpi_fdiv_q (e, e, q); g = mpi_alloc (mpi_get_nlimbs (p)); h = mpi_alloc_set_ui (1); /* (We start with 2.) */ do { mpi_add_ui (h, h, 1); /* g = h^e mod p */ mpi_powm (g, h, e, p); } while (!mpi_cmp_ui (g, 1)); /* Continue until g != 1. */ } /* Select a random number X with the property: * 0 < x < q-1 * * FIXME: Why do we use the requirement x < q-1 ? It should be * sufficient to test for x < q. FIPS-186-3 check x < q-1 but it * does not check for 0 < x because it makes sure that Q is unsigned * and finally adds one to the result so that 0 will never be * returned. We should replace the code below with _gcry_dsa_gen_k. * * This must be a very good random number because this is the secret * part. The random quality depends on the transient_key flag. */ random_level = transient_key ? GCRY_STRONG_RANDOM : GCRY_VERY_STRONG_RANDOM; if (DBG_CIPHER) log_debug("choosing a random x%s\n", transient_key? " (transient-key)":""); gcry_assert( qbits >= 160 ); x = mpi_alloc_secure( mpi_get_nlimbs(q) ); mpi_sub_ui( h, q, 1 ); /* put q-1 into h */ rndbuf = NULL; do { if( DBG_CIPHER ) progress('.'); if( !rndbuf ) rndbuf = _gcry_random_bytes_secure ((qbits+7)/8, random_level); else { /* Change only some of the higher bits (= 2 bytes)*/ char *r = _gcry_random_bytes_secure (2, random_level); memcpy(rndbuf, r, 2 ); xfree(r); } _gcry_mpi_set_buffer( x, rndbuf, (qbits+7)/8, 0 ); mpi_clear_highbit( x, qbits+1 ); } while ( !( mpi_cmp_ui( x, 0 )>0 && mpi_cmp( x, h )<0 ) ); xfree(rndbuf); mpi_free( e ); mpi_free( h ); /* y = g^x mod p */ y = mpi_alloc( mpi_get_nlimbs(p) ); mpi_powm (y, g, x, p); if( DBG_CIPHER ) { progress('\n'); log_mpidump("dsa p", p ); log_mpidump("dsa q", q ); log_mpidump("dsa g", g ); log_mpidump("dsa y", y ); log_mpidump("dsa x", x ); } /* Copy the stuff to the key structures. */ sk->p = p; sk->q = q; sk->g = g; sk->y = y; sk->x = x; /* Now we can test our keys (this should never fail!). */ if ( test_keys (sk, qbits) ) { _gcry_mpi_release (sk->p); sk->p = NULL; _gcry_mpi_release (sk->q); sk->q = NULL; _gcry_mpi_release (sk->g); sk->g = NULL; _gcry_mpi_release (sk->y); sk->y = NULL; _gcry_mpi_release (sk->x); sk->x = NULL; fips_signal_error ("self-test after key generation failed"); return GPG_ERR_SELFTEST_FAILED; } return 0; } /* Generate a DSA key pair with a key of size NBITS using the algorithm given in FIPS-186-3. If USE_FIPS186_2 is true, FIPS-186-2 is used and thus the length is restricted to 1024/160. If DERIVEPARMS is not NULL it may contain a seed value. If domain parameters are specified in DOMAIN, DERIVEPARMS may not be given and NBITS and QBITS must match the specified domain parameters. */ static gpg_err_code_t generate_fips186 (DSA_secret_key *sk, unsigned int nbits, unsigned int qbits, gcry_sexp_t deriveparms, int use_fips186_2, dsa_domain_t *domain, int *r_counter, void **r_seed, size_t *r_seedlen, gcry_mpi_t *r_h) { gpg_err_code_t ec; struct { gcry_sexp_t sexp; const void *seed; size_t seedlen; } initial_seed = { NULL, NULL, 0 }; gcry_mpi_t prime_q = NULL; gcry_mpi_t prime_p = NULL; gcry_mpi_t value_g = NULL; /* The generator. */ gcry_mpi_t value_y = NULL; /* g^x mod p */ gcry_mpi_t value_x = NULL; /* The secret exponent. */ gcry_mpi_t value_h = NULL; /* Helper. */ gcry_mpi_t value_e = NULL; /* Helper. */ gcry_mpi_t value_c = NULL; /* helper for x */ gcry_mpi_t value_qm2 = NULL; /* q - 2 */ /* Preset return values. */ *r_counter = 0; *r_seed = NULL; *r_seedlen = 0; *r_h = NULL; /* Derive QBITS from NBITS if requested */ if (!qbits) { if (nbits == 1024) qbits = 160; else if (nbits == 2048) qbits = 224; else if (nbits == 3072) qbits = 256; } /* Check that QBITS and NBITS match the standard. Note that FIPS 186-3 uses N for QBITS and L for NBITS. */ if (nbits == 1024 && qbits == 160 && use_fips186_2) ; /* Allowed in FIPS 186-2 mode. */ else if (nbits == 2048 && qbits == 224) ; else if (nbits == 2048 && qbits == 256) ; else if (nbits == 3072 && qbits == 256) ; else return GPG_ERR_INV_VALUE; ec = dsa_check_keysize (nbits); if (ec) return ec; if (domain->p && domain->q && domain->g) { /* Domain parameters are given; use them. */ prime_p = mpi_copy (domain->p); prime_q = mpi_copy (domain->q); value_g = mpi_copy (domain->g); gcry_assert (mpi_get_nbits (prime_p) == nbits); gcry_assert (mpi_get_nbits (prime_q) == qbits); gcry_assert (!deriveparms); ec = 0; } else { /* Generate new domain parameters. */ /* Get an initial seed value. */ if (deriveparms) { initial_seed.sexp = sexp_find_token (deriveparms, "seed", 0); if (initial_seed.sexp) initial_seed.seed = sexp_nth_data (initial_seed.sexp, 1, &initial_seed.seedlen); } if (use_fips186_2) ec = _gcry_generate_fips186_2_prime (nbits, qbits, initial_seed.seed, initial_seed.seedlen, &prime_q, &prime_p, r_counter, r_seed, r_seedlen); else ec = _gcry_generate_fips186_3_prime (nbits, qbits, initial_seed.seed, initial_seed.seedlen, &prime_q, &prime_p, r_counter, r_seed, r_seedlen, NULL); sexp_release (initial_seed.sexp); if (ec) goto leave; /* Find a generator g (h and e are helpers). * e = (p-1)/q */ value_e = mpi_alloc_like (prime_p); mpi_sub_ui (value_e, prime_p, 1); mpi_fdiv_q (value_e, value_e, prime_q ); value_g = mpi_alloc_like (prime_p); value_h = mpi_alloc_set_ui (1); do { mpi_add_ui (value_h, value_h, 1); /* g = h^e mod p */ mpi_powm (value_g, value_h, value_e, prime_p); } while (!mpi_cmp_ui (value_g, 1)); /* Continue until g != 1. */ } value_c = mpi_snew (qbits); value_x = mpi_snew (qbits); value_qm2 = mpi_snew (qbits); mpi_sub_ui (value_qm2, prime_q, 2); /* FIPS 186-4 B.1.2 steps 4-6 */ do { if( DBG_CIPHER ) progress('.'); _gcry_mpi_randomize (value_c, qbits, GCRY_VERY_STRONG_RANDOM); mpi_clear_highbit (value_c, qbits+1); } while (!