diff --git a/scd/apdu.c b/scd/apdu.c
index 72b291e8f..a2880f815 100644
--- a/scd/apdu.c
+++ b/scd/apdu.c
@@ -1,4183 +1,4191 @@
 /* apdu.c - ISO 7816 APDU functions and low level I/O
  * Copyright (C) 2003, 2004, 2008, 2009 Free Software Foundation, Inc.
  *
  * This file is part of GnuPG.
  *
  * GnuPG is free software; you can redistribute it and/or modify
  * it under the terms of the GNU General Public License as published by
  * the Free Software Foundation; either version 3 of the License, or
  * (at your option) any later version.
  *
  * GnuPG is distributed in the hope that it will be useful,
  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  * GNU General Public License for more details.
  *
  * You should have received a copy of the GNU General Public License
  * along with this program; if not, see <http://www.gnu.org/licenses/>.
  */
 
 /* NOTE: This module is also used by other software, thus the use of
    the macro USE_GNU_PTH is mandatory.  For GnuPG this macro is
    guaranteed to be defined true. */
 
 #include <config.h>
 #include <errno.h>
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
 #include <assert.h>
 #include <signal.h>
 #ifdef USE_GNU_PTH
 # include <unistd.h>
 # include <fcntl.h>
 # include <pth.h>
 #endif
 
 
 /* If requested include the definitions for the remote APDU protocol
    code. */
 #ifdef USE_G10CODE_RAPDU
 #include "rapdu.h"
 #endif /*USE_G10CODE_RAPDU*/
 
 #if defined(GNUPG_SCD_MAIN_HEADER)
 #include GNUPG_SCD_MAIN_HEADER
 #elif GNUPG_MAJOR_VERSION == 1
 /* This is used with GnuPG version < 1.9.  The code has been source
    copied from the current GnuPG >= 1.9  and is maintained over
    there. */
 #include "options.h"
 #include "errors.h"
 #include "memory.h"
 #include "util.h"
 #include "i18n.h"
 #include "dynload.h"
 #include "cardglue.h"
 #else /* GNUPG_MAJOR_VERSION != 1 */
 #include "scdaemon.h"
 #include "exechelp.h"
 #endif /* GNUPG_MAJOR_VERSION != 1 */
 #include "../include/host2net.h"
 
 #include "iso7816.h"
 #include "apdu.h"
 #include "ccid-driver.h"
 
 /* Due to conflicting use of threading libraries we usually can't link
    against libpcsclite.   Instead we use a wrapper program.  */
 #ifdef USE_GNU_PTH
 #if !defined(HAVE_W32_SYSTEM) && !defined(__CYGWIN__)
 #define NEED_PCSC_WRAPPER 1
 #endif
 #endif
 
 
 #define MAX_READER 4 /* Number of readers we support concurrently. */
 
 
 #if defined(_WIN32) || defined(__CYGWIN__)
 #define DLSTDCALL __stdcall
 #else
 #define DLSTDCALL
 #endif
 
 #if defined(__APPLE__) || defined(_WIN32) || defined(__CYGWIN__)
 typedef unsigned int pcsc_dword_t;
 #else
 typedef unsigned long pcsc_dword_t;
 #endif
 
 /* A structure to collect information pertaining to one reader
    slot. */
 struct reader_table_s {
   int used;            /* True if slot is used. */
   unsigned short port; /* Port number:  0 = unused, 1 - dev/tty */
 
   /* Function pointers intialized to the various backends.  */
   int (*connect_card)(int);
   int (*disconnect_card)(int);
   int (*close_reader)(int);
   int (*shutdown_reader)(int);
   int (*reset_reader)(int);
   int (*get_status_reader)(int, unsigned int *);
   int (*send_apdu_reader)(int,unsigned char *,size_t,
                           unsigned char *, size_t *, pininfo_t *);
   int (*check_pinpad)(int, int, pininfo_t *);
   void (*dump_status_reader)(int);
   int (*set_progress_cb)(int, gcry_handler_progress_t, void*);
   int (*pinpad_verify)(int, int, int, int, int, pininfo_t *);
   int (*pinpad_modify)(int, int, int, int, int, pininfo_t *);
 
   struct {
     ccid_driver_t handle;
   } ccid;
   struct {
     long context;
     long card;
     pcsc_dword_t protocol;
     pcsc_dword_t verify_ioctl;
     pcsc_dword_t modify_ioctl;
     int pinmin;
     int pinmax;
 #ifdef NEED_PCSC_WRAPPER
     int req_fd;
     int rsp_fd;
     pid_t pid;
 #endif /*NEED_PCSC_WRAPPER*/
   } pcsc;
 #ifdef USE_G10CODE_RAPDU
   struct {
     rapdu_t handle;
   } rapdu;
 #endif /*USE_G10CODE_RAPDU*/
   char *rdrname;     /* Name of the connected reader or NULL if unknown. */
   int any_status;    /* True if we have seen any status.  */
   int last_status;
   int status;
   int is_t0;         /* True if we know that we are running T=0. */
   int is_spr532;     /* True if we know that the reader is a SPR532.  */
   int pinpad_varlen_supported;  /* True if we know that the reader
                                    supports variable length pinpad
                                    input.  */
   unsigned char atr[33];
   size_t atrlen;           /* A zero length indicates that the ATR has
                               not yet been read; i.e. the card is not
                               ready for use. */
   unsigned int change_counter;
 #ifdef USE_GNU_PTH
   int lock_initialized;
   pth_mutex_t lock;
 #endif
 };
 typedef struct reader_table_s *reader_table_t;
 
 /* A global table to keep track of active readers. */
 static struct reader_table_s reader_table[MAX_READER];
 
 
 /* ct API function pointer. */
 static char (* DLSTDCALL CT_init) (unsigned short ctn, unsigned short Pn);
 static char (* DLSTDCALL CT_data) (unsigned short ctn, unsigned char *dad,
                                    unsigned char *sad, unsigned short lc,
                                    unsigned char *cmd, unsigned short *lr,
                                    unsigned char *rsp);
 static char (* DLSTDCALL CT_close) (unsigned short ctn);
 
 /* PC/SC constants and function pointer. */
 #define PCSC_SCOPE_USER      0
 #define PCSC_SCOPE_TERMINAL  1
 #define PCSC_SCOPE_SYSTEM    2
 #define PCSC_SCOPE_GLOBAL    3
 
 #define PCSC_PROTOCOL_T0     1
 #define PCSC_PROTOCOL_T1     2
 #define PCSC_PROTOCOL_RAW    4
 
 #define PCSC_SHARE_EXCLUSIVE 1
 #define PCSC_SHARE_SHARED    2
 #define PCSC_SHARE_DIRECT    3
 
 #define PCSC_LEAVE_CARD      0
 #define PCSC_RESET_CARD      1
 #define PCSC_UNPOWER_CARD    2
 #define PCSC_EJECT_CARD      3
 
 #define PCSC_UNKNOWN    0x0001
 #define PCSC_ABSENT     0x0002  /* Card is absent.  */
 #define PCSC_PRESENT    0x0004  /* Card is present.  */
 #define PCSC_SWALLOWED  0x0008  /* Card is present and electrical connected. */
 #define PCSC_POWERED    0x0010  /* Card is powered.  */
 #define PCSC_NEGOTIABLE 0x0020  /* Card is awaiting PTS.  */
 #define PCSC_SPECIFIC   0x0040  /* Card is ready for use.  */
 
 #define PCSC_STATE_UNAWARE     0x0000  /* Want status.  */
 #define PCSC_STATE_IGNORE      0x0001  /* Ignore this reader.  */
 #define PCSC_STATE_CHANGED     0x0002  /* State has changed.  */
 #define PCSC_STATE_UNKNOWN     0x0004  /* Reader unknown.  */
 #define PCSC_STATE_UNAVAILABLE 0x0008  /* Status unavailable.  */
 #define PCSC_STATE_EMPTY       0x0010  /* Card removed.  */
 #define PCSC_STATE_PRESENT     0x0020  /* Card inserted.  */
 #define PCSC_STATE_ATRMATCH    0x0040  /* ATR matches card. */
 #define PCSC_STATE_EXCLUSIVE   0x0080  /* Exclusive Mode.  */
 #define PCSC_STATE_INUSE       0x0100  /* Shared mode.  */
 #define PCSC_STATE_MUTE	       0x0200  /* Unresponsive card.  */
 
 /* Some PC/SC error codes.  */
 #define PCSC_E_CANCELLED               0x80100002
 #define PCSC_E_CANT_DISPOSE            0x8010000E
 #define PCSC_E_INSUFFICIENT_BUFFER     0x80100008
 #define PCSC_E_INVALID_ATR             0x80100015
 #define PCSC_E_INVALID_HANDLE          0x80100003
 #define PCSC_E_INVALID_PARAMETER       0x80100004
 #define PCSC_E_INVALID_TARGET          0x80100005
 #define PCSC_E_INVALID_VALUE           0x80100011
 #define PCSC_E_NO_MEMORY               0x80100006
 #define PCSC_E_UNKNOWN_READER          0x80100009
 #define PCSC_E_TIMEOUT                 0x8010000A
 #define PCSC_E_SHARING_VIOLATION       0x8010000B
 #define PCSC_E_NO_SMARTCARD            0x8010000C
 #define PCSC_E_UNKNOWN_CARD            0x8010000D
 #define PCSC_E_PROTO_MISMATCH          0x8010000F
 #define PCSC_E_NOT_READY               0x80100010
 #define PCSC_E_SYSTEM_CANCELLED        0x80100012
 #define PCSC_E_NOT_TRANSACTED          0x80100016
 #define PCSC_E_READER_UNAVAILABLE      0x80100017
 #define PCSC_E_NO_SERVICE              0x8010001D
 #define PCSC_W_REMOVED_CARD            0x80100069
 
 /* Fix pcsc-lite ABI incompatibilty.  */
 #ifndef SCARD_CTL_CODE
 #ifdef _WIN32
 #include <winioctl.h>
 #define SCARD_CTL_CODE(code) CTL_CODE(FILE_DEVICE_SMARTCARD, (code), \
 				      METHOD_BUFFERED, FILE_ANY_ACCESS)
 #else
 #define SCARD_CTL_CODE(code) (0x42000000 + (code))
 #endif
 #endif
 
 #define CM_IOCTL_GET_FEATURE_REQUEST     SCARD_CTL_CODE(3400)
 #define CM_IOCTL_VENDOR_IFD_EXCHANGE     SCARD_CTL_CODE(1)
 #define FEATURE_VERIFY_PIN_DIRECT        0x06
 #define FEATURE_MODIFY_PIN_DIRECT        0x07
 #define FEATURE_GET_TLV_PROPERTIES       0x12
 
 #define PCSCv2_PART10_PROPERTY_bEntryValidationCondition 2
 #define PCSCv2_PART10_PROPERTY_bTimeOut2                 3
 #define PCSCv2_PART10_PROPERTY_bMinPINSize               6
 #define PCSCv2_PART10_PROPERTY_bMaxPINSize               7
 #define PCSCv2_PART10_PROPERTY_wIdVendor                11
 #define PCSCv2_PART10_PROPERTY_wIdProduct               12
 
 
 /* The PC/SC error is defined as a long as per specs.  Due to left
    shifts bit 31 will get sign extended.  We use this mask to fix
    it. */
 #define PCSC_ERR_MASK(a)  ((a) & 0xffffffff)
 
 
 struct pcsc_io_request_s
 {
   unsigned long protocol;
   unsigned long pci_len;
 };
 
 typedef struct pcsc_io_request_s *pcsc_io_request_t;
 
 #ifdef __APPLE__
 #pragma pack(1)
 #endif
 
 struct pcsc_readerstate_s
 {
   const char *reader;
   void *user_data;
   pcsc_dword_t current_state;
   pcsc_dword_t event_state;
   pcsc_dword_t atrlen;
   unsigned char atr[33];
 };
 
