diff --git a/g10/build-packet.c b/g10/build-packet.c index 07fccb099..2a95df694 100644 --- a/g10/build-packet.c +++ b/g10/build-packet.c @@ -1,1908 +1,1914 @@ /* build-packet.c - assemble packets and write them * Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, * 2006, 2010, 2011 Free Software Foundation, Inc. * * This file is part of GnuPG. * * GnuPG is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * GnuPG is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #include #include #include #include #include #include "gpg.h" #include "../common/util.h" #include "packet.h" #include "../common/status.h" #include "../common/iobuf.h" #include "../common/i18n.h" #include "options.h" #include "../common/host2net.h" static gpg_error_t do_ring_trust (iobuf_t out, PKT_ring_trust *rt); static int do_user_id( IOBUF out, int ctb, PKT_user_id *uid ); static int do_key (iobuf_t out, int ctb, PKT_public_key *pk); static int do_symkey_enc( IOBUF out, int ctb, PKT_symkey_enc *enc ); static int do_pubkey_enc( IOBUF out, int ctb, PKT_pubkey_enc *enc ); static u32 calc_plaintext( PKT_plaintext *pt ); static int do_plaintext( IOBUF out, int ctb, PKT_plaintext *pt ); static int do_encrypted( IOBUF out, int ctb, PKT_encrypted *ed ); static int do_encrypted_mdc( IOBUF out, int ctb, PKT_encrypted *ed ); static int do_encrypted_aead (iobuf_t out, int ctb, PKT_encrypted *ed); static int do_compressed( IOBUF out, int ctb, PKT_compressed *cd ); static int do_signature( IOBUF out, int ctb, PKT_signature *sig ); static int do_onepass_sig( IOBUF out, int ctb, PKT_onepass_sig *ops ); static int calc_header_length( u32 len, int new_ctb ); static int write_16(IOBUF inp, u16 a); static int write_32(IOBUF inp, u32 a); static int write_header( IOBUF out, int ctb, u32 len ); static int write_sign_packet_header( IOBUF out, int ctb, u32 len ); static int write_header2( IOBUF out, int ctb, u32 len, int hdrlen ); static int write_new_header( IOBUF out, int ctb, u32 len, int hdrlen ); /* Returns 1 if CTB is a new format ctb and 0 if CTB is an old format ctb. */ static int ctb_new_format_p (int ctb) { /* Bit 7 must always be set. */ log_assert ((ctb & (1 << 7))); /* Bit 6 indicates whether the packet is a new format packet. */ return (ctb & (1 << 6)); } /* Extract the packet type from a CTB. */ static int ctb_pkttype (int ctb) { if (ctb_new_format_p (ctb)) /* Bits 0 through 5 are the packet type. */ return (ctb & ((1 << 6) - 1)); else /* Bits 2 through 5 are the packet type. */ return (ctb & ((1 << 6) - 1)) >> 2; } /* Build a packet and write it to the stream OUT. * Returns: 0 on success or on an error code. */ int build_packet (IOBUF out, PACKET *pkt) { int rc = 0; int new_ctb = 0; int ctb, pkttype; if (DBG_PACKET) log_debug ("build_packet() type=%d\n", pkt->pkttype); log_assert (pkt->pkt.generic); switch ((pkttype = pkt->pkttype)) { case PKT_PUBLIC_KEY: if (pkt->pkt.public_key->seckey_info) pkttype = PKT_SECRET_KEY; break; case PKT_PUBLIC_SUBKEY: if (pkt->pkt.public_key->seckey_info) pkttype = PKT_SECRET_SUBKEY; break; case PKT_PLAINTEXT: new_ctb = pkt->pkt.plaintext->new_ctb; break; case PKT_ENCRYPTED: case PKT_ENCRYPTED_MDC: case PKT_ENCRYPTED_AEAD: new_ctb = pkt->pkt.encrypted->new_ctb; break; case PKT_COMPRESSED: new_ctb = pkt->pkt.compressed->new_ctb; break; case PKT_USER_ID: if (pkt->pkt.user_id->attrib_data) pkttype = PKT_ATTRIBUTE; break; default: break; } if (new_ctb || pkttype > 15) /* new format */ ctb = (0xc0 | (pkttype & 0x3f)); else ctb = (0x80 | ((pkttype & 15)<<2)); switch (pkttype) { case PKT_ATTRIBUTE: case PKT_USER_ID: rc = do_user_id (out, ctb, pkt->pkt.user_id); break; case PKT_OLD_COMMENT: case PKT_COMMENT: /* Ignore these. Theoretically, this will never be called as we * have no way to output comment packets any longer, but just in * case there is some code path that would end up outputting a * comment that was written before comments were dropped (in the * public key?) this is a no-op. */ break; case PKT_PUBLIC_SUBKEY: case PKT_PUBLIC_KEY: case PKT_SECRET_SUBKEY: case PKT_SECRET_KEY: rc = do_key (out, ctb, pkt->pkt.public_key); break; case PKT_SYMKEY_ENC: rc = do_symkey_enc (out, ctb, pkt->pkt.symkey_enc); break; case PKT_PUBKEY_ENC: rc = do_pubkey_enc (out, ctb, pkt->pkt.pubkey_enc); break; case PKT_PLAINTEXT: rc = do_plaintext (out, ctb, pkt->pkt.plaintext); break; case PKT_ENCRYPTED: rc = do_encrypted (out, ctb, pkt->pkt.encrypted); break; case PKT_ENCRYPTED_MDC: rc = do_encrypted_mdc (out, ctb, pkt->pkt.encrypted); break; case PKT_ENCRYPTED_AEAD: rc = do_encrypted_aead (out, ctb, pkt->pkt.encrypted); break; case PKT_COMPRESSED: rc = do_compressed (out, ctb, pkt->pkt.compressed); break; case PKT_SIGNATURE: rc = do_signature (out, ctb, pkt->pkt.signature); break; case PKT_ONEPASS_SIG: rc = do_onepass_sig (out, ctb, pkt->pkt.onepass_sig); break; case PKT_RING_TRUST: /* Ignore it (only written by build_packet_and_meta) */ break; case PKT_MDC: /* We write it directly, so we should never see it here. */ default: log_bug ("invalid packet type in build_packet()\n"); break; } return rc; } /* Build a packet and write it to the stream OUT. This variant also * writes the meta data using ring trust packets. Returns: 0 on * success or on error code. */ gpg_error_t build_packet_and_meta (iobuf_t out, PACKET *pkt) { gpg_error_t err; PKT_ring_trust rt = {0}; err = build_packet (out, pkt); if (err) ; else if (pkt->pkttype == PKT_SIGNATURE) { PKT_signature *sig = pkt->pkt.signature; rt.subtype = RING_TRUST_SIG; /* Note: trustval is not yet used. */ if (sig->flags.checked) { rt.sigcache = 1; if (sig->flags.valid) rt.sigcache |= 2; } err = do_ring_trust (out, &rt); } else if (pkt->pkttype == PKT_USER_ID || pkt->pkttype == PKT_ATTRIBUTE) { PKT_user_id *uid = pkt->pkt.user_id; rt.subtype = RING_TRUST_UID; rt.keyorg = uid->keyorg; rt.keyupdate = uid->keyupdate; rt.url = uid->updateurl; err = do_ring_trust (out, &rt); rt.url = NULL; } else if (pkt->pkttype == PKT_PUBLIC_KEY || pkt->pkttype == PKT_SECRET_KEY) { PKT_public_key *pk = pkt->pkt.public_key; rt.subtype = RING_TRUST_KEY; rt.keyorg = pk->keyorg; rt.keyupdate = pk->keyupdate; rt.url = pk->updateurl; err = do_ring_trust (out, &rt); rt.url = NULL; } return err; } /* * Write the mpi A to OUT. If R_NWRITTEN is not NULL the number of * bytes written is stored there. To only get the number of bytes * which would be written NULL may be passed for OUT. */ gpg_error_t gpg_mpi_write (iobuf_t out, gcry_mpi_t a, unsigned int *r_nwritten) { gpg_error_t err; unsigned int nwritten = 0; if (gcry_mpi_get_flag (a, GCRYMPI_FLAG_OPAQUE)) { unsigned int nbits; const unsigned char *p; unsigned char lenhdr[2]; /* gcry_log_debugmpi ("a", a); */ p = gcry_mpi_get_opaque (a, &nbits); if (p) { /* Strip leading zero bits. */ for (; nbits >= 8 && !*p; p++, nbits -= 8) ; if (nbits >= 8 && !(*p & 0x80)) if (--nbits >= 7 && !(*p & 0x40)) if (--nbits >= 6 && !(*p & 0x20)) if (--nbits >= 5 && !(*p & 0x10)) if (--nbits >= 4 && !(*p & 0x08)) if (--nbits >= 3 && !(*p & 0x04)) if (--nbits >= 2 && !(*p & 0x02)) if (--nbits >= 1 && !(*p & 0x01)) --nbits; } /* gcry_log_debug (" [%u bit]\n", nbits); */ /* gcry_log_debughex (" ", p, (nbits+7)/8); */ lenhdr[0] = nbits >> 8; lenhdr[1] = nbits; err = out? iobuf_write (out, lenhdr, 2) : 0; if (!err) { nwritten += 2; if (p) { err = out? iobuf_write (out, p, (nbits+7)/8) : 0; if (!err) nwritten += (nbits+7)/8; } } } else { char buffer[(MAX_EXTERN_MPI_BITS+7)/8+2]; /* 2 is for the mpi length. */ size_t nbytes; nbytes = DIM(buffer); err = gcry_mpi_print (GCRYMPI_FMT_PGP, buffer, nbytes, &nbytes, a ); if (!err) { err = out? iobuf_write (out, buffer, nbytes) : 0; if (!err) nwritten += nbytes; } else if (gpg_err_code (err) == GPG_ERR_TOO_SHORT ) { log_info ("mpi too large (%u bits)\n", gcry_mpi_get_nbits (a)); /* The buffer was too small. We better tell the user about * the MPI. */ err = gpg_error (GPG_ERR_TOO_LARGE); } } if (r_nwritten) *r_nwritten = nwritten; return err; } /* * Write an opaque MPI to the output stream without length info. */ gpg_error_t gpg_mpi_write_nohdr (iobuf_t out, gcry_mpi_t a) { int rc; if (gcry_mpi_get_flag (a, GCRYMPI_FLAG_OPAQUE)) { unsigned int nbits; const void *p; p = gcry_mpi_get_opaque (a, &nbits); rc = p ? iobuf_write (out, p, (nbits+7)/8) : 0; } else rc = gpg_error (GPG_ERR_BAD_MPI); return rc; } /* Calculate the length of a packet described by PKT. */ u32 calc_packet_length( PACKET *pkt ) { u32 n = 0; int new_ctb = 0; log_assert (pkt->pkt.generic); switch (pkt->pkttype) { case PKT_PLAINTEXT: n = calc_plaintext (pkt->pkt.plaintext); new_ctb = pkt->pkt.plaintext->new_ctb; break; case PKT_ATTRIBUTE: case PKT_USER_ID: case PKT_COMMENT: case PKT_PUBLIC_KEY: case PKT_SECRET_KEY: case PKT_SYMKEY_ENC: case PKT_PUBKEY_ENC: case PKT_ENCRYPTED: case PKT_SIGNATURE: case PKT_ONEPASS_SIG: case PKT_RING_TRUST: case PKT_COMPRESSED: default: log_bug ("invalid packet type in calc_packet_length()"); break; } n += calc_header_length (n, new_ctb); return n; } static gpg_error_t write_fake_data (IOBUF out, gcry_mpi_t a) { unsigned int n; void *p; if (!a) return 0; if (!gcry_mpi_get_flag (a, GCRYMPI_FLAG_OPAQUE)) return 0; /* e.g. due to generating a key with wrong usage. */ p = gcry_mpi_get_opaque ( a, &n); if (!p) return 0; /* For example due to a read error in parse-packet.c:read_rest. */ return iobuf_write (out, p, (n+7)/8 ); } /* Write a ring trust meta packet. */ static gpg_error_t do_ring_trust (iobuf_t out, PKT_ring_trust *rt) { unsigned int namelen = 0; unsigned int pktlen = 6; if (rt->subtype == RING_TRUST_KEY || rt->subtype == RING_TRUST_UID) { if (rt->url) namelen = strlen (rt->url); pktlen += 1 + 4 + 1 + namelen; } write_header (out, (0x80 | ((PKT_RING_TRUST & 15)<<2)), pktlen); iobuf_put (out, rt->trustval); iobuf_put (out, rt->sigcache); iobuf_write (out, "gpg", 3); iobuf_put (out, rt->subtype); if (rt->subtype == RING_TRUST_KEY || rt->subtype == RING_TRUST_UID) { iobuf_put (out, rt->keyorg); write_32 (out, rt->keyupdate); iobuf_put (out, namelen); if (namelen) iobuf_write (out, rt->url, namelen); } return 0; } /* Serialize the user id (RFC 4880, Section 5.11) or the user * attribute UID (Section 5.12) and write it to OUT. * * CTB is the serialization's CTB. It specifies the header format and * the packet's type. The header length must not be set. */ static int do_user_id( IOBUF out, int ctb, PKT_user_id *uid ) { int rc; int hdrlen; log_assert (ctb_pkttype (ctb) == PKT_USER_ID || ctb_pkttype (ctb) == PKT_ATTRIBUTE); /* We need to take special care of a user ID with a length of 0: * Without forcing HDRLEN to 2 in this case an indeterminate length * packet would be written which is not allowed. Note that we are * always called with a CTB indicating an old packet header format, - * so that forcing a 2 octet header works. */ + * so that forcing a 2 octet header works. We also check for the + * maximum allowed packet size by the parser using an arbitrary + * extra 10 bytes for header data. */ if (uid->attrib_data) { + if (uid->attrib_len > MAX_ATTR_PACKET_LENGTH - 10) + return gpg_error (GPG_ERR_TOO_LARGE); hdrlen = uid->attrib_len? 0 : 2; write_header2 (out, ctb, uid->attrib_len, hdrlen); rc = iobuf_write( out, uid->attrib_data, uid->attrib_len ); } else { + if (uid->len > MAX_UID_PACKET_LENGTH - 10) + return gpg_error (GPG_ERR_TOO_LARGE); hdrlen = uid->len? 0 : 2; write_header2 (out, ctb, uid->len, hdrlen); rc = iobuf_write( out, uid->name, uid->len ); } return rc; } /* Serialize the key (RFC 4880, Section 5.5) described by PK and write * it to OUT. * * This function serializes both primary keys and subkeys with or * without a secret part. * * CTB is the serialization's CTB. It specifies the header format and * the packet's type. The header length must not be set. * * PK->VERSION specifies the serialization format. A value of 0 means * to use the default version. Currently, only version 4 packets are * supported. */ static int do_key (iobuf_t out, int ctb, PKT_public_key *pk) { gpg_error_t err = 0; iobuf_t a; int i, nskey, npkey; u32 pkbytes = 0; int is_v5; log_assert (pk->version == 0 || pk->version == 4 || pk->version == 5); log_assert (ctb_pkttype (ctb) == PKT_PUBLIC_KEY || ctb_pkttype (ctb) == PKT_PUBLIC_SUBKEY || ctb_pkttype (ctb) == PKT_SECRET_KEY || ctb_pkttype (ctb) == PKT_SECRET_SUBKEY); /* The length of the body is stored in the packet's header, which * occurs before the body. Unfortunately, we don't know the length * of the packet's body until we've written all of the data! To * work around this, we first write the data into this temporary * buffer, then generate the header, and finally copy the content * of this buffer to OUT. */ a = iobuf_temp(); /* Note that the Version number, Timestamp, Algo, and the v5 Key * material count are written at the end of the function. */ is_v5 = (pk->version == 5); /* Get number of secret and public parameters. They are held in one array: the public ones followed by the secret ones. */ nskey = pubkey_get_nskey (pk->pubkey_algo); npkey = pubkey_get_npkey (pk->pubkey_algo); /* If we don't have any public parameters - which is for example the case if we don't know the algorithm used - the parameters are stored as one blob in a faked (opaque) MPI. */ if (!npkey) { write_fake_data (a, pk->pkey[0]); goto leave; } log_assert (npkey < nskey); for (i=0; i < npkey; i++ ) { if ( (pk->pubkey_algo == PUBKEY_ALGO_ECDSA && (i == 0)) || (pk->pubkey_algo == PUBKEY_ALGO_EDDSA && (i == 0)) || (pk->pubkey_algo == PUBKEY_ALGO_ECDH && (i == 0 || i == 2))) err = gpg_mpi_write_nohdr (a, pk->pkey[i]); else err = gpg_mpi_write (a, pk->pkey[i], NULL); if (err) goto leave; } /* Record the length of the public key part. */ pkbytes = iobuf_get_temp_length (a); if (pk->seckey_info) { /* This is a secret key packet. */ struct seckey_info *ski = pk->seckey_info; /* Build the header for protected (encrypted) secret parameters. */ if (ski->is_protected) { iobuf_put (a, ski->sha1chk? 0xfe : 0xff); /* S2k usage. */ if (is_v5) { /* For a v5 key determine the count of the following * key-protection material and write it. */ int count = 1; /* Pubkey algo octet. */ if (ski->s2k.mode >= 1000) count += 6; /* GNU specific mode descriptor. */ else count += 2; /* Mode and hash algo. */ if (ski->s2k.mode == 1 || ski->s2k.mode == 3) count += 8; /* Salt. */ if (ski->s2k.mode == 3) count++; /* S2K.COUNT */ if (ski->s2k.mode != 1001 && ski->s2k.mode != 1002) count += ski->ivlen; iobuf_put (a, count); } iobuf_put (a, ski->algo); /* Pubkey algo octet. */ if (ski->s2k.mode >= 1000) { /* These modes are not possible in OpenPGP, we use them to implement our extensions, 101 can be viewed as a private/experimental extension (this is not specified in rfc2440 but the same scheme is used for all other algorithm identifiers). */ iobuf_put (a, 101); iobuf_put (a, ski->s2k.hash_algo); iobuf_write (a, "GNU", 3 ); iobuf_put (a, ski->s2k.mode - 1000); } else { iobuf_put (a, ski->s2k.mode); iobuf_put (a, ski->s2k.hash_algo); } if (ski->s2k.mode == 1 || ski->s2k.mode == 3) iobuf_write (a, ski->s2k.salt, 8); if (ski->s2k.mode == 3) iobuf_put (a, ski->s2k.count); /* For our special modes 1001, 1002 we do not need an IV. */ if (ski->s2k.mode != 1001 && ski->s2k.mode != 1002) iobuf_write (a, ski->iv, ski->ivlen); } else /* Not protected. */ { iobuf_put (a, 0 ); /* S2K usage = not protected. */ if (is_v5) iobuf_put (a, 0); /* Zero octets of key-protection * material follows. */ } if (ski->s2k.mode == 1001) { /* GnuPG extension - don't write a secret key at all. */ if (is_v5) write_32 (a, 0); /* Zero octets of key material. */ } else if (ski->s2k.mode == 1002) { /* GnuPG extension - divert to OpenPGP smartcard. */ if (is_v5) write_32 (a, 1 + ski->ivlen); /* Length of the serial number or 0 for no serial number. */ iobuf_put (a, ski->ivlen ); /* The serial number gets stored in the IV field. */ iobuf_write (a, ski->iv, ski->ivlen); } else if (ski->is_protected) { /* The secret key is protected - write it out as it is. */ byte *p; unsigned int ndatabits; log_assert (gcry_mpi_get_flag (pk->pkey[npkey], GCRYMPI_FLAG_OPAQUE)); p = gcry_mpi_get_opaque (pk->pkey[npkey], &ndatabits); /* For v5 keys we first write the number of octets of the * following encrypted key material. */ if (is_v5) write_32 (a, p? (ndatabits+7)/8 : 0); if (p) iobuf_write (a, p, (ndatabits+7)/8 ); } else { /* Non-protected key. */ if (is_v5) { unsigned int skbytes = 0; unsigned int n; int j; for (j=i; j < nskey; j++ ) { if ((err = gpg_mpi_write (NULL, pk->pkey[j], &n))) goto leave; skbytes += n; } write_32 (a, skbytes); } for ( ; i < nskey; i++ ) if ( (err = gpg_mpi_write (a, pk->pkey[i], NULL))) goto leave; write_16 (a, ski->csum ); } } leave: if (!err) { /* Build the header of the packet - which we must do after * writing all the other stuff, so that we know the length of * the packet */ u32 len = iobuf_get_temp_length (a); len += 1; /* version number */ len += 4; /* timestamp */ len += 1; /* algo */ if (is_v5) len += 4; /* public key material count */ write_header2 (out, ctb, len, 0); /* And finally write it out to the real stream. */ iobuf_put (out, pk->version? pk->version : 4); /* version number */ write_32 (out, pk->timestamp ); iobuf_put (out, pk->pubkey_algo); /* algo */ if (is_v5) write_32 (out, pkbytes); /* public key material count */ err = iobuf_write_temp (out, a); /* pub and sec key material */ } iobuf_close (a); /* Close the temporary buffer */ return err; } /* Serialize the symmetric-key encrypted session key packet (RFC 4880, * 5.3) described by ENC and write it to OUT. * * CTB is the serialization's CTB. It specifies the header format and * the packet's type. The header length must not be set. */ static int do_symkey_enc( IOBUF out, int ctb, PKT_symkey_enc *enc ) { int rc = 0; IOBUF a = iobuf_temp(); log_assert (ctb_pkttype (ctb) == PKT_SYMKEY_ENC); log_assert (enc->version == 4 || enc->version == 5); switch (enc->s2k.mode) { case 0: /* Simple S2K. */ case 1: /* Salted S2K. */ case 3: /* Iterated and salted S2K. */ break; /* Reasonable values. */ default: log_bug ("do_symkey_enc: s2k=%d\n", enc->s2k.mode); } iobuf_put (a, enc->version); iobuf_put (a, enc->cipher_algo); if (enc->version == 5) iobuf_put (a, enc->aead_algo); iobuf_put (a, enc->s2k.mode); iobuf_put (a, enc->s2k.hash_algo); if (enc->s2k.mode == 1 || enc->s2k.mode == 3) { iobuf_write (a, enc->s2k.salt, 8); if (enc->s2k.mode == 3) iobuf_put (a, enc->s2k.count); } if (enc->seskeylen) iobuf_write (a, enc->seskey, enc->seskeylen); write_header (out, ctb, iobuf_get_temp_length(a)); rc = iobuf_write_temp (out, a); iobuf_close (a); return rc; } /* Serialize the public-key encrypted session key packet (RFC 4880, 5.1) described by ENC and write it to OUT. CTB is the serialization's CTB. It specifies the header format and the packet's type. The header length must not be set. */ static int do_pubkey_enc( IOBUF out, int ctb, PKT_pubkey_enc *enc ) { int rc = 0; int n, i; IOBUF a = iobuf_temp(); log_assert (ctb_pkttype (ctb) == PKT_PUBKEY_ENC); iobuf_put (a, 3); /* Version. */ if ( enc->throw_keyid ) { write_32(a, 0 ); /* Don't tell Eve who can decrypt the message. */ write_32(a, 0 ); } else { write_32(a, enc->keyid[0] ); write_32(a, enc->keyid[1] ); } iobuf_put(a,enc->pubkey_algo ); n = pubkey_get_nenc( enc->pubkey_algo ); if ( !n ) write_fake_data( a, enc->data[0] ); for (i=0; i < n && !rc ; i++ ) { if (enc->pubkey_algo == PUBKEY_ALGO_ECDH && i == 1) rc = gpg_mpi_write_nohdr (a, enc->data[i]); else rc = gpg_mpi_write (a, enc->data[i], NULL); } if (!rc) { write_header (out, ctb, iobuf_get_temp_length(a) ); rc = iobuf_write_temp (out, a); } iobuf_close(a); return rc; } /* Calculate the length of the serialized plaintext packet PT (RFC 4480, Section 5.9). */ static u32 calc_plaintext( PKT_plaintext *pt ) { /* Truncate namelen to the maximum 255 characters. Note this means that a function that calls build_packet with an illegal literal packet will get it back legalized. */ if(pt->namelen>255) pt->namelen=255; return pt->len? (1 + 1 + pt->namelen + 4 + pt->len) : 0; } /* Serialize the plaintext packet (RFC 4880, 5.9) described by PT and write it to OUT. The body of the message is stored in PT->BUF. The amount of data to write is PT->LEN. (PT->BUF should be configured to return EOF after this much data has been read.) If PT->LEN is 0 and CTB indicates that this is a new format packet, then partial block mode is assumed to have been enabled on OUT. On success, partial block mode is disabled. If PT->BUF is NULL, the caller must write out the data. In this case, if PT->LEN was 0, then partial body length mode was enabled and the caller must disable it by calling iobuf_set_partial_body_length_mode (out, 0). */ static int do_plaintext( IOBUF out, int ctb, PKT_plaintext *pt ) { int rc = 0; size_t nbytes; log_assert (ctb_pkttype (ctb) == PKT_PLAINTEXT); write_header(out, ctb, calc_plaintext( pt ) ); log_assert (pt->mode == 'b' || pt->mode == 't' || pt->mode == 'u' || pt->mode == 'm' || pt->mode == 'l' || pt->mode == '1'); iobuf_put(out, pt->mode ); iobuf_put(out, pt->namelen ); iobuf_write (out, pt->name, pt->namelen); rc = write_32(out, pt->timestamp ); if (rc) return rc; if (pt->buf) { nbytes = iobuf_copy (out, pt->buf); if(ctb_new_format_p (ctb) && !pt->len) /* Turn off partial body length mode. */ iobuf_set_partial_body_length_mode (out, 0); if( pt->len && nbytes != pt->len ) log_error("do_plaintext(): wrote %lu bytes but expected %lu bytes\n", (ulong)nbytes, (ulong)pt->len ); } return rc; } /* Serialize the symmetrically encrypted data packet (RFC 4880, Section 5.7) described by ED and write it to OUT. Note: this only writes the packets header! The call must then follow up and write the initial random data and the body to OUT. (If you use the encryption iobuf filter (cipher_filter), then this is done automatically.) */ static int do_encrypted( IOBUF out, int ctb, PKT_encrypted *ed ) { int rc = 0; u32 n; log_assert (! ed->mdc_method); log_assert (ctb_pkttype (ctb) == PKT_ENCRYPTED); n = ed->len ? (ed->len + ed->extralen) : 0; write_header(out, ctb, n ); /* This is all. The caller has to write the real data */ return rc; } /* Serialize the symmetrically encrypted integrity protected data packet (RFC 4880, Section 5.13) described by ED and write it to OUT. Note: this only writes the packet's header! The caller must then follow up and write the initial random data, the body and the MDC packet to OUT. (If you use the encryption iobuf filter (cipher_filter), then this is done automatically.) */ static int do_encrypted_mdc( IOBUF out, int ctb, PKT_encrypted *ed ) { int rc = 0; u32 n; log_assert (ed->mdc_method); log_assert (ctb_pkttype (ctb) == PKT_ENCRYPTED_MDC); /* Take version number and the following MDC packet in account. */ n = ed->len ? (ed->len + ed->extralen + 1 + 22) : 0; write_header(out, ctb, n ); iobuf_put(out, 1 ); /* version */ /* This is all. The caller has to write the real data */ return rc; } /* Serialize the symmetrically AEAD encrypted data packet * (rfc4880bis-03, Section 5.16) described by ED and write it to OUT. * * Note: this only writes only packet's header. The caller must then * follow up and write the actual encrypted data. This should be done * by pushing the the cipher_filter_aead. */ static int do_encrypted_aead (iobuf_t out, int ctb, PKT_encrypted *ed) { u32 n; log_assert (ctb_pkttype (ctb) == PKT_ENCRYPTED_AEAD); n = ed->len ? (ed->len + ed->extralen + 4) : 0; write_header (out, ctb, n ); iobuf_writebyte (out, 1); /* Version. */ iobuf_writebyte (out, ed->cipher_algo); iobuf_writebyte (out, ed->aead_algo); iobuf_writebyte (out, ed->chunkbyte); /* This is all. The caller has to write the encrypted data */ return 0; } /* Serialize the compressed packet (RFC 4880, Section 5.6) described by CD and write it to OUT. Note: this only writes the packet's header! The caller must then follow up and write the body to OUT. */ static int do_compressed( IOBUF out, int ctb, PKT_compressed *cd ) { int rc = 0; log_assert (ctb_pkttype (ctb) == PKT_COMPRESSED); /* We must use the old convention and don't use blockmode for the sake of PGP 2 compatibility. However if the new_ctb flag was set, CTB is already formatted as new style and write_header2 does create a partial length encoding using new the new style. */ write_header2(out, ctb, 0, 0); iobuf_put(out, cd->algorithm ); /* This is all. The caller has to write the real data */ return rc; } /**************** * Delete all subpackets of type REQTYPE and return a bool whether a packet * was deleted. */ int delete_sig_subpkt (subpktarea_t *area, sigsubpkttype_t reqtype ) { int buflen; sigsubpkttype_t type; byte *buffer, *bufstart; size_t n; size_t unused = 0; int okay = 0; if( !area ) return 0; buflen = area->len; buffer = area->data; for(;;) { if( !buflen ) { okay = 1; break; } bufstart = buffer; n = *buffer++; buflen--; if( n == 255 ) { if( buflen < 4 ) break; n = buf32_to_size_t (buffer); buffer += 4; buflen -= 4; } else if( n >= 192 ) { if( buflen < 2 ) break; n = (( n - 192 ) << 8) + *buffer + 192; buffer++; buflen--; } if( buflen < n ) break; type = *buffer & 0x7f; if( type == reqtype ) { buffer++; buflen--; n--; if( n > buflen ) break; buffer += n; /* point to next subpkt */ buflen -= n; memmove (bufstart, buffer, buflen); /* shift */ unused += buffer - bufstart; buffer = bufstart; } else { buffer += n; buflen -=n; } } if (!okay) log_error ("delete_subpkt: buffer shorter than subpacket\n"); log_assert (unused <= area->len); area->len -= unused; return !!unused; } /**************** * Create or update a signature subpacket for SIG of TYPE. This * functions knows where to put the data (hashed or unhashed). The * function may move data from the unhashed part to the hashed one. * Note: All pointers into sig->[un]hashed (e.g. returned by * parse_sig_subpkt) are not valid after a call to this function. The * data to put into the subpaket should be in a buffer with a length * of buflen. */ void build_sig_subpkt (PKT_signature *sig, sigsubpkttype_t type, const byte *buffer, size_t buflen ) { byte *p; int critical, hashed; subpktarea_t *oldarea, *newarea; size_t nlen, n, n0; critical = (type & SIGSUBPKT_FLAG_CRITICAL); type &= ~SIGSUBPKT_FLAG_CRITICAL; /* Sanity check buffer sizes */ if(parse_one_sig_subpkt(buffer,buflen,type)<0) BUG(); switch(type) { case SIGSUBPKT_NOTATION: case SIGSUBPKT_POLICY: case SIGSUBPKT_REV_KEY: case SIGSUBPKT_SIGNATURE: /* we do allow multiple subpackets */ break; default: /* we don't allow multiple subpackets */ delete_sig_subpkt(sig->hashed,type); delete_sig_subpkt(sig->unhashed,type); break; } /* Any special magic that needs to be done for this type so the packet doesn't need to be reparsed? */ switch(type) { case SIGSUBPKT_NOTATION: sig->flags.notation=1; break; case SIGSUBPKT_POLICY: sig->flags.policy_url=1; break; case SIGSUBPKT_PREF_KS: sig->flags.pref_ks=1; break; case SIGSUBPKT_EXPORTABLE: if(buffer[0]) sig->flags.exportable=1; else sig->flags.exportable=0; break; case SIGSUBPKT_REVOCABLE: if(buffer[0]) sig->flags.revocable=1; else sig->flags.revocable=0; break; case SIGSUBPKT_TRUST: sig->trust_depth=buffer[0]; sig->trust_value=buffer[1]; break; case SIGSUBPKT_REGEXP: sig->trust_regexp=buffer; break; /* This should never happen since we don't currently allow creating such a subpacket, but just in case... */ case SIGSUBPKT_SIG_EXPIRE: if(buf32_to_u32(buffer)+sig->timestamp<=make_timestamp()) sig->flags.expired=1; else sig->flags.expired=0; break; default: break; } if( (buflen+1) >= 8384 ) nlen = 5; /* write 5 byte length header */ else if( (buflen+1) >= 192 ) nlen = 2; /* write 2 byte length header */ else nlen = 1; /* just a 1 byte length header */ switch( type ) { /* The issuer being unhashed is a historical oddity. It should work equally as well hashed. Of course, if even an unhashed issuer is tampered with, it makes it awfully hard to verify the sig... */ case SIGSUBPKT_ISSUER: case SIGSUBPKT_SIGNATURE: hashed = 0; break; default: hashed = 1; break; } if( critical ) type |= SIGSUBPKT_FLAG_CRITICAL; oldarea = hashed? sig->hashed : sig->unhashed; /* Calculate new size of the area and allocate */ n0 = oldarea? oldarea->len : 0; n = n0 + nlen + 1 + buflen; /* length, type, buffer */ if (oldarea && n <= oldarea->size) { /* fits into the unused space */ newarea = oldarea; /*log_debug ("updating area for type %d\n", type );*/ } else if (oldarea) { newarea = xrealloc (oldarea, sizeof (*newarea) + n - 1); newarea->size = n; /*log_debug ("reallocating area for type %d\n", type );*/ } else { newarea = xmalloc (sizeof (*newarea) + n - 1); newarea->size = n; /*log_debug ("allocating area for type %d\n", type );*/ } newarea->len = n; p = newarea->data + n0; if (nlen == 5) { *p++ = 255; *p++ = (buflen+1) >> 24; *p++ = (buflen+1) >> 16; *p++ = (buflen+1) >> 8; *p++ = (buflen+1); *p++ = type; memcpy (p, buffer, buflen); } else if (nlen == 2) { *p++ = (buflen+1-192) / 256 + 192; *p++ = (buflen+1-192) % 256; *p++ = type; memcpy (p, buffer, buflen); } else { *p++ = buflen+1; *p++ = type; memcpy (p, buffer, buflen); } if (hashed) sig->hashed = newarea; else sig->unhashed = newarea; } /* * Put all the required stuff from SIG into subpackets of sig. * PKSK is the signing key. * Hmmm, should we delete those subpackets which are in a wrong area? */ void build_sig_subpkt_from_sig (PKT_signature *sig, PKT_public_key *pksk) { u32 u; byte buf[1+MAX_FINGERPRINT_LEN]; size_t fprlen; /* For v4 keys we need to write the ISSUER subpacket. We do not * want that for a future v5 format. */ if (pksk->version < 5) { u = sig->keyid[0]; buf[0] = (u >> 24) & 0xff; buf[1] = (u >> 16) & 0xff; buf[2] = (u >> 8) & 0xff; buf[3] = u & 0xff; u = sig->keyid[1]; buf[4] = (u >> 24) & 0xff; buf[5] = (u >> 16) & 0xff; buf[6] = (u >> 8) & 0xff; buf[7] = u & 0xff; build_sig_subpkt (sig, SIGSUBPKT_ISSUER, buf, 8); } /* Write the new ISSUER_FPR subpacket. */ fingerprint_from_pk (pksk, buf+1, &fprlen); if (fprlen == 20 || fprlen == 32) { buf[0] = pksk->version; build_sig_subpkt (sig, SIGSUBPKT_ISSUER_FPR, buf, fprlen + 1); } /* Write the timestamp. */ u = sig->timestamp; buf[0] = (u >> 24) & 0xff; buf[1] = (u >> 16) & 0xff; buf[2] = (u >> 8) & 0xff; buf[3] = u & 0xff; build_sig_subpkt( sig, SIGSUBPKT_SIG_CREATED, buf, 4 ); if(sig->expiredate) { if(sig->expiredate>sig->timestamp) u=sig->expiredate-sig->timestamp; else u=1; /* A 1-second expiration time is the shortest one OpenPGP has */ buf[0] = (u >> 24) & 0xff; buf[1] = (u >> 16) & 0xff; buf[2] = (u >> 8) & 0xff; buf[3] = u & 0xff; /* Mark this CRITICAL, so if any implementation doesn't understand sigs that can expire, it'll just disregard this sig altogether. */ build_sig_subpkt( sig, SIGSUBPKT_SIG_EXPIRE | SIGSUBPKT_FLAG_CRITICAL, buf, 4 ); } } void build_attribute_subpkt(PKT_user_id *uid,byte type, const void *buf,u32 buflen, const void *header,u32 headerlen) { byte *attrib; int idx; if(1+headerlen+buflen>8383) idx=5; else if(1+headerlen+buflen>191) idx=2; else idx=1; /* realloc uid->attrib_data to the right size */ uid->attrib_data=xrealloc(uid->attrib_data, uid->attrib_len+idx+1+headerlen+buflen); attrib=&uid->attrib_data[uid->attrib_len]; if(idx==5) { attrib[0]=255; attrib[1]=(1+headerlen+buflen) >> 24; attrib[2]=(1+headerlen+buflen) >> 16; attrib[3]=(1+headerlen+buflen) >> 8; attrib[4]=1+headerlen+buflen; } else if(idx==2) { attrib[0]=(1+headerlen+buflen-192) / 256 + 192; attrib[1]=(1+headerlen+buflen-192) % 256; } else attrib[0]=1+headerlen+buflen; /* Good luck finding a JPEG this small! */ attrib[idx++]=type; /* Tack on our data at the end */ if(headerlen>0) memcpy(&attrib[idx],header,headerlen); memcpy(&attrib[idx+headerlen],buf,buflen); uid->attrib_len+=idx+headerlen+buflen; } /* Returns a human-readable string corresponding to the notation. This ignores notation->value. The caller must free the result. */ static char * notation_value_to_human_readable_string (struct notation *notation) { if(notation->bdat) /* Binary data. */ { size_t len = notation->blen; int i; char preview[20]; for (i = 0; i < len && i < sizeof (preview) - 1; i ++) if (isprint (notation->bdat[i])) preview[i] = notation->bdat[i]; else preview[i] = '?'; preview[i] = 0; return xasprintf (_("[ not human readable (%zu bytes: %s%s) ]"), len, preview, i < len ? "..." : ""); } else /* The value is human-readable. */ return xstrdup (notation->value); } /* Turn the notation described by the string STRING into a notation. STRING has the form: - -name - Delete the notation. - name@domain.name=value - Normal notation - !name@domain.name=value - Notation with critical bit set. The caller must free the result using free_notation(). */ struct notation * string_to_notation(const char *string,int is_utf8) { const char *s; int saw_at=0; struct notation *notation; notation=xmalloc_clear(sizeof(*notation)); if(*string=='-') { notation->flags.ignore=1; string++; } if(*string=='!') { notation->flags.critical=1; string++; } /* If and when the IETF assigns some official name tags, we'll have to add them here. */ for( s=string ; *s != '='; s++ ) { if( *s=='@') saw_at++; /* -notationname is legal without an = sign */ if(!*s && notation->flags.ignore) break; if( !*s || !isascii (*s) || (!isgraph(*s) && !isspace(*s)) ) { log_error(_("a notation name must have only printable characters" " or spaces, and end with an '='\n") ); goto fail; } } notation->name=xmalloc((s-string)+1); memcpy(notation->name,string,s-string); notation->name[s-string]='\0'; if(!saw_at && !opt.expert) { log_error(_("a user notation name must contain the '@' character\n")); goto fail; } if (saw_at > 1) { log_error(_("a notation name must not contain more than" " one '@' character\n")); goto fail; } if(*s) { const char *i=s+1; int highbit=0; /* we only support printable text - therefore we enforce the use of only printable characters (an empty value is valid) */ for(s++; *s ; s++ ) { if ( !isascii (*s) ) highbit=1; else if (iscntrl(*s)) { log_error(_("a notation value must not use any" " control characters\n")); goto fail; } } if(!highbit || is_utf8) notation->value=xstrdup(i); else notation->value=native_to_utf8(i); } return notation; fail: free_notation(notation); return NULL; } /* Like string_to_notation, but store opaque data rather than human readable data. */ struct notation * blob_to_notation(const char *name, const char *data, size_t len) { const char *s; int saw_at=0; struct notation *notation; notation=xmalloc_clear(sizeof(*notation)); if(*name=='-') { notation->flags.ignore=1; name++; } if(*name=='!') { notation->flags.critical=1; name++; } /* If and when the IETF assigns some official name tags, we'll have to add them here. */ for( s=name ; *s; s++ ) { if( *s=='@') saw_at++; /* -notationname is legal without an = sign */ if(!*s && notation->flags.ignore) break; if (*s == '=') { log_error(_("a notation name may not contain an '=' character\n")); goto fail; } if (!isascii (*s) || (!isgraph(*s) && !isspace(*s))) { log_error(_("a notation name must have only printable characters" " or spaces\n") ); goto fail; } } notation->name=xstrdup (name); if(!saw_at && !opt.expert) { log_error(_("a user notation name must contain the '@' character\n")); goto fail; } if (saw_at > 1) { log_error(_("a notation name must not contain more than" " one '@' character\n")); goto fail; } notation->bdat = xmalloc (len); memcpy (notation->bdat, data, len); notation->blen = len; notation->value = notation_value_to_human_readable_string (notation); return notation; fail: free_notation(notation); return NULL; } struct notation * sig_to_notation(PKT_signature *sig) { const byte *p; size_t len; int seq = 0; int crit; notation_t list = NULL; /* See RFC 4880, 5.2.3.16 for the format of notation data. In short, a notation has: - 4 bytes of flags - 2 byte name length (n1) - 2 byte value length (n2) - n1 bytes of name data - n2 bytes of value data */ while((p=enum_sig_subpkt(sig->hashed,SIGSUBPKT_NOTATION,&len,&seq,&crit))) { int n1,n2; struct notation *n=NULL; if(len<8) { log_info(_("WARNING: invalid notation data found\n")); continue; } /* name length. */ n1=(p[4]<<8)|p[5]; /* value length. */ n2=(p[6]<<8)|p[7]; if(8+n1+n2!