diff --git a/dirmngr/ks-engine-ldap.c b/dirmngr/ks-engine-ldap.c index bd6f8d5c5..daf8e133a 100644 --- a/dirmngr/ks-engine-ldap.c +++ b/dirmngr/ks-engine-ldap.c @@ -1,2248 +1,2243 @@ /* ks-engine-ldap.c - talk to a LDAP keyserver * Copyright (C) 2001, 2002, 2004, 2005, 2006 * 2007 Free Software Foundation, Inc. * Copyright (C) 2015, 2020 g10 Code GmbH * * This file is part of GnuPG. * * GnuPG is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * GnuPG is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #include #include #include #include #include #ifdef HAVE_GETOPT_H # include #endif #include #include #include #ifdef _WIN32 # include # include #else # ifdef NEED_LBER_H # include # endif /* For OpenLDAP, to enable the API that we're using. */ # define LDAP_DEPRECATED 1 # include #endif #include #include "dirmngr.h" #include "misc.h" #include "../common/userids.h" #include "../common/mbox-util.h" #include "ks-engine.h" #include "ldap-parse-uri.h" /* Flags with infos from the connected server. */ #define SERVERINFO_REALLDAP 1 /* This is not the PGP keyserver. */ #define SERVERINFO_PGPKEYV2 2 /* Needs "pgpeyV2" instead of "pgpKey" */ #define SERVERINFO_SCHEMAV2 4 /* Version 2 of the Schema. */ #define SERVERINFO_NTDS 8 /* Server is an Active Directory. */ #ifndef HAVE_TIMEGM time_t timegm(struct tm *tm); #endif /* Convert an LDAP error to a GPG error. */ static int ldap_err_to_gpg_err (int code) { gpg_err_code_t ec; switch (code) { #ifdef LDAP_X_CONNECTING case LDAP_X_CONNECTING: ec = GPG_ERR_LDAP_X_CONNECTING; break; #endif case LDAP_REFERRAL_LIMIT_EXCEEDED: ec = GPG_ERR_LDAP_REFERRAL_LIMIT; break; case LDAP_CLIENT_LOOP: ec = GPG_ERR_LDAP_CLIENT_LOOP; break; case LDAP_NO_RESULTS_RETURNED: ec = GPG_ERR_LDAP_NO_RESULTS; break; case LDAP_CONTROL_NOT_FOUND: ec = GPG_ERR_LDAP_CONTROL_NOT_FOUND; break; case LDAP_NOT_SUPPORTED: ec = GPG_ERR_LDAP_NOT_SUPPORTED; break; case LDAP_CONNECT_ERROR: ec = GPG_ERR_LDAP_CONNECT; break; case LDAP_NO_MEMORY: ec = GPG_ERR_LDAP_NO_MEMORY; break; case LDAP_PARAM_ERROR: ec = GPG_ERR_LDAP_PARAM; break; case LDAP_USER_CANCELLED: ec = GPG_ERR_LDAP_USER_CANCELLED; break; case LDAP_FILTER_ERROR: ec = GPG_ERR_LDAP_FILTER; break; case LDAP_AUTH_UNKNOWN: ec = GPG_ERR_LDAP_AUTH_UNKNOWN; break; case LDAP_TIMEOUT: ec = GPG_ERR_LDAP_TIMEOUT; break; case LDAP_DECODING_ERROR: ec = GPG_ERR_LDAP_DECODING; break; case LDAP_ENCODING_ERROR: ec = GPG_ERR_LDAP_ENCODING; break; case LDAP_LOCAL_ERROR: ec = GPG_ERR_LDAP_LOCAL; break; case LDAP_SERVER_DOWN: ec = GPG_ERR_LDAP_SERVER_DOWN; break; case LDAP_SUCCESS: ec = GPG_ERR_LDAP_SUCCESS; break; case LDAP_OPERATIONS_ERROR: ec = GPG_ERR_LDAP_OPERATIONS; break; case LDAP_PROTOCOL_ERROR: ec = GPG_ERR_LDAP_PROTOCOL; break; case LDAP_TIMELIMIT_EXCEEDED: ec = GPG_ERR_LDAP_TIMELIMIT; break; case LDAP_SIZELIMIT_EXCEEDED: ec = GPG_ERR_LDAP_SIZELIMIT; break; case LDAP_COMPARE_FALSE: ec = GPG_ERR_LDAP_COMPARE_FALSE; break; case LDAP_COMPARE_TRUE: ec = GPG_ERR_LDAP_COMPARE_TRUE; break; case LDAP_AUTH_METHOD_NOT_SUPPORTED: ec=GPG_ERR_LDAP_UNSUPPORTED_AUTH;break; case LDAP_STRONG_AUTH_REQUIRED: ec = GPG_ERR_LDAP_STRONG_AUTH_RQRD; break; case LDAP_PARTIAL_RESULTS: ec = GPG_ERR_LDAP_PARTIAL_RESULTS; break; case LDAP_REFERRAL: ec = GPG_ERR_LDAP_REFERRAL; break; #ifdef LDAP_ADMINLIMIT_EXCEEDED case LDAP_ADMINLIMIT_EXCEEDED: ec = GPG_ERR_LDAP_ADMINLIMIT; break; #endif #ifdef LDAP_UNAVAILABLE_CRITICAL_EXTENSION case LDAP_UNAVAILABLE_CRITICAL_EXTENSION: ec = GPG_ERR_LDAP_UNAVAIL_CRIT_EXTN; break; #endif case LDAP_CONFIDENTIALITY_REQUIRED: ec = GPG_ERR_LDAP_CONFIDENT_RQRD; break; case LDAP_SASL_BIND_IN_PROGRESS: ec = GPG_ERR_LDAP_SASL_BIND_INPROG; break; case LDAP_NO_SUCH_ATTRIBUTE: ec = GPG_ERR_LDAP_NO_SUCH_ATTRIBUTE; break; case LDAP_UNDEFINED_TYPE: ec = GPG_ERR_LDAP_UNDEFINED_TYPE; break; case LDAP_INAPPROPRIATE_MATCHING: ec = GPG_ERR_LDAP_BAD_MATCHING; break; case LDAP_CONSTRAINT_VIOLATION: ec = GPG_ERR_LDAP_CONST_VIOLATION; break; #ifdef LDAP_TYPE_OR_VALUE_EXISTS case LDAP_TYPE_OR_VALUE_EXISTS: ec = GPG_ERR_LDAP_TYPE_VALUE_EXISTS; break; #endif case LDAP_INVALID_SYNTAX: ec = GPG_ERR_LDAP_INV_SYNTAX; break; case LDAP_NO_SUCH_OBJECT: ec = GPG_ERR_LDAP_NO_SUCH_OBJ; break; case LDAP_ALIAS_PROBLEM: ec = GPG_ERR_LDAP_ALIAS_PROBLEM; break; case LDAP_INVALID_DN_SYNTAX: ec = GPG_ERR_LDAP_INV_DN_SYNTAX; break; case LDAP_IS_LEAF: ec = GPG_ERR_LDAP_IS_LEAF; break; case LDAP_ALIAS_DEREF_PROBLEM: ec = GPG_ERR_LDAP_ALIAS_DEREF; break; #ifdef LDAP_X_PROXY_AUTHZ_FAILURE case LDAP_X_PROXY_AUTHZ_FAILURE: ec = GPG_ERR_LDAP_X_PROXY_AUTH_FAIL; break; #endif case LDAP_INAPPROPRIATE_AUTH: ec = GPG_ERR_LDAP_BAD_AUTH; break; case LDAP_INVALID_CREDENTIALS: ec = GPG_ERR_LDAP_INV_CREDENTIALS; break; #ifdef LDAP_INSUFFICIENT_ACCESS case LDAP_INSUFFICIENT_ACCESS: ec = GPG_ERR_LDAP_INSUFFICIENT_ACC; break; #endif case LDAP_BUSY: ec = GPG_ERR_LDAP_BUSY; break; case LDAP_UNAVAILABLE: ec = GPG_ERR_LDAP_UNAVAILABLE; break; case LDAP_UNWILLING_TO_PERFORM: ec = GPG_ERR_LDAP_UNWILL_TO_PERFORM; break; case LDAP_LOOP_DETECT: ec = GPG_ERR_LDAP_LOOP_DETECT; break; case LDAP_NAMING_VIOLATION: ec = GPG_ERR_LDAP_NAMING_VIOLATION; break; case LDAP_OBJECT_CLASS_VIOLATION: ec = GPG_ERR_LDAP_OBJ_CLS_VIOLATION; break; case LDAP_NOT_ALLOWED_ON_NONLEAF: ec=GPG_ERR_LDAP_NOT_ALLOW_NONLEAF;break; case LDAP_NOT_ALLOWED_ON_RDN: ec = GPG_ERR_LDAP_NOT_ALLOW_ON_RDN; break; case LDAP_ALREADY_EXISTS: ec = GPG_ERR_LDAP_ALREADY_EXISTS; break; case LDAP_NO_OBJECT_CLASS_MODS: ec = GPG_ERR_LDAP_NO_OBJ_CLASS_MODS; break; case LDAP_RESULTS_TOO_LARGE: ec = GPG_ERR_LDAP_RESULTS_TOO_LARGE; break; case LDAP_AFFECTS_MULTIPLE_DSAS: ec = GPG_ERR_LDAP_AFFECTS_MULT_DSAS; break; #ifdef LDAP_VLV_ERROR case LDAP_VLV_ERROR: ec = GPG_ERR_LDAP_VLV; break; #endif case LDAP_OTHER: ec = GPG_ERR_LDAP_OTHER; break; #ifdef LDAP_CUP_RESOURCES_EXHAUSTED case LDAP_CUP_RESOURCES_EXHAUSTED: ec=GPG_ERR_LDAP_CUP_RESOURCE_LIMIT;break; case LDAP_CUP_SECURITY_VIOLATION: ec=GPG_ERR_LDAP_CUP_SEC_VIOLATION; break; case LDAP_CUP_INVALID_DATA: ec = GPG_ERR_LDAP_CUP_INV_DATA; break; case LDAP_CUP_UNSUPPORTED_SCHEME: ec = GPG_ERR_LDAP_CUP_UNSUP_SCHEME; break; case LDAP_CUP_RELOAD_REQUIRED: ec = GPG_ERR_LDAP_CUP_RELOAD; break; #endif #ifdef LDAP_CANCELLED case LDAP_CANCELLED: ec = GPG_ERR_LDAP_CANCELLED; break; #endif #ifdef LDAP_NO_SUCH_OPERATION case LDAP_NO_SUCH_OPERATION: ec = GPG_ERR_LDAP_NO_SUCH_OPERATION; break; #endif #ifdef LDAP_TOO_LATE case LDAP_TOO_LATE: ec = GPG_ERR_LDAP_TOO_LATE; break; #endif #ifdef LDAP_CANNOT_CANCEL case LDAP_CANNOT_CANCEL: ec = GPG_ERR_LDAP_CANNOT_CANCEL; break; #endif #ifdef LDAP_ASSERTION_FAILED case LDAP_ASSERTION_FAILED: ec = GPG_ERR_LDAP_ASSERTION_FAILED; break; #endif #ifdef LDAP_PROXIED_AUTHORIZATION_DENIED case LDAP_PROXIED_AUTHORIZATION_DENIED: ec = GPG_ERR_LDAP_PROX_AUTH_DENIED; break; #endif default: #if defined(LDAP_E_ERROR) && defined(LDAP_X_ERROR) if (LDAP_E_ERROR (code)) ec = GPG_ERR_LDAP_E_GENERAL; else if (LDAP_X_ERROR (code)) ec = GPG_ERR_LDAP_X_GENERAL; else #endif ec = GPG_ERR_LDAP_GENERAL; break; } return ec; } /* Retrieve an LDAP error and return it's GPG equivalent. */ static int ldap_to_gpg_err (LDAP *ld) { #if defined(HAVE_LDAP_GET_OPTION) && defined(LDAP_OPT_ERROR_NUMBER) int err; if (ldap_get_option (ld, LDAP_OPT_ERROR_NUMBER, &err) == 0) return ldap_err_to_gpg_err (err); else return GPG_ERR_GENERAL; #elif defined(HAVE_LDAP_LD_ERRNO) return ldap_err_to_gpg_err (ld->ld_errno); #else /* We should never get here since the LDAP library should always have either ldap_get_option or ld_errno, but just in case... */ return GPG_ERR_INTERNAL; #endif } static time_t ldap2epochtime (const char *timestr) { struct tm pgptime; time_t answer; memset (&pgptime, 0, sizeof(pgptime)); /* YYYYMMDDHHmmssZ */ sscanf (timestr, "%4d%2d%2d%2d%2d%2d", &pgptime.tm_year, &pgptime.tm_mon, &pgptime.tm_mday, &pgptime.tm_hour, &pgptime.tm_min, &pgptime.tm_sec); pgptime.tm_year -= 1900; pgptime.tm_isdst = -1; pgptime.tm_mon--; /* mktime() takes the timezone into account, so we use timegm() */ answer = timegm (&pgptime); return answer; } /* Caller must free the result. */ static char * tm2ldaptime (struct tm *tm) { struct tm tmp = *tm; char buf[16]; /* YYYYMMDDHHmmssZ */ tmp.tm_year += 1900; tmp.tm_mon ++; snprintf (buf, sizeof buf, "%04d%02d%02d%02d%02d%02dZ", tmp.tm_year, tmp.tm_mon, tmp.tm_mday, tmp.tm_hour, tmp.tm_min, tmp.tm_sec); return xstrdup (buf); } #if 0 /* Caller must free */ static char * epoch2ldaptime (time_t stamp) { struct tm tm; if (gmtime_r (&stamp, &tm)) return tm2ldaptime (&tm); else return xstrdup ("INVALID TIME"); } #endif /* Print a help output for the schemata supported by this module. */ gpg_error_t ks_ldap_help (ctrl_t ctrl, parsed_uri_t uri) { const char data[] = "Handler for LDAP URLs:\n" " ldap://host:port/[BASEDN]???[bindname=BINDNAME,password=PASSWORD]\n" "\n" "Note: basedn, bindname and password need to be percent escaped. In\n" "particular, spaces need to be replaced with %20 and commas with %2c.\n" "bindname will typically be of the form:\n" "\n" " uid=user%2cou=PGP%20Users%2cdc=EXAMPLE%2cdc=ORG\n" "\n" "The ldaps:// and ldapi:// schemes are also supported. If ldaps is used\n" "then the server's certificate will be checked. If it is not valid, any\n" "operation will be aborted.\n" "\n" "Supported methods: search, get, put\n"; gpg_error_t err; if(!uri) err = ks_print_help (ctrl, " ldap"); else if (strcmp (uri->scheme, "ldap") == 0 || strcmp (uri->scheme, "ldaps") == 0 || strcmp (uri->scheme, "ldapi") == 0) err = ks_print_help (ctrl, data); else err = 0; return err; } /* Convert a keyspec to a filter. Return an error if the keyspec is bad or is not supported. The filter is escaped and returned in *filter. It is the caller's responsibility to free *filter. *filter is only set if this function returns success (i.e., 0). */ static gpg_error_t keyspec_to_ldap_filter (const char *keyspec, char **filter, int only_exact, unsigned int serverinfo) { /* Remove search type indicator and adjust PATTERN accordingly. Note: don't include a preceding 0x when searching by keyid. */ /* XXX: Should we include disabled / revoke options? */ KEYDB_SEARCH_DESC desc; char *f = NULL; char *freeme = NULL; char *p; gpg_error_t err = classify_user_id (keyspec, &desc, 1); if (err) return err; switch (desc.mode) { case KEYDB_SEARCH_MODE_EXACT: f = xasprintf ("(pgpUserID=%s)", (freeme = ldap_escape_filter (desc.u.name))); break; case KEYDB_SEARCH_MODE_SUBSTR: if (! only_exact) f = xasprintf ("(pgpUserID=*%s*)", (freeme = ldap_escape_filter (desc.u.name))); break; case KEYDB_SEARCH_MODE_MAIL: freeme = ldap_escape_filter (desc.u.name); if (!freeme) break; if (*freeme == '<' && freeme[1] && freeme[2]) { /* Strip angle brackets. Note that it is does not * matter whether we work on the plan or LDAP escaped * version of the mailbox. */ p = freeme + 1; if (p[strlen(p)-1] == '>') p[strlen(p)-1] = 0; } else p = freeme; if ((serverinfo & SERVERINFO_SCHEMAV2)) f = xasprintf ("(gpgMailbox=%s)", p); else if (!only_exact) f = xasprintf ("(pgpUserID=*<%s>*)", p); break; case KEYDB_SEARCH_MODE_MAILSUB: if (! only_exact) f = xasprintf ("(pgpUserID=*<*%s*>*)", (freeme = ldap_escape_filter (desc.u.name))); break; case KEYDB_SEARCH_MODE_MAILEND: if (! only_exact) f = xasprintf ("(pgpUserID=*<*%s>*)", (freeme = ldap_escape_filter (desc.u.name))); break; case KEYDB_SEARCH_MODE_SHORT_KID: f = xasprintf ("(pgpKeyID=%08lX)", (ulong) desc.u.kid[1]); break; case KEYDB_SEARCH_MODE_LONG_KID: f = xasprintf ("(pgpCertID=%08lX%08lX)", (ulong) desc.u.kid[0], (ulong) desc.u.kid[1]); break; case KEYDB_SEARCH_MODE_FPR16: case KEYDB_SEARCH_MODE_FPR20: case KEYDB_SEARCH_MODE_FPR: if ((serverinfo & SERVERINFO_SCHEMAV2)) { freeme = bin2hex (desc.u.fpr, 20, NULL); if (!freeme) return gpg_error_from_syserror (); f = xasprintf ("(|(gpgFingerprint=%s)(gpgSubFingerprint=%s))", freeme, freeme); /* FIXME: For an exact search and in case of a match on * gpgSubFingerprint we need to check that there is only one * matching value. */ } break; case KEYDB_SEARCH_MODE_ISSUER: case KEYDB_SEARCH_MODE_ISSUER_SN: case KEYDB_SEARCH_MODE_SN: case KEYDB_SEARCH_MODE_SUBJECT: case KEYDB_SEARCH_MODE_KEYGRIP: case KEYDB_SEARCH_MODE_WORDS: case KEYDB_SEARCH_MODE_FIRST: case KEYDB_SEARCH_MODE_NEXT: default: break; } xfree (freeme); if (! f) { log_error ("Unsupported search mode.\n"); return gpg_error (GPG_ERR_NOT_SUPPORTED); } *filter = f; return 0; } /* Connect to an LDAP server and interrogate it. - uri describes the server to connect to and various options including whether to use TLS and the username and password (see ldap_parse_uri for a description of the various fields). This function returns: - The ldap connection handle in *LDAP_CONNP. - The base DN for the PGP key space by querying the pgpBaseKeySpaceDN attribute (This is normally 'ou=PGP Keys,dc=EXAMPLE,dc=ORG'). - The attribute to lookup to find the pgp key. This is either 'pgpKey' or 'pgpKeyV2'. - Whether this is a real ldap server. (It's unclear what this exactly means.) The values are returned in the passed variables. If you pass NULL, then the value won't be returned. It is the caller's responsibility to release *LDAP_CONNP with ldap_unbind and xfree *BASEDNP. If this function successfully interrogated the server, it returns 0. If there was an LDAP error, it returns the LDAP error code. If an error occurred, *basednp, etc., are undefined (and don't need to be freed.) R_SERVERINFO receives information about the server. If no LDAP error occurred, you still need to check that *basednp is valid. If it is NULL, then the server does not appear to be an OpenPGP Keyserver. */ static int my_ldap_connect (parsed_uri_t uri, LDAP **ldap_connp, char **basednp, unsigned int *r_serverinfo) { int err = 0; LDAP *ldap_conn = NULL; char *user = uri->auth; struct uri_tuple_s *password_param; char *password; char *basedn = NULL; *r_serverinfo = 0; password_param = uri_query_lookup (uri, "password"); password = password_param ? password_param->value : NULL; if (opt.debug) log_debug ("my_ldap_connect(%s:%d/%s????%s%s%s%s%s%s)\n", uri->host, uri->port, uri->path ? uri->path : "", uri->auth ? "bindname=" : "", uri->auth ? uri->auth : "", uri->auth && password ? "," : "", password ? "password=" : "", password ? ">not shown<": "", uri->ad_current? " auth=>current_user<":""); /* If the uri specifies a secure connection and we don't support TLS, then fail; don't silently revert to an insecure connection. */ if (uri->use_tls) { #ifndef HAVE_LDAP_START_TLS_S log_error ("Can't use LDAP to connect to the server: no TLS support."); err = GPG_ERR_LDAP_NOT_SUPPORTED; goto out; #endif } - if (uri->ad_current) - ldap_conn = ldap_init (NULL, uri->port); - else - ldap_conn = ldap_init (uri->host, uri->port); + ldap_conn = ldap_init (uri->host, uri->port); if (!ldap_conn) { err = gpg_err_code_from_syserror (); - if (uri->ad_current) - log_error ("error initializing LDAP for current user\n"); - else - log_error ("error initializing LDAP for (%s://%s:%d)\n", - uri->scheme, uri->host, uri->port); + log_error ("error initializing LDAP for (%s://%s:%d)\n", + uri->scheme, uri->host, uri->port); goto out; } #ifdef HAVE_LDAP_SET_OPTION { int ver = LDAP_VERSION3; err = ldap_set_option (ldap_conn, LDAP_OPT_PROTOCOL_VERSION, &ver); if (err != LDAP_SUCCESS) { log_error ("ks-ldap: unable to go to LDAP 3: %s\n", ldap_err2string (err)); goto out; } } #endif /* XXX: It would be nice to have an option to provide the server's certificate. */ #if 0 #if defined(LDAP_OPT_X_TLS_CACERTFILE) && defined(HAVE_LDAP_SET_OPTION) err = ldap_set_option (NULL, LDAP_OPT_X_TLS_CACERTFILE, ca_cert_file); if (err) { log_error ("unable to set ca-cert-file to '%s': %s\n", ca_cert_file, ldap_err2string (err)); goto out; } #endif /* LDAP_OPT_X_TLS_CACERTFILE && HAVE_LDAP_SET_OPTION */ #endif #ifdef HAVE_LDAP_START_TLS_S if (uri->use_tls) { /* XXX: We need an option to determine whether to abort if the certificate is bad or not. Right now we conservatively default to checking the certificate and aborting. */ #ifndef HAVE_W32_SYSTEM int check_cert = LDAP_OPT_X_TLS_HARD; /* LDAP_OPT_X_TLS_NEVER */ err = ldap_set_option (ldap_conn, LDAP_OPT_X_TLS_REQUIRE_CERT, &check_cert); if (err) { log_error ("error setting TLS option on LDAP connection\n"); goto out; } #else /* On Windows, the certificates are checked by default. If the option to disable checking mentioned above is ever implemented, the way to do that on Windows is to install a callback routine using ldap_set_option (.., LDAP_OPT_SERVER_CERTIFICATE, ..); */ #endif npth_unprotect (); err = ldap_start_tls_s (ldap_conn, #ifdef HAVE_W32_SYSTEM /* ServerReturnValue, result */ NULL, NULL, #endif /* ServerControls, ClientControls */ NULL, NULL); npth_protect (); if (err) { log_error ("error connecting to LDAP server with TLS\n"); goto out; } } #endif if (uri->ad_current) { if (opt.debug) log_debug ("LDAP bind to current user via AD\n"); #ifdef HAVE_W32_SYSTEM npth_unprotect (); err = ldap_bind_s (ldap_conn, NULL, NULL, LDAP_AUTH_NEGOTIATE); npth_protect (); -#else - err = gpg_error (GPG_ERR_NOT_SUPPORTED); -#endif if (err != LDAP_SUCCESS) { log_error ("error binding to LDAP via AD: %s\n", ldap_err2string (err)); goto out; } +#else + err = gpg_error (GPG_ERR_NOT_SUPPORTED); + goto out; +#endif } else if (uri->auth) { if (opt.debug) log_debug ("LDAP bind to %s, password %s\n", user, password ? ">not shown<" : ">none<"); npth_unprotect (); err = ldap_simple_bind_s (ldap_conn, user, password); npth_protect (); if (err != LDAP_SUCCESS) { log_error ("error binding to LDAP: %s\n", ldap_err2string (err)); goto out; } } else { /* By default we don't bind as there is usually no need to. */ } if (uri->path && *uri->path) { /* User specified base DN. */ basedn = xstrdup (uri->path); /* If the user specifies a base DN, then we know the server is a * real LDAP server. */ *r_serverinfo |= SERVERINFO_REALLDAP; } else { /* Look for namingContexts. */ LDAPMessage *res = NULL; char *attr[] = { "namingContexts", NULL }; npth_unprotect (); err = ldap_search_s (ldap_conn, "", LDAP_SCOPE_BASE, "(objectClass=*)", attr, 0, &res); npth_protect (); if (err == LDAP_SUCCESS) { char **context; npth_unprotect (); context = ldap_get_values (ldap_conn, res, "namingContexts"); npth_protect (); if (context) { /* We found some, so try each namingContext as the * search base and look for pgpBaseKeySpaceDN. Because * we found this, we know we're talking to a regular-ish * LDAP server and not an LDAP keyserver. */ int i; char *attr2[] = { "pgpBaseKeySpaceDN", "pgpVersion", "pgpSoftware", NULL }; *r_serverinfo |= SERVERINFO_REALLDAP; for (i = 0; context[i] && ! basedn; i++) { char **vals; LDAPMessage *si_res; int is_gnupg = 0; { char *object = xasprintf ("cn=pgpServerInfo,%s", context[i]); npth_unprotect (); err = ldap_search_s (ldap_conn, object, LDAP_SCOPE_BASE, "(objectClass=*)", attr2, 0, &si_res); npth_protect (); xfree (object); } if (err == LDAP_SUCCESS) { vals = ldap_get_values (ldap_conn, si_res, "pgpBaseKeySpaceDN"); if (vals) { basedn = xtrystrdup (vals[0]); ldap_value_free (vals); } vals = ldap_get_values (ldap_conn, si_res, "pgpSoftware"); if (vals) { if (opt.debug) log_debug ("Server: \t%s\n", vals[0]); if (!ascii_strcasecmp (vals[0], "GnuPG")) is_gnupg = 1; ldap_value_free (vals); } vals = ldap_get_values (ldap_conn, si_res, "pgpVersion"); if (vals) { if (opt.debug) log_debug ("Version:\t%s\n", vals[0]); if (is_gnupg) { char *fields[2]; int nfields; nfields = split_fields (vals[0], fields, DIM(fields)); if (nfields > 0 && atoi(fields[0]) > 1) *r_serverinfo |= SERVERINFO_SCHEMAV2; if (nfields > 1 && !ascii_strcasecmp (fields[1], "ntds")) *r_serverinfo |= SERVERINFO_NTDS; } ldap_value_free (vals); } } /* From man ldap_search_s: "res parameter of ldap_search_ext_s() and ldap_search_s() should be freed with ldap_msgfree() regardless of return value of these functions. */ ldap_msgfree (si_res); } ldap_value_free (context); } } else { /* We don't have an answer yet, which means the server might be a PGP.com keyserver. */ char **vals; LDAPMessage *si_res = NULL; char *attr2[] = { "pgpBaseKeySpaceDN", "version", "software", NULL }; npth_unprotect (); err = ldap_search_s (ldap_conn, "cn=pgpServerInfo", LDAP_SCOPE_BASE, "(objectClass=*)", attr2, 0, &si_res); npth_protect (); if (err == LDAP_SUCCESS) { /* For the PGP LDAP keyserver, this is always * "OU=ACTIVE,O=PGP KEYSPACE,C=US", but it might not be * in the future. */ vals = ldap_get_values (ldap_conn, si_res, "baseKeySpaceDN"); if (vals) { basedn = xtrystrdup (vals[0]); ldap_value_free (vals); } vals = ldap_get_values (ldap_conn, si_res, "software"); if (vals) { if (opt.debug) log_debug ("ks-ldap: PGP Server: \t%s\n", vals[0]); ldap_value_free (vals); } vals = ldap_get_values (ldap_conn, si_res, "version"); if (vals) { if (opt.debug) log_debug ("ks-ldap: PGP Server Version:\t%s\n", vals[0]); /* If the version is high enough, use the new pgpKeyV2 attribute. This design is iffy at best, but it matches how PGP does it. I figure the NAI folks assumed that there would never be an LDAP keyserver vendor with a different numbering scheme. */ if (atoi (vals[0]) > 1) *r_serverinfo |= SERVERINFO_PGPKEYV2; ldap_value_free (vals); } } ldap_msgfree (si_res); } /* From man ldap_search_s: "res parameter of ldap_search_ext_s() and ldap_search_s() should be freed with ldap_msgfree() regardless of return value of these functions. */ ldap_msgfree (res); } out: if (!err && opt.debug) { log_debug ("ldap_conn: %p\n", ldap_conn); log_debug ("server_type: %s\n", ((*r_serverinfo & SERVERINFO_REALLDAP) ? "LDAP" : "PGP.com keyserver") ); log_debug ("basedn: %s\n", basedn); log_debug ("pgpkeyattr: %s\n", (*r_serverinfo & SERVERINFO_PGPKEYV2)? "pgpKeyV2":"pgpKey"); } if (err) xfree (basedn); else { if (basednp) *basednp = basedn; else xfree (basedn); } if (err) { if (ldap_conn) ldap_unbind (ldap_conn); } else *ldap_connp = ldap_conn; return err; } /* Extract keys from an LDAP reply and write them out to the output stream OUTPUT in a format GnuPG can import (either the OpenPGP binary format or armored format). */ static void extract_keys (estream_t output, LDAP *ldap_conn, const char *certid, LDAPMessage *message) { char **vals; es_fprintf (output, "INFO %s BEGIN\n", certid); es_fprintf (output, "pub:%s:", certid); /* Note: ldap_get_values returns a NULL terminated array of strings. */ vals = ldap_get_values (ldap_conn, message, "pgpkeytype"); if (vals && vals[0]) { if (strcmp (vals[0], "RSA") == 0) es_fprintf (output, "1"); else if (strcmp (vals[0],"DSS/DH") == 0) es_fprintf (output, "17"); ldap_value_free (vals); } es_fprintf (output, ":"); vals = ldap_get_values (ldap_conn, message, "pgpkeysize"); if (vals && vals[0]) { int v = atoi (vals[0]); if (v > 0) es_fprintf (output, "%d", v); ldap_value_free (vals); } es_fprintf (output, ":"); vals = ldap_get_values (ldap_conn, message, "pgpkeycreatetime"); if (vals && vals[0]) { if (strlen (vals[0]) == 15) es_fprintf (output, "%u", (unsigned int) ldap2epochtime (vals[0])); ldap_value_free (vals); } es_fprintf (output, ":"); vals = ldap_get_values (ldap_conn, message, "pgpkeyexpiretime"); if (vals && vals[0]) { if (strlen (vals[0]) == 15) es_fprintf (output, "%u", (unsigned int) ldap2epochtime (vals[0])); ldap_value_free (vals); } es_fprintf (output, ":"); vals = ldap_get_values (ldap_conn, message, "pgprevoked"); if (vals && vals[0]) { if (atoi (vals[0]) == 1) es_fprintf (output, "r"); ldap_value_free (vals); } es_fprintf (output, "\n"); vals = ldap_get_values (ldap_conn, message, "pgpuserid"); if (vals && vals[0]) { int i; for (i = 0; vals[i]; i++) es_fprintf (output, "uid:%s\n", vals[i]); ldap_value_free (vals); } es_fprintf (output, "INFO %s END\n", certid); } /* Get the key described key the KEYSPEC string from the keyserver identified by URI. On success R_FP has an open stream to read the data. */ gpg_error_t ks_ldap_get (ctrl_t ctrl, parsed_uri_t uri, const char *keyspec, estream_t *r_fp) { gpg_error_t err = 0; int ldap_err; unsigned int serverinfo; char *filter = NULL; LDAP *ldap_conn = NULL; char *basedn = NULL; estream_t fp = NULL; LDAPMessage *message = NULL; (void) ctrl; if (dirmngr_use_tor ()) { /* For now we do not support LDAP over Tor. */ log_error (_("LDAP access not possible due to Tor mode\n")); return gpg_error (GPG_ERR_NOT_SUPPORTED); } /* Make sure we are talking to an OpenPGP LDAP server. */ ldap_err = my_ldap_connect (uri, &ldap_conn, &basedn, &serverinfo); if (ldap_err || !basedn) { if (ldap_err) err = ldap_err_to_gpg_err (ldap_err); else err = gpg_error (GPG_ERR_GENERAL); goto out; } /* Now that we have information about the server we can construct a * query best suited for the capabilities of the server. */ err = keyspec_to_ldap_filter (keyspec, &filter, 1, serverinfo); if (err) goto out; if (opt.debug) log_debug ("ks-ldap: using filter: %s\n", filter); { /* The ordering is significant. Specifically, "pgpcertid" needs to be the second item in the list, since everything after it may be discarded we aren't in verbose mode. */ char *attrs[] = { "dummy", "pgpcertid", "pgpuserid", "pgpkeyid", "pgprevoked", "pgpdisabled", "pgpkeycreatetime", "modifytimestamp", "pgpkeysize", "pgpkeytype", NULL }; /* 1 if we want just attribute types; 0 if we want both attribute * types and values. */ int attrsonly = 0; int count; /* Replace "dummy". */ attrs[0] = (serverinfo & SERVERINFO_PGPKEYV2)? "pgpKeyV2" : "pgpKey"; npth_unprotect (); ldap_err = ldap_search_s (ldap_conn, basedn, LDAP_SCOPE_SUBTREE, filter, attrs, attrsonly, &message); npth_protect (); if (ldap_err) { err = ldap_err_to_gpg_err (ldap_err); log_error ("ks-ldap: LDAP search error: %s\n", ldap_err2string (ldap_err)); goto out; } count = ldap_count_entries (ldap_conn, message); if (count < 1) { log_info ("ks-ldap: key %s not found on keyserver\n", keyspec); if (count == -1) err = ldap_to_gpg_err (ldap_conn); else err = gpg_error (GPG_ERR_NO_DATA); goto out; } { /* There may be more than one unique result for a given keyID, so we should fetch them all (test this by fetching short key id 0xDEADBEEF). */ /* The set of entries that we've seen. */ strlist_t seen = NULL; LDAPMessage *each; for (npth_unprotect (), each = ldap_first_entry (ldap_conn, message), npth_protect (); each; npth_unprotect (), each = ldap_next_entry (ldap_conn, each), npth_protect ()) { char **vals; char **certid; /* Use the long keyid to remove duplicates. The LDAP server returns the same keyid more than once if there are multiple user IDs on the key. Note that this does NOT mean that a keyid that exists multiple times on the keyserver will not be fetched. It means that each KEY, no matter how many user IDs share its keyid, will be fetched only once. If a keyid that belongs to more than one key is fetched, the server quite properly responds with all matching keys. -ds */ certid = ldap_get_values (ldap_conn, each, "pgpcertid"); if (certid && certid[0]) { if (! strlist_find (seen, certid[0])) { /* It's not a duplicate, add it */ add_to_strlist (&seen, certid[0]); if (! fp) fp = es_fopenmem(0, "rw"); extract_keys (fp, ldap_conn, certid[0], each); vals = ldap_get_values (ldap_conn, each, attrs[0]); if (! vals) { err = ldap_to_gpg_err (ldap_conn); log_error("ks-ldap: unable to retrieve key %s " "from keyserver\n", certid[0]); goto out; } else { /* We should strip the new lines. */ es_fprintf (fp, "KEY 0x%s BEGIN\n", certid[0]); es_fputs (vals[0], fp); es_fprintf (fp, "\nKEY 0x%s END\n", certid[0]); ldap_value_free (vals); } } } ldap_value_free (certid); } free_strlist (seen); if (! fp) err = gpg_error (GPG_ERR_NO_DATA); } } out: if (message) ldap_msgfree (message); if (err) { if (fp) es_fclose (fp); } else { if (fp) es_fseek (fp, 0, SEEK_SET); *r_fp = fp; } xfree (basedn); if (ldap_conn) ldap_unbind (ldap_conn); xfree (filter); return err; } /* Search the keyserver identified by URI for keys matching PATTERN. On success R_FP has an open stream to read the data. */ gpg_error_t ks_ldap_search (ctrl_t ctrl, parsed_uri_t uri, const char *pattern, estream_t *r_fp) { gpg_error_t err; int ldap_err; unsigned int serverinfo; char *filter = NULL; LDAP *ldap_conn = NULL; char *basedn = NULL; estream_t fp = NULL; (void) ctrl; if (dirmngr_use_tor ()) { /* For now we do not support LDAP over Tor. */ log_error (_("LDAP access not possible due to Tor mode\n")); return gpg_error (GPG_ERR_NOT_SUPPORTED); } /* Make sure we are talking to an OpenPGP LDAP server. */ ldap_err = my_ldap_connect (uri, &ldap_conn, &basedn, &serverinfo); if (ldap_err || !basedn) { if (ldap_err) err = ldap_err_to_gpg_err (ldap_err); else err = GPG_ERR_GENERAL; goto out; } /* Now that we have information about the server we can construct a * query best suited for the capabilities of the server. */ err = keyspec_to_ldap_filter (pattern, &filter, 0, serverinfo); if (err) { log_error ("Bad search pattern: '%s'\n", pattern); goto out; } /* Even if we have no results, we want to return a stream. */ fp = es_fopenmem(0, "rw"); if (!fp) { err = gpg_error_from_syserror (); goto out; } { char **vals; LDAPMessage *res, *each; int count = 0; strlist_t dupelist = NULL; /* The maximum size of the search, including the optional stuff and the trailing \0 */ char *attrs[] = { "pgpcertid", "pgpuserid", "pgprevoked", "pgpdisabled", "pgpkeycreatetime", "pgpkeyexpiretime", "modifytimestamp", "pgpkeysize", "pgpkeytype", NULL }; if (opt.debug) log_debug ("SEARCH '%s' => '%s' BEGIN\n", pattern, filter); npth_unprotect (); ldap_err = ldap_search_s (ldap_conn, basedn, LDAP_SCOPE_SUBTREE, filter, attrs, 0, &res); npth_protect (); xfree (filter); filter = NULL; if (ldap_err != LDAP_SUCCESS && ldap_err != LDAP_SIZELIMIT_EXCEEDED) { err = ldap_err_to_gpg_err (ldap_err); log_error ("SEARCH %s FAILED %d\n", pattern, err); log_error ("ks-ldap: LDAP search error: %s\n", ldap_err2string (err)); goto out; } /* The LDAP server doesn't return a real count of unique keys, so we can't use ldap_count_entries here. */ for (npth_unprotect (), each = ldap_first_entry (ldap_conn, res), npth_protect (); each; npth_unprotect (), each = ldap_next_entry (ldap_conn, each), npth_protect ()) { char **certid = ldap_get_values (ldap_conn, each, "pgpcertid"); if (certid && certid[0] && ! strlist_find (dupelist, certid[0])) { add_to_strlist (&dupelist, certid[0]); count++; } } if (ldap_err == LDAP_SIZELIMIT_EXCEEDED) { if (count == 1) log_error ("ks-ldap: search results exceeded server limit." " First 1 result shown.\n"); else log_error ("ks-ldap: search results exceeded server limit." " First %d results shown.\n", count); } free_strlist (dupelist); dupelist = NULL; if (count < 1) es_fputs ("info:1:0\n", fp); else { es_fprintf (fp, "info:1:%d\n", count); for (each = ldap_first_entry (ldap_conn, res); each; each = ldap_next_entry (ldap_conn, each)) { char **certid; LDAPMessage *uids; certid = ldap_get_values (ldap_conn, each, "pgpcertid"); if (! certid || ! certid[0]) continue; /* Have we seen this certid before? */ if (! strlist_find (dupelist, certid[0])) { add_to_strlist (&dupelist, certid[0]); es_fprintf (fp, "pub:%s:",certid[0]); vals = ldap_get_values (ldap_conn, each, "pgpkeytype"); if (vals) { /* The LDAP server doesn't exactly handle this well. */ if (strcasecmp (vals[0], "RSA") == 0) es_fputs ("1", fp); else if (strcasecmp (vals[0], "DSS/DH") == 0) es_fputs ("17", fp); ldap_value_free (vals); } es_fputc (':', fp); vals = ldap_get_values (ldap_conn, each, "pgpkeysize"); if (vals) { /* Not sure why, but some keys are listed with a key size of 0. Treat that like an unknown. */ if (atoi (vals[0]) > 0) es_fprintf (fp, "%d", atoi (vals[0])); ldap_value_free (vals); } es_fputc (':', fp); /* YYYYMMDDHHmmssZ */ vals = ldap_get_values (ldap_conn, each, "pgpkeycreatetime"); if(vals && strlen (vals[0]) == 15) { es_fprintf (fp, "%u", (unsigned int) ldap2epochtime(vals[0])); ldap_value_free (vals); } es_fputc (':', fp); vals = ldap_get_values (ldap_conn, each, "pgpkeyexpiretime"); if (vals && strlen (vals[0]) == 15) { es_fprintf (fp, "%u", (unsigned int) ldap2epochtime (vals[0])); ldap_value_free (vals); } es_fputc (':', fp); vals = ldap_get_values (ldap_conn, each, "pgprevoked"); if (vals) { if (atoi (vals[0]) == 1) es_fprintf (fp, "r"); ldap_value_free (vals); } vals = ldap_get_values (ldap_conn, each, "pgpdisabled"); if (vals) { if (atoi (vals[0]) ==1) es_fprintf (fp, "d"); ldap_value_free (vals); } #if 0 /* This is not yet specified in the keyserver protocol, but may be someday. */ es_fputc (':', fp); vals = ldap_get_values (ldap_conn, each, "modifytimestamp"); if(vals && strlen (vals[0]) == 15) { es_fprintf (fp, "%u", (unsigned int) ldap2epochtime (vals[0])); ldap_value_free (vals); } #endif es_fprintf (fp, "\n"); /* Now print all the uids that have this certid */ for (uids = ldap_first_entry (ldap_conn, res); uids; uids = ldap_next_entry (ldap_conn, uids)) { vals = ldap_get_values (ldap_conn, uids, "pgpcertid"); if (! vals) continue; if (strcasecmp (certid[0], vals[0]) == 0) { char **uidvals; es_fprintf (fp, "uid:"); uidvals = ldap_get_values (ldap_conn, uids, "pgpuserid"); if (uidvals) { /* Need to escape any colons */ char *quoted = percent_escape (uidvals[0], NULL); es_fputs (quoted, fp); xfree (quoted); ldap_value_free (uidvals); } es_fprintf (fp, "\n"); } ldap_value_free(vals); } } ldap_value_free (certid); } } ldap_msgfree (res); free_strlist (dupelist); } if (opt.debug) log_debug ("SEARCH %s END\n", pattern); out: if (err) { if (fp) es_fclose (fp); } else { /* Return the read stream. */ if (fp) es_fseek (fp, 0, SEEK_SET); *r_fp = fp; } xfree (basedn); if (ldap_conn) ldap_unbind (ldap_conn); xfree (filter); return err; } /* A modlist describes a set of changes to an LDAP entry. (An entry consists of 1 or more attributes. Attributes are pairs. Note: an attribute may be multi-valued in which case multiple values are associated with a single name.) A modlist is a NULL terminated array of struct LDAPMod's. Thus, if we have: LDAPMod **modlist; Then: modlist[i] Is the ith modification. Each LDAPMod describes a change to a single attribute. Further, there is one modification for each attribute that we want to change. The attribute's new value is stored in LDAPMod.mod_values. If the attribute is multi-valued, we still only use a single LDAPMod structure: mod_values is a NULL-terminated array of strings. To delete an attribute from an entry, we set mod_values to NULL. Thus, if: modlist[i]->mod_values == NULL then we remove the attribute. (Using LDAP_MOD_DELETE doesn't work here as we don't know if the attribute in question exists or not.) Note: this function does NOT copy or free ATTR. It does copy VALUE. */ static void modlist_add (LDAPMod ***modlistp, char *attr, const char *value) { LDAPMod **modlist = *modlistp; LDAPMod **m; int nummods = 0; /* Search modlist for the attribute we're playing with. If modlist is NULL, then the list is empty. Recall: modlist is a NULL terminated array. */ for (m = modlist; m && *m; m++, nummods ++) { /* The attribute is already on the list. */ char **ptr; int numvalues = 0; if (strcasecmp ((*m)->mod_type, attr) != 0) continue; /* We have this attribute already, so when the REPLACE happens, the server attributes will be replaced anyway. */ if (! value) return; /* Attributes can be multi-valued. See if the value is already present. mod_values is a NULL terminated array of pointers. Note: mod_values can be NULL. */ for (ptr = (*m)->mod_values; ptr && *ptr; ptr++) { if (strcmp (*ptr, value) == 0) /* Duplicate value, we're done. */ return; numvalues ++; } /* Append the value. */ ptr = xrealloc ((*m)->mod_values, sizeof (char *) * (numvalues + 2)); (*m)->mod_values = ptr; ptr[numvalues] = xstrdup (value); ptr[numvalues + 1] = NULL; return; } /* We didn't find the attr, so make one and add it to the end */ /* Like attribute values, the list of attributes is NULL terminated array of pointers. */ modlist = xrealloc (modlist, sizeof (LDAPMod *) * (nummods + 2)); *modlistp = modlist; modlist[nummods] = xmalloc (sizeof (LDAPMod)); modlist[nummods]->mod_op = LDAP_MOD_REPLACE; modlist[nummods]->mod_type = attr; if (value) { modlist[nummods]->mod_values = xmalloc (sizeof(char *) * 2); modlist[nummods]->mod_values[0] = xstrdup (value); modlist[nummods]->mod_values[1] = NULL; } else modlist[nummods]->mod_values = NULL; modlist[nummods + 1] = NULL; return; } /* Look up the value of an attribute in the specified modlist. If the attribute is not on the mod list, returns NULL. The result is a NULL-terminated array of strings. Don't change it. */ static char ** modlist_lookup (LDAPMod **modlist, const char *attr) { LDAPMod **m; for (m = modlist; m && *m; m++) { if (strcasecmp ((*m)->mod_type, attr) != 0) continue; return (*m)->mod_values; } return NULL; } /* Dump a modlist to a file. This is useful for debugging. */ static estream_t modlist_dump (LDAPMod **modlist, estream_t output) GPGRT_ATTR_USED; static estream_t modlist_dump (LDAPMod **modlist, estream_t output) { LDAPMod **m; int opened = 0; if (! output) { output = es_fopenmem (0, "rw"); if (!output) return NULL; opened = 1; } for (m = modlist; m && *m; m++) { es_fprintf (output, " %s:", (*m)->mod_type); if (! (*m)->mod_values) es_fprintf(output, " delete.