(mpi_cmp_ui (value_c, 0) > 0 && mpi_cmp (value_c, value_qm2) < 0)); /* while (mpi_cmp (value_c, value_qm2) > 0); */ /* x = c + 1 */ mpi_add_ui(value_x, value_c, 1); /* y = g^x mod p */ value_y = mpi_alloc_like (prime_p); mpi_powm (value_y, value_g, value_x, prime_p); if (DBG_CIPHER) { progress('\n'); log_mpidump("dsa p", prime_p ); log_mpidump("dsa q", prime_q ); log_mpidump("dsa g", value_g ); log_mpidump("dsa y", value_y ); log_mpidump("dsa x", value_x ); log_mpidump("dsa h", value_h ); } /* Copy the stuff to the key structures. */ sk->p = prime_p; prime_p = NULL; sk->q = prime_q; prime_q = NULL; sk->g = value_g; value_g = NULL; sk->y = value_y; value_y = NULL; sk->x = value_x; value_x = NULL; *r_h = value_h; value_h = NULL; leave: _gcry_mpi_release (prime_p); _gcry_mpi_release (prime_q); _gcry_mpi_release (value_g); _gcry_mpi_release (value_y); _gcry_mpi_release (value_x); _gcry_mpi_release (value_h); _gcry_mpi_release (value_e); _gcry_mpi_release (value_c); _gcry_mpi_release (value_qm2); /* As a last step test this keys (this should never fail of course). */ if (!ec && test_keys (sk, qbits) ) { _gcry_mpi_release (sk->p); sk->p = NULL; _gcry_mpi_release (sk->q); sk->q = NULL; _gcry_mpi_release (sk->g); sk->g = NULL; _gcry_mpi_release (sk->y); sk->y = NULL; _gcry_mpi_release (sk->x); sk->x = NULL; fips_signal_error ("self-test after key generation failed"); ec = GPG_ERR_SELFTEST_FAILED; } if (ec) { *r_counter = 0; xfree (*r_seed); *r_seed = NULL; *r_seedlen = 0; _gcry_mpi_release (*r_h); *r_h = NULL; } return ec; } /* Test whether the secret key is valid. Returns: if this is a valid key. */ static int check_secret_key( DSA_secret_key *sk ) { int rc; gcry_mpi_t y = mpi_alloc( mpi_get_nlimbs(sk->y) ); mpi_powm( y, sk->g, sk->x, sk->p ); rc = !mpi_cmp( y, sk->y ); mpi_free( y ); return rc; } /* Make a DSA signature from INPUT and put it into r and s. INPUT may either be a plain MPI or an opaque MPI which is then internally converted to a plain MPI. FLAGS and HASHALGO may both be 0 for standard operation mode. The random value, K_SUPPLIED, may be supplied externally. If not, it is generated internally. The return value is 0 on success or an error code. Note that for backward compatibility the function will not return any error if FLAGS and HASHALGO are both 0 and INPUT is a plain MPI. */ static gpg_err_code_t sign (gcry_mpi_t r, gcry_mpi_t s, gcry_mpi_t input, gcry_mpi_t k_supplied, DSA_secret_key *skey, int flags, int hashalgo) { gpg_err_code_t rc; gcry_mpi_t hash; gcry_mpi_t k; gcry_mpi_t kinv; gcry_mpi_t tmp; const void *abuf; unsigned int abits, qbits; int extraloops = 0; gcry_mpi_t hash_computed_internally = NULL; qbits = mpi_get_nbits (skey->q); if ((flags & PUBKEY_FLAG_PREHASH)) { rc = _gcry_dsa_compute_hash (&hash_computed_internally, input, hashalgo); if (rc) return rc; input = hash_computed_internally; } /* Convert the INPUT into an MPI. */ rc = _gcry_dsa_normalize_hash (input, &hash, qbits); if (rc) { mpi_free (hash_computed_internally); return rc; } again: if (k_supplied) k = k_supplied; /* Create the K value. */ else if ((flags & PUBKEY_FLAG_RFC6979) && hashalgo) { /* Use Pornin's method for deterministic DSA. If this flag is set, it is expected that HASH is an opaque MPI with the to be signed hash. That hash is also used as h1 from 3.2.a. */ if (!mpi_is_opaque (input)) { rc = GPG_ERR_CONFLICT; goto leave; } abuf = mpi_get_opaque (input, &abits); rc = _gcry_dsa_gen_rfc6979_k (&k, skey->q, skey->x, abuf, (abits+7)/8, hashalgo, extraloops); if (rc) goto leave; } else { /* Select a random k with 0 < k < q */ k = _gcry_dsa_gen_k (skey->q, GCRY_STRONG_RANDOM); } /* kinv = k^(-1) mod q */ kinv = mpi_alloc( mpi_get_nlimbs(k) ); mpi_invm(kinv, k, skey->q ); _gcry_dsa_modify_k (k, skey->q, qbits); /* r = (a^k mod p) mod q */ mpi_powm( r, skey->g, k, skey->p ); mpi_fdiv_r( r, r, skey->q ); /* s = (kinv * ( hash + x * r)) mod q */ tmp = mpi_alloc( mpi_get_nlimbs(skey->p) ); mpi_mul( tmp, skey->x, r ); mpi_add( tmp, tmp, hash ); mpi_mulm( s , kinv, tmp, skey->q ); if (!k_supplied) mpi_free(k); mpi_free(kinv); mpi_free(tmp); if (!mpi_cmp_ui (r, 0)) { if (k_supplied) { rc = GPG_ERR_INV_VALUE; goto leave; } /* This is a highly unlikely code path. */ extraloops++; goto again; } rc = 0; leave: if (hash != input) mpi_free (hash); mpi_free (hash_computed_internally); return rc; } /* Returns true if the signature composed from R and S is valid. */ static gpg_err_code_t verify (gcry_mpi_t r, gcry_mpi_t s, gcry_mpi_t input, DSA_public_key *pkey, int flags, int hashalgo) { gpg_err_code_t rc = 0; gcry_mpi_t w, u1, u2, v; gcry_mpi_t base[3]; gcry_mpi_t ex[3]; gcry_mpi_t hash; unsigned int nbits; gcry_mpi_t hash_computed_internally = NULL; if( !(mpi_cmp_ui( r, 0 ) > 0 && mpi_cmp( r, pkey->q ) < 0) ) return GPG_ERR_BAD_SIGNATURE; /* Assertion 0 < r < n failed. */ if( !