 #ifdef __APPLE__
 #pragma pack()
 #endif
 
 typedef struct pcsc_readerstate_s *pcsc_readerstate_t;
 
 long (* DLSTDCALL pcsc_establish_context) (pcsc_dword_t scope,
                                            const void *reserved1,
                                            const void *reserved2,
                                            long *r_context);
 long (* DLSTDCALL pcsc_release_context) (long context);
 long (* DLSTDCALL pcsc_list_readers) (long context,
                                       const char *groups,
                                       char *readers, pcsc_dword_t*readerslen);
 long (* DLSTDCALL pcsc_get_status_change) (long context,
                                            pcsc_dword_t timeout,
                                            pcsc_readerstate_t readerstates,
                                            pcsc_dword_t nreaderstates);
 long (* DLSTDCALL pcsc_connect) (long context,
                                  const char *reader,
                                  pcsc_dword_t share_mode,
                                  pcsc_dword_t preferred_protocols,
                                  long *r_card,
                                  pcsc_dword_t *r_active_protocol);
 long (* DLSTDCALL pcsc_reconnect) (long card,
                                    pcsc_dword_t share_mode,
                                    pcsc_dword_t preferred_protocols,
                                    pcsc_dword_t initialization,
                                    pcsc_dword_t *r_active_protocol);
 long (* DLSTDCALL pcsc_disconnect) (long card,
                                     pcsc_dword_t disposition);
 long (* DLSTDCALL pcsc_status) (long card,
                                 char *reader, pcsc_dword_t *readerlen,
                                 pcsc_dword_t *r_state,
                                 pcsc_dword_t *r_protocol,
                                 unsigned char *atr, pcsc_dword_t *atrlen);
 long (* DLSTDCALL pcsc_begin_transaction) (long card);
 long (* DLSTDCALL pcsc_end_transaction) (long card,
                                          pcsc_dword_t disposition);
 long (* DLSTDCALL pcsc_transmit) (long card,
                                   const pcsc_io_request_t send_pci,
                                   const unsigned char *send_buffer,
                                   pcsc_dword_t send_len,
                                   pcsc_io_request_t recv_pci,
                                   unsigned char *recv_buffer,
                                   pcsc_dword_t *recv_len);
 long (* DLSTDCALL pcsc_set_timeout) (long context,
                                      pcsc_dword_t timeout);
 long (* DLSTDCALL pcsc_control) (long card,
                                  pcsc_dword_t control_code,
                                  const void *send_buffer,
                                  pcsc_dword_t send_len,
                                  void *recv_buffer,
                                  pcsc_dword_t recv_len,
                                  pcsc_dword_t *bytes_returned);
 
 
 /*  Prototypes.  */
 static int pcsc_vendor_specific_init (int slot);
 static int pcsc_get_status (int slot, unsigned int *status);
 static int reset_pcsc_reader (int slot);
 static int apdu_get_status_internal (int slot, int hang, int no_atr_reset,
                                      unsigned int *status,
                                      unsigned int *changed);
 static int check_pcsc_pinpad (int slot, int command, pininfo_t *pininfo);
 static int pcsc_pinpad_verify (int slot, int class, int ins, int p0, int p1,
                                pininfo_t *pininfo);
 static int pcsc_pinpad_modify (int slot, int class, int ins, int p0, int p1,
                                pininfo_t *pininfo);
 
 
 
 /*
       Helper
  */
 
 
 static int
 lock_slot (int slot)
 {
 #ifdef USE_GNU_PTH
   if (!pth_mutex_acquire (&reader_table[slot].lock, 0, NULL))
     {
       log_error ("failed to acquire apdu lock: %s\n", strerror (errno));
       return SW_HOST_LOCKING_FAILED;
     }
 #endif /*USE_GNU_PTH*/
   return 0;
 }
 
 static int
 trylock_slot (int slot)
 {
 #ifdef USE_GNU_PTH
   if (!pth_mutex_acquire (&reader_table[slot].lock, TRUE, NULL))
     {
       if (errno == EBUSY)
         return SW_HOST_BUSY;
       log_error ("failed to acquire apdu lock: %s\n", strerror (errno));
       return SW_HOST_LOCKING_FAILED;
     }
 #endif /*USE_GNU_PTH*/
   return 0;
 }
 
 static void
 unlock_slot (int slot)
 {
 #ifdef USE_GNU_PTH
   if (!pth_mutex_release (&reader_table[slot].lock))
     log_error ("failed to release apdu lock: %s\n", strerror (errno));
 #endif /*USE_GNU_PTH*/
 }
 
 
 /* Find an unused reader slot for PORTSTR and put it into the reader
    table.  Return -1 on error or the index into the reader table.
    Acquire slot's lock on successful return.  Caller needs to unlock it.  */
 static int
 new_reader_slot (void)
 {
   int i, reader = -1;
 
   for (i=0; i < MAX_READER; i++)
     {
       if (!reader_table[i].used && reader == -1)
         reader = i;
     }
   if (reader == -1)
     {
       log_error ("new_reader_slot: out of slots\n");
       return -1;
     }
 #ifdef USE_GNU_PTH
   if (!reader_table[reader].lock_initialized)
     {
       if (!pth_mutex_init (&reader_table[reader].lock))
         {
           log_error ("error initializing mutex: %s\n", strerror (errno));
           return -1;
         }
       reader_table[reader].lock_initialized = 1;
     }
 #endif /*USE_GNU_PTH*/
   if (lock_slot (reader))
     {
       log_error ("error locking mutex: %s\n", strerror (errno));
       return -1;
     }
   reader_table[reader].connect_card = NULL;
   reader_table[reader].disconnect_card = NULL;
   reader_table[reader].close_reader = NULL;
   reader_table[reader].shutdown_reader = NULL;
   reader_table[reader].reset_reader = NULL;
   reader_table[reader].get_status_reader = NULL;
   reader_table[reader].send_apdu_reader = NULL;
   reader_table[reader].check_pinpad = check_pcsc_pinpad;
   reader_table[reader].dump_status_reader = NULL;
   reader_table[reader].set_progress_cb = NULL;
   reader_table[reader].pinpad_verify = pcsc_pinpad_verify;
   reader_table[reader].pinpad_modify = pcsc_pinpad_modify;
 
   reader_table[reader].used = 1;
   reader_table[reader].any_status = 0;
   reader_table[reader].last_status = 0;
   reader_table[reader].is_t0 = 1;
   reader_table[reader].is_spr532 = 0;
   reader_table[reader].pinpad_varlen_supported = 0;
 #ifdef NEED_PCSC_WRAPPER
   reader_table[reader].pcsc.req_fd = -1;
   reader_table[reader].pcsc.rsp_fd = -1;
   reader_table[reader].pcsc.pid = (pid_t)(-1);
 #endif
   reader_table[reader].pcsc.verify_ioctl = 0;
   reader_table[reader].pcsc.modify_ioctl = 0;
   reader_table[reader].pcsc.pinmin = -1;
   reader_table[reader].pcsc.pinmax = -1;
 
   return reader;
 }
 
 
 static void
 dump_reader_status (int slot)
 {
   if (!opt.verbose)
     return;
 
   if (reader_table[slot].dump_status_reader)
     reader_table[slot].dump_status_reader (slot);
 
   if (reader_table[slot].status != -1
       && reader_table[slot].atrlen)
     {
       log_info ("slot %d: ATR=", slot);
       log_printhex ("", reader_table[slot].atr, reader_table[slot].atrlen);
     }
 }
 
 
 
 static const char *
 host_sw_string (long err)
 {
   switch (err)
     {
     case 0: return "okay";
     case SW_HOST_OUT_OF_CORE: return "out of core";
     case SW_HOST_INV_VALUE: return "invalid value";
     case SW_HOST_NO_DRIVER: return "no driver";
     case SW_HOST_NOT_SUPPORTED: return "not supported";
     case SW_HOST_LOCKING_FAILED: return "locking failed";
     case SW_HOST_BUSY: return "busy";
     case SW_HOST_NO_CARD: return "no card";
     case SW_HOST_CARD_INACTIVE: return "card inactive";
     case SW_HOST_CARD_IO_ERROR: return "card I/O error";
     case SW_HOST_GENERAL_ERROR: return "general error";
     case SW_HOST_NO_READER: return "no reader";
     case SW_HOST_ABORTED: return "aborted";
     case SW_HOST_NO_PINPAD: return "no pinpad";
     case SW_HOST_ALREADY_CONNECTED: return "already connected";
     default: return "unknown host status error";
     }
 }
 
 
 const char *
 apdu_strerror (int rc)
 {
   switch (rc)
     {
     case SW_EOF_REACHED    : return "eof reached";
     case SW_EEPROM_FAILURE : return "eeprom failure";
     case SW_WRONG_LENGTH   : return "wrong length";
     case SW_CHV_WRONG      : return "CHV wrong";
     case SW_CHV_BLOCKED    : return "CHV blocked";
     case SW_USE_CONDITIONS : return "use conditions not satisfied";
     case SW_BAD_PARAMETER  : return "bad parameter";
     case SW_NOT_SUPPORTED  : return "not supported";
     case SW_FILE_NOT_FOUND : return "file not found";
     case SW_RECORD_NOT_FOUND:return "record not found";
     case SW_REF_NOT_FOUND  : return "reference not found";
     case SW_BAD_LC         : return "bad Lc";
     case SW_BAD_P0_P1      : return "bad P0 or P1";
     case SW_INS_NOT_SUP    : return "instruction not supported";
     case SW_CLA_NOT_SUP    : return "class not supported";
     case SW_SUCCESS        : return "success";
     default:
       if ((rc & ~0x00ff) == SW_MORE_DATA)
         return "more data available";
       if ( (rc & 0x10000) )
         return host_sw_string (rc);
       return "unknown status error";
     }
 }
 
 
 
 /*
        ct API Interface
  */
 
 static const char *
 ct_error_string (long err)
 {
   switch (err)
     {
     case 0: return "okay";
     case -1: return "invalid data";
     case -8: return "ct error";
     case -10: return "transmission error";
     case -11: return "memory allocation error";
     case -128: return "HTSI error";
     default: return "unknown CT-API error";
     }
 }
 
 
 static void
 ct_dump_reader_status (int slot)
 {
   log_info ("reader slot %d: %s\n", slot,
             reader_table[slot].status == 1? "Processor ICC present" :
             reader_table[slot].status == 0? "Memory ICC present" :
             "ICC not present" );
 }
 
 
 /* Wait for the card in SLOT and activate it.  Return a status word
    error or 0 on success. */
 static int
 ct_activate_card (int slot)
 {
   int rc;
   unsigned char dad[1], sad[1], cmd[11], buf[256];
   unsigned short buflen;
 
   /* Check whether card has been inserted. */
   dad[0] = 1;     /* Destination address: CT. */
   sad[0] = 2;     /* Source address: Host. */
 
   cmd[0] = 0x20;  /* Class byte. */
   cmd[1] = 0x13;  /* Request status. */
   cmd[2] = 0x00;  /* From kernel. */
   cmd[3] = 0x80;  /* Return card's DO. */
   cmd[4] = 0x00;
 
   buflen = DIM(buf);
 
   rc = CT_data (slot, dad, sad, 5, cmd, &buflen, buf);
   if (rc || buflen < 2 || buf[buflen-2] != 0x90)
     {
       log_error ("ct_activate_card: can't get status of reader %d: %s\n",
                  slot, ct_error_string (rc));
       return SW_HOST_CARD_IO_ERROR;
     }
 
   /* Connected, now activate the card. */
   dad[0] = 1;    /* Destination address: CT. */
   sad[0] = 2;    /* Source address: Host. */
 
   cmd[0] = 0x20;  /* Class byte. */
   cmd[1] = 0x12;  /* Request ICC. */
   cmd[2] = 0x01;  /* From first interface. */
   cmd[3] = 0x01;  /* Return card's ATR. */
   cmd[4] = 0x00;
 
   buflen = DIM(buf);
 
   rc = CT_data (slot, dad, sad, 5, cmd, &buflen, buf);
   if (rc || buflen < 2 || buf[buflen-2] != 0x90)
     {
       log_error ("ct_activate_card(%d): activation failed: %s\n",
                  slot, ct_error_string (rc));
       if (!rc)
         log_printhex ("  received data:", buf, buflen);
       return SW_HOST_CARD_IO_ERROR;
     }
 
   /* Store the type and the ATR. */
   if (buflen - 2 > DIM (reader_table[0].atr))
     {
       log_error ("ct_activate_card(%d): ATR too long\n", slot);
       return SW_HOST_CARD_IO_ERROR;
     }
 
   reader_table[slot].status = buf[buflen - 1];
   memcpy (reader_table[slot].atr, buf, buflen - 2);
   reader_table[slot].atrlen = buflen - 2;
   return 0;
 }
 
 
 static int
 close_ct_reader (int slot)
 {
   CT_close (slot);
   reader_table[slot].used = 0;
   return 0;
 }
 
 static int
 reset_ct_reader (int slot)
 {
   /* FIXME: Check is this is sufficient do do a reset. */
   return ct_activate_card (slot);
 }
 
 
 static int
 ct_get_status (int slot, unsigned int *status)
 {
   (void)slot;
   /* The status we returned is wrong but we don't care becuase ctAPI
      is not anymore required.  */
   *status = APDU_CARD_USABLE|APDU_CARD_PRESENT|APDU_CARD_ACTIVE;
   return 0;
 }
 
 /* Actually send the APDU of length APDULEN to SLOT and return a
    maximum of *BUFLEN data in BUFFER, the actual retruned size will be
    set to BUFLEN.  Returns: CT API error code. */
 static int
 ct_send_apdu (int slot, unsigned char *apdu, size_t apdulen,
               unsigned char *buffer, size_t *buflen, pininfo_t *pininfo)
 {
   int rc;
   unsigned char dad[1], sad[1];
   unsigned short ctbuflen;
 
   (void)pininfo;
 
   /* If we don't have an ATR, we need to reset the reader first. */
   if (!reader_table[slot].atrlen
       && (rc = reset_ct_reader (slot)))
     return rc;
 
   dad[0] = 0;     /* Destination address: Card. */
   sad[0] = 2;     /* Source address: Host. */
   ctbuflen = *buflen;
   if (DBG_CARD_IO)
     log_printhex ("  CT_data:", apdu, apdulen);
   rc = CT_data (slot, dad, sad, apdulen, apdu, &ctbuflen, buffer);
   *buflen = ctbuflen;
 
   return rc? SW_HOST_CARD_IO_ERROR: 0;
 }
 
 
 