=len) { log_info(_("WARNING: invalid notation data found\n")); continue; } n=xmalloc_clear(sizeof(*n)); n->name=xmalloc(n1+1); memcpy(n->name,&p[8],n1); n->name[n1]='\0'; if(p[0]&0x80) /* The value is human-readable. */ { n->value=xmalloc(n2+1); memcpy(n->value,&p[8+n1],n2); n->value[n2]='\0'; n->flags.human = 1; } else /* Binary data. */ { n->bdat=xmalloc(n2); n->blen=n2; memcpy(n->bdat,&p[8+n1],n2); n->value = notation_value_to_human_readable_string (n); } n->flags.critical=crit; n->next=list; list=n; } return list; } /* Release the resources associated with the *list* of notations. To release a single notation, make sure that notation->next is NULL. */ void free_notation(struct notation *notation) { while(notation) { struct notation *n=notation; xfree(n->name); xfree(n->value); xfree(n->altvalue); xfree(n->bdat); notation=n->next; xfree(n); } } /* Serialize the signature packet (RFC 4880, Section 5.2) described by SIG and write it to OUT. */ static int do_signature( IOBUF out, int ctb, PKT_signature *sig ) { int rc = 0; int n, i; IOBUF a = iobuf_temp(); log_assert (ctb_pkttype (ctb) == PKT_SIGNATURE); if ( !sig->version || sig->version == 3) { iobuf_put( a, 3 ); /* Version 3 packets don't support subpackets. */ log_assert (! sig->hashed); log_assert (! sig->unhashed); } else iobuf_put( a, sig->version ); if ( sig->version < 4 ) iobuf_put (a, 5 ); /* Constant used by pre-v4 signatures. */ iobuf_put (a, sig->sig_class ); if ( sig->version < 4 ) { write_32(a, sig->timestamp ); write_32(a, sig->keyid[0] ); write_32(a, sig->keyid[1] ); } iobuf_put(a, sig->pubkey_algo ); iobuf_put(a, sig->digest_algo ); if ( sig->version >= 4 ) { size_t nn; /* Timestamp and keyid must have been packed into the subpackets prior to the call of this function, because these subpackets are hashed. */ nn = sig->hashed? sig->hashed->len : 0; write_16(a, nn); if (nn) iobuf_write( a, sig->hashed->data, nn ); nn = sig->unhashed? sig->unhashed->len : 0; write_16(a, nn); if (nn) iobuf_write( a, sig->unhashed->data, nn ); } iobuf_put(a, sig->digest_start[0] ); iobuf_put(a, sig->digest_start[1] ); n = pubkey_get_nsig( sig->pubkey_algo ); if ( !n ) write_fake_data( a, sig->data[0] ); for (i=0; i < n && !rc ; i++ ) rc = gpg_mpi_write (a, sig->data[i], NULL); if (!rc) { if ( is_RSA(sig->pubkey_algo) && sig->version < 4 ) write_sign_packet_header(out, ctb, iobuf_get_temp_length(a) ); else write_header(out, ctb, iobuf_get_temp_length(a) ); rc = iobuf_write_temp( out, a ); } iobuf_close(a); return rc; } /* Serialize the one-pass signature packet (RFC 4880, Section 5.4) described by OPS and write it to OUT. */ static int do_onepass_sig( IOBUF out, int ctb, PKT_onepass_sig *ops ) { log_assert (ctb_pkttype (ctb) == PKT_ONEPASS_SIG); write_header(out, ctb, 4 + 8 + 1); iobuf_put (out, 3); /* Version. */ iobuf_put(out, ops->sig_class ); iobuf_put(out, ops->digest_algo ); iobuf_put(out, ops->pubkey_algo ); write_32(out, ops->keyid[0] ); write_32(out, ops->keyid[1] ); iobuf_put(out, ops->last ); return 0; } /* Write a 16-bit quantity to OUT in big endian order. */ static int write_16(IOBUF out, u16 a) { iobuf_put(out, a>>8); if( iobuf_put(out,a) ) return -1; return 0; } /* Write a 32-bit quantity to OUT in big endian order. */ static int write_32(IOBUF out, u32 a) { iobuf_put(out, a>> 24); iobuf_put(out, a>> 16); iobuf_put(out, a>> 8); return iobuf_put(out, a); } /**************** * calculate the length of a header. * * LEN is the length of the packet's body. NEW_CTB is whether we are * using a new or old format packet. * * This function does not handle indeterminate lengths or partial body * lengths. (If you pass LEN as 0, then this function assumes you * really mean an empty body.) */ static int calc_header_length( u32 len, int new_ctb ) { if( new_ctb ) { if( len < 192 ) return 2; if( len < 8384 ) return 3; else return 6; } if( len < 256 ) return 2; if( len < 65536 ) return 3; return 5; } /**************** * Write the CTB and the packet length */ static int write_header( IOBUF out, int ctb, u32 len ) { return write_header2( out, ctb, len, 0 ); } static int write_sign_packet_header (IOBUF out, int ctb, u32 len) { (void)ctb; /* Work around a bug in the pgp read function for signature packets, which are not correctly coded and silently assume at some point 2 byte length headers.*/ iobuf_put (out, 0x89 ); iobuf_put (out, len >> 8 ); return iobuf_put (out, len) == -1 ? -1:0; } /**************** * Write a packet header to OUT. * * CTB is the ctb. It determines whether a new or old format packet * header should be written. The length field is adjusted, but the * CTB is otherwise written out as is. * * LEN is the length of the packet's body. * * If HDRLEN is set, then we don't necessarily use the most efficient * encoding to store LEN, but the specified length. (If this is not * possible, this is a bug.) In this case, LEN=0 means a 0 length * packet. Note: setting HDRLEN is only supported for old format * packets! * * If HDRLEN is not set, then the shortest encoding is used. In this * case, LEN=0 means the body has an indeterminate length and a * partial body length header (if a new format packet) or an * indeterminate length header (if an old format packet) is written * out. Further, if using partial body lengths, this enables partial * body length mode on OUT. */ static int write_header2( IOBUF out, int ctb, u32 len, int hdrlen ) { if (ctb_new_format_p (ctb)) return write_new_header( out, ctb, len, hdrlen ); /* An old format packet. Refer to RFC 4880, Section 4.2.1 to understand how lengths are encoded in this case. */ /* The length encoding is stored in the two least significant bits. Make sure they are cleared. */ log_assert ((ctb & 3) == 0); log_assert (hdrlen == 0 || hdrlen == 2 || hdrlen == 3 || hdrlen == 5); if (hdrlen) /* Header length is given. */ { if( hdrlen == 2 && len < 256 ) /* 00 => 1 byte length. */ ; else if( hdrlen == 3 && len < 65536 ) /* 01 => 2 byte length. If len < 256, this is not the most compact encoding, but it is a correct encoding. */ ctb |= 1; else if (hdrlen == 5) /* 10 => 4 byte length. If len < 65536, this is not the most compact encoding, but it is a correct encoding. */ ctb |= 2; else log_bug ("Can't encode length=%d in a %d byte header!\n", len, hdrlen); } else { if( !len ) /* 11 => Indeterminate length. */ ctb |= 3; else if( len < 256 ) /* 00 => 1 byte length. */ ; else if( len < 65536 ) /* 01 => 2 byte length. */ ctb |= 1; else /* 10 => 4 byte length. */ ctb |= 2; } if( iobuf_put(out, ctb ) ) return -1; if( len || hdrlen ) { if( ctb & 2 ) { if(iobuf_put(out, len >> 24 )) return -1; if(iobuf_put(out, len >> 16 )) return -1; } if( ctb & 3 ) if(iobuf_put(out, len >> 8 )) return -1; if( iobuf_put(out, len ) ) return -1; } return 0; } /* Write a new format header to OUT. CTB is the ctb. LEN is the length of the packet's body. If LEN is 0, then enables partial body length mode (i.e., the body is of an indeterminant length) on OUT. Note: this function cannot be used to generate a header for a zero length packet. HDRLEN is the length of the packet's header. If HDRLEN is 0, the shortest encoding is chosen based on the length of the packet's body. Currently, values other than 0 are not supported. Returns 0 on success. */ static int write_new_header( IOBUF out, int ctb, u32 len, int hdrlen ) { if( hdrlen ) log_bug("can't cope with hdrlen yet\n"); if( iobuf_put(out, ctb ) ) return -1; if( !len ) { iobuf_set_partial_body_length_mode(out, 512 ); } else { if( len < 192 ) { if( iobuf_put(out, len ) ) return -1; } else if( len < 8384 ) { len -= 192; if( iobuf_put( out, (len / 256) + 192) ) return -1; if( iobuf_put( out, (len % 256) ) ) return -1; } else { if( iobuf_put( out, 0xff ) ) return -1; if( iobuf_put( out, (len >> 24)&0xff ) ) return -1; if( iobuf_put( out, (len >> 16)&0xff ) ) return -1; if( iobuf_put( out, (len >> 8)&0xff ) ) return -1; if( iobuf_put( out, len & 0xff ) ) return -1; } } return 0; } diff --git a/g10/keygen.c b/g10/keygen.c index ac6bcc890..d9037d29d 100644 --- a/g10/keygen.c +++ b/g10/keygen.c @@ -1,5772 +1,5777 @@ /* keygen.c - Generate a key pair * Copyright (C) 1998-2007, 2009-2011 Free Software Foundation, Inc. * Copyright (C) 2014, 2015, 2016, 2017, 2018 Werner Koch * * This file is part of GnuPG. * * GnuPG is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * GnuPG is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #include #include #include #include #include #include #include #include #include #include "gpg.h" #include "../common/util.h" #include "main.h" #include "packet.h" #include "../common/ttyio.h" #include "options.h" #include "keydb.h" #include "trustdb.h" #include "../common/status.h" #include "../common/i18n.h" #include "keyserver-internal.h" #include "call-agent.h" #include "pkglue.h" #include "../common/shareddefs.h" #include "../common/host2net.h" #include "../common/mbox-util.h" /* The default algorithms. If you change them, you should ensure the value is inside the bounds enforced by ask_keysize and gen_xxx. See also get_keysize_range which encodes the allowed ranges. */ #define DEFAULT_STD_KEY_PARAM "rsa3072/cert,sign+rsa3072/encr" #define FUTURE_STD_KEY_PARAM "ed25519/cert,sign+cv25519/encr" /* When generating keys using the streamlined key generation dialog, use this as a default expiration interval. */ const char *default_expiration_interval = "2y"; /* Flag bits used during key generation. */ #define KEYGEN_FLAG_NO_PROTECTION 1 #define KEYGEN_FLAG_TRANSIENT_KEY 2 #define KEYGEN_FLAG_CREATE_V5_KEY 4 /* Maximum number of supported algorithm preferences. */ #define MAX_PREFS 30 enum para_name { pKEYTYPE, pKEYLENGTH, pKEYCURVE, pKEYUSAGE, pSUBKEYTYPE, pSUBKEYLENGTH, pSUBKEYCURVE, pSUBKEYUSAGE, pAUTHKEYTYPE, pNAMEREAL, pNAMEEMAIL, pNAMECOMMENT, pPREFERENCES, pREVOKER, pUSERID, pCREATIONDATE, pKEYCREATIONDATE, /* Same in seconds since epoch. */ pEXPIREDATE, pKEYEXPIRE, /* in n seconds */ pSUBKEYEXPIRE, /* in n seconds */ pPASSPHRASE, pSERIALNO, pCARDBACKUPKEY, pHANDLE, pKEYSERVER, pKEYGRIP, pSUBKEYGRIP, pVERSION, /* Desired version of the key packet. */ pSUBVERSION, /* Ditto for the subpacket. */ }; struct para_data_s { struct para_data_s *next; int lnr; enum para_name key; union { u32 expire; u32 creation; unsigned int usage; struct revocation_key revkey; char value[1]; } u; }; struct output_control_s { int lnr; int dryrun; unsigned int keygen_flags; int use_files; struct { char *fname; char *newfname; IOBUF stream; armor_filter_context_t *afx; } pub; }; struct opaque_data_usage_and_pk { unsigned int usage; PKT_public_key *pk; }; /* FIXME: These globals vars are ugly. And using MAX_PREFS even for * aeads is useless, given that we don't expects more than a very few * algorithms. */ static int prefs_initialized = 0; static byte sym_prefs[MAX_PREFS]; static int nsym_prefs; static byte hash_prefs[MAX_PREFS]; static int nhash_prefs; static byte zip_prefs[MAX_PREFS]; static int nzip_prefs; static byte aead_prefs[MAX_PREFS]; static int naead_prefs; static int mdc_available; static int ks_modify; static int aead_available; static gpg_error_t parse_algo_usage_expire (ctrl_t ctrl, int for_subkey, const char *algostr, const char *usagestr, const char *expirestr, int *r_algo, unsigned int *r_usage, u32 *r_expire, unsigned int *r_nbits, const char **r_curve, int *r_version); static void do_generate_keypair (ctrl_t ctrl, struct para_data_s *para, struct output_control_s *outctrl, int card ); static int write_keyblock (iobuf_t out, kbnode_t node); static gpg_error_t gen_card_key (int keyno, int algo, int is_primary, kbnode_t pub_root, u32 *timestamp, u32 expireval, int keygen_flags); static unsigned int get_keysize_range (int algo, unsigned int *min, unsigned int *max); /* Return the algo string for a default new key. */ const char * get_default_pubkey_algo (void) { if (opt.def_new_key_algo) { if (*opt.def_new_key_algo && !strchr (opt.def_new_key_algo, ':')) return opt.def_new_key_algo; /* To avoid checking that option every time we delay that until * here. The only thing we really need to make sure is that * there is no colon in the string so that the --gpgconf-list * command won't mess up its output. */ log_info (_("invalid value for option '%s'\n"), "--default-new-key-algo"); } return DEFAULT_STD_KEY_PARAM; } static void print_status_key_created (int letter, PKT_public_key *pk, const char *handle) { byte array[MAX_FINGERPRINT_LEN], *s; char *buf, *p; size_t i, n; if (!handle) handle = ""; buf = xmalloc (MAX_FINGERPRINT_LEN*2+31 + strlen (handle) + 1); p = buf; if (letter || pk) { *p++ = letter; if (pk) { *p++ = ' '; fingerprint_from_pk (pk, array, &n); s = array; /* Fixme: Use bin2hex */ for (i=0; i < n ; i++, s++, p += 2) snprintf (p, 3, "%02X", *s); } } if (*handle) { *p++ = ' '; for (i=0; handle[i] && i < 100; i++) *p++ = isspace ((unsigned int)handle[i])? '_':handle[i]; } *p = 0; write_status_text ((letter || pk)?STATUS_KEY_CREATED:STATUS_KEY_NOT_CREATED, buf); xfree (buf); } static void print_status_key_not_created (const char *handle) { print_status_key_created (0, NULL, handle); } -static void -write_uid( KBNODE root, const char *s ) +static gpg_error_t +write_uid (kbnode_t root, const char *s) { - PACKET *pkt = xmalloc_clear(sizeof *pkt ); - size_t n = strlen(s); - - pkt->pkttype = PKT_USER_ID; - pkt->pkt.user_id = xmalloc_clear (sizeof *pkt->pkt.user_id + n); - pkt->pkt.user_id->len = n; - pkt->pkt.user_id->ref = 1; - strcpy(pkt->pkt.user_id->name, s); - add_kbnode( root, new_kbnode( pkt ) ); + PACKET *pkt = xmalloc_clear (sizeof *pkt); + size_t n = strlen (s); + + if (n > MAX_UID_PACKET_LENGTH - 10) + return gpg_error (GPG_ERR_INV_USER_ID); + + pkt->pkttype = PKT_USER_ID; + pkt->pkt.user_id = xmalloc_clear (sizeof *pkt->pkt.user_id + n); + pkt->pkt.user_id->len = n; + pkt->pkt.user_id->ref = 1; + strcpy (pkt->pkt.user_id->name, s); + add_kbnode (root, new_kbnode (pkt)); + return 0; } static void do_add_key_flags (PKT_signature *sig, unsigned int use) { byte buf[1]; buf[0] = 0; /* The spec says that all primary keys MUST be able to certify. */ if(sig->sig_class!=0x18) buf[0] |= 0x01; if (use & PUBKEY_USAGE_SIG) buf[0] |= 0x02; if (use & PUBKEY_USAGE_ENC) buf[0] |= 0x04 | 0x08; if (use & PUBKEY_USAGE_AUTH) buf[0] |= 0x20; build_sig_subpkt (sig, SIGSUBPKT_KEY_FLAGS, buf, 1); } int keygen_add_key_expire (PKT_signature *sig, void *opaque) { PKT_public_key *pk = opaque; byte buf[8]; u32 u; if (pk->expiredate) { if (pk->expiredate > pk->timestamp) u = pk->expiredate - pk->timestamp; else u = 1; buf[0] = (u >> 24) & 0xff; buf[1] = (u >> 16) & 0xff; buf[2] = (u >> 8) & 0xff; buf[3] = u & 0xff; build_sig_subpkt (sig, SIGSUBPKT_KEY_EXPIRE, buf, 4); } else { /* Make sure we don't leave a key expiration subpacket lying around */ delete_sig_subpkt (sig->hashed, SIGSUBPKT_KEY_EXPIRE); } return 0; } /* Add the key usage (i.e. key flags) in SIG from the public keys * pubkey_usage field. OPAQUE has the public key. */ int keygen_add_key_flags (PKT_signature *sig, void *opaque) { PKT_public_key *pk = opaque; do_add_key_flags (sig, pk->pubkey_usage); return 0; } static int keygen_add_key_flags_and_expire (PKT_signature *sig, void *opaque) { struct opaque_data_usage_and_pk *oduap = opaque; do_add_key_flags (sig, oduap->usage); return keygen_add_key_expire (sig, oduap->pk); } static int set_one_pref (int val, int type, const char *item, byte *buf, int *nbuf) { int i; for (i=0; i < *nbuf; i++ ) if (buf[i] == val) { log_info (_("preference '%s' duplicated\n"), item); return -1; } if (*nbuf >= MAX_PREFS) { if(type==1) log_info(_("too many cipher preferences\n")); else if(type==2) log_info(_("too many digest preferences\n")); else if(type==3) log_info(_("too many compression preferences\n")); else if(type==4) log_info(_("too many AEAD preferences\n")); else BUG(); return -1; } buf[(*nbuf)++] = val; return 0; } /* * Parse the supplied string and use it to set the standard * preferences. The string may be in a form like the one printed by * "pref" (something like: "S10 S3 H3 H2 Z2 Z1") or the actual * cipher/hash/compress names. Use NULL to set the default * preferences. Returns: 0 = okay */ int keygen_set_std_prefs (const char *string,int personal) { byte sym[MAX_PREFS], hash[MAX_PREFS], zip[MAX_PREFS], aead[MAX_PREFS]; int nsym=0, nhash=0, nzip=0, naead=0, val, rc=0; int mdc=1, modify=0; /* mdc defaults on, modify defaults off. */ char dummy_string[25*4+1]; /* Enough for 25 items. */ if (!string || !ascii_strcasecmp (string, "default")) { if (opt.def_preference_list) string=opt.def_preference_list; else { int any_compress = 0; dummy_string[0]='\0'; /* The rationale why we use the order AES256,192,128 is for compatibility reasons with PGP. If gpg would define AES128 first, we would get the somewhat confusing situation: gpg -r pgpkey -r gpgkey ---gives--> AES256 gpg -r gpgkey -r pgpkey ---gives--> AES Note that by using --personal-cipher-preferences it is possible to prefer AES128. */ /* Make sure we do not add more than 15 items here, as we could overflow the size of dummy_string. We currently have at most 12. */ if ( !openpgp_cipher_test_algo (CIPHER_ALGO_AES256) ) strcat(dummy_string,"S9 "); if ( !openpgp_cipher_test_algo (CIPHER_ALGO_AES192) ) strcat(dummy_string,"S8 "); if ( !openpgp_cipher_test_algo (CIPHER_ALGO_AES) ) strcat(dummy_string,"S7 "); strcat(dummy_string,"S2 "); /* 3DES */ if (opt.flags.rfc4880bis && !openpgp_aead_test_algo (AEAD_ALGO_OCB)) strcat(dummy_string,"A2 "); if (opt.flags.rfc4880bis && !openpgp_aead_test_algo (AEAD_ALGO_EAX)) strcat(dummy_string,"A1 "); if (personal) { /* The default internal hash algo order is: * SHA-256, SHA-384, SHA-512, SHA-224, SHA-1. */ if (!openpgp_md_test_algo (DIGEST_ALGO_SHA256)) strcat (dummy_string, "H8 "); if (!openpgp_md_test_algo (DIGEST_ALGO_SHA384)) strcat (dummy_string, "H9 "); if (!openpgp_md_test_algo (DIGEST_ALGO_SHA512)) strcat (dummy_string, "H10 "); } else { /* The default advertised hash algo order is: * SHA-512, SHA-384, SHA-256, SHA-224, SHA-1. */ if (!openpgp_md_test_algo (DIGEST_ALGO_SHA512)) strcat (dummy_string, "H10 "); if (!openpgp_md_test_algo (DIGEST_ALGO_SHA384)) strcat (dummy_string, "H9 "); if (!openpgp_md_test_algo (DIGEST_ALGO_SHA256)) strcat (dummy_string, "H8 "); } if (!openpgp_md_test_algo (DIGEST_ALGO_SHA224)) strcat (dummy_string, "H11 "); strcat (dummy_string, "H2 "); /* SHA-1 */ if(!check_compress_algo(COMPRESS_ALGO_ZLIB)) { strcat(dummy_string,"Z2 "); any_compress = 1; } if(!check_compress_algo(COMPRESS_ALGO_BZIP2)) { strcat(dummy_string,"Z3 "); any_compress = 1; } if(!check_compress_algo(COMPRESS_ALGO_ZIP)) { strcat(dummy_string,"Z1 "); any_compress = 1; } /* In case we have no compress algo at all, declare that we prefer no compression. */ if (!any_compress) strcat(dummy_string,"Z0 "); /* Remove the trailing space. */ if (*dummy_string && dummy_string[strlen (dummy_string)-1] == ' ') dummy_string[strlen (dummy_string)-1] = 0; string=dummy_string; } } else if (!ascii_strcasecmp (string, "none")) string = ""; if(strlen(string)) { char *prefstringbuf; char *tok, *prefstring; /* We need a writable string. */ prefstring = prefstringbuf = xstrdup (string); while((tok=strsep(&prefstring," ,"))) { if((val=string_to_cipher_algo (tok))) { if(set_one_pref(val,1,tok,sym,&nsym)) rc=-1; } else if((val=string_to_digest_algo (tok))) { if(set_one_pref(val,2,tok,hash,&nhash)) rc=-1; } else if((val=string_to_compress_algo(tok))>-1) { if(set_one_pref(val,3,tok,zip,&nzip)) rc=-1; } else if ((val=string_to_aead_algo (tok))) { if (set_one_pref (val, 4, tok, aead, &naead)) rc = -1; } else if (ascii_strcasecmp(tok,"mdc")==0) mdc=1; else if (ascii_strcasecmp(tok,"no-mdc")==0) mdc=0; else if (ascii_strcasecmp(tok,"ks-modify")==0) modify=1; else if (ascii_strcasecmp(tok,"no-ks-modify")==0) modify=0; else { log_info (_("invalid item '%s' in preference string\n"),tok); rc=-1; } } xfree (prefstringbuf); } if(!rc) { if(personal) { if(personal==PREFTYPE_SYM) { xfree(opt.personal_cipher_prefs); if(nsym==0) opt.personal_cipher_prefs=NULL; else { int i; opt.personal_cipher_prefs= xmalloc(sizeof(prefitem_t *)*(nsym+1)); for (i=0; iref=1; uid->prefs = xmalloc ((sizeof(prefitem_t *)* (nsym_prefs+naead_prefs+nhash_prefs+nzip_prefs+1))); for(i=0;iprefs[j].type=PREFTYPE_SYM; uid->prefs[j].value=sym_prefs[i]; } for (i=0; i < naead_prefs; i++, j++) { uid->prefs[j].type = PREFTYPE_AEAD; uid->prefs[j].value = aead_prefs[i]; } for(i=0;iprefs[j].type=PREFTYPE_HASH; uid->prefs[j].value=hash_prefs[i]; } for(i=0;iprefs[j].type=PREFTYPE_ZIP; uid->prefs[j].value=zip_prefs[i]; } uid->prefs[j].type=PREFTYPE_NONE; uid->prefs[j].value=0; uid->flags.mdc = mdc_available; uid->flags.aead = aead_available; uid->flags.ks_modify = ks_modify; return uid; } static void add_feature_mdc (PKT_signature *sig,int enabled) { const byte *s; size_t n; int i; char *buf; s = parse_sig_subpkt (sig->hashed, SIGSUBPKT_FEATURES, &n ); /* Already set or cleared */ if (s && n && ((enabled && (s[0] & 0x01)) || (!enabled && !(s[0] & 0x01)))) return; if (!s || !n) { /* create a new one */ n = 1; buf = xmalloc_clear (n); } else { buf = xmalloc (n); memcpy (buf, s, n); } if(enabled) buf[0] |= 0x01; /* MDC feature */ else buf[0] &= ~0x01; /* Are there any bits set? */ for(i=0;ihashed, SIGSUBPKT_FEATURES); else build_sig_subpkt (sig, SIGSUBPKT_FEATURES, buf, n); xfree (buf); } static void add_feature_aead (PKT_signature *sig, int enabled) { const byte *s; size_t n; int i; char *buf; s = parse_sig_subpkt (sig->hashed, SIGSUBPKT_FEATURES, &n ); if (s && n && ((enabled && (s[0] & 0x02)) || (!enabled && !(s[0] & 0x02)))) return; /* Already set or cleared */ if (!s || !n) { /* Create a new one */ n = 1; buf = xmalloc_clear (n); } else { buf = xmalloc (n); memcpy (buf, s, n); } if (enabled) buf[0] |= 0x02; /* AEAD supported */ else buf[0] &= ~0x02; /* Are there any bits set? */ for (i=0; i < n; i++) if (buf[i]) break; if (i == n) delete_sig_subpkt (sig->hashed, SIGSUBPKT_FEATURES); else build_sig_subpkt (sig, SIGSUBPKT_FEATURES, buf, n); xfree (buf); } static void add_feature_v5 (PKT_signature *sig, int enabled) { const byte *s; size_t n; int i; char *buf; s = parse_sig_subpkt (sig->hashed, SIGSUBPKT_FEATURES, &n ); if (s && n && ((enabled && (s[0] & 0x04)) || (!enabled && !(s[0] & 0x04)))) return; /* Already set or cleared */ if (!s || !n) { /* Create a new one */ n = 1; buf = xmalloc_clear (n); } else { buf = xmalloc (n); memcpy (buf, s, n); } if (enabled) buf[0] |= 0x04; /* v5 key supported */ else buf[0] &= ~0x04; /* Are there any bits set? */ for (i=0; i < n; i++) if (buf[i]) break; if (i == n) delete_sig_subpkt (sig->hashed, SIGSUBPKT_FEATURES); else build_sig_subpkt (sig, SIGSUBPKT_FEATURES, buf, n); xfree (buf); } static void add_keyserver_modify (PKT_signature *sig,int enabled) { const byte *s; size_t n; int i; char *buf; /* The keyserver modify flag is a negative flag (i.e. no-modify) */ enabled=!enabled; s = parse_sig_subpkt (sig->hashed, SIGSUBPKT_KS_FLAGS, &n ); /* Already set or cleared */ if (s && n && ((enabled && (s[0] & 0x80)) || (!enabled && !(s[0] & 0x80)))) return; if (!s || !n) { /* create a new one */ n = 1; buf = xmalloc_clear (n); } else { buf = xmalloc (n); memcpy (buf, s, n); } if(enabled) buf[0] |= 0x80; /* no-modify flag */ else buf[0] &= ~0x80; /* Are there any bits set? */ for(i=0;ihashed, SIGSUBPKT_KS_FLAGS); else build_sig_subpkt (sig, SIGSUBPKT_KS_FLAGS, buf, n); xfree (buf); } int keygen_upd_std_prefs (PKT_signature *sig, void *opaque) { (void)opaque; if (!prefs_initialized) keygen_set_std_prefs (NULL, 0); if (nsym_prefs) build_sig_subpkt (sig, SIGSUBPKT_PREF_SYM, sym_prefs, nsym_prefs); else { delete_sig_subpkt (sig->hashed, SIGSUBPKT_PREF_SYM); delete_sig_subpkt (sig->unhashed, SIGSUBPKT_PREF_SYM); } if (naead_prefs) build_sig_subpkt (sig, SIGSUBPKT_PREF_AEAD, aead_prefs, naead_prefs); else { delete_sig_subpkt (sig->hashed, SIGSUBPKT_PREF_AEAD); delete_sig_subpkt (sig->unhashed, SIGSUBPKT_PREF_AEAD); } if (nhash_prefs) build_sig_subpkt (sig, SIGSUBPKT_PREF_HASH, hash_prefs, nhash_prefs); else { delete_sig_subpkt (sig->hashed, SIGSUBPKT_PREF_HASH); delete_sig_subpkt (sig->unhashed, SIGSUBPKT_PREF_HASH); } if (nzip_prefs) build_sig_subpkt (sig, SIGSUBPKT_PREF_COMPR, zip_prefs, nzip_prefs); else { delete_sig_subpkt (sig->hashed, SIGSUBPKT_PREF_COMPR); delete_sig_subpkt (sig->unhashed, SIGSUBPKT_PREF_COMPR); } /* Make sure that the MDC feature flag is set if needed. */ add_feature_mdc (sig,mdc_available); add_feature_aead (sig, aead_available); add_feature_v5 (sig, opt.flags.rfc4880bis); add_keyserver_modify (sig,ks_modify); keygen_add_keyserver_url(sig,NULL); return 0; } /**************** * Add preference to the self signature packet. * This is only called for packets with version > 3. */ int keygen_add_std_prefs (PKT_signature *sig, void *opaque) { PKT_public_key *pk = opaque; do_add_key_flags (sig, pk->pubkey_usage); keygen_add_key_expire (sig, opaque ); keygen_upd_std_prefs (sig, opaque); keygen_add_keyserver_url (sig,NULL); return 0; } int keygen_add_keyserver_url(PKT_signature *sig, void *opaque) { const char *url=opaque; if(!url) url=opt.def_keyserver_url; if(url) build_sig_subpkt(sig,SIGSUBPKT_PREF_KS,url,strlen(url)); else delete_sig_subpkt (sig->hashed,SIGSUBPKT_PREF_KS); return 0; } int keygen_add_notations(PKT_signature *sig,void *opaque) { struct notation *notation; /* We always start clean */ delete_sig_subpkt(sig->hashed,SIGSUBPKT_NOTATION); delete_sig_subpkt(sig->unhashed,SIGSUBPKT_NOTATION); sig->flags.notation=0; for(notation=opaque;notation;notation=notation->next) if(!notation->flags.ignore) { unsigned char *buf; unsigned int n1,n2; n1=strlen(notation->name); if(notation->altvalue) n2=strlen(notation->altvalue); else if(notation->bdat) n2=notation->blen; else n2=strlen(notation->value); buf = xmalloc( 8 + n1 + n2 ); /* human readable or not */ buf[0] = notation->bdat?0:0x80; buf[1] = buf[2] = buf[3] = 0; buf[4] = n1 >> 8; buf[5] = n1; buf[6] = n2 >> 8; buf[7] = n2; memcpy(buf+8, notation->name, n1 ); if(notation->altvalue) memcpy(buf+8+n1, notation->altvalue, n2 ); else if(notation->bdat) memcpy(buf+8+n1, notation->bdat, n2 ); else memcpy(buf+8+n1, notation->value, n2 ); build_sig_subpkt( sig, SIGSUBPKT_NOTATION | (notation->flags.critical?SIGSUBPKT_FLAG_CRITICAL:0), buf, 8+n1+n2 ); xfree(buf); } return 0; } int keygen_add_revkey (PKT_signature *sig, void *opaque) { struct revocation_key *revkey = opaque; byte buf[2+MAX_FINGERPRINT_LEN]; log_assert (revkey->fprlen <= MAX_FINGERPRINT_LEN); buf[0] = revkey->class; buf[1] = revkey->algid; memcpy (buf + 2, revkey->fpr, revkey->fprlen); memset (buf + 2 + revkey->fprlen, 0, sizeof (revkey->fpr) - revkey->fprlen); build_sig_subpkt (sig, SIGSUBPKT_REV_KEY, buf, 2+revkey->fprlen); /* All sigs with revocation keys set are nonrevocable. */ sig->flags.revocable = 0; buf[0] = 0; build_sig_subpkt (sig, SIGSUBPKT_REVOCABLE, buf, 1); parse_revkeys (sig); return 0; } /* Create a back-signature. If TIMESTAMP is not NULL, use it for the signature creation time. */ gpg_error_t make_backsig (ctrl_t ctrl, PKT_signature *sig, PKT_public_key *pk, PKT_public_key *sub_pk, PKT_public_key *sub_psk, u32 timestamp, const char *cache_nonce) { gpg_error_t err; PKT_signature *backsig; cache_public_key (sub_pk); err = make_keysig_packet (ctrl, &backsig, pk, NULL, sub_pk, sub_psk, 0x19, timestamp, 0, NULL, NULL, cache_nonce); if (err) log_error ("make_keysig_packet failed for backsig: %s\n", gpg_strerror (err)); else { /* Get it into a binary packed form. */ IOBUF backsig_out = iobuf_temp(); PACKET backsig_pkt; init_packet (&backsig_pkt); backsig_pkt.pkttype = PKT_SIGNATURE; backsig_pkt.pkt.signature = backsig; err = build_packet (backsig_out, &backsig_pkt); free_packet (&backsig_pkt, NULL); if (err) log_error ("build_packet failed for backsig: %s\n", gpg_strerror (err)); else { size_t pktlen = 0; byte *buf = iobuf_get_temp_buffer (backsig_out); /* Remove the packet header. */ if(buf[0]&0x40) { if (buf[1] < 192) { pktlen = buf[1]; buf += 2; } else if(buf[1] < 224) { pktlen = (buf[1]-192)*256; pktlen += buf[2]+192; buf += 3; } else if (buf[1] == 255) { pktlen = buf32_to_size_t (buf+2); buf += 6; } else BUG (); } else { int mark = 1; switch (buf[0]&3) { case 3: BUG (); break; case 2: pktlen = (size_t)buf[mark++] << 24; pktlen |= buf[mark++] << 16; /* fall through */ case 1: pktlen |= buf[mark++] << 8; /* fall through */ case 0: pktlen |= buf[mark++]; } buf += mark; } /* Now make the binary blob into a subpacket. */ build_sig_subpkt (sig, SIGSUBPKT_SIGNATURE, buf, pktlen); iobuf_close (backsig_out); } } return err; } /* Write a direct key signature to the first key in ROOT using the key PSK. REVKEY is describes the direct key signature and TIMESTAMP is the timestamp to set on the signature. */ static gpg_error_t write_direct_sig (ctrl_t ctrl, kbnode_t root, PKT_public_key *psk, struct revocation_key *revkey, u32 timestamp, const char *cache_nonce) { gpg_error_t err; PACKET *pkt; PKT_signature *sig; KBNODE node; PKT_public_key *pk; if (opt.verbose) log_info (_("writing direct signature\n")); /* Get the pk packet from the pub_tree. */ node = find_kbnode (root, PKT_PUBLIC_KEY); if (!node) BUG (); pk = node->pkt->pkt.public_key; /* We have to cache the key, so that the verification of the signature creation is able to retrieve the public key. */ cache_public_key (pk); /* Make the signature. */ err = make_keysig_packet (ctrl, &sig, pk, NULL,NULL, psk, 0x1F, timestamp, 0, keygen_add_revkey, revkey, cache_nonce); if (err) { log_error ("make_keysig_packet failed: %s\n", gpg_strerror (err) ); return err; } pkt = xmalloc_clear (sizeof *pkt); pkt->pkttype = PKT_SIGNATURE; pkt->pkt.signature = sig; add_kbnode (root, new_kbnode (pkt)); return err; } /* Write a self-signature to the first user id in ROOT using the key PSK. USE and TIMESTAMP give the extra data we need for the signature. */ static gpg_error_t write_selfsigs (ctrl_t ctrl, kbnode_t root, PKT_public_key *psk, unsigned int use, u32 timestamp, const char *cache_nonce) { gpg_error_t err; PACKET *pkt; PKT_signature *sig; PKT_user_id *uid; KBNODE node; PKT_public_key *pk; if (opt.verbose) log_info (_("writing self signature\n")); /* Get the uid packet from the list. */ node = find_kbnode (root, PKT_USER_ID); if (!node) BUG(); /* No user id packet in tree. */ uid = node->pkt->pkt.user_id; /* Get the pk packet from the pub_tree. */ node = find_kbnode (root, PKT_PUBLIC_KEY); if (!node) BUG(); pk = node->pkt->pkt.public_key; /* The usage has not yet been set - do it now. */ pk->pubkey_usage = use; /* We have to cache the key, so that the verification of the signature creation is able to retrieve the public key. */ cache_public_key (pk); /* Make the signature. */ err = make_keysig_packet (ctrl, &sig, pk, uid, NULL, psk, 0x13, timestamp, 0, keygen_add_std_prefs, pk, cache_nonce); if (err) { log_error ("make_keysig_packet failed: %s\n", gpg_strerror (err)); return err; } pkt = xmalloc_clear (sizeof *pkt); pkt->pkttype = PKT_SIGNATURE; pkt->pkt.signature = sig; add_kbnode (root, new_kbnode (pkt)); return err; } /* Write the key binding signature. If TIMESTAMP is not NULL use the signature creation time. PRI_PSK is the key use for signing. SUB_PSK is a key used to create a back-signature; that one is only used if USE has the PUBKEY_USAGE_SIG capability. */ static int write_keybinding (ctrl_t ctrl, kbnode_t root, PKT_public_key *pri_psk, PKT_public_key *sub_psk, unsigned int use, u32 timestamp, const char *cache_nonce) { gpg_error_t err; PACKET *pkt; PKT_signature *sig; KBNODE node; PKT_public_key *pri_pk, *sub_pk; struct opaque_data_usage_and_pk oduap; if (opt.verbose) log_info(_("writing key binding signature\n")); /* Get the primary pk packet from the tree. */ node = find_kbnode (root, PKT_PUBLIC_KEY); if (!node) BUG(); pri_pk = node->pkt->pkt.public_key; /* We have to cache the key, so that the verification of the * signature creation is able to retrieve the public key. */ cache_public_key (pri_pk); /* Find the last subkey. */ sub_pk = NULL; for (node = root; node; node = node->next ) { if (node->pkt->pkttype == PKT_PUBLIC_SUBKEY) sub_pk = node->pkt->pkt.public_key; } if (!sub_pk) BUG(); /* Make the signature. */ oduap.usage = use; oduap.pk = sub_pk; err = make_keysig_packet (ctrl, &sig, pri_pk, NULL, sub_pk, pri_psk, 0x18, timestamp, 0, keygen_add_key_flags_and_expire, &oduap, cache_nonce); if (err) { log_error ("make_keysig_packeto failed: %s\n", gpg_strerror (err)); return err; } /* Make a backsig. */ if (use & PUBKEY_USAGE_SIG) { err = make_backsig (ctrl, sig, pri_pk, sub_pk, sub_psk, timestamp, cache_nonce); if (err) return err; } pkt = xmalloc_clear ( sizeof *pkt ); pkt->pkttype = PKT_SIGNATURE; pkt->pkt.signature = sig; add_kbnode (root, new_kbnode (pkt) ); return err; } static gpg_error_t ecckey_from_sexp (gcry_mpi_t *array, gcry_sexp_t sexp, int algo) { gpg_error_t err; gcry_sexp_t list, l2; char *curve = NULL; int i; const char *oidstr; unsigned int nbits; array[0] = NULL; array[1] = NULL; array[2] = NULL; list = gcry_sexp_find_token (sexp, "public-key", 0); if (!list) return gpg_error (GPG_ERR_INV_OBJ); l2 = gcry_sexp_cadr (list); gcry_sexp_release (list); list = l2; if (!list) return gpg_error (GPG_ERR_NO_OBJ); l2 = gcry_sexp_find_token (list, "curve", 0); if (!l2) { err = gpg_error (GPG_ERR_NO_OBJ); goto leave; } curve = gcry_sexp_nth_string (l2, 1); if (!curve) { err = gpg_error (GPG_ERR_NO_OBJ); goto leave; } gcry_sexp_release (l2); oidstr = openpgp_curve_to_oid (curve, &nbits); if (!oidstr) { /* That can't happen because we used one of the curves gpg_curve_to_oid knows about. */ err = gpg_error (GPG_ERR_INV_OBJ); goto leave; } err = openpgp_oid_from_str (oidstr, &array[0]); if (err) goto leave; l2 = gcry_sexp_find_token (list, "q", 0); if (!l2) { err = gpg_error (GPG_ERR_NO_OBJ); goto leave; } array[1] = gcry_sexp_nth_mpi (l2, 1, GCRYMPI_FMT_USG); gcry_sexp_release (l2); if (!array[1]) { err = gpg_error (GPG_ERR_INV_OBJ); goto leave; } gcry_sexp_release (list); if (algo == PUBKEY_ALGO_ECDH) { array[2] = pk_ecdh_default_params (nbits); if (!array[2]) { err = gpg_error_from_syserror (); goto leave; } } leave: xfree (curve); if (err) { for (i=0; i < 3; i++) { gcry_mpi_release (array[i]); array[i] = NULL; } } return err; } /* Extract key parameters from SEXP and store them in ARRAY. ELEMS is a string where each character denotes a parameter name. TOPNAME is the name of the top element above the elements. */ static int key_from_sexp (gcry_mpi_t *array, gcry_sexp_t sexp, const char *topname, const char *elems) { gcry_sexp_t list, l2; const char *s; int i, idx; int rc = 0; list = gcry_sexp_find_token (sexp, topname, 0); if (!list) return gpg_error (GPG_ERR_INV_OBJ); l2 = gcry_sexp_cadr (list); gcry_sexp_release (list); list = l2; if (!list) return gpg_error (GPG_ERR_NO_OBJ); for (idx=0,s=elems; *s; s++, idx++) { l2 = gcry_sexp_find_token (list, s, 1); if (!l2) { rc = gpg_error (GPG_ERR_NO_OBJ); /* required parameter not found */ goto leave; } array[idx] = gcry_sexp_nth_mpi (l2, 1, GCRYMPI_FMT_USG); gcry_sexp_release (l2); if (!array[idx]) { rc = gpg_error (GPG_ERR_INV_OBJ); /* required parameter invalid */ goto leave; } } gcry_sexp_release (list); leave: if (rc) { for (i=0; itimestamp = timestamp; pk->version = (keygen_flags & KEYGEN_FLAG_CREATE_V5_KEY)? 