(mpi_cmp_ui( s, 0 ) > 0 && mpi_cmp( s, pkey->q ) < 0) ) return GPG_ERR_BAD_SIGNATURE; /* Assertion 0 < s < n failed. */ nbits = mpi_get_nbits (pkey->q); if ((flags & PUBKEY_FLAG_PREHASH)) { rc = _gcry_dsa_compute_hash (&hash_computed_internally, input, hashalgo); if (rc) return rc; input = hash_computed_internally; } rc = _gcry_dsa_normalize_hash (input, &hash, nbits); if (rc) { mpi_free (hash_computed_internally); return rc; } w = mpi_alloc( mpi_get_nlimbs(pkey->q) ); u1 = mpi_alloc( mpi_get_nlimbs(pkey->q) ); u2 = mpi_alloc( mpi_get_nlimbs(pkey->q) ); v = mpi_alloc( mpi_get_nlimbs(pkey->p) ); /* w = s^(-1) mod q */ mpi_invm( w, s, pkey->q ); /* u1 = (hash * w) mod q */ mpi_mulm( u1, hash, w, pkey->q ); /* u2 = r * w mod q */ mpi_mulm( u2, r, w, pkey->q ); /* v = g^u1 * y^u2 mod p mod q */ base[0] = pkey->g; ex[0] = u1; base[1] = pkey->y; ex[1] = u2; base[2] = NULL; ex[2] = NULL; mpi_mulpowm( v, base, ex, pkey->p ); mpi_fdiv_r( v, v, pkey->q ); if (mpi_cmp( v, r )) { if (DBG_CIPHER) { log_mpidump (" i", input); log_mpidump (" h", hash); log_mpidump (" v", v); log_mpidump (" r", r); log_mpidump (" s", s); } rc = GPG_ERR_BAD_SIGNATURE; } mpi_free(w); mpi_free(u1); mpi_free(u2); mpi_free(v); if (hash != input) mpi_free (hash); mpi_free (hash_computed_internally); return rc; } /********************************************* ************** interface ****************** *********************************************/ static gcry_err_code_t dsa_generate (const gcry_sexp_t genparms, gcry_sexp_t *r_skey) { gpg_err_code_t rc; unsigned int nbits; gcry_sexp_t domainsexp; DSA_secret_key sk; gcry_sexp_t l1; unsigned int qbits = 0; gcry_sexp_t deriveparms = NULL; gcry_sexp_t seedinfo = NULL; gcry_sexp_t misc_info = NULL; int flags = 0; dsa_domain_t domain; gcry_mpi_t *factors = NULL; memset (&sk, 0, sizeof sk); memset (&domain, 0, sizeof domain); rc = _gcry_pk_util_get_nbits (genparms, &nbits); if (rc) return rc; /* Parse the optional flags list. */ l1 = sexp_find_token (genparms, "flags", 0); if (l1) { rc = _gcry_pk_util_parse_flaglist (l1, &flags, NULL); sexp_release (l1); if (rc) return rc;\ } /* Parse the optional qbits element. */ l1 = sexp_find_token (genparms, "qbits", 0); if (l1) { char buf[50]; const char *s; size_t n; s = sexp_nth_data (l1, 1, &n); if (!s || n >= DIM (buf) - 1 ) { sexp_release (l1); return GPG_ERR_INV_OBJ; /* No value or value too large. */ } memcpy (buf, s, n); buf[n] = 0; qbits = (unsigned int)strtoul (buf, NULL, 0); sexp_release (l1); } /* Parse the optional transient-key flag. */ if (!(flags & PUBKEY_FLAG_TRANSIENT_KEY)) { l1 = sexp_find_token (genparms, "transient-key", 0); if (l1) { flags |= PUBKEY_FLAG_TRANSIENT_KEY; sexp_release (l1); } } /* Get the optional derive parameters. */ deriveparms = sexp_find_token (genparms, "derive-parms", 0); /* Parse the optional "use-fips186" flags. */ if (!(flags & PUBKEY_FLAG_USE_FIPS186)) { l1 = sexp_find_token (genparms, "use-fips186", 0); if (l1) { flags |= PUBKEY_FLAG_USE_FIPS186; sexp_release (l1); } } if (!(flags & PUBKEY_FLAG_USE_FIPS186_2)) { l1 = sexp_find_token (genparms, "use-fips186-2", 0); if (l1) { flags |= PUBKEY_FLAG_USE_FIPS186_2; sexp_release (l1); } } /* Check whether domain parameters are given. */ domainsexp = sexp_find_token (genparms, "domain", 0); if (domainsexp) { /* DERIVEPARMS can't be used together with domain parameters. NBITS abnd QBITS may not be specified because there values are derived from the domain parameters. */ if (deriveparms || qbits || nbits) { sexp_release (domainsexp); sexp_release (deriveparms); return GPG_ERR_INV_VALUE; } /* Put all domain parameters into the domain object. */ l1 = sexp_find_token (domainsexp, "p", 0); domain.p = sexp_nth_mpi (l1, 1, GCRYMPI_FMT_USG); sexp_release (l1); l1 = sexp_find_token (domainsexp, "q", 0); domain.q = sexp_nth_mpi (l1, 1, GCRYMPI_FMT_USG); sexp_release (l1); l1 = sexp_find_token (domainsexp, "g", 0); domain.g = sexp_nth_mpi (l1, 1, GCRYMPI_FMT_USG); sexp_release (l1); sexp_release (domainsexp); /* Check that all domain parameters are available. */ if (!domain.p || !domain.q || !domain.g) { _gcry_mpi_release (domain.p); _gcry_mpi_release (domain.q); _gcry_mpi_release (domain.g); sexp_release (deriveparms); return GPG_ERR_MISSING_VALUE; } /* Get NBITS and QBITS from the domain parameters. */ nbits = mpi_get_nbits (domain.p); qbits = mpi_get_nbits (domain.q); } if (deriveparms || (flags & PUBKEY_FLAG_USE_FIPS186) || (flags & PUBKEY_FLAG_USE_FIPS186_2) || fips_mode ()) { int counter; void *seed; size_t seedlen; gcry_mpi_t h_value; rc = generate_fips186 (&sk, nbits, qbits, deriveparms, !!(flags & PUBKEY_FLAG_USE_FIPS186_2), &domain, &counter, &seed, &seedlen, &h_value); if (!rc && h_value) { /* Format the seed-values unless domain parameters are used for which a H_VALUE of NULL is an indication. */ rc = sexp_build (&seedinfo, NULL, "(seed-values(counter %d)(seed %b)(h %m))", counter, (int)seedlen, seed, h_value); xfree (seed); _gcry_mpi_release (h_value); } } else { rc = generate (&sk, nbits, qbits, !!(flags & PUBKEY_FLAG_TRANSIENT_KEY), &domain, &factors); } if (!rc) { /* Put the factors into MISC_INFO. Note that the factors are not confidential thus we can store them in standard memory. */ int nfactors, i, j; char *p; char *format = NULL; void **arg_list = NULL; for (nfactors=0; factors && factors[nfactors]; nfactors++) ; /* Allocate space for the format string: "(misc-key-info%S(pm1-factors%m))" with one "%m" for each factor and construct it. */ format = xtrymalloc (50 + 2*nfactors); if (!format) rc = gpg_err_code_from_syserror (); else { p = stpcpy (format, "(misc-key-info"); if (seedinfo) p = stpcpy (p, "%S"); if (nfactors) { p = stpcpy (p, "(pm1-factors"); for (i=0; i < nfactors; i++) p = stpcpy (p, "%m"); p = stpcpy (p, ")"); } p = stpcpy (p, ")"); /* Allocate space for the list of factors plus one for the seedinfo s-exp plus an extra NULL entry for safety and fill it with the factors. */ arg_list = xtrycalloc (nfactors+1+1, sizeof *arg_list); if (!arg_list) rc = gpg_err_code_from_syserror (); else { i = 0; if (seedinfo) arg_list[i++] = &seedinfo; for (j=0; j < nfactors; j++) arg_list[i++] = factors + j; arg_list[i] = NULL; rc = sexp_build_array (&misc_info, NULL, format, arg_list); } } xfree (arg_list); xfree (format); } if (!rc) rc = sexp_build (r_skey, NULL, "(key-data" " (public-key" " (dsa(p%m)(q%m)(g%m)(y%m)))" " (private-key" " (dsa(p%m)(q%m)(g%m)(y%m)(x%m)))" " %S)", sk.p, sk.q, sk.g, sk.y, sk.p, sk.q, sk.g, sk.y, sk.x, misc_info); _gcry_mpi_release (sk.p); _gcry_mpi_release (sk.q); _gcry_mpi_release (sk.g); _gcry_mpi_release (sk.y); _gcry_mpi_release (sk.x); _gcry_mpi_release (domain.p); _gcry_mpi_release (domain.q); _gcry_mpi_release (domain.g); sexp_release (seedinfo); sexp_release (misc_info); sexp_release (deriveparms); if (factors) { gcry_mpi_t *mp; for (mp = factors; *mp; mp++) mpi_free (*mp); xfree (factors); } return rc; } static gcry_err_code_t dsa_check_secret_key (gcry_sexp_t keyparms) { gcry_err_code_t rc; DSA_secret_key sk = {NULL, NULL, NULL, NULL, NULL}; rc = _gcry_sexp_extract_param (keyparms, NULL, "pqgyx", &sk.p, &sk.q, &sk.g, &sk.y, &sk.x, NULL); if (rc) goto leave; if (!check_secret_key (&sk)) rc = GPG_ERR_BAD_SECKEY; leave: _gcry_mpi_release (sk.p); _gcry_mpi_release (sk.q); _gcry_mpi_release (sk.g); _gcry_mpi_release (sk.y); _gcry_mpi_release (sk.x); if (DBG_CIPHER) log_debug ("dsa_testkey => %s\n", gpg_strerror (rc)); return rc; } static gcry_err_code_t dsa_sign (gcry_sexp_t *r_sig, gcry_sexp_t s_data, gcry_sexp_t keyparms) { gcry_err_code_t rc; struct pk_encoding_ctx ctx; gcry_mpi_t data = NULL; gcry_mpi_t k = NULL; DSA_secret_key sk = {NULL, NULL, NULL, NULL, NULL}; gcry_mpi_t sig_r = NULL; gcry_mpi_t sig_s = NULL; unsigned int nbits = dsa_get_nbits (keyparms); rc = dsa_check_keysize (nbits); if (rc) return rc; _gcry_pk_util_init_encoding_ctx (&ctx, PUBKEY_OP_SIGN, nbits); /* Extract the data. */ rc = _gcry_pk_util_data_to_mpi (s_data, &data, &ctx); if (rc) goto leave; if (DBG_CIPHER) log_mpidump ("dsa_sign data", data); if (ctx.label) rc = _gcry_mpi_scan (&k, GCRYMPI_FMT_USG, ctx.label, ctx.labellen, NULL); if (rc) goto leave; /* Extract the key. */ rc = _gcry_sexp_extract_param (keyparms, NULL, "pqgyx", &sk.p, &sk.q, &sk.g, &sk.y, &sk.x, NULL); if (rc) goto leave; if (DBG_CIPHER) { log_mpidump ("dsa_sign p", sk.p); log_mpidump ("dsa_sign q", sk.q); log_mpidump ("dsa_sign g", sk.g); log_mpidump ("dsa_sign y", sk.y); if (!fips_mode ()) log_mpidump ("dsa_sign x", sk.x); } sig_r = mpi_new (0); sig_s = mpi_new (0); rc = sign (sig_r, sig_s, data, k, &sk, ctx.flags, ctx.hash_algo); if (rc) goto leave; if (DBG_CIPHER) { log_mpidump ("dsa_sign sig_r", sig_r); log_mpidump ("dsa_sign sig_s", sig_s); } rc = sexp_build (r_sig, NULL, "(sig-val(dsa(r%M)(s%M)))", sig_r, sig_s); leave: _gcry_mpi_release (sig_r); _gcry_mpi_release (sig_s); _gcry_mpi_release (sk.p); _gcry_mpi_release (sk.q); _gcry_mpi_release (sk.g); _gcry_mpi_release (sk.y); _gcry_mpi_release (sk.x); _gcry_mpi_release (data); _gcry_mpi_release (k); _gcry_pk_util_free_encoding_ctx (&ctx); if (DBG_CIPHER) log_debug ("dsa_sign => %s\n", gpg_strerror (rc)); return rc; } static gcry_err_code_t dsa_verify (gcry_sexp_t s_sig, gcry_sexp_t s_data, gcry_sexp_t s_keyparms) { gcry_err_code_t rc; struct pk_encoding_ctx ctx; gcry_sexp_t l1 = NULL; gcry_mpi_t sig_r = NULL; gcry_mpi_t sig_s = NULL; gcry_mpi_t data = NULL; DSA_public_key pk = { NULL, NULL, NULL, NULL }; unsigned int nbits = dsa_get_nbits (s_keyparms); rc = dsa_check_keysize (nbits); if (rc) return rc; _gcry_pk_util_init_encoding_ctx (&ctx, PUBKEY_OP_VERIFY, nbits); /* Extract the data. */ rc = _gcry_pk_util_data_to_mpi (s_data, &data, &ctx); if (rc) goto leave; if (DBG_CIPHER) log_mpidump ("dsa_verify data", data); /* Extract the signature value. */ rc = _gcry_pk_util_preparse_sigval (s_sig, dsa_names, &l1, NULL); if (rc) goto leave; rc = _gcry_sexp_extract_param (l1, NULL, "rs", &sig_r, &sig_s, NULL); if (rc) goto leave; if (DBG_CIPHER) { log_mpidump ("dsa_verify s_r", sig_r); log_mpidump ("dsa_verify s_s", sig_s); } /* Extract the key. */ rc = _gcry_sexp_extract_param (s_keyparms, NULL, "pqgy", &pk.p, &pk.q, &pk.g, &pk.y, NULL); if (rc) goto leave; if (DBG_CIPHER) { log_mpidump ("dsa_verify p", pk.p); log_mpidump ("dsa_verify q", pk.q); log_mpidump ("dsa_verify g", pk.g); log_mpidump ("dsa_verify y", pk.y); } /* Verify the signature. */ rc = verify (sig_r, sig_s, data, &pk, ctx.flags, ctx.hash_algo); leave: _gcry_mpi_release (pk.p); _gcry_mpi_release (pk.q); _gcry_mpi_release (pk.g); _gcry_mpi_release (pk.y); _gcry_mpi_release (data); _gcry_mpi_release (sig_r); _gcry_mpi_release (sig_s); sexp_release (l1); _gcry_pk_util_free_encoding_ctx (&ctx); if (DBG_CIPHER) log_debug ("dsa_verify => %s\n", rc?gpg_strerror (rc):"Good"); return rc; } /* Return the number of bits for the key described by PARMS. On error * 0 is returned. The format of PARMS starts with the algorithm name; * for example: * * (dsa * (p ) * (q ) * (g ) * (y )) * * More parameters may be given but we only need P here. */ static unsigned int dsa_get_nbits (gcry_sexp_t parms) { gcry_sexp_t l1; gcry_mpi_t p; unsigned int nbits; l1 = sexp_find_token (parms, "p", 1); if (!l1) return 0; /* Parameter P not found. */ p = sexp_nth_mpi (l1, 1, GCRYMPI_FMT_USG); sexp_release (l1); nbits = p? mpi_get_nbits (p) : 0; _gcry_mpi_release (p); return nbits; } /* Self-test section. */ static const char * selftest_sign (gcry_sexp_t pkey, gcry_sexp_t skey) { /* Sample data from RFC 6979 section A.2.2, hash is of message "sample" */ static const char sample_data[] = "(data (flags rfc6979 prehash)" " (hash-algo sha256)" " (value 6:sample))"; static const char sample_data_bad[] = "(data (flags rfc6979)" " (hash sha256 #bf2bdbe1aa9b6ec1e2ade1d694f41fc71a831d0268e9891562113d8a62add1bf#))"; static const char signature_r[] = "eace8bdbbe353c432a795d9ec556c6d021f7a03f42c36e9bc87e4ac7932cc809"; static const char signature_s[] = "7081e175455f9247b812b74583e9e94f9ea79bd640dc962533b0680793a38d53"; const