 /* Open a reader and return an internal handle for it.  PORT is a
    non-negative value with the port number of the reader. USB readers
    do have port numbers starting at 32769. */
 static int
 open_ct_reader (int port)
 {
   int rc, reader;
 
   if (port < 0 || port > 0xffff)
     {
       log_error ("open_ct_reader: invalid port %d requested\n", port);
       return -1;
     }
   reader = new_reader_slot ();
   if (reader == -1)
     return reader;
   reader_table[reader].port = port;
 
   rc = CT_init (reader, (unsigned short)port);
   if (rc)
     {
       log_error ("apdu_open_ct_reader failed on port %d: %s\n",
                  port, ct_error_string (rc));
       reader_table[reader].used = 0;
       unlock_slot (reader);
       return -1;
     }
 
   /* Only try to activate the card. */
   rc = ct_activate_card (reader);
   if (rc)
     {
       reader_table[reader].atrlen = 0;
       rc = 0;
     }
 
   reader_table[reader].close_reader = close_ct_reader;
   reader_table[reader].reset_reader = reset_ct_reader;
   reader_table[reader].get_status_reader = ct_get_status;
   reader_table[reader].send_apdu_reader = ct_send_apdu;
   reader_table[reader].check_pinpad = NULL;
   reader_table[reader].dump_status_reader = ct_dump_reader_status;
   reader_table[reader].pinpad_verify = NULL;
   reader_table[reader].pinpad_modify = NULL;
 
   dump_reader_status (reader);
   unlock_slot (reader);
   return reader;
 }
 
 
 /*
        PC/SC Interface
  */
 
 #ifdef NEED_PCSC_WRAPPER
 static int
 writen (int fd, const void *buf, size_t nbytes)
 {
   size_t nleft = nbytes;
   int nwritten;
 
 /*   log_printhex (" writen:", buf, nbytes); */
 
   while (nleft > 0)
     {
 #ifdef USE_GNU_PTH
       nwritten = pth_write (fd, buf, nleft);
 #else
       nwritten = write (fd, buf, nleft);
 #endif
       if (nwritten < 0 && errno == EINTR)
         continue;
       if (nwritten < 0)
         return -1;
       nleft -= nwritten;
       buf = (const char*)buf + nwritten;
     }
   return 0;
 }
 
 /* Read up to BUFLEN bytes from FD and return the number of bytes
    actually read in NREAD.  Returns -1 on error or 0 on success. */
 static int
 readn (int fd, void *buf, size_t buflen, size_t *nread)
 {
   size_t nleft = buflen;
   int n;
 /*   void *orig_buf = buf; */
 
   while (nleft > 0)
     {
 #ifdef USE_GNU_PTH
 # ifdef HAVE_W32_SYSTEM
 #  error Cannot use pth_read here because it expects a system HANDLE.
 # endif
       n = pth_read (fd, buf, nleft);
 #else
       n = read (fd, buf, nleft);
 #endif
       if (n < 0 && errno == EINTR)
         continue;
       if (n < 0)
         return -1; /* read error. */
       if (!n)
         break; /* EOF */
       nleft -= n;
       buf = (char*)buf + n;
     }
   if (nread)
     *nread = buflen - nleft;
 
 /*   log_printhex ("  readn:", orig_buf, *nread); */
 
   return 0;
 }
 #endif /*NEED_PCSC_WRAPPER*/
 
 static const char *
 pcsc_error_string (long err)
 {
   const char *s;
 
   if (!err)
     return "okay";
   if ((err & 0x80100000) != 0x80100000)
     return "invalid PC/SC error code";
   err &= 0xffff;
   switch (err)
     {
     case 0x0002: s = "cancelled"; break;
     case 0x000e: s = "can't dispose"; break;
     case 0x0008: s = "insufficient buffer"; break;
     case 0x0015: s = "invalid ATR"; break;
     case 0x0003: s = "invalid handle"; break;
     case 0x0004: s = "invalid parameter"; break;
     case 0x0005: s = "invalid target"; break;
     case 0x0011: s = "invalid value"; break;
     case 0x0006: s = "no memory"; break;
     case 0x0013: s = "comm error"; break;
     case 0x0001: s = "internal error"; break;
     case 0x0014: s = "unknown error"; break;
     case 0x0007: s = "waited too long"; break;
     case 0x0009: s = "unknown reader"; break;
     case 0x000a: s = "timeout"; break;
     case 0x000b: s = "sharing violation"; break;
     case 0x000c: s = "no smartcard"; break;
     case 0x000d: s = "unknown card"; break;
     case 0x000f: s = "proto mismatch"; break;
     case 0x0010: s = "not ready"; break;
     case 0x0012: s = "system cancelled"; break;
     case 0x0016: s = "not transacted"; break;
     case 0x0017: s = "reader unavailable"; break;
     case 0x0065: s = "unsupported card"; break;
     case 0x0066: s = "unresponsive card"; break;
     case 0x0067: s = "unpowered card"; break;
     case 0x0068: s = "reset card"; break;
     case 0x0069: s = "removed card"; break;
     case 0x006a: s = "inserted card"; break;
     case 0x001f: s = "unsupported feature"; break;
     case 0x0019: s = "PCI too small"; break;
     case 0x001a: s = "reader unsupported"; break;
     case 0x001b: s = "duplicate reader"; break;
     case 0x001c: s = "card unsupported"; break;
     case 0x001d: s = "no service"; break;
     case 0x001e: s = "service stopped"; break;
     default:     s = "unknown PC/SC error code"; break;
     }
   return s;
 }
 
 /* Map PC/SC error codes to our special host status words.  */
 static int
 pcsc_error_to_sw (long ec)
 {
   int rc;
 
   switch ( PCSC_ERR_MASK (ec) )
     {
     case 0:  rc = 0; break;
 
     case PCSC_E_CANCELLED:           rc = SW_HOST_ABORTED; break;
     case PCSC_E_NO_MEMORY:           rc = SW_HOST_OUT_OF_CORE; break;
     case PCSC_E_TIMEOUT:             rc = SW_HOST_CARD_IO_ERROR; break;
     case PCSC_E_UNKNOWN_READER:      rc = SW_HOST_NO_READER; break;
     case PCSC_E_SHARING_VIOLATION:   rc = SW_HOST_LOCKING_FAILED; break;
     case PCSC_E_NO_SMARTCARD:        rc = SW_HOST_NO_CARD; break;
     case PCSC_W_REMOVED_CARD:        rc = SW_HOST_NO_CARD; break;
 
     case PCSC_E_INVALID_TARGET:
     case PCSC_E_INVALID_VALUE:
     case PCSC_E_INVALID_HANDLE:
     case PCSC_E_INVALID_PARAMETER:
     case PCSC_E_INSUFFICIENT_BUFFER: rc = SW_HOST_INV_VALUE; break;
 
     default:  rc = SW_HOST_GENERAL_ERROR; break;
     }
 
   return rc;
 }
 
 static void
 dump_pcsc_reader_status (int slot)
 {
   if (reader_table[slot].pcsc.card)
     {
       log_info ("reader slot %d: active protocol:", slot);
       if ((reader_table[slot].pcsc.protocol & PCSC_PROTOCOL_T0))
         log_printf (" T0");
       else if ((reader_table[slot].pcsc.protocol & PCSC_PROTOCOL_T1))
         log_printf (" T1");
       else if ((reader_table[slot].pcsc.protocol & PCSC_PROTOCOL_RAW))
         log_printf (" raw");
       log_printf ("\n");
     }
   else
     log_info ("reader slot %d: not connected\n", slot);
 }
 
 
 #ifndef NEED_PCSC_WRAPPER
 static int
 pcsc_get_status_direct (int slot, unsigned int *status)
 {
   long err;
   struct pcsc_readerstate_s rdrstates[1];
 
   memset (rdrstates, 0, sizeof *rdrstates);
   rdrstates[0].reader = reader_table[slot].rdrname;
   rdrstates[0].current_state = PCSC_STATE_UNAWARE;
   err = pcsc_get_status_change (reader_table[slot].pcsc.context,
                                 0,
                                 rdrstates, 1);
   if (err == PCSC_E_TIMEOUT)
     err = 0; /* Timeout is no error error here. */
   if (err)
     {
       log_error ("pcsc_get_status_change failed: %s (0x%lx)\n",
                  pcsc_error_string (err), err);
       return pcsc_error_to_sw (err);
     }
 
   /*   log_debug  */
   /*     ("pcsc_get_status_change: %s%s%s%s%s%s%s%s%s%s\n", */
   /*      (rdrstates[0].event_state & PCSC_STATE_IGNORE)? " ignore":"", */
   /*      (rdrstates[0].event_state & PCSC_STATE_CHANGED)? " changed":"", */
   /*      (rdrstates[0].event_state & PCSC_STATE_UNKNOWN)? " unknown":"", */
   /*      (rdrstates[0].event_state & PCSC_STATE_UNAVAILABLE)?" unavail":"", */
   /*      (rdrstates[0].event_state & PCSC_STATE_EMPTY)? " empty":"", */
   /*      (rdrstates[0].event_state & PCSC_STATE_PRESENT)? " present":"", */
   /*      (rdrstates[0].event_state & PCSC_STATE_ATRMATCH)? " atr":"", */
   /*      (rdrstates[0].event_state & PCSC_STATE_EXCLUSIVE)? " excl":"", */
   /*      (rdrstates[0].event_state & PCSC_STATE_INUSE)? " unuse":"", */
   /*      (rdrstates[0].event_state & PCSC_STATE_MUTE)? " mute":"" ); */
 
   *status = 0;
   if ( (rdrstates[0].event_state & PCSC_STATE_PRESENT) )
     {
       *status |= APDU_CARD_PRESENT;
       if ( !(rdrstates[0].event_state & PCSC_STATE_MUTE) )
 	*status |= APDU_CARD_ACTIVE;
     }
 #ifndef HAVE_W32_SYSTEM
   /* We indicate a useful card if it is not in use by another
      application.  This is because we only use exclusive access
      mode.  */
   if ( (*status & (APDU_CARD_PRESENT|APDU_CARD_ACTIVE))
        == (APDU_CARD_PRESENT|APDU_CARD_ACTIVE)
        && !(rdrstates[0].event_state & PCSC_STATE_INUSE) )
     *status |= APDU_CARD_USABLE;
 #else
   /* Some winscard drivers may set EXCLUSIVE and INUSE at the same
      time when we are the only user (SCM SCR335) under Windows.  */
   if ((*status & (APDU_CARD_PRESENT|APDU_CARD_ACTIVE))
       == (APDU_CARD_PRESENT|APDU_CARD_ACTIVE))
     *status |= APDU_CARD_USABLE;
 #endif
 
   return 0;
 }
 #endif /*!NEED_PCSC_WRAPPER*/
 
 
 #ifdef NEED_PCSC_WRAPPER
 static int
 pcsc_get_status_wrapped (int slot, unsigned int *status)
 {
   long err;
   reader_table_t slotp;
   size_t len, full_len;
   int i, n;
   unsigned char msgbuf[9];
   unsigned char buffer[16];
   int sw = SW_HOST_CARD_IO_ERROR;
 
   slotp = reader_table + slot;
 
   if (slotp->pcsc.req_fd == -1
       || slotp->pcsc.rsp_fd == -1
       || slotp->pcsc.pid == (pid_t)(-1) )
     {
       log_error ("pcsc_get_status: pcsc-wrapper not running\n");
       return sw;
     }
 
   msgbuf[0] = 0x04; /* STATUS command. */
   len = 0;
   msgbuf[1] = (len >> 24);
   msgbuf[2] = (len >> 16);
   msgbuf[3] = (len >>  8);
   msgbuf[4] = (len      );
   if ( writen (slotp->pcsc.req_fd, msgbuf, 5) )
     {
       log_error ("error sending PC/SC STATUS request: %s\n",
                  strerror (errno));
       goto command_failed;
     }
 
   /* Read the response. */
   if ((i=readn (slotp->pcsc.rsp_fd, msgbuf, 9, &len)) || len != 9)
     {
       log_error ("error receiving PC/SC STATUS response: %s\n",
                  i? strerror (errno) : "premature EOF");
       goto command_failed;
     }
   len = buf32_to_size_t (msgbuf+1);
   if (msgbuf[0] != 0x81 || len < 4)
     {
       log_error ("invalid response header from PC/SC received\n");
       goto command_failed;
     }
   len -= 4; /* Already read the error code. */
   err = PCSC_ERR_MASK (buf32_to_ulong (msgbuf+5));
   if (err)
     {
       log_error ("pcsc_status failed: %s (0x%lx)\n",
                  pcsc_error_string (err), err);
       /* This is a proper error code, so return immediately.  */
       return pcsc_error_to_sw (err);
     }
 
   full_len = len;
 