5 : 4; if (expireval) pk->expiredate = pk->timestamp + expireval; pk->pubkey_algo = algo; if (algo == PUBKEY_ALGO_ECDSA || algo == PUBKEY_ALGO_EDDSA || algo == PUBKEY_ALGO_ECDH ) err = ecckey_from_sexp (pk->pkey, s_key, algo); else err = key_from_sexp (pk->pkey, s_key, "public-key", algoelem); if (err) { log_error ("key_from_sexp failed: %s\n", gpg_strerror (err) ); gcry_sexp_release (s_key); free_public_key (pk); return err; } gcry_sexp_release (s_key); pkt = xtrycalloc (1, sizeof *pkt); if (!pkt) { err = gpg_error_from_syserror (); free_public_key (pk); return err; } pkt->pkttype = is_subkey ? PKT_PUBLIC_SUBKEY : PKT_PUBLIC_KEY; pkt->pkt.public_key = pk; add_kbnode (pub_root, new_kbnode (pkt)); return 0; } /* Common code for the key generation function gen_xxx. */ static int common_gen (const char *keyparms, int algo, const char *algoelem, kbnode_t pub_root, u32 timestamp, u32 expireval, int is_subkey, int keygen_flags, const char *passphrase, char **cache_nonce_addr, char **passwd_nonce_addr) { int err; PACKET *pkt; PKT_public_key *pk; gcry_sexp_t s_key; err = agent_genkey (NULL, cache_nonce_addr, passwd_nonce_addr, keyparms, !!(keygen_flags & KEYGEN_FLAG_NO_PROTECTION), passphrase, &s_key); if (err) { log_error ("agent_genkey failed: %s\n", gpg_strerror (err) ); return err; } pk = xtrycalloc (1, sizeof *pk); if (!pk) { err = gpg_error_from_syserror (); gcry_sexp_release (s_key); return err; } pk->timestamp = timestamp; pk->version = (keygen_flags & KEYGEN_FLAG_CREATE_V5_KEY)? 5 : 4; if (expireval) pk->expiredate = pk->timestamp + expireval; pk->pubkey_algo = algo; if (algo == PUBKEY_ALGO_ECDSA || algo == PUBKEY_ALGO_EDDSA || algo == PUBKEY_ALGO_ECDH ) err = ecckey_from_sexp (pk->pkey, s_key, algo); else err = key_from_sexp (pk->pkey, s_key, "public-key", algoelem); if (err) { log_error ("key_from_sexp failed: %s\n", gpg_strerror (err) ); gcry_sexp_release (s_key); free_public_key (pk); return err; } gcry_sexp_release (s_key); pkt = xtrycalloc (1, sizeof *pkt); if (!pkt) { err = gpg_error_from_syserror (); free_public_key (pk); return err; } pkt->pkttype = is_subkey ? PKT_PUBLIC_SUBKEY : PKT_PUBLIC_KEY; pkt->pkt.public_key = pk; add_kbnode (pub_root, new_kbnode (pkt)); return 0; } /* * Generate an Elgamal key. */ static int gen_elg (int algo, unsigned int nbits, KBNODE pub_root, u32 timestamp, u32 expireval, int is_subkey, int keygen_flags, const char *passphrase, char **cache_nonce_addr, char **passwd_nonce_addr) { int err; char *keyparms; char nbitsstr[35]; log_assert (is_ELGAMAL (algo)); if (nbits < 1024) { nbits = 2048; log_info (_("keysize invalid; using %u bits\n"), nbits ); } else if (nbits > 4096) { nbits = 4096; log_info (_("keysize invalid; using %u bits\n"), nbits ); } if ((nbits % 32)) { nbits = ((nbits + 31) / 32) * 32; log_info (_("keysize rounded up to %u bits\n"), nbits ); } /* Note that we use transient-key only if no-protection has also been enabled. */ snprintf (nbitsstr, sizeof nbitsstr, "%u", nbits); keyparms = xtryasprintf ("(genkey(%s(nbits %zu:%s)%s))", algo == GCRY_PK_ELG_E ? "openpgp-elg" : algo == GCRY_PK_ELG ? "elg" : "x-oops" , strlen (nbitsstr), nbitsstr, ((keygen_flags & KEYGEN_FLAG_TRANSIENT_KEY) && (keygen_flags & KEYGEN_FLAG_NO_PROTECTION))? "(transient-key)" : "" ); if (!keyparms) err = gpg_error_from_syserror (); else { err = common_gen (keyparms, algo, "pgy", pub_root, timestamp, expireval, is_subkey, keygen_flags, passphrase, cache_nonce_addr, passwd_nonce_addr); xfree (keyparms); } return err; } /* * Generate an DSA key */ static gpg_error_t gen_dsa (unsigned int nbits, KBNODE pub_root, u32 timestamp, u32 expireval, int is_subkey, int keygen_flags, const char *passphrase, char **cache_nonce_addr, char **passwd_nonce_addr) { int err; unsigned int qbits; char *keyparms; char nbitsstr[35]; char qbitsstr[35]; if (nbits < 768) { nbits = 2048; log_info(_("keysize invalid; using %u bits\n"), nbits ); } else if ( nbits > 3072 ) { nbits = 3072; log_info(_("keysize invalid; using %u bits\n"), nbits ); } if( (nbits % 64) ) { nbits = ((nbits + 63) / 64) * 64; log_info(_("keysize rounded up to %u bits\n"), nbits ); } /* To comply with FIPS rules we round up to the next value unless in expert mode. */ if (!opt.expert && nbits > 1024 && (nbits % 1024)) { nbits = ((nbits + 1023) / 1024) * 1024; log_info(_("keysize rounded up to %u bits\n"), nbits ); } /* Figure out a q size based on the key size. FIPS 180-3 says: L = 1024, N = 160 L = 2048, N = 224 L = 2048, N = 256 L = 3072, N = 256 2048/256 is an odd pair since there is also a 2048/224 and 3072/256. Matching sizes is not a very exact science. We'll do 256 qbits for nbits over 2047, 224 for nbits over 1024 but less than 2048, and 160 for 1024 (DSA1). */ if (nbits > 2047) qbits = 256; else if ( nbits > 1024) qbits = 224; else qbits = 160; if (qbits != 160 ) log_info (_("WARNING: some OpenPGP programs can't" " handle a DSA key with this digest size\n")); snprintf (nbitsstr, sizeof nbitsstr, "%u", nbits); snprintf (qbitsstr, sizeof qbitsstr, "%u", qbits); keyparms = xtryasprintf ("(genkey(dsa(nbits %zu:%s)(qbits %zu:%s)%s))", strlen (nbitsstr), nbitsstr, strlen (qbitsstr), qbitsstr, ((keygen_flags & KEYGEN_FLAG_TRANSIENT_KEY) && (keygen_flags & KEYGEN_FLAG_NO_PROTECTION))? "(transient-key)" : "" ); if (!keyparms) err = gpg_error_from_syserror (); else { err = common_gen (keyparms, PUBKEY_ALGO_DSA, "pqgy", pub_root, timestamp, expireval, is_subkey, keygen_flags, passphrase, cache_nonce_addr, passwd_nonce_addr); xfree (keyparms); } return err; } /* * Generate an ECC key */ static gpg_error_t gen_ecc (int algo, const char *curve, kbnode_t pub_root, u32 timestamp, u32 expireval, int is_subkey, int keygen_flags, const char *passphrase, char **cache_nonce_addr, char **passwd_nonce_addr) { gpg_error_t err; char *keyparms; log_assert (algo == PUBKEY_ALGO_ECDSA || algo == PUBKEY_ALGO_EDDSA || algo == PUBKEY_ALGO_ECDH); if (!curve || !*curve) return gpg_error (GPG_ERR_UNKNOWN_CURVE); /* Map the displayed short forms of some curves to their canonical * names. */ if (!ascii_strcasecmp (curve, "cv25519")) curve = "Curve25519"; else if (!ascii_strcasecmp (curve, "ed25519")) curve = "Ed25519"; /* Note that we use the "comp" flag with EdDSA to request the use of a 0x40 compression prefix octet. */ if (algo == PUBKEY_ALGO_EDDSA) keyparms = xtryasprintf ("(genkey(ecc(curve %zu:%s)(flags eddsa comp%s)))", strlen (curve), curve, (((keygen_flags & KEYGEN_FLAG_TRANSIENT_KEY) && (keygen_flags & KEYGEN_FLAG_NO_PROTECTION))? " transient-key" : "")); else if (algo == PUBKEY_ALGO_ECDH && !strcmp (curve, "Curve25519")) keyparms = xtryasprintf ("(genkey(ecc(curve %zu:%s)(flags djb-tweak comp%s)))", strlen (curve), curve, (((keygen_flags & KEYGEN_FLAG_TRANSIENT_KEY) && (keygen_flags & KEYGEN_FLAG_NO_PROTECTION))? " transient-key" : "")); else keyparms = xtryasprintf ("(genkey(ecc(curve %zu:%s)(flags nocomp%s)))", strlen (curve), curve, (((keygen_flags & KEYGEN_FLAG_TRANSIENT_KEY) && (keygen_flags & KEYGEN_FLAG_NO_PROTECTION))? " transient-key" : "")); if (!keyparms) err = gpg_error_from_syserror (); else { err = common_gen (keyparms, algo, "", pub_root, timestamp, expireval, is_subkey, keygen_flags, passphrase, cache_nonce_addr, passwd_nonce_addr); xfree (keyparms); } return err; } /* * Generate an RSA key. */ static int gen_rsa (int algo, unsigned int nbits, KBNODE pub_root, u32 timestamp, u32 expireval, int is_subkey, int keygen_flags, const char *passphrase, char **cache_nonce_addr, char **passwd_nonce_addr) { int err; char *keyparms; char nbitsstr[35]; const unsigned maxsize = (opt.flags.large_rsa ? 8192 : 4096); log_assert (is_RSA(algo)); if (!nbits) nbits = get_keysize_range (algo, NULL, NULL); if (nbits < 1024) { nbits = 3072; log_info (_("keysize invalid; using %u bits\n"), nbits ); } else if (nbits > maxsize) { nbits = maxsize; log_info (_("keysize invalid; using %u bits\n"), nbits ); } if ((nbits % 32)) { nbits = ((nbits + 31) / 32) * 32; log_info (_("keysize rounded up to %u bits\n"), nbits ); } snprintf (nbitsstr, sizeof nbitsstr, "%u", nbits); keyparms = xtryasprintf ("(genkey(rsa(nbits %zu:%s)%s))", strlen (nbitsstr), nbitsstr, ((keygen_flags & KEYGEN_FLAG_TRANSIENT_KEY) && (keygen_flags & KEYGEN_FLAG_NO_PROTECTION))? "(transient-key)" : "" ); if (!keyparms) err = gpg_error_from_syserror (); else { err = common_gen (keyparms, algo, "ne", pub_root, timestamp, expireval, is_subkey, keygen_flags, passphrase, cache_nonce_addr, passwd_nonce_addr); xfree (keyparms); } return err; } /**************** * check valid days: * return 0 on error or the multiplier */ static int check_valid_days( const char *s ) { if( !digitp(s) ) return 0; for( s++; *s; s++) if( !digitp(s) ) break; if( !*s ) return 1; if( s[1] ) return 0; /* e.g. "2323wc" */ if( *s == 'd' || *s == 'D' ) return 1; if( *s == 'w' || *s == 'W' ) return 7; if( *s == 'm' || *s == 'M' ) return 30; if( *s == 'y' || *s == 'Y' ) return 365; return 0; } static void print_key_flags(int flags) { if(flags&PUBKEY_USAGE_SIG) tty_printf("%s ",_("Sign")); if(flags&PUBKEY_USAGE_CERT) tty_printf("%s ",_("Certify")); if(flags&PUBKEY_USAGE_ENC) tty_printf("%s ",_("Encrypt")); if(flags&PUBKEY_USAGE_AUTH) tty_printf("%s ",_("Authenticate")); } /* Ask for the key flags and return them. CURRENT gives the current * usage which should normally be given as 0. MASK gives the allowed * flags. */ unsigned int ask_key_flags_with_mask (int algo, int subkey, unsigned int current, unsigned int mask) { /* TRANSLATORS: Please use only plain ASCII characters for the * translation. If this is not possible use single digits. The * string needs to 8 bytes long. Here is a description of the * functions: * * s = Toggle signing capability * e = Toggle encryption capability * a = Toggle authentication capability * q = Finish */ const char *togglers = _("SsEeAaQq"); char *answer = NULL; const char *s; unsigned int possible; if ( strlen(togglers) != 8 ) { tty_printf ("NOTE: Bad translation at %s:%d. " "Please report.\n", __FILE__, __LINE__); togglers = "11223300"; } /* Mask the possible usage flags. This is for example used for a * card based key. */ possible = (openpgp_pk_algo_usage (algo) & mask); /* However, only primary keys may certify. */ if (subkey) possible &= ~PUBKEY_USAGE_CERT; /* Preload the current set with the possible set, without * authentication if CURRENT is 0. If CURRENT is non-zero we mask * with all possible usages. */ if (current) current &= possible; else current = (possible&~PUBKEY_USAGE_AUTH); for (;;) { tty_printf("\n"); tty_printf(_("Possible actions for this %s key: "), (algo == PUBKEY_ALGO_ECDSA || algo == PUBKEY_ALGO_EDDSA) ? "ECDSA/EdDSA" : openpgp_pk_algo_name (algo)); print_key_flags(possible); tty_printf("\n"); tty_printf(_("Current allowed actions: ")); print_key_flags(current); tty_printf("\n\n"); if(possible&PUBKEY_USAGE_SIG) tty_printf(_(" (%c) Toggle the sign capability\n"), togglers[0]); if(possible&PUBKEY_USAGE_ENC) tty_printf(_(" (%c) Toggle the encrypt capability\n"), togglers[2]); if(possible&PUBKEY_USAGE_AUTH) tty_printf(_(" (%c) Toggle the authenticate capability\n"), togglers[4]); tty_printf(_(" (%c) Finished\n"),togglers[6]); tty_printf("\n"); xfree(answer); answer = cpr_get("keygen.flags",_("Your selection? ")); cpr_kill_prompt(); if (*answer == '=') { /* Hack to allow direct entry of the capabilities. */ current = 0; for (s=answer+1; *s; s++) { if ((*s == 's' || *s == 'S') && (possible&PUBKEY_USAGE_SIG)) current |= PUBKEY_USAGE_SIG; else if ((*s == 'e' || *s == 'E') && (possible&PUBKEY_USAGE_ENC)) current |= PUBKEY_USAGE_ENC; else if ((*s == 'a' || *s == 'A') && (possible&PUBKEY_USAGE_AUTH)) current |= PUBKEY_USAGE_AUTH; else if (!subkey && *s == 'c') { /* Accept 'c' for the primary key because USAGE_CERT will be set anyway. This is for folks who want to experiment with a cert-only primary key. */ current |= PUBKEY_USAGE_CERT; } } break; } else if (strlen(answer)>1) tty_printf(_("Invalid selection.\n")); else if(*answer=='\0' || *answer==togglers[6] || *answer==togglers[7]) break; else if((*answer==togglers[0] || *answer==togglers[1]) && possible&PUBKEY_USAGE_SIG) { if(current&PUBKEY_USAGE_SIG) current&=~PUBKEY_USAGE_SIG; else current|=PUBKEY_USAGE_SIG; } else if((*answer==togglers[2] || *answer==togglers[3]) && possible&PUBKEY_USAGE_ENC) { if(current&PUBKEY_USAGE_ENC) current&=~PUBKEY_USAGE_ENC; else current|=PUBKEY_USAGE_ENC; } else if((*answer==togglers[4] || *answer==togglers[5]) && possible&PUBKEY_USAGE_AUTH) { if(current&PUBKEY_USAGE_AUTH) current&=~PUBKEY_USAGE_AUTH; else current|=PUBKEY_USAGE_AUTH; } else tty_printf(_("Invalid selection.\n")); } xfree(answer); return current; } unsigned int ask_key_flags (int algo, int subkey, unsigned int current) { return ask_key_flags_with_mask (algo, subkey, current, ~0); } /* Check whether we have a key for the key with HEXGRIP. Returns 0 if there is no such key or the OpenPGP algo number for the key. */ static int check_keygrip (ctrl_t ctrl, const char *hexgrip) { gpg_error_t err; unsigned char *public; size_t publiclen; int algo; if (hexgrip[0] == '&') hexgrip++; err = agent_readkey (ctrl, 0, hexgrip, &public); if (err) return 0; publiclen = gcry_sexp_canon_len (public, 0, NULL, NULL); algo = get_pk_algo_from_canon_sexp (public, publiclen); xfree (public); return map_pk_gcry_to_openpgp (algo); } /* Ask for an algorithm. The function returns the algorithm id to * create. If ADDMODE is false the function won't show an option to * create the primary and subkey combined and won't set R_USAGE * either. If a combined algorithm has been selected, the subkey * algorithm is stored at R_SUBKEY_ALGO. If R_KEYGRIP is given, the * user has the choice to enter the keygrip of an existing key. That * keygrip is then stored at this address. The caller needs to free * it. */ static int ask_algo (ctrl_t ctrl, int addmode, int *r_subkey_algo, unsigned int *r_usage, char **r_keygrip) { gpg_error_t err; char *keygrip = NULL; char *answer = NULL; int algo; int dummy_algo; char *p; if (!r_subkey_algo) r_subkey_algo = &dummy_algo; tty_printf (_("Please select what kind of key you want:\n")); #if GPG_USE_RSA if (!addmode) tty_printf (_(" (%d) RSA and RSA (default)\n"), 1 ); #endif if (!addmode && opt.compliance != CO_DE_VS) tty_printf (_(" (%d) DSA and Elgamal\n"), 2 ); if (opt.compliance != CO_DE_VS) tty_printf (_(" (%d) DSA (sign only)\n"), 3 ); #if GPG_USE_RSA tty_printf (_(" (%d) RSA (sign only)\n"), 4 ); #endif if (addmode) { if (opt.compliance != CO_DE_VS) tty_printf (_(" (%d) Elgamal (encrypt only)\n"), 5 ); #if GPG_USE_RSA tty_printf (_(" (%d) RSA (encrypt only)\n"), 6 ); #endif } if (opt.expert) { if (opt.compliance != CO_DE_VS) tty_printf (_(" (%d) DSA (set your own capabilities)\n"), 7 ); #if GPG_USE_RSA tty_printf (_(" (%d) RSA (set your own capabilities)\n"), 8 ); #endif } #if GPG_USE_ECDSA || GPG_USE_ECDH || GPG_USE_EDDSA if (opt.expert && !addmode) tty_printf (_(" (%d) ECC and ECC\n"), 9 ); if (opt.expert) tty_printf (_(" (%d) ECC (sign only)\n"), 10 ); if (opt.expert) tty_printf (_(" (%d) ECC (set your own capabilities)\n"), 11 ); if (opt.expert && addmode) tty_printf (_(" (%d) ECC (encrypt only)\n"), 12 ); #endif if (opt.expert && r_keygrip) tty_printf (_(" (%d) Existing key\n"), 13 ); if (r_keygrip) tty_printf (_(" (%d) Existing key from card\n"), 14 ); for (;;) { *r_usage = 0; *r_subkey_algo = 0; xfree (answer); answer = cpr_get ("keygen.algo", _("Your selection? ")); cpr_kill_prompt (); algo = *answer? atoi (answer) : 1; if (opt.compliance == CO_DE_VS && (algo == 2 || algo == 3 || algo == 5 || algo == 7)) { tty_printf (_("Invalid selection.\n")); } else if ((algo == 1 || !strcmp (answer, "rsa+rsa")) && !addmode) { algo = PUBKEY_ALGO_RSA; *r_subkey_algo = PUBKEY_ALGO_RSA; break; } else if ((algo == 2 || !strcmp (answer, "dsa+elg")) && !addmode) { algo = PUBKEY_ALGO_DSA; *r_subkey_algo = PUBKEY_ALGO_ELGAMAL_E; break; } else if (algo == 3 || !strcmp (answer, "dsa")) { algo = PUBKEY_ALGO_DSA; *r_usage = PUBKEY_USAGE_SIG; break; } else if (algo == 4 || !strcmp (answer, "rsa/s")) { algo = PUBKEY_ALGO_RSA; *r_usage = PUBKEY_USAGE_SIG; break; } else if ((algo == 5 || !strcmp (answer, "elg")) && addmode) { algo = PUBKEY_ALGO_ELGAMAL_E; *r_usage = PUBKEY_USAGE_ENC; break; } else if ((algo == 6 || !strcmp (answer, "rsa/e")) && addmode) { algo = PUBKEY_ALGO_RSA; *r_usage = PUBKEY_USAGE_ENC; break; } else if ((algo == 7 || !strcmp (answer, "dsa/*")) && opt.expert) { algo = PUBKEY_ALGO_DSA; *r_usage = ask_key_flags (algo, addmode, 0); break; } else if ((algo == 8 || !strcmp (answer, "rsa/*")) && opt.expert) { algo = PUBKEY_ALGO_RSA; *r_usage = ask_key_flags (algo, addmode, 0); break; } else if ((algo == 9 || !strcmp (answer, "ecc+ecc")) && opt.expert && !addmode) { algo = PUBKEY_ALGO_ECDSA; *r_subkey_algo = PUBKEY_ALGO_ECDH; break; } else if ((algo == 10 || !strcmp (answer, "ecc/s")) && opt.expert) { algo = PUBKEY_ALGO_ECDSA; *r_usage = PUBKEY_USAGE_SIG; break; } else if ((algo == 11 || !strcmp (answer, "ecc/*")) && opt.expert) { algo = PUBKEY_ALGO_ECDSA; *r_usage = ask_key_flags (algo, addmode, 0); break; } else if ((algo == 12 || !strcmp (answer, "ecc/e")) && opt.expert && addmode) { algo = PUBKEY_ALGO_ECDH; *r_usage = PUBKEY_USAGE_ENC; break; } else if ((algo == 13 || !strcmp (answer, "keygrip")) && opt.expert && r_keygrip) { for (;;) { xfree (answer); answer = tty_get (_("Enter the keygrip: ")); tty_kill_prompt (); trim_spaces (answer); if (!*answer) { xfree (answer); answer = NULL; continue; } if (strlen (answer) != 40 && !(answer[0] == '&' && strlen (answer+1) == 40)) tty_printf (_("Not a valid keygrip (expecting 40 hex digits)\n")); else if (!(algo = check_keygrip (ctrl, answer)) ) tty_printf (_("No key with this keygrip\n")); else break; /* Okay. */ } xfree (keygrip); keygrip = answer; answer = NULL; *r_usage = ask_key_flags (algo, addmode, 0); break; } else if ((algo == 14 || !strcmp (answer, "cardkey")) && r_keygrip) { char *serialno; strlist_t keypairlist, sl; int count, selection; err = agent_scd_serialno (&serialno, NULL); if (err) { tty_printf (_("error reading the card: %s\n"), gpg_strerror (err)); goto ask_again; } tty_printf (_("Serial number of the card: %s\n"), serialno); xfree (serialno); err = agent_scd_keypairinfo (ctrl, NULL, &keypairlist); if (err) { tty_printf (_("error reading the card: %s\n"), gpg_strerror (err)); goto ask_again; } do { tty_printf (_("Available keys:\n")); for (count=1,sl=keypairlist; sl; sl = sl->next, count++) { gcry_sexp_t s_pkey; char *algostr = NULL; enum gcry_pk_algos algoid = 0; const char *keyref; int any = 0; keyref = strchr (sl->d, ' '); if (keyref) { keyref++; if (!agent_scd_readkey (keyref, &s_pkey)) { algostr = pubkey_algo_string (s_pkey, &algoid); gcry_sexp_release (s_pkey); } } /* We use the flags also encode the algo for use * below. We need to tweak the algo in case * GCRY_PK_ECC is returned becuase pubkey_algo_string * is not aware of the OpenPGP algo mapping. * FIXME: This is an ugly hack. */ sl->flags &= 0xff; if (algoid == GCRY_PK_ECC && algostr && !strncmp (algostr, "nistp", 5) && !(sl->flags & GCRY_PK_USAGE_ENCR)) sl->flags |= (PUBKEY_ALGO_ECDSA << 8); else sl->flags |= (map_pk_gcry_to_openpgp (algoid) << 8); tty_printf (" (%d) %s %s", count, sl->d, algostr); if ((sl->flags & GCRY_PK_USAGE_CERT)) { tty_printf ("%scert", any?",":" ("); any = 1; } if ((sl->flags & GCRY_PK_USAGE_SIGN)) { tty_printf ("%ssign", any?",":" ("); any = 1; } if ((sl->flags & GCRY_PK_USAGE_AUTH)) { tty_printf ("%sauth", any?",":" ("); any = 1; } if ((sl->flags & GCRY_PK_USAGE_ENCR)) { tty_printf ("%sencr", any?",":" ("); any = 1; } tty_printf ("%s\n", any?")":""); xfree (algostr); } xfree (answer); answer = cpr_get ("keygen.cardkey", _("Your selection? ")); cpr_kill_prompt (); trim_spaces (answer); selection = atoi (answer); } while (!(selection > 0 && selection < count)); for (count=1,sl=keypairlist; sl; sl = sl->next, count++) if (count == selection) break; if (!sl) { /* Just in case COUNT is zero (no keys). */ free_strlist (keypairlist); goto ask_again; } xfree (keygrip); keygrip = xstrdup (sl->d); if ((p = strchr (keygrip, ' '))) *p = 0; algo = (sl->flags >>8); if (opt.expert) *r_usage = ask_key_flags_with_mask (algo, addmode, (sl->flags & 0xff), (sl->flags & 0xff)); else { *r_usage = (sl->flags & 0xff); if (addmode) *r_usage &= ~GCRY_PK_USAGE_CERT; } free_strlist (keypairlist); break; } else tty_printf (_("Invalid selection.\n")); ask_again: ; } xfree(answer); if (r_keygrip) *r_keygrip = keygrip; return algo; } static unsigned int get_keysize_range (int algo, unsigned int *min, unsigned int *max) { unsigned int def; unsigned int dummy1, dummy2; if (!min) min = &dummy1; if (!max) max = &dummy2; switch(algo) { case PUBKEY_ALGO_DSA: *min = opt.expert? 768 : 1024; *max=3072; def=2048; break; case PUBKEY_ALGO_ECDSA: case PUBKEY_ALGO_ECDH: *min=256; *max=521; def=256; break; case PUBKEY_ALGO_EDDSA: *min=255; *max=441; def=255; break; default: *min = opt.compliance == CO_DE_VS ? 2048: 1024; *max = 4096; def = 3072; break; } return def; } /* Return a fixed up keysize depending on ALGO. */ static unsigned int fixup_keysize (unsigned int nbits, int algo, int silent) { if (algo == PUBKEY_ALGO_DSA && (nbits % 64)) { nbits = ((nbits + 63) / 64) * 64; if (!silent) tty_printf (_("rounded up to %u bits\n"), nbits); } else if (algo == PUBKEY_ALGO_EDDSA) { if (nbits != 255 && nbits != 441) { if (nbits < 256) nbits = 255; else nbits = 441; if (!silent) tty_printf (_("rounded to %u bits\n"), nbits); } } else if (algo == PUBKEY_ALGO_ECDH || algo == PUBKEY_ALGO_ECDSA) { if (nbits != 256 && nbits != 384 && nbits != 521) { if (nbits < 256) nbits = 256; else if (nbits < 384) nbits = 384; else nbits = 521; if (!silent) tty_printf (_("rounded to %u bits\n"), nbits); } } else if ((nbits % 32)) { nbits = ((nbits + 31) / 32) * 32; if (!silent) tty_printf (_("rounded up to %u bits\n"), nbits ); } return nbits; } /* Ask for the key size. ALGO is the algorithm. If PRIMARY_KEYSIZE is not 0, the function asks for the size of the encryption subkey. */ static unsigned ask_keysize (int algo, unsigned int primary_keysize) { unsigned int nbits; unsigned int min, def, max; int for_subkey = !!primary_keysize; int autocomp = 0; def = get_keysize_range (algo, &min, &max); if (primary_keysize && !opt.expert) { /* Deduce the subkey size from the primary key size. */ if (algo == PUBKEY_ALGO_DSA && primary_keysize > 3072) nbits = 3072; /* For performance reasons we don't support more than 3072 bit DSA. However we won't see this case anyway because DSA can't be used as an encryption subkey ;-). */ else nbits = primary_keysize; autocomp = 1; goto leave; } tty_printf(_("%s keys may be between %u and %u bits long.\n"), openpgp_pk_algo_name (algo), min, max); for (;;) { char *prompt, *answer; if (for_subkey) prompt = xasprintf (_("What keysize do you want " "for the subkey? (%u) "), def); else prompt = xasprintf (_("What keysize do you want? (%u) "), def); answer = cpr_get ("keygen.size", prompt); cpr_kill_prompt (); nbits = *answer? atoi (answer): def; xfree(prompt); xfree(answer); if(nbitsmax) tty_printf(_("%s keysizes must be in the range %u-%u\n"), openpgp_pk_algo_name (algo), min, max); else break; } tty_printf (_("Requested keysize is %u bits\n"), nbits); leave: nbits = fixup_keysize (nbits, algo, autocomp); return nbits; } /* Ask for the curve. ALGO is the selected algorithm which this function may adjust. Returns a const string of the name of the curve. */ const char * ask_curve (int *algo, int *subkey_algo, const char *current) { /* NB: We always use a complete algo list so that we have stable numbers in the menu regardless on how Gpg was configured. */ struct { const char *name; const char* eddsa_curve; /* Corresponding EdDSA curve. */ const char *pretty_name; unsigned int supported : 1; /* Supported by gpg. */ unsigned int de_vs : 1; /* Allowed in CO_DE_VS. */ unsigned int expert_only : 1; /* Only with --expert */ unsigned int available : 1; /* Available in Libycrypt (runtime checked) */ } curves[] = { #if GPG_USE_ECDSA || GPG_USE_ECDH # define MY_USE_ECDSADH 1 #else # define MY_USE_ECDSADH 0 #endif { "Curve25519", "Ed25519", "Curve 25519", !!GPG_USE_EDDSA, 0, 0, 0 }, { "Curve448", "Ed448", "Curve 448", 0/*reserved*/ , 0, 1, 0 }, { "NIST P-256", NULL, NULL, MY_USE_ECDSADH, 0, 1, 0 }, { "NIST P-384", NULL, NULL, MY_USE_ECDSADH, 0, 0, 0 }, { "NIST P-521", NULL, NULL, MY_USE_ECDSADH, 0, 1, 0 }, { "brainpoolP256r1", NULL, "Brainpool P-256", MY_USE_ECDSADH, 1, 1, 0 }, { "brainpoolP384r1", NULL, "Brainpool P-384", MY_USE_ECDSADH, 1, 1, 0 }, { "brainpoolP512r1", NULL, "Brainpool P-512", MY_USE_ECDSADH, 1, 1, 0 }, { "secp256k1", NULL, NULL, MY_USE_ECDSADH, 0, 1, 0 }, }; #undef MY_USE_ECDSADH int idx; char *answer; const char *result = NULL; gcry_sexp_t keyparms; tty_printf (_("Please select which elliptic curve you want:\n")); keyparms = NULL; for (idx=0; idx < DIM(curves); idx++) { int rc; curves[idx].available = 0; if (!curves[idx].supported) continue; if (opt.compliance==CO_DE_VS) { if (!curves[idx].de_vs) continue; /* Not allowed. */ } else if (!opt.expert && curves[idx].expert_only) continue; /* We need to switch from the ECDH name of the curve to the EDDSA name of the curve if we want a signing key. */ gcry_sexp_release (keyparms); rc = gcry_sexp_build (&keyparms, NULL, "(public-key(ecc(curve %s)))", curves[idx].eddsa_curve? curves[idx].eddsa_curve /**/ : curves[idx].name); if (rc) continue; if (!gcry_pk_get_curve (keyparms, 0, NULL)) continue; if (subkey_algo && curves[idx].eddsa_curve) { /* Both Curve 25519 (or 448) keys are to be created. Check that Libgcrypt also supports the real Curve25519 (or 448). */ gcry_sexp_release (keyparms); rc = gcry_sexp_build (&keyparms, NULL, "(public-key(ecc(curve %s)))", curves[idx].name); if (rc) continue; if (!gcry_pk_get_curve (keyparms, 0, NULL)) continue; } curves[idx].available = 1; tty_printf (" (%d) %s\n", idx + 1, curves[idx].pretty_name? curves[idx].pretty_name:curves[idx].name); } gcry_sexp_release (keyparms); for (;;) { answer = cpr_get ("keygen.curve", _("Your selection? ")); cpr_kill_prompt (); idx = *answer? atoi (answer) : 1; if (!*answer && current) { xfree(answer); return NULL; } else if (*answer && !idx) { /* See whether the user entered the name of the curve. */ for (idx=0; idx < DIM(curves); idx++) { if (!opt.expert && curves[idx].expert_only) continue; if (!stricmp (curves[idx].name, answer) || (curves[idx].pretty_name && !stricmp (curves[idx].pretty_name, answer))) break; } if (idx == DIM(curves)) idx = -1; } else idx--; xfree(answer); answer = NULL; if (idx < 0 || idx >= DIM (curves) || !curves[idx].available) tty_printf (_("Invalid selection.\n")); else { /* If the user selected a signing algorithm and Curve25519 we need to set the algo to EdDSA and update the curve name. If switching away from EdDSA, we need to set the algo back to ECDSA. */ if (*algo == PUBKEY_ALGO_ECDSA || *algo == PUBKEY_ALGO_EDDSA) { if (curves[idx].eddsa_curve) { if (subkey_algo && *subkey_algo == PUBKEY_ALGO_ECDSA) *subkey_algo = PUBKEY_ALGO_EDDSA; *algo = PUBKEY_ALGO_EDDSA; result = curves[idx].eddsa_curve; } else { if (subkey_algo && *subkey_algo == PUBKEY_ALGO_EDDSA) *subkey_algo = PUBKEY_ALGO_ECDSA; *algo = PUBKEY_ALGO_ECDSA; result = curves[idx].name; } } else result = curves[idx].name; break; } } if (!result) result = curves[0].name; return result; } /**************** * Parse an expire string and return its value in seconds. * Returns (u32)-1 on error. * This isn't perfect since scan_isodatestr returns unix time, and * OpenPGP actually allows a 32-bit time *plus* a 32-bit offset. * Because of this, we only permit setting expirations up to 2106, but * OpenPGP could theoretically allow up to 2242. I think we'll all * just cope for the next few years until we get a 64-bit time_t or * similar. */ u32 parse_expire_string( const char *string ) { int mult; u32 seconds; u32 abs_date = 0; u32 curtime = make_timestamp (); time_t tt; if (!string || !*string || !strcmp (string, "none") || !strcmp (string, "never") || !strcmp (string, "-")) seconds = 0; else if (!strncmp (string, "seconds=", 8)) seconds = atoi (string+8); else if ((abs_date = scan_isodatestr(string)) && (abs_date+86400/2) > curtime) seconds = (abs_date+86400/2) - curtime; else if ((tt = isotime2epoch (string)) != (time_t)(-1)) seconds = (u32)tt - curtime; else if ((mult = check_valid_days (string))) seconds = atoi (string) * 86400L * mult; else seconds = (u32)(-1); return seconds; } /* Parse a Creation-Date string which is either "1986-04-26" or "19860426T042640". Returns 0 on error. */ static u32 parse_creation_string (const char *string) { u32 seconds; if (!*string) seconds = 0; else if ( !strncmp (string, "seconds=", 8) ) seconds = atoi (string+8); else if ( !(seconds = scan_isodatestr (string))) { time_t tmp = isotime2epoch (string); seconds = (tmp == (time_t)(-1))? 0 : tmp; } return seconds; } /* object == 0 for a key, and 1 for a sig */ u32 ask_expire_interval(int object,const char *def_expire) { u32 interval; char *answer; switch(object) { case 0: if(def_expire) BUG(); tty_printf(_("Please specify how long the key should be valid.\n" " 0 = key does not expire\n" " = key expires in n days\n" " w = key expires in n weeks\n" " m = key expires in n months\n" " y = key expires in n years\n")); break; case 1: if(!def_expire) BUG(); tty_printf(_("Please specify how long the signature should be valid.\n" " 0 = signature does not expire\n" " = signature expires in n days\n" " w = signature expires in n weeks\n" " m = signature expires in n months\n" " y = signature expires in n years\n")); break; default: BUG(); } /* Note: The elgamal subkey for DSA has no expiration date because * it must be signed with the DSA key and this one has the expiration * date */ answer = NULL; for(;;) { u32 curtime; xfree(answer); if(object==0) answer = cpr_get("keygen.valid",_("Key is valid for? (0) ")); else { char *prompt; prompt = xasprintf (_("Signature is valid for? (%s) "), def_expire); answer = cpr_get("siggen.valid",prompt); xfree(prompt); if(*answer=='\0') answer=xstrdup(def_expire); } cpr_kill_prompt(); trim_spaces(answer); curtime = make_timestamp (); interval = parse_expire_string( answer ); if( interval == (u32)-1 ) { tty_printf(_("invalid value\n")); continue; } if( !interval ) { tty_printf((object==0) ? _("Key does not expire at all\n") : _("Signature does not expire at all\n")); } else { tty_printf(object==0 ? _("Key expires at %s\n") : _("Signature expires at %s\n"), asctimestamp((ulong)(curtime + interval) ) ); #if SIZEOF_TIME_T <= 4 && !defined (HAVE_UNSIGNED_TIME_T) if ( (time_t)((ulong)(curtime+interval)) < 0 ) tty_printf (_("Your system can't display dates beyond 2038.\n" "However, it will be correctly handled up to" " 2106.\n")); else #endif /*SIZEOF_TIME_T*/ if ( (time_t)((unsigned long)(curtime+interval)) < curtime ) { tty_printf (_("invalid value\n")); continue; } } if( cpr_enabled() || cpr_get_answer_is_yes("keygen.valid.okay", _("Is this correct? (y/N) ")) ) break; } xfree(answer); return interval; } u32 ask_expiredate() { u32 x = ask_expire_interval(0,NULL); return x? make_timestamp() + x : 0; } static PKT_user_id * uid_from_string (const char *string) { size_t n; PKT_user_id *uid; n = strlen (string); uid = xmalloc_clear (sizeof *uid + n); uid->len = n; strcpy (uid->name, string); uid->ref = 1; return uid; } /* Return true if the user id UID already exists in the keyblock. */ static int uid_already_in_keyblock (kbnode_t keyblock, const char *uid) { PKT_user_id *uidpkt = uid_from_string (uid); kbnode_t node; int result = 0; for (node=keyblock; node && !result; node=node->next) if (!is_deleted_kbnode (node) && node->pkt->pkttype == PKT_USER_ID && !cmp_user_ids (uidpkt, node->pkt->pkt.user_id)) result = 1; free_user_id (uidpkt); return result; } /* Ask for a user ID. With a MODE of 1 an extra help prompt is printed for use during a new key creation. If KEYBLOCK is not NULL the function prevents the creation of an already existing user ID. IF FULL is not set some prompts are not shown. */ static char * ask_user_id (int mode, int full, KBNODE keyblock) { char *answer; char *aname, *acomment, *amail, *uid; if ( !mode ) { /* TRANSLATORS: This is the new string telling the user what gpg is now going to do (i.e. ask for the parts of the user ID). Note that if you do not translate this string, a different string will be used, which might still have a correct translation. */ const char *s1 = N_("\n" "GnuPG needs to construct a user ID to identify your key.\n" "\n"); const char *s2 = _(s1); if (!strcmp (s1, s2)) { /* There is no translation for the string thus we to use the old info text. gettext has no way to tell whether a translation is actually available, thus we need to to compare again. */ /* TRANSLATORS: This string is in general not anymore used but you should keep your existing translation. In case the new string is not translated this old string will be used. */ const char *s3 = N_("\n" "You need a user ID to identify your key; " "the software constructs the user ID\n" "from the Real Name, Comment and Email Address in this form:\n" " \"Heinrich Heine (Der Dichter) \"\n\n"); const char *s4 = _(s3); if (strcmp (s3, s4)) s2 = s3; /* A translation exists - use it. */ } tty_printf ("%s", s2) ; } uid = aname = acomment = amail = NULL; for(;;) { char *p; int fail=0; if( !aname ) { for(;;) { xfree(aname); aname = cpr_get("keygen.name",_("Real name: ")); trim_spaces(aname); cpr_kill_prompt(); if( opt.allow_freeform_uid ) break; if( strpbrk( aname, "<>" ) ) { tty_printf(_("Invalid character in name\n")); tty_printf(_("The characters '%s' and '%s' may not " "appear in name\n"), "<", ">"); } else if( digitp(aname) ) tty_printf(_("Name may not start with a digit\n")); else if (*aname && strlen (aname) < 5) { tty_printf(_("Name must be at least 5 characters long\n")); /* However, we allow an empty name. */ } else break; } } if( !amail ) { for(;;) { xfree(amail); amail = cpr_get("keygen.email",_("Email address: ")); trim_spaces(amail); cpr_kill_prompt(); if( !*amail || opt.allow_freeform_uid ) break; /* no email address is okay */ else if ( !is_valid_mailbox (amail) ) tty_printf(_("Not a valid email address\n")); else break; } } if (!acomment) { if (full) { for(;;) { xfree(acomment); acomment = cpr_get("keygen.comment",_("Comment: ")); trim_spaces(acomment); cpr_kill_prompt(); if( !*acomment ) break; /* no comment is okay */ else if( strpbrk( acomment, "()" ) ) tty_printf(_("Invalid character in comment\n")); else break; } } else { xfree (acomment); acomment = xstrdup (""); } } xfree(uid); uid = p = xmalloc(strlen(aname)+strlen(amail)+strlen(acomment)+12+10); if (!*aname && *amail && !*acomment && !random_is_faked ()) { /* Empty name and comment but with mail address. Use simplified form with only the non-angle-bracketed mail address. */ p = stpcpy (p, amail); } else { p = stpcpy (p, aname ); if (*acomment) p = stpcpy(stpcpy(stpcpy(p," ("), acomment),")"); if (*amail) p = stpcpy(stpcpy(stpcpy(p," <"), amail),">"); } /* Append a warning if the RNG is switched into fake mode. */ if ( random_is_faked () ) strcpy(p, " (insecure!)" ); /* print a note in case that UTF8 mapping has to be done */ for(p=uid; *p; p++ ) { if( *p & 0x80 ) { tty_printf(_("You are using the '%s' character set.\n"), get_native_charset() ); break; } } tty_printf(_("You selected this USER-ID:\n \"%s\"\n\n"), uid); if( !*amail && !opt.allow_freeform_uid && (strchr( aname, '@' ) || strchr( acomment, '@'))) { fail = 1; tty_printf(_("Please don't put the email address " "into the real name or the comment\n") ); } if (!fail && keyblock) { if (uid_already_in_keyblock (keyblock, uid)) { tty_printf (_("Such a user ID already exists on this key!