char *errtxt = NULL; gcry_error_t err; gcry_sexp_t data = NULL; gcry_sexp_t data_bad = NULL; gcry_sexp_t sig = NULL; gcry_sexp_t l1 = NULL; gcry_sexp_t l2 = NULL; gcry_mpi_t r = NULL; gcry_mpi_t s = NULL; gcry_mpi_t calculated_r = NULL; gcry_mpi_t calculated_s = NULL; int cmp; err = sexp_sscan (&data, NULL, sample_data, strlen (sample_data)); if (!err) err = sexp_sscan (&data_bad, NULL, sample_data_bad, strlen (sample_data_bad)); if (!err) err = _gcry_mpi_scan (&r, GCRYMPI_FMT_HEX, signature_r, 0, NULL); if (!err) err = _gcry_mpi_scan (&s, GCRYMPI_FMT_HEX, signature_s, 0, NULL); if (err) { errtxt = "converting data failed"; goto leave; } err = _gcry_pk_sign (&sig, data, skey); if (err) { errtxt = "signing failed"; goto leave; } /* check against known signature */ errtxt = "signature validity failed"; l1 = _gcry_sexp_find_token (sig, "sig-val", 0); if (!l1) goto leave; l2 = _gcry_sexp_find_token (l1, "dsa", 0); if (!l2) goto leave; sexp_release (l1); l1 = l2; l2 = _gcry_sexp_find_token (l1, "r", 0); if (!l2) goto leave; calculated_r = _gcry_sexp_nth_mpi (l2, 1, GCRYMPI_FMT_USG); if (!calculated_r) goto leave; sexp_release (l2); l2 = _gcry_sexp_find_token (l1, "s", 0); if (!l2) goto leave; calculated_s = _gcry_sexp_nth_mpi (l2, 1, GCRYMPI_FMT_USG); if (!calculated_s) goto leave; errtxt = "known sig check failed"; cmp = _gcry_mpi_cmp (r, calculated_r); if (cmp) goto leave; cmp = _gcry_mpi_cmp (s, calculated_s); if (cmp) goto leave; errtxt = NULL; err = _gcry_pk_verify (sig, data, pkey); if (err) { errtxt = "verify failed"; goto leave; } err = _gcry_pk_verify (sig, data_bad, pkey); if (gcry_err_code (err) != GPG_ERR_BAD_SIGNATURE) { errtxt = "bad signature not detected"; goto leave; } leave: _gcry_mpi_release (calculated_s); _gcry_mpi_release (calculated_r); _gcry_mpi_release (s); _gcry_mpi_release (r); sexp_release (l2); sexp_release (l1); sexp_release (sig); sexp_release (data_bad); sexp_release (data); return errtxt; } static gpg_err_code_t selftests_dsa_2048 (selftest_report_func_t report) { const char *what; const char *errtxt; gcry_error_t err; gcry_sexp_t skey = NULL; gcry_sexp_t pkey = NULL; /* Convert the S-expressions into the internal representation. */ what = "convert"; err = sexp_sscan (&skey, NULL, sample_secret_key_2048, strlen (sample_secret_key_2048)); if (!err) err = sexp_sscan (&pkey, NULL, sample_public_key_2048, strlen (sample_public_key_2048)); if (err) { errtxt = _gcry_strerror (err); goto failed; } what = "key consistency"; err = _gcry_pk_testkey (skey); if (err) { errtxt = _gcry_strerror (err); goto failed; } what = "sign"; errtxt = selftest_sign (pkey, skey); if (errtxt) goto failed; sexp_release (pkey); sexp_release (skey); return 0; /* Succeeded. */ failed: sexp_release (pkey); sexp_release (skey); if (report) report ("pubkey", GCRY_PK_DSA, what, errtxt); return GPG_ERR_SELFTEST_FAILED; } /* Run a full self-test for ALGO and return 0 on success. */ static gpg_err_code_t run_selftests (int algo, int extended, selftest_report_func_t report) { gpg_err_code_t ec; (void)extended; switch (algo) { case GCRY_PK_DSA: ec = selftests_dsa_2048 (report); break; default: ec = GPG_ERR_PUBKEY_ALGO; break; } return ec; } gcry_pk_spec_t _gcry_pubkey_spec_dsa = { - GCRY_PK_DSA, { 0, 1 }, + GCRY_PK_DSA, { 0, 0 }, GCRY_PK_USAGE_SIGN, "DSA", dsa_names, "pqgy", "pqgyx", "", "rs", "pqgy", dsa_generate, dsa_check_secret_key, NULL, NULL, dsa_sign, dsa_verify, dsa_get_nbits, run_selftests }; diff --git a/src/fips.c b/src/fips.c index 0ab7fecc..bcadc5f2 100644 --- a/src/fips.c +++ b/src/fips.c @@ -1,910 +1,909 @@ /* fips.c - FIPS mode management * Copyright (C) 2008 Free Software Foundation, Inc. * * This file is part of Libgcrypt. * * Libgcrypt is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2.1 of * the License, or (at your option) any later version. * * Libgcrypt is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program; if not, see . */ #include #include #include #include #include #include #ifdef ENABLE_HMAC_BINARY_CHECK # include # include #endif #ifdef HAVE_SYSLOG # include #endif /*HAVE_SYSLOG*/ /* The name of the file used to force libgcrypt into fips mode. */ #define FIPS_FORCE_FILE "/etc/gcrypt/fips_enabled" #include "g10lib.h" #include "cipher-proto.h" #include "../random/random.h" /* The states of the finite state machine used in fips mode. */ enum module_states { /* POWEROFF cannot be represented. */ STATE_POWERON = 0, STATE_INIT, STATE_SELFTEST, STATE_OPERATIONAL, STATE_ERROR, STATE_FATALERROR, STATE_SHUTDOWN }; /* Flag telling whether we are in fips mode. It uses inverse logic so that fips mode is the default unless changed by the initialization code. To check whether fips mode is enabled, use the function fips_mode()! */ int _gcry_no_fips_mode_required; /* This is the lock we use to protect the FSM. */ GPGRT_LOCK_DEFINE (fsm_lock); /* The current state of the FSM. The whole state machinery is only used while in fips mode. Change this only while holding fsm_lock. */ static enum module_states current_state; static void fips_new_state (enum module_states new_state); /* Convert lowercase hex digits; assumes valid hex digits. */ #define loxtoi_1(p) (*(p) <= '9'? (*(p)- '0'): (*(p)-'a'+10)) #define loxtoi_2(p) ((loxtoi_1(p) * 16) + loxtoi_1((p)+1)) /* Returns true if P points to a lowercase hex digit. */ #define loxdigit_p(p) !!strchr ("01234567890abcdef", *(p)) static int check_fips_system_setting (void) { /* Do we have the environment variable set? */ if (getenv ("LIBGCRYPT_FORCE_FIPS_MODE")) return 1; /* For testing the system it is useful to override the system provided detection of the FIPS