   /* The current version returns 3 words but we allow also for old
      versions returning only 2 words. */
   n = 12 < len ? 12 : len;
   if ((i=readn (slotp->pcsc.rsp_fd, buffer, n, &len))
       || (len != 8 && len != 12))
     {
       log_error ("error receiving PC/SC STATUS response: %s\n",
                  i? strerror (errno) : "premature EOF");
       goto command_failed;
     }
 
   slotp->is_t0 = (len == 12 && !!(buffer[11] & PCSC_PROTOCOL_T0));
 
 
   full_len -= len;
   /* Newer versions of the wrapper might send more status bytes.
      Read them. */
   while (full_len)
     {
       unsigned char dummybuf[128];
 
       n = full_len < DIM (dummybuf) ? full_len : DIM (dummybuf);
       if ((i=readn (slotp->pcsc.rsp_fd, dummybuf, n, &len)) || len != n)
         {
           log_error ("error receiving PC/SC TRANSMIT response: %s\n",
                      i? strerror (errno) : "premature EOF");
           goto command_failed;
         }
       full_len -= n;
     }
 
   /* We are lucky: The wrapper already returns the data in the
      required format. */
   *status = buffer[3];
   return 0;
 
  command_failed:
   close (slotp->pcsc.req_fd);
   close (slotp->pcsc.rsp_fd);
   slotp->pcsc.req_fd = -1;
   slotp->pcsc.rsp_fd = -1;
   kill (slotp->pcsc.pid, SIGTERM);
   slotp->pcsc.pid = (pid_t)(-1);
   slotp->used = 0;
   return sw;
 }
 #endif /*NEED_PCSC_WRAPPER*/
 
 
 static int
 pcsc_get_status (int slot, unsigned int *status)
 {
 #ifdef NEED_PCSC_WRAPPER
   return pcsc_get_status_wrapped (slot, status);
 #else
   return pcsc_get_status_direct (slot, status);
 #endif
 }
 
 
 #ifndef NEED_PCSC_WRAPPER
 static int
 pcsc_send_apdu_direct (int slot, unsigned char *apdu, size_t apdulen,
                        unsigned char *buffer, size_t *buflen,
                        pininfo_t *pininfo)
 {
   long err;
   struct pcsc_io_request_s send_pci;
   pcsc_dword_t recv_len;
 
   if (!reader_table[slot].atrlen
       && (err = reset_pcsc_reader (slot)))
     return err;
 
   if (DBG_CARD_IO)
     log_printhex ("  PCSC_data:", apdu, apdulen);
 
   if ((reader_table[slot].pcsc.protocol & PCSC_PROTOCOL_T1))
       send_pci.protocol = PCSC_PROTOCOL_T1;
   else
       send_pci.protocol = PCSC_PROTOCOL_T0;
   send_pci.pci_len = sizeof send_pci;
   recv_len = *buflen;
   err = pcsc_transmit (reader_table[slot].pcsc.card,
                        &send_pci, apdu, apdulen,
                        NULL, buffer, &recv_len);
   *buflen = recv_len;
   if (err)
     log_error ("pcsc_transmit failed: %s (0x%lx)\n",
                pcsc_error_string (err), err);
 
   return pcsc_error_to_sw (err);
 }
 #endif /*!NEED_PCSC_WRAPPER*/
 
 
 #ifdef NEED_PCSC_WRAPPER
 static int
 pcsc_send_apdu_wrapped (int slot, unsigned char *apdu, size_t apdulen,
                         unsigned char *buffer, size_t *buflen,
                         pininfo_t *pininfo)
 {
   long err;
   reader_table_t slotp;
   size_t len, full_len;
   int i, n;
   unsigned char msgbuf[9];
   int sw = SW_HOST_CARD_IO_ERROR;
 
   (void)pininfo;
 
   if (!reader_table[slot].atrlen
       && (err = reset_pcsc_reader (slot)))
     return err;
 
   if (DBG_CARD_IO)
     log_printhex ("  PCSC_data:", apdu, apdulen);
 
   slotp = reader_table + slot;
 
   if (slotp->pcsc.req_fd == -1
       || slotp->pcsc.rsp_fd == -1
       || slotp->pcsc.pid == (pid_t)(-1) )
     {
       log_error ("pcsc_send_apdu: pcsc-wrapper not running\n");
       return sw;
     }
 
   msgbuf[0] = 0x03; /* TRANSMIT command. */
   len = apdulen;
   msgbuf[1] = (len >> 24);
   msgbuf[2] = (len >> 16);
   msgbuf[3] = (len >>  8);
   msgbuf[4] = (len      );
   if ( writen (slotp->pcsc.req_fd, msgbuf, 5)
        || writen (slotp->pcsc.req_fd, apdu, len))
     {
       log_error ("error sending PC/SC TRANSMIT request: %s\n",
                  strerror (errno));
       goto command_failed;
     }
 
   /* Read the response. */
   if ((i=readn (slotp->pcsc.rsp_fd, msgbuf, 9, &len)) || len != 9)
     {
       log_error ("error receiving PC/SC TRANSMIT response: %s\n",
                  i? strerror (errno) : "premature EOF");
       goto command_failed;
     }
   len = buf32_to_size_t (msgbuf+1);
   if (msgbuf[0] != 0x81 || len < 4)
     {
       log_error ("invalid response header from PC/SC received\n");
       goto command_failed;
     }
   len -= 4; /* Already read the error code. */
   err = PCSC_ERR_MASK (buf32_to_ulong (msgbuf+5));
   if (err)
     {
       log_error ("pcsc_transmit failed: %s (0x%lx)\n",
                  pcsc_error_string (err), err);
       return pcsc_error_to_sw (err);
     }
 
    full_len = len;
 
    n = *buflen < len ? *buflen : len;
    if ((i=readn (slotp->pcsc.rsp_fd, buffer, n, &len)) || len != n)
      {
        log_error ("error receiving PC/SC TRANSMIT response: %s\n",
                   i? strerror (errno) : "premature EOF");
        goto command_failed;
      }
    *buflen = n;
 
    full_len -= len;
    if (full_len)
      {
        log_error ("pcsc_send_apdu: provided buffer too short - truncated\n");
        err = SW_HOST_INV_VALUE;
      }
    /* We need to read any rest of the response, to keep the
       protocol running.  */
    while (full_len)
      {
        unsigned char dummybuf[128];
 
        n = full_len < DIM (dummybuf) ? full_len : DIM (dummybuf);
        if ((i=readn (slotp->pcsc.rsp_fd, dummybuf, n, &len)) || len != n)
          {
            log_error ("error receiving PC/SC TRANSMIT response: %s\n",
                       i? strerror (errno) : "premature EOF");
            goto command_failed;
          }
        full_len -= n;
      }
 
    return err;
 
  command_failed:
   close (slotp->pcsc.req_fd);
   close (slotp->pcsc.rsp_fd);
   slotp->pcsc.req_fd = -1;
   slotp->pcsc.rsp_fd = -1;
   kill (slotp->pcsc.pid, SIGTERM);
   slotp->pcsc.pid = (pid_t)(-1);
   slotp->used = 0;
   return sw;
 }
 #endif /*NEED_PCSC_WRAPPER*/
 
 
 /* Send the APDU of length APDULEN to SLOT and return a maximum of
    *BUFLEN data in BUFFER, the actual returned size will be stored at
    BUFLEN.  Returns: A status word. */
 static int
 pcsc_send_apdu (int slot, unsigned char *apdu, size_t apdulen,
                 unsigned char *buffer, size_t *buflen,
                 pininfo_t *pininfo)
 {
 #ifdef NEED_PCSC_WRAPPER
   return pcsc_send_apdu_wrapped (slot, apdu, apdulen, buffer, buflen, pininfo);
 #else
   return pcsc_send_apdu_direct (slot, apdu, apdulen, buffer, buflen, pininfo);
 #endif
 }
 
 
 #ifndef NEED_PCSC_WRAPPER
 static int
 control_pcsc_direct (int slot, pcsc_dword_t ioctl_code,
                      const unsigned char *cntlbuf, size_t len,
                      unsigned char *buffer, pcsc_dword_t *buflen)
 {
   long err;
 
   err = pcsc_control (reader_table[slot].pcsc.card, ioctl_code,
                       cntlbuf, len, buffer, buflen? *buflen:0, buflen);
   if (err)
     {
       log_error ("pcsc_control failed: %s (0x%lx)\n",
                  pcsc_error_string (err), err);
       return pcsc_error_to_sw (err);
     }
 
   return 0;
 }
 #endif /*!NEED_PCSC_WRAPPER*/
 
 
 #ifdef NEED_PCSC_WRAPPER
 static int
 control_pcsc_wrapped (int slot, pcsc_dword_t ioctl_code,
                       const unsigned char *cntlbuf, size_t len,
                       unsigned char *buffer, pcsc_dword_t *buflen)
 {
   long err = PCSC_E_NOT_TRANSACTED;
   reader_table_t slotp;
   unsigned char msgbuf[9];
   int i, n;
   size_t full_len;
 
   slotp = reader_table + slot;
 
   msgbuf[0] = 0x06; /* CONTROL command. */
   msgbuf[1] = ((len + 4) >> 24);
   msgbuf[2] = ((len + 4) >> 16);
   msgbuf[3] = ((len + 4) >>  8);
   msgbuf[4] = ((len + 4)      );
   msgbuf[5] = (ioctl_code >> 24);
   msgbuf[6] = (ioctl_code >> 16);
   msgbuf[7] = (ioctl_code >>  8);
   msgbuf[8] = (ioctl_code      );
   if ( writen (slotp->pcsc.req_fd, msgbuf, 9)
        || writen (slotp->pcsc.req_fd, cntlbuf, len))
     {
       log_error ("error sending PC/SC CONTROL request: %s\n",
                  strerror (errno));
       goto command_failed;
     }
 
   /* Read the response. */
   if ((i=readn (slotp->pcsc.rsp_fd, msgbuf, 9, &len)) || len != 9)
     {
       log_error ("error receiving PC/SC CONTROL response: %s\n",
                  i? strerror (errno) : "premature EOF");
       goto command_failed;
     }
   len = buf32_to_size_t (msgbuf+1);
   if (msgbuf[0] != 0x81 || len < 4)
     {
       log_error ("invalid response header from PC/SC received\n");
       goto command_failed;
     }
   len -= 4; /* Already read the error code. */
   err = PCSC_ERR_MASK (buf32_to_ulong (msgbuf+5));
   if (err)
     {
       log_error ("pcsc_control failed: %s (0x%lx)\n",
                  pcsc_error_string (err), err);
       return pcsc_error_to_sw (err);
     }
 
   full_len = len;
 
   if (buflen)
     n = *buflen < len ? *buflen : len;
   else
     n = 0;
   if ((i=readn (slotp->pcsc.rsp_fd, buffer, n, &len)) || len != n)
     {
       log_error ("error receiving PC/SC CONTROL response: %s\n",
                  i? strerror (errno) : "premature EOF");
       goto command_failed;
     }
   if (buflen)
     *buflen = n;
 
   full_len -= len;
   if (full_len)
     {
       log_error ("pcsc_send_apdu: provided buffer too short - truncated\n");
       err = PCSC_E_INVALID_VALUE;
     }
   /* We need to read any rest of the response, to keep the
      protocol running.  */
   while (full_len)
     {
       unsigned char dummybuf[128];
 
       n = full_len < DIM (dummybuf) ? full_len : DIM (dummybuf);
       if ((i=readn (slotp->pcsc.rsp_fd, dummybuf, n, &len)) || len != n)
         {
           log_error ("error receiving PC/SC CONTROL response: %s\n",
                      i? strerror (errno) : "premature EOF");
           goto command_failed;
         }
       full_len -= n;
     }
 
   if (!err)
     return 0;
 
  command_failed:
   close (slotp->pcsc.req_fd);
   close (slotp->pcsc.rsp_fd);
   slotp->pcsc.req_fd = -1;
   slotp->pcsc.rsp_fd = -1;
   kill (slotp->pcsc.pid, SIGTERM);
   slotp->pcsc.pid = (pid_t)(-1);
   slotp->used = 0;
   return pcsc_error_to_sw (err);
 }
 #endif /*NEED_PCSC_WRAPPER*/
 
 
 
 /* Do some control with the value of IOCTL_CODE to the card inserted
    to SLOT.  Input buffer is specified by CNTLBUF of length LEN.
    Output buffer is specified by BUFFER of length *BUFLEN, and the
    actual output size will be stored at BUFLEN.  Returns: A status word.
    This routine is used for PIN pad input support.  */
 static int
 control_pcsc (int slot, pcsc_dword_t ioctl_code,
               const unsigned char *cntlbuf, size_t len,
               unsigned char *buffer, pcsc_dword_t *buflen)
 {
 #ifdef NEED_PCSC_WRAPPER
   return control_pcsc_wrapped (slot, ioctl_code, cntlbuf, len, buffer, buflen);
 #else
   return control_pcsc_direct (slot, ioctl_code, cntlbuf, len, buffer, buflen);
 #endif
 }
 