\n")); fail = 1; } } for(;;) { /* TRANSLATORS: These are the allowed answers in lower and uppercase. Below you will find the matching string which should be translated accordingly and the letter changed to match the one in the answer string. n = Change name c = Change comment e = Change email o = Okay (ready, continue) q = Quit */ const char *ansstr = _("NnCcEeOoQq"); if( strlen(ansstr) != 10 ) BUG(); if( cpr_enabled() ) { answer = xstrdup (ansstr + (fail?8:6)); answer[1] = 0; } else if (full) { answer = cpr_get("keygen.userid.cmd", fail? _("Change (N)ame, (C)omment, (E)mail or (Q)uit? ") : _("Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? ")); cpr_kill_prompt(); } else { answer = cpr_get("keygen.userid.cmd", fail? _("Change (N)ame, (E)mail, or (Q)uit? ") : _("Change (N)ame, (E)mail, or (O)kay/(Q)uit? ")); cpr_kill_prompt(); } if( strlen(answer) > 1 ) ; else if( *answer == ansstr[0] || *answer == ansstr[1] ) { xfree(aname); aname = NULL; break; } else if( *answer == ansstr[2] || *answer == ansstr[3] ) { xfree(acomment); acomment = NULL; break; } else if( *answer == ansstr[4] || *answer == ansstr[5] ) { xfree(amail); amail = NULL; break; } else if( *answer == ansstr[6] || *answer == ansstr[7] ) { if( fail ) { tty_printf(_("Please correct the error first\n")); } else { xfree(aname); aname = NULL; xfree(acomment); acomment = NULL; xfree(amail); amail = NULL; break; } } else if( *answer == ansstr[8] || *answer == ansstr[9] ) { xfree(aname); aname = NULL; xfree(acomment); acomment = NULL; xfree(amail); amail = NULL; xfree(uid); uid = NULL; break; } xfree(answer); } xfree(answer); if (!amail && !acomment) break; xfree(uid); uid = NULL; } if( uid ) { char *p = native_to_utf8( uid ); xfree( uid ); uid = p; } return uid; } /* Basic key generation. Here we divert to the actual generation routines based on the requested algorithm. */ static int do_create (int algo, unsigned int nbits, const char *curve, kbnode_t pub_root, u32 timestamp, u32 expiredate, int is_subkey, int keygen_flags, const char *passphrase, char **cache_nonce_addr, char **passwd_nonce_addr) { gpg_error_t err; /* Fixme: The entropy collecting message should be moved to a libgcrypt progress handler. */ if (!opt.batch) tty_printf (_( "We need to generate a lot of random bytes. It is a good idea to perform\n" "some other action (type on the keyboard, move the mouse, utilize the\n" "disks) during the prime generation; this gives the random number\n" "generator a better chance to gain enough entropy.\n") ); if (algo == PUBKEY_ALGO_ELGAMAL_E) err = gen_elg (algo, nbits, pub_root, timestamp, expiredate, is_subkey, keygen_flags, passphrase, cache_nonce_addr, passwd_nonce_addr); else if (algo == PUBKEY_ALGO_DSA) err = gen_dsa (nbits, pub_root, timestamp, expiredate, is_subkey, keygen_flags, passphrase, cache_nonce_addr, passwd_nonce_addr); else if (algo == PUBKEY_ALGO_ECDSA || algo == PUBKEY_ALGO_EDDSA || algo == PUBKEY_ALGO_ECDH) err = gen_ecc (algo, curve, pub_root, timestamp, expiredate, is_subkey, keygen_flags, passphrase, cache_nonce_addr, passwd_nonce_addr); else if (algo == PUBKEY_ALGO_RSA) err = gen_rsa (algo, nbits, pub_root, timestamp, expiredate, is_subkey, keygen_flags, passphrase, cache_nonce_addr, passwd_nonce_addr); else BUG(); return err; } /* Generate a new user id packet or return NULL if canceled. If KEYBLOCK is not NULL the function prevents the creation of an already existing user ID. If UIDSTR is not NULL the user is not asked but UIDSTR is used to create the user id packet; if the user id already exists NULL is returned. UIDSTR is expected to be utf-8 encoded and should have already been checked for a valid length etc. */ PKT_user_id * generate_user_id (KBNODE keyblock, const char *uidstr) { PKT_user_id *uid; char *p; if (uidstr) { if (uid_already_in_keyblock (keyblock, uidstr)) return NULL; /* Already exists. */ uid = uid_from_string (uidstr); } else { p = ask_user_id (1, 1, keyblock); if (!p) return NULL; /* Canceled. */ uid = uid_from_string (p); xfree (p); } return uid; } /* Helper for parse_key_parameter_string for one part of the * specification string; i.e. ALGO/FLAGS. If STRING is NULL or empty * success is returned. On error an error code is returned. Note * that STRING may be modified by this function. NULL may be passed * for any parameter. FOR_SUBKEY shall be true if this is used as a * subkey. If CLEAR_CERT is set a default CERT usage will be cleared; * this is useful if for example the default algorithm is used for a * subkey. If R_KEYVERSION is not NULL it will receive the version of * the key; this is currently 4 but can be changed with the flag "v5" * to create a v5 key. */ static gpg_error_t parse_key_parameter_part (char *string, int for_subkey, int clear_cert, int *r_algo, unsigned int *r_size, unsigned int *r_keyuse, char const **r_curve, int *r_keyversion) { char *flags; int algo; char *endp; const char *curve = NULL; int ecdh_or_ecdsa = 0; unsigned int size; int keyuse; int keyversion = 4; int i; const char *s; if (!string || !*string) return 0; /* Success. */ flags = strchr (string, '/'); if (flags) *flags++ = 0; algo = 0; if (strlen (string) >= 3 && (digitp (string+3) || !string[3])) { if (!ascii_memcasecmp (string, "rsa", 3)) algo = PUBKEY_ALGO_RSA; else if (!ascii_memcasecmp (string, "dsa", 3)) algo = PUBKEY_ALGO_DSA; else if (!ascii_memcasecmp (string, "elg", 3)) algo = PUBKEY_ALGO_ELGAMAL_E; } if (algo) { if (!string[3]) size = get_keysize_range (algo, NULL, NULL); else { size = strtoul (string+3, &endp, 10); if (size < 512 || size > 16384 || *endp) return gpg_error (GPG_ERR_INV_VALUE); } } else if ((curve = openpgp_is_curve_supported (string, &algo, &size))) { if (!algo) { algo = PUBKEY_ALGO_ECDH; /* Default ECC algorithm. */ ecdh_or_ecdsa = 1; /* We may need to switch the algo. */ } } else return gpg_error (GPG_ERR_UNKNOWN_CURVE); /* Parse the flags. */ keyuse = 0; if (flags) { char **tokens = NULL; tokens = strtokenize (flags, ","); if (!tokens) return gpg_error_from_syserror (); for (i=0; (s = tokens[i]); i++) { if (!*s) ; else if (!ascii_strcasecmp (s, "sign")) keyuse |= PUBKEY_USAGE_SIG; else if (!ascii_strcasecmp (s, "encrypt") || !ascii_strcasecmp (s, "encr")) keyuse |= PUBKEY_USAGE_ENC; else if (!ascii_strcasecmp (s, "auth")) keyuse |= PUBKEY_USAGE_AUTH; else if (!ascii_strcasecmp (s, "cert")) keyuse |= PUBKEY_USAGE_CERT; else if (!ascii_strcasecmp (s, "ecdsa")) { if (algo == PUBKEY_ALGO_ECDH || algo == PUBKEY_ALGO_ECDSA) algo = PUBKEY_ALGO_ECDSA; else { xfree (tokens); return gpg_error (GPG_ERR_INV_FLAG); } ecdh_or_ecdsa = 0; } else if (!ascii_strcasecmp (s, "ecdh")) { if (algo == PUBKEY_ALGO_ECDH || algo == PUBKEY_ALGO_ECDSA) algo = PUBKEY_ALGO_ECDH; else { xfree (tokens); return gpg_error (GPG_ERR_INV_FLAG); } ecdh_or_ecdsa = 0; } else if (!ascii_strcasecmp (s, "eddsa")) { /* Not required but we allow it for consistency. */ if (algo == PUBKEY_ALGO_EDDSA) ; else { xfree (tokens); return gpg_error (GPG_ERR_INV_FLAG); } } else if (!ascii_strcasecmp (s, "v5")) { if (opt.flags.rfc4880bis) keyversion = 5; } else if (!ascii_strcasecmp (s, "v4")) keyversion = 4; else { xfree (tokens); return gpg_error (GPG_ERR_UNKNOWN_FLAG); } } xfree (tokens); } /* If not yet decided switch between ecdh and ecdsa. */ if (ecdh_or_ecdsa && keyuse) algo = (keyuse & PUBKEY_USAGE_ENC)? PUBKEY_ALGO_ECDH : PUBKEY_ALGO_ECDSA; else if (ecdh_or_ecdsa) algo = for_subkey? PUBKEY_ALGO_ECDH : PUBKEY_ALGO_ECDSA; /* Set or fix key usage. */ if (!keyuse) { if (algo == PUBKEY_ALGO_ECDSA || algo == PUBKEY_ALGO_EDDSA || algo == PUBKEY_ALGO_DSA) keyuse = PUBKEY_USAGE_SIG; else if (algo == PUBKEY_ALGO_RSA) keyuse = for_subkey? PUBKEY_USAGE_ENC : PUBKEY_USAGE_SIG; else keyuse = PUBKEY_USAGE_ENC; } else if (algo == PUBKEY_ALGO_ECDSA || algo == PUBKEY_ALGO_EDDSA || algo == PUBKEY_ALGO_DSA) { keyuse &= ~PUBKEY_USAGE_ENC; /* Forbid encryption. */ } else if (algo == PUBKEY_ALGO_ECDH || algo == PUBKEY_ALGO_ELGAMAL_E) { keyuse = PUBKEY_USAGE_ENC; /* Allow only encryption. */ } /* Make sure a primary key can certify. */ if (!for_subkey) keyuse |= PUBKEY_USAGE_CERT; /* But if requested remove th cert usage. */ if (clear_cert) keyuse &= ~PUBKEY_USAGE_CERT; /* Check that usage is actually possible. */ if (/**/((keyuse & (PUBKEY_USAGE_SIG|PUBKEY_USAGE_AUTH|PUBKEY_USAGE_CERT)) && !pubkey_get_nsig (algo)) || ((keyuse & PUBKEY_USAGE_ENC) && !pubkey_get_nenc (algo)) || (for_subkey && (keyuse & PUBKEY_USAGE_CERT))) return gpg_error (GPG_ERR_WRONG_KEY_USAGE); /* Return values. */ if (r_algo) *r_algo = algo; if (r_size) { unsigned int min, def, max; /* Make sure the keysize is in the allowed range. */ def = get_keysize_range (algo, &min, &max); if (!size) size = def; else if (size < min) size = min; else if (size > max) size = max; *r_size = fixup_keysize (size, algo, 1); } if (r_keyuse) *r_keyuse = keyuse; if (r_curve) *r_curve = curve; if (r_keyversion) *r_keyversion = keyversion; return 0; } /* Parse and return the standard key generation parameter. * The string is expected to be in this format: * * ALGO[/FLAGS][+SUBALGO[/FLAGS]] * * Here ALGO is a string in the same format as printed by the * keylisting. For example: * * rsa3072 := RSA with 3072 bit. * dsa2048 := DSA with 2048 bit. * elg2048 := Elgamal with 2048 bit. * ed25519 := EDDSA using curve Ed25519. * cv25519 := ECDH using curve Curve25519. * nistp256:= ECDSA or ECDH using curve NIST P-256 * * All strings with an unknown prefix are considered an elliptic * curve. Curves which have no implicit algorithm require that FLAGS * is given to select whether ECDSA or ECDH is used; this can eoither * be done using an algorithm keyword or usage keywords. * * FLAGS is a comma delimited string of keywords: * * cert := Allow usage Certify * sign := Allow usage Sign * encr := Allow usage Encrypt * auth := Allow usage Authentication * encrypt := Alias for "encr" * ecdsa := Use algorithm ECDSA. * eddsa := Use algorithm EdDSA. * ecdh := Use algorithm ECDH. * v5 := Create version 5 key (requires option --rfc4880bis) * * There are several defaults and fallbacks depending on the * algorithm. PART can be used to select which part of STRING is * used: * -1 := Both parts * 0 := Only the part of the primary key * 1 := If there is one part parse that one, if there are * two parts parse the part which best matches the * SUGGESTED_USE or in case that can't be evaluated the second part. * Always return using the args for the primary key (R_ALGO,....). * */ gpg_error_t parse_key_parameter_string (const char *string, int part, unsigned int suggested_use, int *r_algo, unsigned int *r_size, unsigned int *r_keyuse, char const **r_curve, int *r_version, int *r_subalgo, unsigned int *r_subsize, unsigned int *r_subkeyuse, char const **r_subcurve, int *r_subversion) { gpg_error_t err = 0; char *primary, *secondary; if (r_algo) *r_algo = 0; if (r_size) *r_size = 0; if (r_keyuse) *r_keyuse = 0; if (r_curve) *r_curve = NULL; if (r_version) *r_version = 4; if (r_subalgo) *r_subalgo = 0; if (r_subsize) *r_subsize = 0; if (r_subkeyuse) *r_subkeyuse = 0; if (r_subcurve) *r_subcurve = NULL; if (r_subversion) *r_subversion = 4; if (!string || !*string || !ascii_strcasecmp (string, "default") || !strcmp (string, "-")) string = get_default_pubkey_algo (); else if (!ascii_strcasecmp (string, "future-default") || !ascii_strcasecmp (string, "futuredefault")) string = FUTURE_STD_KEY_PARAM; primary = xstrdup (string); secondary = strchr (primary, '+'); if (secondary) *secondary++ = 0; if (part == -1 || part == 0) { err = parse_key_parameter_part (primary, 0, 0, r_algo, r_size, r_keyuse, r_curve, r_version); if (!err && part == -1) err = parse_key_parameter_part (secondary, 1, 0, r_subalgo, r_subsize, r_subkeyuse, r_subcurve, r_subversion); } else if (part == 1) { /* If we have SECONDARY, use that part. If there is only one * part consider this to be the subkey algo. In case a * SUGGESTED_USE has been given and the usage of the secondary * part does not match SUGGESTED_USE try again using the primary * part. Note that when falling back to the primary key we need * to force clearing the cert usage. */ if (secondary) { err = parse_key_parameter_part (secondary, 1, 0, r_algo, r_size, r_keyuse, r_curve, r_version); if (!err && suggested_use && r_keyuse && !(suggested_use & *r_keyuse)) err = parse_key_parameter_part (primary, 1, 1 /*(clear cert)*/, r_algo, r_size, r_keyuse, r_curve, r_version); } else err = parse_key_parameter_part (primary, 1, 0, r_algo, r_size, r_keyuse, r_curve, r_version); } xfree (primary); return err; } /* Append R to the linked list PARA. */ static void append_to_parameter (struct para_data_s *para, struct para_data_s *r) { log_assert (para); while (para->next) para = para->next; para->next = r; } /* Release the parameter list R. */ static void release_parameter_list (struct para_data_s *r) { struct para_data_s *r2; for (; r ; r = r2) { r2 = r->next; if (r->key == pPASSPHRASE && *r->u.value) wipememory (r->u.value, strlen (r->u.value)); xfree (r); } } static struct para_data_s * get_parameter( struct para_data_s *para, enum para_name key ) { struct para_data_s *r; for( r = para; r && r->key != key; r = r->next ) ; return r; } static const char * get_parameter_value( struct para_data_s *para, enum para_name key ) { struct para_data_s *r = get_parameter( para, key ); return (r && *r->u.value)? r->u.value : NULL; } /* This is similar to get_parameter_value but also returns the empty string. This is required so that quick_generate_keypair can use an empty Passphrase to specify no-protection. */ static const char * get_parameter_passphrase (struct para_data_s *para) { struct para_data_s *r = get_parameter (para, pPASSPHRASE); return r ? r->u.value : NULL; } static int get_parameter_algo( struct para_data_s *para, enum para_name key, int *r_default) { int i; struct para_data_s *r = get_parameter( para, key ); if (r_default) *r_default = 0; if (!r) return -1; /* Note that we need to handle the ECC algorithms specified as strings directly because Libgcrypt folds them all to ECC. */ if (!ascii_strcasecmp (r->u.value, "default")) { /* Note: If you change this default algo, remember to change it * also in gpg.c:gpgconf_list. */ /* FIXME: We only allow the algo here and have a separate thing * for the curve etc. That is a ugly but demanded for backward * compatibility with the batch key generation. It would be * better to make full use of parse_key_parameter_string. */ parse_key_parameter_string (NULL, 0, 0, &i, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL); if (r_default) *r_default = 1; } else if (digitp (r->u.value)) i = atoi( r->u.value ); else if (!strcmp (r->u.value, "ELG-E") || !strcmp (r->u.value, "ELG")) i = PUBKEY_ALGO_ELGAMAL_E; else if (!ascii_strcasecmp (r->u.value, "EdDSA")) i = PUBKEY_ALGO_EDDSA; else if (!ascii_strcasecmp (r->u.value, "ECDSA")) i = PUBKEY_ALGO_ECDSA; else if (!ascii_strcasecmp (r->u.value, "ECDH")) i = PUBKEY_ALGO_ECDH; else i = map_pk_gcry_to_openpgp (gcry_pk_map_name (r->u.value)); if (i == PUBKEY_ALGO_RSA_E || i == PUBKEY_ALGO_RSA_S) i = 0; /* we don't want to allow generation of these algorithms */ return i; } /* Parse a usage string. The usage keywords "auth", "sign", "encr" * may be delimited by space, tab, or comma. On error -1 is returned * instead of the usage flags. */ static int parse_usagestr (const char *usagestr) { gpg_error_t err; char **tokens = NULL; const char *s; int i; unsigned int use = 0; tokens = strtokenize (usagestr, " \t,"); if (!tokens) { err = gpg_error_from_syserror (); log_error ("strtokenize failed: %s\n", gpg_strerror (err)); return -1; } for (i=0; (s = tokens[i]); i++) { if (!*s) ; else if (!ascii_strcasecmp (s, "sign")) use |= PUBKEY_USAGE_SIG; else if (!ascii_strcasecmp (s, "encrypt") || !ascii_strcasecmp (s, "encr")) use |= PUBKEY_USAGE_ENC; else if (!ascii_strcasecmp (s, "auth")) use |= PUBKEY_USAGE_AUTH; else if (!ascii_strcasecmp (s, "cert")) use |= PUBKEY_USAGE_CERT; else { xfree (tokens); return -1; /* error */ } } xfree (tokens); return use; } /* * Parse the usage parameter and set the keyflags. Returns -1 on * error, 0 for no usage given or 1 for usage available. */ static int parse_parameter_usage (const char *fname, struct para_data_s *para, enum para_name key) { struct para_data_s *r = get_parameter( para, key ); int i; if (!r) return 0; /* none (this is an optional parameter)*/ i = parse_usagestr (r->u.value); if (i == -1) { log_error ("%s:%d: invalid usage list\n", fname, r->lnr ); return -1; /* error */ } r->u.usage = i; return 1; } static int parse_revocation_key (const char *fname, struct para_data_s *para, enum para_name key) { struct para_data_s *r = get_parameter( para, key ); struct revocation_key revkey; char *pn; int i; if( !r ) return 0; /* none (this is an optional parameter) */ pn = r->u.value; revkey.class=0x80; revkey.algid=atoi(pn); if(!revkey.algid) goto fail; /* Skip to the fpr */ while(*pn && *pn!=':') pn++; if(*pn!=':') goto fail; pn++; for(i=0;iu.revkey,&revkey,sizeof(struct revocation_key)); return 0; fail: log_error("%s:%d: invalid revocation key\n", fname, r->lnr ); return -1; /* error */ } static u32 get_parameter_u32( struct para_data_s *para, enum para_name key ) { struct para_data_s *r = get_parameter( para, key ); if( !r ) return 0; if( r->key == pKEYCREATIONDATE ) return r->u.creation; if( r->key == pKEYEXPIRE || r->key == pSUBKEYEXPIRE ) return r->u.expire; if( r->key == pKEYUSAGE || r->key == pSUBKEYUSAGE ) return r->u.usage; return (unsigned int)strtoul( r->u.value, NULL, 10 ); } static unsigned int get_parameter_uint( struct para_data_s *para, enum para_name key ) { return get_parameter_u32( para, key ); } static struct revocation_key * get_parameter_revkey( struct para_data_s *para, enum para_name key ) { struct para_data_s *r = get_parameter( para, key ); return r? &r->u.revkey : NULL; } static int proc_parameter_file (ctrl_t ctrl, struct para_data_s *para, const char *fname, struct output_control_s *outctrl, int card ) { struct para_data_s *r; const char *s1, *s2, *s3; size_t n; char *p; int is_default = 0; int have_user_id = 0; int err, algo; /* Check that we have all required parameters. */ r = get_parameter( para, pKEYTYPE ); if(r) { algo = get_parameter_algo (para, pKEYTYPE, &is_default); if (openpgp_pk_test_algo2 (algo, PUBKEY_USAGE_SIG)) { log_error ("%s:%d: invalid algorithm\n", fname, r->lnr ); return -1; } } else { log_error ("%s: no Key-Type specified\n",fname); return -1; } err = parse_parameter_usage (fname, para, pKEYUSAGE); if (!err) { /* Default to algo capabilities if key-usage is not provided and no default algorithm has been requested. */ r = xmalloc_clear(sizeof(*r)); r->key = pKEYUSAGE; r->u.usage = (is_default ? (PUBKEY_USAGE_CERT | PUBKEY_USAGE_SIG) : openpgp_pk_algo_usage(algo)); append_to_parameter (para, r); } else if (err == -1) return -1; else { r = get_parameter (para, pKEYUSAGE); if (r && (r->u.usage & ~openpgp_pk_algo_usage (algo))) { log_error ("%s:%d: specified Key-Usage not allowed for algo %d\n", fname, r->lnr, algo); return -1; } } is_default = 0; r = get_parameter( para, pSUBKEYTYPE ); if(r) { algo = get_parameter_algo (para, pSUBKEYTYPE, &is_default); if (openpgp_pk_test_algo (algo)) { log_error ("%s:%d: invalid algorithm\n", fname, r->lnr ); return -1; } err = parse_parameter_usage (fname, para, pSUBKEYUSAGE); if (!err) { /* Default to algo capabilities if subkey-usage is not provided */ r = xmalloc_clear (sizeof(*r)); r->key = pSUBKEYUSAGE; r->u.usage = (is_default ? PUBKEY_USAGE_ENC : openpgp_pk_algo_usage (algo)); append_to_parameter (para, r); } else if (err == -1) return -1; else { r = get_parameter (para, pSUBKEYUSAGE); if (r && (r->u.usage & ~openpgp_pk_algo_usage (algo))) { log_error ("%s:%d: specified Subkey-Usage not allowed" " for algo %d\n", fname, r->lnr, algo); return -1; } } } if( get_parameter_value( para, pUSERID ) ) have_user_id=1; else { /* create the formatted user ID */ s1 = get_parameter_value( para, pNAMEREAL ); s2 = get_parameter_value( para, pNAMECOMMENT ); s3 = get_parameter_value( para, pNAMEEMAIL ); if( s1 || s2 || s3 ) { n = (s1?strlen(s1):0) + (s2?strlen(s2):0) + (s3?strlen(s3):0); r = xmalloc_clear( sizeof *r + n + 20 ); r->key = pUSERID; p = r->u.value; if( s1 ) p = stpcpy(p, s1 ); if( s2 ) p = stpcpy(stpcpy(stpcpy(p," ("), s2 ),")"); if( s3 ) { /* If we have only the email part, do not add the space * and the angle brackets. */ if (*r->u.value) p = stpcpy(stpcpy(stpcpy(p," <"), s3 ),">"); else p = stpcpy (p, s3); } append_to_parameter (para, r); have_user_id=1; } } if(!have_user_id) { log_error("%s: no User-ID specified\n",fname); return -1; } /* Set preferences, if any. */ keygen_set_std_prefs(get_parameter_value( para, pPREFERENCES ), 0); /* Set keyserver, if any. */ s1=get_parameter_value( para, pKEYSERVER ); if(s1) { struct keyserver_spec *spec; spec = parse_keyserver_uri (s1, 1); if(spec) { free_keyserver_spec(spec); opt.def_keyserver_url=s1; } else { r = get_parameter (para, pKEYSERVER); log_error("%s:%d: invalid keyserver url\n", fname, r->lnr ); return -1; } } /* Set revoker, if any. */ if (parse_revocation_key (fname, para, pREVOKER)) return -1; /* Make KEYCREATIONDATE from Creation-Date. */ r = get_parameter (para, pCREATIONDATE); if (r && *r->u.value) { u32 seconds; seconds = parse_creation_string (r->u.value); if (!seconds) { log_error ("%s:%d: invalid creation date\n", fname, r->lnr ); return -1; } r->u.creation = seconds; r->key = pKEYCREATIONDATE; /* Change that entry. */ } /* Make KEYEXPIRE from Expire-Date. */ r = get_parameter( para, pEXPIREDATE ); if( r && *r->u.value ) { u32 seconds; seconds = parse_expire_string( r->u.value ); if( seconds == (u32)-1 ) { log_error("%s:%d: invalid expire date\n", fname, r->lnr ); return -1; } r->u.expire = seconds; r->key = pKEYEXPIRE; /* change hat entry */ /* also set it for the subkey */ r = xmalloc_clear( sizeof *r + 20 ); r->key = pSUBKEYEXPIRE; r->u.expire = seconds; append_to_parameter (para, r); } do_generate_keypair (ctrl, para, outctrl, card ); return 0; } /**************** * Kludge to allow non interactive key generation controlled * by a parameter file. * Note, that string parameters are expected to be in UTF-8 */ static void read_parameter_file (ctrl_t ctrl, const char *fname ) { static struct { const char *name; enum para_name key; } keywords[] = { { "Key-Type", pKEYTYPE}, { "Key-Length", pKEYLENGTH }, { "Key-Curve", pKEYCURVE }, { "Key-Usage", pKEYUSAGE }, { "Subkey-Type", pSUBKEYTYPE }, { "Subkey-Length", pSUBKEYLENGTH }, { "Subkey-Curve", pSUBKEYCURVE }, { "Subkey-Usage", pSUBKEYUSAGE }, { "Name-Real", pNAMEREAL }, { "Name-Email", pNAMEEMAIL }, { "Name-Comment", pNAMECOMMENT }, { "Expire-Date", pEXPIREDATE }, { "Creation-Date", pCREATIONDATE }, { "Passphrase", pPASSPHRASE }, { "Preferences", pPREFERENCES }, { "Revoker", pREVOKER }, { "Handle", pHANDLE }, { "Keyserver", pKEYSERVER }, { "Keygrip", pKEYGRIP }, { "Key-Grip", pKEYGRIP }, { "Subkey-grip", pSUBKEYGRIP }, { "Key-Version", pVERSION }, { "Subkey-Version", pSUBVERSION }, { NULL, 0 } }; IOBUF fp; byte *line; unsigned int maxlen, nline; char *p; int lnr; const char *err = NULL; struct para_data_s *para, *r; int i; struct output_control_s outctrl; memset( &outctrl, 0, sizeof( outctrl ) ); outctrl.pub.afx = new_armor_context (); if( !fname || !*fname) fname = "-"; fp = iobuf_open (fname); if (fp && is_secured_file (iobuf_get_fd (fp))) { iobuf_close (fp); fp = NULL; gpg_err_set_errno (EPERM); } if (!fp) { log_error (_("can't open '%s': %s\n"), fname, strerror(errno) ); return; } iobuf_ioctl (fp, IOBUF_IOCTL_NO_CACHE, 1, NULL); lnr = 0; err = NULL; para = NULL; maxlen = 1024; line = NULL; while ( iobuf_read_line (fp, &line, &nline, &maxlen) ) { char *keyword, *value; lnr++; if( !maxlen ) { err = "line too long"; break; } for( p = line; isspace(*(byte*)p); p++ ) ; if( !*p || *p == '#' ) continue; keyword = p; if( *keyword == '%' ) { for( ; !isspace(*(byte*)p); p++ ) ; if( *p ) *p++ = 0; for( ; isspace(*(byte*)p); p++ ) ; value = p; trim_trailing_ws( value, strlen(value) ); if( !ascii_strcasecmp( keyword, "%echo" ) ) log_info("%s\n", value ); else if( !ascii_strcasecmp( keyword, "%dry-run" ) ) outctrl.dryrun = 1; else if( !ascii_strcasecmp( keyword, "%ask-passphrase" ) ) ; /* Dummy for backward compatibility. */ else if( !ascii_strcasecmp( keyword, "%no-ask-passphrase" ) ) ; /* Dummy for backward compatibility. */ else if( !ascii_strcasecmp( keyword, "%no-protection" ) ) outctrl.keygen_flags |= KEYGEN_FLAG_NO_PROTECTION; else if( !ascii_strcasecmp( keyword, "%transient-key" ) ) outctrl.keygen_flags |= KEYGEN_FLAG_TRANSIENT_KEY; else if( !ascii_strcasecmp( keyword, "%commit" ) ) { outctrl.lnr = lnr; if (proc_parameter_file (ctrl, para, fname, &outctrl, 0 )) print_status_key_not_created (get_parameter_value (para, pHANDLE)); release_parameter_list( para ); para = NULL; } else if( !ascii_strcasecmp( keyword, "%pubring" ) ) { if( outctrl.pub.fname && !strcmp( outctrl.pub.fname, value ) ) ; /* still the same file - ignore it */ else { xfree( outctrl.pub.newfname ); outctrl.pub.newfname = xstrdup( value ); outctrl.use_files = 1; } } else if( !ascii_strcasecmp( keyword, "%secring" ) ) { /* Ignore this command. */ } else log_info("skipping control '%s' (%s)\n", keyword, value ); continue; } if( !(p = strchr( p, ':' )) || p == keyword ) { err = "missing colon"; break; } if( *p ) *p++ = 0; for( ; isspace(*(byte*)p); p++ ) ; if( !*p ) { err = "missing argument"; break; } value = p; trim_trailing_ws( value, strlen(value) ); for(i=0; keywords[i].name; i++ ) { if( !ascii_strcasecmp( keywords[i].name, keyword ) ) break; } if( !keywords[i].name ) { err = "unknown keyword"; break; } if( keywords[i].key != pKEYTYPE && !para ) { err = "parameter block does not start with \"Key-Type\""; break; } if( keywords[i].key == pKEYTYPE && para ) { outctrl.lnr = lnr; if (proc_parameter_file (ctrl, para, fname, &outctrl, 0 )) print_status_key_not_created (get_parameter_value (para, pHANDLE)); release_parameter_list( para ); para = NULL; } else { for( r = para; r; r = r->next ) { if( r->key == keywords[i].key ) break; } if( r ) { err = "duplicate keyword"; break; } } if (!opt.flags.rfc4880bis && (keywords[i].key == pVERSION || keywords[i].key == pSUBVERSION)) ; /* Ignore version unless --rfc4880bis is active. */ else { r = xmalloc_clear( sizeof *r + strlen( value ) ); r->lnr = lnr; r->key = keywords[i].key; strcpy( r->u.value, value ); r->next = para; para = r; } } if( err ) log_error("%s:%d: %s\n", fname, lnr, err ); else if( iobuf_error (fp) ) { log_error("%s:%d: read error\n", fname, lnr); } else if( para ) { outctrl.lnr = lnr; if (proc_parameter_file (ctrl, para, fname, &outctrl, 0 )) print_status_key_not_created (get_parameter_value (para, pHANDLE)); } if( outctrl.use_files ) { /* close open streams */ iobuf_close( outctrl.pub.stream ); /* Must invalidate that ugly cache to actually close it. */ if (outctrl.pub.fname) iobuf_ioctl (NULL, IOBUF_IOCTL_INVALIDATE_CACHE, 0, (char*)outctrl.pub.fname); xfree( outctrl.pub.fname ); xfree( outctrl.pub.newfname ); } xfree (line); release_parameter_list( para ); iobuf_close (fp); release_armor_context (outctrl.pub.afx); } /* Helper for quick_generate_keypair. */ static struct para_data_s * quickgen_set_para (struct para_data_s *para, int for_subkey, int algo, int nbits, const char *curve, unsigned int use, int version) { struct para_data_s *r; r = xmalloc_clear (sizeof *r + 30); r->key = for_subkey? pSUBKEYUSAGE : pKEYUSAGE; if (use) snprintf (r->u.value, 30, "%s%s%s%s", (use & PUBKEY_USAGE_ENC)? "encr " : "", (use & PUBKEY_USAGE_SIG)? "sign " : "", (use & PUBKEY_USAGE_AUTH)? "auth " : "", (use & PUBKEY_USAGE_CERT)? "cert " : ""); else strcpy (r->u.value, for_subkey ? "encr" : "sign"); r->next = para; para = r; r = xmalloc_clear (sizeof *r + 20); r->key = for_subkey? pSUBKEYTYPE : pKEYTYPE; snprintf (r->u.value, 20, "%d", algo); r->next = para; para = r; if (curve) { r = xmalloc_clear (sizeof *r + strlen (curve)); r->key = for_subkey? pSUBKEYCURVE : pKEYCURVE; strcpy (r->u.value, curve); r->next = para; para = r; } else { r = xmalloc_clear (sizeof *r + 20); r->key = for_subkey? pSUBKEYLENGTH : pKEYLENGTH; sprintf (r->u.value, "%u", nbits); r->next = para; para = r; } if (opt.flags.rfc4880bis) { r = xmalloc_clear (sizeof *r + 20); r->key = for_subkey? pSUBVERSION : pVERSION; snprintf (r->u.value, 20, "%d", version); r->next = para; para = r; } return para; } /* * Unattended generation of a standard key. */ void quick_generate_keypair (ctrl_t ctrl, const char *uid, const char *algostr, const char *usagestr, const char *expirestr) { gpg_error_t err; struct para_data_s *para = NULL; struct para_data_s *r; struct output_control_s outctrl; int use_tty; memset (&outctrl, 0, sizeof outctrl); use_tty = (!opt.batch && !opt.answer_yes && !*algostr && !*usagestr && !*expirestr && !cpr_enabled () && gnupg_isatty (fileno (stdin)) && gnupg_isatty (fileno (stdout)) && gnupg_isatty (fileno (stderr))); r = xmalloc_clear (sizeof *r + strlen (uid)); r->key = pUSERID; strcpy (r->u.value, uid); r->next = para; para = r; uid = trim_spaces (r->u.value); if (!*uid || (!opt.allow_freeform_uid && !is_valid_user_id (uid))) { log_error (_("Key generation failed: %s\n"), gpg_strerror (GPG_ERR_INV_USER_ID)); goto leave; } /* If gpg is directly used on the console ask whether a key with the given user id shall really be created. */ if (use_tty) { tty_printf (_("About to create a key for:\n \"%s\"\n\n"), uid); if (!cpr_get_answer_is_yes_def ("quick_keygen.okay", _("Continue? (Y/n) "), 1)) goto leave; } /* Check whether such a user ID already exists. */ { KEYDB_HANDLE kdbhd; KEYDB_SEARCH_DESC desc; memset (&desc, 0, sizeof desc); desc.mode = KEYDB_SEARCH_MODE_EXACT; desc.u.name = uid; kdbhd = keydb_new (); if (!kdbhd) goto leave; err = keydb_search (kdbhd, &desc, 1, NULL); keydb_release (kdbhd); if (gpg_err_code (err) != GPG_ERR_NOT_FOUND) { log_info (_("A key for \"%s\" already exists\n"), uid); if (opt.answer_yes) ; else if (!use_tty || !cpr_get_answer_is_yes_def ("quick_keygen.force", _("Create anyway? (y/N) "), 0)) { write_status_error ("genkey", gpg_error (304)); log_inc_errorcount (); /* we used log_info */ goto leave; } log_info (_("creating anyway\n")); } } if (!*expirestr || strcmp (expirestr, "-") == 0) expirestr = default_expiration_interval; if ((!*algostr || !ascii_strcasecmp (algostr, "default") || !ascii_strcasecmp (algostr, "future-default") || !ascii_strcasecmp (algostr, "futuredefault")) && (!*usagestr || !ascii_strcasecmp (usagestr, "default") || !strcmp (usagestr, "-"))) { /* Use default key parameters. */ int algo, subalgo, version, subversion; unsigned int size, subsize; unsigned int keyuse, subkeyuse; const char *curve, *subcurve; err = parse_key_parameter_string (algostr, -1, 0, &algo, &size, &keyuse, &curve, &version, &subalgo, &subsize, &subkeyuse, &subcurve, &subversion); if (err) { log_error (_("Key generation failed: %s\n"), gpg_strerror (err)); goto leave; } para = quickgen_set_para (para, 0, algo, size, curve, keyuse, version); if (subalgo) para = quickgen_set_para (para, 1, subalgo, subsize, subcurve, subkeyuse, subversion); if (*expirestr) { u32 expire; expire = parse_expire_string (expirestr); if (expire == (u32)-1 ) { err = gpg_error (GPG_ERR_INV_VALUE); log_error (_("Key generation failed: %s\n"), gpg_strerror (err)); goto leave; } r = xmalloc_clear (sizeof *r + 20); r->key = pKEYEXPIRE; r->u.expire = expire; r->next = para; para = r; } } else { /* Extended unattended mode. Creates only the primary key. */ int algo, version; unsigned int use; u32 expire; unsigned int nbits; const char *curve; err = parse_algo_usage_expire (ctrl, 0, algostr, usagestr, expirestr, &algo, &use, &expire, &nbits, &curve, &version); if (err) { log_error (_("Key generation failed: %s\n"), gpg_strerror (err) ); goto leave; } para = quickgen_set_para (para, 0, algo, nbits, curve, use, version); r = xmalloc_clear (sizeof *r + 20); r->key = pKEYEXPIRE; r->u.expire = expire; r->next = para; para = r; } /* If the pinentry loopback mode is not and we have a static passphrase (i.e. set with --passphrase{,-fd,-file} while in batch mode), we use that passphrase for the new key. */ if (opt.pinentry_mode != PINENTRY_MODE_LOOPBACK && have_static_passphrase ()) { const char *s = get_static_passphrase (); r = xmalloc_clear (sizeof *r + strlen (s)); r->key = pPASSPHRASE; strcpy (r->u.value, s); r->next = para; para = r; } proc_parameter_file (ctrl, para, "[internal]", &outctrl, 0); leave: release_parameter_list (para); } /* * Generate a keypair (fname is only used in batch mode) If * CARD_SERIALNO is not NULL the function will create the keys on an * OpenPGP Card. If CARD_BACKUP_KEY has been set and CARD_SERIALNO is * NOT NULL, the encryption key for the card is generated on the host, * imported to the card and a backup file created by gpg-agent. If * FULL is not set only the basic prompts are used (except for batch * mode). */ void generate_keypair (ctrl_t ctrl, int full, const char *fname, const char *card_serialno, int card_backup_key) { gpg_error_t err; unsigned int nbits; char *uid = NULL; int algo; unsigned int use; int both = 0; u32 expire; struct para_data_s *para = NULL; struct para_data_s *r; struct output_control_s outctrl; #ifndef ENABLE_CARD_SUPPORT (void)card_backup_key; #endif memset( &outctrl, 0, sizeof( outctrl ) ); if (opt.batch && card_serialno) { /* We don't yet support unattended key generation with a card * serial number. */ log_error (_("can't do this in batch mode\n")); print_further_info ("key generation with card serial number"); return; } if (opt.batch) { read_parameter_file (ctrl, fname); return; } if (card_serialno) { #ifdef ENABLE_CARD_SUPPORT struct agent_card_info_s info; memset (&info, 0, sizeof (info)); err = agent_scd_getattr ("KEY-ATTR", &info); if (err) { log_error (_("error getting current key info: %s\n"), gpg_strerror (err)); return; } r = xcalloc (1, sizeof *r + strlen (card_serialno) ); r->key = pSERIALNO; strcpy( r->u.value, card_serialno); r->next = para; para = r; r = xcalloc (1, sizeof *r + 20 ); r->key = pKEYTYPE; sprintf( r->u.value, "%d", info.key_attr[0].algo ); r->next = para; para = r; r = xcalloc (1, sizeof *r + 20 ); r->key = pKEYUSAGE; strcpy (r->u.value, "sign"); r->next = para; para = r; r = xcalloc (1, sizeof *r + 20 ); r->key = pSUBKEYTYPE; sprintf( r->u.value, "%d", info.key_attr[1].algo ); r->next = para; para = r; r = xcalloc (1, sizeof *r + 20 ); r->key = pSUBKEYUSAGE; strcpy (r->u.value, "encrypt"); r->next = para; para = r; if (info.key_attr[1].algo == PUBKEY_ALGO_RSA) { r = xcalloc (1, sizeof *r + 20 ); r->key = pSUBKEYLENGTH; sprintf( r->u.value, "%u", info.key_attr[1].nbits); r->next = para; para = r; } else if (info.key_attr[1].algo == PUBKEY_ALGO_ECDSA || info.key_attr[1].algo == PUBKEY_ALGO_EDDSA || info.key_attr[1].algo == PUBKEY_ALGO_ECDH) { r = xcalloc (1, sizeof *r + strlen (info.key_attr[1].curve)); r->key = pSUBKEYCURVE; strcpy (r->u.value, info.key_attr[1].curve); r->next = para; para = r; } r = xcalloc (1, sizeof *r + 20 ); r->key = pAUTHKEYTYPE; sprintf( r->u.value, "%d", info.key_attr[2].algo ); r->next = para; para = r; if (card_backup_key) { r = xcalloc (1, sizeof *r + 1); r->key = pCARDBACKUPKEY; strcpy (r->u.value, "1"); r->next = para; para = r; } #endif /*ENABLE_CARD_SUPPORT*/ } else if (full) /* Full featured key generation. */ { int subkey_algo; char *key_from_hexgrip = NULL; algo = ask_algo (ctrl, 0, &subkey_algo, &use, &key_from_hexgrip); if (key_from_hexgrip) { r = xmalloc_clear( sizeof *r + 20 ); r->key = pKEYTYPE; sprintf( r->u.value, "%d", algo); r->next = para; para = r; if (use) { r = xmalloc_clear( sizeof *r + 25 ); r->key = pKEYUSAGE; sprintf( r->u.value, "%s%s%s", (use & PUBKEY_USAGE_SIG)? "sign ":"", (use & PUBKEY_USAGE_ENC)? "encrypt ":"", (use & PUBKEY_USAGE_AUTH)? "auth":"" ); r->next = para; para = r; } r = xmalloc_clear( sizeof *r + 40 ); r->key = pKEYGRIP; strcpy (r->u.value, key_from_hexgrip); r->next = para; para = r; xfree (key_from_hexgrip); } else { const char *curve = NULL; if (subkey_algo) { /* Create primary and subkey at once. */ both = 1; if (algo == PUBKEY_ALGO_ECDSA || algo == PUBKEY_ALGO_EDDSA || algo == PUBKEY_ALGO_ECDH) { curve = ask_curve (&algo, &subkey_algo, NULL); r = xmalloc_clear( sizeof *r + 20 ); r->key = pKEYTYPE; sprintf( r->u.value, "%d", algo); r->next = para; para = r; nbits = 0; r = xmalloc_clear (sizeof *r + strlen (curve)); r->key = pKEYCURVE; strcpy (r->u.value, curve); r->next = para; para = r; } else { r = xmalloc_clear( sizeof *r + 20 ); r->key = pKEYTYPE; sprintf( r->u.value, "%d", algo); r->next = para; para = r; nbits = ask_keysize (algo, 0); r = xmalloc_clear( sizeof *r + 20 ); r->key = pKEYLENGTH; sprintf( r->u.value, "%u", nbits); r->next = para; para = r; } r = xmalloc_clear( sizeof *r + 20 ); r->key = pKEYUSAGE; strcpy( r->u.value, "sign" ); r->next = para; para = r; r = xmalloc_clear( sizeof *r + 20 ); r->key = pSUBKEYTYPE; sprintf( r->u.value, "%d", subkey_algo); r->next = para; para = r; r = xmalloc_clear( sizeof *r + 20 ); r->key = pSUBKEYUSAGE; strcpy( r->u.value, "encrypt" ); r->next = para; para = r; if (algo == PUBKEY_ALGO_ECDSA || algo == PUBKEY_ALGO_EDDSA || algo == PUBKEY_ALGO_ECDH) { if (algo == PUBKEY_ALGO_EDDSA && subkey_algo == PUBKEY_ALGO_ECDH) { /* Need to switch to a different curve for the encryption key. */ curve = "Curve25519"; } r = xmalloc_clear (sizeof *r + strlen (curve)); r->key = pSUBKEYCURVE; strcpy (r->u.value, curve); r->next = para; para = r; } } else /* Create only a single key. */ { /* For ECC we need to ask for the curve before storing the algo because ask_curve may change the algo. */ if (algo == PUBKEY_ALGO_ECDSA || algo == PUBKEY_ALGO_EDDSA || algo == PUBKEY_ALGO_ECDH) { curve = ask_curve (&algo, NULL, NULL); r = xmalloc_clear (sizeof *r + strlen (curve)); r->key = pKEYCURVE; strcpy (r->u.value, curve); r->next = para; para = r; } r = xmalloc_clear( sizeof *r + 20 ); r->key = pKEYTYPE; sprintf( r->u.value, "%d", algo ); r->next = para; para = r; if (use) { r = xmalloc_clear( sizeof *r + 25 ); r->key = pKEYUSAGE; sprintf( r->u.value, "%s%s%s", (use & PUBKEY_USAGE_SIG)? "sign ":"", (use & PUBKEY_USAGE_ENC)? "encrypt ":"", (use & PUBKEY_USAGE_AUTH)? "auth":"" ); r->next = para; para = r; } nbits = 0; } if (algo == PUBKEY_ALGO_ECDSA || algo == PUBKEY_ALGO_EDDSA || algo == PUBKEY_ALGO_ECDH) { /* The curve has already been set. */ } else { nbits = ask_keysize (both? subkey_algo : algo, nbits); r = xmalloc_clear( sizeof *r + 20 ); r->key = both? pSUBKEYLENGTH : pKEYLENGTH; sprintf( r->u.value, "%u", nbits); r->next = para; para = r; } } } else /* Default key generation. */ { int subalgo, version, subversion; unsigned int size, subsize; unsigned int keyuse, subkeyuse; const char *curve, *subcurve; tty_printf ( _("Note: Use \"%s %s\"" " for a full featured key generation dialog.