\n"); else { char **ptr; int i; int multi = 0; if ((*m)->mod_values[0] && (*m)->mod_values[1]) /* Have at least 2. */ multi = 1; if (multi) es_fprintf (output, "\n"); for ((ptr = (*m)->mod_values), (i = 1); ptr && *ptr; ptr++, i ++) { /* Assuming terminals are about 80 characters wide, display at most about 10 lines of debugging output. If we do trim the buffer, append '...' to the end. */ const int max_len = 10 * 70; size_t value_len = strlen (*ptr); int elide = value_len > max_len; if (multi) es_fprintf (output, " %d. ", i); es_fprintf (output, "`%.*s", max_len, *ptr); if (elide) es_fprintf (output, "...' (%zd bytes elided)", value_len - max_len); else es_fprintf (output, "'"); es_fprintf (output, "\n"); } } } if (opened) es_fseek (output, 0, SEEK_SET); return output; } /* Free all of the memory allocated by the mod list. This assumes that the attribute names don't have to be freed, but the attributes values do. (Which is what modlist_add does.) */ static void modlist_free (LDAPMod **modlist) { LDAPMod **ml; if (! modlist) return; /* Unwind and free the whole modlist structure */ /* The modlist is a NULL terminated array of pointers. */ for (ml = modlist; *ml; ml++) { LDAPMod *mod = *ml; char **ptr; /* The list of values is a NULL termianted array of pointers. If the list is NULL, there are no values. */ if (mod->mod_values) { for (ptr = mod->mod_values; *ptr; ptr++) xfree (*ptr); xfree (mod->mod_values); } xfree (mod); } xfree (modlist); } /* Append two onto the end of one. Two is not freed, but its pointers are now part of one. Make sure you don't free them both! As long as you don't add anything to ONE, TWO is still valid. After that all bets are off. */ static void modlists_join (LDAPMod ***one, LDAPMod **two) { int i, one_count = 0, two_count = 0; LDAPMod **grow; if (!*two) /* two is empty. Nothing to do. */ return; if (!*one) /* one is empty. Just set it equal to *two. */ { *one = two; return; } for (grow = *one; *grow; grow++) one_count ++; for (grow = two; *grow; grow++) two_count ++; grow = xrealloc (*one, sizeof(LDAPMod *) * (one_count + two_count + 1)); for (i = 0; i < two_count; i++) grow[one_count + i] = two[i]; grow[one_count + i] = NULL; *one = grow; } /* Given a string, unescape C escapes. In particular, \xXX. This modifies the string in place. */ static void uncescape (char *str) { size_t r = 0; size_t w = 0; char *first = strchr (str, '\\'); if (! first) /* No backslashes => no escaping. We're done. */ return; /* Start at the first '\\'. */ r = w = (uintptr_t) first - (uintptr_t) str; while (str[r]) { /* XXX: What to do about bad escapes? XXX: hextobyte already checks the string thus the hexdigitp could be removed. */ if (str[r] == '\\' && str[r + 1] == 'x' && str[r+2] && str[r+3] && hexdigitp (str + r + 2) && hexdigitp (str + r + 3)) { int x = hextobyte (&str[r + 2]); assert (0 <= x && x <= 0xff); str[w] = x; /* We consumed 4 characters and wrote 1. */ r += 4; w ++; } else str[w ++] = str[r ++]; } str[w] = '\0'; } /* Given one line from an info block (`gpg --list-{keys,sigs} --with-colons KEYID'), pull it apart and fill in the modlist with the relevant (for the LDAP schema) attributes. EXTRACT_STATE should initally be set to 0 by the caller. SCHEMAV2 is set if the server supports the version 2 schema. */ static void extract_attributes (LDAPMod ***modlist, int *extract_state, char *line, int schemav2) { int field_count; char **fields; char *keyid; int is_pub, is_sub, is_uid, is_sig; /* Remove trailing whitespace */ trim_trailing_spaces (line); fields = strsplit (line, ':', '\0', &field_count); if (field_count == 1) /* We only have a single field. There is definitely nothing to do. */ goto out; if (field_count < 7) goto out; is_pub = !ascii_strcasecmp ("pub", fields[0]); is_sub = !ascii_strcasecmp ("sub", fields[0]); is_uid = !ascii_strcasecmp ("uid", fields[0]); is_sig = !ascii_strcasecmp ("sig", fields[0]); if (!ascii_strcasecmp ("fpr", fields[0])) { /* Special treatment for a fingerprint. */ if (!(*extract_state & 1)) goto out; /* Stray fingerprint line - ignore. */ *extract_state &= ~1; if (field_count >= 10 && schemav2) { if ((*extract_state & 2)) modlist_add (modlist, "gpgFingerprint", fields[9]); else modlist_add (modlist, "gpgSubFingerprint", fields[9]); } goto out; } *extract_state &= ~(1|2); if (is_pub) *extract_state |= (1|2); else if (is_sub) *extract_state |= 1; if (!is_pub && !is_sub && !is_uid && !is_sig) goto out; /* Not a relevant line. */ keyid = fields[4]; if (is_uid && strlen (keyid) == 0) ; /* The uid record type can have an empty keyid. */ else if (strlen (keyid) == 16 && strspn (keyid, "0123456789aAbBcCdDeEfF") == 16) ; /* Otherwise, we expect exactly 16 hex characters. */ else { log_error ("malformed record!\n"); goto out; } if (is_pub) { int disabled = 0; int revoked = 0; char *flags; for (flags = fields[1]; *flags; flags ++) switch (*flags) { case 'r': case 'R': revoked = 1; break; case 'd': case 'D': disabled = 1; break; } /* Note: we always create the pgpDisabled and pgpRevoked attributes, regardless of whether the key is disabled/revoked or not. This is because a very common search is like "(&(pgpUserID=*isabella*)(pgpDisabled=0))" */ if (is_pub) { modlist_add (modlist,"pgpDisabled", disabled ? "1" : "0"); modlist_add (modlist,"pgpRevoked", revoked ? "1" : "0"); } } if (is_pub || is_sub) { char padded[6]; int val; val = atoi (fields[2]); if (val < 99999 && val > 0) { /* We zero pad this on the left to make PGP happy. */ snprintf (padded, sizeof padded, "%05u", val); modlist_add (modlist, "pgpKeySize", padded); } } if (is_pub) { char *algo = fields[3]; int val = atoi (algo); switch (val) { case 1: algo = "RSA"; break; case 17: algo = "DSS/DH"; break; default: algo = NULL; break; } if (algo) modlist_add (modlist, "pgpKeyType", algo); } if (is_pub || is_sub || is_sig) { if (is_pub) { modlist_add (modlist, "pgpCertID", keyid); /* Long keyid(!) */ modlist_add (modlist, "pgpKeyID", &keyid[8]); /* Short keyid */ } if (is_sub) modlist_add (modlist, "pgpSubKeyID", keyid); /* Long keyid(!) */ } if (is_pub) { char *create_time = fields[5]; if (strlen (create_time) == 0) create_time = NULL; else { char *create_time_orig = create_time; struct tm tm; time_t t; char *end; memset (&tm, 0, sizeof (tm)); /* parse_timestamp handles both seconds fromt he epoch and ISO 8601 format. We also need to handle YYYY-MM-DD format (as generated by gpg1 --with-colons --list-key). Check that first and then if it fails, then try parse_timestamp. */ if (!isodate_human_to_tm (create_time, &tm)) create_time = tm2ldaptime (&tm); else if ((t = parse_timestamp (create_time, &end)) != (time_t) -1 && *end == '\0') { if (!gnupg_gmtime (&t, &tm)) create_time = NULL; else create_time = tm2ldaptime (&tm); } else create_time = NULL; if (! create_time) /* Failed to parse string. */ log_error ("Failed to parse creation time ('%s')", create_time_orig); } if (create_time) { modlist_add (modlist, "pgpKeyCreateTime", create_time); xfree (create_time); } } if (is_pub) { char *expire_time = fields[6]; if (strlen (expire_time) == 0) expire_time = NULL; else { char *expire_time_orig = expire_time; struct tm tm; time_t t; char *end; memset (&tm, 0, sizeof (tm)); /* parse_timestamp handles both seconds fromt he epoch and ISO 8601 format. We also need to handle YYYY-MM-DD format (as generated by gpg1 --with-colons --list-key). Check that first and then if it fails, then try parse_timestamp. */ if (!isodate_human_to_tm (expire_time, &tm)) expire_time = tm2ldaptime (&tm); else if ((t = parse_timestamp (expire_time, &end)) != (time_t) -1 && *end == '\0') { if (!gnupg_gmtime (&t, &tm)) expire_time = NULL; else expire_time = tm2ldaptime (&tm); } else expire_time = NULL; if (! expire_time) /* Failed to parse string. */ log_error ("Failed to parse creation time ('%s')", expire_time_orig); } if (expire_time) { modlist_add (modlist, "pgpKeyExpireTime", expire_time); xfree (expire_time); } } if (is_uid && field_count >= 10) { char *uid = fields[9]; char *mbox; uncescape (uid); modlist_add (modlist, "pgpUserID", uid); if (schemav2 && (mbox = mailbox_from_userid (uid))) { modlist_add (modlist, "gpgMailbox", mbox); xfree (mbox); } } out: xfree (fields); } /* Send the key in {KEY,KEYLEN} with the metadata {INFO,INFOLEN} to the keyserver identified by URI. See server.c:cmd_ks_put for the format of the data and metadata. */ gpg_error_t ks_ldap_put (ctrl_t ctrl, parsed_uri_t uri, void *data, size_t datalen, void *info, size_t infolen) { gpg_error_t err = 0; int ldap_err; unsigned int serverinfo; LDAP *ldap_conn = NULL; char *basedn = NULL; LDAPMod **modlist = NULL; LDAPMod **addlist = NULL; char *data_armored = NULL; int extract_state; /* The last byte of the info block. */ const char *infoend = (const char *) info + infolen - 1; /* Enable this code to dump the modlist to /tmp/modlist.txt. */ #if 0 # warning Disable debug code before checking in. const int dump_modlist = 1; #else const int dump_modlist = 0; #endif estream_t dump = NULL; /* Elide a warning. */ (void) ctrl; if (dirmngr_use_tor ()) { /* For now we do not support LDAP over Tor. */ log_error (_("LDAP access not possible due to Tor mode\n")); return gpg_error (GPG_ERR_NOT_SUPPORTED); } ldap_err = my_ldap_connect (uri, &ldap_conn, &basedn, &serverinfo); if (ldap_err || !basedn) { if (ldap_err) err = ldap_err_to_gpg_err (ldap_err); else err = GPG_ERR_GENERAL; goto out; } if (!(serverinfo & SERVERINFO_REALLDAP)) { /* We appear to have a PGP.com Keyserver, which can unpack the * key on its own (not just a dump LDAP server). This will * rarely be the case these days. */ LDAPMod mod; LDAPMod *attrs[2]; char *key[2]; char *dn; key[0] = data; key[1] = NULL; memset (&mod, 0, sizeof (mod)); mod.mod_op = LDAP_MOD_ADD; mod.mod_type = (serverinfo & SERVERINFO_PGPKEYV2)? "pgpKeyV2":"pgpKey"; mod.mod_values = key; attrs[0] = &mod; attrs[1] = NULL; dn = xtryasprintf ("pgpCertid=virtual,%s", basedn); if (!dn) { err = gpg_error_from_syserror (); goto out; } ldap_err = ldap_add_s (ldap_conn, dn, attrs); xfree (dn); if (ldap_err != LDAP_SUCCESS) { err = ldap_err_to_gpg_err (err); goto out; } goto out; } modlist = xtrymalloc (sizeof (LDAPMod *)); if (!modlist) { err = gpg_error_from_syserror (); goto out; } *modlist = NULL; if (dump_modlist) { dump = es_fopen("/tmp/modlist.txt", "w"); if (! dump) log_error ("Failed to open /tmp/modlist.txt: %s\n", strerror (errno)); if (dump) { es_fprintf(dump, "data (%zd bytes)\n", datalen); es_fprintf(dump, "info (%zd bytes): '\n", infolen); es_fwrite(info, infolen, 1, dump); es_fprintf(dump, "'\n"); } } /* Start by nulling out all attributes. We try and do a modify operation first, so this ensures that we don't leave old attributes lying around. */ modlist_add (&modlist, "pgpDisabled", NULL); modlist_add (&modlist, "pgpKeyID", NULL); modlist_add (&modlist, "pgpKeyType", NULL); modlist_add (&modlist, "pgpUserID", NULL); modlist_add (&modlist, "pgpKeyCreateTime", NULL); modlist_add (&modlist, "pgpRevoked", NULL); modlist_add (&modlist, "pgpSubKeyID", NULL); modlist_add (&modlist, "pgpKeySize", NULL); modlist_add (&modlist, "pgpKeyExpireTime", NULL); modlist_add (&modlist, "pgpCertID", NULL); if ((serverinfo & SERVERINFO_SCHEMAV2)) { modlist_add (&modlist, "gpgFingerprint", NULL); modlist_add (&modlist, "gpgSubFingerprint", NULL); modlist_add (&modlist, "gpgMailbox", NULL); } /* Assemble the INFO stuff into LDAP attributes */ extract_state = 0; while (infolen > 0) { char *temp = NULL; char *newline = memchr (info, '\n', infolen); if (! newline) /* The last line is not \n terminated! Make a copy so we can add a NUL terminator. */ { temp = xmalloc (infolen + 1); memcpy (temp, info, infolen); info = temp; newline = (char *) info + infolen; } *newline = '\0'; extract_attributes (&addlist, &extract_state, info, (serverinfo & SERVERINFO_SCHEMAV2)); infolen = infolen - ((uintptr_t) newline - (uintptr_t) info + 1); info = newline + 1; /* Sanity check. */ if (! temp) log_assert ((char *) info + infolen - 1 == infoend); else { log_assert (infolen == -1); xfree (temp); } } modlist_add (&addlist, "objectClass", "pgpKeyInfo"); err = armor_data (&data_armored, data, datalen); if (err) goto out; modlist_add (&addlist, (serverinfo & SERVERINFO_PGPKEYV2)? "pgpKeyV2":"pgpKey", data_armored); /* Now append addlist onto modlist. */ modlists_join (&modlist, addlist); if (dump) { estream_t input = modlist_dump (modlist, NULL); if (input) { copy_stream (input, dump); es_fclose (input); } } /* Going on the assumption that modify operations are more frequent than adds, we try a modify first. If it's not there, we just turn around and send an add command for the same key. Otherwise, the modify brings the server copy into compliance with our copy. Note that unlike the LDAP keyserver (and really, any other keyserver) this does NOT merge signatures, but replaces the whole key. This should make some people very happy. */ { char **attrval; char *dn; if ((serverinfo & SERVERINFO_NTDS)) { /* The modern way using a CN RDN with the fingerprint. This * has the advantage that we won't have duplicate 64 bit * keyids in the store. In particular NTDS requires the * DN to be unique. */ attrval = modlist_lookup (addlist, "gpgFingerprint"); /* We should have exactly one value. */ if (!attrval || !(attrval[0] && !attrval[1])) { log_error ("ks-ldap: bad gpgFingerprint provided\n"); err = GPG_ERR_GENERAL; goto out; } dn = xtryasprintf ("CN=%s,%s", attrval[0], basedn); } else /* The old style way. */ { attrval = modlist_lookup (addlist, "pgpCertID"); /* We should have exactly one value. */ if (!attrval || !(attrval[0] && !attrval[1])) { log_error ("ks-ldap: bad pgpCertID provided\n"); err = GPG_ERR_GENERAL; goto out; } dn = xtryasprintf ("pgpCertID=%s,%s", attrval[0], basedn); } if (!dn) { err = gpg_error_from_syserror (); goto out; } if (opt.debug) log_debug ("ks-ldap: using DN: %s\n", dn); npth_unprotect (); err = ldap_modify_s (ldap_conn, dn, modlist); if (err == LDAP_NO_SUCH_OBJECT) err = ldap_add_s (ldap_conn, dn, addlist); npth_protect (); xfree (dn); if (err != LDAP_SUCCESS) { log_error ("ks-ldap: error adding key to keyserver: %s\n", ldap_err2string (err)); err = ldap_err_to_gpg_err (err); } } out: if (dump) es_fclose (dump); if (ldap_conn) ldap_unbind (ldap_conn); xfree (basedn); modlist_free (modlist); xfree (addlist); xfree (data_armored); return err; } diff --git a/dirmngr/ldap-parse-uri.c b/dirmngr/ldap-parse-uri.c index 86f6ce032..c36763eee 100644 --- a/dirmngr/ldap-parse-uri.c +++ b/dirmngr/ldap-parse-uri.c @@ -1,248 +1,262 @@ /* ldap-parse-uri.c - Parse an LDAP URI. * Copyright (C) 2015 g10 Code GmbH * * This file is part of GnuPG. * * GnuPG is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * GnuPG is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #include #include #ifdef HAVE_W32_SYSTEM # include "ldap-url.h" #else # include #endif #include "../common/util.h" #include "http.h" /* Returns 1 if the string is an LDAP URL (begins with ldap:, ldaps: or ldapi:). */ int ldap_uri_p (const char *url) { char *colon = strchr (url, ':'); if (!colon) return 0; else { int offset = (uintptr_t) colon - (uintptr_t) url; if ( (offset == 4 && !ascii_memcasecmp (url, "ldap", 4)) || (offset == 5 && (!ascii_memcasecmp (url, "ldaps", 5) || !ascii_memcasecmp (url, "ldapi", 5)))) return 1; return 0; } } /* Parse a URI and put the result into *purip. On success the caller must use http_release_parsed_uri() to releases the resources. uri->path is the base DN (or NULL for the default). uri->auth is the bindname (or NULL for none). The uri->query variable "password" is the password. Note: any specified scope, any attributes, any filter and any unknown extensions are simply ignored. */ gpg_error_t ldap_parse_uri (parsed_uri_t *purip, const char *uri) { gpg_err_code_t err = 0; parsed_uri_t puri = NULL; int result; LDAPURLDesc *lud = NULL; char *scheme = NULL; char *host = NULL; char *dn = NULL; char *bindname = NULL; char *password = NULL; + char *gpg_ntds = NULL; char **s; char *buffer; int len; result = ldap_url_parse (uri, &lud); if (result != 0) { log_error ("Unable to parse LDAP uri '%s'\n", uri); err = GPG_ERR_GENERAL; goto out; } scheme = lud->lud_scheme; host = lud->lud_host; dn = lud->lud_dn; for (s = lud->lud_exts; s && *s; s ++) { if (strncmp (*s, "bindname=", 9) == 0) { if (bindname) log_error ("bindname given multiple times in URL '%s', ignoring.\n", uri); else bindname = *s + 9; } else if (strncmp (*s, "password=", 9) == 0) { if (password) log_error ("password given multiple times in URL '%s', ignoring.\n", uri); else password = *s + 9; } + else if (!ascii_strncasecmp (*s, "gpgNtds=", 8) + || !strncmp (*s, "1.3.6.1.4.1.11591.2.5.1=", 24)) + { + if (gpg_ntds) + log_error ("gpgNtds given multiple times in URL '%s', ignoring.\n", + uri); + else + gpg_ntds = *s + (**s == 'g'? 8 : 24); + } else log_error ("Unhandled extension (%s) in URL '%s', ignoring.", *s, uri); } len = 0; #define add(s) do { if (s) len += strlen (s) + 1; } while (0) add (scheme); add (host); add (dn); add (bindname); add (password); puri = xtrycalloc (1, sizeof *puri + len); if (! puri) { err = gpg_err_code_from_syserror (); goto out; } buffer = puri->buffer; #define copy(to, s) \ do \ { \ if (s) \ { \ to = buffer; \ buffer = stpcpy (buffer, s) + 1; \ } \ } \ while (0) copy (puri->scheme, scheme); /* Make sure the scheme is lower case. */ ascii_strlwr (puri->scheme); copy (puri->host, host); copy (puri->path, dn); copy (puri->auth, bindname); if (password) { puri->query = calloc (sizeof (*puri->query), 1); if (!puri->query) { err = gpg_err_code_from_syserror (); goto out; } puri->query->name = "password"; copy (puri->query->value, password); puri->query->valuelen = strlen (password) + 1; } puri->use_tls = !strcmp (puri->scheme, "ldaps"); puri->port = lud->lud_port; /* On Windows detect whether this is ldap:// or ldaps:// to indicate - * that authentication via AD and the current user is requested. */ + * that authentication via AD and the current user is requested. + * This is shortform of adding "gpgNtDs=1" as extension parameter to + * the URL. */ puri->ad_current = 0; + if (gpg_ntds && atoi (gpg_ntds) == 1) + puri->ad_current = 1; #ifdef HAVE_W32_SYSTEM - if ((!puri->host || !*puri->host) + else if ((!puri->host || !*puri->host) && (!puri->path || !*puri->path) && (!puri->auth || !*puri->auth) && !password ) puri->ad_current = 1; #endif out: if (lud) ldap_free_urldesc (lud); if (err) { if (puri) http_release_parsed_uri (puri); } else *purip = puri; return gpg_err_make (default_errsource, err); } /* The following characters need to be escaped to be part of an LDAP filter: *, (, ), \, NUL and /. Note: we don't handle NUL, since a NUL can't be part of a C string. This function always allocates a new string on success. It is the caller's responsibility to free it. */ char * ldap_escape_filter (const char *filter) { int l = strcspn (filter, "*()\\/"); if (l == strlen (filter)) /* Nothing to escape. */ return xstrdup (filter); { /* In the worst case we need to escape every letter. */ char *escaped = xmalloc (1 + 3 * strlen (filter)); /* Indices into filter and escaped. */ int filter_i = 0; int escaped_i = 0; for (filter_i = 0; filter_i < strlen (filter); filter_i ++) { switch (filter[filter_i]) { case '*': case '(': case ')': case '\\': case '/': snprintf (&escaped[escaped_i], 4, "%%%02x", ((const unsigned char *)filter)[filter_i]); escaped_i += 3; break; default: escaped[escaped_i ++] = filter[filter_i]; break; } } /* NUL terminate it. */ escaped[escaped_i] = 0; /* We could shrink escaped to be just escaped_i bytes, but the result will probably be freed very quickly anyways. */ return escaped; } } diff --git a/doc/dirmngr.texi b/doc/dirmngr.texi index 843fdbf67..12ab2b3ee 100644 --- a/doc/dirmngr.texi +++ b/doc/dirmngr.texi @@ -1,1200 +1,1202 @@ @c Copyright (C) 2002 Klar"alvdalens Datakonsult AB @c Copyright (C) 2004, 2005, 2006, 2007 g10 Code GmbH @c This is part of the GnuPG manual. @c For copying conditions, see the file gnupg.texi. @include defs.inc @node Invoking DIRMNGR @chapter Invoking DIRMNGR @cindex DIRMNGR command options @cindex command options @cindex options, DIRMNGR command @manpage dirmngr.8 @ifset manverb .B dirmngr \- CRL and OCSP daemon @end ifset @mansect synopsis @ifset manverb .B dirmngr .RI [ options ] .I command .RI [ args ] @end ifset @mansect description Since version 2.1 of GnuPG, @command{dirmngr} takes care of accessing the OpenPGP keyservers. As with previous versions it is also used as a server for managing and downloading certificate revocation lists (CRLs) for X.509 certificates, downloading X.509 certificates, and providing access to OCSP providers. Dirmngr is invoked internally by @command{gpg}, @command{gpgsm}, or via the @command{gpg-connect-agent} tool. @manpause @noindent @xref{Option Index},for an index to @command{DIRMNGR}'s commands and options. @mancont @menu * Dirmngr Commands:: List of all commands. * Dirmngr Options:: List of all options. * Dirmngr Configuration:: Configuration files. * Dirmngr Signals:: Use of signals. * Dirmngr Examples:: Some usage examples. * Dirmngr Protocol:: The protocol dirmngr uses. @end menu @node Dirmngr Commands @section Commands @mansect commands Commands are not distinguished from options except for the fact that only one command is allowed. @table @gnupgtabopt @item --version @opindex version Print the program version and licensing information. Note that you cannot abbreviate this command. @item --help, -h @opindex help Print a usage message summarizing the most useful command-line options. Note that you cannot abbreviate this command. @item --dump-options @opindex dump-options Print a list of all available options and commands. Note that you cannot abbreviate this command. @item --server @opindex server Run in server mode and wait for commands on the @code{stdin}. The default mode is to create a socket and listen for commands there. This is only used for testing. @item --daemon @opindex daemon Run in background daemon mode and listen for commands on a socket. This is the way @command{dirmngr} is started on demand by the other GnuPG components. To force starting @command{dirmngr} it is in general best to use @code{gpgconf --launch dirmngr}. @item --supervised @opindex supervised Run in the foreground, sending logs to stderr, and listening on file descriptor 3, which must already be bound to a listening socket. This is useful when running under systemd or other similar process supervision schemes. This option is not supported on Windows. @item --list-crls @opindex list-crls List the contents of the CRL cache on @code{stdout}. This is probably only useful for debugging purposes. @item --load-crl @var{file} @opindex load-crl This command requires a filename as additional argument, and it will make Dirmngr try to import the CRL in @var{file} into it's cache. Note, that this is only possible if Dirmngr is able to retrieve the CA's certificate directly by its own means. In general it is better to use @code{gpgsm}'s @code{--call-dirmngr loadcrl filename} command so that @code{gpgsm} can help dirmngr. @item --fetch-crl @var{url} @opindex fetch-crl This command requires an URL as additional argument, and it will make dirmngr try to retrieve and import the CRL from that @var{url} into it's cache. This is mainly useful for debugging purposes. The @command{dirmngr-client} provides the same feature for a running dirmngr. @item --shutdown @opindex shutdown This commands shuts down an running instance of Dirmngr. This command has currently no effect. @item --flush @opindex flush This command removes all CRLs from Dirmngr's cache. Client requests will thus trigger reading of fresh CRLs. @end table @mansect options @node Dirmngr Options @section Option Summary Note that all long options with the exception of @option{--options} and @option{--homedir} may also be given in the configuration file after stripping off the two leading dashes. @table @gnupgtabopt @item --options @var{file} @opindex options Reads configuration from @var{file} instead of from the default per-user configuration file. The default configuration file is named @file{dirmngr.conf} and expected in the home directory. @item --homedir @var{dir} @opindex options Set the name of the home directory to @var{dir}. This option is only effective when used on the command line. The default is the directory named @file{.gnupg} directly below the home directory of the user unless the environment variable @code{GNUPGHOME} has been set in which case its value will be used. Many kinds of data are stored within this directory. @item -v @item --verbose @opindex v @opindex verbose Outputs additional information while running. You can increase the verbosity by giving several verbose commands to @sc{dirmngr}, such as @option{-vv}. @item --log-file @var{file} @opindex log-file Append all logging output to @var{file}. This is very helpful in seeing what the agent actually does. Use @file{socket://} to log to socket. @item --debug-level @var{level} @opindex debug-level Select the debug level for investigating problems. @var{level} may be a numeric value or by a keyword: @table @code @item none No debugging at all. A value of less than 1 may be used instead of the keyword. @item basic Some basic debug messages. A value between 1 and 2 may be used instead of the keyword. @item advanced More verbose debug messages. A value between 3 and 5 may be used instead of the keyword. @item expert Even more detailed messages. A value between 6 and 8 may be used instead of the keyword. @item guru All of the debug messages you can get. A value greater than 8 may be used instead of the keyword. The creation of hash tracing files is only enabled if the keyword is used. @end table How these messages are mapped to the actual debugging flags is not specified and may change with newer releases of this program. They are however carefully selected to best aid in debugging. @item --debug @var{flags} @opindex debug Set debugging flags. This option is only useful for debugging and its behavior may change with a new release. All flags are or-ed and may be given in C syntax (e.g. 0x0042) or as a comma separated list of flag names. To get a list of all supported flags the single word "help" can be used. @item --debug-all @opindex debug-all Same as @code{--debug=0xffffffff} @item --tls-debug @var{level} @opindex tls-debug Enable debugging of the TLS layer at @var{level}. The details of the debug level depend on the used TLS library and are not set in stone. @item --debug-wait @var{n} @opindex debug-wait When running in server mode, wait @var{n} seconds before entering the actual processing loop and print the pid. This gives time to attach a debugger. @item --disable-check-own-socket @opindex disable-check-own-socket On some platforms @command{dirmngr} is able to detect the removal of its socket file and shutdown itself. This option disable this self-test for debugging purposes. @item -s @itemx --sh @itemx -c @itemx --csh @opindex s @opindex sh @opindex c @opindex csh Format the info output in daemon mode for use with the standard Bourne shell respective the C-shell. The default is to guess it based on the environment variable @code{SHELL} which is in almost all cases sufficient. @item --force @opindex force Enabling this option forces loading of expired CRLs; this is only useful for debugging. @item --use-tor @itemx --no-use-tor @opindex use-tor @opindex no-use-tor The option @option{--use-tor} switches Dirmngr and thus GnuPG into ``Tor mode'' to route all network access via Tor (an anonymity network). Certain other features are disabled in this mode. The effect of @option{--use-tor} cannot be overridden by any other command or even by reloading dirmngr. The use of @option{--no-use-tor} disables the use of Tor. The default is to use Tor if it is available on startup or after reloading dirmngr. @item --standard-resolver @opindex standard-resolver This option forces the use of the system's standard DNS resolver code. This is mainly used for debugging. Note that on Windows a standard resolver is not used and all DNS access will return the error ``Not Implemented'' if this option is used. Using this together with enabled Tor mode returns the error ``Not Enabled''. @item --recursive-resolver @opindex recursive-resolver When possible use a recursive resolver instead of a stub resolver. @item --resolver-timeout @var{n} @opindex resolver-timeout Set the timeout for the DNS resolver to N seconds. The default are 30 seconds. @item --connect-timeout @var{n} @item --connect-quick-timeout @var{n} @opindex connect-timeout @opindex connect-quick-timeout Set the timeout for HTTP and generic TCP connection attempts to N seconds. The value set with the quick variant is used when the --quick option has been given to certain Assuan commands. The quick value is capped at the value of the regular connect timeout. The default values are 15 and 2 seconds. Note that the timeout values are for each connection attempt; the connection code will attempt to connect all addresses listed for a server. @item --listen-backlog @var{n} @opindex listen-backlog Set the size of the queue for pending connections. The default is 64. @item --allow-version-check @opindex allow-version-check Allow Dirmngr to connect to @code{https://versions.gnupg.org} to get the list of current software versions. If this option is enabled the list is retrieved in case the local copy does not exist or is older than 5 to 7 days. See the option @option{--query-swdb} of the command @command{gpgconf} for more details. Note, that regardless of this option a version check can always be triggered using this command: @example gpg-connect-agent --dirmngr 'loadswdb --force' /bye @end example @item --keyserver @var{name} @opindex keyserver Use @var{name} as your keyserver. This is the server that @command{gpg} communicates with to receive keys, send keys, and search for keys. The format of the @var{name} is a URI: `scheme:[//]keyservername[:port]' The scheme is the type of keyserver: "hkp" for the HTTP (or compatible) keyservers, "ldap" for the LDAP keyservers, or "mailto" for the Graff email keyserver. Note that your particular installation of GnuPG may have other keyserver types available as well. Keyserver schemes are case-insensitive. After the keyserver name, optional keyserver configuration options may be provided. These are the same as the @option{--keyserver-options} of @command{gpg}, but apply only to this particular keyserver. Most keyservers synchronize with each other, so there is generally no need to send keys to more than one server. The keyserver @code{hkp://keys.gnupg.net} uses round robin DNS to give a different keyserver each time you use it. If exactly two keyservers are configured and only one is a Tor hidden service (.onion), Dirmngr selects the keyserver to use depending on whether Tor is locally running or not. The check for a running Tor is done for each new connection. If no keyserver is explicitly configured, dirmngr will use the built-in default of @code{hkps://hkps.pool.sks-keyservers.net}. Windows users with a keyserver running on their Active Directory should use @code{ldap:///} for @var{name} to access this directory. +As an alternative it is also possible to add @code{gpgNtds=1} as +extension (i.e. after the fourth question mark). For accessing anonymous LDAP keyservers @var{name} is in general just a @code{ldaps://ldap.example.com}. A BaseDN parameter should never be specified. If authentication is required the value of @var{name} is for example: @example keyserver ldaps://ldap.example.com/????bindname=uid=USERNAME %2Cou=GnuPG%20Users%2Cdc=example%2Cdc=com,password=PASSWORD @end example Put this all on one line without any spaces and keep the '%2C' as given. Replace USERNAME, PASSWORD, and the 'dc' parts according to the instructions received from the LDAP administrator. Note that only simple authentication (i.e. cleartext passwords) is supported and thus using ldaps is strongly suggested. @item --nameserver @var{ipaddr} @opindex nameserver In ``Tor mode'' Dirmngr uses a public resolver via Tor to resolve DNS names. If the default public resolver, which is @code{8.8.8.8}, shall not be used a different one can be given using this option. Note that a numerical IP address must be given (IPv6 or IPv4) and that no error checking is done for @var{ipaddr}. @item --disable-ipv4 @item --disable-ipv6 @opindex disable-ipv4 @opindex disable-ipv6 Disable the use of all IPv4 or IPv6 addresses. @item --disable-ldap @opindex disable-ldap Entirely disables the use of LDAP. @item --disable-http @opindex disable-http Entirely disables the use of HTTP. @item --ignore-http-dp @opindex ignore-http-dp When looking for the location of a CRL, the to be tested certificate usually contains so called @dfn{CRL Distribution Point} (DP) entries which are URLs describing the way to access the CRL. The first found DP entry is used. With this option all entries using the @acronym{HTTP} scheme are ignored when looking for a suitable DP. @item --ignore-ldap-dp @opindex ignore-ldap-dp This is similar to @option{--ignore-http-dp} but ignores entries using the @acronym{LDAP} scheme. Both options may be combined resulting in ignoring DPs entirely. @item --ignore-ocsp-service-url @opindex ignore-ocsp-service-url Ignore all OCSP URLs contained in the certificate. The effect is to force the use of the default responder. @item --honor-http-proxy @opindex honor-http-proxy If the environment variable @env{http_proxy} has been set, use its value to access HTTP servers. @item --http-proxy @var{host}[:@var{port}] @opindex http-proxy @efindex http_proxy Use @var{host} and @var{port} to access HTTP servers. The use of this option overrides the environment variable @env{http_proxy} regardless whether @option{--honor-http-proxy} has been set. @item --ldap-proxy @var{host}[:@var{port}] @opindex ldap-proxy Use @var{host} and @var{port} to connect to LDAP servers. If @var{port} is omitted, port 389 (standard LDAP port) is used. This overrides any specified host and port part in a LDAP URL and will also be used if host and port have been omitted from the URL. @item --only-ldap-proxy @opindex only-ldap-proxy Never use anything else but the LDAP "proxy" as configured with @option{--ldap-proxy}. Usually @command{dirmngr} tries to use other configured LDAP server if the connection using the "proxy" failed. @item --ldapserverlist-file @var{file} @opindex ldapserverlist-file Read the list of LDAP servers to consult for CRLs and certificates from file instead of the default per-user ldap server list file. The default value for @var{file} is @file{dirmngr_ldapservers.conf}. This server list file contains one LDAP server per line in the format @sc{hostname:port:username:password:base_dn} Lines starting with a @samp{#} are comments. Note that as usual all strings entered are expected to be UTF-8 encoded. Obviously this will lead to problems if the password has originally been encoded as Latin-1. There is no other solution here than to put such a password in the binary encoding into the file (i.e. non-ascii characters won't show up readable).