 
 #ifndef NEED_PCSC_WRAPPER
 static int
 close_pcsc_reader_direct (int slot)
 {
   pcsc_release_context (reader_table[slot].pcsc.context);
   xfree (reader_table[slot].rdrname);
   reader_table[slot].rdrname = NULL;
   reader_table[slot].used = 0;
   return 0;
 }
 #endif /*!NEED_PCSC_WRAPPER*/
 
 
 #ifdef NEED_PCSC_WRAPPER
 static int
 close_pcsc_reader_wrapped (int slot)
 {
   long err;
   reader_table_t slotp;
   size_t len;
   int i;
   unsigned char msgbuf[9];
 
   slotp = reader_table + slot;
 
   if (slotp->pcsc.req_fd == -1
       || slotp->pcsc.rsp_fd == -1
       || slotp->pcsc.pid == (pid_t)(-1) )
     {
       log_error ("close_pcsc_reader: pcsc-wrapper not running\n");
       return 0;
     }
 
   msgbuf[0] = 0x02; /* CLOSE command. */
   len = 0;
   msgbuf[1] = (len >> 24);
   msgbuf[2] = (len >> 16);
   msgbuf[3] = (len >>  8);
   msgbuf[4] = (len      );
   if ( writen (slotp->pcsc.req_fd, msgbuf, 5) )
     {
       log_error ("error sending PC/SC CLOSE request: %s\n",
                  strerror (errno));
       goto command_failed;
     }
 
   /* Read the response. */
   if ((i=readn (slotp->pcsc.rsp_fd, msgbuf, 9, &len)) || len != 9)
     {
       log_error ("error receiving PC/SC CLOSE response: %s\n",
                  i? strerror (errno) : "premature EOF");
       goto command_failed;
     }
   len = buf32_to_size_t (msgbuf+1);
   if (msgbuf[0] != 0x81 || len < 4)
     {
       log_error ("invalid response header from PC/SC received\n");
       goto command_failed;
     }
   len -= 4; /* Already read the error code. */
   err = PCSC_ERR_MASK (buf32_to_ulong (msgbuf+5));
   if (err)
     log_error ("pcsc_close failed: %s (0x%lx)\n",
                pcsc_error_string (err), err);
 
   /* We will close the wrapper in any case - errors are merely
      informational. */
 
  command_failed:
   close (slotp->pcsc.req_fd);
   close (slotp->pcsc.rsp_fd);
   slotp->pcsc.req_fd = -1;
   slotp->pcsc.rsp_fd = -1;
   kill (slotp->pcsc.pid, SIGTERM);
   slotp->pcsc.pid = (pid_t)(-1);
   slotp->used = 0;
   return 0;
 }
 #endif /*NEED_PCSC_WRAPPER*/
 
 
 static int
 close_pcsc_reader (int slot)
 {
 #ifdef NEED_PCSC_WRAPPER
   return close_pcsc_reader_wrapped (slot);
 #else
   return close_pcsc_reader_direct (slot);
 #endif
 }
 
 
 /* Connect a PC/SC card.  */
 #ifndef NEED_PCSC_WRAPPER
 static int
 connect_pcsc_card (int slot)
 {
   long err;
 
   assert (slot >= 0 && slot < MAX_READER);
 
   if (reader_table[slot].pcsc.card)
     return SW_HOST_ALREADY_CONNECTED;
 
   reader_table[slot].atrlen = 0;
   reader_table[slot].last_status = 0;
   reader_table[slot].is_t0 = 0;
 
   err = pcsc_connect (reader_table[slot].pcsc.context,
                       reader_table[slot].rdrname,
                       PCSC_SHARE_EXCLUSIVE,
                       PCSC_PROTOCOL_T0|PCSC_PROTOCOL_T1,
                       &reader_table[slot].pcsc.card,
                       &reader_table[slot].pcsc.protocol);
   if (err)
     {
       reader_table[slot].pcsc.card = 0;
       if (err != PCSC_E_NO_SMARTCARD)
         log_error ("pcsc_connect failed: %s (0x%lx)\n",
                    pcsc_error_string (err), err);
     }
   else
     {
       char reader[250];
       pcsc_dword_t readerlen, atrlen;
       long card_state, card_protocol;
 
       pcsc_vendor_specific_init (slot);
 
       atrlen = DIM (reader_table[0].atr);
       readerlen = sizeof reader -1 ;
       err = pcsc_status (reader_table[slot].pcsc.card,
                          reader, &readerlen,
                          &card_state, &card_protocol,
                          reader_table[slot].atr, &atrlen);
       if (err)
         log_error ("pcsc_status failed: %s (0x%lx) %lu\n",
                    pcsc_error_string (err), err, readerlen);
       else
         {
           if (atrlen > DIM (reader_table[0].atr))
             log_bug ("ATR returned by pcsc_status is too large\n");
           reader_table[slot].atrlen = atrlen;
           /* If we got to here we know that a card is present
              and usable.  Remember this.  */
           reader_table[slot].last_status = (   APDU_CARD_USABLE
                                              | APDU_CARD_PRESENT
                                              | APDU_CARD_ACTIVE);
           reader_table[slot].is_t0 = !!(card_protocol & PCSC_PROTOCOL_T0);
         }
     }
 
   dump_reader_status (slot);
   return pcsc_error_to_sw (err);
 }
 #endif /*!NEED_PCSC_WRAPPER*/
 
 
 /* Disconnect a PC/SC card.  Note that this succeeds even if the card
    is not connected.  */
 #ifndef NEED_PCSC_WRAPPER
 static int
 disconnect_pcsc_card (int slot)
 {
   long err;
 
   assert (slot >= 0 && slot < MAX_READER);
 
   if (!reader_table[slot].pcsc.card)
     return 0;
 
   err = pcsc_disconnect (reader_table[slot].pcsc.card, PCSC_LEAVE_CARD);
   if (err)
     {
       log_error ("pcsc_disconnect failed: %s (0x%lx)\n",
                  pcsc_error_string (err), err);
       return SW_HOST_CARD_IO_ERROR;
     }
   reader_table[slot].pcsc.card = 0;
   return 0;
 }
 #endif /*!NEED_PCSC_WRAPPER*/
 
 
 #ifndef NEED_PCSC_WRAPPER
 static int
 reset_pcsc_reader_direct (int slot)
 {
   int sw;
 
   sw = disconnect_pcsc_card (slot);
   if (!sw)
     sw = connect_pcsc_card (slot);
 
   return sw;
 }
 #endif /*NEED_PCSC_WRAPPER*/
 
 
 #ifdef NEED_PCSC_WRAPPER
 static int
 reset_pcsc_reader_wrapped (int slot)
 {
   long err;
   reader_table_t slotp;
   size_t len;
   int i, n;
   unsigned char msgbuf[9];
   unsigned int dummy_status;
   int sw = SW_HOST_CARD_IO_ERROR;
 
   slotp = reader_table + slot;
 
   if (slotp->pcsc.req_fd == -1
       || slotp->pcsc.rsp_fd == -1
       || slotp->pcsc.pid == (pid_t)(-1) )
     {
       log_error ("pcsc_get_status: pcsc-wrapper not running\n");
       return sw;
     }
 
   msgbuf[0] = 0x05; /* RESET command. */
   len = 0;
   msgbuf[1] = (len >> 24);
   msgbuf[2] = (len >> 16);
   msgbuf[3] = (len >>  8);
   msgbuf[4] = (len      );
   if ( writen (slotp->pcsc.req_fd, msgbuf, 5) )
     {
       log_error ("error sending PC/SC RESET request: %s\n",
                  strerror (errno));
       goto command_failed;
     }
 
   /* Read the response. */
   if ((i=readn (slotp->pcsc.rsp_fd, msgbuf, 9, &len)) || len != 9)
     {
       log_error ("error receiving PC/SC RESET response: %s\n",
                  i? strerror (errno) : "premature EOF");
       goto command_failed;
     }
   len = buf32_to_size_t (msgbuf+1);
   if (msgbuf[0] != 0x81 || len < 4)
     {
       log_error ("invalid response header from PC/SC received\n");
       goto command_failed;
     }
   len -= 4; /* Already read the error code. */
   if (len > DIM (slotp->atr))
     {
       log_error ("PC/SC returned a too large ATR (len=%lx)\n",
                  (unsigned long)len);
       sw = SW_HOST_GENERAL_ERROR;
       goto command_failed;
     }
   err = PCSC_ERR_MASK (buf32_to_ulong (msgbuf+5));
   if (err)
     {
       log_error ("PC/SC RESET failed: %s (0x%lx)\n",
                  pcsc_error_string (err), err);
       /* If the error code is no smart card, we should not considere
          this a major error and close the wrapper.  */
       sw = pcsc_error_to_sw (err);
       if (err == PCSC_E_NO_SMARTCARD)
         return sw;
       goto command_failed;
     }
 
   /* The open function may return a zero for the ATR length to
      indicate that no card is present.  */
   n = len;
   if (n)
     {
       if ((i=readn (slotp->pcsc.rsp_fd, slotp->atr, n, &len)) || len != n)
         {
           log_error ("error receiving PC/SC RESET response: %s\n",
                      i? strerror (errno) : "premature EOF");
           goto command_failed;
         }
     }
   slotp->atrlen = len;
 
   /* Read the status so that IS_T0 will be set. */
   pcsc_get_status (slot, &dummy_status);
 
   return 0;
 
  command_failed:
   close (slotp->pcsc.req_fd);
   close (slotp->pcsc.rsp_fd);
   slotp->pcsc.req_fd = -1;
   slotp->pcsc.rsp_fd = -1;
   kill (slotp->pcsc.pid, SIGTERM);
   slotp->pcsc.pid = (pid_t)(-1);
   slotp->used = 0;
   return sw;
 }
 #endif /* !NEED_PCSC_WRAPPER */
 
 
 /* Send an PC/SC reset command and return a status word on error or 0
    on success. */
 static int
 reset_pcsc_reader (int slot)
 {
 #ifdef NEED_PCSC_WRAPPER
   return reset_pcsc_reader_wrapped (slot);
 #else
   return reset_pcsc_reader_direct (slot);
 #endif
 }
 
 
 /* Examine reader specific parameters and initialize.  This is mostly
    for pinpad input.  Called at opening the connection to the reader.  */
 static int
 pcsc_vendor_specific_init (int slot)
 {
   unsigned char buf[256];
   pcsc_dword_t len;
   int sw;
   int vendor = 0;
   int product = 0;
   pcsc_dword_t get_tlv_ioctl = (pcsc_dword_t)-1;
   unsigned char *p;
 
   len = sizeof (buf);
   sw = control_pcsc (slot, CM_IOCTL_GET_FEATURE_REQUEST, NULL, 0, buf, &len);
   if (sw)
     {
       log_error ("pcsc_vendor_specific_init: GET_FEATURE_REQUEST failed: %d\n",
                  sw);
       return SW_NOT_SUPPORTED;
     }
   else
     {
       p = buf;
       while (p < buf + len)
         {
           unsigned char code = *p++;
           int l = *p++;
           unsigned int v = 0;
 
           if (l == 1)
             v = p[0];
           else if (l == 2)
             v = buf16_to_uint (p);
           else if (l == 4)
             v = buf32_to_uint (p);
 
           if (code == FEATURE_VERIFY_PIN_DIRECT)
             reader_table[slot].pcsc.verify_ioctl = v;
           else if (code == FEATURE_MODIFY_PIN_DIRECT)
             reader_table[slot].pcsc.modify_ioctl = v;
           else if (code == FEATURE_GET_TLV_PROPERTIES)
             get_tlv_ioctl = v;
 
           if (DBG_CARD_IO)
             log_debug ("feature: code=%02X, len=%d, v=%02X\n", code, l, v);
 
           p += l;
         }
     }
 
   if (get_tlv_ioctl == (pcsc_dword_t)-1)
     {
       /*
        * For system which doesn't support GET_TLV_PROPERTIES,
        * we put some heuristics here.
        */
       if (reader_table[slot].rdrname)
         {
           if (strstr (reader_table[slot].rdrname, "SPRx32"))
             {
               reader_table[slot].is_spr532 = 1;
               reader_table[slot].pinpad_varlen_supported = 1;
             }
-          else if (strstr (reader_table[slot].rdrname, "ST-2xxx")
-                   || strstr (reader_table[slot].rdrname, "cyberJack")
+          else if (strstr (reader_table[slot].rdrname, "ST-2xxx"))
+            {
+              reader_table[slot].pcsc.pinmax = 15;
+              reader_table[slot].pinpad_varlen_supported = 1;
+            }
+          else if (strstr (reader_table[slot].rdrname, "cyberJack")
                    || strstr (reader_table[slot].rdrname, "DIGIPASS")
                    || strstr (reader_table[slot].rdrname, "Gnuk")
                    || strstr (reader_table[slot].rdrname, "KAAN"))
             reader_table[slot].pinpad_varlen_supported = 1;
         }
 
       return 0;
     }
 
   len = sizeof (buf);
   sw = control_pcsc (slot, get_tlv_ioctl, NULL, 0, buf, &len);
   if (sw)
     {
       log_error ("pcsc_vendor_specific_init: GET_TLV_IOCTL failed: %d\n", sw);
       return SW_NOT_SUPPORTED;
     }
 
   p = buf;
   while (p < buf + len)
     {
       unsigned char tag = *p++;
       int l = *p++;
       unsigned int v = 0;
 