\n"), #if USE_GPG2_HACK GPG_NAME "2" #else GPG_NAME #endif , "--full-generate-key" ); err = parse_key_parameter_string (NULL, -1, 0, &algo, &size, &keyuse, &curve, &version, &subalgo, &subsize, &subkeyuse, &subcurve, &subversion); if (err) { log_error (_("Key generation failed: %s\n"), gpg_strerror (err)); return; } para = quickgen_set_para (para, 0, algo, size, curve, keyuse, version); if (subalgo) para = quickgen_set_para (para, 1, subalgo, subsize, subcurve, subkeyuse, subversion); } expire = full? ask_expire_interval (0, NULL) : parse_expire_string (default_expiration_interval); r = xcalloc (1, sizeof *r + 20); r->key = pKEYEXPIRE; r->u.expire = expire; r->next = para; para = r; r = xcalloc (1, sizeof *r + 20); r->key = pSUBKEYEXPIRE; r->u.expire = expire; r->next = para; para = r; uid = ask_user_id (0, full, NULL); if (!uid) { log_error(_("Key generation canceled.\n")); release_parameter_list( para ); return; } r = xcalloc (1, sizeof *r + strlen (uid)); r->key = pUSERID; strcpy (r->u.value, uid); r->next = para; para = r; proc_parameter_file (ctrl, para, "[internal]", &outctrl, !!card_serialno); release_parameter_list (para); } /* Create and delete a dummy packet to start off a list of kbnodes. */ static void start_tree(KBNODE *tree) { PACKET *pkt; pkt=xmalloc_clear(sizeof(*pkt)); pkt->pkttype=PKT_NONE; *tree=new_kbnode(pkt); delete_kbnode(*tree); } /* Write the *protected* secret key to the file. */ static gpg_error_t card_write_key_to_backup_file (PKT_public_key *sk, const char *backup_dir) { gpg_error_t err = 0; int rc; char keyid_buffer[2 * 8 + 1]; char name_buffer[50]; char *fname; IOBUF fp; mode_t oldmask; PACKET *pkt = NULL; format_keyid (pk_keyid (sk), KF_LONG, keyid_buffer, sizeof (keyid_buffer)); snprintf (name_buffer, sizeof name_buffer, "sk_%s.gpg", keyid_buffer); fname = make_filename (backup_dir, name_buffer, NULL); /* Note that the umask call is not anymore needed because iobuf_create now takes care of it. However, it does not harm and thus we keep it. */ oldmask = umask (077); if (is_secured_filename (fname)) { fp = NULL; gpg_err_set_errno (EPERM); } else fp = iobuf_create (fname, 1); umask (oldmask); if (!fp) { err = gpg_error_from_syserror (); log_error (_("can't create backup file '%s': %s\n"), fname, strerror (errno) ); goto leave; } pkt = xcalloc (1, sizeof *pkt); pkt->pkttype = PKT_SECRET_KEY; pkt->pkt.secret_key = sk; rc = build_packet (fp, pkt); if (rc) { log_error ("build packet failed: %s\n", gpg_strerror (rc)); iobuf_cancel (fp); } else { char *fprbuf; iobuf_close (fp); iobuf_ioctl (NULL, IOBUF_IOCTL_INVALIDATE_CACHE, 0, (char*)fname); log_info (_("Note: backup of card key saved to '%s'\n"), fname); fprbuf = hexfingerprint (sk, NULL, 0); if (!fprbuf) { err = gpg_error_from_syserror (); goto leave; } write_status_text_and_buffer (STATUS_BACKUP_KEY_CREATED, fprbuf, fname, strlen (fname), 0); xfree (fprbuf); } leave: xfree (pkt); xfree (fname); return err; } /* Store key to card and make a backup file in OpenPGP format. */ static gpg_error_t card_store_key_with_backup (ctrl_t ctrl, PKT_public_key *sub_psk, const char *backup_dir) { PKT_public_key *sk; gnupg_isotime_t timestamp; gpg_error_t err; char *hexgrip; int rc; struct agent_card_info_s info; gcry_cipher_hd_t cipherhd = NULL; char *cache_nonce = NULL; void *kek = NULL; size_t keklen; sk = copy_public_key (NULL, sub_psk); if (!sk) return gpg_error_from_syserror (); epoch2isotime (timestamp, (time_t)sk->timestamp); err = hexkeygrip_from_pk (sk, &hexgrip); if (err) return err; memset(&info, 0, sizeof (info)); rc = agent_scd_getattr ("SERIALNO", &info); if (rc) return (gpg_error_t)rc; rc = agent_keytocard (hexgrip, 2, 1, info.serialno, timestamp); xfree (info.serialno); if (rc) { err = (gpg_error_t)rc; goto leave; } err = agent_keywrap_key (ctrl, 1, &kek, &keklen); if (err) { log_error ("error getting the KEK: %s\n", gpg_strerror (err)); goto leave; } err = gcry_cipher_open (&cipherhd, GCRY_CIPHER_AES128, GCRY_CIPHER_MODE_AESWRAP, 0); if (!err) err = gcry_cipher_setkey (cipherhd, kek, keklen); if (err) { log_error ("error setting up an encryption context: %s\n", gpg_strerror (err)); goto leave; } err = receive_seckey_from_agent (ctrl, cipherhd, 0, &cache_nonce, hexgrip, sk); if (err) { log_error ("error getting secret key from agent: %s\n", gpg_strerror (err)); goto leave; } err = card_write_key_to_backup_file (sk, backup_dir); if (err) log_error ("writing card key to backup file: %s\n", gpg_strerror (err)); else /* Remove secret key data in agent side. */ agent_scd_learn (NULL, 1); leave: xfree (cache_nonce); gcry_cipher_close (cipherhd); xfree (kek); xfree (hexgrip); free_public_key (sk); return err; } static void do_generate_keypair (ctrl_t ctrl, struct para_data_s *para, struct output_control_s *outctrl, int card) { gpg_error_t err; KBNODE pub_root = NULL; const char *s; PKT_public_key *pri_psk = NULL; PKT_public_key *sub_psk = NULL; struct revocation_key *revkey; int did_sub = 0; u32 timestamp; char *cache_nonce = NULL; int algo; u32 expire; const char *key_from_hexgrip = NULL; unsigned int keygen_flags; if (outctrl->dryrun) { log_info("dry-run mode - key generation skipped\n"); return; } if ( outctrl->use_files ) { if ( outctrl->pub.newfname ) { iobuf_close(outctrl->pub.stream); outctrl->pub.stream = NULL; if (outctrl->pub.fname) iobuf_ioctl (NULL, IOBUF_IOCTL_INVALIDATE_CACHE, 0, (char*)outctrl->pub.fname); xfree( outctrl->pub.fname ); outctrl->pub.fname = outctrl->pub.newfname; outctrl->pub.newfname = NULL; if (is_secured_filename (outctrl->pub.fname) ) { outctrl->pub.stream = NULL; gpg_err_set_errno (EPERM); } else outctrl->pub.stream = iobuf_create (outctrl->pub.fname, 0); if (!outctrl->pub.stream) { log_error(_("can't create '%s': %s\n"), outctrl->pub.newfname, strerror(errno) ); return; } if (opt.armor) { outctrl->pub.afx->what = 1; push_armor_filter (outctrl->pub.afx, outctrl->pub.stream); } } log_assert( outctrl->pub.stream ); if (opt.verbose) log_info (_("writing public key to '%s'\n"), outctrl->pub.fname ); } /* We create the packets as a tree of kbnodes. Because the structure we create is known in advance we simply generate a linked list. The first packet is a dummy packet which we flag as deleted. The very first packet must always be a KEY packet. */ start_tree (&pub_root); timestamp = get_parameter_u32 (para, pKEYCREATIONDATE); if (!timestamp) timestamp = make_timestamp (); /* Note that, depending on the backend (i.e. the used scdaemon version), the card key generation may update TIMESTAMP for each key. Thus we need to pass TIMESTAMP to all signing function to make sure that the binding signature is done using the timestamp of the corresponding (sub)key and not that of the primary key. An alternative implementation could tell the signing function the node of the subkey but that is more work than just to pass the current timestamp. */ algo = get_parameter_algo( para, pKEYTYPE, NULL ); expire = get_parameter_u32( para, pKEYEXPIRE ); key_from_hexgrip = get_parameter_value (para, pKEYGRIP); keygen_flags = outctrl->keygen_flags; if (get_parameter_uint (para, pVERSION) == 5) keygen_flags |= KEYGEN_FLAG_CREATE_V5_KEY; if (key_from_hexgrip) err = do_create_from_keygrip (ctrl, algo, key_from_hexgrip, pub_root, timestamp, expire, 0, keygen_flags); else if (!card) err = do_create (algo, get_parameter_uint( para, pKEYLENGTH ), get_parameter_value (para, pKEYCURVE), pub_root, timestamp, expire, 0, keygen_flags, get_parameter_passphrase (para), &cache_nonce, NULL); else err = gen_card_key (1, algo, 1, pub_root, ×tamp, expire, keygen_flags); /* Get the pointer to the generated public key packet. */ if (!err) { pri_psk = pub_root->next->pkt->pkt.public_key; log_assert (pri_psk); /* Make sure a few fields are correctly set up before going further. */ pri_psk->flags.primary = 1; keyid_from_pk (pri_psk, NULL); /* We don't use pk_keyid to get keyid, because it also asserts that main_keyid is set! */ keyid_copy (pri_psk->main_keyid, pri_psk->keyid); } if (!err && (revkey = get_parameter_revkey (para, pREVOKER))) err = write_direct_sig (ctrl, pub_root, pri_psk, revkey, timestamp, cache_nonce); if (!err && (s = get_parameter_value (para, pUSERID))) { - write_uid (pub_root, s ); - err = write_selfsigs (ctrl, pub_root, pri_psk, - get_parameter_uint (para, pKEYUSAGE), timestamp, - cache_nonce); + err = write_uid (pub_root, s ); + if (!err) + err = write_selfsigs (ctrl, pub_root, pri_psk, + get_parameter_uint (para, pKEYUSAGE), timestamp, + cache_nonce); } /* Write the auth key to the card before the encryption key. This is a partial workaround for a PGP bug (as of this writing, all versions including 8.1), that causes it to try and encrypt to the most recent subkey regardless of whether that subkey is actually an encryption type. In this case, the auth key is an RSA key so it succeeds. */ if (!err && card && get_parameter (para, pAUTHKEYTYPE)) { err = gen_card_key (3, get_parameter_algo( para, pAUTHKEYTYPE, NULL ), 0, pub_root, ×tamp, expire, keygen_flags); if (!err) err = write_keybinding (ctrl, pub_root, pri_psk, NULL, PUBKEY_USAGE_AUTH, timestamp, cache_nonce); } if (!err && get_parameter (para, pSUBKEYTYPE)) { int subkey_algo = get_parameter_algo (para, pSUBKEYTYPE, NULL); s = NULL; key_from_hexgrip = get_parameter_value (para, pSUBKEYGRIP); keygen_flags = outctrl->keygen_flags; if (get_parameter_uint (para, pSUBVERSION) == 5) keygen_flags |= KEYGEN_FLAG_CREATE_V5_KEY; if (key_from_hexgrip) err = do_create_from_keygrip (ctrl, subkey_algo, key_from_hexgrip, pub_root, timestamp, get_parameter_u32 (para, pSUBKEYEXPIRE), 1, keygen_flags); else if (!card || (s = get_parameter_value (para, pCARDBACKUPKEY))) { err = do_create (subkey_algo, get_parameter_uint (para, pSUBKEYLENGTH), get_parameter_value (para, pSUBKEYCURVE), pub_root, timestamp, get_parameter_u32 (para, pSUBKEYEXPIRE), 1, s? KEYGEN_FLAG_NO_PROTECTION : keygen_flags, get_parameter_passphrase (para), &cache_nonce, NULL); /* Get the pointer to the generated public subkey packet. */ if (!err) { kbnode_t node; for (node = pub_root; node; node = node->next) if (node->pkt->pkttype == PKT_PUBLIC_SUBKEY) sub_psk = node->pkt->pkt.public_key; log_assert (sub_psk); if (s) err = card_store_key_with_backup (ctrl, sub_psk, gnupg_homedir ()); } } else { err = gen_card_key (2, subkey_algo, 0, pub_root, ×tamp, expire, keygen_flags); } if (!err) err = write_keybinding (ctrl, pub_root, pri_psk, sub_psk, get_parameter_uint (para, pSUBKEYUSAGE), timestamp, cache_nonce); did_sub = 1; } if (!err && outctrl->use_files) /* Direct write to specified files. */ { err = write_keyblock (outctrl->pub.stream, pub_root); if (err) log_error ("can't write public key: %s\n", gpg_strerror (err)); } else if (!err) /* Write to the standard keyrings. */ { KEYDB_HANDLE pub_hd; pub_hd = keydb_new (); if (!pub_hd) err = gpg_error_from_syserror (); else { err = keydb_locate_writable (pub_hd); if (err) log_error (_("no writable public keyring found: %s\n"), gpg_strerror (err)); } if (!err && opt.verbose) { log_info (_("writing public key to '%s'\n"), keydb_get_resource_name (pub_hd)); } if (!err) { err = keydb_insert_keyblock (pub_hd, pub_root); if (err) log_error (_("error writing public keyring '%s': %s\n"), keydb_get_resource_name (pub_hd), gpg_strerror (err)); } keydb_release (pub_hd); if (!err) { int no_enc_rsa; PKT_public_key *pk; no_enc_rsa = ((get_parameter_algo (para, pKEYTYPE, NULL) == PUBKEY_ALGO_RSA) && get_parameter_uint (para, pKEYUSAGE) && !((get_parameter_uint (para, pKEYUSAGE) & PUBKEY_USAGE_ENC)) ); pk = find_kbnode (pub_root, PKT_PUBLIC_KEY)->pkt->pkt.public_key; keyid_from_pk (pk, pk->main_keyid); register_trusted_keyid (pk->main_keyid); update_ownertrust (ctrl, pk, ((get_ownertrust (ctrl, pk) & ~TRUST_MASK) | TRUST_ULTIMATE )); gen_standard_revoke (ctrl, pk, cache_nonce); /* Get rid of the first empty packet. */ commit_kbnode (&pub_root); if (!opt.batch) { tty_printf (_("public and secret key created and signed.\n") ); tty_printf ("\n"); merge_keys_and_selfsig (ctrl, pub_root); list_keyblock_direct (ctrl, pub_root, 0, 1, opt.fingerprint || opt.with_fingerprint, 1); } if (!opt.batch && (get_parameter_algo (para, pKEYTYPE, NULL) == PUBKEY_ALGO_DSA || no_enc_rsa ) && !get_parameter (para, pSUBKEYTYPE) ) { tty_printf(_("Note that this key cannot be used for " "encryption. You may want to use\n" "the command \"--edit-key\" to generate a " "subkey for this purpose.\n") ); } } } if (err) { if (opt.batch) log_error ("key generation failed: %s\n", gpg_strerror (err) ); else tty_printf (_("Key generation failed: %s\n"), gpg_strerror (err) ); write_status_error (card? "card_key_generate":"key_generate", err); print_status_key_not_created ( get_parameter_value (para, pHANDLE) ); } else { PKT_public_key *pk = find_kbnode (pub_root, PKT_PUBLIC_KEY)->pkt->pkt.public_key; print_status_key_created (did_sub? 'B':'P', pk, get_parameter_value (para, pHANDLE)); } release_kbnode (pub_root); xfree (cache_nonce); } static gpg_error_t parse_algo_usage_expire (ctrl_t ctrl, int for_subkey, const char *algostr, const char *usagestr, const char *expirestr, int *r_algo, unsigned int *r_usage, u32 *r_expire, unsigned int *r_nbits, const char **r_curve, int *r_version) { gpg_error_t err; int algo; unsigned int use, nbits; u32 expire; int wantuse; int version = 4; const char *curve = NULL; *r_curve = NULL; nbits = 0; /* Parse the algo string. */ if (algostr && *algostr == '&' && strlen (algostr) == 41) { /* Take algo from existing key. */ algo = check_keygrip (ctrl, algostr+1); /* FIXME: We need the curve name as well. */ return gpg_error (GPG_ERR_NOT_IMPLEMENTED); } err = parse_key_parameter_string (algostr, for_subkey? 1 : 0, usagestr? parse_usagestr (usagestr):0, &algo, &nbits, &use, &curve, &version, NULL, NULL, NULL, NULL, NULL); if (err) return err; /* Parse the usage string. */ if (!usagestr || !*usagestr || !ascii_strcasecmp (usagestr, "default") || !strcmp (usagestr, "-")) ; /* Keep usage from parse_key_parameter_string. */ else if ((wantuse = parse_usagestr (usagestr)) != -1) use = wantuse; else return gpg_error (GPG_ERR_INV_VALUE); /* Make sure a primary key has the CERT usage. */ if (!for_subkey) use |= PUBKEY_USAGE_CERT; /* Check that usage is possible. NB: We have the same check in * parse_key_parameter_string but need it here again in case the * separate usage value has been given. */ if (/**/((use & (PUBKEY_USAGE_SIG|PUBKEY_USAGE_AUTH|PUBKEY_USAGE_CERT)) && !pubkey_get_nsig (algo)) || ((use & PUBKEY_USAGE_ENC) && !pubkey_get_nenc (algo)) || (for_subkey && (use & PUBKEY_USAGE_CERT))) return gpg_error (GPG_ERR_WRONG_KEY_USAGE); /* Parse the expire string. */ expire = parse_expire_string (expirestr); if (expire == (u32)-1 ) return gpg_error (GPG_ERR_INV_VALUE); if (curve) *r_curve = curve; *r_algo = algo; *r_usage = use; *r_expire = expire; *r_nbits = nbits; *r_version = version; return 0; } /* Add a new subkey to an existing key. Returns 0 if a new key has been generated and put into the keyblocks. If any of ALGOSTR, USAGESTR, or EXPIRESTR is NULL interactive mode is used. */ gpg_error_t generate_subkeypair (ctrl_t ctrl, kbnode_t keyblock, const char *algostr, const char *usagestr, const char *expirestr) { gpg_error_t err = 0; int interactive; kbnode_t node; PKT_public_key *pri_psk = NULL; PKT_public_key *sub_psk = NULL; int algo; unsigned int use; u32 expire; unsigned int nbits = 0; const char *curve = NULL; u32 cur_time; char *key_from_hexgrip = NULL; char *hexgrip = NULL; char *serialno = NULL; char *cache_nonce = NULL; char *passwd_nonce = NULL; int keygen_flags = 0; interactive = (!algostr || !usagestr || !expirestr); /* Break out the primary key. */ node = find_kbnode (keyblock, PKT_PUBLIC_KEY); if (!node) { log_error ("Oops; primary key missing in keyblock!\n"); err = gpg_error (GPG_ERR_BUG); goto leave; } pri_psk = node->pkt->pkt.public_key; cur_time = make_timestamp (); if (pri_psk->timestamp > cur_time) { ulong d = pri_psk->timestamp - cur_time; log_info ( d==1 ? _("key has been created %lu second " "in future (time warp or clock problem)\n") : _("key has been created %lu seconds " "in future (time warp or clock problem)\n"), d ); if (!opt.ignore_time_conflict) { err = gpg_error (GPG_ERR_TIME_CONFLICT); goto leave; } } if (pri_psk->version < 4) { log_info (_("Note: creating subkeys for v3 keys " "is not OpenPGP compliant\n")); err = gpg_error (GPG_ERR_CONFLICT); goto leave; } err = hexkeygrip_from_pk (pri_psk, &hexgrip); if (err) goto leave; if (agent_get_keyinfo (NULL, hexgrip, &serialno, NULL)) { if (interactive) tty_printf (_("Secret parts of primary key are not available.\n")); else log_info ( _("Secret parts of primary key are not available.\n")); err = gpg_error (GPG_ERR_NO_SECKEY); goto leave; } if (serialno) { if (interactive) tty_printf (_("Secret parts of primary key are stored on-card.\n")); else log_info ( _("Secret parts of primary key are stored on-card.\n")); } if (interactive) { algo = ask_algo (ctrl, 1, NULL, &use, &key_from_hexgrip); log_assert (algo); if (key_from_hexgrip) nbits = 0; else if (algo == PUBKEY_ALGO_ECDSA || algo == PUBKEY_ALGO_EDDSA || algo == PUBKEY_ALGO_ECDH) curve = ask_curve (&algo, NULL, NULL); else nbits = ask_keysize (algo, 0); expire = ask_expire_interval (0, NULL); if (!cpr_enabled() && !cpr_get_answer_is_yes("keygen.sub.okay", _("Really create? (y/N) "))) { err = gpg_error (GPG_ERR_CANCELED); goto leave; } } else /* Unattended mode. */ { int version; err = parse_algo_usage_expire (ctrl, 1, algostr, usagestr, expirestr, &algo, &use, &expire, &nbits, &curve, &version); if (err) goto leave; if (version == 5) keygen_flags |= KEYGEN_FLAG_CREATE_V5_KEY; } /* Verify the passphrase now so that we get a cache item for the * primary key passphrase. The agent also returns a passphrase * nonce, which we can use to set the passphrase for the subkey to * that of the primary key. */ { char *desc = gpg_format_keydesc (ctrl, pri_psk, FORMAT_KEYDESC_NORMAL, 1); err = agent_passwd (ctrl, hexgrip, desc, 1 /*=verify*/, &cache_nonce, &passwd_nonce); xfree (desc); if (gpg_err_code (err) == GPG_ERR_NOT_IMPLEMENTED && gpg_err_source (err) == GPG_ERR_SOURCE_GPGAGENT) err = 0; /* Very likely that the key is on a card. */ if (err) goto leave; } /* Start creation. */ if (key_from_hexgrip) { err = do_create_from_keygrip (ctrl, algo, key_from_hexgrip, keyblock, cur_time, expire, 1, keygen_flags); } else { const char *passwd; /* If the pinentry loopback mode is not and we have a static passphrase (i.e. set with --passphrase{,-fd,-file} while in batch mode), we use that passphrase for the new subkey. */ if (opt.pinentry_mode != PINENTRY_MODE_LOOPBACK && have_static_passphrase ()) passwd = get_static_passphrase (); else passwd = NULL; err = do_create (algo, nbits, curve, keyblock, cur_time, expire, 1, keygen_flags, passwd, &cache_nonce, &passwd_nonce); } if (err) goto leave; /* Get the pointer to the generated public subkey packet. */ for (node = keyblock; node; node = node->next) if (node->pkt->pkttype == PKT_PUBLIC_SUBKEY) sub_psk = node->pkt->pkt.public_key; /* Write the binding signature. */ err = write_keybinding (ctrl, keyblock, pri_psk, sub_psk, use, cur_time, cache_nonce); if (err) goto leave; print_status_key_created ('S', sub_psk, NULL); leave: xfree (key_from_hexgrip); xfree (hexgrip); xfree (serialno); xfree (cache_nonce); xfree (passwd_nonce); if (err) log_error (_("Key generation failed: %s\n"), gpg_strerror (err) ); return err; } #ifdef ENABLE_CARD_SUPPORT /* Generate a subkey on a card. */ gpg_error_t generate_card_subkeypair (ctrl_t ctrl, kbnode_t pub_keyblock, int keyno, const char *serialno) { gpg_error_t err = 0; kbnode_t node; PKT_public_key *pri_pk = NULL; unsigned int use; u32 expire; u32 cur_time; struct para_data_s *para = NULL; PKT_public_key *sub_pk = NULL; int algo; struct agent_card_info_s info; int keygen_flags = 0; /* FIXME!!! */ log_assert (keyno >= 1 && keyno <= 3); memset (&info, 0, sizeof (info)); err = agent_scd_getattr ("KEY-ATTR", &info); if (err) { log_error (_("error getting current key info: %s\n"), gpg_strerror (err)); return err; } algo = info.key_attr[keyno-1].algo; para = xtrycalloc (1, sizeof *para + strlen (serialno) ); if (!para) { err = gpg_error_from_syserror (); goto leave; } para->key = pSERIALNO; strcpy (para->u.value, serialno); /* Break out the primary secret key */ node = find_kbnode (pub_keyblock, PKT_PUBLIC_KEY); if (!node) { log_error ("Oops; public key lost!\n"); err = gpg_error (GPG_ERR_INTERNAL); goto leave; } pri_pk = node->pkt->pkt.public_key; cur_time = make_timestamp(); if (pri_pk->timestamp > cur_time) { ulong d = pri_pk->timestamp - cur_time; log_info (d==1 ? _("key has been created %lu second " "in future (time warp or clock problem)\n") : _("key has been created %lu seconds " "in future (time warp or clock problem)\n"), d ); if (!opt.ignore_time_conflict) { err = gpg_error (GPG_ERR_TIME_CONFLICT); goto leave; } } if (pri_pk->version < 4) { log_info (_("Note: creating subkeys for v3 keys " "is not OpenPGP compliant\n")); err = gpg_error (GPG_ERR_NOT_SUPPORTED); goto leave; } expire = ask_expire_interval (0, NULL); if (keyno == 1) use = PUBKEY_USAGE_SIG; else if (keyno == 2) use = PUBKEY_USAGE_ENC; else use = PUBKEY_USAGE_AUTH; if (!cpr_enabled() && !cpr_get_answer_is_yes("keygen.cardsub.okay", _("Really create? (y/N) "))) { err = gpg_error (GPG_ERR_CANCELED); goto leave; } /* Note, that depending on the backend, the card key generation may update CUR_TIME. */ err = gen_card_key (keyno, algo, 0, pub_keyblock, &cur_time, expire, keygen_flags); /* Get the pointer to the generated public subkey packet. */ if (!err) { for (node = pub_keyblock; node; node = node->next) if (node->pkt->pkttype == PKT_PUBLIC_SUBKEY) sub_pk = node->pkt->pkt.public_key; log_assert (sub_pk); err = write_keybinding (ctrl, pub_keyblock, pri_pk, sub_pk, use, cur_time, NULL); } leave: if (err) log_error (_("Key generation failed: %s\n"), gpg_strerror (err) ); else print_status_key_created ('S', sub_pk, NULL); release_parameter_list (para); return err; } #endif /* !ENABLE_CARD_SUPPORT */ /* * Write a keyblock to an output stream */ static int write_keyblock( IOBUF out, KBNODE node ) { for( ; node ; node = node->next ) { if(!is_deleted_kbnode(node)) { int rc = build_packet( out, node->pkt ); if( rc ) { log_error("build_packet(%d) failed: %s\n", node->pkt->pkttype, gpg_strerror (rc) ); return rc; } } } return 0; } /* Note that timestamp is an in/out arg. * FIXME: Does not yet support v5 keys. */ static gpg_error_t gen_card_key (int keyno, int algo, int is_primary, kbnode_t pub_root, u32 *timestamp, u32 expireval, int keygen_flags) { #ifdef ENABLE_CARD_SUPPORT gpg_error_t err; PACKET *pkt; PKT_public_key *pk; char keyid[10]; unsigned char *public; gcry_sexp_t s_key; snprintf (keyid, DIM(keyid), "OPENPGP.%d", keyno); pk = xtrycalloc (1, sizeof *pk ); if (!pk) return gpg_error_from_syserror (); pkt = xtrycalloc (1, sizeof *pkt); if (!pkt) { xfree (pk); return gpg_error_from_syserror (); } /* Note: SCD knows the serialnumber, thus there is no point in passing it. */ err = agent_scd_genkey (keyno, 1, timestamp); /* The code below is not used because we force creation of * the a card key (3rd arg). * if (gpg_err_code (rc) == GPG_ERR_EEXIST) * { * tty_printf ("\n"); * log_error ("WARNING: key does already exists!\n"); * tty_printf ("\n"); * if ( cpr_get_answer_is_yes( "keygen.card.replace_key", * _("Replace existing key? "))) * rc = agent_scd_genkey (keyno, 1, timestamp); * } */ if (err) { log_error ("key generation failed: %s\n", gpg_strerror (err)); xfree (pkt); xfree (pk); return err; } /* Send the READKEY command so that the agent creates a shadow key for card key. We need to do that now so that we are able to create the self-signatures. */ err = agent_readkey (NULL, 1, keyid, &public); if (err) return err; err = gcry_sexp_sscan (&s_key, NULL, public, gcry_sexp_canon_len (public, 0, NULL, NULL)); xfree (public); if (err) return err; if (algo == PUBKEY_ALGO_RSA) err = key_from_sexp (pk->pkey, s_key, "public-key", "ne"); else if (algo == PUBKEY_ALGO_ECDSA || algo == PUBKEY_ALGO_EDDSA || algo == PUBKEY_ALGO_ECDH ) err = ecckey_from_sexp (pk->pkey, s_key, algo); else err = gpg_error (GPG_ERR_PUBKEY_ALGO); gcry_sexp_release (s_key); if (err) { log_error ("key_from_sexp failed: %s\n", gpg_strerror (err) ); free_public_key (pk); return err; } pk->timestamp = *timestamp; pk->version = (keygen_flags & KEYGEN_FLAG_CREATE_V5_KEY)? 5 : 4; if (expireval) pk->expiredate = pk->timestamp + expireval; pk->pubkey_algo = algo; pkt->pkttype = is_primary ? PKT_PUBLIC_KEY : PKT_PUBLIC_SUBKEY; pkt->pkt.public_key = pk; add_kbnode (pub_root, new_kbnode (pkt)); return 0; #else (void)keyno; (void)is_primary; (void)pub_root; (void)timestamp; (void)expireval; return gpg_error (GPG_ERR_NOT_SUPPORTED); #endif /*!ENABLE_CARD_SUPPORT*/ } diff --git a/g10/packet.h b/g10/packet.h index d787bde9e..479f25044 100644 --- a/g10/packet.h +++ b/g10/packet.h @@ -1,952 +1,957 @@ /* packet.h - OpenPGP packet definitions * Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, * 2007 Free Software Foundation, Inc. * Copyright (C) 2015 g10 Code GmbH * * This file is part of GnuPG. * * GnuPG is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * GnuPG is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #ifndef G10_PACKET_H #define G10_PACKET_H #include "../common/types.h" #include "../common/iobuf.h" #include "../common/strlist.h" #include "dek.h" #include "filter.h" #include "../common/openpgpdefs.h" #include "../common/userids.h" #include "../common/util.h" #define DEBUG_PARSE_PACKET 1 +/* Maximum length of packets to avoid excessive memory allocation. */ +#define MAX_KEY_PACKET_LENGTH (256 * 1024) +#define MAX_UID_PACKET_LENGTH ( 2 * 1024) +#define MAX_COMMENT_PACKET_LENGTH ( 64 * 1024) +#define MAX_ATTR_PACKET_LENGTH ( 16 * 1024*1024) /* Constants to allocate static MPI arrays. */ #define PUBKEY_MAX_NPKEY OPENPGP_MAX_NPKEY #define PUBKEY_MAX_NSKEY OPENPGP_MAX_NSKEY #define PUBKEY_MAX_NSIG OPENPGP_MAX_NSIG #define PUBKEY_MAX_NENC OPENPGP_MAX_NENC /* Usage flags */ #define PUBKEY_USAGE_SIG GCRY_PK_USAGE_SIGN /* Good for signatures. */ #define PUBKEY_USAGE_ENC GCRY_PK_USAGE_ENCR /* Good for encryption. */ #define PUBKEY_USAGE_CERT GCRY_PK_USAGE_CERT /* Also good to certify keys.*/ #define PUBKEY_USAGE_AUTH GCRY_PK_USAGE_AUTH /* Good for authentication. */ #define PUBKEY_USAGE_UNKNOWN GCRY_PK_USAGE_UNKN /* Unknown usage flag. */ #define PUBKEY_USAGE_NONE 256 /* No usage given. */ #if (GCRY_PK_USAGE_SIGN | GCRY_PK_USAGE_ENCR | GCRY_PK_USAGE_CERT \ | GCRY_PK_USAGE_AUTH | GCRY_PK_USAGE_UNKN) >= 256 # error Please choose another value for PUBKEY_USAGE_NONE #endif /* Helper macros. */ #define is_RSA(a) ((a)==PUBKEY_ALGO_RSA || (a)==PUBKEY_ALGO_RSA_E \ || (a)==PUBKEY_ALGO_RSA_S ) #define is_ELGAMAL(a) ((a)==PUBKEY_ALGO_ELGAMAL_E) #define is_DSA(a) ((a)==PUBKEY_ALGO_DSA) /* A pointer to the packet object. */ typedef struct packet_struct PACKET; /* PKT_GPG_CONTROL types */ typedef enum { CTRLPKT_CLEARSIGN_START = 1, CTRLPKT_PIPEMODE = 2, CTRLPKT_PLAINTEXT_MARK =3 } ctrlpkttype_t; typedef enum { PREFTYPE_NONE = 0, PREFTYPE_SYM = 1, PREFTYPE_HASH = 2, PREFTYPE_ZIP = 3, PREFTYPE_AEAD = 4 } preftype_t; typedef struct { byte type; byte value; } prefitem_t; /* A string-to-key specifier as defined in RFC 4880, Section 3.7. */ typedef struct { int mode; /* Must be an integer due to the GNU modes 1001 et al. */ byte hash_algo; byte salt[8]; /* The *coded* (i.e., the serialized version) iteration count. */ u32 count; } STRING2KEY; /* A symmetric-key encrypted session key packet as defined in RFC 4880, Section 5.3. All fields are serialized. */ typedef struct { /* We support version 4 (rfc4880) and 5 (rfc4880bis). */ byte version; /* The cipher algorithm used to encrypt the session key. Note that * this may be different from the algorithm that is used to encrypt * bulk data. */ byte cipher_algo; /* The AEAD algorithm or 0 for CFB encryption. */ byte aead_algo; /* The string-to-key specifier. */ STRING2KEY s2k; /* The length of SESKEY in bytes or 0 if this packet does not encrypt a session key. (In the latter case, the results of the S2K function on the password is the session key. See RFC 4880, Section 5.3.) */ byte seskeylen; /* The session key as encrypted by the S2K specifier. For AEAD this * includes the nonce and the authentication tag. */ byte seskey[1]; } PKT_symkey_enc; /* A public-key encrypted session key packet as defined in RFC 4880, Section 5.1. All fields are serialized. */ typedef struct { /* The 64-bit keyid. */ u32 keyid[2]; /* The packet's version. Currently, only version 3 is defined. */ byte version; /* The algorithm used for the public key encryption scheme. */ byte pubkey_algo; /* Whether to hide the key id. This value is not directly serialized. */ byte throw_keyid; /* The session key. */ gcry_mpi_t data[PUBKEY_MAX_NENC]; } PKT_pubkey_enc; /* An object to build a list of public-key encrypted session key. */ struct pubkey_enc_list { struct pubkey_enc_list *next; u32 keyid[2]; int pubkey_algo; int result; gcry_mpi_t data[PUBKEY_MAX_NENC]; }; /* A one-pass signature packet as defined in RFC 4880, Section 5.4. All fields are serialized. */ typedef struct { u32 keyid[2]; /* The 64-bit keyid */ /* The signature's classification (RFC 4880, Section 5.2.1). */ byte sig_class; byte digest_algo; /* algorithm used for digest */ byte pubkey_algo; /* algorithm used for public key scheme */ /* A message can be signed by multiple keys. In this case, there are n one-pass signature packets before the message to sign and n signatures packets after the message. It is conceivable that someone wants to not only sign the message, but all of the signatures. Now we need to distinguish between signing the message and signing the message plus the surrounding signatures. This is the point of this flag. If set, it means: I sign all of the data starting at the next packet. */ byte last; } PKT_onepass_sig; /* A v4 OpenPGP signature has a hashed and unhashed area containing co-called signature subpackets (RFC 4880, Section 5.2.3). These areas are described by this data structure. Use enum_sig_subpkt to parse this area. */ typedef struct { size_t size; /* allocated */ size_t len; /* used (serialized) */ byte data[1]; /* the serialized subpackes (serialized) */ } subpktarea_t; /* The in-memory representation of a designated revoker signature subpacket (RFC 4880, Section 5.2.3.15). */ struct revocation_key { /* A bit field. 0x80 must be set. 0x40 means this information is sensitive (and should not be uploaded to a keyserver by default). */ byte class; /* The public-key algorithm ID. */ byte algid; /* The length of the fingerprint. */ byte fprlen; /* The fingerprint of the authorized key. */ byte fpr[MAX_FINGERPRINT_LEN]; }; /* Object to keep information about a PKA DNS record. */ typedef struct { int valid; /* An actual PKA record exists for EMAIL. */ int checked; /* Set to true if the FPR has been checked against the actual key. */ char *uri; /* Malloced string with the URI. NULL if the URI is not available.