@footnote{The @command{gpgconf} tool might be helpful for frontends as it enables editing this configuration file using percent-escaped strings.} @item --ldaptimeout @var{secs} @opindex ldaptimeout Specify the number of seconds to wait for an LDAP query before timing out. The default are 15 seconds. 0 will never timeout. @item --add-servers @opindex add-servers This option makes dirmngr add any servers it discovers when validating certificates against CRLs to the internal list of servers to consult for certificates and CRLs. This option is useful when trying to validate a certificate that has a CRL distribution point that points to a server that is not already listed in the ldapserverlist. Dirmngr will always go to this server and try to download the CRL, but chances are high that the certificate used to sign the CRL is located on the same server. So if dirmngr doesn't add that new server to list, it will often not be able to verify the signature of the CRL unless the @code{--add-servers} option is used. Note: The current version of dirmngr has this option disabled by default. @item --allow-ocsp @opindex allow-ocsp This option enables OCSP support if requested by the client. OCSP requests are rejected by default because they may violate the privacy of the user; for example it is possible to track the time when a user is reading a mail. @item --ocsp-responder @var{url} @opindex ocsp-responder Use @var{url} as the default OCSP Responder if the certificate does not contain information about an assigned responder. Note, that @code{--ocsp-signer} must also be set to a valid certificate. @item --ocsp-signer @var{fpr}|@var{file} @opindex ocsp-signer Use the certificate with the fingerprint @var{fpr} to check the responses of the default OCSP Responder. Alternatively a filename can be given in which case the response is expected to be signed by one of the certificates described in that file. Any argument which contains a slash, dot or tilde is considered a filename. Usual filename expansion takes place: A tilde at the start followed by a slash is replaced by the content of @env{HOME}, no slash at start describes a relative filename which will be searched at the home directory. To make sure that the @var{file} is searched in the home directory, either prepend the name with "./" or use a name which contains a dot. If a response has been signed by a certificate described by these fingerprints no further check upon the validity of this certificate is done. The format of the @var{FILE} is a list of SHA-1 fingerprint, one per line with optional colons between the bytes. Empty lines and lines prefix with a hash mark are ignored. @item --ocsp-max-clock-skew @var{n} @opindex ocsp-max-clock-skew The number of seconds a skew between the OCSP responder and them local clock is accepted. Default is 600 (10 minutes). @item --ocsp-max-period @var{n} @opindex ocsp-max-period Seconds a response is at maximum considered valid after the time given in the thisUpdate field. Default is 7776000 (90 days). @item --ocsp-current-period @var{n} @opindex ocsp-current-period The number of seconds an OCSP response is considered valid after the time given in the NEXT_UPDATE datum. Default is 10800 (3 hours). @item --max-replies @var{n} @opindex max-replies Do not return more that @var{n} items in one query. The default is 10. @item --ignore-cert-extension @var{oid} @opindex ignore-cert-extension Add @var{oid} to the list of ignored certificate extensions. The @var{oid} is expected to be in dotted decimal form, like @code{2.5.29.3}. This option may be used more than once. Critical flagged certificate extensions matching one of the OIDs in the list are treated as if they are actually handled and thus the certificate won't be rejected due to an unknown critical extension. Use this option with care because extensions are usually flagged as critical for a reason. @item --hkp-cacert @var{file} Use the root certificates in @var{file} for verification of the TLS certificates used with @code{hkps} (keyserver access over TLS). If the file is in PEM format a suffix of @code{.pem} is expected for @var{file}. This option may be given multiple times to add more root certificates. Tilde expansion is supported. If no @code{hkp-cacert} directive is present, dirmngr will make a reasonable choice: if the keyserver in question is the special pool @code{hkps.pool.sks-keyservers.net}, it will use the bundled root certificate for that pool. Otherwise, it will use the system CAs. @end table @c @c Dirmngr Configuration @c @mansect files @node Dirmngr Configuration @section Configuration Dirmngr makes use of several directories when running in daemon mode: There are a few configuration files whih control the operation of dirmngr. By default they may all be found in the current home directory (@pxref{option --homedir}). @table @file @item dirmngr.conf @efindex dirmngr.conf This is the standard configuration file read by @command{dirmngr} on startup. It may contain any valid long option; the leading two dashes may not be entered and the option may not be abbreviated. This file is also read after a @code{SIGHUP} however not all options will actually have an effect. This default name may be changed on the command line (@pxref{option --options}). You should backup this file. @item /etc/gnupg/trusted-certs This directory should be filled with certificates of Root CAs you are trusting in checking the CRLs and signing OCSP Responses. Usually these are the same certificates you use with the applications making use of dirmngr. It is expected that each of these certificate files contain exactly one @acronym{DER} encoded certificate in a file with the suffix @file{.crt} or @file{.der}. @command{dirmngr} reads those certificates on startup and when given a SIGHUP. Certificates which are not readable or do not make up a proper X.509 certificate are ignored; see the log file for details. Applications using dirmngr (e.g. gpgsm) can request these certificates to complete a trust chain in the same way as with the extra-certs directory (see below). Note that for OCSP responses the certificate specified using the option @option{--ocsp-signer} is always considered valid to sign OCSP requests. @item /etc/gnupg/extra-certs This directory may contain extra certificates which are preloaded into the internal cache on startup. Applications using dirmngr (e.g. gpgsm) can request cached certificates to complete a trust chain. This is convenient in cases you have a couple intermediate CA certificates or certificates usually used to sign OCSP responses. These certificates are first tried before going out to the net to look for them. These certificates must also be @acronym{DER} encoded and suffixed with @file{.crt} or @file{.der}. @item ~/.gnupg/crls.d This directory is used to store cached CRLs. The @file{crls.d} part will be created by dirmngr if it does not exists but you need to make sure that the upper directory exists. @end table @manpause To be able to see what's going on you should create the configure file @file{~/gnupg/dirmngr.conf} with at least one line: @example log-file ~/dirmngr.log @end example To be able to perform OCSP requests you probably want to add the line: @example allow-ocsp @end example To make sure that new options are read and that after the installation of a new GnuPG versions the installed dirmngr is running, you may want to kill an existing dirmngr first: @example gpgconf --kill dirmngr @end example You may check the log file to see whether all desired root certificates have been loaded correctly. @c @c Dirmngr Signals @c @mansect signals @node Dirmngr Signals @section Use of signals A running @command{dirmngr} may be controlled by signals, i.e. using the @command{kill} command to send a signal to the process. Here is a list of supported signals: @table @gnupgtabopt @item SIGHUP @cpindex SIGHUP This signal flushes all internally cached CRLs as well as any cached certificates. Then the certificate cache is reinitialized as on startup. Options are re-read from the configuration file. Instead of sending this signal it is better to use @example gpgconf --reload dirmngr @end example @item SIGTERM @cpindex SIGTERM Shuts down the process but waits until all current requests are fulfilled. If the process has received 3 of these signals and requests are still pending, a shutdown is forced. You may also use @example gpgconf --kill dirmngr @end example instead of this signal @item SIGINT @cpindex SIGINT Shuts down the process immediately. @item SIGUSR1 @cpindex SIGUSR1 This prints some caching statistics to the log file. @end table @c @c Examples @c @mansect examples @node Dirmngr Examples @section Examples Here is an example on how to show dirmngr's internal table of OpenPGP keyserver addresses. The output is intended for debugging purposes and not part of a defined API. @example gpg-connect-agent --dirmngr 'keyserver --hosttable' /bye @end example To inhibit the use of a particular host you have noticed in one of the keyserver pools, you may use @example gpg-connect-agent --dirmngr 'keyserver --dead pgpkeys.bnd.de' /bye @end example The description of the @code{keyserver} command can be printed using @example gpg-connect-agent --dirmngr 'help keyserver' /bye @end example @c @c Assuan Protocol @c @manpause @node Dirmngr Protocol @section Dirmngr's Assuan Protocol Assuan is the IPC protocol used to access dirmngr. This is a description of the commands implemented by dirmngr. @menu * Dirmngr LOOKUP:: Look up a certificate via LDAP * Dirmngr ISVALID:: Validate a certificate using a CRL or OCSP. * Dirmngr CHECKCRL:: Validate a certificate using a CRL. * Dirmngr CHECKOCSP:: Validate a certificate using OCSP. * Dirmngr CACHECERT:: Put a certificate into the internal cache. * Dirmngr VALIDATE:: Validate a certificate for debugging. @end menu @node Dirmngr LOOKUP @subsection Return the certificate(s) found Lookup certificate. To allow multiple patterns (which are ORed) quoting is required: Spaces are to be translated into "+" or into "%20"; obviously this requires that the usual escape quoting rules are applied. The server responds with: @example S: D S: END S: D S: END S: OK @end example In this example 2 certificates are returned. The server may return any number of certificates; OK will also be returned when no certificates were found. The dirmngr might return a status line @example S: S TRUNCATED @end example To indicate that the output was truncated to N items due to a limitation of the server or by an arbitrary set limit. The option @option{--url} may be used if instead of a search pattern a complete URL to the certificate is known: @example C: LOOKUP --url CN%3DWerner%20Koch,o%3DIntevation%20GmbH,c%3DDE?userCertificate @end example If the option @option{--cache-only} is given, no external lookup is done so that only certificates from the cache are returned. With the option @option{--single}, the first and only the first match will be returned. Unless option @option{--cache-only} is also used, no local lookup will be done in this case. @node Dirmngr ISVALID @subsection Validate a certificate using a CRL or OCSP @example ISVALID [--only-ocsp] [--force-default-responder] @var{certid}|@var{certfpr} @end example Check whether the certificate described by the @var{certid} has been revoked. Due to caching, the Dirmngr is able to answer immediately in most cases. The @var{certid} is a hex encoded string consisting of two parts, delimited by a single dot. The first part is the SHA-1 hash of the issuer name and the second part the serial number. Alternatively the certificate's SHA-1 fingerprint @var{certfpr} may be given in which case an OCSP request is done before consulting the CRL. If the option @option{--only-ocsp} is given, no fallback to a CRL check will be used. If the option @option{--force-default-responder} is given, only the default OCSP responder will be used and any other methods of obtaining an OCSP responder URL won't be used. @noindent Common return values are: @table @code @item GPG_ERR_NO_ERROR (0) This is the positive answer: The certificate is not revoked and we have an up-to-date revocation list for that certificate. If OCSP was used the responder confirmed that the certificate has not been revoked. @item GPG_ERR_CERT_REVOKED This is the negative answer: The certificate has been revoked. Either it is in a CRL and that list is up to date or an OCSP responder informed us that it has been revoked. @item GPG_ERR_NO_CRL_KNOWN No CRL is known for this certificate or the CRL is not valid or out of date. @item GPG_ERR_NO_DATA The OCSP responder returned an ``unknown'' status. This means that it is not aware of the certificate's status. @item GPG_ERR_NOT_SUPPORTED This is commonly seen if OCSP support has not been enabled in the configuration. @end table If DirMngr has not enough information about the given certificate (which is the case for not yet cached certificates), it will inquire the missing data: @example S: INQUIRE SENDCERT C: D C: END @end example A client should be aware that DirMngr may ask for more than one certificate. If Dirmngr has a certificate but the signature of the certificate could not been validated because the root certificate is not known to dirmngr as trusted, it may ask back to see whether the client trusts this the root certificate: @example S: INQUIRE ISTRUSTED C: D 1 C: END @end example Only this answer will let Dirmngr consider the certificate as valid. @node Dirmngr CHECKCRL @subsection Validate a certificate using a CRL Check whether the certificate with FINGERPRINT (SHA-1 hash of the entire X.509 certificate blob) is valid or not by consulting the CRL responsible for this certificate. If the fingerprint has not been given or the certificate is not known, the function inquires the certificate using: @example S: INQUIRE TARGETCERT C: D C: END @end example Thus the caller is expected to return the certificate for the request (which should match FINGERPRINT) as a binary blob. Processing then takes place without further interaction; in particular dirmngr tries to locate other required certificate by its own mechanism which includes a local certificate store as well as a list of trusted root certificates. @noindent The return code is 0 for success; i.e. the certificate has not been revoked or one of the usual error codes from libgpg-error. @node Dirmngr CHECKOCSP @subsection Validate a certificate using OCSP @example CHECKOCSP [--force-default-responder] [@var{fingerprint}] @end example Check whether the certificate with @var{fingerprint} (the SHA-1 hash of the entire X.509 certificate blob) is valid by consulting the appropriate OCSP responder. If the fingerprint has not been given or the certificate is not known by Dirmngr, the function inquires the certificate using: @example S: INQUIRE TARGETCERT C: D C: END @end example Thus the caller is expected to return the certificate for the request (which should match @var{fingerprint}) as a binary blob. Processing then takes place without further interaction; in particular dirmngr tries to locate other required certificates by its own mechanism which includes a local certificate store as well as a list of trusted root certificates. If the option @option{--force-default-responder} is given, only the default OCSP responder is used. This option is the per-command variant of the global option @option{--ignore-ocsp-service-url}. @noindent The return code is 0 for success; i.e. the certificate has not been revoked or one of the usual error codes from libgpg-error. @node Dirmngr CACHECERT @subsection Put a certificate into the internal cache Put a certificate into the internal cache. This command might be useful if a client knows in advance certificates required for a test and wants to make sure they get added to the internal cache. It is also helpful for debugging. To get the actual certificate, this command immediately inquires it using @example S: INQUIRE TARGETCERT C: D C: END @end example Thus the caller is expected to return the certificate for the request as a binary blob. @noindent The return code is 0 for success; i.e. the certificate has not been successfully cached or one of the usual error codes from libgpg-error. @node Dirmngr VALIDATE @subsection Validate a certificate for debugging Validate a certificate using the certificate validation function used internally by dirmngr. This command is only useful for debugging. To get the actual certificate, this command immediately inquires it using @example S: INQUIRE TARGETCERT C: D C: END @end example Thus the caller is expected to return the certificate for the request as a binary blob. @mansect see also @ifset isman @command{gpgsm}(1), @command{dirmngr-client}(1) @end ifset @include see-also-note.texi @c @c !!! UNDER CONSTRUCTION !!! @c @c @c @section Verifying a Certificate @c @c There are several ways to request services from Dirmngr. Almost all of @c them are done using the Assuan protocol. What we describe here is the @c Assuan command CHECKCRL as used for example by the dirmnr-client tool if @c invoked as @c @c @example @c dirmngr-client foo.crt @c @end example @c @c This command will send an Assuan request to an already running Dirmngr @c instance. foo.crt is expected to be a standard X.509 certificate and @c dirmngr will receive the Assuan command @c @c @example @c CHECKCRL @var [{fingerprint}] @c @end example @c @c @var{fingerprint} is optional and expected to be the SHA-1 has of the @c DER encoding of the certificate under question. It is to be HEX @c encoded. The rationale for sending the fingerprint is that it allows @c dirmngr to reply immediately if it has already cached such a request. If @c this is not the case and no certificate has been found in dirmngr's @c internal certificate storage, dirmngr will request the certificate using @c the Assuan inquiry @c @c @example @c INQUIRE TARGETCERT @c @end example @c @c The caller (in our example dirmngr-client) is then expected to return @c the certificate for the request (which should match @var{fingerprint}) @c as a binary blob. @c @c Dirmngr now passes control to @code{crl_cache_cert_isvalid}. This @c function checks whether a CRL item exists for target certificate. These @c CRL items are kept in a database of already loaded and verified CRLs. @c This mechanism is called the CRL cache. Obviously timestamps are kept @c there with each item to cope with the expiration date of the CRL. The @c possible return values are: @code{0} to indicate that a valid CRL is @c available for the certificate and the certificate itself is not listed @c in this CRL, @code{GPG_ERR_CERT_REVOKED} to indicate that the certificate is @c listed in the CRL or @code{GPG_ERR_NO_CRL_KNOWN} in cases where no CRL or no @c information is available. The first two codes are immediately returned to @c the caller and the processing of this request has been done. @c @c Only the @code{GPG_ERR_NO_CRL_KNOWN} needs more attention: Dirmngr now @c calls @code{clr_cache_reload_crl} and if this succeeds calls @c @code{crl_cache_cert_isvald) once more. All further errors are @c immediately returned to the caller. @c @c @code{crl_cache_reload_crl} is the actual heart of the CRL management. @c It locates the corresponding CRL for the target certificate, reads and @c verifies this CRL and stores it in the CRL cache. It works like this: @c @c * Loop over all crlDPs in the target certificate. @c * If the crlDP is invalid immediately terminate the loop. @c * Loop over all names in the current crlDP. @c * If the URL scheme is unknown or not enabled @c (--ignore-http-dp, --ignore-ldap-dp) continues with @c the next name. @c * @code{crl_fetch} is called to actually retrieve the CRL. @c In case of problems this name is ignore and we continue with @c the next name. Note that @code{crl_fetch} does only return @c a descriptor for the CRL for further reading so does the CRL @c does not yet end up in memory. @c * @code{crl_cache_insert} is called with that descriptor to @c actually read the CRL into the cache. See below for a @c description of this function. If there is any error (e.g. read @c problem, CRL not correctly signed or verification of signature @c not possible), this descriptor is rejected and we continue @c with the next name. If the CRL has been successfully loaded, @c the loop is terminated. @c * If no crlDP has been found in the previous loop use a default CRL. @c Note, that if any crlDP has been found but loading of the CRL failed, @c this condition is not true. @c * Try to load a CRL from all configured servers (ldapservers.conf) @c in turn. The first server returning a CRL is used. @c * @code(crl_cache_insert) is then used to actually insert the CRL @c into the cache. If this failed we give up immediately without @c checking the rest of the servers from the first step. @c * Ready. @c @c @c The @code{crl_cache_insert} function takes care of reading the bulk of @c the CRL, parsing it and checking the signature. It works like this: A @c new database file is created using a temporary file name. The CRL @c parsing machinery is started and all items of the CRL are put into @c this database file. At the end the issuer certificate of the CRL @c needs to be retrieved. Three cases are to be distinguished: @c @c a) An authorityKeyIdentifier with an issuer and serialno exits: The @c certificate is retrieved using @code{find_cert_bysn}. If @c the certificate is in the certificate cache, it is directly @c returned. Then the requester (i.e. the client who requested the @c CRL check) is asked via the Assuan inquiry ``SENDCERT'' whether @c he can provide this certificate. If this succeed the returned @c certificate gets cached and returned. Note, that dirmngr does not @c verify in any way whether the expected certificate is returned. @c It is in the interest of the client to return a useful certificate @c as otherwise the service request will fail due to a bad signature. @c The last way to get the certificate is by looking it up at @c external resources. This is done using the @code{ca_cert_fetch} @c and @code{fetch_next_ksba_cert} and comparing the returned @c certificate to match the requested issuer and seriano (This is @c needed because the LDAP layer may return several certificates as @c LDAP as no standard way to retrieve by serial number). @c @c b) An authorityKeyIdentifier with a key ID exists: The certificate is @c retrieved using @code{find_cert_bysubject}. If the certificate is @c in the certificate cache, it is directly returned. Then the @c requester is asked via the Assuan inquiry ``SENDCERT_SKI'' whether @c he can provide this certificate. If this succeed the returned @c certificate gets cached and returned. Note, that dirmngr does not @c verify in any way whether the expected certificate is returned. @c It is in the interest of the client to return a useful certificate @c as otherwise the service request will fail due to a bad signature. @c The last way to get the certificate is by looking it up at @c external resources. This is done using the @code{ca_cert_fetch} @c and @code{fetch_next_ksba_cert} and comparing the returned @c certificate to match the requested subject and key ID. @c @c c) No authorityKeyIdentifier exits: The certificate is retrieved @c using @code{find_cert_bysubject} without the key ID argument. If @c the certificate is in the certificate cache the first one with a @c matching subject is directly returned. Then the requester is @c asked via the Assuan inquiry ``SENDCERT'' and an exact @c specification of the subject whether he can @c provide this certificate. If this succeed the returned @c certificate gets cached and returned. Note, that dirmngr does not @c verify in any way whether the expected certificate is returned. @c It is in the interest of the client to return a useful certificate @c as otherwise the service request will fail due to a bad signature. @c The last way to get the certificate is by looking it up at @c external resources. This is done using the @code{ca_cert_fetch} @c and @code{fetch_next_ksba_cert} and comparing the returned @c certificate to match the requested subject; the first certificate @c with a matching subject is then returned. @c @c If no certificate was found, the function returns with the error @c GPG_ERR_MISSING_CERT. Now the signature is verified. If this fails, @c the erro is returned. On success the @code{validate_cert_chain} is @c used to verify that the certificate is actually valid. @c @c Here we may encounter a recursive situation: @c @code{validate_cert_chain} needs to look at other certificates and @c also at CRLs to check whether these other certificates and well, the @c CRL issuer certificate itself are not revoked. FIXME: We need to make @c sure that @code{validate_cert_chain} does not try to lookup the CRL we @c are currently processing. This would be a catch-22 and may indicate a @c broken PKI. However, due to overlapping expiring times and imprecise @c clocks this may actually happen. @c @c For historical reasons the Assuan command ISVALID is a bit different @c to CHECKCRL but this is mainly due to different calling conventions. @c In the end the same fucntionality is used, albeit hidden by a couple @c of indirection and argument and result code mangling. It furthere @c ingetrages OCSP checking depending on options are the way it is @c called. GPGSM still uses this command but might eventuall switch over @c to CHECKCRL and CHECKOCSP so that ISVALID can be retired. @c @c @c @section Validating a certificate @c @c We describe here how the internal function @code{validate_cert_chain} @c works. Note that mainly testing purposes this functionality may be @c called directly using @cmd{dirmngr-client --validate @file{foo.crt}}. @c @c The function takes the target certificate and a mode argument as @c parameters and returns an error code and optionally the closes @c expiration time of all certificates in the chain. @c @c We first check that the certificate may be used for the requested @c purpose (i.e. OCSP or CRL signing). If this is not the case @c GPG_ERR_WRONG_KEY_USAGE is returned. @c @c The next step is to find the trust anchor (root certificate) and to @c assemble the chain in memory: Starting with the target certificate, @c the expiration time is checked against the current date, unknown @c critical extensions are detected and certificate policies are matched @c (We only allow 2.289.9.9 but I have no clue about that OID and from @c where I got it - it does not even seem to be assigned - debug cruft?). @c @c Now if this certificate is a self-signed one, we have reached the @c trust anchor. In this case we check that the signature is good, the @c certificate is allowed to act as a CA, that it is a trusted one (by @c checking whether it is has been put into the trusted-certs @c configuration directory) and finally prepend into to our list @c representing the certificate chain. This steps ends then. @c @c If it is not a self-signed certificate, we check that the chain won't @c get too long (current limit is 100), if this is the case we terminate @c with the error GPG_ERR_BAD_CERT_CHAIN. @c @c Now the issuer's certificate is looked up: If an @c authorityKeyIdentifier is available, this one is used to locate the @c certificate either using issuer and serialnumber or subject DN @c (i.e. the issuer's DN) and the keyID. The functions @c @code{find_cert_bysn) and @code{find_cert_bysubject} are used @c respectively. The have already been described above under the @c description of @code{crl_cache_insert}. If no certificate was found @c or with no authorityKeyIdentifier, only the cache is consulted using @c @code{get_cert_bysubject}. The latter is done under the assumption @c that a matching certificate has explicitly been put into the @c certificate cache. If the issuer's certificate could not be found, @c the validation terminates with the error code @code{GPG_ERR_MISSING_CERT}. @c @c If the issuer's certificate has been found, the signature of the @c actual certificate is checked and in case this fails the error @c #code{GPG_ERR_BAD_CERT_CHAIN} is returned. If the signature checks out, the @c maximum chain length of the issuing certificate is checked as well as @c the capability of the certificate (i.e. whether he may be used for @c certificate signing). Then the certificate is prepended to our list @c representing the certificate chain. Finally the loop is continued now @c with the issuer's certificate as the current certificate. @c @c After the end of the loop and if no error as been encountered @c (i.e. the certificate chain has been assempled correctly), a check is @c done whether any certificate expired or a critical policy has not been @c met. In any of these cases the validation terminates with an @c appropriate error. @c @c Finally the function @code{check_revocations} is called to verify no @c certificate in the assempled chain has been revoked: This is an @c recursive process because a CRL has to be checked for each certificate @c in the chain except for the root certificate, of which we already know @c that it is trusted and we avoid checking a CRL here due to common @c setup problems and the assumption that a revoked root certificate has @c been removed from the list of trusted certificates. @c @c @c @c @c @section Looking up certificates through LDAP. @c @c This describes the LDAP layer to retrieve certificates. @c the functions @code{ca_cert_fetch} and @code{fetch_next_ksba_cert} are @c used for this. The first one starts a search and the second one is @c used to retrieve certificate after certificate. @c diff --git a/doc/gpg.texi b/doc/gpg.texi index 7b603d7da..cd8ded982 100644 --- a/doc/gpg.texi +++ b/doc/gpg.texi @@ -1,4358 +1,4358 @@ @c Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, @c 2008, 2009, 2010 Free Software Foundation, Inc. @c This is part of the GnuPG manual. @c For copying conditions, see the file gnupg.texi. @include defs.inc @node Invoking GPG @chapter Invoking GPG @cindex GPG command options @cindex command options @cindex options, GPG command @c Begin standard stuff @ifclear gpgtwohack @manpage gpg.1 @ifset manverb .B gpg \- OpenPGP encryption and signing tool @end ifset @mansect synopsis @ifset manverb .B gpg .RB [ \-\-homedir .IR dir ] .RB [ \-\-options .IR file ] .RI [ options ] .I command .RI [ args ] @end ifset @end ifclear @c End standard stuff @c Begin gpg2 hack stuff @ifset gpgtwohack @manpage gpg2.1 @ifset manverb .B gpg2 \- OpenPGP encryption and signing tool @end ifset @mansect synopsis @ifset manverb .B gpg2 .RB [ \-\-homedir .IR dir ] .RB [ \-\-options .IR file ] .RI [ options ] .I command .RI [ args ] @end ifset @end ifset @c End gpg2 hack stuff @mansect description @command{@gpgname} is the OpenPGP part of the GNU Privacy Guard (GnuPG). It is a tool to provide digital encryption and signing services using the OpenPGP standard. @command{@gpgname} features complete key management and all the bells and whistles you would expect from a full OpenPGP implementation. There are two main versions of GnuPG: GnuPG 1.x and GnuPG 2.x. GnuPG 2.x supports modern encryption algorithms and thus should be preferred over GnuPG 1.x. You only need to use GnuPG 1.x if your platform doesn't support GnuPG 2.x, or you need support for some features that GnuPG 2.x has deprecated, e.g., decrypting data created with PGP-2 keys. @ifclear gpgtwohack If you are looking for version 1 of GnuPG, you may find that version installed under the name @command{gpg1}. @end ifclear @ifset gpgtwohack In contrast to the standalone command @command{gpg} from GnuPG 1.x, the 2.x version is commonly installed under the name @command{@gpgname}. @end ifset @manpause @xref{Option Index}, for an index to @command{@gpgname}'s commands and options. @mancont @menu * GPG Commands:: List of all commands. * GPG Options:: List of all options. * GPG Configuration:: Configuration files. * GPG Examples:: Some usage examples. Developer information: * Unattended Usage of GPG:: Using @command{gpg} from other programs. @end menu @c * GPG Protocol:: The protocol the server mode uses. @c ******************************************* @c *************** **************** @c *************** COMMANDS **************** @c *************** **************** @c ******************************************* @mansect commands @node GPG Commands @section Commands Commands are not distinguished from options except for the fact that only one command is allowed. Generally speaking, irrelevant options are silently ignored, and may not be checked for correctness. @command{@gpgname} may be run with no commands. In this case it will print a warning perform a reasonable action depending on the type of file it is given as input (an encrypted message is decrypted, a signature is verified, a file containing keys is listed, etc.). If you run into any problems, please add the option @option{--verbose} to the invocation to see more diagnostics. @menu * General GPG Commands:: Commands not specific to the functionality. * Operational GPG Commands:: Commands to select the type of operation. * OpenPGP Key Management:: How to manage your keys. @end menu @c ******************************************* @c ********** GENERAL COMMANDS ************* @c ******************************************* @node General GPG Commands @subsection Commands not specific to the function @table @gnupgtabopt @item --version @opindex version Print the program version and licensing information. Note that you cannot abbreviate this command. @item --help @itemx -h @opindex help Print a usage message summarizing the most useful command-line options. Note that you cannot arbitrarily abbreviate this command (though you can use its short form @option{-h}). @item --warranty @opindex warranty Print warranty information. @item --dump-options @opindex dump-options Print a list of all available options and commands. Note that you cannot abbreviate this command. @end table @c ******************************************* @c ******** OPERATIONAL COMMANDS *********** @c ******************************************* @node Operational GPG Commands @subsection Commands to select the type of operation @table @gnupgtabopt @item --sign @itemx -s @opindex sign Sign a message. This command may be combined with @option{--encrypt} (to sign and encrypt a message), @option{--symmetric} (to sign and symmetrically encrypt a message), or both @option{--encrypt} and @option{--symmetric} (to sign and encrypt a message that can be decrypted using a secret key or a passphrase). The signing key is chosen by default or can be set explicitly using the @option{--local-user} and @option{--default-key} options. @item --clear-sign @opindex clear-sign @itemx --clearsign @opindex clearsign Make a cleartext signature. The content in a cleartext signature is readable without any special software. OpenPGP software is only needed to verify the signature. cleartext signatures may modify end-of-line whitespace for platform independence and are not intended to be reversible. The signing key is chosen by default or can be set explicitly using the @option{--local-user} and @option{--default-key} options. @item --detach-sign @itemx -b @opindex detach-sign Make a detached signature. @item --encrypt @itemx -e @opindex encrypt Encrypt data to one or more public keys. This command may be combined with @option{--sign} (to sign and encrypt a message), @option{--symmetric} (to encrypt a message that can be decrypted using a secret key or a passphrase), or @option{--sign} and @option{--symmetric} together (for a signed message that can be decrypted using a secret key or a passphrase). @option{--recipient} and related options specify which public keys to use for encryption. @item --symmetric @itemx -c @opindex symmetric Encrypt with a symmetric cipher using a passphrase. The default symmetric cipher used is @value{GPGSYMENCALGO}, but may be chosen with the @option{--cipher-algo} option. This command may be combined with @option{--sign} (for a signed and symmetrically encrypted message), @option{--encrypt} (for a message that may be decrypted via a secret key or a passphrase), or @option{--sign} and @option{--encrypt} together (for a signed message that may be decrypted via a secret key or a passphrase). @command{@gpgname} caches the passphrase used for symmetric encryption so that a decrypt operation may not require that the user needs to enter the passphrase. The option @option{--no-symkey-cache} can be used to disable this feature. @item --store @opindex store Store only (make a simple literal data packet). @item --decrypt @itemx -d @opindex decrypt Decrypt the file given on the command line (or STDIN if no file is specified) and write it to STDOUT (or the file specified with @option{--output}). If the decrypted file is signed, the signature is also verified. This command differs from the default operation, as it never writes to the filename which is included in the file and it rejects files that don't begin with an encrypted message. @item --verify @opindex verify Assume that the first argument is a signed file and verify it without generating any output. With no arguments, the signature packet is read from STDIN. If only one argument is given, the specified file is expected to include a complete signature. With more than one argument, the first argument should specify a file with a detached signature and the remaining files should contain the signed data. To read the signed data from STDIN, use @samp{-} as the second filename. For security reasons, a detached signature will not read the signed material from STDIN if not explicitly specified. Note: If the option @option{--batch} is not used, @command{@gpgname} may assume that a single argument is a file with a detached signature, and it will try to find a matching data file by stripping certain suffixes. Using this historical feature to verify a detached signature is strongly discouraged; you should always specify the data file explicitly. Note: When verifying a cleartext signature, @command{@gpgname} verifies only what makes up the cleartext signed data and not any extra data outside of the cleartext signature or the header lines directly following the dash marker line. The option @code{--output} may be used to write out the actual signed data, but there are other pitfalls with this format as well. It is suggested to avoid cleartext signatures in favor of detached signatures. Note: Sometimes the use of the @command{gpgv} tool is easier than using the full-fledged @command{gpg} with this option. @command{gpgv} is designed to compare signed data against a list of trusted keys and returns with success only for a good signature. It has its own manual page. @item --multifile @opindex multifile This modifies certain other commands to accept multiple files for processing on the command line or read from STDIN with each filename on a separate line. This allows for many files to be processed at once. @option{--multifile} may currently be used along with @option{--verify}, @option{--encrypt}, and @option{--decrypt}. Note that @option{--multifile --verify} may not be used with detached signatures. @item --verify-files @opindex verify-files Identical to @option{--multifile --verify}. @item --encrypt-files @opindex encrypt-files Identical to @option{--multifile --encrypt}. @item --decrypt-files @opindex decrypt-files Identical to @option{--multifile --decrypt}. @item --list-keys @itemx -k @itemx --list-public-keys @opindex list-keys List the specified keys. If no keys are specified, then all keys from the configured public keyrings are listed. Never use the output of this command in scripts or other programs. The output is intended only for humans and its format is likely to change. The @option{--with-colons} option emits the output in a stable, machine-parseable format, which is intended for use by scripts and other programs. @item --list-secret-keys @itemx -K @opindex list-secret-keys List the specified secret keys. If no keys are specified, then all known secret keys are listed. A @code{#} after the initial tags @code{sec} or @code{ssb} means that the secret key or subkey is currently not usable. We also say that this key has been taken offline (for example, a primary key can be taken offline by exporting the key using the command @option{--export-secret-subkeys}). A @code{>} after these tags indicate that the key is stored on a smartcard. See also @option{--list-keys}. @item --check-signatures @opindex check-signatures @itemx --check-sigs @opindex check-sigs Same as @option{--list-keys}, but the key signatures are verified and listed too. Note that for performance reasons the revocation status of a signing key is not shown. This command has the same effect as using @option{--list-keys} with @option{--with-sig-check}. The status of the verification is indicated by a flag directly following the "sig" tag (and thus before the flags described below. A "!" indicates that the signature has been successfully verified, a "-" denotes a bad signature and a "%" is used if an error occurred while checking the signature (e.g. a non supported algorithm). Signatures where the public key is not available are not listed; to see their keyids the command @option{--list-sigs} can be used. For each signature listed, there are several flags in between the signature status flag and keyid. These flags give additional information about each key signature. From left to right, they are the numbers 1-3 for certificate check level (see @option{--ask-cert-level}), "L" for a local or non-exportable signature (see @option{--lsign-key}), "R" for a nonRevocable signature (see the @option{--edit-key} command "nrsign"), "P" for a signature that contains a policy URL (see @option{--cert-policy-url}), "N" for a signature that contains a notation (see @option{--cert-notation}), "X" for an eXpired signature (see @option{--ask-cert-expire}), and the numbers 1-9 or "T" for 10 and above to indicate trust signature levels (see the @option{--edit-key} command "tsign"). @item --locate-keys @itemx --locate-external-keys @opindex locate-keys @opindex locate-external-keys Locate the keys given as arguments. This command basically uses the same algorithm as used when locating keys for encryption or signing and may thus be used to see what keys @command{@gpgname} might use. In particular external methods as defined by @option{--auto-key-locate} may be used to locate a key. Only public keys are listed. The variant @option{--locate-external-keys} does not consider a locally existing key and can thus be used to force the refresh of a key via the defined external methods. @item --show-keys @opindex show-keys This commands takes OpenPGP keys as input and prints information about them in the same way the command @option{--list-keys} does for locally stored key. In addition the list options @code{show-unusable-uids}, @code{show-unusable-subkeys}, @code{show-notations} and @code{show-policy-urls} are also enabled. As usual for automated processing, this command should be combined with the option @option{--with-colons}. @item --fingerprint @opindex fingerprint List all keys (or the specified ones) along with their fingerprints. This is the same output as @option{--list-keys} but with the additional output of a line with the fingerprint. May also be combined with @option{--check-signatures}. If this command is given twice, the fingerprints of all secondary keys are listed too. This command also forces pretty printing of fingerprints if the keyid format has been set to "none". @item --list-packets @opindex list-packets List only the sequence of packets. This command is only useful for debugging. When used with option @option{--verbose} the actual MPI values are dumped and not only their lengths. Note that the output of this command may change with new releases. @item --edit-card @opindex edit-card @itemx --card-edit @opindex card-edit Present a menu to work with a smartcard. The subcommand "help" provides an overview on available commands. For a detailed description, please see the Card HOWTO at https://gnupg.org/documentation/howtos.html#GnuPG-cardHOWTO . @item --card-status @opindex card-status Show the content of the smart card. @item --change-pin @opindex change-pin Present a menu to allow changing the PIN of a smartcard. This functionality is also available as the subcommand "passwd" with the @option{--edit-card} command. @item --delete-keys @var{name} @opindex delete-keys Remove key from the public keyring. In batch mode either @option{--yes} is required or the key must be specified by fingerprint. This is a safeguard against accidental deletion of multiple keys. If the exclamation mark syntax is used with the fingerprint of a subkey only that subkey is deleted; if the exclamation mark is used with the fingerprint of the primary key the entire public key is deleted. @item --delete-secret-keys @var{name} @opindex delete-secret-keys Remove key from the secret keyring. In batch mode the key must be specified by fingerprint. The option @option{--yes} can be used to advise gpg-agent not to request a confirmation. This extra pre-caution is done because @command{@gpgname} can't be sure that the secret key (as controlled by gpg-agent) is only used for the given OpenPGP public key. If the exclamation mark syntax is used with the fingerprint of a subkey only the secret part of that subkey is deleted; if the exclamation mark is used with the fingerprint of the primary key only the secret part of the primary key is deleted. @item --delete-secret-and-public-key @var{name} @opindex delete-secret-and-public-key Same as @option{--delete-key}, but if a secret key exists, it will be removed first. In batch mode the key must be specified by fingerprint. The option @option{--yes} can be used to advise gpg-agent not to request a confirmation. @item --export @opindex export Either export all keys from all keyrings (default keyrings and those registered via option @option{--keyring}), or if at least one name is given, those of the given name. The exported keys are written to STDOUT or to the file given with option @option{--output}. Use together with @option{--armor} to mail those keys. @item --send-keys @var{keyIDs} @opindex send-keys Similar to @option{--export} but sends the keys to a keyserver. Fingerprints may be used instead of key IDs. Don't send your complete keyring to a keyserver --- select only those keys which are new or changed by you. If no @var{keyIDs} are given, @command{@gpgname} does nothing. Take care: Keyservers are by design write only systems and thus it is not possible to ever delete keys once they have been send to a keyserver. @item --export-secret-keys @itemx --export-secret-subkeys @opindex export-secret-keys @opindex export-secret-subkeys Same as @option{--export}, but exports the secret keys instead. The exported keys are written to STDOUT or to the file given with option @option{--output}. This command is often used along with the option @option{--armor} to allow for easy printing of the key for paper backup; however the external tool @command{paperkey} does a better job of creating backups on paper. Note that exporting a secret key can be a security risk if the exported keys are sent over an insecure channel. The second form of the command has the special property to render the secret part of the primary key useless; this is a GNU extension to OpenPGP and other implementations can not be expected to successfully import such a key. Its intended use is in generating a full key with an additional signing subkey on a dedicated machine. This command then exports the key without the primary key to the main machine. GnuPG may ask you to enter the passphrase for the key. This is required, because the internal protection method of the secret key is different from the one specified by the OpenPGP protocol. @item --export-ssh-key @opindex export-ssh-key This command is used to export a key in the OpenSSH public key format. It requires the specification of one key by the usual means and exports the latest valid subkey which has an authentication capability to STDOUT or to the file given with option @option{--output}. That output can directly be added to ssh's @file{authorized_key} file. By specifying the key to export using a key ID or a fingerprint suffixed with an exclamation mark (!), a specific subkey or the primary key can be exported. This does not even require that the key has the authentication capability flag set. @item --import @itemx --fast-import @opindex import Import/merge keys. This adds the given keys to the keyring. The fast version is currently just a synonym. There are a few other options which control how this command works. Most notable here is the @option{--import-options merge-only} option which does not insert new keys but does only the merging of new signatures, user-IDs and subkeys. @item --receive-keys @var{keyIDs} @opindex receive-keys @itemx --recv-keys @var{keyIDs} @opindex recv-keys Import the keys with the given @var{keyIDs} from a keyserver. @item --refresh-keys @opindex refresh-keys Request updates from a keyserver for keys that already exist on the local keyring. This is useful for updating a key with the latest signatures, user IDs, etc. Calling this with no arguments will refresh the entire keyring. @item --search-keys @var{names} @opindex search-keys Search the keyserver for the given @var{names}. Multiple names given here will be joined together to create the search string for the keyserver. Note that keyservers search for @var{names} in a different and simpler way than gpg does. The best choice is to use a mail address. Due to data privacy reasons keyservers may even not even allow searching by user id or mail address and thus may only return results when being used with the @option{--recv-key} command to search by key fingerprint or keyid. @item --fetch-keys @var{URIs} @opindex fetch-keys Retrieve keys located at the specified @var{URIs}. Note that different installations of GnuPG may support different protocols (HTTP, FTP, LDAP, etc.). When using HTTPS the system provided root certificates are used by this command. @item --update-trustdb @opindex update-trustdb Do trust database maintenance. This command iterates over all keys and builds the Web of Trust. This is an interactive command because it may have to ask for the "ownertrust" values for keys. The user has to give an estimation of how far she trusts the owner of the displayed key to correctly certify (sign) other keys. GnuPG only asks for the ownertrust value if it has not yet been assigned to a key. Using the @option{--edit-key} menu, the assigned value can be changed at any time. @item --check-trustdb @opindex check-trustdb Do trust database maintenance without user interaction. From time to time the trust database must be updated so that expired keys or signatures and the resulting changes in the Web of Trust can be tracked. Normally, GnuPG will calculate when this is required and do it automatically unless @option{--no-auto-check-trustdb} is set. This command can be used to force a trust database check at any time. The processing is identical to that of @option{--update-trustdb} but it skips keys with a not yet defined "ownertrust". For use with cron jobs, this command can be used together with @option{--batch} in which case the trust database check is done only if a check is needed. To force a run even in batch mode add the option @option{--yes}. @anchor{option --export-ownertrust} @item --export-ownertrust @opindex export-ownertrust Send the ownertrust values to STDOUT. This is useful for backup purposes as these values are the only ones which can't be re-created from a corrupted trustdb. Example: @c man:.RS @example @gpgname{} --export-ownertrust > otrust.txt @end example @c man:.RE @item --import-ownertrust @opindex import-ownertrust Update the trustdb with the ownertrust values stored in @code{files} (or STDIN if not given); existing values will be overwritten. In case of a severely damaged trustdb and if you have a recent backup of the ownertrust values (e.g. in the file @file{otrust.txt}), you may re-create the trustdb using these commands: @c man:.RS @example cd ~/.gnupg rm trustdb.gpg @gpgname{} --import-ownertrust < otrust.txt @end example @c man:.RE @item --rebuild-keydb-caches @opindex rebuild-keydb-caches When updating from version 1.0.6 to 1.0.7 this command should be used to create signature caches in the keyring. It might be handy in other situations too. @item --print-md @var{algo} @itemx --print-mds @opindex print-md Print message digest of algorithm @var{algo} for all given files or STDIN. With the second form (or a deprecated "*" for @var{algo}) digests for all available algorithms are printed. @item --gen-random @var{0|1|2} @var{count} @opindex gen-random Emit @var{count} random bytes of the given quality level 0, 1 or 2. If @var{count} is not given or zero, an endless sequence of random bytes will be emitted. If used with @option{--armor} the output will be base64 encoded. PLEASE, don't use this command unless you know what you are doing; it may remove precious entropy from the system! @item --gen-prime @var{mode} @var{bits} @opindex gen-prime Use the source, Luke :-). The output format is subject to change with ant release. @item --enarmor @itemx --dearmor @opindex enarmor @opindex dearmor Pack or unpack an arbitrary input into/from an OpenPGP ASCII armor. This is a GnuPG extension to OpenPGP and in general not very useful. @item --tofu-policy @{auto|good|unknown|bad|ask@} @var{keys} @opindex tofu-policy Set the TOFU policy for all the bindings associated with the specified @var{keys}. For more information about the meaning of the policies, @pxref{trust-model-tofu}. The @var{keys} may be specified either by their fingerprint (preferred) or their keyid. @c @item --server @c @opindex server @c Run gpg in server mode. This feature is not yet ready for use and @c thus not documented. @end table @c ******************************************* @c ******* KEY MANGEMENT COMMANDS ********** @c ******************************************* @node OpenPGP Key Management @subsection How to manage your keys This section explains the main commands for key management. @table @gnupgtabopt @item --quick-generate-key @var{user-id} [@var{algo} [@var{usage} [@var{expire}]]] @itemx --quick-gen-key @opindex quick-generate-key @opindex quick-gen-key This is a simple command to generate a standard key with one user id. In contrast to @option{--generate-key} the key is generated directly without the need to answer a bunch of prompts. Unless the option @option{--yes} is given, the key creation will be canceled if the given user id already exists in the keyring. If invoked directly on the console without any special options an answer to a ``Continue?'' style confirmation prompt is required. In case the user id already exists in the keyring a second prompt to force the creation of the key will show up. If @var{algo} or @var{usage} are given, only the primary key is created and no prompts are shown. To specify an expiration date but still create a primary and subkey use ``default'' or ``future-default'' for @var{algo} and ``default'' for @var{usage}. For a description of these optional arguments see the command @code{--quick-add-key}. The @var{usage} accepts also the value ``cert'' which can be used to create a certification only primary key; the default is to a create certification and signing key. The @var{expire} argument can be used to specify an expiration date for the key. Several formats are supported; commonly the ISO formats ``YYYY-MM-DD'' or ``YYYYMMDDThhmmss'' are used. To make the key expire in N seconds, N days, N weeks, N months, or N years use ``seconds=N'', ``Nd'', ``Nw'', ``Nm'', or ``Ny'' respectively. Not specifying a value, or using ``-'' results in a key expiring in a reasonable default interval. The values ``never'', ``none'' can be used for no expiration date. If this command is used with @option{--batch}, @option{--pinentry-mode} has been set to @code{loopback}, and one of the passphrase options (@option{--passphrase}, @option{--passphrase-fd}, or @option{passphrase-file}) is used, the supplied passphrase is used for the new key and the agent does not ask for it. To create a key without any protection @code{--passphrase ''} may be used. To create an OpenPGP key from the keys available on the currently inserted smartcard, the special string ``card'' can be used for @var{algo}. If the card features an encryption and a signing key, gpg will figure them out and creates an OpenPGP key consisting of the usual primary key and one subkey. This works only with certain smartcards. Note that the interactive @option{--full-gen-key} command allows to do the same but with greater flexibility in the selection of the smartcard keys. Note that it is possible to create a primary key and a subkey using non-default algorithms by using ``default'' and changing the default parameters using the option @option{--default-new-key-algo}. @item --quick-set-expire @var{fpr} @var{expire} [*|@var{subfprs}] @opindex quick-set-expire With two arguments given, directly set the expiration time of the primary key identified by @var{fpr} to @var{expire}. To remove the expiration time @code{0} can be used. With three arguments and the third given as an asterisk, the expiration time of all non-revoked and not yet expired subkeys are set to @var{expire}. With more than two arguments and a list of fingerprints given for @var{subfprs}, all non-revoked subkeys matching these fingerprints are set to @var{expire}. @item --quick-add-key @var{fpr} [@var{algo} [@var{usage} [@var{expire}]]] @opindex quick-add-key Directly add a subkey to the key identified by the fingerprint @var{fpr}. Without the optional arguments an encryption subkey is added. If any of the arguments are given a more specific subkey is added. @var{algo} may be any of the supported algorithms or curve names given in the format as used by key listings. To use the default algorithm the string ``default'' or ``-'' can be used. Supported algorithms are ``rsa'', ``dsa'', ``elg'', ``ed25519'', ``cv25519'', and other ECC curves. For example the string ``rsa'' adds an RSA key with the default key length; a string ``rsa4096'' requests that the key length is 4096 bits. The string ``future-default'' is an alias for the algorithm which will likely be used as default algorithm in future versions of gpg. To list the supported ECC curves the command @code{gpg --with-colons --list-config curve} can be used. Depending on the given @var{algo} the subkey may either be an encryption subkey or a signing subkey. If an algorithm is capable of signing and encryption and such a subkey is desired, a @var{usage} string must be given. This string is either ``default'' or ``-'' to keep the default or a comma delimited list (or space delimited list) of keywords: ``sign'' for a signing subkey, ``auth'' for an authentication subkey, and ``encr'' for an encryption subkey (``encrypt'' can be used as alias for ``encr''). The valid combinations depend on the algorithm. The @var{expire} argument can be used to specify an expiration date for the key. Several formats are supported; commonly the ISO formats ``YYYY-MM-DD'' or ``YYYYMMDDThhmmss'' are used. To make the key expire in N seconds, N days, N weeks, N months, or N years use ``seconds=N'', ``Nd'', ``Nw'', ``Nm'', or ``Ny'' respectively. Not specifying a value, or using ``-'' results in a key expiring in a reasonable default interval. The values ``never'', ``none'' can be used for no expiration date. @item --generate-key @opindex generate-key @itemx --gen-key @opindex gen-key Generate a new key pair using the current default parameters. This is the standard command to create a new key. In addition to the key a revocation certificate is created and stored in the @file{openpgp-revocs.d} directory below the GnuPG home directory. @item --full-generate-key @opindex full-generate-key @itemx --full-gen-key @opindex full-gen-key Generate a new key pair with dialogs for all options. This is an extended version of @option{--generate-key}. There is also a feature which allows you to create keys in batch mode. See the manual section ``Unattended key generation'' on how to use this. @item --generate-revocation @var{name} @opindex generate-revocation @itemx --gen-revoke @var{name} @opindex gen-revoke Generate a revocation certificate for the complete key. To only revoke a subkey or a key signature, use the @option{--edit} command. This command merely creates the revocation certificate so that it can be used to revoke the key if that is ever needed. To actually revoke a key the created revocation certificate needs to be merged with the key to revoke. This is done by importing the revocation certificate using the @option{--import} command. Then the revoked key needs to be published, which is best done by sending the key to a keyserver (command @option{--send-key}) and by exporting (@option{--export}) it to a file which is then send to frequent communication partners. @item --generate-designated-revocation @var{name} @opindex generate-designated-revocation @itemx --desig-revoke @var{name} @opindex desig-revoke Generate a designated revocation certificate for a key. This allows a user (with the permission of the keyholder) to revoke someone else's key. @item --edit-key @opindex edit-key Present a menu which enables you to do most of the key management related tasks. It expects the specification of a key on the command line. @c ******** Begin Edit-key Options ********** @table @asis @item uid @var{n} @opindex keyedit:uid Toggle selection of user ID or photographic user ID with index @var{n}. Use @code{*} to select all and @code{0} to deselect all. @item key @var{n} @opindex keyedit:key Toggle selection of subkey with index @var{n} or key ID @var{n}. Use @code{*} to select all and @code{0} to deselect all. @item sign @opindex keyedit:sign Make a signature on key of user @code{name}. If the key is not yet signed by the default user (or the users given with @option{-u}), the program displays the information of the key again, together with its fingerprint and asks whether it should be signed. This question is repeated for all users specified with @option{-u}. @item lsign @opindex keyedit:lsign Same as "sign" but the signature is marked as non-exportable and will therefore never be used by others. This may be used to make keys valid only in the local environment. @item nrsign @opindex keyedit:nrsign Same as "sign" but the signature is marked as non-revocable and can therefore never be revoked. @item tsign @opindex keyedit:tsign Make a trust signature. This is a signature that combines the notions of certification (like a regular signature), and trust (like the "trust" command). It is generally only useful in distinct communities or groups. For more information please read the sections ``Trust Signature'' and ``Regular Expression'' in RFC-4880. @end table @c man:.RS Note that "l" (for local / non-exportable), "nr" (for non-revocable, and "t" (for trust) may be freely mixed and prefixed to "sign" to create a signature of any type desired. @c man:.RE If the option @option{--only-sign-text-ids} is specified, then any non-text based user ids (e.g., photo IDs) will not be selected for