       /* Umm... here is little endian, while the encoding above is big.  */
       if (l == 1)
         v = p[0];
       else if (l == 2)
         v = (((unsigned int)p[1] << 8) | p[0]);
       else if (l == 4)
         v = (((unsigned int)p[3] << 24) | (p[2] << 16) | (p[1] << 8) | p[0]);
 
       if (tag == PCSCv2_PART10_PROPERTY_bMinPINSize)
         reader_table[slot].pcsc.pinmin = v;
       else if (tag == PCSCv2_PART10_PROPERTY_bMaxPINSize)
         reader_table[slot].pcsc.pinmax = v;
       else if (tag == PCSCv2_PART10_PROPERTY_wIdVendor)
         vendor = v;
       else if (tag == PCSCv2_PART10_PROPERTY_wIdProduct)
         product = v;
 
       if (DBG_CARD_IO)
         log_debug ("TLV properties: tag=%02X, len=%d, v=%08X\n", tag, l, v);
 
       p += l;
     }
 
   if (vendor == 0x0982 && product == 0x0008) /* Vega Alpha */
     {
       /*
        * Please read the comment of ccid_vendor_specific_init in
        * ccid-driver.c.
        */
       const unsigned char cmd[] = { '\xb5', '\x01', '\x00', '\x03', '\x00' };
       sw = control_pcsc (slot, CM_IOCTL_VENDOR_IFD_EXCHANGE,
                          cmd, sizeof (cmd), NULL, 0);
       if (sw)
         return SW_NOT_SUPPORTED;
     }
   else if (vendor == 0x04e6 && product == 0xe003) /* SCM SPR532 */
     {
       reader_table[slot].is_spr532 = 1;
       reader_table[slot].pinpad_varlen_supported = 1;
     }
-  else if ((vendor == 0x046a && product == 0x003e)  /* Cherry ST-2xxx */
-           || vendor == 0x0c4b /* Tested with Reiner cyberJack GO */
+  else if (vendor == 0x046a && product == 0x003e) /* Cherry ST-2xxx */
+    {
+      reader_table[slot].pcsc.pinmax = 15;
+      reader_table[slot].pinpad_varlen_supported = 1;
+    }
+  else if (vendor == 0x0c4b /* Tested with Reiner cyberJack GO */
            || vendor == 0x1a44 /* Tested with Vasco DIGIPASS 920 */
            || vendor == 0x234b /* Tested with FSIJ Gnuk Token */
            || vendor == 0x0d46 /* Tested with KAAN Advanced??? */)
     reader_table[slot].pinpad_varlen_supported = 1;
 
   return 0;
 }
 
 
 /* Open the PC/SC reader without using the wrapper.  Returns -1 on
    error or a slot number for the reader.  */
 #ifndef NEED_PCSC_WRAPPER
 static int
 open_pcsc_reader_direct (const char *portstr)
 {
   long err;
   int slot;
   char *list = NULL;
   char *rdrname = NULL;
   pcsc_dword_t nreader;
   char *p;
 
   slot = new_reader_slot ();
   if (slot == -1)
     return -1;
 
   /* Fixme: Allocating a context for each slot is not required.  One
      global context should be sufficient.  */
   err = pcsc_establish_context (PCSC_SCOPE_SYSTEM, NULL, NULL,
                                 &reader_table[slot].pcsc.context);
   if (err)
     {
       log_error ("pcsc_establish_context failed: %s (0x%lx)\n",
                  pcsc_error_string (err), err);
       reader_table[slot].used = 0;
       unlock_slot (slot);
       return -1;
     }
 
   err = pcsc_list_readers (reader_table[slot].pcsc.context,
                            NULL, NULL, &nreader);
   if (!err)
     {
       list = xtrymalloc (nreader+1); /* Better add 1 for safety reasons. */
       if (!list)
         {
           log_error ("error allocating memory for reader list\n");
           pcsc_release_context (reader_table[slot].pcsc.context);
           reader_table[slot].used = 0;
 	  unlock_slot (slot);
           return -1 /*SW_HOST_OUT_OF_CORE*/;
         }
       err = pcsc_list_readers (reader_table[slot].pcsc.context,
                                NULL, list, &nreader);
     }
   if (err)
     {
       log_error ("pcsc_list_readers failed: %s (0x%lx)\n",
                  pcsc_error_string (err), err);
       pcsc_release_context (reader_table[slot].pcsc.context);
       reader_table[slot].used = 0;
       xfree (list);
       unlock_slot (slot);
       return -1;
     }
 
   p = list;
   while (nreader)
     {
       if (!*p && !p[1])
         break;
       log_info ("detected reader `%s'\n", p);
       if (nreader < (strlen (p)+1))
         {
           log_error ("invalid response from pcsc_list_readers\n");
           break;
         }
       if (!rdrname && portstr && !strncmp (p, portstr, strlen (portstr)))
         rdrname = p;
       nreader -= strlen (p)+1;
       p += strlen (p) + 1;
     }
 
   if (!rdrname)
     rdrname = list;
 
   reader_table[slot].rdrname = xtrystrdup (rdrname);
   if (!reader_table[slot].rdrname)
     {
       log_error ("error allocating memory for reader name\n");
       pcsc_release_context (reader_table[slot].pcsc.context);
       reader_table[slot].used = 0;
       unlock_slot (slot);
       return -1;
     }
   xfree (list);
   list = NULL;
 
   reader_table[slot].pcsc.card = 0;
   reader_table[slot].atrlen = 0;
   reader_table[slot].last_status = 0;
 
   reader_table[slot].connect_card = connect_pcsc_card;
   reader_table[slot].disconnect_card = disconnect_pcsc_card;
   reader_table[slot].close_reader = close_pcsc_reader;
   reader_table[slot].reset_reader = reset_pcsc_reader;
   reader_table[slot].get_status_reader = pcsc_get_status;
   reader_table[slot].send_apdu_reader = pcsc_send_apdu;
   reader_table[slot].dump_status_reader = dump_pcsc_reader_status;
 
   dump_reader_status (slot);
   unlock_slot (slot);
   return slot;
 }
 #endif /*!NEED_PCSC_WRAPPER */
 
 
 /* Open the PC/SC reader using the pcsc_wrapper program.  This is
    needed to cope with different thread models and other peculiarities
    of libpcsclite. */
 #ifdef NEED_PCSC_WRAPPER
 static int
 open_pcsc_reader_wrapped (const char *portstr)
 {
   int slot;
   reader_table_t slotp;
   int fd, rp[2], wp[2];
   int n, i;
   pid_t pid;
   size_t len;
   unsigned char msgbuf[9];
   int err;
   unsigned int dummy_status;
   /*int sw = SW_HOST_CARD_IO_ERROR;*/
 
   /* Note that we use the constant and not the fucntion because this
      code won't be be used under Windows.  */
   const char *wrapperpgm = GNUPG_LIBEXECDIR "/gnupg-pcsc-wrapper";
 
   if (access (wrapperpgm, X_OK))
     {
       log_error ("can't run PC/SC access module `%s': %s\n",
                  wrapperpgm, strerror (errno));
       return -1;
     }
 
   slot = new_reader_slot ();
   if (slot == -1)
     return -1;
   slotp = reader_table + slot;
 
   /* Fire up the PC/SCc wrapper.  We don't use any fork/exec code from
      the common directy but implement it directly so that this file
      may still be source copied. */
 
   if (pipe (rp) == -1)
     {
       log_error ("error creating a pipe: %s\n", strerror (errno));
       slotp->used = 0;
       unlock_slot (slot);
       return -1;
     }
   if (pipe (wp) == -1)
     {
       log_error ("error creating a pipe: %s\n", strerror (errno));
       close (rp[0]);
       close (rp[1]);
       slotp->used = 0;
       unlock_slot (slot);
       return -1;
     }
 
   pid = fork ();
   if (pid == -1)
     {
       log_error ("error forking process: %s\n", strerror (errno));
       close (rp[0]);
       close (rp[1]);
       close (wp[0]);
       close (wp[1]);
       slotp->used = 0;
       unlock_slot (slot);
       return -1;
     }
   slotp->pcsc.pid = pid;
 
   if (!pid)
     { /*
          === Child ===
        */
 
       /* Double fork. */
       pid = fork ();
       if (pid == -1)
         _exit (31);
       if (pid)
         _exit (0); /* Immediate exit this parent, so that the child
                       gets cleaned up by the init process. */
 
       /* Connect our pipes. */
       if (wp[0] != 0 && dup2 (wp[0], 0) == -1)
         log_fatal ("dup2 stdin failed: %s\n", strerror (errno));
       if (rp[1] != 1 && dup2 (rp[1], 1) == -1)
         log_fatal ("dup2 stdout failed: %s\n", strerror (errno));
 
       /* Send stderr to the bit bucket. */
       fd = open ("/dev/null", O_WRONLY);
       if (fd == -1)
         log_fatal ("can't open `/dev/null': %s", strerror (errno));
       if (fd != 2 && dup2 (fd, 2) == -1)
         log_fatal ("dup2 stderr failed: %s\n", strerror (errno));
 
       /* Close all other files. */
       close_all_fds (3, NULL);
 
       execl (wrapperpgm,
              "pcsc-wrapper",
              "--",
              "1", /* API version */
              opt.pcsc_driver, /* Name of the PC/SC library. */
               NULL);
       _exit (31);
     }
 
   /*
      === Parent ===
    */
   close (wp[0]);
   close (rp[1]);
   slotp->pcsc.req_fd = wp[1];
   slotp->pcsc.rsp_fd = rp[0];
 
   /* Wait for the intermediate child to terminate. */
 #ifdef USE_GNU_PTH
 #define WAIT pth_waitpid
 #else
 #define WAIT waitpid
 #endif
   while ( (i=WAIT (pid, NULL, 0)) == -1 && errno == EINTR)
     ;
 #undef WAIT
 
   /* Now send the open request. */
   msgbuf[0] = 0x01; /* OPEN command. */
   len = portstr? strlen (portstr):0;
   msgbuf[1] = (len >> 24);
   msgbuf[2] = (len >> 16);
   msgbuf[3] = (len >>  8);
   msgbuf[4] = (len      );
   if ( writen (slotp->pcsc.req_fd, msgbuf, 5)
        || (portstr && writen (slotp->pcsc.req_fd, portstr, len)))
     {
       log_error ("error sending PC/SC OPEN request: %s\n",
                  strerror (errno));
       goto command_failed;
     }
   /* Read the response. */
   if ((i=readn (slotp->pcsc.rsp_fd, msgbuf, 9, &len)) || len != 9)
     {
       log_error ("error receiving PC/SC OPEN response: %s\n",
                  i? strerror (errno) : "premature EOF");
       goto command_failed;
     }
   len = buf32_to_size_t (msgbuf+1);
   if (msgbuf[0] != 0x81 || len < 4)
     {
       log_error ("invalid response header from PC/SC received\n");
       goto command_failed;
     }
   len -= 4; /* Already read the error code. */
   if (len > DIM (slotp->atr))
     {
       log_error ("PC/SC returned a too large ATR (len=%lx)\n",
                  (unsigned long)len);
       goto command_failed;
     }
   err = PCSC_ERR_MASK (buf32_to_ulong (msgbuf+5));
 
   if (err)
     {
       log_error ("PC/SC OPEN failed: %s (0x%08x)\n",
 		 pcsc_error_string (err), err);
       /*sw = pcsc_error_to_sw (err);*/
       goto command_failed;
     }
 
   slotp->last_status = 0;
 
   /* The open request may return a zero for the ATR length to
      indicate that no card is present.  */
   n = len;
   if (n)
     {
       if ((i=readn (slotp->pcsc.rsp_fd, slotp->atr, n, &len)) || len != n)
         {
           log_error ("error receiving PC/SC OPEN response: %s\n",
                      i? strerror (errno) : "premature EOF");
           goto command_failed;
         }
       /* If we got to here we know that a card is present
          and usable.  Thus remember this.  */
       slotp->last_status = (  APDU_CARD_USABLE
                             | APDU_CARD_PRESENT
                             | APDU_CARD_ACTIVE);
     }
   slotp->atrlen = len;
 
   reader_table[slot].close_reader = close_pcsc_reader;
   reader_table[slot].reset_reader = reset_pcsc_reader;
   reader_table[slot].get_status_reader = pcsc_get_status;
   reader_table[slot].send_apdu_reader = pcsc_send_apdu;
   reader_table[slot].dump_status_reader = dump_pcsc_reader_status;
 
   pcsc_vendor_specific_init (slot);
 
   /* Read the status so that IS_T0 will be set. */
   pcsc_get_status (slot, &dummy_status);
 
   dump_reader_status (slot);
   unlock_slot (slot);
   return slot;
 
  command_failed:
   close (slotp->pcsc.req_fd);
   close (slotp->pcsc.rsp_fd);
   slotp->pcsc.req_fd = -1;
   slotp->pcsc.rsp_fd = -1;
   kill (slotp->pcsc.pid, SIGTERM);
   slotp->pcsc.pid = (pid_t)(-1);
   slotp->used = 0;
   unlock_slot (slot);
   /* There is no way to return SW. */
   return -1;
 