*/ unsigned char fpr[20]; /* The fingerprint as stored in the PKA RR. */ char email[1];/* The email address from the notation data. */ } pka_info_t; /* A signature packet (RFC 4880, Section 5.2). Only a subset of these fields are directly serialized (these are marked as such); the rest are read from the subpackets, which are not synthesized when serializing this data structure (i.e., when using build_packet()). Instead, the subpackets must be created by hand. */ typedef struct { struct { unsigned checked:1; /* Signature has been checked. */ unsigned valid:1; /* Signature is good (if checked is set). */ unsigned chosen_selfsig:1; /* A selfsig that is the chosen one. */ unsigned unknown_critical:1; unsigned exportable:1; unsigned revocable:1; unsigned policy_url:1; /* At least one policy URL is present */ unsigned notation:1; /* At least one notation is present */ unsigned pref_ks:1; /* At least one preferred keyserver is present */ unsigned expired:1; unsigned pka_tried:1; /* Set if we tried to retrieve the PKA record. */ } flags; /* The key that allegedly generated this signature. (Directly serialized in v3 sigs; for v4 sigs, this must be explicitly added as an issuer subpacket (5.2.3.5.) */ u32 keyid[2]; /* When the signature was made (seconds since the Epoch). (Directly serialized in v3 sigs; for v4 sigs, this must be explicitly added as a signature creation time subpacket (5.2.3.4).) */ u32 timestamp; u32 expiredate; /* Expires at this date or 0 if not at all. */ /* The serialization format used / to use. If 0, then defaults to version 3. (Serialized.) */ byte version; /* The signature type. (See RFC 4880, Section 5.2.1.) */ byte sig_class; /* Algorithm used for public key scheme (e.g., PUBKEY_ALGO_RSA). (Serialized.) */ byte pubkey_algo; /* Algorithm used for digest (e.g., DIGEST_ALGO_SHA1). (Serialized.) */ byte digest_algo; byte trust_depth; byte trust_value; const byte *trust_regexp; struct revocation_key *revkey; int numrevkeys; int help_counter; /* Used internally bu some functions. */ pka_info_t *pka_info; /* Malloced PKA data or NULL if not available. See also flags.pka_tried. */ char *signers_uid; /* Malloced value of the SIGNERS_UID * subpacket or NULL. This string has * already been sanitized. */ subpktarea_t *hashed; /* All subpackets with hashed data (v4 only). */ subpktarea_t *unhashed; /* Ditto for unhashed data. */ /* First 2 bytes of the digest. (Serialized. Note: this is not automatically filled in when serializing a signature!) */ byte digest_start[2]; /* The signature. (Serialized.) */ gcry_mpi_t data[PUBKEY_MAX_NSIG]; /* The message digest and its length (in bytes). Note the maximum digest length is 512 bits (64 bytes). If DIGEST_LEN is 0, then the digest's value has not been saved here. */ byte digest[512 / 8]; int digest_len; } PKT_signature; #define ATTRIB_IMAGE 1 /* This is the cooked form of attributes. */ struct user_attribute { byte type; const byte *data; u32 len; }; /* A user id (RFC 4880, Section 5.11) or a user attribute packet (RFC 4880, Section 5.12). Only a subset of these fields are directly serialized (these are marked as such); the rest are read from the self-signatures in merge_keys_and_selfsig()). */ typedef struct { int ref; /* reference counter */ /* The length of NAME. */ int len; struct user_attribute *attribs; int numattribs; /* If this is not NULL, the packet is a user attribute rather than a user id (See RFC 4880 5.12). (Serialized.) */ byte *attrib_data; /* The length of ATTRIB_DATA. */ unsigned long attrib_len; byte *namehash; int help_key_usage; u32 help_key_expire; int help_full_count; int help_marginal_count; u32 expiredate; /* expires at this date or 0 if not at all */ prefitem_t *prefs; /* list of preferences (may be NULL)*/ u32 created; /* according to the self-signature */ u32 keyupdate; /* From the ring trust packet. */ char *updateurl; /* NULL or the URL of the last update origin. */ byte keyorg; /* From the ring trust packet. */ byte selfsigversion; struct { unsigned int mdc:1; unsigned int aead:1; unsigned int ks_modify:1; unsigned int compacted:1; unsigned int primary:2; /* 2 if set via the primary flag, 1 if calculated */ unsigned int revoked:1; unsigned int expired:1; } flags; char *mbox; /* NULL or the result of mailbox_from_userid. */ /* The text contained in the user id packet, which is normally the * name and email address of the key holder (See RFC 4880 5.11). * (Serialized.). For convenience an extra Nul is always appended. */ char name[1]; } PKT_user_id; struct revoke_info { /* revoked at this date */ u32 date; /* the keyid of the revoking key (selfsig or designated revoker) */ u32 keyid[2]; /* the algo of the revoking key */ byte algo; }; /* Information pertaining to secret keys. */ struct seckey_info { int is_protected:1; /* The secret info is protected and must */ /* be decrypted before use, the protected */ /* MPIs are simply (void*) pointers to memory */ /* and should never be passed to a mpi_xxx() */ int sha1chk:1; /* SHA1 is used instead of a 16 bit checksum */ u16 csum; /* Checksum for old protection modes. */ byte algo; /* Cipher used to protect the secret information. */ STRING2KEY s2k; /* S2K parameter. */ byte ivlen; /* Used length of the IV. */ byte iv[16]; /* Initialization vector for CFB mode. */ }; /**************** * The in-memory representation of a public key (RFC 4880, Section * 5.5). Note: this structure contains significantly more information * than is contained in an OpenPGP public key packet. This * information is derived from the self-signed signatures (by * merge_keys_and_selfsig()) and is ignored when serializing the * packet. The fields that are actually written out when serializing * this packet are marked as accordingly. * * We assume that secret keys have the same number of parameters as * the public key and that the public parameters are the first items * in the PKEY array. Thus NPKEY is always less than NSKEY and it is * possible to compare the secret and public keys by comparing the * first NPKEY elements of the PKEY array. Note that since GnuPG 2.1 * we don't use secret keys anymore directly because they are managed * by gpg-agent. However for parsing OpenPGP key files we need a way * to temporary store those secret keys. We do this by putting them * into the public key structure and extending the PKEY field to NSKEY * elements; the extra secret key information are stored in the * SECKEY_INFO field. */ typedef struct { /* When the key was created. (Serialized.) */ u32 timestamp; u32 expiredate; /* expires at this date or 0 if not at all */ u32 max_expiredate; /* must not expire past this date */ struct revoke_info revoked; /* An OpenPGP packet consists of a header and a body. This is the size of the header. If this is 0, an appropriate size is automatically chosen based on the size of the body. (Serialized.) */ byte hdrbytes; /* The serialization format. If 0, the default version (4) is used when serializing. (Serialized.) */ byte version; byte selfsigversion; /* highest version of all of the self-sigs */ /* The public key algorithm. (Serialized.) */ byte pubkey_algo; byte pubkey_usage; /* for now only used to pass it to getkey() */ byte req_usage; /* hack to pass a request to getkey() */ byte fprlen; /* 0 or length of FPR. */ u32 has_expired; /* set to the expiration date if expired */ /* keyid of the primary key. Never access this value directly. Instead, use pk_main_keyid(). */ u32 main_keyid[2]; /* keyid of this key. Never access this value directly! Instead, use pk_keyid(). */ u32 keyid[2]; /* Fingerprint of the key. Only valid if FPRLEN is not 0. */ byte fpr[MAX_FINGERPRINT_LEN]; prefitem_t *prefs; /* list of preferences (may be NULL) */ struct { unsigned int mdc:1; /* MDC feature set. */ unsigned int aead:1; /* AEAD feature set. */ unsigned int disabled_valid:1;/* The next flag is valid. */ unsigned int disabled:1; /* The key has been disabled. */ unsigned int primary:1; /* This is a primary key. */ unsigned int revoked:2; /* Key has been revoked. 1 = revoked by the owner 2 = revoked by designated revoker. */ unsigned int maybe_revoked:1; /* A designated revocation is present, but without the key to check it. */ unsigned int valid:1; /* Key (especially subkey) is valid. */ unsigned int dont_cache:1; /* Do not cache this key. */ unsigned int backsig:2; /* 0=none, 1=bad, 2=good. */ unsigned int serialno_valid:1;/* SERIALNO below is valid. */ unsigned int exact:1; /* Found via exact (!) search. */ } flags; PKT_user_id *user_id; /* If != NULL: found by that uid. */ struct revocation_key *revkey; int numrevkeys; u32 trust_timestamp; byte trust_depth; byte trust_value; byte keyorg; /* From the ring trust packet. */ u32 keyupdate; /* From the ring trust packet. */ char *updateurl; /* NULL or the URL of the last update origin. */ const byte *trust_regexp; char *serialno; /* Malloced hex string or NULL if it is likely not on a card. See also flags.serialno_valid. */ /* If not NULL this malloced structure describes a secret key. (Serialized.) */ struct seckey_info *seckey_info; /* The public key. Contains pubkey_get_npkey (pubkey_algo) + pubkey_get_nskey (pubkey_algo) MPIs. (If pubkey_get_npkey returns 0, then the algorithm is not understood and the PKEY contains a single opaque MPI.) (Serialized.) */ gcry_mpi_t pkey[PUBKEY_MAX_NSKEY]; /* Right, NSKEY elements. */ } PKT_public_key; /* Evaluates as true if the pk is disabled, and false if it isn't. If there is no disable value cached, fill one in. */ #define pk_is_disabled(a) \ (((a)->flags.disabled_valid)? \ ((a)->flags.disabled):(cache_disabled_value(ctrl,(a)))) typedef struct { int len; /* length of data */ char data[1]; } PKT_comment; /* A compression packet (RFC 4880, Section 5.6). */ typedef struct { /* Not used. */ u32 len; /* Whether the serialized version of the packet used / should use the new format. */ byte new_ctb; /* The compression algorithm. */ byte algorithm; /* An iobuf holding the data to be decompressed. (This is not used for compression!) */ iobuf_t buf; } PKT_compressed; /* A symmetrically encrypted data packet (RFC 4880, Section 5.7) or a symmetrically encrypted integrity protected data packet (Section 5.13) */ typedef struct { /* Remaining length of encrypted data. */ u32 len; /* When encrypting in CFB mode, the first block size bytes of data * are random data and the following 2 bytes are copies of the last * two bytes of the random data (RFC 4880, Section 5.7). This * provides a simple check that the key is correct. EXTRALEN is the * size of this extra data or, in AEAD mode, the length of the * headers and the tags. This is used by build_packet when writing * out the packet's header. */ int extralen; /* Whether the serialized version of the packet used / should use the new format. */ byte new_ctb; /* Whether the packet has an indeterminate length (old format) or was encoded using partial body length headers (new format). Note: this is ignored when encrypting. */ byte is_partial; /* If 0, MDC is disabled. Otherwise, the MDC method that was used (only DIGEST_ALGO_SHA1 has ever been defined). */ byte mdc_method; /* If 0, AEAD is not used. Otherwise, the used AEAD algorithm. * MDC_METHOD (above) shall be zero if AEAD is used. */ byte aead_algo; /* The cipher algo for/from the AEAD packet. 0 for other encryption * packets. */ byte cipher_algo; /* The chunk byte from the AEAD packet. */ byte chunkbyte; /* An iobuf holding the data to be decrypted. (This is not used for encryption!) */ iobuf_t buf; } PKT_encrypted; typedef struct { byte hash[20]; } PKT_mdc; /* Subtypes for the ring trust packet. */ #define RING_TRUST_SIG 0 /* The classical signature cache. */ #define RING_TRUST_KEY 1 /* A KEYORG on a primary key. */ #define RING_TRUST_UID 2 /* A KEYORG on a user id. */ /* The local only ring trust packet which OpenPGP declares as * implementation defined. GnuPG uses this to cache signature * verification status and since 2.1.18 also to convey information * about the origin of a key. Note that this packet is not part * struct packet_struct because we use it only local in the packet * parser and builder. */ typedef struct { unsigned int trustval; unsigned int sigcache; unsigned char subtype; /* The subtype of this ring trust packet. */ unsigned char keyorg; /* The origin of the key (KEYORG_*). */ u32 keyupdate; /* The wall time the key was last updated. */ char *url; /* NULL or the URL of the source. */ } PKT_ring_trust; /* A plaintext packet (see RFC 4880, 5.9). */ typedef struct { /* The length of data in BUF or 0 if unknown. */ u32 len; /* A buffer containing the data stored in the packet's body. */ iobuf_t buf; byte new_ctb; byte is_partial; /* partial length encoded */ /* The data's formatting. This is either 'b', 't', 'u', 'l' or '1' (however, the last two are deprecated). */ int mode; u32 timestamp; /* The name of the file. This can be at most 255 characters long, since namelen is just a byte in the serialized format. */ int namelen; char name[1]; } PKT_plaintext; typedef struct { int control; size_t datalen; char data[1]; } PKT_gpg_control; /* combine all packets into a union */ struct packet_struct { pkttype_t pkttype; union { void *generic; PKT_symkey_enc *symkey_enc; /* PKT_SYMKEY_ENC */ PKT_pubkey_enc *pubkey_enc; /* PKT_PUBKEY_ENC */ PKT_onepass_sig *onepass_sig; /* PKT_ONEPASS_SIG */ PKT_signature *signature; /* PKT_SIGNATURE */ PKT_public_key *public_key; /* PKT_PUBLIC_[SUB]KEY */ PKT_public_key *secret_key; /* PKT_SECRET_[SUB]KEY */ PKT_comment *comment; /* PKT_COMMENT */ PKT_user_id *user_id; /* PKT_USER_ID */ PKT_compressed *compressed; /* PKT_COMPRESSED */ PKT_encrypted *encrypted; /* PKT_ENCRYPTED[_MDC] */ PKT_mdc *mdc; /* PKT_MDC */ PKT_plaintext *plaintext; /* PKT_PLAINTEXT */ PKT_gpg_control *gpg_control; /* PKT_GPG_CONTROL */ } pkt; }; #define init_packet(a) do { (a)->pkttype = 0; \ (a)->pkt.generic = NULL; \ } while(0) /* A notation. See RFC 4880, Section 5.2.3.16. */ struct notation { /* The notation's name. */ char *name; /* If the notation is human readable, then the value is stored here as a NUL-terminated string. If it is not human readable a human readable approximation of the binary value _may_ be stored here. */ char *value; /* Sometimes we want to %-expand the value. In these cases, we save that transformed value here. */ char *altvalue; /* If the notation is not human readable, then the value is stored here. */ unsigned char *bdat; /* The amount of data stored in BDAT. Note: if this is 0 and BDAT is NULL, this does not necessarily mean that the value is human readable. It could be that we have a 0-length value. To determine whether the notation is human readable, always check if VALUE is not NULL. This works, because if a human-readable value has a length of 0, we will still allocate space for the NUL byte. */ size_t blen; struct { /* The notation is critical. */ unsigned int critical:1; /* The notation is human readable. */ unsigned int human:1; /* The notation should be deleted. */ unsigned int ignore:1; } flags; /* A field to facilitate creating a list of notations. */ struct notation *next; }; typedef struct notation *notation_t; /*-- mainproc.c --*/ void reset_literals_seen(void); int proc_packets (ctrl_t ctrl, void *ctx, iobuf_t a ); int proc_signature_packets (ctrl_t ctrl, void *ctx, iobuf_t a, strlist_t signedfiles, const char *sigfile ); int proc_signature_packets_by_fd (ctrl_t ctrl, void *anchor, IOBUF a, int signed_data_fd ); int proc_encryption_packets (ctrl_t ctrl, void *ctx, iobuf_t a); int list_packets( iobuf_t a ); const byte *issuer_fpr_raw (PKT_signature *sig, size_t *r_len); char *issuer_fpr_string (PKT_signature *sig); /*-- parse-packet.c --*/ void register_known_notation (const char *string); /* Sets the packet list mode to MODE (i.e., whether we are dumping a packet or not). Returns the current mode. This allows for temporarily suspending dumping by doing the following: int saved_mode = set_packet_list_mode (0); ... set_packet_list_mode (saved_mode); */ int set_packet_list_mode( int mode ); /* A context used with parse_packet. */ struct parse_packet_ctx_s { iobuf_t inp; /* The input stream with the packets. */ struct packet_struct last_pkt; /* The last parsed packet. */ int free_last_pkt; /* Indicates that LAST_PKT must be freed. */ int skip_meta; /* Skip ring trust packets. */ unsigned int n_parsed_packets; /* Number of parsed packets. */ }; typedef struct parse_packet_ctx_s *parse_packet_ctx_t; #define init_parse_packet(a,i) do { \ (a)->inp = (i); \ (a)->last_pkt.pkttype = 0; \ (a)->last_pkt.pkt.generic= NULL;\ (a)->free_last_pkt = 0; \ (a)->skip_meta = 0; \ (a)->n_parsed_packets = 0; \ } while (0) #define deinit_parse_packet(a) do { \ if ((a)->free_last_pkt) \ free_packet (NULL, (a)); \ } while (0) #if DEBUG_PARSE_PACKET /* There are debug functions and should not be used directly. */ int dbg_search_packet (parse_packet_ctx_t ctx, PACKET *pkt, off_t *retpos, int with_uid, const char* file, int lineno ); int dbg_parse_packet (parse_packet_ctx_t ctx, PACKET *ret_pkt, const char *file, int lineno); int dbg_copy_all_packets( iobuf_t inp, iobuf_t out, const char* file, int lineno ); int dbg_copy_some_packets( iobuf_t inp, iobuf_t out, off_t stopoff, const char* file, int lineno ); int dbg_skip_some_packets( iobuf_t inp, unsigned n, const char* file, int lineno ); #define search_packet( a,b,c,d ) \ dbg_search_packet( (a), (b), (c), (d), __FILE__, __LINE__ ) #define parse_packet( a, b ) \ dbg_parse_packet( (a), (b), __FILE__, __LINE__ ) #define copy_all_packets( a,b ) \ dbg_copy_all_packets((a),(b), __FILE__, __LINE__ ) #define copy_some_packets( a,b,c ) \ dbg_copy_some_packets((a),(b),(c), __FILE__, __LINE__ ) #define skip_some_packets( a,b ) \ dbg_skip_some_packets((a),(b), __FILE__, __LINE__ ) #else /* Return the next valid OpenPGP packet in *PKT. (This function will * skip any packets whose type is 0.) CTX must have been setup prior to * calling this function. * * Returns 0 on success, -1 if EOF is reached, and an error code * otherwise. In the case of an error, the packet in *PKT may be * partially constructed. As such, even if there is an error, it is * necessary to free *PKT to avoid a resource leak. To detect what * has been allocated, clear *PKT before calling this function. */ int parse_packet (parse_packet_ctx_t ctx, PACKET *pkt); /* Return the first OpenPGP packet in *PKT that contains a key (either * a public subkey, a public key, a secret subkey or a secret key) or, * if WITH_UID is set, a user id. * * Saves the position in the pipeline of the start of the returned * packet (according to iobuf_tell) in RETPOS, if it is not NULL. * * The return semantics are the same as parse_packet. */ int search_packet (parse_packet_ctx_t ctx, PACKET *pkt, off_t *retpos, int with_uid); /* Copy all packets (except invalid packets, i.e., those with a type * of 0) from INP to OUT until either an error occurs or EOF is * reached. * * Returns -1 when end of file is reached or an error code, if an * error occurred. (Note: this function never returns 0, because it * effectively keeps going until it gets an EOF.) */ int copy_all_packets (iobuf_t inp, iobuf_t out ); /* Like copy_all_packets, but stops at the first packet that starts at * or after STOPOFF (as indicated by iobuf_tell). * * Example: if STOPOFF is 100, the first packet in INP goes from * 0 to 110 and the next packet starts at offset 111, then the packet * starting at offset 0 will be completely processed (even though it * extends beyond STOPOFF) and the packet starting at offset 111 will * not be processed at all. */ int copy_some_packets (iobuf_t inp, iobuf_t out, off_t stopoff); /* Skips the next N packets from INP. * * If parsing a packet returns an error code, then the function stops * immediately and returns the error code. Note: in the case of an * error, this function does not indicate how many packets were * successfully processed. */ int skip_some_packets (iobuf_t inp, unsigned int n); #endif /* Parse a signature packet and store it in *SIG. The signature packet is read from INP. The OpenPGP header (the tag and the packet's length) have already been read; the next byte read from INP should be the first byte of the packet's contents. The packet's type (as extract from the tag) must be passed as PKTTYPE and the packet's length must be passed as PKTLEN. This is used as the upper bound on the amount of data read from INP. If the packet is shorter than PKTLEN, the data at the end will be silently skipped. If an error occurs, an error code will be returned. -1 means the EOF was encountered. 0 means parsing was successful. */ int parse_signature( iobuf_t inp, int pkttype, unsigned long pktlen, PKT_signature *sig ); /* Given a subpacket area (typically either PKT_signature.hashed or PKT_signature.unhashed), either: - test whether there are any subpackets with the critical bit set that we don't understand, - list the subpackets, or, - find a subpacket with a specific type. REQTYPE indicates the type of operation. If REQTYPE is SIGSUBPKT_TEST_CRITICAL, then this function checks whether there are any subpackets that have the critical bit and which GnuPG cannot handle. If GnuPG understands all subpackets whose critical bit is set, then this function returns simply returns SUBPKTS. If there is a subpacket whose critical bit is set and which GnuPG does not understand, then this function returns NULL and, if START is not NULL, sets *START to the 1-based index of the subpacket that violates the constraint. If REQTYPE is SIGSUBPKT_LIST_HASHED or SIGSUBPKT_LIST_UNHASHED, the packets are dumped. Note: if REQTYPE is SIGSUBPKT_LIST_HASHED, this function does not check whether the hash is correct; this is merely an indication of the section that the subpackets came from. If REQTYPE is anything else, then this function interprets the values as a subpacket type and looks for the first subpacket with that type. If such a packet is found, *CRITICAL (if not NULL) is set if the critical bit was set, *RET_N is set to the offset of the subpacket's content within the SUBPKTS buffer, *START is set to the 1-based index of the subpacket within the buffer, and returns &SUBPKTS[*RET_N]. *START is the number of initial subpackets to not consider. Thus, if *START is 2, then the first 2 subpackets are ignored. */ const byte *enum_sig_subpkt ( const subpktarea_t *subpkts, sigsubpkttype_t reqtype, size_t *ret_n, int *start, int *critical ); /* Shorthand for: enum_sig_subpkt (buffer, reqtype, ret_n, NULL, NULL); */ const byte *parse_sig_subpkt ( const subpktarea_t *buffer, sigsubpkttype_t reqtype, size_t *ret_n ); /* This calls parse_sig_subpkt first on the hashed signature area in SIG and then, if that returns NULL, calls parse_sig_subpkt on the unhashed subpacket area in SIG. */ const byte *parse_sig_subpkt2 ( PKT_signature *sig, sigsubpkttype_t reqtype); /* Returns whether the N byte large buffer BUFFER is sufficient to hold a subpacket of type TYPE. Note: the buffer refers to the contents of the subpacket (not the header) and it must already be initialized: for some subpackets, it checks some internal constraints. Returns 0 if the size is acceptable. Returns -2 if the buffer is definitely too short. To check for an error, check whether the return value is less than 0. */ int parse_one_sig_subpkt( const byte *buffer, size_t n, int type ); /* Looks for revocation key subpackets (see RFC 4880 5.2.3.15) in the hashed area of the signature packet. Any that are found are added to SIG->REVKEY and SIG->NUMREVKEYS is updated appropriately. */ void parse_revkeys(PKT_signature *sig); /* Extract the attributes from the buffer at UID->ATTRIB_DATA and update UID->ATTRIBS and UID->NUMATTRIBS accordingly. */ int parse_attribute_subpkts(PKT_user_id *uid); /* Set the UID->NAME field according to the attributes. MAX_NAMELEN must be at least 71. */ void make_attribute_uidname(PKT_user_id *uid, size_t max_namelen); /* Allocate and initialize a new GPG control packet. DATA is the data to save in the packet. */ PACKET *create_gpg_control ( ctrlpkttype_t type, const byte *data, size_t datalen ); /*-- build-packet.c --*/ int build_packet (iobuf_t out, PACKET *pkt); gpg_error_t build_packet_and_meta (iobuf_t out, PACKET *pkt); gpg_error_t gpg_mpi_write (iobuf_t out, gcry_mpi_t a, unsigned int *t_nwritten); gpg_error_t gpg_mpi_write_nohdr (iobuf_t out, gcry_mpi_t a); u32 calc_packet_length( PACKET *pkt ); void build_sig_subpkt( PKT_signature *sig, sigsubpkttype_t type, const byte *buffer, size_t buflen ); void build_sig_subpkt_from_sig (PKT_signature *sig, PKT_public_key *pksk); int delete_sig_subpkt(subpktarea_t *buffer, sigsubpkttype_t type ); void build_attribute_subpkt(PKT_user_id *uid,byte type, const void *buf,u32 buflen, const void *header,u32 headerlen); struct notation *string_to_notation(const char *string,int is_utf8); struct notation *blob_to_notation(const char *name, const char *data, size_t len); struct notation *sig_to_notation(PKT_signature *sig); void free_notation(struct notation *notation); /*-- free-packet.c --*/ void free_symkey_enc( PKT_symkey_enc *enc ); void free_pubkey_enc( PKT_pubkey_enc *enc ); void free_seckey_enc( PKT_signature *enc ); void release_public_key_parts( PKT_public_key *pk ); void free_public_key( PKT_public_key *key ); void free_attributes(PKT_user_id *uid); void free_user_id( PKT_user_id *uid ); void free_comment( PKT_comment *rem ); void free_packet (PACKET *pkt, parse_packet_ctx_t parsectx); prefitem_t *copy_prefs (const prefitem_t *prefs); PKT_public_key *copy_public_key( PKT_public_key *d, PKT_public_key *s ); PKT_signature *copy_signature( PKT_signature *d, PKT_signature *s ); PKT_user_id *scopy_user_id (PKT_user_id *sd ); int cmp_public_keys( PKT_public_key *a, PKT_public_key *b ); int cmp_signatures( PKT_signature *a, PKT_signature *b ); int cmp_user_ids( PKT_user_id *a, PKT_user_id *b ); /*-- sig-check.c --*/ /* Check a signature. This is shorthand for check_signature2 with the unnamed arguments passed as NULL. */ int check_signature (ctrl_t ctrl, PKT_signature *sig, gcry_md_hd_t digest); /* Check a signature. Looks up the public key from the key db. (If * R_PK is not NULL, it is stored at RET_PK.) DIGEST contains a * valid hash context that already includes the signed data. This * function adds the relevant meta-data to the hash before finalizing * it and verifying the signature. */ gpg_error_t check_signature2 (ctrl_t ctrl, PKT_signature *sig, gcry_md_hd_t digest, const void *extrahash, size_t extrahashlen, u32 *r_expiredate, int *r_expired, int *r_revoked, PKT_public_key **r_pk); /*-- pubkey-enc.c --*/ gpg_error_t get_session_key (ctrl_t ctrl, struct pubkey_enc_list *k, DEK *dek); gpg_error_t get_override_session_key (DEK *dek, const char *string); /*-- compress.c --*/ int handle_compressed (ctrl_t ctrl, void *ctx, PKT_compressed *cd, int (*callback)(iobuf_t, void *), void *passthru ); /*-- encr-data.c --*/ int decrypt_data (ctrl_t ctrl, void *ctx, PKT_encrypted *ed, DEK *dek ); /*-- plaintext.c --*/ gpg_error_t get_output_file (const byte *embedded_name, int embedded_namelen, iobuf_t data, char **fnamep, estream_t *fpp); int handle_plaintext( PKT_plaintext *pt, md_filter_context_t *mfx, int nooutput, int clearsig ); int ask_for_detached_datafile( gcry_md_hd_t md, gcry_md_hd_t md2, const char *inname, int textmode ); /*-- sign.c --*/ int make_keysig_packet (ctrl_t ctrl, PKT_signature **ret_sig, PKT_public_key *pk, PKT_user_id *uid, PKT_public_key *subpk, PKT_public_key *pksk, int sigclass, u32 timestamp, u32 duration, int (*mksubpkt)(PKT_signature *, void *), void *opaque, const char *cache_nonce); gpg_error_t update_keysig_packet (ctrl_t ctrl, PKT_signature **ret_sig, PKT_signature *orig_sig, PKT_public_key *pk, PKT_user_id *uid, PKT_public_key *subpk, PKT_public_key *pksk, int (*mksubpkt)(PKT_signature *, void *), void *opaque ); /*-- keygen.c --*/ PKT_user_id *generate_user_id (kbnode_t keyblock, const char *uidstr); #endif /*G10_PACKET_H*/ diff --git a/g10/parse-packet.c b/g10/parse-packet.c index f67edc547..ab82d475a 100644 --- a/g10/parse-packet.c +++ b/g10/parse-packet.c @@ -1,3600 +1,3594 @@ /* parse-packet.c - read packets * Copyright (C) 1998-2007, 2009-2010 Free Software Foundation, Inc. * Copyright (C) 2014, 2018 Werner Koch * Copyright (C) 2015 g10 Code GmbH * * This file is part of GnuPG. * * GnuPG is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * GnuPG is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * SPDX-License-Identifier: GPL-3.0+ */ #include #include #include #include #include "gpg.h" #include "../common/util.h" #include "packet.h" #include "../common/iobuf.h" #include "filter.h" #include "photoid.h" #include "options.h" #include "main.h" #include "../common/i18n.h" #include "../common/host2net.h" #include "../common/mbox-util.h" -/* Maximum length of packets to avoid excessive memory allocation. */ -#define MAX_KEY_PACKET_LENGTH (256 * 1024) -#define MAX_UID_PACKET_LENGTH ( 2 * 1024) -#define MAX_COMMENT_PACKET_LENGTH ( 64 * 1024) -#define MAX_ATTR_PACKET_LENGTH ( 16 * 1024*1024) - static int mpi_print_mode; static int list_mode; static estream_t listfp; /* A linked list of known notation names. Note that the FLAG is used * to store the length of the name to speed up the check. */ static strlist_t known_notations_list; static int parse (parse_packet_ctx_t ctx, PACKET *pkt, int onlykeypkts, off_t * retpos, int *skip, IOBUF out, int do_skip #if DEBUG_PARSE_PACKET , const char *dbg_w, const char *dbg_f, int dbg_l #endif ); static int copy_packet (IOBUF inp, IOBUF out, int pkttype, unsigned long pktlen, int partial); static void skip_packet (IOBUF inp, int pkttype, unsigned long pktlen, int partial); static void *read_rest (IOBUF inp, size_t pktlen); static int parse_marker (IOBUF inp, int pkttype, unsigned long pktlen); static int parse_symkeyenc (IOBUF inp, int pkttype, unsigned long pktlen, PACKET * packet); static int parse_pubkeyenc (IOBUF inp, int pkttype, unsigned long pktlen, PACKET * packet); static int parse_onepass_sig (IOBUF inp, int pkttype, unsigned long pktlen, PKT_onepass_sig * ops); static int parse_key (IOBUF inp, int pkttype, unsigned long pktlen, byte * hdr, int hdrlen, PACKET * packet); static int parse_user_id (IOBUF inp, int pkttype, unsigned long pktlen, PACKET * packet); static int parse_attribute (IOBUF inp, int pkttype, unsigned long pktlen, PACKET * packet); static int parse_comment (IOBUF inp, int pkttype, unsigned long pktlen, PACKET * packet); static gpg_error_t parse_ring_trust (parse_packet_ctx_t ctx, unsigned long pktlen); static int parse_plaintext (IOBUF inp, int pkttype, unsigned long pktlen, PACKET * packet, int new_ctb, int partial); static int parse_compressed (IOBUF inp, int pkttype, unsigned long pktlen, PACKET * packet, int new_ctb); static int parse_encrypted (IOBUF inp, int pkttype, unsigned long pktlen, PACKET * packet, int new_ctb, int partial); static gpg_error_t parse_encrypted_aead (IOBUF inp, int pkttype, unsigned long pktlen, PACKET *packet, int partial); static int parse_mdc (IOBUF inp, int pkttype, unsigned long pktlen, PACKET * packet, int new_ctb); static int parse_gpg_control (IOBUF inp, int pkttype, unsigned long pktlen, PACKET * packet, int partial); /* Read a 16-bit value in MSB order (big endian) from an iobuf. */ static unsigned short read_16 (IOBUF inp) { unsigned short a; a = (unsigned short)iobuf_get_noeof (inp) << 8; a |= iobuf_get_noeof (inp); return a; } /* Read a 32-bit value in MSB order (big endian) from an iobuf. */ static unsigned long read_32 (IOBUF inp) { unsigned long a; a = (unsigned long)iobuf_get_noeof (inp) << 24; a |= iobuf_get_noeof (inp) << 16; a |= iobuf_get_noeof (inp) << 8; a |= iobuf_get_noeof (inp); return a; } /* Read an external representation of an MPI and return the MPI. The external format is a 16-bit unsigned value stored in network byte order giving the number of bits for the following integer. The integer is stored MSB first and is left padded with zero bits to align on a byte boundary. The caller must set *RET_NREAD to the maximum number of bytes to read from the pipeline INP. This function sets *RET_NREAD to be the number of bytes actually read from the pipeline. If SECURE is true, the integer is stored in secure memory (allocated using gcry_xmalloc_secure). */ static gcry_mpi_t mpi_read (iobuf_t inp, unsigned int *ret_nread, int secure) { int c, c1, c2, i; unsigned int nmax = *ret_nread; unsigned int nbits, nbytes; size_t nread = 0; gcry_mpi_t a = NULL; byte *buf = NULL; byte *p; if (!nmax) goto overflow; if ((c = c1 = iobuf_get (inp)) == -1) goto leave; if (++nread == nmax) goto overflow; nbits = c << 8; if ((c = c2 = iobuf_get (inp)) == -1) goto leave; ++nread; nbits |= c; if (nbits > MAX_EXTERN_MPI_BITS) { log_error ("mpi too large (%u bits)\n", nbits); goto leave; } nbytes = (nbits + 7) / 8; buf = secure ? gcry_xmalloc_secure (nbytes + 2) : gcry_xmalloc (nbytes + 2); p = buf; p[0] = c1; p[1] = c2; for (i = 0; i < nbytes; i++) { if (nread == nmax) goto overflow; c = iobuf_get (inp); if (c == -1) goto leave; p[i + 2] = c; nread ++; } if (gcry_mpi_scan (&a, GCRYMPI_FMT_PGP, buf, nread, &nread)) a = NULL; *ret_nread = nread; gcry_free(buf); return a; overflow: log_error ("mpi larger than indicated length (%u bits)\n", 8*nmax); leave: *ret_nread = nread; gcry_free(buf); return a; } /* Register STRING as a known critical notation name. */ void register_known_notation (const char *string) { strlist_t sl; if (!known_notations_list) { sl = add_to_strlist (&known_notations_list, "preferred-email-encoding@pgp.com"); sl->flags = 32; sl = add_to_strlist (&known_notations_list, "pka-address@gnupg.org"); sl->flags = 21; } if (!string) return; /* Only initialized the default known notations. */ /* In --set-notation we use an exclamation mark to indicate a * critical notation. As a convenience skip this here. */ if (*string == '!') string++; if (!*string || strlist_find (known_notations_list, string)) return; /* Empty string or already registered. */ sl = add_to_strlist (&known_notations_list, string); sl->flags = strlen (string); } int set_packet_list_mode (int mode) { int old = list_mode; list_mode = mode; /* We use stdout only if invoked by the --list-packets command but switch to stderr in all other cases. This breaks the previous behaviour but that seems to be more of a bug than intentional. I don't believe that any application makes use of this long standing annoying way of printing to stdout except when doing a --list-packets. If this assumption fails, it will be easy to add an option for the listing stream. Note that we initialize it only once; mainly because there is code which switches opt.list_mode back to 1 and we want to have all output to the same stream. The MPI_PRINT_MODE will be enabled if the corresponding debug flag is set or if we are in --list-packets and --verbose is given. Using stderr is not actually very clean because it bypasses the logging code but it is a special thing anyway. I am not sure whether using log_stream() would be better. Perhaps we should enable the list mode only with a special option. */ if (!listfp) { if (opt.list_packets) { listfp = es_stdout; if (opt.verbose) mpi_print_mode = 1; } else listfp = es_stderr; if (DBG_MPI) mpi_print_mode = 1; } return old; } /* If OPT.VERBOSE is set, print a warning that the algorithm ALGO is not suitable for signing and encryption. */ static void unknown_pubkey_warning (int algo) { static byte unknown_pubkey_algos[256]; /* First check whether the algorithm is usable but not suitable for encryption/signing. */ if (pubkey_get_npkey (algo)) { if (opt.verbose) { if (!pubkey_get_nsig (algo)) log_info ("public key algorithm %s not suitable for %s\n", openpgp_pk_algo_name (algo), "signing"); if (!pubkey_get_nenc (algo)) log_info ("public key algorithm %s not suitable for %s\n", openpgp_pk_algo_name (algo), "encryption"); } } else { algo &= 0xff; if (!unknown_pubkey_algos[algo]) { if (opt.verbose) log_info (_("can't handle public key algorithm %d\n"), algo); unknown_pubkey_algos[algo] = 1; } } } #if DEBUG_PARSE_PACKET int dbg_parse_packet (parse_packet_ctx_t ctx, PACKET *pkt, const char *dbg_f, int dbg_l) { int skip, rc; do { rc = parse (ctx, pkt, 0, NULL, &skip, NULL, 0, "parse", dbg_f, dbg_l); } while (skip && ! rc); return rc; } #else /*!DEBUG_PARSE_PACKET*/ int parse_packet (parse_packet_ctx_t ctx, PACKET *pkt) { int skip, rc; do { rc = parse (ctx, pkt, 0, NULL, &skip, NULL, 0); } while (skip && ! rc); return rc; } #endif /*!DEBUG_PARSE_PACKET*/ /* * Like parse packet, but only return secret or public (sub)key * packets. */ #if DEBUG_PARSE_PACKET int dbg_search_packet (parse_packet_ctx_t ctx, PACKET *pkt, off_t * retpos, int with_uid, const char *dbg_f, int dbg_l) { int skip, rc; do { rc = parse (ctx, pkt, with_uid ? 2 : 1, retpos, &skip, NULL, 0, "search", dbg_f, dbg_l); } while (skip && ! rc); return rc; } #else /*!DEBUG_PARSE_PACKET*/ int search_packet (parse_packet_ctx_t ctx, PACKET *pkt, off_t * retpos, int with_uid) { int skip, rc; do { rc = parse (ctx, pkt, with_uid ? 2 : 1, retpos, &skip, NULL, 0); } while (skip && ! rc); return rc; } #endif /*!DEBUG_PARSE_PACKET*/ /* * Copy all packets from INP to OUT, thereby removing unused spaces. */ #if DEBUG_PARSE_PACKET int dbg_copy_all_packets (iobuf_t inp, iobuf_t out, const char *dbg_f, int dbg_l) { PACKET pkt; struct parse_packet_ctx_s parsectx; int skip, rc = 0; if (! out) log_bug ("copy_all_packets: OUT may not be NULL.\n"); init_parse_packet (&parsectx, inp); do { init_packet (&pkt); } while (! (rc = parse (&parsectx, &pkt, 0, NULL, &skip, out, 0, "copy", dbg_f, dbg_l))); deinit_parse_packet (&parsectx); return rc; } #else /*!DEBUG_PARSE_PACKET*/ int copy_all_packets (iobuf_t inp, iobuf_t out) { PACKET pkt; struct parse_packet_ctx_s parsectx; int skip, rc = 0; if (! out) log_bug ("copy_all_packets: OUT may not be NULL.\n"); init_parse_packet (&parsectx, inp); do { init_packet (&pkt); } while (!