mode and force FIPS mode using a file. The filename is hardwired so that there won't be any confusion on whether /etc/gcrypt/ or /usr/local/etc/gcrypt/ is actually used. The file itself may be empty. */ if ( !access (FIPS_FORCE_FILE, F_OK) ) return 1; /* Checking based on /proc file properties. */ { static const char procfname[] = "/proc/sys/crypto/fips_enabled"; FILE *fp; int saved_errno; fp = fopen (procfname, "r"); if (fp) { char line[256]; if (fgets (line, sizeof line, fp) && atoi (line)) { /* System is in fips mode. */ fclose (fp); return 1; } fclose (fp); } else if ((saved_errno = errno) != ENOENT && saved_errno != EACCES && !access ("/proc/version", F_OK) ) { /* Problem reading the fips file despite that we have the proc file system. We better stop right away. */ log_info ("FATAL: error reading `%s' in libgcrypt: %s\n", procfname, strerror (saved_errno)); #ifdef HAVE_SYSLOG syslog (LOG_USER|LOG_ERR, "Libgcrypt error: " "reading `%s' failed: %s - abort", procfname, strerror (saved_errno)); #endif /*HAVE_SYSLOG*/ abort (); } } return 0; } /* Check whether the OS is in FIPS mode and record that in a module local variable. If FORCE is passed as true, fips mode will be enabled anyway. Note: This function is not thread-safe and should be called before any threads are created. This function may only be called once. */ void _gcry_initialize_fips_mode (int force) { static int done; gpg_error_t err; /* Make sure we are not accidentally called twice. */ if (done) { if ( fips_mode () ) { fips_new_state (STATE_FATALERROR); fips_noreturn (); } /* If not in fips mode an assert is sufficient. */ gcry_assert (!done); } done = 1; /* If the calling application explicitly requested fipsmode, do so. */ if (force) { gcry_assert (!_gcry_no_fips_mode_required); goto leave; } /* If the system explicitly requested fipsmode, do so. */ if (check_fips_system_setting ()) { gcry_assert (!_gcry_no_fips_mode_required); goto leave; } /* Fips not not requested, set flag. */ _gcry_no_fips_mode_required = 1; leave: if (!_gcry_no_fips_mode_required) { /* Yes, we are in FIPS mode. */ /* Intitialize the lock to protect the FSM. */ err = gpgrt_lock_init (&fsm_lock); if (err) { /* If that fails we can't do anything but abort the process. We need to use log_info so that the FSM won't get involved. */ log_info ("FATAL: failed to create the FSM lock in libgcrypt: %s\n", gpg_strerror (err)); #ifdef HAVE_SYSLOG syslog (LOG_USER|LOG_ERR, "Libgcrypt error: " "creating FSM lock failed: %s - abort", gpg_strerror (err)); #endif /*HAVE_SYSLOG*/ abort (); } /* Now get us into the INIT state. */ fips_new_state (STATE_INIT); } return; } static void lock_fsm (void) { gpg_error_t err; err = gpgrt_lock_lock (&fsm_lock); if (err) { log_info ("FATAL: failed to acquire the FSM lock in libgrypt: %s\n", gpg_strerror (err)); #ifdef HAVE_SYSLOG syslog (LOG_USER|LOG_ERR, "Libgcrypt error: " "acquiring FSM lock failed: %s - abort", gpg_strerror (err)); #endif /*HAVE_SYSLOG*/ abort (); } } static void unlock_fsm (void) { gpg_error_t err; err = gpgrt_lock_unlock (&fsm_lock); if (err) { log_info ("FATAL: failed to release the FSM lock in libgrypt: %s\n", gpg_strerror (err)); #ifdef HAVE_SYSLOG syslog (LOG_USER|LOG_ERR, "Libgcrypt error: " "releasing FSM lock failed: %s - abort", gpg_strerror (err)); #endif /*HAVE_SYSLOG*/ abort (); } } static const char * state2str (enum module_states state) { const char *s; switch (state) { case STATE_POWERON: s = "Power-On"; break; case STATE_INIT: s = "Init"; break; case STATE_SELFTEST: s = "Self-Test"; break; case STATE_OPERATIONAL: s = "Operational"; break; case STATE_ERROR: s = "Error"; break; case STATE_FATALERROR: s = "Fatal-Error"; break; case STATE_SHUTDOWN: s = "Shutdown"; break; default: s = "?"; break; } return s; } /* Return true if the library is in the operational state. */ int _gcry_fips_is_operational (void) { int result; if (!fips_mode ()) result = 1; else { lock_fsm (); if (current_state == STATE_INIT) { /* If we are still in the INIT state, we need to run the selftests so that the FSM can eventually get into operational state. Given that we would need a 2-phase initialization of libgcrypt, but that has traditionally not been enforced, we use this on demand self-test checking. Note that Proper applications would do the application specific libgcrypt initialization between a gcry_check_version() and gcry_control (GCRYCTL_INITIALIZATION_FINISHED) where the latter will run the selftests. The drawback of these on-demand self-tests are a small chance that self-tests are performed by several threads; that is no problem because our FSM make sure that we won't oversee any error. */ unlock_fsm (); _gcry_fips_run_selftests (0); /* Release resources for random. */ _gcry_random_close_fds (); lock_fsm (); } result = (current_state == STATE_OPERATIONAL); unlock_fsm (); } return result; } /* This is test on whether the library is in the operational state. In contrast to _gcry_fips_is_operational this function won't do a state transition on the fly. */ int _gcry_fips_test_operational (void) { int result; if (!fips_mode ()) result = 1; else { lock_fsm (); result = (current_state == STATE_OPERATIONAL); unlock_fsm (); } return result; } int _gcry_fips_indicator (va_list arg_ptr) { enum gcry_cipher_algos alg = va_arg (arg_ptr, enum gcry_cipher_algos); enum gcry_cipher_modes mode; switch (alg) { case GCRY_CIPHER_AES: case GCRY_CIPHER_AES192: case GCRY_CIPHER_AES256: mode = va_arg (arg_ptr, enum gcry_cipher_modes); switch (mode) { case GCRY_CIPHER_MODE_ECB: case GCRY_CIPHER_MODE_CBC: case GCRY_CIPHER_MODE_CFB: case GCRY_CIPHER_MODE_CFB8: case GCRY_CIPHER_MODE_OFB: case GCRY_CIPHER_MODE_CTR: case GCRY_CIPHER_MODE_CCM: case GCRY_CIPHER_MODE_GCM: case GCRY_CIPHER_MODE_XTS: return GPG_ERR_NO_ERROR; default: return GPG_ERR_NOT_SUPPORTED; } default: return GPG_ERR_NOT_SUPPORTED; } } /* This is a test on whether the library is in the error or operational state. */ int _gcry_fips_test_error_or_operational (void) { int result; if (!fips_mode ()) result = 1; else { lock_fsm (); result = (current_state == STATE_OPERATIONAL || current_state == STATE_ERROR); unlock_fsm (); } return result; } static void reporter (const char *domain, int algo, const char *what, const char *errtxt) { if (!errtxt && !