 }
 #endif /*NEED_PCSC_WRAPPER*/
 
 
 static int
 open_pcsc_reader (const char *portstr)
 {
 #ifdef NEED_PCSC_WRAPPER
   return open_pcsc_reader_wrapped (portstr);
 #else
   return open_pcsc_reader_direct (portstr);
 #endif
 }
 
 
 /* Check whether the reader supports the ISO command code COMMAND
    on the pinpad.  Return 0 on success.  */
 static int
 check_pcsc_pinpad (int slot, int command, pininfo_t *pininfo)
 {
   int r;
 
   if (reader_table[slot].pcsc.pinmin >= 0)
     pininfo->minlen = reader_table[slot].pcsc.pinmin;
 
   if (reader_table[slot].pcsc.pinmax >= 0)
     pininfo->maxlen = reader_table[slot].pcsc.pinmax;
 
   if (!pininfo->minlen)
     pininfo->minlen = 1;
   if (!pininfo->maxlen)
     pininfo->maxlen = 15;
 
   if ((command == ISO7816_VERIFY && reader_table[slot].pcsc.verify_ioctl != 0)
       || (command == ISO7816_CHANGE_REFERENCE_DATA
           && reader_table[slot].pcsc.modify_ioctl != 0))
     r = 0;                       /* Success */
   else
     r = SW_NOT_SUPPORTED;
 
   if (DBG_CARD_IO)
     log_debug ("check_pcsc_pinpad: command=%02X, r=%d\n",
                (unsigned int)command, r);
 
   if (reader_table[slot].pinpad_varlen_supported)
     pininfo->fixedlen = 0;
 
   return r;
 }
 
 #define PIN_VERIFY_STRUCTURE_SIZE 24
 static int
 pcsc_pinpad_verify (int slot, int class, int ins, int p0, int p1,
                     pininfo_t *pininfo)
 {
   int sw;
   unsigned char *pin_verify;
   int len = PIN_VERIFY_STRUCTURE_SIZE + pininfo->fixedlen;
   unsigned char result[2];
   pcsc_dword_t resultlen = 2;
   int no_lc;
 
   if (!reader_table[slot].atrlen
       && (sw = reset_pcsc_reader (slot)))
     return sw;
 
   if (pininfo->fixedlen < 0 || pininfo->fixedlen >= 16)
     return SW_NOT_SUPPORTED;
 
   pin_verify = xtrymalloc (len);
   if (!pin_verify)
     return SW_HOST_OUT_OF_CORE;
 
   no_lc = (!pininfo->fixedlen && reader_table[slot].is_spr532);
 
   pin_verify[0] = 0x00; /* bTimeOut */
   pin_verify[1] = 0x00; /* bTimeOut2 */
   pin_verify[2] = 0x82; /* bmFormatString: Byte, pos=0, left, ASCII. */
   pin_verify[3] = pininfo->fixedlen; /* bmPINBlockString */
   pin_verify[4] = 0x00; /* bmPINLengthFormat */
   pin_verify[5] = pininfo->maxlen; /* wPINMaxExtraDigit */
   pin_verify[6] = pininfo->minlen; /* wPINMaxExtraDigit */
   pin_verify[7] = 0x02; /* bEntryValidationCondition: Validation key pressed */
   if (pininfo->minlen && pininfo->maxlen && pininfo->minlen == pininfo->maxlen)
     pin_verify[7] |= 0x01; /* Max size reached.  */
   pin_verify[8] = 0x01; /* bNumberMessage: One message */
   pin_verify[9] =  0x09; /* wLangId: 0x0409: US English */
   pin_verify[10] = 0x04; /* wLangId: 0x0409: US English */
   pin_verify[11] = 0x00; /* bMsgIndex */
   pin_verify[12] = 0x00; /* bTeoPrologue[0] */
   pin_verify[13] = 0x00; /* bTeoPrologue[1] */
   pin_verify[14] = pininfo->fixedlen + 0x05 - no_lc; /* bTeoPrologue[2] */
   pin_verify[15] = pininfo->fixedlen + 0x05 - no_lc; /* ulDataLength */
   pin_verify[16] = 0x00; /* ulDataLength */
   pin_verify[17] = 0x00; /* ulDataLength */
   pin_verify[18] = 0x00; /* ulDataLength */
   pin_verify[19] = class; /* abData[0] */
   pin_verify[20] = ins; /* abData[1] */
   pin_verify[21] = p0; /* abData[2] */
   pin_verify[22] = p1; /* abData[3] */
   pin_verify[23] = pininfo->fixedlen; /* abData[4] */
   if (pininfo->fixedlen)
     memset (&pin_verify[24], 0xff, pininfo->fixedlen);
   else if (no_lc)
     len--;
 
   if (DBG_CARD_IO)
     log_debug ("send secure: c=%02X i=%02X p1=%02X p2=%02X len=%d pinmax=%d\n",
 	       class, ins, p0, p1, len, pininfo->maxlen);
 
   sw = control_pcsc (slot, reader_table[slot].pcsc.verify_ioctl,
                      pin_verify, len, result, &resultlen);
   xfree (pin_verify);
   if (sw || resultlen < 2)
     {
       log_error ("control_pcsc failed: %d\n", sw);
       return sw? sw: SW_HOST_INCOMPLETE_CARD_RESPONSE;
     }
   sw = (result[resultlen-2] << 8) | result[resultlen-1];
   if (DBG_CARD_IO)
     log_debug (" response: sw=%04X  datalen=%d\n", sw, (unsigned int)resultlen);
   return sw;
 }
 
 
 #define PIN_MODIFY_STRUCTURE_SIZE 29
 static int
 pcsc_pinpad_modify (int slot, int class, int ins, int p0, int p1,
                     pininfo_t *pininfo)
 {
   int sw;
   unsigned char *pin_modify;
   int len = PIN_MODIFY_STRUCTURE_SIZE + 2 * pininfo->fixedlen;
   unsigned char result[2];
   pcsc_dword_t resultlen = 2;
   int no_lc;
 
   if (!reader_table[slot].atrlen
       && (sw = reset_pcsc_reader (slot)))
     return sw;
 
   if (pininfo->fixedlen < 0 || pininfo->fixedlen >= 16)
     return SW_NOT_SUPPORTED;
 
   pin_modify = xtrymalloc (len);
   if (!pin_modify)
     return SW_HOST_OUT_OF_CORE;
 
   no_lc = (!pininfo->fixedlen && reader_table[slot].is_spr532);
 
   pin_modify[0] = 0x00; /* bTimeOut */
   pin_modify[1] = 0x00; /* bTimeOut2 */
   pin_modify[2] = 0x82; /* bmFormatString: Byte, pos=0, left, ASCII. */
   pin_modify[3] = pininfo->fixedlen; /* bmPINBlockString */
   pin_modify[4] = 0x00; /* bmPINLengthFormat */
   pin_modify[5] = 0x00; /* bInsertionOffsetOld */
   pin_modify[6] = pininfo->fixedlen; /* bInsertionOffsetNew */
   pin_modify[7] = pininfo->maxlen; /* wPINMaxExtraDigit */
   pin_modify[8] = pininfo->minlen; /* wPINMaxExtraDigit */
   pin_modify[9] = (p0 == 0 ? 0x03 : 0x01);
                   /* bConfirmPIN
                    *    0x00: new PIN once
                    *    0x01: new PIN twice (confirmation)
                    *    0x02: old PIN and new PIN once
                    *    0x03: old PIN and new PIN twice (confirmation)
                    */
   pin_modify[10] = 0x02; /* bEntryValidationCondition: Validation key pressed */
   if (pininfo->minlen && pininfo->maxlen && pininfo->minlen == pininfo->maxlen)
     pin_modify[10] |= 0x01; /* Max size reached.  */
   pin_modify[11] = 0x03; /* bNumberMessage: Three messages */
   pin_modify[12] = 0x09; /* wLangId: 0x0409: US English */
   pin_modify[13] = 0x04; /* wLangId: 0x0409: US English */
   pin_modify[14] = 0x00; /* bMsgIndex1 */
   pin_modify[15] = 0x01; /* bMsgIndex2 */
   pin_modify[16] = 0x02; /* bMsgIndex3 */
   pin_modify[17] = 0x00; /* bTeoPrologue[0] */
   pin_modify[18] = 0x00; /* bTeoPrologue[1] */
   pin_modify[19] = 2 * pininfo->fixedlen + 0x05 - no_lc; /* bTeoPrologue[2] */
   pin_modify[20] = 2 * pininfo->fixedlen + 0x05 - no_lc; /* ulDataLength */
   pin_modify[21] = 0x00; /* ulDataLength */
   pin_modify[22] = 0x00; /* ulDataLength */
   pin_modify[23] = 0x00; /* ulDataLength */
   pin_modify[24] = class; /* abData[0] */
   pin_modify[25] = ins; /* abData[1] */
   pin_modify[26] = p0; /* abData[2] */
   pin_modify[27] = p1; /* abData[3] */
   pin_modify[28] = 2 * pininfo->fixedlen; /* abData[4] */
   if (pininfo->fixedlen)
     memset (&pin_modify[29], 0xff, 2 * pininfo->fixedlen);
   else if (no_lc)
     len--;
 
   if (DBG_CARD_IO)
     log_debug ("send secure: c=%02X i=%02X p1=%02X p2=%02X len=%d pinmax=%d\n",
 	       class, ins, p0, p1, len, (int)pininfo->maxlen);
 
   sw = control_pcsc (slot, reader_table[slot].pcsc.modify_ioctl,
                      pin_modify, len, result, &resultlen);
   xfree (pin_modify);
   if (sw || resultlen < 2)
     {
       log_error ("control_pcsc failed: %d\n", sw);
       return sw? sw : SW_HOST_INCOMPLETE_CARD_RESPONSE;
     }
   sw = (result[resultlen-2] << 8) | result[resultlen-1];
   if (DBG_CARD_IO)
     log_debug (" response: sw=%04X  datalen=%d\n", sw, (unsigned int)resultlen);
   return sw;
 }
 
 #ifdef HAVE_LIBUSB
 /*
      Internal CCID driver interface.
  */
 
 
 static void
 dump_ccid_reader_status (int slot)
 {
   log_info ("reader slot %d: using ccid driver\n", slot);
 }
 
 static int
 close_ccid_reader (int slot)
 {
   ccid_close_reader (reader_table[slot].ccid.handle);
   reader_table[slot].used = 0;
   return 0;
 }
 
 
 static int
 shutdown_ccid_reader (int slot)
 {
   ccid_shutdown_reader (reader_table[slot].ccid.handle);
   return 0;
 }
 
 
 static int
 reset_ccid_reader (int slot)
 {
   int err;
   reader_table_t slotp = reader_table + slot;
   unsigned char atr[33];
   size_t atrlen;
 
   err = ccid_get_atr (slotp->ccid.handle, atr, sizeof atr, &atrlen);
   if (err)
     return err;
   /* If the reset was successful, update the ATR. */
   assert (sizeof slotp->atr >= sizeof atr);
   slotp->atrlen = atrlen;
   memcpy (slotp->atr, atr, atrlen);
   dump_reader_status (slot);
   return 0;
 }
 
 
 static int
 set_progress_cb_ccid_reader (int slot, gcry_handler_progress_t cb, void *cb_arg)
 {
   reader_table_t slotp = reader_table + slot;
 
   return ccid_set_progress_cb (slotp->ccid.handle, cb, cb_arg);
 }
 
 
 static int
 get_status_ccid (int slot, unsigned int *status)
 {
   int rc;
   int bits;
 
   rc = ccid_slot_status (reader_table[slot].ccid.handle, &bits);
   if (rc)
     return rc;
 
   if (bits == 0)
     *status = (APDU_CARD_USABLE|APDU_CARD_PRESENT|APDU_CARD_ACTIVE);
   else if (bits == 1)
     *status = APDU_CARD_PRESENT;
   else
     *status = 0;
 
   return 0;
 }
 
 
 /* Actually send the APDU of length APDULEN to SLOT and return a
    maximum of *BUFLEN data in BUFFER, the actual returned size will be
    set to BUFLEN.  Returns: Internal CCID driver error code. */
 static int
 send_apdu_ccid (int slot, unsigned char *apdu, size_t apdulen,
                 unsigned char *buffer, size_t *buflen,
                 pininfo_t *pininfo)
 {
   long err;
   size_t maxbuflen;
 