(rc = parse (&parsectx, &pkt, 0, NULL, &skip, out, 0))); deinit_parse_packet (&parsectx); return rc; } #endif /*!DEBUG_PARSE_PACKET*/ /* * Copy some packets from INP to OUT, thereby removing unused spaces. * Stop at offset STOPoff (i.e. don't copy packets at this or later * offsets) */ #if DEBUG_PARSE_PACKET int dbg_copy_some_packets (iobuf_t inp, iobuf_t out, off_t stopoff, const char *dbg_f, int dbg_l) { int rc = 0; PACKET pkt; int skip; struct parse_packet_ctx_s parsectx; init_parse_packet (&parsectx, inp); do { if (iobuf_tell (inp) >= stopoff) { deinit_parse_packet (&parsectx); return 0; } init_packet (&pkt); } while (!(rc = parse (&parsectx, &pkt, 0, NULL, &skip, out, 0, "some", dbg_f, dbg_l))); deinit_parse_packet (&parsectx); return rc; } #else /*!DEBUG_PARSE_PACKET*/ int copy_some_packets (iobuf_t inp, iobuf_t out, off_t stopoff) { int rc = 0; PACKET pkt; struct parse_packet_ctx_s parsectx; int skip; init_parse_packet (&parsectx, inp); do { if (iobuf_tell (inp) >= stopoff) { deinit_parse_packet (&parsectx); return 0; } init_packet (&pkt); } while (!(rc = parse (&parsectx, &pkt, 0, NULL, &skip, out, 0))); deinit_parse_packet (&parsectx); return rc; } #endif /*!DEBUG_PARSE_PACKET*/ /* * Skip over N packets */ #if DEBUG_PARSE_PACKET int dbg_skip_some_packets (iobuf_t inp, unsigned n, const char *dbg_f, int dbg_l) { int rc = 0; int skip; PACKET pkt; struct parse_packet_ctx_s parsectx; init_parse_packet (&parsectx, inp); for (; n && !rc; n--) { init_packet (&pkt); rc = parse (&parsectx, &pkt, 0, NULL, &skip, NULL, 1, "skip", dbg_f, dbg_l); } deinit_parse_packet (&parsectx); return rc; } #else /*!DEBUG_PARSE_PACKET*/ int skip_some_packets (iobuf_t inp, unsigned int n) { int rc = 0; int skip; PACKET pkt; struct parse_packet_ctx_s parsectx; init_parse_packet (&parsectx, inp); for (; n && !rc; n--) { init_packet (&pkt); rc = parse (&parsectx, &pkt, 0, NULL, &skip, NULL, 1); } deinit_parse_packet (&parsectx); return rc; } #endif /*!DEBUG_PARSE_PACKET*/ /* Parse a packet and save it in *PKT. If OUT is not NULL and the packet is valid (its type is not 0), then the header, the initial length field and the packet's contents are written to OUT. In this case, the packet is not saved in *PKT. ONLYKEYPKTS is a simple packet filter. If ONLYKEYPKTS is set to 1, then only public subkey packets, public key packets, private subkey packets and private key packets are parsed. The rest are skipped (i.e., the header and the contents are read from the pipeline and discarded). If ONLYKEYPKTS is set to 2, then in addition to the above 4 types of packets, user id packets are also accepted. DO_SKIP is a more coarse grained filter. Unless ONLYKEYPKTS is set to 2 and the packet is a user id packet, all packets are skipped. Finally, if a packet is invalid (it's type is 0), it is skipped. If a packet is skipped and SKIP is not NULL, then *SKIP is set to 1. Note: ONLYKEYPKTS and DO_SKIP are only respected if OUT is NULL, i.e., the packets are not simply being copied. If RETPOS is not NULL, then the position of CTX->INP (as returned by iobuf_tell) is saved there before any data is read from CTX->INP. */ static int parse (parse_packet_ctx_t ctx, PACKET *pkt, int onlykeypkts, off_t * retpos, int *skip, IOBUF out, int do_skip #if DEBUG_PARSE_PACKET , const char *dbg_w, const char *dbg_f, int dbg_l #endif ) { int rc = 0; iobuf_t inp; int c, ctb, pkttype, lenbytes; unsigned long pktlen; byte hdr[8]; int hdrlen; int new_ctb = 0, partial = 0; int with_uid = (onlykeypkts == 2); off_t pos; *skip = 0; inp = ctx->inp; again: log_assert (!pkt->pkt.generic); if (retpos || list_mode) { pos = iobuf_tell (inp); if (retpos) *retpos = pos; } else pos = 0; /* (silence compiler warning) */ /* The first byte of a packet is the so-called tag. The highest bit must be set. */ if ((ctb = iobuf_get (inp)) == -1) { rc = -1; goto leave; } hdrlen = 0; hdr[hdrlen++] = ctb; if (!(ctb & 0x80)) { log_error ("%s: invalid packet (ctb=%02x)\n", iobuf_where (inp), ctb); rc = gpg_error (GPG_ERR_INV_PACKET); goto leave; } /* Immediately following the header is the length. There are two formats: the old format and the new format. If bit 6 (where the least significant bit is bit 0) is set in the tag, then we are dealing with a new format packet. Otherwise, it is an old format packet. */ pktlen = 0; new_ctb = !!(ctb & 0x40); if (new_ctb) { /* Get the packet's type. This is encoded in the 6 least significant bits of the tag. */ pkttype = ctb & 0x3f; /* Extract the packet's length. New format packets have 4 ways to encode the packet length. The value of the first byte determines the encoding and partially determines the length. See section 4.2.2 of RFC 4880 for details. */ if ((c = iobuf_get (inp)) == -1) { log_error ("%s: 1st length byte missing\n", iobuf_where (inp)); rc = gpg_error (GPG_ERR_INV_PACKET); goto leave; } hdr[hdrlen++] = c; if (c < 192) pktlen = c; else if (c < 224) { pktlen = (c - 192) * 256; if ((c = iobuf_get (inp)) == -1) { log_error ("%s: 2nd length byte missing\n", iobuf_where (inp)); rc = gpg_error (GPG_ERR_INV_PACKET); goto leave; } hdr[hdrlen++] = c; pktlen += c + 192; } else if (c == 255) { int i; char value[4]; for (i = 0; i < 4; i ++) { if ((c = iobuf_get (inp)) == -1) { log_error ("%s: 4 byte length invalid\n", iobuf_where (inp)); rc = gpg_error (GPG_ERR_INV_PACKET); goto leave; } value[i] = hdr[hdrlen++] = c; } pktlen = buf32_to_ulong (value); } else /* Partial body length. */ { switch (pkttype) { case PKT_PLAINTEXT: case PKT_ENCRYPTED: case PKT_ENCRYPTED_MDC: case PKT_ENCRYPTED_AEAD: case PKT_COMPRESSED: iobuf_set_partial_body_length_mode (inp, c & 0xff); pktlen = 0; /* To indicate partial length. */ partial = 1; break; default: log_error ("%s: partial length invalid for" " packet type %d\n", iobuf_where (inp), pkttype); rc = gpg_error (GPG_ERR_INV_PACKET); goto leave; } } } else /* This is an old format packet. */ { /* Extract the packet's type. This is encoded in bits 2-5. */ pkttype = (ctb >> 2) & 0xf; /* The type of length encoding is encoded in bits 0-1 of the tag. */ lenbytes = ((ctb & 3) == 3) ? 0 : (1 << (ctb & 3)); if (!lenbytes) { pktlen = 0; /* Don't know the value. */ /* This isn't really partial, but we can treat it the same in a "read until the end" sort of way. */ partial = 1; if (pkttype != PKT_ENCRYPTED && pkttype != PKT_PLAINTEXT && pkttype != PKT_COMPRESSED) { log_error ("%s: indeterminate length for invalid" " packet type %d\n", iobuf_where (inp), pkttype); rc = gpg_error (GPG_ERR_INV_PACKET); goto leave; } } else { for (; lenbytes; lenbytes--) { pktlen <<= 8; c = iobuf_get (inp); if (c == -1) { log_error ("%s: length invalid\n", iobuf_where (inp)); rc = gpg_error (GPG_ERR_INV_PACKET); goto leave; } pktlen |= hdr[hdrlen++] = c; } } } /* Sometimes the decompressing layer enters an error state in which it simply outputs 0xff for every byte read. If we have a stream of 0xff bytes, then it will be detected as a new format packet with type 63 and a 4-byte encoded length that is 4G-1. Since packets with type 63 are private and we use them as a control packet, which won't be 4 GB, we reject such packets as invalid. */ if (pkttype == 63 && pktlen == 0xFFFFFFFF) { /* With some probability this is caused by a problem in the * the uncompressing layer - in some error cases it just loops * and spits out 0xff bytes. */ log_error ("%s: garbled packet detected\n", iobuf_where (inp)); g10_exit (2); } if (out && pkttype) { /* This type of copying won't work if the packet uses a partial body length. (In other words, this only works if HDR is actually the length.) Currently, no callers require this functionality so we just log this as an error. */ if (partial) { log_error ("parse: Can't copy partial packet. Aborting.\n"); rc = gpg_error (GPG_ERR_INV_PACKET); goto leave; } rc = iobuf_write (out, hdr, hdrlen); if (!rc) rc = copy_packet (inp, out, pkttype, pktlen, partial); goto leave; } if (with_uid && pkttype == PKT_USER_ID) /* If ONLYKEYPKTS is set to 2, then we never skip user id packets, even if DO_SKIP is set. */ ; else if (do_skip /* type==0 is not allowed. This is an invalid packet. */ || !pkttype /* When ONLYKEYPKTS is set, we don't skip keys. */ || (onlykeypkts && pkttype != PKT_PUBLIC_SUBKEY && pkttype != PKT_PUBLIC_KEY && pkttype != PKT_SECRET_SUBKEY && pkttype != PKT_SECRET_KEY)) { iobuf_skip_rest (inp, pktlen, partial); *skip = 1; rc = 0; goto leave; } if (DBG_PACKET) { #if DEBUG_PARSE_PACKET log_debug ("parse_packet(iob=%d): type=%d length=%lu%s (%s.%s.%d)\n", iobuf_id (inp), pkttype, pktlen, new_ctb ? " (new_ctb)" : "", dbg_w, dbg_f, dbg_l); #else log_debug ("parse_packet(iob=%d): type=%d length=%lu%s\n", iobuf_id (inp), pkttype, pktlen, new_ctb ? " (new_ctb)" : ""); #endif } if (list_mode) es_fprintf (listfp, "# off=%lu ctb=%02x tag=%d hlen=%d plen=%lu%s%s\n", (unsigned long)pos, ctb, pkttype, hdrlen, pktlen, partial? (new_ctb ? " partial" : " indeterminate") :"", new_ctb? " new-ctb":""); /* Count it. */ ctx->n_parsed_packets++; pkt->pkttype = pkttype; rc = GPG_ERR_UNKNOWN_PACKET; /* default error */ switch (pkttype) { case PKT_PUBLIC_KEY: case PKT_PUBLIC_SUBKEY: case PKT_SECRET_KEY: case PKT_SECRET_SUBKEY: pkt->pkt.public_key = xmalloc_clear (sizeof *pkt->pkt.public_key); rc = parse_key (inp, pkttype, pktlen, hdr, hdrlen, pkt); break; case PKT_SYMKEY_ENC: rc = parse_symkeyenc (inp, pkttype, pktlen, pkt); break; case PKT_PUBKEY_ENC: rc = parse_pubkeyenc (inp, pkttype, pktlen, pkt); break; case PKT_SIGNATURE: pkt->pkt.signature = xmalloc_clear (sizeof *pkt->pkt.signature); rc = parse_signature (inp, pkttype, pktlen, pkt->pkt.signature); break; case PKT_ONEPASS_SIG: pkt->pkt.onepass_sig = xmalloc_clear (sizeof *pkt->pkt.onepass_sig); rc = parse_onepass_sig (inp, pkttype, pktlen, pkt->pkt.onepass_sig); break; case PKT_USER_ID: rc = parse_user_id (inp, pkttype, pktlen, pkt); break; case PKT_ATTRIBUTE: pkt->pkttype = pkttype = PKT_USER_ID; /* we store it in the userID */ rc = parse_attribute (inp, pkttype, pktlen, pkt); break; case PKT_OLD_COMMENT: case PKT_COMMENT: rc = parse_comment (inp, pkttype, pktlen, pkt); break; case PKT_RING_TRUST: { rc = parse_ring_trust (ctx, pktlen); if (!rc) goto again; /* Directly read the next packet. */ } break; case PKT_PLAINTEXT: rc = parse_plaintext (inp, pkttype, pktlen, pkt, new_ctb, partial); break; case PKT_COMPRESSED: rc = parse_compressed (inp, pkttype, pktlen, pkt, new_ctb); break; case PKT_ENCRYPTED: case PKT_ENCRYPTED_MDC: rc = parse_encrypted (inp, pkttype, pktlen, pkt, new_ctb, partial); break; case PKT_MDC: rc = parse_mdc (inp, pkttype, pktlen, pkt, new_ctb); break; case PKT_ENCRYPTED_AEAD: rc = parse_encrypted_aead (inp, pkttype, pktlen, pkt, partial); break; case PKT_GPG_CONTROL: rc = parse_gpg_control (inp, pkttype, pktlen, pkt, partial); break; case PKT_MARKER: rc = parse_marker (inp, pkttype, pktlen); break; default: /* Unknown packet. Skip it. */ skip_packet (inp, pkttype, pktlen, partial); break; } /* Store a shallow copy of certain packets in the context. */ free_packet (NULL, ctx); if (!rc && (pkttype == PKT_PUBLIC_KEY || pkttype == PKT_SECRET_KEY || pkttype == PKT_USER_ID || pkttype == PKT_ATTRIBUTE || pkttype == PKT_SIGNATURE)) { ctx->last_pkt = *pkt; } leave: /* FIXME: We leak in case of an error (see the xmalloc's above). */ if (!rc && iobuf_error (inp)) rc = GPG_ERR_INV_KEYRING; /* FIXME: We use only the error code for now to avoid problems with callers which have not been checked to always use gpg_err_code() when comparing error codes. */ return rc == -1? -1 : gpg_err_code (rc); } static void dump_hex_line (int c, int *i) { if (*i && !(*i % 8)) { if (*i && !(*i % 24)) es_fprintf (listfp, "\n%4d:", *i); else es_putc (' ', listfp); } if (c == -1) es_fprintf (listfp, " EOF"); else es_fprintf (listfp, " %02x", c); ++*i; } /* Copy the contents of a packet from the pipeline IN to the pipeline OUT. The header and length have already been read from INP and the decoded values are given as PKGTYPE and PKTLEN. If the packet is a partial body length packet (RFC 4880, Section 4.2.2.4), then iobuf_set_partial_block_modeiobuf_set_partial_block_mode should already have been called on INP and PARTIAL should be set. If PARTIAL is set or PKTLEN is 0 and PKTTYPE is PKT_COMPRESSED, copy until the first EOF is encountered on INP. Returns 0 on success and an error code if an error occurs. */ static int copy_packet (IOBUF inp, IOBUF out, int pkttype, unsigned long pktlen, int partial) { int rc; int n; char buf[100]; if (partial) { while ((n = iobuf_read (inp, buf, sizeof (buf))) != -1) if ((rc = iobuf_write (out, buf, n))) return rc; /* write error */ } else if (!pktlen && pkttype == PKT_COMPRESSED) { log_debug ("copy_packet: compressed!\n"); /* compressed packet, copy till EOF */ while ((n = iobuf_read (inp, buf, sizeof (buf))) != -1) if ((rc = iobuf_write (out, buf, n))) return rc; /* write error */ } else { for (; pktlen; pktlen -= n) { n = pktlen > sizeof (buf) ? sizeof (buf) : pktlen; n = iobuf_read (inp, buf, n); if (n == -1) return gpg_error (GPG_ERR_EOF); if ((rc = iobuf_write (out, buf, n))) return rc; /* write error */ } } return 0; } /* Skip an unknown packet. PKTTYPE is the packet's type, PKTLEN is the length of the packet's content and PARTIAL is whether partial body length encoding in used (in this case PKTLEN is ignored). */ static void skip_packet (IOBUF inp, int pkttype, unsigned long pktlen, int partial) { if (list_mode) { es_fprintf (listfp, ":unknown packet: type %2d, length %lu\n", pkttype, pktlen); if (pkttype) { int c, i = 0; es_fputs ("dump:", listfp); if (partial) { while ((c = iobuf_get (inp)) != -1) dump_hex_line (c, &i); } else { for (; pktlen; pktlen--) { dump_hex_line ((c = iobuf_get (inp)), &i); if (c == -1) break; } } es_putc ('\n', listfp); return; } } iobuf_skip_rest (inp, pktlen, partial); } /* Read PKTLEN bytes from INP and return them in a newly allocated * buffer. In case of an error (including reading fewer than PKTLEN * bytes from INP before EOF is returned), NULL is returned and an * error message is logged. */ static void * read_rest (IOBUF inp, size_t pktlen) { int c; byte *buf, *p; buf = xtrymalloc (pktlen); if (!buf) { gpg_error_t err = gpg_error_from_syserror (); log_error ("error reading rest of packet: %s\n", gpg_strerror (err)); return NULL; } for (p = buf; pktlen; pktlen--) { c = iobuf_get (inp); if (c == -1) { log_error ("premature eof while reading rest of packet\n"); xfree (buf); return NULL; } *p++ = c; } return buf; } /* Read a special size+body from INP. On success store an opaque MPI with it at R_DATA. On error return an error code and store NULL at R_DATA. Even in the error case store the number of read bytes at R_NREAD. The caller shall pass the remaining size of the packet in PKTLEN. */ static gpg_error_t read_size_body (iobuf_t inp, int pktlen, size_t *r_nread, gcry_mpi_t *r_data) { char buffer[256]; char *tmpbuf; int i, c, nbytes; *r_nread = 0; *r_data = NULL; if (!pktlen) return gpg_error (GPG_ERR_INV_PACKET); c = iobuf_readbyte (inp); if (c < 0) return gpg_error (GPG_ERR_INV_PACKET); pktlen--; ++*r_nread; nbytes = c; if (nbytes < 2 || nbytes > 254) return gpg_error (GPG_ERR_INV_PACKET); if (nbytes > pktlen) return gpg_error (GPG_ERR_INV_PACKET); buffer[0] = nbytes; for (i = 0; i < nbytes; i++) { c = iobuf_get (inp); if (c < 0) return gpg_error (GPG_ERR_INV_PACKET); ++*r_nread; buffer[1+i] = c; } tmpbuf = xtrymalloc (1 + nbytes); if (!tmpbuf) return gpg_error_from_syserror (); memcpy (tmpbuf, buffer, 1 + nbytes); *r_data = gcry_mpi_set_opaque (NULL, tmpbuf, 8 * (1 + nbytes)); if (!*r_data) { xfree (tmpbuf); return gpg_error_from_syserror (); } return 0; } /* Parse a marker packet. */ static int parse_marker (IOBUF inp, int pkttype, unsigned long pktlen) { (void) pkttype; if (pktlen != 3) goto fail; if (iobuf_get (inp) != 'P') { pktlen--; goto fail; } if (iobuf_get (inp) != 'G') { pktlen--; goto fail; } if (iobuf_get (inp) != 'P') { pktlen--; goto fail; } if (list_mode) es_fputs (":marker packet: PGP\n", listfp); return 0; fail: log_error ("invalid marker packet\n"); if (list_mode) es_fputs (":marker packet: [invalid]\n", listfp); iobuf_skip_rest (inp, pktlen, 0); return GPG_ERR_INV_PACKET; } static int parse_symkeyenc (IOBUF inp, int pkttype, unsigned long pktlen, PACKET * packet) { PKT_symkey_enc *k; int rc = 0; int i, version, s2kmode, cipher_algo, aead_algo, hash_algo, seskeylen, minlen; if (pktlen < 4) goto too_short; version = iobuf_get_noeof (inp); pktlen--; if (version == 4) ; else if (version == 5) ; else { log_error ("packet(%d) with unknown version %d\n", pkttype, version); if (list_mode) es_fprintf (listfp, ":symkey enc packet: [unknown version]\n"); rc = gpg_error (GPG_ERR_INV_PACKET); goto leave; } if (pktlen > 200) { /* (we encode the seskeylen in a byte) */ log_error ("packet(%d) too large\n", pkttype); if (list_mode) es_fprintf (listfp, ":symkey enc packet: [too large]\n"); rc = gpg_error (GPG_ERR_INV_PACKET); goto leave; } cipher_algo = iobuf_get_noeof (inp); pktlen--; if (version == 5) { aead_algo = iobuf_get_noeof (inp); pktlen--; } else aead_algo = 0; if (pktlen < 2) goto too_short; s2kmode = iobuf_get_noeof (inp); pktlen--; hash_algo = iobuf_get_noeof (inp); pktlen--; switch (s2kmode) { case 0: /* Simple S2K. */ minlen = 0; break; case 1: /* Salted S2K. */ minlen = 8; break; case 3: /* Iterated+salted S2K. */ minlen = 9; break; default: log_error ("unknown S2K mode %d\n", s2kmode); if (list_mode) es_fprintf (listfp, ":symkey enc packet: [unknown S2K mode]\n"); goto leave; } if (minlen > pktlen) { log_error ("packet with S2K %d too short\n", s2kmode); if (list_mode) es_fprintf (listfp, ":symkey enc packet: [too short]\n"); rc = gpg_error (GPG_ERR_INV_PACKET); goto leave; } seskeylen = pktlen - minlen; k = packet->pkt.symkey_enc = xmalloc_clear (sizeof *packet->pkt.symkey_enc + seskeylen - 1); k->version = version; k->cipher_algo = cipher_algo; k->aead_algo = aead_algo; k->s2k.mode = s2kmode; k->s2k.hash_algo = hash_algo; if (s2kmode == 1 || s2kmode == 3) { for (i = 0; i < 8 && pktlen; i++, pktlen--) k->s2k.salt[i] = iobuf_get_noeof (inp); } if (s2kmode == 3) { k->s2k.count = iobuf_get_noeof (inp); pktlen--; } k->seskeylen = seskeylen; if (k->seskeylen) { for (i = 0; i < seskeylen && pktlen; i++, pktlen--) k->seskey[i] = iobuf_get_noeof (inp); /* What we're watching out for here is a session key decryptor with no salt. The RFC says that using salt for this is a MUST. */ if (s2kmode != 1 && s2kmode != 3) log_info (_("WARNING: potentially insecure symmetrically" " encrypted session key\n")); } log_assert (!pktlen); if (list_mode) { es_fprintf (listfp, ":symkey enc packet: version %d, cipher %d, aead %d," " s2k %d, hash %d", version, cipher_algo, aead_algo, s2kmode, hash_algo); if (seskeylen) { /* To compute the size of the session key we need to know * the size of the AEAD nonce which we may not know. Thus * we show only the seize of the entire encrypted session * key. */ if (aead_algo) es_fprintf (listfp, ", encrypted seskey %d bytes", seskeylen); else es_fprintf (listfp, ", seskey %d bits", (seskeylen - 1) * 8); } es_fprintf (listfp, "\n"); if (s2kmode == 1 || s2kmode == 3) { es_fprintf (listfp, "\tsalt "); es_write_hexstring (listfp, k->s2k.salt, 8, 0, NULL); if (s2kmode == 3) es_fprintf (listfp, ", count %lu (%lu)", S2K_DECODE_COUNT ((ulong) k->s2k.count), (ulong) k->s2k.count); es_fprintf (listfp, "\n"); } } leave: iobuf_skip_rest (inp, pktlen, 0); return rc; too_short: log_error ("packet(%d) too short\n", pkttype); if (list_mode) es_fprintf (listfp, ":symkey enc packet: [too short]\n"); rc = gpg_error (GPG_ERR_INV_PACKET); goto leave; } static int parse_pubkeyenc (IOBUF inp, int pkttype, unsigned long pktlen, PACKET * packet) { int rc = 0; int i, ndata; PKT_pubkey_enc *k; k = packet->pkt.pubkey_enc = xmalloc_clear (sizeof *packet->pkt.pubkey_enc); if (pktlen < 12) { log_error ("packet(%d) too short\n", pkttype); if (list_mode) es_fputs (":pubkey enc packet: [too short]\n", listfp); rc = gpg_error (GPG_ERR_INV_PACKET); goto leave; } k->version = iobuf_get_noeof (inp); pktlen--; if (k->version != 2 && k->version != 3) { log_error ("packet(%d) with unknown version %d\n", pkttype, k->version); if (list_mode) es_fputs (":pubkey enc packet: [unknown version]\n", listfp); rc = gpg_error (GPG_ERR_INV_PACKET); goto leave; } k->keyid[0] = read_32 (inp); pktlen -= 4; k->keyid[1] = read_32 (inp); pktlen -= 4; k->pubkey_algo = iobuf_get_noeof (inp); pktlen--; k->throw_keyid = 0; /* Only used as flag for build_packet. */ if (list_mode) es_fprintf (listfp, ":pubkey enc packet: version %d, algo %d, keyid %08lX%08lX\n", k->version, k->pubkey_algo, (ulong) k->keyid[0], (ulong) k->keyid[1]); ndata = pubkey_get_nenc (k->pubkey_algo); if (!ndata) { if (list_mode) es_fprintf (listfp, "\tunsupported algorithm %d\n", k->pubkey_algo); unknown_pubkey_warning (k->pubkey_algo); k->data[0] = NULL; /* No need to store the encrypted data. */ } else { for (i = 0; i < ndata; i++) { if (k->pubkey_algo == PUBKEY_ALGO_ECDH && i == 1) { size_t n; rc = read_size_body (inp, pktlen, &n, k->data+i); pktlen -= n; } else { int n = pktlen; k->data[i] = mpi_read (inp, &n, 0); pktlen -= n; if (!k->data[i]) rc = gpg_error (GPG_ERR_INV_PACKET); } if (rc) goto leave; if (list_mode) { es_fprintf (listfp, "\tdata: "); mpi_print (listfp, k->data[i], mpi_print_mode); es_putc ('\n', listfp); } } } leave: iobuf_skip_rest (inp, pktlen, 0); return rc; } /* Dump a subpacket to LISTFP. BUFFER contains the subpacket in question and points to the type field in the subpacket header (not the start of the header). TYPE is the subpacket's type with the critical bit cleared. CRITICAL is the value of the CRITICAL bit. BUFLEN is the length of the buffer and LENGTH is the length of the subpacket according to the subpacket's header. */ static void dump_sig_subpkt (int hashed, int type, int critical, const byte * buffer, size_t buflen, size_t length) { const char *p = NULL; int i; /* The CERT has warning out with explains how to use GNUPG to detect * the ARRs - we print our old message here when it is a faked ARR * and add an additional notice. */ if (type == SIGSUBPKT_ARR && !hashed) { es_fprintf (listfp, "\tsubpkt %d len %u (additional recipient request)\n" "WARNING: PGP versions > 5.0 and < 6.5.8 will automagically " "encrypt to this key and thereby reveal the plaintext to " "the owner of this ARR key. Detailed info follows:\n", type, (unsigned) length); } buffer++; length--; es_fprintf (listfp, "\t%s%ssubpkt %d len %u (", /*) */ critical ? "critical " : "", hashed ? "hashed " : "", type, (unsigned) length); if (length > buflen) { es_fprintf (listfp, "too short: buffer is only %u)\n", (unsigned) buflen); return; } switch (type) { case SIGSUBPKT_SIG_CREATED: if (length >= 4) es_fprintf (listfp, "sig created %s", strtimestamp (buf32_to_u32 (buffer))); break; case SIGSUBPKT_SIG_EXPIRE: if (length >= 4) { if (buf32_to_u32 (buffer)) es_fprintf (listfp, "sig expires after %s", strtimevalue (buf32_to_u32 (buffer))); else es_fprintf (listfp, "sig does not expire"); } break; case SIGSUBPKT_EXPORTABLE: if (length) es_fprintf (listfp, "%sexportable", *buffer ? "" : "not "); break; case SIGSUBPKT_TRUST: if (length != 2) p = "[invalid trust subpacket]"; else es_fprintf (listfp, "trust signature of depth %d, value %d", buffer[0], buffer[1]); break; case SIGSUBPKT_REGEXP: if (!length) p = "[invalid regexp subpacket]"; else { es_fprintf (listfp, "regular expression: \""); es_write_sanitized (listfp, buffer, length, "\"", NULL); p = "\""; } break; case SIGSUBPKT_REVOCABLE: if (length) es_fprintf (listfp, "%srevocable", *buffer ? "" : "not "); break; case SIGSUBPKT_KEY_EXPIRE: if (length >= 4) { if (buf32_to_u32 (buffer)) es_fprintf (listfp, "key expires after %s", strtimevalue (buf32_to_u32 (buffer))); else es_fprintf (listfp, "key does not expire"); } break; case SIGSUBPKT_PREF_SYM: es_fputs ("pref-sym-algos:", listfp); for (i = 0; i < length; i++) es_fprintf (listfp, " %d", buffer[i]); break; case SIGSUBPKT_PREF_AEAD: es_fputs ("pref-aead-algos:", listfp); for (i = 0; i < length; i++) es_fprintf (listfp, " %d", buffer[i]); break; case SIGSUBPKT_REV_KEY: es_fputs ("revocation key: ", listfp); if (length < 22) p = "[too short]"; else { es_fprintf (listfp, "c=%02x a=%d f=", buffer[0], buffer[1]); for (i = 2; i < length; i++) es_fprintf (listfp, "%02X", buffer[i]); } break; case SIGSUBPKT_ISSUER: if (length >= 8) es_fprintf (listfp, "issuer key ID %08lX%08lX", (ulong) buf32_to_u32 (buffer), (ulong) buf32_to_u32 (buffer + 4)); break; case SIGSUBPKT_ISSUER_FPR: if (length >= 21) { char *tmp; es_fprintf (listfp, "issuer fpr v%d ", buffer[0]); tmp = bin2hex (buffer+1, length-1, NULL); if (tmp) { es_fputs (tmp, listfp); xfree (tmp); } } break; case SIGSUBPKT_NOTATION: { es_fputs ("notation: ", listfp); if (length < 8) p = "[too short]"; else { const byte *s = buffer; size_t n1, n2; n1 = (s[4] << 8) | s[5]; n2 = (s[6] << 8) | s[7]; s += 8; if (8 + n1 + n2 != length) p = "[error]"; else { es_write_sanitized (listfp, s, n1, ")", NULL); es_putc ('=', listfp); if (*buffer & 0x80) es_write_sanitized (listfp, s + n1, n2, ")", NULL); else p = "[not human readable]"; } } } break; case SIGSUBPKT_PREF_HASH: es_fputs ("pref-hash-algos:", listfp); for (i = 0; i < length; i++) es_fprintf (listfp, " %d", buffer[i]); break; case SIGSUBPKT_PREF_COMPR: es_fputs ("pref-zip-algos:", listfp); for (i = 0; i < length; i++) es_fprintf (listfp, " %d", buffer[i]); break; case SIGSUBPKT_KS_FLAGS: es_fputs ("keyserver preferences:", listfp); for (i = 0; i < length; i++) es_fprintf (listfp, " %02X", buffer[i]); break; case SIGSUBPKT_PREF_KS: es_fputs ("preferred keyserver: ", listfp); es_write_sanitized (listfp, buffer, length, ")", NULL); break; case SIGSUBPKT_PRIMARY_UID: p = "primary user ID"; break; case SIGSUBPKT_POLICY: es_fputs ("policy: ", listfp); es_write_sanitized (listfp, buffer, length, ")", NULL); break; case SIGSUBPKT_KEY_FLAGS: es_fputs ("key flags:", listfp); for (i = 0; i < length; i++) es_fprintf (listfp, " %02X", buffer[i]); break; case SIGSUBPKT_SIGNERS_UID: p = "signer's user ID"; break; case SIGSUBPKT_REVOC_REASON: if (length) { es_fprintf (listfp, "revocation reason 0x%02x (", *buffer); es_write_sanitized (listfp, buffer + 1, length - 1, ")", NULL); p = ")"; } break; case SIGSUBPKT_ARR: es_fputs ("Big Brother's key (ignored): ", listfp); if (length < 22) p = "[too short]"; else { es_fprintf (listfp, "c=%02x a=%d f=", buffer[0], buffer[1]); if (length > 2) es_write_hexstring (listfp, buffer+2, length-2, 0, NULL); } break; case SIGSUBPKT_FEATURES: es_fputs ("features:", listfp); for (i = 0; i < length; i++) es_fprintf (listfp, " %02x", buffer[i]); break; case SIGSUBPKT_SIGNATURE: es_fputs ("signature: ", listfp); if (length < 17) p = "[too short]"; else es_fprintf (listfp, "v%d, class 0x%02X, algo %d, digest algo %d", buffer[0], buffer[0] == 3 ? buffer[2] : buffer[1], buffer[0] == 3 ? buffer[15] : buffer[2], buffer[0] == 3 ? buffer[16] : buffer[3]); break; default: if (type >= 100 && type <= 110) p = "experimental / private subpacket"; else p = "?"; break; } es_fprintf (listfp, "%s)\n", p ? p : ""); } /* * Returns: >= 0 use this offset into buffer * -1 explicitly reject returning this type * -2 subpacket too short */ int parse_one_sig_subpkt (const byte * buffer, size_t n, int type) { switch (type) { case SIGSUBPKT_REV_KEY: if (n < 22) break; return 0; case SIGSUBPKT_SIG_CREATED: case SIGSUBPKT_SIG_EXPIRE: case SIGSUBPKT_KEY_EXPIRE: if (n < 4) break; return 0; case SIGSUBPKT_KEY_FLAGS: case SIGSUBPKT_KS_FLAGS: case SIGSUBPKT_PREF_SYM: case SIGSUBPKT_PREF_AEAD: case SIGSUBPKT_PREF_HASH: case SIGSUBPKT_PREF_COMPR: case SIGSUBPKT_POLICY: case SIGSUBPKT_PREF_KS: case SIGSUBPKT_FEATURES: case SIGSUBPKT_REGEXP: return 0; case SIGSUBPKT_SIGNATURE: case SIGSUBPKT_EXPORTABLE: case SIGSUBPKT_REVOCABLE: case SIGSUBPKT_REVOC_REASON: if (!n) break; return 0; case SIGSUBPKT_ISSUER: /* issuer key ID */ if (n < 8) break; return 0; case SIGSUBPKT_ISSUER_FPR: /* issuer key fingerprint */ if (n < 21) break; return 0; case SIGSUBPKT_NOTATION: /* minimum length needed, and the subpacket must be well-formed where the name length and value length all fit inside the packet. */ if (n < 8 || 8 + ((buffer[4] << 8) | buffer[5]) + ((buffer[6] << 8) | buffer[7]) != n) break; return 0; case SIGSUBPKT_PRIMARY_UID: if (n != 1) break; return 0; case SIGSUBPKT_TRUST: if (n != 2) break; return 0; default: return 0; } return -2; } /* Return true if we understand the critical notation. */ static int can_handle_critical_notation (const byte *name, size_t len) { strlist_t sl; register_known_notation (NULL); /* Make sure it is initialized. */ for (sl = known_notations_list; sl; sl = sl->next) if (sl->flags == len && !memcmp (sl->d, name, len)) return 1; /* Known */ if (opt.verbose) { log_info(_("Unknown critical signature notation: ") ); print_utf8_buffer (log_get_stream(), name, len); log_printf ("\n"); } return 0; /* Unknown. */ } static int can_handle_critical (const byte * buffer, size_t n, int type) { switch (type) { case SIGSUBPKT_NOTATION: if (n >= 8) { size_t notation_len = ((buffer[4] << 8) | buffer[5]); if (n - 8 >= notation_len) return can_handle_critical_notation (buffer + 8, notation_len); } return 0; case SIGSUBPKT_SIGNATURE: case SIGSUBPKT_SIG_CREATED: case SIGSUBPKT_SIG_EXPIRE: case SIGSUBPKT_KEY_EXPIRE: case SIGSUBPKT_EXPORTABLE: case SIGSUBPKT_REVOCABLE: case SIGSUBPKT_REV_KEY: case SIGSUBPKT_ISSUER: /* issuer key ID */ case SIGSUBPKT_ISSUER_FPR: /* issuer fingerprint */ case SIGSUBPKT_PREF_SYM: case SIGSUBPKT_PREF_AEAD: case SIGSUBPKT_PREF_HASH: case SIGSUBPKT_PREF_COMPR: case SIGSUBPKT_KEY_FLAGS: case SIGSUBPKT_PRIMARY_UID: case SIGSUBPKT_FEATURES: case SIGSUBPKT_TRUST: case SIGSUBPKT_REGEXP: /* Is it enough to show the policy or keyserver? */ case SIGSUBPKT_POLICY: case SIGSUBPKT_PREF_KS: case SIGSUBPKT_REVOC_REASON: /* At least we know about it. */ return 1; default: return 0; } } const byte * enum_sig_subpkt (const subpktarea_t * pktbuf, sigsubpkttype_t reqtype, size_t * ret_n, int *start, int *critical) { const byte *buffer; int buflen; int type; int critical_dummy; int offset; size_t n; int seq = 0; int reqseq = start ? *start : 0; if (!critical) critical = &critical_dummy; if (!pktbuf || reqseq == -1) { static char dummy[] = "x"; /* Return a value different from NULL to indicate that * there is no critical bit we do not understand. */ return reqtype == SIGSUBPKT_TEST_CRITICAL ? dummy : NULL; } buffer = pktbuf->data; buflen = pktbuf->len; while (buflen) { n = *buffer++; buflen--; if (n == 255) /* 4 byte length header. */ { if (buflen < 4) goto too_short; n = buf32_to_size_t (buffer); buffer += 4; buflen -= 4; } else if (n >= 192) /* 4 byte special encoded length header. */ { if (buflen < 2) goto too_short; n = ((n - 192) << 8) + *buffer + 192; buffer++; buflen--; } if (buflen < n) goto too_short; if (!buflen) goto no_type_byte; type = *buffer; if (type & 0x80) { type &= 0x7f; *critical = 1; } else *critical = 0; if (!(++seq > reqseq)) ; else if (reqtype == SIGSUBPKT_TEST_CRITICAL) { if (*critical) { if (n - 1 > buflen + 1) goto too_short; if (!can_handle_critical (buffer + 1, n - 1, type)) { if (opt.verbose) log_info (_("subpacket of type %d has " "critical bit set\n"), type); if (start) *start = seq; return NULL; /* This is an error. */ } } } else if (reqtype < 0) /* List packets. */ dump_sig_subpkt (reqtype == SIGSUBPKT_LIST_HASHED, type, *critical, buffer, buflen, n); else if (type == reqtype) /* Found. */ { buffer++; n--; if (n > buflen) goto too_short; if (ret_n) *ret_n = n; offset = parse_one_sig_subpkt (buffer, n, type); switch (offset) { case -2: log_error ("subpacket of type %d too short\n", type); return NULL; case -1: return NULL; default: break; } if (start) *start = seq; return buffer + offset; } buffer += n; buflen -= n; } if (reqtype == SIGSUBPKT_TEST_CRITICAL) /* Returning NULL means we found a subpacket with the critical bit set that we don't grok. We've iterated over all the subpackets and haven't found such a packet so we need to return a non-NULL value. */ return buffer; /* Critical bit we don't understand. */ if (start) *start = -1; return NULL; /* End of packets; not found. */ too_short: if (opt.verbose) log_info ("buffer shorter than subpacket\n"); if (start) *start = -1; return NULL; no_type_byte: if (opt.verbose) log_info ("type octet missing in subpacket\n"); if (start) *start = -1; return NULL; } const byte * parse_sig_subpkt (const subpktarea_t * buffer, sigsubpkttype_t reqtype, size_t * ret_n) { return enum_sig_subpkt (buffer, reqtype, ret_n, NULL, NULL); } const byte * parse_sig_subpkt2 (PKT_signature * sig, sigsubpkttype_t reqtype) { const byte *p; p = parse_sig_subpkt (sig->hashed, reqtype, NULL); if (!p) p = parse_sig_subpkt (sig->unhashed, reqtype, NULL); return p; } /* Find all revocation keys. Look in hashed area only. */ void parse_revkeys (PKT_signature * sig) { const byte *revkey; int seq = 0; size_t len; if (sig->sig_class != 0x1F) return; while ((revkey = enum_sig_subpkt (sig->hashed, SIGSUBPKT_REV_KEY, &len, &seq, NULL))) { /* Consider only valid packets. They must have a length of * either 2+20 or 2+32 octets and bit 7 of the class octet must * be set. */ if ((len == 22 || len == 34) && (revkey[0] & 0x80)) { sig->revkey = xrealloc (sig->revkey, sizeof (struct revocation_key) * (sig->numrevkeys + 1)); sig->revkey[sig->numrevkeys].class = revkey[0]; sig->revkey[sig->numrevkeys].algid = revkey[1]; len -= 2; sig->revkey[sig->numrevkeys].fprlen = len; memcpy (sig->revkey[sig->numrevkeys].fpr, revkey+2, len); memset (sig->revkey[sig->numrevkeys].fpr+len, 0, sizeof (sig->revkey[sig->numrevkeys].fpr) - len); sig->numrevkeys++; } } } int parse_signature (IOBUF inp, int pkttype, unsigned long pktlen, PKT_signature * sig) { int md5_len = 0; unsigned n; int is_v4or5 = 0; int rc = 0; int i, ndata; if (pktlen < 16) { log_error ("packet(%d) too short\n", pkttype); if (list_mode) es_fputs (":signature packet: [too short]\n", listfp); goto leave; } sig->version = iobuf_get_noeof (inp); pktlen--; if (sig->version == 4 || sig->version == 5) is_v4or5 = 1; else if (sig->version != 2 && sig->version != 3) { log_error ("packet(%d) with unknown version %d\n", pkttype, sig->version); if (list_mode) es_fputs (":signature packet: [unknown version]\n", listfp); rc = gpg_error (GPG_ERR_INV_PACKET); goto leave; } if (!is_v4or5) { if (pktlen == 0) goto underflow; md5_len = iobuf_get_noeof (inp); pktlen--; } if (pktlen == 0) goto underflow; sig->sig_class = iobuf_get_noeof (inp); pktlen--; if (!is_v4or5) { if (pktlen < 12) goto underflow; sig->timestamp = read_32 (inp); pktlen -= 4; sig->keyid[0] = read_32 (inp); pktlen -= 4; sig->keyid[1] = read_32 (inp); pktlen -= 4; } if (pktlen < 2) goto underflow; sig->pubkey_algo = iobuf_get_noeof (inp); pktlen--; sig->digest_algo = iobuf_get_noeof (inp); pktlen--; sig->flags.exportable = 1; sig->flags.revocable = 1; if (is_v4or5) /* Read subpackets. */ { if (pktlen < 2) goto underflow; n = read_16 (inp); pktlen -= 2; /* Length of hashed data. */ if (pktlen < n) goto underflow; if (n > 10000) { log_error ("signature packet: hashed data too long\n"); if (list_mode) es_fputs (":signature packet: [hashed data too long]\n", listfp); rc = GPG_ERR_INV_PACKET; goto leave; } if (n) { sig->hashed = xmalloc (sizeof (*sig->hashed) + n - 1); sig->hashed->size = n; sig->hashed->len = n; if (iobuf_read (inp, sig->hashed->data, n) != n) { log_error ("premature eof while reading " "hashed signature data\n"); if (list_mode) es_fputs (":signature packet: [premature eof]\n", listfp); rc = -1; goto leave; } pktlen -= n; } if (pktlen < 2) goto underflow; n = read_16 (inp); pktlen -= 2; /* Length of unhashed data. */ if (pktlen < n) goto underflow; if (n > 10000) { log_error ("signature packet: unhashed data too long\n"); if (list_mode) es_fputs (":signature packet: [unhashed data too long]\n", listfp); rc = GPG_ERR_INV_PACKET; goto leave; } if (n) { sig->unhashed = xmalloc (sizeof (*sig->unhashed) + n - 1); sig->unhashed->size = n; sig->unhashed->len = n; if (iobuf_read (inp, sig->unhashed->data, n) != n) { log_error ("premature eof while reading " "unhashed signature data\n"); if (list_mode) es_fputs (":signature packet: [premature eof]\n", listfp); rc = -1; goto leave; } pktlen -= n; } } if (pktlen < 2) goto underflow; sig->digest_start[0] = iobuf_get_noeof (inp); pktlen--; sig->digest_start[1] = iobuf_get_noeof (inp); pktlen--; if (is_v4or5 && sig->pubkey_algo) /* Extract required information. */ { const byte *p; size_t len; /* Set sig->flags.unknown_critical if there is a critical bit * set for packets which we do not understand. */ if (!parse_sig_subpkt (sig->hashed, SIGSUBPKT_TEST_CRITICAL, NULL) || !parse_sig_subpkt (sig->unhashed, SIGSUBPKT_TEST_CRITICAL, NULL)) sig->flags.unknown_critical = 1; p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_SIG_CREATED, NULL); if (p) sig->timestamp = buf32_to_u32 (p); else if (!