_gcry_log_verbosity (2)) return; log_info ("libgcrypt selftest: %s %s%s (%d): %s%s%s%s\n", !strcmp (domain, "hmac")? "digest":domain, !strcmp (domain, "hmac")? "HMAC-":"", !strcmp (domain, "cipher")? _gcry_cipher_algo_name (algo) : !strcmp (domain, "digest")? _gcry_md_algo_name (algo) : !strcmp (domain, "hmac")? _gcry_md_algo_name (algo) : !strcmp (domain, "pubkey")? _gcry_pk_algo_name (algo) : "", algo, errtxt? errtxt:"Okay", what?" (":"", what? what:"", what?")":""); } /* Run self-tests for all required cipher algorithms. Return 0 on success. */ static int run_cipher_selftests (int extended) { static int algos[] = { GCRY_CIPHER_AES128, GCRY_CIPHER_AES192, GCRY_CIPHER_AES256, 0 }; int idx; gpg_error_t err; int anyerr = 0; for (idx=0; algos[idx]; idx++) { err = _gcry_cipher_selftest (algos[idx], extended, reporter); reporter ("cipher", algos[idx], NULL, err? gpg_strerror (err):NULL); if (err) anyerr = 1; } return anyerr; } /* Run self-tests for all required hash algorithms. Return 0 on success. */ static int run_digest_selftests (int extended) { static int algos[] = { GCRY_MD_SHA1, GCRY_MD_SHA224, #ifndef ENABLE_HMAC_BINARY_CHECK GCRY_MD_SHA256, #endif GCRY_MD_SHA384, GCRY_MD_SHA512, 0 }; int idx; gpg_error_t err; int anyerr = 0; for (idx=0; algos[idx]; idx++) { err = _gcry_md_selftest (algos[idx], extended, reporter); reporter ("digest", algos[idx], NULL, err? gpg_strerror (err):NULL); if (err) anyerr = 1; } return anyerr; } /* Run self-tests for MAC algorithms. Return 0 on success. */ static int run_mac_selftests (int extended) { static int algos[] = { GCRY_MAC_HMAC_SHA1, GCRY_MAC_HMAC_SHA224, #ifndef ENABLE_HMAC_BINARY_CHECK GCRY_MAC_HMAC_SHA256, #endif GCRY_MAC_HMAC_SHA384, GCRY_MAC_HMAC_SHA512, GCRY_MAC_HMAC_SHA3_224, GCRY_MAC_HMAC_SHA3_256, GCRY_MAC_HMAC_SHA3_384, GCRY_MAC_HMAC_SHA3_512, GCRY_MAC_CMAC_AES, 0 }; int idx; gpg_error_t err; int anyerr = 0; for (idx=0; algos[idx]; idx++) { err = _gcry_mac_selftest (algos[idx], extended, reporter); reporter ("mac", algos[idx], NULL, err? gpg_strerror (err):NULL); if (err) anyerr = 1; } return anyerr; } /* Run self-tests for all KDF algorithms. Return 0 on success. */ static int run_kdf_selftests (int extended) { static int algos[] = { GCRY_KDF_PBKDF2, 0 }; int idx; gpg_error_t err; int anyerr = 0; for (idx=0; algos[idx]; idx++) { err = _gcry_kdf_selftest (algos[idx], extended, reporter); reporter ("kdf", algos[idx], NULL, err? gpg_strerror (err):NULL); if (err) anyerr = 1; } return anyerr; } /* Run self-tests for all required public key algorithms. Return 0 on success. */ static int run_pubkey_selftests (int extended) { static int algos[] = { GCRY_PK_RSA, - GCRY_PK_DSA, GCRY_PK_ECC, 0 }; int idx; gpg_error_t err; int anyerr = 0; for (idx=0; algos[idx]; idx++) { err = _gcry_pk_selftest (algos[idx], extended, reporter); reporter ("pubkey", algos[idx], NULL, err? gpg_strerror (err):NULL); if (err) anyerr = 1; } return anyerr; } /* Run self-tests for the random number generator. Returns 0 on success. */ static int run_random_selftests (void) { gpg_error_t err; err = _gcry_random_selftest (reporter); reporter ("random", 0, NULL, err? gpg_strerror (err):NULL); return !!err; } #ifdef ENABLE_HMAC_BINARY_CHECK # ifndef KEY_FOR_BINARY_CHECK # define KEY_FOR_BINARY_CHECK "What am I, a doctor or a moonshuttle conductor?" # endif #define HMAC_LEN 32 static const unsigned char __attribute__ ((section (".rodata1"))) hmac_for_the_implementation[HMAC_LEN]; static gpg_error_t hmac256_check (const char *filename, const char *key, struct link_map *lm) { gpg_error_t err; FILE *fp; gcry_md_hd_t hd; size_t buffer_size, nread; char *buffer; unsigned long paddr; unsigned long off = 0; paddr = (unsigned long)hmac_for_the_implementation - lm->l_addr; fp = fopen (filename, "rb"); if (!fp) return gpg_error (GPG_ERR_INV_OBJ); err = _gcry_md_open (&hd, GCRY_MD_SHA256, GCRY_MD_FLAG_HMAC); if (err) { fclose (fp); return err; } err = _gcry_md_setkey (hd, key, strlen (key)); if (err) { fclose (fp); _gcry_md_close (hd); return err; } buffer_size = 32768; buffer = xtrymalloc (buffer_size + HMAC_LEN); if (!buffer) { err = gpg_error_from_syserror (); fclose (fp); _gcry_md_close (hd); return err; } nread = fread (buffer, 1, HMAC_LEN, fp); off += nread; if (nread < HMAC_LEN) { xfree (buffer); fclose (fp); _gcry_md_close (hd); return gpg_error (GPG_ERR_TOO_SHORT); } while (1) { nread = fread (buffer+HMAC_LEN, 1, buffer_size, fp); if (nread < buffer_size) { if (off - HMAC_LEN <= paddr && paddr <= off + nread) memset (buffer + HMAC_LEN + paddr - off, 0, HMAC_LEN); _gcry_md_write (hd, buffer, nread+HMAC_LEN); off += nread; break; } if (off - HMAC_LEN <= paddr && paddr <= off + nread) memset (buffer + HMAC_LEN + paddr - off, 0, HMAC_LEN); _gcry_md_write (hd, buffer, nread); memcpy (buffer, buffer+buffer_size, HMAC_LEN); off += nread; } if (ferror (fp)) err = gpg_error (GPG_ERR_INV_HANDLE); else { unsigned char *digest; digest = _gcry_md_read (hd, 0); if (!memcmp (digest, hmac_for_the_implementation, HMAC_LEN)) /* Success. */ err = 0; else err = gpg_error (GPG_ERR_CHECKSUM); } _gcry_md_close (hd); xfree (buffer); fclose (fp); return err; } /* Run an integrity check on the binary. Returns 0 on success. */ static int check_binary_integrity (void) { gpg_error_t err; Dl_info info; const char *key = KEY_FOR_BINARY_CHECK; void *extra_info; if (!dladdr1 (hmac_for_the_implementation, &info, &extra_info, RTLD_DL_LINKMAP)) err = gpg_error_from_syserror (); else err = hmac256_check (info.dli_fname, key, extra_info); reporter ("binary", 0, NULL, err? gpg_strerror (err):NULL); #ifdef HAVE_SYSLOG if (err) syslog (LOG_USER|LOG_ERR, "Libgcrypt error: " "integrity check failed: %s", gpg_strerror (err)); #endif /*HAVE_SYSLOG*/ return !!err; } /* Run self-tests for HMAC-SHA256 algorithm before verifying library integrity. * Return 0 on success. */ static int run_hmac_sha256_selftests (int extended) { gpg_error_t err; int anyerr = 0; err = _gcry_md_selftest (GCRY_MD_SHA256, extended, reporter); reporter ("digest", GCRY_MD_SHA256, NULL, err? gpg_strerror (err):NULL); if (err) anyerr = 1; err = _gcry_mac_selftest (GCRY_MAC_HMAC_SHA256, extended, reporter); reporter ("mac", GCRY_MAC_HMAC_SHA256, NULL, err? gpg_strerror (err):NULL); if (err) anyerr = 1; return anyerr; } #endif /* Run the self-tests. If EXTENDED is true, extended versions of the selftest are run, that is more tests than required by FIPS. */ gpg_err_code_t _gcry_fips_run_selftests (int extended) { enum module_states result = STATE_ERROR; gcry_err_code_t ec = GPG_ERR_SELFTEST_FAILED; if (fips_mode ()) fips_new_state (STATE_SELFTEST); #ifdef ENABLE_HMAC_BINARY_CHECK if (run_hmac_sha256_selftests (extended)) goto leave; if (fips_mode ()) { /* Now check the integrity of the binary. We do this this after having checked the HMAC code. */ if (check_binary_integrity ()) goto leave; } #endif if (run_cipher_selftests (extended)) goto leave; if (run_digest_selftests (extended)) goto leave; if (run_mac_selftests (extended)) goto leave; if (run_kdf_selftests (extended)) goto leave; /* Run random tests before the pubkey tests because the latter require random. */ if (run_random_selftests ()) goto leave; if (run_pubkey_selftests (extended)) goto leave; /* All selftests passed. */ result = STATE_OPERATIONAL; ec = 0; leave: if (fips_mode ()) fips_new_state (result); return ec; } /* This function is used to tell the FSM about errors in the library. The FSM will be put into an error state. This function should not be called directly but by one of the macros fips_signal_error (description) fips_signal_fatal_error (description) where DESCRIPTION is a string describing the error. */ void _gcry_fips_signal_error (const char *srcfile, int srcline, const char *srcfunc, int is_fatal, const char *description) { if (!fips_mode ()) return; /* Not required. */ /* Set new state before printing an error. */ fips_new_state (is_fatal? STATE_FATALERROR : STATE_ERROR); /* Print error. */ log_info ("%serror in libgcrypt, file %s, line %d%s%s: %s\n", is_fatal? "fatal ":"", srcfile, srcline, srcfunc? ", function ":"", srcfunc? srcfunc:"", description? description : "no description available"); #ifdef HAVE_SYSLOG syslog (LOG_USER|LOG_ERR, "Libgcrypt error: " "%serror in file %s, line %d%s%s: %s", is_fatal? "fatal ":"", srcfile, srcline, srcfunc? ", function ":"", srcfunc? srcfunc:"", description? description : "no description available"); #endif /*HAVE_SYSLOG*/ } /* Perform a state transition to NEW_STATE. If this is an invalid transition, the module will go into a fatal error state. */ static void fips_new_state (enum module_states new_state) { int ok = 0; enum module_states last_state; lock_fsm (); last_state = current_state; switch (current_state) { case STATE_POWERON: if (new_state == STATE_INIT || new_state == STATE_ERROR || new_state == STATE_FATALERROR) ok = 1; break; case STATE_INIT: if (new_state == STATE_SELFTEST || new_state == STATE_ERROR || new_state == STATE_FATALERROR) ok = 1; break; case STATE_SELFTEST: if (new_state == STATE_OPERATIONAL || new_state == STATE_ERROR || new_state == STATE_FATALERROR) ok = 1; break; case STATE_OPERATIONAL: if (new_state == STATE_SHUTDOWN || new_state == STATE_SELFTEST || new_state == STATE_ERROR || new_state == STATE_FATALERROR) ok = 1; break; case STATE_ERROR: if (new_state == STATE_SHUTDOWN || new_state == STATE_ERROR || new_state == STATE_FATALERROR || new_state == STATE_SELFTEST) ok = 1; break; case STATE_FATALERROR: if (new_state == STATE_SHUTDOWN ) ok = 1; break; case STATE_SHUTDOWN: /* We won't see any transition *from* Shutdown because the only allowed new state is Power-Off and that one can't be represented. */ break; } if (ok) { current_state = new_state; } unlock_fsm (); if (!ok || _gcry_log_verbosity (2)) log_info ("libgcrypt state transition %s => %s %s\n", state2str (last_state), state2str (new_state), ok? "granted":"denied"); if (!ok) { /* Invalid state transition. Halting library. */ #ifdef HAVE_SYSLOG syslog (LOG_USER|LOG_ERR, "Libgcrypt error: invalid state transition %s => %s", state2str (last_state), state2str (new_state)); #endif /*HAVE_SYSLOG*/ fips_noreturn (); } else if (new_state == STATE_ERROR || new_state == STATE_FATALERROR) { #ifdef HAVE_SYSLOG syslog (LOG_USER|LOG_WARNING, "Libgcrypt notice: state transition %s => %s", state2str (last_state), state2str (new_state)); #endif /*HAVE_SYSLOG*/ } } /* This function should be called to ensure that the execution shall not continue. */ void _gcry_fips_noreturn (void) { #ifdef HAVE_SYSLOG syslog (LOG_USER|LOG_ERR, "Libgcrypt terminated the application"); #endif /*HAVE_SYSLOG*/ fflush (NULL); abort (); /*NOTREACHED*/ }