signing. @table @asis @item delsig @opindex keyedit:delsig Delete a signature. Note that it is not possible to retract a signature, once it has been send to the public (i.e. to a keyserver). In that case you better use @code{revsig}. @item revsig @opindex keyedit:revsig Revoke a signature. For every signature which has been generated by one of the secret keys, GnuPG asks whether a revocation certificate should be generated. @item check @opindex keyedit:check Check the signatures on all selected user IDs. With the extra option @code{selfsig} only self-signatures are shown. @item adduid @opindex keyedit:adduid Create an additional user ID. @item addphoto @opindex keyedit:addphoto Create a photographic user ID. This will prompt for a JPEG file that will be embedded into the user ID. Note that a very large JPEG will make for a very large key. Also note that some programs will display your JPEG unchanged (GnuPG), and some programs will scale it to fit in a dialog box (PGP). @item showphoto @opindex keyedit:showphoto Display the selected photographic user ID. @item deluid @opindex keyedit:deluid Delete a user ID or photographic user ID. Note that it is not possible to retract a user id, once it has been send to the public (i.e. to a keyserver). In that case you better use @code{revuid}. @item revuid @opindex keyedit:revuid Revoke a user ID or photographic user ID. @item primary @opindex keyedit:primary Flag the current user id as the primary one, removes the primary user id flag from all other user ids and sets the timestamp of all affected self-signatures one second ahead. Note that setting a photo user ID as primary makes it primary over other photo user IDs, and setting a regular user ID as primary makes it primary over other regular user IDs. @item keyserver @opindex keyedit:keyserver Set a preferred keyserver for the specified user ID(s). This allows other users to know where you prefer they get your key from. See @option{--keyserver-options honor-keyserver-url} for more on how this works. Setting a value of "none" removes an existing preferred keyserver. @item notation @opindex keyedit:notation Set a name=value notation for the specified user ID(s). See @option{--cert-notation} for more on how this works. Setting a value of "none" removes all notations, setting a notation prefixed with a minus sign (-) removes that notation, and setting a notation name (without the =value) prefixed with a minus sign removes all notations with that name. @item pref @opindex keyedit:pref List preferences from the selected user ID. This shows the actual preferences, without including any implied preferences. @item showpref @opindex keyedit:showpref More verbose preferences listing for the selected user ID. This shows the preferences in effect by including the implied preferences of 3DES (cipher), SHA-1 (digest), and Uncompressed (compression) if they are not already included in the preference list. In addition, the preferred keyserver and signature notations (if any) are shown. @item setpref @var{string} @opindex keyedit:setpref Set the list of user ID preferences to @var{string} for all (or just the selected) user IDs. Calling setpref with no arguments sets the preference list to the default (either built-in or set via @option{--default-preference-list}), and calling setpref with "none" as the argument sets an empty preference list. Use @command{@gpgname --version} to get a list of available algorithms. Note that while you can change the preferences on an attribute user ID (aka "photo ID"), GnuPG does not select keys via attribute user IDs so these preferences will not be used by GnuPG. When setting preferences, you should list the algorithms in the order which you'd like to see them used by someone else when encrypting a message to your key. If you don't include 3DES, it will be automatically added at the end. Note that there are many factors that go into choosing an algorithm (for example, your key may not be the only recipient), and so the remote OpenPGP application being used to send to you may or may not follow your exact chosen order for a given message. It will, however, only choose an algorithm that is present on the preference list of every recipient key. See also the INTEROPERABILITY WITH OTHER OPENPGP PROGRAMS section below. @item addkey @opindex keyedit:addkey Add a subkey to this key. @item addcardkey @opindex keyedit:addcardkey Generate a subkey on a card and add it to this key. @item keytocard @opindex keyedit:keytocard Transfer the selected secret subkey (or the primary key if no subkey has been selected) to a smartcard. The secret key in the keyring will be replaced by a stub if the key could be stored successfully on the card and you use the save command later. Only certain key types may be transferred to the card. A sub menu allows you to select on what card to store the key. Note that it is not possible to get that key back from the card - if the card gets broken your secret key will be lost unless you have a backup somewhere. @item bkuptocard @var{file} @opindex keyedit:bkuptocard Restore the given @var{file} to a card. This command may be used to restore a backup key (as generated during card initialization) to a new card. In almost all cases this will be the encryption key. You should use this command only with the corresponding public key and make sure that the file given as argument is indeed the backup to restore. You should then select 2 to restore as encryption key. You will first be asked to enter the passphrase of the backup key and then for the Admin PIN of the card. @item delkey @opindex keyedit:delkey Remove a subkey (secondary key). Note that it is not possible to retract a subkey, once it has been send to the public (i.e. to a keyserver). In that case you better use @code{revkey}. Also note that this only deletes the public part of a key. @item revkey @opindex keyedit:revkey Revoke a subkey. @item expire @opindex keyedit:expire Change the key or subkey expiration time. If a subkey is selected, the expiration time of this subkey will be changed. With no selection, the key expiration of the primary key is changed. @item trust @opindex keyedit:trust Change the owner trust value for the key. This updates the trust-db immediately and no save is required. @item disable @itemx enable @opindex keyedit:disable @opindex keyedit:enable Disable or enable an entire key. A disabled key can not normally be used for encryption. @item addrevoker @opindex keyedit:addrevoker Add a designated revoker to the key. This takes one optional argument: "sensitive". If a designated revoker is marked as sensitive, it will not be exported by default (see export-options). @item passwd @opindex keyedit:passwd Change the passphrase of the secret key. @item toggle @opindex keyedit:toggle This is dummy command which exists only for backward compatibility. @item clean @opindex keyedit:clean Compact (by removing all signatures except the selfsig) any user ID that is no longer usable (e.g. revoked, or expired). Then, remove any signatures that are not usable by the trust calculations. Specifically, this removes any signature that does not validate, any signature that is superseded by a later signature, revoked signatures, and signatures issued by keys that are not present on the keyring. @item minimize @opindex keyedit:minimize Make the key as small as possible. This removes all signatures from each user ID except for the most recent self-signature. @item change-usage @opindex keyedit:change-usage Change the usage flags (capabilities) of the primary key or of subkeys. These usage flags (e.g. Certify, Sign, Authenticate, Encrypt) are set during key creation. Sometimes it is useful to have the opportunity to change them (for example to add Authenticate) after they have been created. Please take care when doing this; the allowed usage flags depend on the key algorithm. @item cross-certify @opindex keyedit:cross-certify Add cross-certification signatures to signing subkeys that may not currently have them. Cross-certification signatures protect against a subtle attack against signing subkeys. See @option{--require-cross-certification}. All new keys generated have this signature by default, so this command is only useful to bring older keys up to date. @item save @opindex keyedit:save Save all changes to the keyrings and quit. @item quit @opindex keyedit:quit Quit the program without updating the keyrings. @end table @c man:.RS The listing shows you the key with its secondary keys and all user IDs. The primary user ID is indicated by a dot, and selected keys or user IDs are indicated by an asterisk. The trust value is displayed with the primary key: "trust" is the assigned owner trust and "validity" is the calculated validity of the key. Validity values are also displayed for all user IDs. For possible values of trust, @pxref{trust-values}. @c man:.RE @c ******** End Edit-key Options ********** @item --sign-key @var{name} @opindex sign-key Signs a public key with your secret key. This is a shortcut version of the subcommand "sign" from @option{--edit}. @item --lsign-key @var{name} @opindex lsign-key Signs a public key with your secret key but marks it as non-exportable. This is a shortcut version of the subcommand "lsign" from @option{--edit-key}. @item --quick-sign-key @var{fpr} [@var{names}] @itemx --quick-lsign-key @var{fpr} [@var{names}] @opindex quick-sign-key @opindex quick-lsign-key Directly sign a key from the passphrase without any further user interaction. The @var{fpr} must be the verified primary fingerprint of a key in the local keyring. If no @var{names} are given, all useful user ids are signed; with given [@var{names}] only useful user ids matching one of theses names are signed. By default, or if a name is prefixed with a '*', a case insensitive substring match is used. If a name is prefixed with a '=' a case sensitive exact match is done. The command @option{--quick-lsign-key} marks the signatures as non-exportable. If such a non-exportable signature already exists the @option{--quick-sign-key} turns it into a exportable signature. This command uses reasonable defaults and thus does not provide the full flexibility of the "sign" subcommand from @option{--edit-key}. Its intended use is to help unattended key signing by utilizing a list of verified fingerprints. @item --quick-add-uid @var{user-id} @var{new-user-id} @opindex quick-add-uid This command adds a new user id to an existing key. In contrast to the interactive sub-command @code{adduid} of @option{--edit-key} the @var{new-user-id} is added verbatim with only leading and trailing white space removed, it is expected to be UTF-8 encoded, and no checks on its form are applied. @item --quick-revoke-uid @var{user-id} @var{user-id-to-revoke} @opindex quick-revoke-uid This command revokes a user ID on an existing key. It cannot be used to revoke the last user ID on key (some non-revoked user ID must remain), with revocation reason ``User ID is no longer valid''. If you want to specify a different revocation reason, or to supply supplementary revocation text, you should use the interactive sub-command @code{revuid} of @option{--edit-key}. @item --quick-revoke-sig @var{fpr} @var{signing-fpr} [@var{names}] @opindex quick-revoke-sig This command revokes the key signatures made by @var{signing-fpr} from the key specified by the fingerprint @var{fpr}. With @var{names} given only the signatures on user ids of the key matching any of the given names are affected (see @option{--quick-sign-key}). If a revocation already exists a notice is printed instead of creating a new revocation; no error is returned in this case. Note that key signature revocations may be superseded by a newer key signature and in turn again revoked. @item --quick-set-primary-uid @var{user-id} @var{primary-user-id} @opindex quick-set-primary-uid This command sets or updates the primary user ID flag on an existing key. @var{user-id} specifies the key and @var{primary-user-id} the user ID which shall be flagged as the primary user ID. The primary user ID flag is removed from all other user ids and the timestamp of all affected self-signatures is set one second ahead. @item --change-passphrase @var{user-id} @opindex change-passphrase @itemx --passwd @var{user-id} @opindex passwd Change the passphrase of the secret key belonging to the certificate specified as @var{user-id}. This is a shortcut for the sub-command @code{passwd} of the edit key menu. When using together with the option @option{--dry-run} this will not actually change the passphrase but check that the current passphrase is correct. @end table @c ******************************************* @c *************** **************** @c *************** OPTIONS **************** @c *************** **************** @c ******************************************* @mansect options @node GPG Options @section Option Summary @command{@gpgname} features a bunch of options to control the exact behaviour and to change the default configuration. @menu * GPG Configuration Options:: How to change the configuration. * GPG Key related Options:: Key related options. * GPG Input and Output:: Input and Output. * OpenPGP Options:: OpenPGP protocol specific options. * Compliance Options:: Compliance options. * GPG Esoteric Options:: Doing things one usually doesn't want to do. * Deprecated Options:: Deprecated options. @end menu Long options can be put in an options file (default "~/.gnupg/gpg.conf"). Short option names will not work - for example, "armor" is a valid option for the options file, while "a" is not. Do not write the 2 dashes, but simply the name of the option and any required arguments. Lines with a hash ('#') as the first non-white-space character are ignored. Commands may be put in this file too, but that is not generally useful as the command will execute automatically with every execution of gpg. Please remember that option parsing stops as soon as a non-option is encountered, you can explicitly stop parsing by using the special option @option{--}. @c ******************************************* @c ******** CONFIGURATION OPTIONS ********** @c ******************************************* @node GPG Configuration Options @subsection How to change the configuration These options are used to change the configuration and are usually found in the option file. @table @gnupgtabopt @item --default-key @var{name} @opindex default-key Use @var{name} as the default key to sign with. If this option is not used, the default key is the first key found in the secret keyring. Note that @option{-u} or @option{--local-user} overrides this option. This option may be given multiple times. In this case, the last key for which a secret key is available is used. If there is no secret key available for any of the specified values, GnuPG will not emit an error message but continue as if this option wasn't given. @item --default-recipient @var{name} @opindex default-recipient Use @var{name} as default recipient if option @option{--recipient} is not used and don't ask if this is a valid one. @var{name} must be non-empty. @item --default-recipient-self @opindex default-recipient-self Use the default key as default recipient if option @option{--recipient} is not used and don't ask if this is a valid one. The default key is the first one from the secret keyring or the one set with @option{--default-key}. @item --no-default-recipient @opindex no-default-recipient Reset @option{--default-recipient} and @option{--default-recipient-self}. @item -v, --verbose @opindex verbose Give more information during processing. If used twice, the input data is listed in detail. @item --no-verbose @opindex no-verbose Reset verbose level to 0. @item -q, --quiet @opindex quiet Try to be as quiet as possible. @item --batch @itemx --no-batch @opindex batch @opindex no-batch Use batch mode. Never ask, do not allow interactive commands. @option{--no-batch} disables this option. Note that even with a filename given on the command line, gpg might still need to read from STDIN (in particular if gpg figures that the input is a detached signature and no data file has been specified). Thus if you do not want to feed data via STDIN, you should connect STDIN to g@file{/dev/null}. It is highly recommended to use this option along with the options @option{--status-fd} and @option{--with-colons} for any unattended use of @command{gpg}. @item --no-tty @opindex no-tty Make sure that the TTY (terminal) is never used for any output. This option is needed in some cases because GnuPG sometimes prints warnings to the TTY even if @option{--batch} is used. @item --yes @opindex yes Assume "yes" on most questions. @item --no @opindex no Assume "no" on most questions. @item --list-options @var{parameters} @opindex list-options This is a space or comma delimited string that gives options used when listing keys and signatures (that is, @option{--list-keys}, @option{--check-signatures}, @option{--list-public-keys}, @option{--list-secret-keys}, and the @option{--edit-key} functions). Options can be prepended with a @option{no-} (after the two dashes) to give the opposite meaning. The options are: @table @asis @item show-photos @opindex list-options:show-photos Causes @option{--list-keys}, @option{--check-signatures}, @option{--list-public-keys}, and @option{--list-secret-keys} to display any photo IDs attached to the key. Defaults to no. See also @option{--photo-viewer}. Does not work with @option{--with-colons}: see @option{--attribute-fd} for the appropriate way to get photo data for scripts and other frontends. @item show-usage @opindex list-options:show-usage Show usage information for keys and subkeys in the standard key listing. This is a list of letters indicating the allowed usage for a key (@code{E}=encryption, @code{S}=signing, @code{C}=certification, @code{A}=authentication). Defaults to yes. @item show-policy-urls @opindex list-options:show-policy-urls Show policy URLs in the @option{--check-signatures} listings. Defaults to no. @item show-notations @itemx show-std-notations @itemx show-user-notations @opindex list-options:show-notations @opindex list-options:show-std-notations @opindex list-options:show-user-notations Show all, IETF standard, or user-defined signature notations in the @option{--check-signatures} listings. Defaults to no. @item show-keyserver-urls @opindex list-options:show-keyserver-urls Show any preferred keyserver URL in the @option{--check-signatures} listings. Defaults to no. @item show-uid-validity @opindex list-options:show-uid-validity Display the calculated validity of user IDs during key listings. Defaults to yes. @item show-unusable-uids @opindex list-options:show-unusable-uids Show revoked and expired user IDs in key listings. Defaults to no. @item show-unusable-subkeys @opindex list-options:show-unusable-subkeys Show revoked and expired subkeys in key listings. Defaults to no. @item show-keyring @opindex list-options:show-keyring Display the keyring name at the head of key listings to show which keyring a given key resides on. Defaults to no. @item show-sig-expire @opindex list-options:show-sig-expire Show signature expiration dates (if any) during @option{--check-signatures} listings. Defaults to no. @item show-sig-subpackets @opindex list-options:show-sig-subpackets Include signature subpackets in the key listing. This option can take an optional argument list of the subpackets to list. If no argument is passed, list all subpackets. Defaults to no. This option is only meaningful when using @option{--with-colons} along with @option{--check-signatures}. @item show-only-fpr-mbox @opindex list-options:show-only-fpr-mbox For each user-id which has a valid mail address print only the fingerprint followed by the mail address. @end table @item --verify-options @var{parameters} @opindex verify-options This is a space or comma delimited string that gives options used when verifying signatures. Options can be prepended with a `no-' to give the opposite meaning. The options are: @table @asis @item show-photos @opindex verify-options:show-photos Display any photo IDs present on the key that issued the signature. Defaults to no. See also @option{--photo-viewer}. @item show-policy-urls @opindex verify-options:show-policy-urls Show policy URLs in the signature being verified. Defaults to yes. @item show-notations @itemx show-std-notations @itemx show-user-notations @opindex verify-options:show-notations @opindex verify-options:show-std-notations @opindex verify-options:show-user-notations Show all, IETF standard, or user-defined signature notations in the signature being verified. Defaults to IETF standard. @item show-keyserver-urls @opindex verify-options:show-keyserver-urls Show any preferred keyserver URL in the signature being verified. Defaults to yes. @item show-uid-validity @opindex verify-options:show-uid-validity Display the calculated validity of the user IDs on the key that issued the signature. Defaults to yes. @item show-unusable-uids @opindex verify-options:show-unusable-uids Show revoked and expired user IDs during signature verification. Defaults to no. @item show-primary-uid-only @opindex verify-options:show-primary-uid-only Show only the primary user ID during signature verification. That is all the AKA lines as well as photo Ids are not shown with the signature verification status. @item pka-lookups @opindex verify-options:pka-lookups Enable PKA lookups to verify sender addresses. Note that PKA is based on DNS, and so enabling this option may disclose information on when and what signatures are verified or to whom data is encrypted. This is similar to the "web bug" described for the @option{--auto-key-retrieve} option. @item pka-trust-increase @opindex verify-options:pka-trust-increase Raise the trust in a signature to full if the signature passes PKA validation. This option is only meaningful if pka-lookups is set. @end table @item --enable-large-rsa @itemx --disable-large-rsa @opindex enable-large-rsa @opindex disable-large-rsa With --generate-key and --batch, enable the creation of RSA secret keys as large as 8192 bit. Note: 8192 bit is more than is generally recommended. These large keys don't significantly improve security, but they are more expensive to use, and their signatures and certifications are larger. This option is only available if the binary was build with large-secmem support. @item --enable-dsa2 @itemx --disable-dsa2 @opindex enable-dsa2 @opindex disable-dsa2 Enable hash truncation for all DSA keys even for old DSA Keys up to 1024 bit. This is also the default with @option{--openpgp}. Note that older versions of GnuPG also required this flag to allow the generation of DSA larger than 1024 bit. @item --photo-viewer @var{string} @opindex photo-viewer This is the command line that should be run to view a photo ID. "%i" will be expanded to a filename containing the photo. "%I" does the same, except the file will not be deleted once the viewer exits. Other flags are "%k" for the key ID, "%K" for the long key ID, "%f" for the key fingerprint, "%t" for the extension of the image type (e.g. "jpg"), "%T" for the MIME type of the image (e.g. "image/jpeg"), "%v" for the single-character calculated validity of the image being viewed (e.g. "f"), "%V" for the calculated validity as a string (e.g. "full"), "%U" for a base32 encoded hash of the user ID, and "%%" for an actual percent sign. If neither %i or %I are present, then the photo will be supplied to the viewer on standard input. On Unix the default viewer is @code{xloadimage -fork -quiet -title 'KeyID 0x%k' STDIN} with a fallback to @code{display -title 'KeyID 0x%k' %i} and finally to @code{xdg-open %i}. On Windows @code{!ShellExecute 400 %i} is used; here the command is a meta command to use that API call followed by a wait time in milliseconds which is used to give the viewer time to read the temporary image file before gpg deletes it again. Note that if your image viewer program is not secure, then executing it from gpg does not make it secure. @item --exec-path @var{string} @opindex exec-path @efindex PATH Sets a list of directories to search for photo viewers If not provided photo viewers use the @code{PATH} environment variable. @item --keyring @var{file} @opindex keyring Add @var{file} to the current list of keyrings. If @var{file} begins with a tilde and a slash, these are replaced by the $HOME directory. If the filename does not contain a slash, it is assumed to be in the GnuPG home directory ("~/.gnupg" if @option{--homedir} or $GNUPGHOME is not used). Note that this adds a keyring to the current list. If the intent is to use the specified keyring alone, use @option{--keyring} along with @option{--no-default-keyring}. If the option @option{--no-keyring} has been used no keyrings will be used at all. @item --secret-keyring @var{file} @opindex secret-keyring This is an obsolete option and ignored. All secret keys are stored in the @file{private-keys-v1.d} directory below the GnuPG home directory. @item --primary-keyring @var{file} @opindex primary-keyring Designate @var{file} as the primary public keyring. This means that newly imported keys (via @option{--import} or keyserver @option{--recv-from}) will go to this keyring. @item --trustdb-name @var{file} @opindex trustdb-name Use @var{file} instead of the default trustdb. If @var{file} begins with a tilde and a slash, these are replaced by the $HOME directory. If the filename does not contain a slash, it is assumed to be in the GnuPG home directory (@file{~/.gnupg} if @option{--homedir} or $GNUPGHOME is not used). @include opt-homedir.texi @item --display-charset @var{name} @opindex display-charset Set the name of the native character set. This is used to convert some informational strings like user IDs to the proper UTF-8 encoding. Note that this has nothing to do with the character set of data to be encrypted or signed; GnuPG does not recode user-supplied data. If this option is not used, the default character set is determined from the current locale. A verbosity level of 3 shows the chosen set. Valid values for @var{name} are: @table @asis @item iso-8859-1 @opindex display-charset:iso-8859-1 This is the Latin 1 set. @item iso-8859-2 @opindex display-charset:iso-8859-2 The Latin 2 set. @item iso-8859-15 @opindex display-charset:iso-8859-15 This is currently an alias for the Latin 1 set. @item koi8-r @opindex display-charset:koi8-r The usual Russian set (RFC-1489). @item utf-8 @opindex display-charset:utf-8 Bypass all translations and assume that the OS uses native UTF-8 encoding. @end table @item --utf8-strings @itemx --no-utf8-strings @opindex utf8-strings Assume that command line arguments are given as UTF-8 strings. The default (@option{--no-utf8-strings}) is to assume that arguments are encoded in the character set as specified by @option{--display-charset}. These options affect all following arguments. Both options may be used multiple times. @anchor{gpg-option --options} @item --options @var{file} @opindex options Read options from @var{file} and do not try to read them from the default options file in the homedir (see @option{--homedir}). This option is ignored if used in an options file. @item --no-options @opindex no-options Shortcut for @option{--options /dev/null}. This option is detected before an attempt to open an option file. Using this option will also prevent the creation of a @file{~/.gnupg} homedir. @item -z @var{n} @itemx --compress-level @var{n} @itemx --bzip2-compress-level @var{n} @opindex compress-level @opindex bzip2-compress-level Set compression level to @var{n} for the ZIP and ZLIB compression algorithms. The default is to use the default compression level of zlib (normally 6). @option{--bzip2-compress-level} sets the compression level for the BZIP2 compression algorithm (defaulting to 6 as well). This is a different option from @option{--compress-level} since BZIP2 uses a significant amount of memory for each additional compression level. @option{-z} sets both. A value of 0 for @var{n} disables compression. @item --bzip2-decompress-lowmem @opindex bzip2-decompress-lowmem Use a different decompression method for BZIP2 compressed files. This alternate method uses a bit more than half the memory, but also runs at half the speed. This is useful under extreme low memory circumstances when the file was originally compressed at a high @option{--bzip2-compress-level}. @item --mangle-dos-filenames @itemx --no-mangle-dos-filenames @opindex mangle-dos-filenames @opindex no-mangle-dos-filenames Older version of Windows cannot handle filenames with more than one dot. @option{--mangle-dos-filenames} causes GnuPG to replace (rather than add to) the extension of an output filename to avoid this problem. This option is off by default and has no effect on non-Windows platforms. @item --ask-cert-level @itemx --no-ask-cert-level @opindex ask-cert-level When making a key signature, prompt for a certification level. If this option is not specified, the certification level used is set via @option{--default-cert-level}. See @option{--default-cert-level} for information on the specific levels and how they are used. @option{--no-ask-cert-level} disables this option. This option defaults to no. @item --default-cert-level @var{n} @opindex default-cert-level The default to use for the check level when signing a key. 0 means you make no particular claim as to how carefully you verified the key. 1 means you believe the key is owned by the person who claims to own it but you could not, or did not verify the key at all. This is useful for a "persona" verification, where you sign the key of a pseudonymous user. 2 means you did casual verification of the key. For example, this could mean that you verified the key fingerprint and checked the user ID on the key against a photo ID. 3 means you did extensive verification of the key. For example, this could mean that you verified the key fingerprint with the owner of the key in person, and that you checked, by means of a hard to forge document with a photo ID (such as a passport) that the name of the key owner matches the name in the user ID on the key, and finally that you verified (by exchange of email) that the email address on the key belongs to the key owner. Note that the examples given above for levels 2 and 3 are just that: examples. In the end, it is up to you to decide just what "casual" and "extensive" mean to you. This option defaults to 0 (no particular claim). @item --min-cert-level @opindex min-cert-level When building the trust database, treat any signatures with a certification level below this as invalid. Defaults to 2, which disregards level 1 signatures. Note that level 0 "no particular claim" signatures are always accepted. @item --trusted-key @var{long key ID or fingerprint} @opindex trusted-key Assume that the specified key (which must be given as a full 8 byte key ID or 20 byte fingerprint) is as trustworthy as one of your own secret keys. This option is useful if you don't want to keep your secret keys (or one of them) online but still want to be able to check the validity of a given recipient's or signator's key. @item --trust-model @{pgp|classic|tofu|tofu+pgp|direct|always|auto@} @opindex trust-model Set what trust model GnuPG should follow. The models are: @table @asis @item pgp @opindex trust-model:pgp This is the Web of Trust combined with trust signatures as used in PGP 5.x and later. This is the default trust model when creating a new trust database. @item classic @opindex trust-model:classic This is the standard Web of Trust as introduced by PGP 2. @item tofu @opindex trust-model:tofu @anchor{trust-model-tofu} TOFU stands for Trust On First Use. In this trust model, the first time a key is seen, it is memorized. If later another key with a user id with the same email address is seen, both keys are marked as suspect. In that case, the next time either is used, a warning is displayed describing the conflict, why it might have occurred (either the user generated a new key and failed to cross sign the old and new keys, the key is forgery, or a man-in-the-middle attack is being attempted), and the user is prompted to manually confirm the validity of the key in question. Because a potential attacker is able to control the email address and thereby circumvent the conflict detection algorithm by using an email address that is similar in appearance to a trusted email address, whenever a message is verified, statistics about the number of messages signed with the key are shown. In this way, a user can easily identify attacks using fake keys for regular correspondents. When compared with the Web of Trust, TOFU offers significantly weaker security guarantees. In particular, TOFU only helps ensure consistency (that is, that the binding between a key and email address doesn't change). A major advantage of TOFU is that it requires little maintenance to use correctly. To use the web of trust properly, you need to actively sign keys and mark users as trusted introducers. This is a time-consuming process and anecdotal evidence suggests that even security-conscious users rarely take the time to do this thoroughly and instead rely on an ad-hoc TOFU process. In the TOFU model, policies are associated with bindings between keys and email addresses (which are extracted from user ids and normalized). There are five policies, which can be set manually using the @option{--tofu-policy} option. The default policy can be set using the @option{--tofu-default-policy} option. The TOFU policies are: @code{auto}, @code{good}, @code{unknown}, @code{bad} and @code{ask}. The @code{auto} policy is used by default (unless overridden by @option{--tofu-default-policy}) and marks a binding as marginally trusted. The @code{good}, @code{unknown} and @code{bad} policies mark a binding as fully trusted, as having unknown trust or as having trust never, respectively. The @code{unknown} policy is useful for just using TOFU to detect conflicts, but to never assign positive trust to a binding. The final policy, @code{ask} prompts the user to indicate the binding's trust. If batch mode is enabled (or input is inappropriate in the context), then the user is not prompted and the @code{undefined} trust level is returned. @item tofu+pgp @opindex trust-model:tofu+pgp This trust model combines TOFU with the Web of Trust. This is done by computing the trust level for each model and then taking the maximum trust level where the trust levels are ordered as follows: @code{unknown < undefined < marginal < fully < ultimate < expired < never}. By setting @option{--tofu-default-policy=unknown}, this model can be used to implement the web of trust with TOFU's conflict detection algorithm, but without its assignment of positive trust values, which some security-conscious users don't like. @item direct @opindex trust-model:direct Key validity is set directly by the user and not calculated via the Web of Trust. This model is solely based on the key and does not distinguish user IDs. Note that when changing to another trust model the trust values assigned to a key are transformed into ownertrust values, which also indicate how you trust the owner of the key to sign other keys. @item always @opindex trust-model:always Skip key validation and assume that used keys are always fully valid. You generally won't use this unless you are using some external validation scheme. This option also suppresses the "[uncertain]" tag printed with signature checks when there is no evidence that the user ID is bound to the key. Note that this trust model still does not allow the use of expired, revoked, or disabled keys. @item auto @opindex trust-model:auto Select the trust model depending on whatever the internal trust database says. This is the default model if such a database already exists. Note that a tofu trust model is not considered here and must be enabled explicitly. @end table @item --auto-key-locate @var{mechanisms} @itemx --no-auto-key-locate @opindex auto-key-locate GnuPG can automatically locate and retrieve keys as needed using this option. This happens when encrypting to an email address (in the "user@@example.com" form), and there are no "user@@example.com" keys on the local keyring. This option takes any number of the mechanisms listed below, in the order they are to be tried. Instead of listing the mechanisms as comma delimited arguments, the option may also be given several times to add more mechanism. The option @option{--no-auto-key-locate} or the mechanism "clear" resets the list. The default is "local,wkd". @table @asis @item cert Locate a key using DNS CERT, as specified in RFC-4398. @item pka Locate a key using DNS PKA. @item dane Locate a key using DANE, as specified in draft-ietf-dane-openpgpkey-05.txt. @item wkd Locate a key using the Web Key Directory protocol. @item ldap Using DNS Service Discovery, check the domain in question for any LDAP keyservers to use. If this fails, attempt to locate the key using the PGP Universal method of checking @samp{ldap://keys.