(sig->pubkey_algo >= 100 && sig->pubkey_algo <= 110) && opt.verbose) log_info ("signature packet without timestamp\n"); /* Set the key id. We first try the issuer fingerprint and if * it is a v4 signature the fallback to the issuer. Note that * only the issuer packet is also searched in the unhashed area. */ p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_ISSUER_FPR, &len); if (p && len == 21 && p[0] == 4) { sig->keyid[0] = buf32_to_u32 (p + 1 + 12); sig->keyid[1] = buf32_to_u32 (p + 1 + 16); } else if (p && len == 33 && p[0] == 5) { sig->keyid[0] = buf32_to_u32 (p + 1 ); sig->keyid[1] = buf32_to_u32 (p + 1 + 4); } else if ((p = parse_sig_subpkt2 (sig, SIGSUBPKT_ISSUER))) { sig->keyid[0] = buf32_to_u32 (p); sig->keyid[1] = buf32_to_u32 (p + 4); } else if (!(sig->pubkey_algo >= 100 && sig->pubkey_algo <= 110) && opt.verbose) log_info ("signature packet without keyid\n"); p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_SIG_EXPIRE, NULL); if (p && buf32_to_u32 (p)) sig->expiredate = sig->timestamp + buf32_to_u32 (p); if (sig->expiredate && sig->expiredate <= make_timestamp ()) sig->flags.expired = 1; p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_POLICY, NULL); if (p) sig->flags.policy_url = 1; p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_PREF_KS, NULL); if (p) sig->flags.pref_ks = 1; p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_SIGNERS_UID, &len); if (p && len) { char *mbox; sig->signers_uid = try_make_printable_string (p, len, 0); if (!sig->signers_uid) { rc = gpg_error_from_syserror (); goto leave; } mbox = mailbox_from_userid (sig->signers_uid, 0); if (mbox) { xfree (sig->signers_uid); sig->signers_uid = mbox; } } p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_NOTATION, NULL); if (p) sig->flags.notation = 1; p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_REVOCABLE, NULL); if (p && *p == 0) sig->flags.revocable = 0; p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_TRUST, &len); if (p && len == 2) { sig->trust_depth = p[0]; sig->trust_value = p[1]; /* Only look for a regexp if there is also a trust subpacket. */ sig->trust_regexp = parse_sig_subpkt (sig->hashed, SIGSUBPKT_REGEXP, &len); /* If the regular expression is of 0 length, there is no regular expression. */ if (len == 0) sig->trust_regexp = NULL; } /* We accept the exportable subpacket from either the hashed or unhashed areas as older versions of gpg put it in the unhashed area. In theory, anyway, we should never see this packet off of a local keyring. */ p = parse_sig_subpkt2 (sig, SIGSUBPKT_EXPORTABLE); if (p && *p == 0) sig->flags.exportable = 0; /* Find all revocation keys. */ if (sig->sig_class == 0x1F) parse_revkeys (sig); } if (list_mode) { es_fprintf (listfp, ":signature packet: algo %d, keyid %08lX%08lX\n" "\tversion %d, created %lu, md5len %d, sigclass 0x%02x\n" "\tdigest algo %d, begin of digest %02x %02x\n", sig->pubkey_algo, (ulong) sig->keyid[0], (ulong) sig->keyid[1], sig->version, (ulong) sig->timestamp, md5_len, sig->sig_class, sig->digest_algo, sig->digest_start[0], sig->digest_start[1]); if (is_v4or5) { parse_sig_subpkt (sig->hashed, SIGSUBPKT_LIST_HASHED, NULL); parse_sig_subpkt (sig->unhashed, SIGSUBPKT_LIST_UNHASHED, NULL); } } ndata = pubkey_get_nsig (sig->pubkey_algo); if (!ndata) { if (list_mode) es_fprintf (listfp, "\tunknown algorithm %d\n", sig->pubkey_algo); unknown_pubkey_warning (sig->pubkey_algo); /* We store the plain material in data[0], so that we are able * to write it back with build_packet(). */ if (pktlen > (5 * MAX_EXTERN_MPI_BITS / 8)) { /* We include a limit to avoid too trivial DoS attacks by having gpg allocate too much memory. */ log_error ("signature packet: too much data\n"); rc = GPG_ERR_INV_PACKET; } else { sig->data[0] = gcry_mpi_set_opaque (NULL, read_rest (inp, pktlen), pktlen * 8); pktlen = 0; } } else { for (i = 0; i < ndata; i++) { n = pktlen; sig->data[i] = mpi_read (inp, &n, 0); pktlen -= n; if (list_mode) { es_fprintf (listfp, "\tdata: "); mpi_print (listfp, sig->data[i], mpi_print_mode); es_putc ('\n', listfp); } if (!sig->data[i]) rc = GPG_ERR_INV_PACKET; } } leave: iobuf_skip_rest (inp, pktlen, 0); return rc; underflow: log_error ("packet(%d) too short\n", pkttype); if (list_mode) es_fputs (":signature packet: [too short]\n", listfp); iobuf_skip_rest (inp, pktlen, 0); return GPG_ERR_INV_PACKET; } static int parse_onepass_sig (IOBUF inp, int pkttype, unsigned long pktlen, PKT_onepass_sig * ops) { int version; int rc = 0; if (pktlen < 13) { log_error ("packet(%d) too short\n", pkttype); if (list_mode) es_fputs (":onepass_sig packet: [too short]\n", listfp); rc = gpg_error (GPG_ERR_INV_PACKET); goto leave; } version = iobuf_get_noeof (inp); pktlen--; if (version != 3) { log_error ("onepass_sig with unknown version %d\n", version); if (list_mode) es_fputs (":onepass_sig packet: [unknown version]\n", listfp); rc = gpg_error (GPG_ERR_INV_PACKET); goto leave; } ops->sig_class = iobuf_get_noeof (inp); pktlen--; ops->digest_algo = iobuf_get_noeof (inp); pktlen--; ops->pubkey_algo = iobuf_get_noeof (inp); pktlen--; ops->keyid[0] = read_32 (inp); pktlen -= 4; ops->keyid[1] = read_32 (inp); pktlen -= 4; ops->last = iobuf_get_noeof (inp); pktlen--; if (list_mode) es_fprintf (listfp, ":onepass_sig packet: keyid %08lX%08lX\n" "\tversion %d, sigclass 0x%02x, digest %d, pubkey %d, " "last=%d\n", (ulong) ops->keyid[0], (ulong) ops->keyid[1], version, ops->sig_class, ops->digest_algo, ops->pubkey_algo, ops->last); leave: iobuf_skip_rest (inp, pktlen, 0); return rc; } static int parse_key (IOBUF inp, int pkttype, unsigned long pktlen, byte * hdr, int hdrlen, PACKET * pkt) { gpg_error_t err = 0; int i, version, algorithm; unsigned long timestamp, expiredate, max_expiredate; int npkey, nskey; u32 keyid[2]; PKT_public_key *pk; int is_v5; unsigned int pkbytes; /* For v5 keys: Number of bytes in the public * key material. For v4 keys: 0. */ (void) hdr; pk = pkt->pkt.public_key; /* PK has been cleared. */ version = iobuf_get_noeof (inp); pktlen--; if (pkttype == PKT_PUBLIC_SUBKEY && version == '#') { /* Early versions of G10 used the old PGP comments packets; * luckily all those comments are started by a hash. */ if (list_mode) { es_fprintf (listfp, ":rfc1991 comment packet: \""); for (; pktlen; pktlen--) { int c; c = iobuf_get (inp); if (c == -1) break; /* Ooops: shorter than indicated. */ if (c >= ' ' && c <= 'z') es_putc (c, listfp); else es_fprintf (listfp, "\\x%02x", c); } es_fprintf (listfp, "\"\n"); } iobuf_skip_rest (inp, pktlen, 0); return 0; } else if (version == 4) is_v5 = 0; else if (version == 5) is_v5 = 1; else if (version == 2 || version == 3) { /* Not anymore supported since 2.1. Use an older gpg version * (i.e. gpg 1.4) to parse v3 packets. */ if (opt.verbose > 1) log_info ("packet(%d) with obsolete version %d\n", pkttype, version); if (list_mode) es_fprintf (listfp, ":key packet: [obsolete version %d]\n", version); pk->version = version; err = gpg_error (GPG_ERR_LEGACY_KEY); goto leave; } else { log_error ("packet(%d) with unknown version %d\n", pkttype, version); if (list_mode) es_fputs (":key packet: [unknown version]\n", listfp); err = gpg_error (GPG_ERR_INV_PACKET); goto leave; } if (pktlen < (is_v5? 15:11)) { log_error ("packet(%d) too short\n", pkttype); if (list_mode) es_fputs (":key packet: [too short]\n", listfp); err = gpg_error (GPG_ERR_INV_PACKET); goto leave; } else if (pktlen > MAX_KEY_PACKET_LENGTH) { log_error ("packet(%d) too large\n", pkttype); if (list_mode) es_fputs (":key packet: [too large]\n", listfp); err = gpg_error (GPG_ERR_INV_PACKET); goto leave; } timestamp = read_32 (inp); pktlen -= 4; expiredate = 0; /* have to get it from the selfsignature */ max_expiredate = 0; algorithm = iobuf_get_noeof (inp); pktlen--; if (is_v5) { pkbytes = read_32 (inp); pktlen -= 4; } else pkbytes = 0; if (list_mode) { es_fprintf (listfp, ":%s key packet:\n" "\tversion %d, algo %d, created %lu, expires %lu", pkttype == PKT_PUBLIC_KEY ? "public" : pkttype == PKT_SECRET_KEY ? "secret" : pkttype == PKT_PUBLIC_SUBKEY ? "public sub" : pkttype == PKT_SECRET_SUBKEY ? "secret sub" : "??", version, algorithm, timestamp, expiredate); if (is_v5) es_fprintf (listfp, ", pkbytes %u\n", pkbytes); else es_fprintf (listfp, "\n"); } pk->timestamp = timestamp; pk->expiredate = expiredate; pk->max_expiredate = max_expiredate; pk->hdrbytes = hdrlen; pk->version = version; pk->flags.primary = (pkttype == PKT_PUBLIC_KEY || pkttype == PKT_SECRET_KEY); pk->pubkey_algo = algorithm; nskey = pubkey_get_nskey (algorithm); npkey = pubkey_get_npkey (algorithm); if (!npkey) { if (list_mode) es_fprintf (listfp, "\tunknown algorithm %d\n", algorithm); unknown_pubkey_warning (algorithm); } if (!npkey) { /* Unknown algorithm - put data into an opaque MPI. */ pk->pkey[0] = gcry_mpi_set_opaque (NULL, read_rest (inp, pktlen), pktlen * 8); pktlen = 0; goto leave; } else { for (i = 0; i < npkey; i++) { if ( (algorithm == PUBKEY_ALGO_ECDSA && (i == 0)) || (algorithm == PUBKEY_ALGO_EDDSA && (i == 0)) || (algorithm == PUBKEY_ALGO_ECDH && (i == 0 || i == 2))) { /* Read the OID (i==1) or the KDF params (i==2). */ size_t n; err = read_size_body (inp, pktlen, &n, pk->pkey+i); pktlen -= n; } else { unsigned int n = pktlen; pk->pkey[i] = mpi_read (inp, &n, 0); pktlen -= n; if (!pk->pkey[i]) err = gpg_error (GPG_ERR_INV_PACKET); } if (err) goto leave; if (list_mode) { es_fprintf (listfp, "\tpkey[%d]: ", i); mpi_print (listfp, pk->pkey[i], mpi_print_mode); if ((algorithm == PUBKEY_ALGO_ECDSA || algorithm == PUBKEY_ALGO_EDDSA || algorithm == PUBKEY_ALGO_ECDH) && i==0) { char *curve = openpgp_oid_to_str (pk->pkey[0]); const char *name = openpgp_oid_to_curve (curve, 0); es_fprintf (listfp, " %s (%s)", name?name:"", curve); xfree (curve); } es_putc ('\n', listfp); } } } if (list_mode) keyid_from_pk (pk, keyid); if (pkttype == PKT_SECRET_KEY || pkttype == PKT_SECRET_SUBKEY) { struct seckey_info *ski; byte temp[16]; size_t snlen = 0; unsigned int skbytes; if (pktlen < 1) { err = gpg_error (GPG_ERR_INV_PACKET); goto leave; } pk->seckey_info = ski = xtrycalloc (1, sizeof *ski); if (!pk->seckey_info) { err = gpg_error_from_syserror (); goto leave; } ski->algo = iobuf_get_noeof (inp); pktlen--; if (is_v5) { unsigned int protcount = 0; /* Read the one octet count of the following key-protection * material. Only required in case of unknown values. */ if (!pktlen) { err = gpg_error (GPG_ERR_INV_PACKET); goto leave; } protcount = iobuf_get_noeof (inp); pktlen--; if (list_mode) es_fprintf (listfp, "\tprotbytes: %u\n", protcount); } if (ski->algo) { ski->is_protected = 1; ski->s2k.count = 0; if (ski->algo == 254 || ski->algo == 255) { if (pktlen < 3) { err = gpg_error (GPG_ERR_INV_PACKET); goto leave; } ski->sha1chk = (ski->algo == 254); ski->algo = iobuf_get_noeof (inp); pktlen--; /* Note that a ski->algo > 110 is illegal, but I'm not * erroring out here as otherwise there would be no way * to delete such a key. */ ski->s2k.mode = iobuf_get_noeof (inp); pktlen--; ski->s2k.hash_algo = iobuf_get_noeof (inp); pktlen--; /* Check for the special GNU extension. */ if (ski->s2k.mode == 101) { for (i = 0; i < 4 && pktlen; i++, pktlen--) temp[i] = iobuf_get_noeof (inp); if (i < 4 || memcmp (temp, "GNU", 3)) { if (list_mode) es_fprintf (listfp, "\tunknown S2K %d\n", ski->s2k.mode); err = gpg_error (GPG_ERR_INV_PACKET); goto leave; } /* Here we know that it is a GNU extension. What * follows is the GNU protection mode: All values * have special meanings and they are mapped to MODE * with a base of 1000. */ ski->s2k.mode = 1000 + temp[3]; } /* Read the salt. */ if (ski->s2k.mode == 3 || ski->s2k.mode == 1) { for (i = 0; i < 8 && pktlen; i++, pktlen--) temp[i] = iobuf_get_noeof (inp); if (i < 8) { err = gpg_error (GPG_ERR_INV_PACKET); goto leave; } memcpy (ski->s2k.salt, temp, 8); } /* Check the mode. */ switch (ski->s2k.mode) { case 0: if (list_mode) es_fprintf (listfp, "\tsimple S2K"); break; case 1: if (list_mode) es_fprintf (listfp, "\tsalted S2K"); break; case 3: if (list_mode) es_fprintf (listfp, "\titer+salt S2K"); break; case 1001: if (list_mode) es_fprintf (listfp, "\tgnu-dummy S2K"); break; case 1002: if (list_mode) es_fprintf (listfp, "\tgnu-divert-to-card S2K"); break; default: if (list_mode) es_fprintf (listfp, "\tunknown %sS2K %d\n", ski->s2k.mode < 1000 ? "" : "GNU ", ski->s2k.mode); err = gpg_error (GPG_ERR_INV_PACKET); goto leave; } /* Print some info. */ if (list_mode) { es_fprintf (listfp, ", algo: %d,%s hash: %d", ski->algo, ski->sha1chk ? " SHA1 protection," : " simple checksum,", ski->s2k.hash_algo); if (ski->s2k.mode == 1 || ski->s2k.mode == 3) { es_fprintf (listfp, ", salt: "); es_write_hexstring (listfp, ski->s2k.salt, 8, 0, NULL); } es_putc ('\n', listfp); } /* Read remaining protection parameters. */ if (ski->s2k.mode == 3) { if (pktlen < 1) { err = gpg_error (GPG_ERR_INV_PACKET); goto leave; } ski->s2k.count = iobuf_get_noeof (inp); pktlen--; if (list_mode) es_fprintf (listfp, "\tprotect count: %lu (%lu)\n", (ulong)S2K_DECODE_COUNT ((ulong)ski->s2k.count), (ulong) ski->s2k.count); } else if (ski->s2k.mode == 1002) { /* Read the serial number. */ if (pktlen < 1) { err = gpg_error (GPG_ERR_INV_PACKET); goto leave; } snlen = iobuf_get (inp); pktlen--; if (pktlen < snlen || snlen == (size_t)(-1)) { err = gpg_error (GPG_ERR_INV_PACKET); goto leave; } } } else /* Old version; no S2K, so we set mode to 0, hash MD5. */ { /* Note that a ski->algo > 110 is illegal, but I'm not erroring on it here as otherwise there would be no way to delete such a key. */ ski->s2k.mode = 0; ski->s2k.hash_algo = DIGEST_ALGO_MD5; if (list_mode) es_fprintf (listfp, "\tprotect algo: %d (hash algo: %d)\n", ski->algo, ski->s2k.hash_algo); } /* It is really ugly that we don't know the size * of the IV here in cases we are not aware of the algorithm. * so a * ski->ivlen = cipher_get_blocksize (ski->algo); * won't work. The only solution I see is to hardwire it. * NOTE: if you change the ivlen above 16, don't forget to * enlarge temp. * FIXME: For v5 keys we can deduce this info! */ ski->ivlen = openpgp_cipher_blocklen (ski->algo); log_assert (ski->ivlen <= sizeof (temp)); if (ski->s2k.mode == 1001) ski->ivlen = 0; else if (ski->s2k.mode == 1002) ski->ivlen = snlen < 16 ? snlen : 16; if (pktlen < ski->ivlen) { err = gpg_error (GPG_ERR_INV_PACKET); goto leave; } for (i = 0; i < ski->ivlen; i++, pktlen--) temp[i] = iobuf_get_noeof (inp); if (list_mode) { es_fprintf (listfp, ski->s2k.mode == 1002 ? "\tserial-number: " : "\tprotect IV: "); for (i = 0; i < ski->ivlen; i++) es_fprintf (listfp, " %02x", temp[i]); es_putc ('\n', listfp); } memcpy (ski->iv, temp, ski->ivlen); } /* Skip count of secret key material. */ if (is_v5) { if (pktlen < 4) { err = gpg_error (GPG_ERR_INV_PACKET); goto leave; } skbytes = read_32 (inp); pktlen -= 4; if (list_mode) es_fprintf (listfp, "\tskbytes: %u\n", skbytes); } /* It does not make sense to read it into secure memory. * If the user is so careless, not to protect his secret key, * we can assume, that he operates an open system :=(. * So we put the key into secure memory when we unprotect it. */ if (ski->s2k.mode == 1001 || ski->s2k.mode == 1002) { /* Better set some dummy stuff here. */ pk->pkey[npkey] = gcry_mpi_set_opaque (NULL, xstrdup ("dummydata"), 10 * 8); pktlen = 0; } else if (ski->is_protected) { if (pktlen < 2) /* At least two bytes for the length. */ { err = gpg_error (GPG_ERR_INV_PACKET); goto leave; } /* Ugly: The length is encrypted too, so we read all stuff * up to the end of the packet into the first SKEY * element. * FIXME: We can do better for v5 keys. */ pk->pkey[npkey] = gcry_mpi_set_opaque (NULL, read_rest (inp, pktlen), pktlen * 8); /* Mark that MPI as protected - we need this information for * importing a key. The OPAQUE flag can't be used because * we also store public EdDSA values in opaque MPIs. */ if (pk->pkey[npkey]) gcry_mpi_set_flag (pk->pkey[npkey], GCRYMPI_FLAG_USER1); pktlen = 0; if (list_mode) es_fprintf (listfp, "\tskey[%d]: [v4 protected]\n", npkey); } else { /* Not encrypted. */ for (i = npkey; i < nskey; i++) { unsigned int n; if (pktlen < 2) /* At least two bytes for the length. */ { err = gpg_error (GPG_ERR_INV_PACKET); goto leave; } n = pktlen; pk->pkey[i] = mpi_read (inp, &n, 0); pktlen -= n; if (list_mode) { es_fprintf (listfp, "\tskey[%d]: ", i); mpi_print (listfp, pk->pkey[i], mpi_print_mode); es_putc ('\n', listfp); } if (!pk->pkey[i]) err = gpg_error (GPG_ERR_INV_PACKET); } if (err) goto leave; if (pktlen < 2) { err = gpg_error (GPG_ERR_INV_PACKET); goto leave; } ski->csum = read_16 (inp); pktlen -= 2; if (list_mode) es_fprintf (listfp, "\tchecksum: %04hx\n", ski->csum); } } /* Note that KEYID below has been initialized above in list_mode. */ if (list_mode) es_fprintf (listfp, "\tkeyid: %08lX%08lX\n", (ulong) keyid[0], (ulong) keyid[1]); leave: iobuf_skip_rest (inp, pktlen, 0); return err; } /* Attribute subpackets have the same format as v4 signature subpackets. This is not part of OpenPGP, but is done in several versions of PGP nevertheless. */ int parse_attribute_subpkts (PKT_user_id * uid) { size_t n; int count = 0; struct user_attribute *attribs = NULL; const byte *buffer = uid->attrib_data; int buflen = uid->attrib_len; byte type; xfree (uid->attribs); while (buflen) { n = *buffer++; buflen--; if (n == 255) /* 4 byte length header. */ { if (buflen < 4) goto too_short; n = buf32_to_size_t (buffer); buffer += 4; buflen -= 4; } else if (n >= 192) /* 2 byte special encoded length header. */ { if (buflen < 2) goto too_short; n = ((n - 192) << 8) + *buffer + 192; buffer++; buflen--; } if (buflen < n) goto too_short; if (!n) { /* Too short to encode the subpacket type. */ if (opt.verbose) log_info ("attribute subpacket too short\n"); break; } attribs = xrealloc (attribs, (count + 1) * sizeof (struct user_attribute)); memset (&attribs[count], 0, sizeof (struct user_attribute)); type = *buffer; buffer++; buflen--; n--; attribs[count].type = type; attribs[count].data = buffer; attribs[count].len = n; buffer += n; buflen -= n; count++; } uid->attribs = attribs; uid->numattribs = count; return count; too_short: if (opt.verbose) log_info ("buffer shorter than attribute subpacket\n"); uid->attribs = attribs; uid->numattribs = count; return count; } static int parse_user_id (IOBUF inp, int pkttype, unsigned long pktlen, PACKET * packet) { byte *p; /* Cap the size of a user ID at 2k: a value absurdly large enough that there is no sane user ID string (which is printable text as of RFC2440bis) that won't fit in it, but yet small enough to avoid allocation problems. A large pktlen may not be allocatable, and a very large pktlen could actually cause our allocation to wrap around in xmalloc to a small number. */ if (pktlen > MAX_UID_PACKET_LENGTH) { log_error ("packet(%d) too large\n", pkttype); if (list_mode) es_fprintf (listfp, ":user ID packet: [too large]\n"); iobuf_skip_rest (inp, pktlen, 0); return GPG_ERR_INV_PACKET; } packet->pkt.user_id = xmalloc_clear (sizeof *packet->pkt.user_id + pktlen); packet->pkt.user_id->len = pktlen; packet->pkt.user_id->ref = 1; p = packet->pkt.user_id->name; for (; pktlen; pktlen--, p++) *p = iobuf_get_noeof (inp); *p = 0; if (list_mode) { int n = packet->pkt.user_id->len; es_fprintf (listfp, ":user ID packet: \""); /* fixme: Hey why don't we replace this with es_write_sanitized?? */ for (p = packet->pkt.user_id->name; n; p++, n--) { if (*p >= ' ' && *p <= 'z') es_putc (*p, listfp); else es_fprintf (listfp, "\\x%02x", *p); } es_fprintf (listfp, "\"\n"); } return 0; } void make_attribute_uidname (PKT_user_id * uid, size_t max_namelen) { log_assert (max_namelen > 70); if (uid->numattribs <= 0) sprintf (uid->name, "[bad attribute packet of size %lu]", uid->attrib_len); else if (uid->numattribs > 1) sprintf (uid->name, "[%d attributes of size %lu]", uid->numattribs, uid->attrib_len); else { /* Only one attribute, so list it as the "user id" */ if (uid->attribs->type == ATTRIB_IMAGE) { u32 len; byte type; if (parse_image_header (uid->attribs, &type, &len)) sprintf (uid->name, "[%.20s image of size %lu]", image_type_to_string (type, 1), (ulong) len); else sprintf (uid->name, "[invalid image]"); } else sprintf (uid->name, "[unknown attribute of size %lu]", (ulong) uid->attribs->len); } uid->len = strlen (uid->name); } static int parse_attribute (IOBUF inp, int pkttype, unsigned long pktlen, PACKET * packet) { byte *p; (void) pkttype; /* We better cap the size of an attribute packet to make DoS not too easy. 16MB should be more then enough for one attribute packet (ie. a photo). */ if (pktlen > MAX_ATTR_PACKET_LENGTH) { log_error ("packet(%d) too large\n", pkttype); if (list_mode) es_fprintf (listfp, ":attribute packet: [too large]\n"); iobuf_skip_rest (inp, pktlen, 0); return GPG_ERR_INV_PACKET; } #define EXTRA_UID_NAME_SPACE 71 packet->pkt.user_id = xmalloc_clear (sizeof *packet->pkt.user_id + EXTRA_UID_NAME_SPACE); packet->pkt.user_id->ref = 1; packet->pkt.user_id->attrib_data = xmalloc (pktlen? pktlen:1); packet->pkt.user_id->attrib_len = pktlen; p = packet->pkt.user_id->attrib_data; for (; pktlen; pktlen--, p++) *p = iobuf_get_noeof (inp); /* Now parse out the individual attribute subpackets. This is somewhat pointless since there is only one currently defined attribute type (jpeg), but it is correct by the spec. */ parse_attribute_subpkts (packet->pkt.user_id); make_attribute_uidname (packet->pkt.user_id, EXTRA_UID_NAME_SPACE); if (list_mode) { es_fprintf (listfp, ":attribute packet: %s\n", packet->pkt.user_id->name); } return 0; } static int parse_comment (IOBUF inp, int pkttype, unsigned long pktlen, PACKET * packet) { byte *p; /* Cap comment packet at a reasonable value to avoid an integer overflow in the malloc below. Comment packets are actually not anymore define my OpenPGP and we even stopped to use our private comment packet. */ if (pktlen > MAX_COMMENT_PACKET_LENGTH) { log_error ("packet(%d) too large\n", pkttype); if (list_mode) es_fprintf (listfp, ":%scomment packet: [too large]\n", pkttype == PKT_OLD_COMMENT ? "OpenPGP draft " : ""); iobuf_skip_rest (inp, pktlen, 0); return GPG_ERR_INV_PACKET; } packet->pkt.comment = xmalloc (sizeof *packet->pkt.comment + pktlen - 1); packet->pkt.comment->len = pktlen; p = packet->pkt.comment->data; for (; pktlen; pktlen--, p++) *p = iobuf_get_noeof (inp); if (list_mode) { int n = packet->pkt.comment->len; es_fprintf (listfp, ":%scomment packet: \"", pkttype == PKT_OLD_COMMENT ? "OpenPGP draft " : ""); for (p = packet->pkt.comment->data; n; p++, n--) { if (*p >= ' ' && *p <= 'z') es_putc (*p, listfp); else es_fprintf (listfp, "\\x%02x", *p); } es_fprintf (listfp, "\"\n"); } return 0; } /* Parse a ring trust packet RFC4880 (5.10). * * This parser is special in that the packet is not stored as a packet * but its content is merged into the previous packet. */ static gpg_error_t parse_ring_trust (parse_packet_ctx_t ctx, unsigned long pktlen) { gpg_error_t err; iobuf_t inp = ctx->inp; PKT_ring_trust rt = {0}; int c; int not_gpg = 0; if (!pktlen) { if (list_mode) es_fprintf (listfp, ":trust packet: empty\n"); err = 0; goto leave; } c = iobuf_get_noeof (inp); pktlen--; rt.trustval = c; if (pktlen) { if (!c) { c = iobuf_get_noeof (inp); /* We require that bit 7 of the sigcache is 0 (easier * eof handling). */ if (!(c & 0x80)) rt.sigcache = c; } else iobuf_get_noeof (inp); /* Dummy read. */ pktlen--; } /* Next is the optional subtype. */ if (pktlen > 3) { char tmp[4]; tmp[0] = iobuf_get_noeof (inp); tmp[1] = iobuf_get_noeof (inp); tmp[2] = iobuf_get_noeof (inp); tmp[3] = iobuf_get_noeof (inp); pktlen -= 4; if (!memcmp (tmp, "gpg", 3)) rt.subtype = tmp[3]; else not_gpg = 1; } /* If it is a key or uid subtype read the remaining data. */ if ((rt.subtype == RING_TRUST_KEY || rt.subtype == RING_TRUST_UID) && pktlen >= 6 ) { int i; unsigned int namelen; rt.keyorg = iobuf_get_noeof (inp); pktlen--; rt.keyupdate = read_32 (inp); pktlen -= 4; namelen = iobuf_get_noeof (inp); pktlen--; if (namelen && pktlen) { rt.url = xtrymalloc (namelen + 1); if (!rt.url) { err = gpg_error_from_syserror (); goto leave; } for (i = 0; pktlen && i < namelen; pktlen--, i++) rt.url[i] = iobuf_get_noeof (inp); rt.url[i] = 0; } } if (list_mode) { if (rt.subtype == RING_TRUST_SIG) es_fprintf (listfp, ":trust packet: sig flag=%02x sigcache=%02x\n", rt.trustval, rt.sigcache); else if (rt.subtype == RING_TRUST_UID || rt.subtype == RING_TRUST_KEY) { unsigned char *p; es_fprintf (listfp, ":trust packet: %s upd=%lu src=%d%s", (rt.subtype == RING_TRUST_UID? "uid" : "key"), (unsigned long)rt.keyupdate, rt.keyorg, (rt.url? " url=":"")); if (rt.url) { for (p = rt.url; *p; p++) { if (*p >= ' ' && *p <= 'z') es_putc (*p, listfp); else es_fprintf (listfp, "\\x%02x", *p); } } es_putc ('\n', listfp); } else if (not_gpg) es_fprintf (listfp, ":trust packet: not created by gpg\n"); else es_fprintf (listfp, ":trust packet: subtype=%02x\n", rt.subtype); } /* Now transfer the data to the respective packet. Do not do this * if SKIP_META is set. */ if (!ctx->last_pkt.pkt.generic || ctx->skip_meta) ; else if (rt.subtype == RING_TRUST_SIG && ctx->last_pkt.pkttype == PKT_SIGNATURE) { PKT_signature *sig = ctx->last_pkt.pkt.signature; if ((rt.sigcache & 1)) { sig->flags.checked = 1; sig->flags.valid = !!(rt.sigcache & 2); } } else if (rt.subtype == RING_TRUST_UID && (ctx->last_pkt.pkttype == PKT_USER_ID || ctx->last_pkt.pkttype == PKT_ATTRIBUTE)) { PKT_user_id *uid = ctx->last_pkt.pkt.user_id; uid->keyorg = rt.keyorg; uid->keyupdate = rt.keyupdate; uid->updateurl = rt.url; rt.url = NULL; } else if (rt.subtype == RING_TRUST_KEY && (ctx->last_pkt.pkttype == PKT_PUBLIC_KEY || ctx->last_pkt.pkttype == PKT_SECRET_KEY)) { PKT_public_key *pk = ctx->last_pkt.pkt.public_key; pk->keyorg = rt.keyorg; pk->keyupdate = rt.keyupdate; pk->updateurl = rt.url; rt.url = NULL; } err = 0; leave: xfree (rt.url); free_packet (NULL, ctx); /* This sets ctx->last_pkt to NULL. */ iobuf_skip_rest (inp, pktlen, 0); return err; } static int parse_plaintext (IOBUF inp, int pkttype, unsigned long pktlen, PACKET * pkt, int new_ctb, int partial) { int rc = 0; int mode, namelen; PKT_plaintext *pt; byte *p; int c, i; if (!partial && pktlen < 6) { log_error ("packet(%d) too short (%lu)\n", pkttype, (ulong) pktlen); if (list_mode) es_fputs (":literal data packet: [too short]\n", listfp); rc = gpg_error (GPG_ERR_INV_PACKET); goto leave; } mode = iobuf_get_noeof (inp); if (pktlen) pktlen--; namelen = iobuf_get_noeof (inp); if (pktlen) pktlen--; /* Note that namelen will never exceed 255 bytes. */ pt = pkt->pkt.plaintext = xmalloc (sizeof *pkt->pkt.plaintext + namelen - 1); pt->new_ctb = new_ctb; pt->mode = mode; pt->namelen = namelen; pt->is_partial = partial; if (pktlen) { for (i = 0; pktlen > 4 && i < namelen; pktlen--, i++) pt->name[i] = iobuf_get_noeof (inp); } else { for (i = 0; i < namelen; i++) if ((c = iobuf_get (inp)) == -1) break; else pt->name[i] = c; } /* Fill up NAME so that a check with valgrind won't complain about * reading from uninitialized memory. This case may be triggred by * corrupted packets. */ for (; i < namelen; i++) pt->name[i] = 0; pt->timestamp = read_32 (inp); if (pktlen) pktlen -= 4; pt->len = pktlen; pt->buf = inp; if (list_mode) { es_fprintf (listfp, ":literal data packet:\n" "\tmode %c (%X), created %lu, name=\"", mode >= ' ' && mode < 'z' ? mode : '?', mode, (ulong) pt->timestamp); for (p = pt->name, i = 0; i < namelen; p++, i++) { if (*p >= ' ' && *p <= 'z') es_putc (*p, listfp); else es_fprintf (listfp, "\\x%02x", *p); } es_fprintf (listfp, "\",\n\traw data: "); if (partial) es_fprintf (listfp, "unknown length\n"); else es_fprintf (listfp, "%lu bytes\n", (ulong) pt->len); } leave: return rc; } static int parse_compressed (IOBUF inp, int pkttype, unsigned long pktlen, PACKET * pkt, int new_ctb) { PKT_compressed *zd; /* PKTLEN is here 0, but data follows (this should be the last object in a file or the compress algorithm should know the length). */ (void) pkttype; (void) pktlen; zd = pkt->pkt.compressed = xmalloc (sizeof *pkt->pkt.compressed); zd->algorithm = iobuf_get_noeof (inp); zd->len = 0; /* not used */ zd->new_ctb = new_ctb; zd->buf = inp; if (list_mode) es_fprintf (listfp, ":compressed packet: algo=%d\n", zd->algorithm); return 0; } static int parse_encrypted (IOBUF inp, int pkttype, unsigned long pktlen, PACKET * pkt, int new_ctb, int partial) { int rc = 0; PKT_encrypted *ed; unsigned long orig_pktlen = pktlen; ed = pkt->pkt.encrypted = xmalloc (sizeof *pkt->pkt.encrypted); /* ed->len is set below. */ ed->extralen = 0; /* Unknown here; only used in build_packet. */ ed->buf = NULL; ed->new_ctb = new_ctb; ed->is_partial = partial; ed->aead_algo = 0; ed->cipher_algo = 0; /* Only used with AEAD. */ ed->chunkbyte = 0; /* Only used with AEAD. */ if (pkttype == PKT_ENCRYPTED_MDC) { /* Fixme: add some pktlen sanity checks. */ int version; version = iobuf_get_noeof (inp); if (orig_pktlen) pktlen--; if (version != 1) { log_error ("encrypted_mdc packet with unknown version %d\n", version); if (list_mode) es_fputs (":encrypted data packet: [unknown version]\n", listfp); /*skip_rest(inp, pktlen); should we really do this? */ rc = gpg_error (GPG_ERR_INV_PACKET); goto leave; } ed->mdc_method = DIGEST_ALGO_SHA1; } else ed->mdc_method = 0; /* A basic sanity check. We need at least an 8 byte IV plus the 2 detection bytes. Note that we don't known the algorithm and thus we may only check against the minimum blocksize. */ if (orig_pktlen && pktlen < 10) { /* Actually this is blocksize+2. */ log_error ("packet(%d) too short\n", pkttype); if (list_mode) es_fputs (":encrypted data packet: [too short]\n", listfp); rc = GPG_ERR_INV_PACKET; iobuf_skip_rest (inp, pktlen, partial); goto leave; } /* Store the remaining length of the encrypted data (i.e. without the MDC version number but with the IV etc.). This value is required during decryption. */ ed->len = pktlen; if (list_mode) { if (orig_pktlen) es_fprintf (listfp, ":encrypted data packet:\n\tlength: %lu\n", orig_pktlen); else es_fprintf (listfp, ":encrypted data packet:\n\tlength: unknown\n"); if (ed->mdc_method) es_fprintf (listfp, "\tmdc_method: %d\n", ed->mdc_method); } ed->buf = inp; leave: return rc; } /* Note, that this code is not anymore used in real life because the MDC checking is now done right after the decryption in decrypt_data. */ static int parse_mdc (IOBUF inp, int pkttype, unsigned long pktlen, PACKET * pkt, int new_ctb) { int rc = 0; PKT_mdc *mdc; byte *p; (void) pkttype; mdc = pkt->pkt.mdc = xmalloc (sizeof *pkt->pkt.mdc); if (list_mode) es_fprintf (listfp, ":mdc packet: length=%lu\n", pktlen); if (!new_ctb || pktlen != 20) { log_error ("mdc_packet with invalid encoding\n"); rc = gpg_error (GPG_ERR_INV_PACKET); goto leave; } p = mdc->hash; for (; pktlen; pktlen--, p++) *p = iobuf_get_noeof (inp); leave: return rc; } static gpg_error_t parse_encrypted_aead (iobuf_t inp, int pkttype, unsigned long pktlen, PACKET *pkt, int partial) { int rc = 0; PKT_encrypted *ed; unsigned long orig_pktlen = pktlen; int version; ed = pkt->pkt.encrypted = xtrymalloc (sizeof *pkt->pkt.encrypted); if (!ed) return gpg_error_from_syserror (); ed->len = 0; ed->extralen = 0; /* (only used in build_packet.) */ ed->buf = NULL; ed->new_ctb = 1; /* (packet number requires a new CTB anyway.) */ ed->is_partial = partial; ed->mdc_method = 0; /* A basic sanity check. We need one version byte, one algo byte, * one aead algo byte, one chunkbyte, at least 15 byte IV. */ if (orig_pktlen && pktlen < 19) { log_error ("packet(%d) too short\n", pkttype); if (list_mode) es_fputs (":aead encrypted packet: [too short]\n", listfp); rc = gpg_error (GPG_ERR_INV_PACKET); iobuf_skip_rest (inp, pktlen, partial); goto leave; } version = iobuf_get_noeof (inp); if (orig_pktlen) pktlen--; if (version != 1) { log_error ("aead encrypted packet with unknown version %d\n", version); if (list_mode) es_fputs (":aead encrypted packet: [unknown version]\n", listfp); /*skip_rest(inp, pktlen); should we really do this? */ rc = gpg_error (GPG_ERR_INV_PACKET); goto leave; } ed->cipher_algo = iobuf_get_noeof (inp); if (orig_pktlen) pktlen--; ed->aead_algo = iobuf_get_noeof (inp); if (orig_pktlen) pktlen--; ed->chunkbyte = iobuf_get_noeof (inp); if (orig_pktlen) pktlen--; /* Store the remaining length of the encrypted data. We read the * rest during decryption. */ ed->len = pktlen; if (list_mode) { es_fprintf (listfp, ":aead encrypted packet: cipher=%u aead=%u cb=%u\n", ed->cipher_algo, ed->aead_algo, ed->chunkbyte); if (orig_pktlen) es_fprintf (listfp, "\tlength: %lu\n", orig_pktlen); else es_fprintf (listfp, "\tlength: unknown\n"); } ed->buf = inp; leave: return rc; } /* * This packet is internally generated by us (in armor.c) to transfer * some information to the lower layer. To make sure that this packet * is really a GPG faked one and not one coming from outside, we * first check that there is a unique tag in it. * * The format of such a control packet is: * n byte session marker * 1 byte control type CTRLPKT_xxxxx * m byte control data */ static int parse_gpg_control (IOBUF inp, int pkttype, unsigned long pktlen, PACKET * packet, int partial) { byte *p; const byte *sesmark; size_t sesmarklen; int i; (void) pkttype; if (list_mode) es_fprintf (listfp, ":packet 63: length %lu ", pktlen); sesmark = get_session_marker (&sesmarklen); if (pktlen < sesmarklen + 1) /* 1 is for the control bytes */ goto skipit; for (i = 0; i < sesmarklen; i++, pktlen--) { if (sesmark[i] != iobuf_get_noeof (inp)) goto skipit; } if (pktlen > 4096) goto skipit; /* Definitely too large. We skip it to avoid an overflow in the malloc. */ if (list_mode) es_fputs ("- gpg control packet", listfp); packet->pkt.gpg_control = xmalloc (sizeof *packet->pkt.gpg_control + pktlen - 1); packet->pkt.gpg_control->control = iobuf_get_noeof (inp); pktlen--; packet->pkt.gpg_control->datalen = pktlen; p = packet->pkt.gpg_control->data; for (; pktlen; pktlen--, p++) *p = iobuf_get_noeof (inp); return 0; skipit: if (list_mode) { int c; i = 0; es_fprintf (listfp, "- private (rest length %lu)\n", pktlen); if (partial) { while ((c = iobuf_get (inp)) != -1) dump_hex_line (c, &i); } else { for (; pktlen; pktlen--) { dump_hex_line ((c = iobuf_get (inp)), &i); if (c == -1) break; } } es_putc ('\n', listfp); } iobuf_skip_rest (inp, pktlen, 0); return gpg_error (GPG_ERR_INV_PACKET); } /* Create a GPG control packet to be used internally as a placeholder. */ PACKET * create_gpg_control (ctrlpkttype_t type, const byte * data, size_t datalen) { PACKET *packet; byte *p; if (!data) datalen = 0; packet = xmalloc (sizeof *packet); init_packet (packet); packet->pkttype = PKT_GPG_CONTROL; packet->pkt.gpg_control = xmalloc (sizeof *packet->pkt.gpg_control + datalen); packet->pkt.gpg_control->control = type; packet->pkt.gpg_control->datalen = datalen; p = packet->pkt.gpg_control->data; for (; datalen; datalen--, p++) *p = *data++; return packet; }