(thedomain)}. @item ntds Locate the key using the Active Directory (Windows only). @item keyserver Locate a key using a keyserver. @item keyserver-URL In addition, a keyserver URL as used in the @command{dirmngr} configuration may be used here to query that particular keyserver. @item local Locate the key using the local keyrings. This mechanism allows the user to select the order a local key lookup is done. Thus using @samp{--auto-key-locate local} is identical to @option{--no-auto-key-locate}. @item nodefault This flag disables the standard local key lookup, done before any of the mechanisms defined by the @option{--auto-key-locate} are tried. The position of this mechanism in the list does not matter. It is not required if @code{local} is also used. @item clear Clear all defined mechanisms. This is useful to override mechanisms given in a config file. Note that a @code{nodefault} in @var{mechanisms} will also be cleared unless it is given after the @code{clear}. @end table @item --auto-key-import @itemx --no-auto-key-import @opindex auto-key-import @opindex no-auto-key-import This is an offline mechanism to get a missing key for signature verification and for later encryption to this key. If this option is enabled and a signature includes an embedded key, that key is used to verify the signature and on verification success that key is imported. The default is @option{--no-auto-key-import}. On the sender (signing) site the option @option{--include-key-block} needs to be used to put the public part of the signing key as “Key Block subpacket” into the signature. @item --auto-key-retrieve @itemx --no-auto-key-retrieve @opindex auto-key-retrieve @opindex no-auto-key-retrieve These options enable or disable the automatic retrieving of keys from a keyserver when verifying signatures made by keys that are not on the local keyring. The default is @option{--no-auto-key-retrieve}. The order of methods tried to lookup the key is: 1. If the option @option{--auto-key-import} is set and the signatures includes an embedded key, that key is used to verify the signature and on verification success that key is imported. 2. If a preferred keyserver is specified in the signature and the option @option{honor-keyserver-url} is active (which is not the default), that keyserver is tried. Note that the creator of the signature uses the option @option{--sig-keyserver-url} to specify the preferred keyserver for data signatures. 3. If the signature has the Signer's UID set (e.g. using @option{--sender} while creating the signature) a Web Key Directory (WKD) lookup is done. This is the default configuration but can be disabled by removing WKD from the auto-key-locate list or by using the option @option{--disable-signer-uid}. 4. If the option @option{honor-pka-record} is active, the legacy PKA method is used. 5. If any keyserver is configured and the Issuer Fingerprint is part of the signature (since GnuPG 2.1.16), the configured keyservers are tried. Note that this option makes a "web bug" like behavior possible. Keyserver or Web Key Directory operators can see which keys you request, so by sending you a message signed by a brand new key (which you naturally will not have on your local keyring), the operator can tell both your IP address and the time when you verified the signature. @item --keyid-format @{none|short|0xshort|long|0xlong@} @opindex keyid-format Select how to display key IDs. "none" does not show the key ID at all but shows the fingerprint in a separate line. "short" is the traditional 8-character key ID. "long" is the more accurate (but less convenient) 16-character key ID. Add an "0x" to either to include an "0x" at the beginning of the key ID, as in 0x99242560. Note that this option is ignored if the option @option{--with-colons} is used. @item --keyserver @var{name} @opindex keyserver This option is deprecated - please use the @option{--keyserver} in @file{dirmngr.conf} instead. Use @var{name} as your keyserver. This is the server that @option{--receive-keys}, @option{--send-keys}, and @option{--search-keys} will communicate with to receive keys from, send keys to, and search for keys on. The format of the @var{name} is a URI: `scheme:[//]keyservername[:port]' The scheme is the type of keyserver: -"hkp" for the HTTP (or compatible) keyservers, "ldap" for the LDAP -keyservers, or "mailto" for the Graff email keyserver. Note that your -particular installation of GnuPG may have other keyserver types -available as well. Keyserver schemes are case-insensitive. After the -keyserver name, optional keyserver configuration options may be -provided. These are the same as the global @option{--keyserver-options} -from below, but apply only to this particular keyserver. +"hkp"/"hkps" for the HTTP (or compatible) keyservers or "ldap"/"ldaps" +for the LDAP keyservers. Note that your particular installation of +GnuPG may have other keyserver types available as well. Keyserver +schemes are case-insensitive. After the keyserver name, optional +keyserver configuration options may be provided. These are the same as +the global @option{--keyserver-options} from below, but apply only to +this particular keyserver. Most keyservers synchronize with each other, so there is generally no need to send keys to more than one server. The keyserver @code{hkp://keys.gnupg.net} uses round robin DNS to give a different keyserver each time you use it. @item --keyserver-options @{@var{name}=@var{value}@} @opindex keyserver-options This is a space or comma delimited string that gives options for the keyserver. Options can be prefixed with a `no-' to give the opposite meaning. Valid import-options or export-options may be used here as well to apply to importing (@option{--recv-key}) or exporting (@option{--send-key}) a key from a keyserver. While not all options are available for all keyserver types, some common options are: @table @asis @item include-revoked When searching for a key with @option{--search-keys}, include keys that are marked on the keyserver as revoked. Note that not all keyservers differentiate between revoked and unrevoked keys, and for such keyservers this option is meaningless. Note also that most keyservers do not have cryptographic verification of key revocations, and so turning this option off may result in skipping keys that are incorrectly marked as revoked. @item include-disabled When searching for a key with @option{--search-keys}, include keys that are marked on the keyserver as disabled. Note that this option is not used with HKP keyservers. @item auto-key-retrieve This is an obsolete alias for the option @option{auto-key-retrieve}. Please do not use it; it will be removed in future versions.. @item honor-keyserver-url When using @option{--refresh-keys}, if the key in question has a preferred keyserver URL, then use that preferred keyserver to refresh the key from. In addition, if auto-key-retrieve is set, and the signature being verified has a preferred keyserver URL, then use that preferred keyserver to fetch the key from. Note that this option introduces a "web bug": The creator of the key can see when the keys is refreshed. Thus this option is not enabled by default. @item honor-pka-record If @option{--auto-key-retrieve} is used, and the signature being verified has a PKA record, then use the PKA information to fetch the key. Defaults to "yes". @item include-subkeys When receiving a key, include subkeys as potential targets. Note that this option is not used with HKP keyservers, as they do not support retrieving keys by subkey id. @item timeout @itemx http-proxy=@var{value} @itemx verbose @itemx debug @itemx check-cert @item ca-cert-file These options have no more function since GnuPG 2.1. Use the @code{dirmngr} configuration options instead. @end table The default list of options is: "self-sigs-only, import-clean, repair-keys, repair-pks-subkey-bug, export-attributes, honor-pka-record". @item --completes-needed @var{n} @opindex compliant-needed Number of completely trusted users to introduce a new key signer (defaults to 1). @item --marginals-needed @var{n} @opindex marginals-needed Number of marginally trusted users to introduce a new key signer (defaults to 3) @item --tofu-default-policy @{auto|good|unknown|bad|ask@} @opindex tofu-default-policy The default TOFU policy (defaults to @code{auto}). For more information about the meaning of this option, @pxref{trust-model-tofu}. @item --max-cert-depth @var{n} @opindex max-cert-depth Maximum depth of a certification chain (default is 5). @item --no-sig-cache @opindex no-sig-cache Do not cache the verification status of key signatures. Caching gives a much better performance in key listings. However, if you suspect that your public keyring is not safe against write modifications, you can use this option to disable the caching. It probably does not make sense to disable it because all kind of damage can be done if someone else has write access to your public keyring. @item --auto-check-trustdb @itemx --no-auto-check-trustdb @opindex auto-check-trustdb If GnuPG feels that its information about the Web of Trust has to be updated, it automatically runs the @option{--check-trustdb} command internally. This may be a time consuming process. @option{--no-auto-check-trustdb} disables this option. @item --use-agent @itemx --no-use-agent @opindex use-agent This is dummy option. @command{@gpgname} always requires the agent. @item --gpg-agent-info @opindex gpg-agent-info This is dummy option. It has no effect when used with @command{@gpgname}. @item --agent-program @var{file} @opindex agent-program Specify an agent program to be used for secret key operations. The default value is determined by running @command{gpgconf} with the option @option{--list-dirs}. Note that the pipe symbol (@code{|}) is used for a regression test suite hack and may thus not be used in the file name. @item --dirmngr-program @var{file} @opindex dirmngr-program Specify a dirmngr program to be used for keyserver access. The default value is @file{@value{BINDIR}/dirmngr}. @item --disable-dirmngr Entirely disable the use of the Dirmngr. @item --no-autostart @opindex no-autostart Do not start the gpg-agent or the dirmngr if it has not yet been started and its service is required. This option is mostly useful on machines where the connection to gpg-agent has been redirected to another machines. If dirmngr is required on the remote machine, it may be started manually using @command{gpgconf --launch dirmngr}. @item --lock-once @opindex lock-once Lock the databases the first time a lock is requested and do not release the lock until the process terminates. @item --lock-multiple @opindex lock-multiple Release the locks every time a lock is no longer needed. Use this to override a previous @option{--lock-once} from a config file. @item --lock-never @opindex lock-never Disable locking entirely. This option should be used only in very special environments, where it can be assured that only one process is accessing those files. A bootable floppy with a stand-alone encryption system will probably use this. Improper usage of this option may lead to data and key corruption. @item --exit-on-status-write-error @opindex exit-on-status-write-error This option will cause write errors on the status FD to immediately terminate the process. That should in fact be the default but it never worked this way and thus we need an option to enable this, so that the change won't break applications which close their end of a status fd connected pipe too early. Using this option along with @option{--enable-progress-filter} may be used to cleanly cancel long running gpg operations. @item --limit-card-insert-tries @var{n} @opindex limit-card-insert-tries With @var{n} greater than 0 the number of prompts asking to insert a smartcard gets limited to N-1. Thus with a value of 1 gpg won't at all ask to insert a card if none has been inserted at startup. This option is useful in the configuration file in case an application does not know about the smartcard support and waits ad infinitum for an inserted card. @item --no-random-seed-file @opindex no-random-seed-file GnuPG uses a file to store its internal random pool over invocations. This makes random generation faster; however sometimes write operations are not desired. This option can be used to achieve that with the cost of slower random generation. @item --no-greeting @opindex no-greeting Suppress the initial copyright message. @item --no-secmem-warning @opindex no-secmem-warning Suppress the warning about "using insecure memory". @item --no-permission-warning @opindex permission-warning Suppress the warning about unsafe file and home directory (@option{--homedir}) permissions. Note that the permission checks that GnuPG performs are not intended to be authoritative, but rather they simply warn about certain common permission problems. Do not assume that the lack of a warning means that your system is secure. Note that the warning for unsafe @option{--homedir} permissions cannot be suppressed in the gpg.conf file, as this would allow an attacker to place an unsafe gpg.conf file in place, and use this file to suppress warnings about itself. The @option{--homedir} permissions warning may only be suppressed on the command line. @item --require-secmem @itemx --no-require-secmem @opindex require-secmem Refuse to run if GnuPG cannot get secure memory. Defaults to no (i.e. run, but give a warning). @item --require-cross-certification @itemx --no-require-cross-certification @opindex require-cross-certification When verifying a signature made from a subkey, ensure that the cross certification "back signature" on the subkey is present and valid. This protects against a subtle attack against subkeys that can sign. Defaults to @option{--require-cross-certification} for @command{@gpgname}. @item --expert @itemx --no-expert @opindex expert Allow the user to do certain nonsensical or "silly" things like signing an expired or revoked key, or certain potentially incompatible things like generating unusual key types. This also disables certain warning messages about potentially incompatible actions. As the name implies, this option is for experts only. If you don't fully understand the implications of what it allows you to do, leave this off. @option{--no-expert} disables this option. @end table @c ******************************************* @c ******** KEY RELATED OPTIONS ************ @c ******************************************* @node GPG Key related Options @subsection Key related options @table @gnupgtabopt @item --recipient @var{name} @itemx -r @opindex recipient Encrypt for user id @var{name}. If this option or @option{--hidden-recipient} is not specified, GnuPG asks for the user-id unless @option{--default-recipient} is given. @item --hidden-recipient @var{name} @itemx -R @opindex hidden-recipient Encrypt for user ID @var{name}, but hide the key ID of this user's key. This option helps to hide the receiver of the message and is a limited countermeasure against traffic analysis. If this option or @option{--recipient} is not specified, GnuPG asks for the user ID unless @option{--default-recipient} is given. @item --recipient-file @var{file} @itemx -f @opindex recipient-file This option is similar to @option{--recipient} except that it encrypts to a key stored in the given file. @var{file} must be the name of a file containing exactly one key. @command{@gpgname} assumes that the key in this file is fully valid. @item --hidden-recipient-file @var{file} @itemx -F @opindex hidden-recipient-file This option is similar to @option{--hidden-recipient} except that it encrypts to a key stored in the given file. @var{file} must be the name of a file containing exactly one key. @command{@gpgname} assumes that the key in this file is fully valid. @item --encrypt-to @var{name} @opindex encrypt-to Same as @option{--recipient} but this one is intended for use in the options file and may be used with your own user-id as an "encrypt-to-self". These keys are only used when there are other recipients given either by use of @option{--recipient} or by the asked user id. No trust checking is performed for these user ids and even disabled keys can be used. @item --hidden-encrypt-to @var{name} @opindex hidden-encrypt-to Same as @option{--hidden-recipient} but this one is intended for use in the options file and may be used with your own user-id as a hidden "encrypt-to-self". These keys are only used when there are other recipients given either by use of @option{--recipient} or by the asked user id. No trust checking is performed for these user ids and even disabled keys can be used. @item --no-encrypt-to @opindex no-encrypt-to Disable the use of all @option{--encrypt-to} and @option{--hidden-encrypt-to} keys. @item --group @{@var{name}=@var{value}@} @opindex group Sets up a named group, which is similar to aliases in email programs. Any time the group name is a recipient (@option{-r} or @option{--recipient}), it will be expanded to the values specified. Multiple groups with the same name are automatically merged into a single group. The values are @code{key IDs} or fingerprints, but any key description is accepted. Note that a value with spaces in it will be treated as two different values. Note also there is only one level of expansion --- you cannot make an group that points to another group. When used from the command line, it may be necessary to quote the argument to this option to prevent the shell from treating it as multiple arguments. @item --ungroup @var{name} @opindex ungroup Remove a given entry from the @option{--group} list. @item --no-groups @opindex no-groups Remove all entries from the @option{--group} list. @item --local-user @var{name} @itemx -u @opindex local-user Use @var{name} as the key to sign with. Note that this option overrides @option{--default-key}. @item --sender @var{mbox} @opindex sender This option has two purposes. @var{mbox} must either be a complete user id with a proper mail address or just a mail address. When creating a signature this option tells gpg the user id of a key used to make a signature if the key was not directly specified by a user id. When verifying a signature the @var{mbox} is used to restrict the information printed by the TOFU code to matching user ids. @item --try-secret-key @var{name} @opindex try-secret-key For hidden recipients GPG needs to know the keys to use for trial decryption. The key set with @option{--default-key} is always tried first, but this is often not sufficient. This option allows setting more keys to be used for trial decryption. Although any valid user-id specification may be used for @var{name} it makes sense to use at least the long keyid to avoid ambiguities. Note that gpg-agent might pop up a pinentry for a lot keys to do the trial decryption. If you want to stop all further trial decryption you may use close-window button instead of the cancel button. @item --try-all-secrets @opindex try-all-secrets Don't look at the key ID as stored in the message but try all secret keys in turn to find the right decryption key. This option forces the behaviour as used by anonymous recipients (created by using @option{--throw-keyids} or @option{--hidden-recipient}) and might come handy in case where an encrypted message contains a bogus key ID. @item --skip-hidden-recipients @itemx --no-skip-hidden-recipients @opindex skip-hidden-recipients @opindex no-skip-hidden-recipients During decryption skip all anonymous recipients. This option helps in the case that people use the hidden recipients feature to hide their own encrypt-to key from others. If one has many secret keys this may lead to a major annoyance because all keys are tried in turn to decrypt something which was not really intended for it. The drawback of this option is that it is currently not possible to decrypt a message which includes real anonymous recipients. @end table @c ******************************************* @c ******** INPUT AND OUTPUT *************** @c ******************************************* @node GPG Input and Output @subsection Input and Output @table @gnupgtabopt @item --armor @itemx -a @opindex armor Create ASCII armored output. The default is to create the binary OpenPGP format. @item --no-armor @opindex no-armor Assume the input data is not in ASCII armored format. @item --output @var{file} @itemx -o @var{file} @opindex output Write output to @var{file}. To write to stdout use @code{-} as the filename. @item --max-output @var{n} @opindex max-output This option sets a limit on the number of bytes that will be generated when processing a file. Since OpenPGP supports various levels of compression, it is possible that the plaintext of a given message may be significantly larger than the original OpenPGP message. While GnuPG works properly with such messages, there is often a desire to set a maximum file size that will be generated before processing is forced to stop by the OS limits. Defaults to 0, which means "no limit". @item --input-size-hint @var{n} @opindex input-size-hint This option can be used to tell GPG the size of the input data in bytes. @var{n} must be a positive base-10 number. This option is only useful if the input is not taken from a file. GPG may use this hint to optimize its buffer allocation strategy. It is also used by the @option{--status-fd} line ``PROGRESS'' to provide a value for ``total'' if that is not available by other means. @item --key-origin @var{string}[,@var{url}] @opindex key-origin gpg can track the origin of a key. Certain origins are implicitly known (e.g. keyserver, web key directory) and set. For a standard import the origin of the keys imported can be set with this option. To list the possible values use "help" for @var{string}. Some origins can store an optional @var{url} argument. That URL can appended to @var{string} after a comma. @item --import-options @var{parameters} @opindex import-options This is a space or comma delimited string that gives options for importing keys. Options can be prepended with a `no-' to give the opposite meaning. The options are: @table @asis @item import-local-sigs Allow importing key signatures marked as "local". This is not generally useful unless a shared keyring scheme is being used. Defaults to no. @item keep-ownertrust Normally possible still existing ownertrust values of a key are cleared if a key is imported. This is in general desirable so that a formerly deleted key does not automatically gain an ownertrust values merely due to import. On the other hand it is sometimes necessary to re-import a trusted set of keys again but keeping already assigned ownertrust values. This can be achieved by using this option. @item repair-pks-subkey-bug During import, attempt to repair the damage caused by the PKS keyserver bug (pre version 0.9.6) that mangles keys with multiple subkeys. Note that this cannot completely repair the damaged key as some crucial data is removed by the keyserver, but it does at least give you back one subkey. Defaults to no for regular @option{--import} and to yes for keyserver @option{--receive-keys}. @item import-show @itemx show-only Show a listing of the key as imported right before it is stored. This can be combined with the option @option{--dry-run} to only look at keys; the option @option{show-only} is a shortcut for this combination. The command @option{--show-keys} is another shortcut for this. Note that suffixes like '#' for "sec" and "sbb" lines may or may not be printed. @item import-export Run the entire import code but instead of storing the key to the local keyring write it to the output. The export options @option{export-pka} and @option{export-dane} affect the output. This option can be used to remove all invalid parts from a key without the need to store it. @item merge-only During import, allow key updates to existing keys, but do not allow any new keys to be imported. Defaults to no. @item import-clean After import, compact (remove all signatures except the self-signature) any user IDs from the new key that are not usable. Then, remove any signatures from the new key that are not usable. This includes signatures that were issued by keys that are not present on the keyring. This option is the same as running the @option{--edit-key} command "clean" after import. Defaults to no. @item self-sigs-only Accept only self-signatures while importing a key. All other key signatures are skipped at an early import stage. This option can be used with @code{keyserver-options} to mitigate attempts to flood a key with bogus signatures from a keyserver. The drawback is that all other valid key signatures, as required by the Web of Trust are also not imported. Note that when using this option along with import-clean it suppresses the final clean step after merging the imported key into the existing key. @item repair-keys After import, fix various problems with the keys. For example, this reorders signatures, and strips duplicate signatures. Defaults to yes. @item import-minimal Import the smallest key possible. This removes all signatures except the most recent self-signature on each user ID. This option is the same as running the @option{--edit-key} command "minimize" after import. Defaults to no. @item restore @itemx import-restore Import in key restore mode. This imports all data which is usually skipped during import; including all GnuPG specific data. All other contradicting options are overridden. @end table @item --import-filter @{@var{name}=@var{expr}@} @itemx --export-filter @{@var{name}=@var{expr}@} @opindex import-filter @opindex export-filter These options define an import/export filter which are applied to the imported/exported keyblock right before it will be stored/written. @var{name} defines the type of filter to use, @var{expr} the expression to evaluate. The option can be used several times which then appends more expression to the same @var{name}. @noindent The available filter types are: @table @asis @item keep-uid This filter will keep a user id packet and its dependent packets in the keyblock if the expression evaluates to true. @item drop-subkey This filter drops the selected subkeys. Currently only implemented for --export-filter. @item drop-sig This filter drops the selected key signatures on user ids. Self-signatures are not considered. Currently only implemented for --import-filter. @end table For the syntax of the expression see the chapter "FILTER EXPRESSIONS". The property names for the expressions depend on the actual filter type and are indicated in the following table. The available properties are: @table @asis @item uid A string with the user id. (keep-uid) @item mbox The addr-spec part of a user id with mailbox or the empty string. (keep-uid) @item key_algo A number with the public key algorithm of a key or subkey packet. (drop-subkey) @item key_created @itemx key_created_d The first is the timestamp a public key or subkey packet was created. The second is the same but given as an ISO string, e.g. "2016-08-17". (drop-subkey) @item fpr The hexified fingerprint of the current subkey or primary key. (drop-subkey) @item primary Boolean indicating whether the user id is the primary one. (keep-uid) @item expired Boolean indicating whether a user id (keep-uid), a key (drop-subkey), or a signature (drop-sig) expired. @item revoked Boolean indicating whether a user id (keep-uid) or a key (drop-subkey) has been revoked. @item disabled Boolean indicating whether a primary key is disabled. (not used) @item secret Boolean indicating whether a key or subkey is a secret one. (drop-subkey) @item usage A string indicating the usage flags for the subkey, from the sequence ``ecsa?''. For example, a subkey capable of just signing and authentication would be an exact match for ``sa''. (drop-subkey) @item sig_created @itemx sig_created_d The first is the timestamp a signature packet was created. The second is the same but given as an ISO date string, e.g. "2016-08-17". (drop-sig) @item sig_algo A number with the public key algorithm of a signature packet. (drop-sig) @item sig_digest_algo A number with the digest algorithm of a signature packet. (drop-sig) @end table @item --export-options @var{parameters} @opindex export-options This is a space or comma delimited string that gives options for exporting keys. Options can be prepended with a `no-' to give the opposite meaning. The options are: @table @asis @item export-local-sigs Allow exporting key signatures marked as "local". This is not generally useful unless a shared keyring scheme is being used. Defaults to no. @item export-attributes Include attribute user IDs (photo IDs) while exporting. Not including attribute user IDs is useful to export keys that are going to be used by an OpenPGP program that does not accept attribute user IDs. Defaults to yes. @item export-sensitive-revkeys Include designated revoker information that was marked as "sensitive". Defaults to no. @c Since GnuPG 2.1 gpg-agent manages the secret key and thus the @c export-reset-subkey-passwd hack is not anymore justified. Such use @c cases may be implemented using a specialized secret key export @c tool. @c @item export-reset-subkey-passwd @c When using the @option{--export-secret-subkeys} command, this option resets @c the passphrases for all exported subkeys to empty. This is useful @c when the exported subkey is to be used on an unattended machine where @c a passphrase doesn't necessarily make sense. Defaults to no. @item backup @itemx export-backup Export for use as a backup. The exported data includes all data which is needed to restore the key or keys later with GnuPG. The format is basically the OpenPGP format but enhanced with GnuPG specific data. All other contradicting options are overridden. @item export-clean Compact (remove all signatures from) user IDs on the key being exported if the user IDs are not usable. Also, do not export any signatures that are not usable. This includes signatures that were issued by keys that are not present on the keyring. This option is the same as running the @option{--edit-key} command "clean" before export except that the local copy of the key is not modified. Defaults to no. @item export-minimal Export the smallest key possible. This removes all signatures except the most recent self-signature on each user ID. This option is the same as running the @option{--edit-key} command "minimize" before export except that the local copy of the key is not modified. Defaults to no. @item export-pka Instead of outputting the key material output PKA records suitable to put into DNS zone files. An ORIGIN line is printed before each record to allow diverting the records to the corresponding zone file. @item export-dane Instead of outputting the key material output OpenPGP DANE records suitable to put into DNS zone files. An ORIGIN line is printed before each record to allow diverting the records to the corresponding zone file. @end table @item --with-colons @opindex with-colons Print key listings delimited by colons. Note that the output will be encoded in UTF-8 regardless of any @option{--display-charset} setting. This format is useful when GnuPG is called from scripts and other programs as it is easily machine parsed. The details of this format are documented in the file @file{doc/DETAILS}, which is included in the GnuPG source distribution. @item --fixed-list-mode @opindex fixed-list-mode Do not merge primary user ID and primary key in @option{--with-colon} listing mode and print all timestamps as seconds since 1970-01-01. Since GnuPG 2.0.10, this mode is always used and thus this option is obsolete; it does not harm to use it though. @item --legacy-list-mode @opindex legacy-list-mode Revert to the pre-2.1 public key list mode. This only affects the human readable output and not the machine interface (i.e. @code{--with-colons}). Note that the legacy format does not convey suitable information for elliptic curves. @item --with-fingerprint @opindex with-fingerprint Same as the command @option{--fingerprint} but changes only the format of the output and may be used together with another command. @item --with-subkey-fingerprint @opindex with-subkey-fingerprint If a fingerprint is printed for the primary key, this option forces printing of the fingerprint for all subkeys. This could also be achieved by using the @option{--with-fingerprint} twice but by using this option along with keyid-format "none" a compact fingerprint is printed. @item --with-icao-spelling @opindex with-icao-spelling Print the ICAO spelling of the fingerprint in addition to the hex digits. @item --with-keygrip @opindex with-keygrip Include the keygrip in the key listings. In @code{--with-colons} mode this is implicitly enable for secret keys. @item --with-key-origin @opindex with-key-origin Include the locally held information on the origin and last update of a key in a key listing. In @code{--with-colons} mode this is always printed. This data is currently experimental and shall not be considered part of the stable API. @item --with-wkd-hash @opindex with-wkd-hash Print a Web Key Directory identifier along with each user ID in key listings. This is an experimental feature and semantics may change. @item --with-secret @opindex with-secret Include info about the presence of a secret key in public key listings done with @code{--with-colons}. @end table @c ******************************************* @c ******** OPENPGP OPTIONS **************** @c ******************************************* @node OpenPGP Options @subsection OpenPGP protocol specific options @table @gnupgtabopt @item -t, --textmode @itemx --no-textmode @opindex textmode Treat input files as text and store them in the OpenPGP canonical text form with standard "CRLF" line endings. This also sets the necessary flags to inform the recipient that the encrypted or signed data is text and may need its line endings converted back to whatever the local system uses. This option is useful when communicating between two platforms that have different line ending conventions (UNIX-like to Mac, Mac to Windows, etc). @option{--no-textmode} disables this option, and is the default. @item --force-v3-sigs @itemx --no-force-v3-sigs @item --force-v4-certs @itemx --no-force-v4-certs These options are obsolete and have no effect since GnuPG 2.1. @item --force-mdc @itemx --disable-mdc @opindex force-mdc @opindex disable-mdc These options are obsolete and have no effect since GnuPG 2.2.8. The MDC is always used. But note: If the creation of a legacy non-MDC message is exceptionally required, the option @option{--rfc2440} allows for this. @item --disable-signer-uid @opindex disable-signer-uid By default the user ID of the signing key is embedded in the data signature. As of now this is only done if the signing key has been specified with @option{local-user} using a mail address, or with @option{sender}. This information can be helpful for verifier to locate the key; see option @option{--auto-key-retrieve}. @item --include-key-block @opindex include-key-block This option is used to embed the actual signing key into a data signature. The embedded key is stripped down to a single user id and includes only the signing subkey used to create the signature as well as as valid encryption subkeys. All other info is removed from the key to keep it and thus the signature small. This option is the OpenPGP counterpart to the @command{gpgsm} option @option{--include-certs}. @item --personal-cipher-preferences @var{string} @opindex personal-cipher-preferences Set the list of personal cipher preferences to @var{string}. Use @command{@gpgname --version} to get a list of available algorithms, and use @code{none} to set no preference at all. This allows the user to safely override the algorithm chosen by the recipient key preferences, as GPG will only select an algorithm that is usable by all recipients. The most highly ranked cipher in this list is also used for the @option{--symmetric} encryption command. @item --personal-digest-preferences @var{string} @opindex personal-digest-preferences Set the list of personal digest preferences to @var{string}. Use @command{@gpgname --version} to get a list of available algorithms, and use @code{none} to set no preference at all. This allows the user to safely override the algorithm chosen by the recipient key preferences, as GPG will only select an algorithm that is usable by all recipients. The most highly ranked digest algorithm in this list is also used when signing without encryption (e.g. @option{--clear-sign} or @option{--sign}). @item --personal-compress-preferences @var{string} @opindex personal-compress-preferences Set the list of personal compression preferences to @var{string}. Use @command{@gpgname --version} to get a list of available algorithms, and use @code{none} to set no preference at all. This allows the user to safely override the algorithm chosen by the recipient key preferences, as GPG will only select an algorithm that is usable by all recipients. The most highly ranked compression algorithm in this list is also used when there are no recipient keys to consider (e.g. @option{--symmetric}). @item --s2k-cipher-algo @var{name} @opindex s2k-cipher-algo Use @var{name} as the cipher algorithm for symmetric encryption with a passphrase if @option{--personal-cipher-preferences} and @option{--cipher-algo} are not given. The default is @value{GPGSYMENCALGO}. @item --s2k-digest-algo @var{name} @opindex s2k-digest-algo Use @var{name} as the digest algorithm used to mangle the passphrases for symmetric encryption. The default is SHA-1. @item --s2k-mode @var{n} @opindex s2k-mode Selects how passphrases for symmetric encryption are mangled. If @var{n} is 0 a plain passphrase (which is in general not recommended) will be used, a 1 adds a salt (which should not be used) to the passphrase and a 3 (the default) iterates the whole process a number of times (see @option{--s2k-count}). @item --s2k-count @var{n} @opindex s2k-count Specify how many times the passphrases mangling for symmetric encryption is repeated. This value may range between 1024 and 65011712 inclusive. The default is inquired from gpg-agent. Note that not all values in the 1024-65011712 range are legal and if an illegal value is selected, GnuPG will round up to the nearest legal value. This option is only meaningful if @option{--s2k-mode} is set to the default of 3. @end table @c *************************** @c ******* Compliance ******** @c *************************** @node Compliance Options @subsection Compliance options These options control what GnuPG is compliant to. Only one of these options may be active at a time. Note that the default setting of this is nearly always the correct one. See the INTEROPERABILITY WITH OTHER OPENPGP PROGRAMS section below before using one of these options. @table @gnupgtabopt @item --gnupg @opindex gnupg Use standard GnuPG behavior. This is essentially OpenPGP behavior (see @option{--openpgp}), but with some additional workarounds for common compatibility problems in different versions of PGP. This is the default option, so it is not generally needed, but it may be useful to override a different compliance option in the gpg.conf file. @item --openpgp @opindex openpgp Reset all packet, cipher and digest options to strict OpenPGP behavior. Use this option to reset all previous options like @option{--s2k-*}, @option{--cipher-algo}, @option{--digest-algo} and @option{--compress-algo} to OpenPGP compliant values. All PGP workarounds are disabled. @item --rfc4880 @opindex rfc4880 Reset all packet, cipher and digest options to strict RFC-4880 behavior. Note that this is currently the same thing as @option{--openpgp}. @item --rfc4880bis @opindex rfc4880bis Enable experimental features from proposed updates to RFC-4880. This option can be used in addition to the other compliance options. Warning: The behavior may change with any GnuPG release and created keys or data may not be usable with future GnuPG versions. @item --rfc2440 @opindex rfc2440 Reset all packet, cipher and digest options to strict RFC-2440 behavior. Note that by using this option encryption packets are created in a legacy mode without MDC protection. This is dangerous and should thus only be used for experiments. See also option @option{--ignore-mdc-error}. @item --pgp6 @opindex pgp6 Set up all options to be as PGP 6 compliant as possible. This restricts you to the ciphers IDEA (if the IDEA plugin is installed), 3DES, and CAST5, the hashes MD5, SHA1 and RIPEMD160, and the compression algorithms none and ZIP. This also disables @option{--throw-keyids}, and making signatures with signing subkeys as PGP 6 does not understand signatures made by signing subkeys. This option implies @option{--escape-from-lines}. @item --pgp7 @opindex pgp7 Set up all options to be as PGP 7 compliant as possible. This is identical to @option{--pgp6} except that MDCs are not disabled, and the list of allowable ciphers is expanded to add AES128, AES192, AES256, and TWOFISH. @item --pgp8 @opindex pgp8 Set up all options to be as PGP 8 compliant as possible. PGP 8 is a lot closer to the OpenPGP standard than previous versions of PGP, so all this does is disable @option{--throw-keyids} and set @option{--escape-from-lines}. All algorithms are allowed except for the SHA224, SHA384, and SHA512 digests. @item --compliance @var{string} @opindex compliance This option can be used instead of one of the options above. Valid values for @var{string} are the above option names (without the double dash) and possibly others as shown when using "help" for @var{value}. @end table @c ******************************************* @c ******** ESOTERIC OPTIONS *************** @c ******************************************* @node GPG Esoteric Options @subsection Doing things one usually doesn't want to do @table @gnupgtabopt @item -n @itemx --dry-run @opindex dry-run Don't make any changes (this is not completely implemented). @item --list-only @opindex list-only Changes the behaviour of some commands. This is like @option{--dry-run} but different in some cases. The semantic of this option may be extended in the future. Currently it only skips the actual decryption pass and therefore enables a fast listing of the encryption keys. @item -i @itemx --interactive @opindex interactive Prompt before overwriting any files. @item --debug-level @var{level} @opindex debug-level Select the debug level for investigating problems. @var{level} may be a numeric value or by a keyword: @table @code @item none No debugging at all. A value of less than 1 may be used instead of the keyword. @item basic Some basic debug messages. A value between 1 and 2 may be used instead of the keyword. @item advanced More verbose debug messages. A value between 3 and 5 may be used instead of the keyword. @item expert Even more detailed messages. A value between 6 and 8 may be used instead of the keyword. @item guru All of the debug messages you can get. A value greater than 8 may be used instead of the keyword. The creation of hash tracing files is only enabled if the keyword is used. @end table How these messages are mapped to the actual debugging flags is not specified and may change with newer releases of this program. They are however carefully selected to best aid in debugging. @item --debug @var{flags} @opindex debug Set debugging flags. All flags are or-ed and @var{flags} may be given in C syntax (e.g. 0x0042) or as a comma separated list of flag names. To get a list of all supported flags the single word "help" can be used. @item --debug-all @opindex debug-all Set all useful debugging flags. @item --debug-iolbf @opindex debug-iolbf Set stdout into line buffered mode. This option is only honored when given on the command line. @item --faked-system-time @var{epoch} @opindex faked-system-time This option is only useful for testing; it sets the system time back or forth to @var{epoch} which is the number of seconds elapsed since the year 1970. Alternatively @var{epoch} may be given as a full ISO time string (e.g. "20070924T154812"). If you suffix @var{epoch} with an exclamation mark (!), the system time will appear to be frozen at the specified time. @item --enable-progress-filter @opindex enable-progress-filter Enable certain PROGRESS status outputs. This option allows frontends to display a progress indicator while gpg is processing larger files. There is a slight performance overhead using it. @item --status-fd @var{n} @opindex status-fd Write special status strings to the file descriptor @var{n}. See the file DETAILS in the documentation for a listing of them. @item --status-file @var{file} @opindex status-file Same as @option{--status-fd}, except the status data is written to file @var{file}. @item --logger-fd @var{n} @opindex logger-fd Write log output to file descriptor @var{n} and not to STDERR. @item --log-file @var{file} @itemx --logger-file @var{file} @opindex log-file Same as @option{--logger-fd}, except the logger data is written to file @var{file}. Use @file{socket://} to log to a socket. Note that in this version of gpg the option has only an effect if @option{--batch} is also used. @item --attribute-fd @var{n} @opindex attribute-fd Write attribute subpackets to the file descriptor @var{n}. This is most useful for use with @option{--status-fd}, since the status messages are needed to separate out the various subpackets from the stream delivered to the file descriptor. @item --attribute-file @var{file} @opindex attribute-file Same as @option{--attribute-fd}, except the attribute data is written to file @var{file}. @item --comment @var{string} @itemx --no-comments @opindex comment Use @var{string} as a comment string in cleartext signatures and ASCII armored messages or keys (see @option{--armor}). The default behavior is not to use a comment string. @option{--comment} may be repeated multiple times to get multiple comment strings. @option{--no-comments} removes all comments. It is a good idea to keep the length of a single comment below 60 characters to avoid problems with mail programs wrapping such lines. Note that comment lines, like all other header lines, are not protected by the signature. @item --emit-version @itemx --no-emit-version @opindex emit-version Force inclusion of the version string in ASCII armored output. If given once only the name of the program and the major number is emitted, given twice the minor is also emitted, given thrice the micro is added, and given four times an operating system identification is also emitted. @option{--no-emit-version} (default) disables the version line. @item --sig-notation @{@var{name}=@var{value}@} @itemx --cert-notation @{@var{name}=@var{value}@} @itemx -N, --set-notation @{@var{name}=@var{value}@} @opindex sig-notation @opindex cert-notation @opindex set-notation Put the name value pair into the signature as notation data. @var{name} must consist only of printable characters or spaces, and must contain a '@@' character in the form keyname@@domain.example.com (substituting the appropriate keyname and domain name, of course). This is to help prevent pollution of the IETF reserved notation namespace. The @option{--expert} flag overrides the '@@' check. @var{value} may be any printable string; it will be encoded in UTF-8, so you should check that your @option{--display-charset} is set correctly. If you prefix @var{name} with an exclamation mark (!), the notation data will be flagged as critical (rfc4880:5.2.3.16). @option{--sig-notation} sets a notation for data signatures. @option{--cert-notation} sets a notation for key signatures (certifications). @option{--set-notation} sets both. There are special codes that may be used in notation names. "%k" will be expanded into the key ID of the key being signed, "%K" into the long key ID of the key being signed, "%f" into the fingerprint of the key being signed, "%s" into the key ID of the key making the signature, "%S" into the long key ID of the key making the signature, "%g" into the fingerprint of the key making the signature (which might be a subkey), "%p" into the fingerprint of the primary key of the key making the signature, "%c" into the signature count from the OpenPGP smartcard, and "%%" results in a single "%". %k, %K, and %f are only meaningful when making a key signature (certification), and %c is only meaningful when using the OpenPGP smartcard. @item --known-notation @var{name} @opindex known-notation Adds @var{name} to a list of known critical signature notations. The effect of this is that gpg will not mark a signature with a critical signature notation of that name as bad. Note that gpg already knows by default about a few critical signatures notation names. @item --sig-policy-url @var{string} @itemx --cert-policy-url @var{string} @itemx --set-policy-url @var{string} @opindex sig-policy-url @opindex cert-policy-url @opindex set-policy-url Use @var{string} as a Policy URL for signatures (rfc4880:5.2.3.20). If you prefix it with an exclamation mark (!), the policy URL packet will be flagged as critical. @option{--sig-policy-url} sets a policy url for data signatures. @option{--cert-policy-url} sets a policy url for key signatures (certifications). @option{--set-policy-url} sets both. The same %-expandos used for notation data are available here as well. @item --sig-keyserver-url @var{string} @opindex sig-keyserver-url Use @var{string} as a preferred keyserver URL for data signatures. If you prefix it with an exclamation mark (!), the keyserver URL packet will be flagged as critical. The same %-expandos used for notation data are available here as well. @item --set-filename @var{string} @opindex set-filename Use @var{string} as the filename which is stored inside messages. This overrides the default, which is to use the actual filename of the file being encrypted. Using the empty string for @var{string} effectively removes the filename from the output. @item --for-your-eyes-only @itemx --no-for-your-eyes-only @opindex for-your-eyes-only Set the `for your eyes only' flag in the message. This causes GnuPG to refuse to save the file unless the @option{--output} option is given, and PGP to use a "secure viewer" with a claimed Tempest-resistant font to display the message. This option overrides @option{--set-filename}. @option{--no-for-your-eyes-only} disables this option. @item --use-embedded-filename @itemx --no-use-embedded-filename @opindex use-embedded-filename Try to create a file with a name as embedded in the data. This can be a dangerous option as it enables overwriting files. Defaults to no. Note that the option @option{--output} overrides this option. @item --cipher-algo @var{name} @opindex cipher-algo Use @var{name} as cipher algorithm. Running the program with the command @option{--version} yields a list of supported algorithms. If this is not used the cipher algorithm is selected from the preferences stored with the key. In general, you do not want to use this option as it allows you to violate the OpenPGP standard. @option{--personal-cipher-preferences} is the safe way to accomplish the same thing. @item --digest-algo @var{name} @opindex digest-algo Use @var{name} as the message digest algorithm. Running the program with the command @option{--version} yields a list of supported algorithms. In general, you do not want to use this option as it allows you to violate the OpenPGP standard. @option{--personal-digest-preferences} is the safe way to accomplish the same thing. @item --compress-algo @var{name} @opindex compress-algo Use compression algorithm @var{name}. "zlib" is RFC-1950 ZLIB compression. "zip" is RFC-1951 ZIP compression which is used by PGP. "bzip2" is a more modern compression scheme that can compress some things better than zip or zlib, but at the cost of more memory used during compression and decompression. "uncompressed" or "none" disables compression. If this option is not used, the default behavior is to examine the recipient key preferences to see which algorithms the recipient supports. If all else fails, ZIP is used for maximum compatibility. ZLIB may give better compression results than ZIP, as the compression window size is not limited to 8k. BZIP2 may give even better compression results than that, but will use a significantly larger amount of memory while compressing and decompressing. This may be significant in low memory situations. Note, however, that PGP (all versions) only supports ZIP compression. Using any algorithm other than ZIP or "none" will make the message unreadable with PGP. In general, you do not want to use this option as it allows you to violate the OpenPGP standard. @option{--personal-compress-preferences} is the safe way to accomplish the same thing. @item --cert-digest-algo @var{name} @opindex cert-digest-algo Use @var{name} as the message digest algorithm used when signing a key. Running the program with the command @option{--version} yields a list of supported algorithms. Be aware that if you choose an algorithm that GnuPG supports but other OpenPGP implementations do not, then some users will not be able to use the key signatures you make, or quite possibly your entire key. @item --disable-cipher-algo @var{name} @opindex disable-cipher-algo Never allow the use of @var{name} as cipher algorithm. The given name will not be checked so that a later loaded algorithm will still get disabled. @item --disable-pubkey-algo @var{name} @opindex disable-pubkey-algo Never allow the use of @var{name} as public key algorithm. The given name will not be checked so that a later loaded algorithm will still get disabled. @item --throw-keyids @itemx --no-throw-keyids @opindex throw-keyids Do not put the recipient key IDs into encrypted messages. This helps to hide the receivers of the message and is a limited countermeasure against traffic analysis.@footnote{Using a little social engineering anyone who is able to decrypt the message can check whether one of the other recipients is the one he suspects.} On the receiving side, it may slow down the decryption process because all available secret keys must be tried. @option{--no-throw-keyids} disables this option. This option is essentially the same as using @option{--hidden-recipient} for all recipients. @item --not-dash-escaped @opindex not-dash-escaped This option changes the behavior of cleartext signatures so that they can be used for patch files. You should not send such an armored file via email because all spaces and line endings are hashed too. You can not use this option for data which has 5 dashes at the beginning of a line, patch files don't have this. A special armor header line tells GnuPG about this cleartext signature option. @item --escape-from-lines @itemx --no-escape-from-lines @opindex escape-from-lines Because some mailers change lines starting with "From " to ">From " it is good to handle such lines in a special way when creating cleartext signatures to prevent the mail system from breaking the signature. Note that all other PGP versions do it this way too. Enabled by default. @option{--no-escape-from-lines} disables this option. @item --passphrase-repeat @var{n} @opindex passphrase-repeat Specify how many times @command{@gpgname} will request a new passphrase be repeated. This is useful for helping memorize a passphrase. Defaults to 1 repetition; can be set to 0 to disable any passphrase repetition. Note that a @var{n} greater than 1 will pop up the pinentry window @var{n}+1 times even if a modern pinentry with two entry fields is used. @item --passphrase-fd @var{n} @opindex passphrase-fd Read the passphrase from file descriptor @var{n}. Only the first line will be read from file descriptor @var{n}. If you use 0 for @var{n}, the passphrase will be read from STDIN. This can only be used if only one passphrase is supplied. Note that since Version 2.0 this passphrase is only used if the option @option{--batch} has also been given. Since Version 2.1 the @option{--pinentry-mode} also needs to be set to @code{loopback}. @item --passphrase-file @var{file} @opindex passphrase-file Read the passphrase from file @var{file}. Only the first line will be read from file @var{file}. This can only be used if only one passphrase is supplied. Obviously, a passphrase stored in a file is of questionable security if other users can read this file. Don't use this option if you can avoid it. Note that since Version 2.0 this passphrase is only used if the option @option{--batch} has also been given. Since Version 2.1 the @option{--pinentry-mode} also needs to be set to @code{loopback}. @item --passphrase @var{string} @opindex passphrase Use @var{string} as the passphrase. This can only be used if only one passphrase is supplied. Obviously, this is of very questionable security on a multi-user system. Don't use this option if you can avoid it. Note that since Version 2.0 this passphrase is only used if the option @option{--batch} has also been given. Since Version 2.1 the @option{--pinentry-mode} also needs to be set to @code{loopback}. @item --pinentry-mode @var{mode} @opindex pinentry-mode Set the pinentry mode to @var{mode}. Allowed values for @var{mode} are: @table @asis @item default Use the default of the agent, which is @code{ask}. @item ask Force the use of the Pinentry. @item cancel Emulate use of Pinentry's cancel button. @item error Return a Pinentry error (``No Pinentry''). @item loopback Redirect Pinentry queries to the caller. Note that in contrast to Pinentry the user is not prompted again if he enters a bad password. @end table @item --no-symkey-cache @opindex no-symkey-cache Disable the passphrase cache used for symmetrical en- and decryption. This cache is based on the message specific salt value (cf. @option{--s2k-mode}). @item --request-origin @var{origin} @opindex request-origin Tell gpg to assume that the operation ultimately originated at @var{origin}. Depending on the origin certain restrictions are applied and the Pinentry may include an extra note on the origin. Supported values for @var{origin} are: @code{local} which is the default, @code{remote} to indicate a remote origin or @code{browser} for an operation requested by a web browser. @item --command-fd @var{n} @opindex command-fd This is a replacement for the deprecated shared-memory IPC mode. If this option is enabled, user input on questions is not expected from the TTY but from the given file descriptor. It should be used together with @option{--status-fd}. See the file doc/DETAILS in the source distribution for details on how to use it. @item --command-file @var{file} @opindex command-file Same as @option{--command-fd}, except the commands are read out of file @var{file} @item --allow-non-selfsigned-uid @itemx --no-allow-non-selfsigned-uid @opindex allow-non-selfsigned-uid Allow the import and use of keys with user IDs which are not self-signed. This is not recommended, as a non self-signed user ID is trivial to forge. @option{--no-allow-non-selfsigned-uid} disables. @item --allow-freeform-uid @opindex allow-freeform-uid Disable all checks on the form of the user ID while generating a new one. This option should only be used in very special environments as it does not ensure the de-facto standard format of user IDs. @item --ignore-time-conflict @opindex ignore-time-conflict GnuPG normally checks that the timestamps associated with keys and signatures have plausible values. However, sometimes a signature seems to be older than the key due to clock problems. This option makes these checks just a warning. See also @option{--ignore-valid-from} for timestamp issues on subkeys. @item --ignore-valid-from @opindex ignore-valid-from GnuPG normally does not select and use subkeys created in the future. This option allows the use of such keys and thus exhibits the pre-1.0.7 behaviour. You should not use this option unless there is some clock problem. See also @option{--ignore-time-conflict} for timestamp issues with signatures. @item --ignore-crc-error @opindex ignore-crc-error The ASCII armor used by OpenPGP is protected by a CRC checksum against transmission errors. Occasionally the CRC gets mangled somewhere on the transmission channel but the actual content (which is protected by the OpenPGP protocol anyway) is still okay. This option allows GnuPG to ignore CRC errors. @item --ignore-mdc-error @opindex ignore-mdc-error This option changes a MDC integrity protection failure into a warning. It is required to decrypt old messages which did not use an MDC. It may also be useful if a message is partially garbled, but it is necessary to get as much data as possible out of that garbled message. Be aware that a missing or failed MDC can be an indication of an attack. Use with great caution; see also option @option{--rfc2440}. @item --allow-weak-digest-algos @opindex allow-weak-digest-algos Signatures made with known-weak digest algorithms are normally rejected with an ``invalid digest algorithm'' message. This option allows the verification of signatures made with such weak algorithms. MD5 is the only digest algorithm considered weak by default. See also @option{--weak-digest} to reject other digest algorithms. @item --weak-digest @var{name} @opindex weak-digest Treat the specified digest algorithm as weak. Signatures made over weak digests algorithms are normally rejected. This option can be supplied multiple times if multiple algorithms should be considered weak. See also @option{--allow-weak-digest-algos} to disable rejection of weak digests. MD5 is always considered weak, and does not need to be listed explicitly. @item --allow-weak-key-signatures @opindex allow-weak-key-signatures To avoid a minor risk of collision attacks on third-party key signatures made using SHA-1, those key signatures are considered invalid. This options allows to override this restriction. @item --no-default-keyring @opindex no-default-keyring Do not add the default keyrings to the list of keyrings. Note that GnuPG will not operate without any keyrings, so if you use this option and do not provide alternate keyrings via @option{--keyring} or @option{--secret-keyring}, then GnuPG will still use the default public or secret keyrings. @item --no-keyring @opindex no-keyring Do not use any keyring at all. This overrides the default and all options which specify keyrings. @item --skip-verify @opindex skip-verify Skip the signature verification step. This may be used to make the decryption faster if the signature verification is not needed. @item --with-key-data @opindex with-key-data Print key listings delimited by colons (like @option{--with-colons}) and print the public key data. @item --list-signatures @opindex list-signatures @itemx --list-sigs @opindex list-sigs Same as @option{--list-keys}, but the signatures are listed too. This command has the same effect as using @option{--list-keys} with @option{--with-sig-list}. Note that in contrast to @option{--check-signatures} the key signatures are not verified. This command can be used to create a list of signing keys missing in the local keyring; for example: @example gpg --list-sigs --with-colons USERID | \ awk -F: '$1=="sig" && $2=="?" @{if($13)@{print $13@}else@{print $5@}@}' @end example @item --fast-list-mode @opindex fast-list-mode Changes the output of the list commands to work faster; this is achieved by leaving some parts empty. Some applications don't need the user ID and the trust information given in the listings. By using this options they can get a faster listing. The exact behaviour of this option may change in future versions. If you are missing some information, don't use this option. @item --no-literal @opindex no-literal This is not for normal use. Use the source to see for what it might be useful. @item --set-filesize @opindex set-filesize This is not for normal use. Use the source to see for what it might be useful. @item --show-session-key @opindex show-session-key Display the session key used for one message. See @option{--override-session-key} for the counterpart of this option. We think that Key Escrow is a Bad Thing; however the user should have the freedom to decide whether to go to prison or to reveal the content of one specific message without compromising all messages ever encrypted for one secret key. You can also use this option if you receive an encrypted message which is abusive or offensive, to prove to the administrators of the messaging system that the ciphertext transmitted corresponds to an inappropriate plaintext so they can take action against the offending user. @item --override-session-key @var{string} @itemx --override-session-key-fd @var{fd} @opindex override-session-key Don't use the public key but the session key @var{string} respective the session key taken from the first line read from file descriptor @var{fd}. The format of this string is the same as the one printed by @option{--show-session-key}. This option is normally not used but comes handy in case someone forces you to reveal the content of an encrypted message; using this option you can do this without handing out the secret key. Note that using @option{--override-session-key} may reveal the session key to all local users via the global process table. Often it is useful to combine this option with @option{--no-keyring}. @item --ask-sig-expire @itemx --no-ask-sig-expire @opindex ask-sig-expire When making a data signature, prompt for an expiration time. If this option is not specified, the expiration time set via @option{--default-sig-expire} is used. @option{--no-ask-sig-expire} disables this option. @item --default-sig-expire @opindex default-sig-expire The default expiration time to use for signature expiration. Valid values are "0" for no expiration, a number followed by the letter d (for days), w (for weeks), m (for months), or y (for years) (for example "2m" for two months, or "5y" for five years), or an absolute date in the form YYYY-MM-DD. Defaults to "0". @item --ask-cert-expire @itemx --no-ask-cert-expire @opindex ask-cert-expire When making a key signature, prompt for an expiration time. If this option is not specified, the expiration time set via @option{--default-cert-expire} is used. @option{--no-ask-cert-expire} disables this option. @item --default-cert-expire @opindex default-cert-expire The default expiration time to use for key signature expiration. Valid values are "0" for no expiration, a number followed by the letter d (for days), w (for weeks), m (for months), or y (for years) (for example "2m" for two months, or "5y" for five years), or an absolute date in the form YYYY-MM-DD. Defaults to "0". @item --default-new-key-algo @var{string} @opindex default-new-key-algo @var{string} This option can be used to change the default algorithms for key generation. The @var{string} is similar to the arguments required for the command @option{--quick-add-key} but slightly different. For example the current default of @code{"rsa2048/cert,sign+rsa2048/encr"} (or @code{"rsa3072"}) can be changed to the value of what we currently call future default, which is @code{"ed25519/cert,sign+cv25519/encr"}. You need to consult the source code to learn the details. Note that the advanced key generation commands can always be used to specify a key algorithm directly. @item --allow-secret-key-import @opindex allow-secret-key-import This is an obsolete option and is not used anywhere. @item --allow-multiple-messages @item --no-allow-multiple-messages @opindex allow-multiple-messages Allow processing of multiple OpenPGP messages contained in a single file or stream. Some programs that call GPG are not prepared to deal with multiple messages being processed together, so this option defaults to no. Note that versions of GPG prior to 1.4.7 always allowed multiple messages. Future versions of GnUPG will remove this option. Warning: Do not use this option unless you need it as a temporary workaround! @item --enable-special-filenames @opindex enable-special-filenames This option enables a mode in which filenames of the form @file{-&n}, where n is a non-negative decimal number, refer to the file descriptor n and not to a file with that name. @item --no-expensive-trust-checks @opindex no-expensive-trust-checks Experimental use only. @item --preserve-permissions @opindex preserve-permissions Don't change the permissions of a secret keyring back to user read/write only. Use this option only if you really know what you are doing. @item --default-preference-list @var{string} @opindex default-preference-list Set the list of default preferences to @var{string}. This preference list is used for new keys and becomes the default for "setpref" in the edit menu. @item --default-keyserver-url @var{name} @opindex default-keyserver-url Set the default keyserver URL to @var{name}. This keyserver will be used as the keyserver URL when writing a new self-signature on a key, which includes key generation and changing preferences. @item --list-config @opindex list-config Display various internal configuration parameters of GnuPG. This option is intended for external programs that call GnuPG to perform tasks, and is thus not generally useful. See the file @file{doc/DETAILS} in the source distribution for the details of which configuration items may be listed. @option{--list-config} is only usable with @option{--with-colons} set. @item --list-gcrypt-config @opindex list-gcrypt-config Display various internal configuration parameters of Libgcrypt. @item --gpgconf-list @opindex gpgconf-list This command is similar to @option{--list-config} but in general only internally used by the @command{gpgconf} tool. @item --gpgconf-test @opindex gpgconf-test This is more or less dummy action. However it parses the configuration file and returns with failure if the configuration file would prevent @command{@gpgname} from startup. Thus it may be used to run a syntax check on the configuration file. @end table @c ******************************* @c ******* Deprecated ************ @c ******************************* @node Deprecated Options @subsection Deprecated options @table @gnupgtabopt @item --show-photos @itemx --no-show-photos @opindex show-photos Causes @option{--list-keys}, @option{--list-signatures}, @option{--list-public-keys}, @option{--list-secret-keys}, and verifying a signature to also display the photo ID attached to the key, if any. See also @option{--photo-viewer}. These options are deprecated. Use @option{--list-options [no-]show-photos} and/or @option{--verify-options [no-]show-photos} instead. @item --show-keyring @opindex show-keyring Display the keyring name at the head of key listings to show which keyring a given key resides on. This option is deprecated: use @option{--list-options [no-]show-keyring} instead. @item --always-trust @opindex always-trust Identical to @option{--trust-model always}. This option is deprecated. @item --show-notation @itemx --no-show-notation @opindex show-notation Show signature notations in the @option{--list-signatures} or @option{--check-signatures} listings as well as when verifying a signature with a notation in it. These options are deprecated. Use @option{--list-options [no-]show-notation} and/or @option{--verify-options [no-]show-notation} instead. @item --show-policy-url @itemx --no-show-policy-url @opindex show-policy-url Show policy URLs in the @option{--list-signatures} or @option{--check-signatures} listings as well as when verifying a signature with a policy URL in it. These options are deprecated. Use @option{--list-options [no-]show-policy-url} and/or @option{--verify-options [no-]show-policy-url} instead. @end table @c ******************************************* @c *************** **************** @c *************** FILES **************** @c *************** **************** @c ******************************************* @mansect files @node GPG Configuration @section Configuration files There are a few configuration files to control certain aspects of @command{@gpgname}'s operation. Unless noted, they are expected in the current home directory (@pxref{option --homedir}). @table @file @item gpg.conf @efindex gpg.conf This is the standard configuration file read by @command{@gpgname} on startup. It may contain any valid long option; the leading two dashes may not be entered and the option may not be abbreviated. This default name may be changed on the command line (@pxref{gpg-option --options}). You should backup this file. @end table Note that on larger installations, it is useful to put predefined files into the directory @file{@value{SYSCONFSKELDIR}} so that newly created users start up with a working configuration. For existing users a small helper script is provided to create these files (@pxref{addgnupghome}). For internal purposes @command{@gpgname} creates and maintains a few other files; They all live in the current home directory (@pxref{option --homedir}). Only the @command{@gpgname} program may modify these files. @table @file @item ~/.gnupg @efindex ~/.gnupg This is the default home directory which is used if neither the environment variable @code{GNUPGHOME} nor the option @option{--homedir} is given. @item ~/.gnupg/pubring.gpg @efindex pubring.gpg The public keyring using a legacy format. You should backup this file. If this file is not available, @command{gpg} defaults to the new keybox format and creates a file @file{pubring.kbx} unless that file already exists in which case that file will also be used for OpenPGP keys. Note that in the case that both files, @file{pubring.gpg} and @file{pubring.kbx} exists but the latter has no OpenPGP keys, the legacy file @file{pubring.gpg} will be used. Take care: GnuPG versions before 2.1 will always use the file @file{pubring.gpg} because they do not know about the new keybox format. In the case that you have to use GnuPG 1.4 to decrypt archived data you should keep this file. @item ~/.gnupg/pubring.gpg.lock The lock file for the public keyring. @item ~/.gnupg/pubring.kbx @efindex pubring.kbx The public keyring using the new keybox format. This file is shared with @command{gpgsm}. You should backup this file. See above for the relation between this file and it predecessor. To convert an existing @file{pubring.gpg} file to the keybox format, you first backup the ownertrust values, then rename @file{pubring.gpg} to @file{publickeys.backup}, so it won’t be recognized by any GnuPG version, run import, and finally restore the ownertrust values: @example $ cd ~/.gnupg $ gpg --export-ownertrust >otrust.lst $ mv pubring.gpg publickeys.backup $ gpg --import-options restore --import publickeys.backups $ gpg --import-ownertrust otrust.lst @end example @item ~/.gnupg/pubring.kbx.lock The lock file for @file{pubring.kbx}. @item ~/.gnupg/secring.gpg @efindex secring.gpg The legacy secret keyring as used by GnuPG versions before 2.1. It is not used by GnuPG 2.1 and later. You may want to keep it in case you have to use GnuPG 1.4 to decrypt archived data. @item ~/.gnupg/secring.gpg.lock The lock file for the legacy secret keyring. @item ~/.gnupg/.gpg-v21-migrated @efindex .gpg-v21-migrated File indicating that a migration to GnuPG 2.1 has been done. @item ~/.gnupg/trustdb.gpg @efindex trustdb.gpg The trust database. There is no need to backup this file; it is better to backup the ownertrust values (@pxref{option --export-ownertrust}). @item ~/.gnupg/trustdb.gpg.lock The lock file for the trust database. @item ~/.gnupg/random_seed @efindex random_seed A file used to preserve the state of the internal random pool. @item ~/.gnupg/openpgp-revocs.d/ @efindex openpgp-revocs.d This is the directory where gpg stores pre-generated revocation certificates. The file name corresponds to the OpenPGP fingerprint of the respective key. It is suggested to backup those certificates and if the primary private key is not stored on the disk to move them to an external storage device. Anyone who can access theses files is able to revoke the corresponding key. You may want to print them out. You should backup all files in this directory and take care to keep this backup closed away. @end table Operation is further controlled by a few environment variables: @table @asis @item HOME @efindex HOME Used to locate the default home directory. @item GNUPGHOME @efindex GNUPGHOME If set directory used instead of "~/.gnupg". @item GPG_AGENT_INFO This variable is obsolete; it was used by GnuPG versions before 2.1. @item PINENTRY_USER_DATA @efindex PINENTRY_USER_DATA This value is passed via gpg-agent to pinentry. It is useful to convey extra information to a custom pinentry. @item COLUMNS @itemx LINES @efindex COLUMNS @efindex LINES Used to size some displays to the full size of the screen. @item LANGUAGE @efindex LANGUAGE Apart from its use by GNU, it is used in the W32 version to override the language selection done through the Registry. If used and set to a valid and available language name (@var{langid}), the file with the translation is loaded from @code{@var{gpgdir}/gnupg.nls/@var{langid}.mo}. Here @var{gpgdir} is the directory out of which the gpg binary has been loaded. If it can't be loaded the Registry is tried and as last resort the native Windows locale system is used. @end table When calling the gpg-agent component @command{@gpgname} sends a set of environment variables to gpg-agent. The names of these variables can be listed using the command: @example gpg-connect-agent 'getinfo std_env_names' /bye | awk '$1=="D" @{print $2@}' @end example @c ******************************************* @c *************** **************** @c *************** EXAMPLES **************** @c *************** **************** @c ******************************************* @mansect examples @node GPG Examples @section Examples @table @asis @item gpg -se -r @code{Bob} @code{file} sign and encrypt for user Bob @item gpg --clear-sign @code{file} make a cleartext signature @item gpg -sb @code{file} make a detached signature @item gpg -u 0x12345678 -sb @code{file} make a detached signature with the key 0x12345678 @item gpg --list-keys @code{user_ID} show keys @item gpg --fingerprint @code{user_ID} show fingerprint @item gpg --verify @code{pgpfile} @itemx gpg --verify @code{sigfile} [@code{datafile}] Verify the signature of the file but do not output the data unless requested. The second form is used for detached signatures, where @code{sigfile} is the detached signature (either ASCII armored or binary) and @code{datafile} are the signed data; if this is not given, the name of the file holding the signed data is constructed by cutting off the extension (".asc" or ".sig") of @code{sigfile} or by asking the user for the filename. If the option @option{--output} is also used the signed data is written to the file specified by that option; use @code{-} to write the signed data to stdout. @end table @c ******************************************* @c *************** **************** @c *************** USER ID **************** @c *************** **************** @c ******************************************* @mansect how to specify a user id @ifset isman @include specify-user-id.texi @end ifset @mansect filter expressions @chapheading FILTER EXPRESSIONS The options @option{--import-filter} and @option{--export-filter} use expressions with this syntax (square brackets indicate an optional part and curly braces a repetition, white space between the elements are allowed): @c man:.RS @example [lc] @{[@{flag@}] PROPNAME op VALUE [lc]@} @end example @c man:.RE The name of a property (@var{PROPNAME}) may only consist of letters, digits and underscores. The description for the filter type describes which properties are defined. If an undefined property is used it evaluates to the empty string. Unless otherwise noted, the @var{VALUE} must always be given and may not be the empty string. No quoting is defined for the value, thus the value may not contain the strings @code{&&} or @code{||}, which are used as logical connection operators. The flag @code{--} can be used to remove this restriction. Numerical values are computed as long int; standard C notation applies. @var{lc} is the logical connection operator; either @code{&&} for a conjunction or @code{||} for a disjunction. A conjunction is assumed at the begin of an expression. Conjunctions have higher precedence than disjunctions. If @var{VALUE} starts with one of the characters used in any @var{op} a space after the @var{op} is required. @noindent The supported operators (@var{op}) are: @table @asis @item =~ Substring must match. @item !~ Substring must not match. @item = The full string must match. @item <> The full string must not match. @item == The numerical value must match. @item != The numerical value must not match. @item <= The numerical value of the field must be LE than the value. @item < The numerical value of the field must be LT than the value. @item > The numerical value of the field must be GT than the value. @item >= The numerical value of the field must be GE than the value. @item -le The string value of the field must be less or equal than the value. @item -lt The string value of the field must be less than the value. @item -gt The string value of the field must be greater than the value. @item -ge The string value of the field must be greater or equal than the value. @item -n True if value is not empty (no value allowed). @item -z True if value is empty (no value allowed). @item -t Alias for "PROPNAME != 0" (no value allowed). @item -f Alias for "PROPNAME == 0" (no value allowed). @end table @noindent Values for @var{flag} must be space separated. The supported flags are: @table @asis @item -- @var{VALUE} spans to the end of the expression. @item -c The string match in this part is done case-sensitive. @end table The filter options concatenate several specifications for a filter of the same type. For example the four options in this example: @c man:.RS @example --import-filter keep-uid="uid =~ Alfa" --import-filter keep-uid="&& uid !~ Test" --import-filter keep-uid="|| uid =~ Alpha" --import-filter keep-uid="uid !~ Test" @end example @c man:.RE @noindent which is equivalent to @c man:.RS @example --import-filter \ keep-uid="uid =~ Alfa" && uid !~ Test" || uid =~ Alpha" && "uid !~ Test" @end example @c man:.RE imports only the user ids of a key containing the strings "Alfa" or "Alpha" but not the string "test". @mansect trust values @ifset isman @include trust-values.texi @end ifset @mansect return value @chapheading RETURN VALUE The program returns 0 if there are no severe errors, 1 if at least a signature was bad, and other error codes for fatal errors. Note that signature verification requires exact knowledge of what has been signed and by whom it has beensigned. Using only the return code is thus not an appropriate way to verify a signature by a script. Either make proper use or the status codes or use the @command{gpgv} tool which has been designed to make signature verification easy for scripts. @mansect warnings @chapheading WARNINGS Use a good password for your user account and make sure that all security issues are always fixed on your machine. Also employ diligent physical protection to your machine. Consider to use a good passphrase as a last resort protection to your secret key in the case your machine gets stolen. It is important that your secret key is never leaked. Using an easy to carry around token or smartcard with the secret key is often a advisable. If you are going to verify detached signatures, make sure that the program knows about it; either give both filenames on the command line or use @samp{-} to specify STDIN. For scripted or other unattended use of @command{gpg} make sure to use the machine-parseable interface and not the default interface which is intended for direct use by humans. The machine-parseable interface provides a stable and well documented API independent of the locale or future changes of @command{gpg}. To enable this interface use the options @option{--with-colons} and @option{--status-fd}. For certain operations the option @option{--command-fd} may come handy too. See this man page and the file @file{DETAILS} for the specification of the interface. Note that the GnuPG ``info'' pages as well as the PDF version of the GnuPG manual features a chapter on unattended use of GnuPG. As an alternative the library @command{GPGME} can be used as a high-level abstraction on top of that interface. @mansect interoperability @chapheading INTEROPERABILITY WITH OTHER OPENPGP PROGRAMS GnuPG tries to be a very flexible implementation of the OpenPGP standard. In particular, GnuPG implements many of the optional parts of the standard, such as the SHA-512 hash, and the ZLIB and BZIP2 compression algorithms. It is important to be aware that not all OpenPGP programs implement these optional algorithms and that by forcing their use via the @option{--cipher-algo}, @option{--digest-algo}, @option{--cert-digest-algo}, or @option{--compress-algo} options in GnuPG, it is possible to create a perfectly valid OpenPGP message, but one that cannot be read by the intended recipient. There are dozens of variations of OpenPGP programs available, and each supports a slightly different subset of these optional algorithms. For example, until recently, no (unhacked) version of PGP supported the BLOWFISH cipher algorithm. A message using BLOWFISH simply could not be read by a PGP user. By default, GnuPG uses the standard OpenPGP preferences system that will always do the right thing and create messages that are usable by all recipients, regardless of which OpenPGP program they use. Only override this safe default if you really know what you are doing. If you absolutely must override the safe default, or if the preferences on a given key are invalid for some reason, you are far better off using the @option{--pgp6}, @option{--pgp7}, or @option{--pgp8} options. These options are safe as they do not force any particular algorithms in violation of OpenPGP, but rather reduce the available algorithms to a "PGP-safe" list. @mansect bugs @chapheading BUGS On older systems this program should be installed as setuid(root). This is necessary to lock memory pages. Locking memory pages prevents the operating system from writing memory pages (which may contain passphrases or other sensitive material) to disk. If you get no warning message about insecure memory your operating system supports locking without being root. The program drops root privileges as soon as locked memory is allocated. Note also that some systems (especially laptops) have the ability to ``suspend to disk'' (also known as ``safe sleep'' or ``hibernate''). This writes all memory to disk before going into a low power or even powered off mode. Unless measures are taken in the operating system to protect the saved memory, passphrases or other sensitive material may be recoverable from it later. Before you report a bug you should first search the mailing list archives for similar problems and second check whether such a bug has already been reported to our bug tracker at @url{https://bugs.gnupg.org}. @c ******************************************* @c *************** ************** @c *************** UNATTENDED ************** @c *************** ************** @c ******************************************* @manpause @node Unattended Usage of GPG @section Unattended Usage @command{@gpgname} is often used as a backend engine by other software. To help with this a machine interface has been defined to have an unambiguous way to do this. The options @option{--status-fd} and @option{--batch} are almost always required for this. @menu * Programmatic use of GnuPG:: Programmatic use of GnuPG * Ephemeral home directories:: Ephemeral home directories * The quick key manipulation interface:: The quick key manipulation interface * Unattended GPG key generation:: Unattended key generation @end menu @node Programmatic use of GnuPG @subsection Programmatic use of GnuPG Please consider using GPGME instead of calling @command{@gpgname} directly. GPGME offers a stable, backend-independent interface for many cryptographic operations. It supports OpenPGP and S/MIME, and also allows interaction with various GnuPG components. GPGME provides a C-API, and comes with bindings for C++, Qt, and Python. Bindings for other languages are available. @node Ephemeral home directories @subsection Ephemeral home directories Sometimes you want to contain effects of some operation, for example you want to import a key to inspect it, but you do not want this key to be added to your keyring. In earlier versions of GnuPG, it was possible to specify alternate keyring files for both public and secret keys. In modern GnuPG versions, however, we changed how secret keys are stored in order to better protect secret key material, and it was not possible to preserve this interface. The preferred way to do this is to use ephemeral home directories. This technique works across all versions of GnuPG. Create a temporary directory, create (or copy) a configuration that meets your needs, make @command{@gpgname} use this directory either using the environment variable @var{GNUPGHOME}, or the option @option{--homedir}. GPGME supports this too on a per-context basis, by modifying the engine info of contexts. Now execute whatever operation you like, import and export key material as necessary. Once finished, you can delete the directory. All GnuPG backend services that were started will detect this and shut down. @node The quick key manipulation interface @subsection The quick key manipulation interface Recent versions of GnuPG have an interface to manipulate keys without using the interactive command @option{--edit-key}. This interface was added mainly for the benefit of GPGME (please consider using GPGME, see the manual subsection ``Programmatic use of GnuPG''). This interface is described in the subsection ``How to manage your keys''. @node Unattended GPG key generation @subsection Unattended key generation The command @option{--generate-key} may be used along with the option @option{--batch} for unattended key generation. This is the most flexible way of generating keys, but it is also the most complex one. Consider using the quick key manipulation interface described in the previous subsection ``The quick key manipulation interface''. The parameters for the key are either read from stdin or given as a file on the command line. The format of the parameter file is as follows: @itemize @bullet @item Text only, line length is limited to about 1000 characters. @item UTF-8 encoding must be used to specify non-ASCII characters. @item Empty lines are ignored. @item Leading and trailing white space is ignored. @item A hash sign as the first non white space character indicates a comment line. @item Control statements are indicated by a leading percent sign, the arguments are separated by white space from the keyword. @item Parameters are specified by a keyword, followed by a colon. Arguments are separated by white space. @item The first parameter must be @samp{Key-Type}; control statements may be placed anywhere. @item The order of the parameters does not matter except for @samp{Key-Type} which must be the first parameter. The parameters are only used for the generated keyblock (primary and subkeys); parameters from previous sets are not used. Some syntactically checks may be performed. @item Key generation takes place when either the end of the parameter file is reached, the next @samp{Key-Type} parameter is encountered or at the control statement @samp{%commit} is encountered. @end itemize @noindent Control statements: @table @asis @item %echo @var{text} Print @var{text} as diagnostic. @item %dry-run Suppress actual key generation (useful for syntax checking). @item %commit Perform the key generation. Note that an implicit commit is done at the next @asis{Key-Type} parameter. @item %pubring @var{filename} Do not write the key to the default or commandline given keyring but to @var{filename}. This must be given before the first commit to take place, duplicate specification of the same filename is ignored, the last filename before a commit is used. The filename is used until a new filename is used (at commit points) and all keys are written to that file. If a new filename is given, this file is created (and overwrites an existing one). See the previous subsection ``Ephemeral home directories'' for a more robust way to contain side-effects. @item %secring @var{filename} This option is a no-op for GnuPG 2.1 and later. See the previous subsection ``Ephemeral home directories''. @item %ask-passphrase @itemx %no-ask-passphrase This option is a no-op for GnuPG 2.1 and later. @item %no-protection Using this option allows the creation of keys without any passphrase protection. This option is mainly intended for regression tests. @item %transient-key If given the keys are created using a faster and a somewhat less secure random number generator. This option may be used for keys which are only used for a short time and do not require full cryptographic strength. It takes only effect if used together with the control statement @samp{%no-protection}. @end table @noindent General Parameters: @table @asis @item Key-Type: @var{algo} Starts a new parameter block by giving the type of the primary key. The algorithm must be capable of signing. This is a required parameter. @var{algo} may either be an OpenPGP algorithm number or a string with the algorithm name. The special value @samp{default} may be used for @var{algo} to create the default key type; in this case a @samp{Key-Usage} shall not be given and @samp{default} also be used for @samp{Subkey-Type}. @item Key-Length: @var{nbits} The requested length of the generated key in bits. The default is returned by running the command @samp{@gpgname --gpgconf-list}. For ECC keys this parameter is ignored. @item Key-Curve: @var{curve} The requested elliptic curve of the generated key. This is a required parameter for ECC keys. It is ignored for non-ECC keys. @item Key-Grip: @var{hexstring} This is optional and used to generate a CSR or certificate for an already existing key. Key-Length will be ignored when given. @item Key-Usage: @var{usage-list} Space or comma delimited list of key usages. Allowed values are @samp{encrypt}, @samp{sign}, and @samp{auth}. This is used to generate the key flags. Please make sure that the algorithm is capable of this usage. Note that OpenPGP requires that all primary keys are capable of certification, so no matter what usage is given here, the @samp{cert} flag will be on. If no @samp{Key-Usage} is specified and the @samp{Key-Type} is not @samp{default}, all allowed usages for that particular algorithm are used; if it is not given but @samp{default} is used the usage will be @samp{sign}. @item Subkey-Type: @var{algo} This generates a secondary key (subkey). Currently only one subkey can be handled. See also @samp{Key-Type} above. @item Subkey-Length: @var{nbits} Length of the secondary key (subkey) in bits. The default is returned by running the command @samp{@gpgname --gpgconf-list}. @item Subkey-Curve: @var{curve} Key curve for a subkey; similar to @samp{Key-Curve}. @item Subkey-Usage: @var{usage-list} Key usage lists for a subkey; similar to @samp{Key-Usage}. @item Passphrase: @var{string} If you want to specify a passphrase for the secret key, enter it here. Default is to use the Pinentry dialog to ask for a passphrase. @item Name-Real: @var{name} @itemx Name-Comment: @var{comment} @itemx Name-Email: @var{email} The three parts of a user name. Remember to use UTF-8 encoding here. If you don't give any of them, no user ID is created. @item Expire-Date: @var{iso-date}|(@var{number}[d|w|m|y]) Set the expiration date for the key (and the subkey). It may either be entered in ISO date format (e.g. "20000815T145012") or as number of days, weeks, month or years after the creation date. The special notation "seconds=N" is also allowed to specify a number of seconds since creation. Without a letter days are assumed. Note that there is no check done on the overflow of the type used by OpenPGP for timestamps. Thus you better make sure that the given value make sense. Although OpenPGP works with time intervals, GnuPG uses an absolute value internally and thus the last year we can represent is 2105. @item Creation-Date: @var{iso-date} Set the creation date of the key as stored in the key information and which is also part of the fingerprint calculation. Either a date like "1986-04-26" or a full timestamp like "19860426T042640" may be used. The time is considered to be UTC. The special notation "seconds=N" may be used to directly specify a the number of seconds since Epoch (Unix time). If it is not given the current time is used. @item Preferences: @var{string} Set the cipher, hash, and compression preference values for this key. This expects the same type of string as the sub-command @samp{setpref} in the @option{--edit-key} menu. @item Revoker: @var{algo}:@var{fpr} [sensitive] Add a designated revoker to the generated key. Algo is the public key algorithm of the designated revoker (i.e. RSA=1, DSA=17, etc.) @var{fpr} is the fingerprint of the designated revoker. The optional @samp{sensitive} flag marks the designated revoker as sensitive information. Only v4 keys may be designated revokers. @item Keyserver: @var{string} This is an optional parameter that specifies the preferred keyserver URL for the key. @item Handle: @var{string} This is an optional parameter only used with the status lines KEY_CREATED and KEY_NOT_CREATED. @var{string} may be up to 100 characters and should not contain spaces. It is useful for batch key generation to associate a key parameter block with a status line. @end table @noindent Here is an example on how to create a key in an ephemeral home directory: @smallexample $ export GNUPGHOME="$(mktemp -d)" $ cat >foo < ssb elg1024 2016-12-16 [E] @end smallexample @noindent If you want to create a key with the default algorithms you would use these parameters: @smallexample %echo Generating a default key Key-Type: default Subkey-Type: default Name-Real: Joe Tester Name-Comment: with stupid passphrase Name-Email: joe@@foo.bar Expire-Date: 0 Passphrase: abc # Do a commit here, so that we can later print "done" :-) %commit %echo done @end smallexample @mansect see also @ifset isman @command{gpgv}(1), @command{gpgsm}(1), @command{gpg-agent}(1) @end ifset @include see-also-note.texi