   /* If we don't have an ATR, we need to reset the reader first. */
   if (!reader_table[slot].atrlen
       && (err = reset_ccid_reader (slot)))
     return err;
 
   if (DBG_CARD_IO)
     log_printhex (" raw apdu:", apdu, apdulen);
 
   maxbuflen = *buflen;
   if (pininfo)
     err = ccid_transceive_secure (reader_table[slot].ccid.handle,
                                   apdu, apdulen, pininfo,
                                   buffer, maxbuflen, buflen);
   else
     err = ccid_transceive (reader_table[slot].ccid.handle,
                            apdu, apdulen,
                            buffer, maxbuflen, buflen);
   if (err)
     log_error ("ccid_transceive failed: (0x%lx)\n",
                err);
 
   return err;
 }
 
 
 /* Check whether the CCID reader supports the ISO command code COMMAND
    on the pinpad.  Return 0 on success.  For a description of the pin
    parameters, see ccid-driver.c */
 static int
 check_ccid_pinpad (int slot, int command, pininfo_t *pininfo)
 {
   unsigned char apdu[] = { 0, 0, 0, 0x81 };
 
   apdu[1] = command;
   return ccid_transceive_secure (reader_table[slot].ccid.handle, apdu,
 				 sizeof apdu, pininfo, NULL, 0, NULL);
 }
 
 
 static int
 ccid_pinpad_operation (int slot, int class, int ins, int p0, int p1,
 		       pininfo_t *pininfo)
 {
   unsigned char apdu[4];
   int err, sw;
   unsigned char result[2];
   size_t resultlen = 2;
 
   apdu[0] = class;
   apdu[1] = ins;
   apdu[2] = p0;
   apdu[3] = p1;
   err = ccid_transceive_secure (reader_table[slot].ccid.handle,
                                 apdu, sizeof apdu, pininfo,
                                 result, 2, &resultlen);
   if (err)
     return err;
 
   if (resultlen < 2)
     return SW_HOST_INCOMPLETE_CARD_RESPONSE;
 
   sw = (result[resultlen-2] << 8) | result[resultlen-1];
   return sw;
 }
 
 
 /* Open the reader and try to read an ATR.  */
 static int
 open_ccid_reader (const char *portstr)
 {
   int err;
   int slot;
   reader_table_t slotp;
 
   slot = new_reader_slot ();
   if (slot == -1)
     return -1;
   slotp = reader_table + slot;
 
   err = ccid_open_reader (&slotp->ccid.handle, portstr);
   if (err)
     {
       slotp->used = 0;
       unlock_slot (slot);
       return -1;
     }
 
   err = ccid_get_atr (slotp->ccid.handle,
                       slotp->atr, sizeof slotp->atr, &slotp->atrlen);
   if (err)
     {
       slotp->atrlen = 0;
       err = 0;
     }
   else
     {
       /* If we got to here we know that a card is present
          and usable.  Thus remember this.  */
       reader_table[slot].last_status = (APDU_CARD_USABLE
                                         | APDU_CARD_PRESENT
                                         | APDU_CARD_ACTIVE);
     }
 
   reader_table[slot].close_reader = close_ccid_reader;
   reader_table[slot].shutdown_reader = shutdown_ccid_reader;
   reader_table[slot].reset_reader = reset_ccid_reader;
   reader_table[slot].get_status_reader = get_status_ccid;
   reader_table[slot].send_apdu_reader = send_apdu_ccid;
   reader_table[slot].check_pinpad = check_ccid_pinpad;
   reader_table[slot].dump_status_reader = dump_ccid_reader_status;
   reader_table[slot].set_progress_cb = set_progress_cb_ccid_reader;
   reader_table[slot].pinpad_verify = ccid_pinpad_operation;
   reader_table[slot].pinpad_modify = ccid_pinpad_operation;
   /* Our CCID reader code does not support T=0 at all, thus reset the
      flag.  */
   reader_table[slot].is_t0 = 0;
 
   dump_reader_status (slot);
   unlock_slot (slot);
   return slot;
 }
 
 
 
 #endif /* HAVE_LIBUSB */
 
 
 
 #ifdef USE_G10CODE_RAPDU
 /*
      The Remote APDU Interface.
 
      This uses the Remote APDU protocol to contact a reader.
 
      The port number is actually an index into the list of ports as
      returned via the protocol.
  */
 
 
 static int
 rapdu_status_to_sw (int status)
 {
   int rc;
 
   switch (status)
     {
     case RAPDU_STATUS_SUCCESS:  rc = 0; break;
 
     case RAPDU_STATUS_INVCMD:
     case RAPDU_STATUS_INVPROT:
     case RAPDU_STATUS_INVSEQ:
     case RAPDU_STATUS_INVCOOKIE:
     case RAPDU_STATUS_INVREADER:  rc = SW_HOST_INV_VALUE;  break;
 
     case RAPDU_STATUS_TIMEOUT:  rc = SW_HOST_CARD_IO_ERROR; break;
     case RAPDU_STATUS_CARDIO:   rc = SW_HOST_CARD_IO_ERROR; break;
     case RAPDU_STATUS_NOCARD:   rc = SW_HOST_NO_CARD; break;
     case RAPDU_STATUS_CARDCHG:  rc = SW_HOST_NO_CARD; break;
     case RAPDU_STATUS_BUSY:     rc = SW_HOST_BUSY; break;
     case RAPDU_STATUS_NEEDRESET: rc = SW_HOST_CARD_INACTIVE; break;
 
     default: rc = SW_HOST_GENERAL_ERROR; break;
     }
 
   return rc;
 }
 
 
 
 static int
 close_rapdu_reader (int slot)
 {
   rapdu_release (reader_table[slot].rapdu.handle);
   reader_table[slot].used = 0;
   return 0;
 }
 
 
 static int
 reset_rapdu_reader (int slot)
 {
   int err;
   reader_table_t slotp;
   rapdu_msg_t msg = NULL;
 
   slotp = reader_table + slot;
 
   err = rapdu_send_cmd (slotp->rapdu.handle, RAPDU_CMD_RESET);
   if (err)
     {
       log_error ("sending rapdu command RESET failed: %s\n",
                 err < 0 ? strerror (errno): rapdu_strerror (err));
       rapdu_msg_release (msg);
       return rapdu_status_to_sw (err);
     }
   err = rapdu_read_msg (slotp->rapdu.handle, &msg);
   if (err)
     {
       log_error ("receiving rapdu message failed: %s\n",
                 err < 0 ? strerror (errno): rapdu_strerror (err));
       rapdu_msg_release (msg);
       return rapdu_status_to_sw (err);
     }
   if (msg->cmd != RAPDU_STATUS_SUCCESS || !msg->datalen)
     {
       int sw = rapdu_status_to_sw (msg->cmd);
       log_error ("rapdu command RESET failed: %s\n",
                  rapdu_strerror (msg->cmd));
       rapdu_msg_release (msg);
       return sw;
     }
   if (msg->datalen > DIM (slotp->atr))
     {
       log_error ("ATR returned by the RAPDU layer is too large\n");
       rapdu_msg_release (msg);
       return SW_HOST_INV_VALUE;
     }
   slotp->atrlen = msg->datalen;
   memcpy (slotp->atr, msg->data, msg->datalen);
 
   rapdu_msg_release (msg);
   return 0;
 }
 
 
 static int
 my_rapdu_get_status (int slot, unsigned int *status)
 {
   int err;
   reader_table_t slotp;
   rapdu_msg_t msg = NULL;
   int oldslot;
 
   slotp = reader_table + slot;
 
   oldslot = rapdu_set_reader (slotp->rapdu.handle, slot);
   err = rapdu_send_cmd (slotp->rapdu.handle, RAPDU_CMD_GET_STATUS);
   rapdu_set_reader (slotp->rapdu.handle, oldslot);
   if (err)
     {
       log_error ("sending rapdu command GET_STATUS failed: %s\n",
                 err < 0 ? strerror (errno): rapdu_strerror (err));
       return rapdu_status_to_sw (err);
     }
   err = rapdu_read_msg (slotp->rapdu.handle, &msg);
   if (err)
     {
       log_error ("receiving rapdu message failed: %s\n",
                 err < 0 ? strerror (errno): rapdu_strerror (err));
       rapdu_msg_release (msg);
       return rapdu_status_to_sw (err);
     }
   if (msg->cmd != RAPDU_STATUS_SUCCESS || !msg->datalen)
     {
       int sw = rapdu_status_to_sw (msg->cmd);
       log_error ("rapdu command GET_STATUS failed: %s\n",
                  rapdu_strerror (msg->cmd));
       rapdu_msg_release (msg);
       return sw;
     }
   *status = msg->data[0];
 
   rapdu_msg_release (msg);
   return 0;
 }
 
 
 /* Actually send the APDU of length APDULEN to SLOT and return a
    maximum of *BUFLEN data in BUFFER, the actual returned size will be
    set to BUFLEN.  Returns: APDU error code. */
 static int
 my_rapdu_send_apdu (int slot, unsigned char *apdu, size_t apdulen,
                     unsigned char *buffer, size_t *buflen,
                     pininfo_t *pininfo)
 {
   int err;
   reader_table_t slotp;
   rapdu_msg_t msg = NULL;
   size_t maxlen = *buflen;
 
   slotp = reader_table + slot;
 
   *buflen = 0;
   if (DBG_CARD_IO)
     log_printhex ("  APDU_data:", apdu, apdulen);
 
   if (apdulen < 4)
     {
       log_error ("rapdu_send_apdu: APDU is too short\n");
       return SW_HOST_INV_VALUE;
     }
 
   err = rapdu_send_apdu (slotp->rapdu.handle, apdu, apdulen);
   if (err)
     {
       log_error ("sending rapdu command APDU failed: %s\n",
                 err < 0 ? strerror (errno): rapdu_strerror (err));
       rapdu_msg_release (msg);
       return rapdu_status_to_sw (err);
     }
   err = rapdu_read_msg (slotp->rapdu.handle, &msg);
   if (err)
     {
       log_error ("receiving rapdu message failed: %s\n",
                 err < 0 ? strerror (errno): rapdu_strerror (err));
       rapdu_msg_release (msg);
       return rapdu_status_to_sw (err);
     }
   if (msg->cmd != RAPDU_STATUS_SUCCESS || !msg->datalen)
     {
       int sw = rapdu_status_to_sw (msg->cmd);
       log_error ("rapdu command APDU failed: %s\n",
                  rapdu_strerror (msg->cmd));
       rapdu_msg_release (msg);
       return sw;
     }
 
   if (msg->datalen > maxlen)
     {
       log_error ("rapdu response apdu too large\n");
       rapdu_msg_release (msg);
       return SW_HOST_INV_VALUE;
     }
 
   *buflen = msg->datalen;
   memcpy (buffer, msg->data, msg->datalen);
 
   rapdu_msg_release (msg);
   return 0;
 }
 
 static int
 open_rapdu_reader (int portno,
                    const unsigned char *cookie, size_t length,
                    int (*readfnc) (void *opaque,
                                    void *buffer, size_t size),
                    void *readfnc_value,
                    int (*writefnc) (void *opaque,
                                     const void *buffer, size_t size),
                    void *writefnc_value,
                    void (*closefnc) (void *opaque),
                    void *closefnc_value)
 {
   int err;
   int slot;
   reader_table_t slotp;
   rapdu_msg_t msg = NULL;
 
   slot = new_reader_slot ();
   if (slot == -1)
     return -1;
   slotp = reader_table + slot;
 
   slotp->rapdu.handle = rapdu_new ();
   if (!slotp->rapdu.handle)
     {
       slotp->used = 0;
       unlock_slot (slot);
       return -1;
     }
 
   rapdu_set_reader (slotp->rapdu.handle, portno);
 
   rapdu_set_iofunc (slotp->rapdu.handle,
                     readfnc, readfnc_value,
                     writefnc, writefnc_value,
                     closefnc, closefnc_value);
   rapdu_set_cookie (slotp->rapdu.handle, cookie, length);
 
   /* First try to get the current ATR, but if the card is inactive
      issue a reset instead.  */
   err = rapdu_send_cmd (slotp->rapdu.handle, RAPDU_CMD_GET_ATR);
   if (err == RAPDU_STATUS_NEEDRESET)
     err = rapdu_send_cmd (slotp->rapdu.handle, RAPDU_CMD_RESET);
   if (err)
     {
       log_info ("sending rapdu command GET_ATR/RESET failed: %s\n",
                 err < 0 ? strerror (errno): rapdu_strerror (err));
       goto failure;
     }
   err = rapdu_read_msg (slotp->rapdu.handle, &msg);
   if (err)
     {
       log_info ("receiving rapdu message failed: %s\n",
                 err < 0 ? strerror (errno): rapdu_strerror (err));
       goto failure;
     }
   if (msg->cmd != RAPDU_STATUS_SUCCESS || !msg->datalen)
     {
       log_info ("rapdu command GET ATR failed: %s\n",
                  rapdu_strerror (msg->cmd));
       goto failure;
     }
   if (msg->datalen > DIM (slotp->atr))
     {
       log_error ("ATR returned by the RAPDU layer is too large\n");
       goto failure;
     }
   slotp->atrlen = msg->datalen;
   memcpy (slotp->atr, msg->data, msg->datalen);
 
   reader_table[slot].close_reader = close_rapdu_reader;
   reader_table[slot].reset_reader = reset_rapdu_reader;
   reader_table[slot].get_status_reader = my_rapdu_get_status;
   reader_table[slot].send_apdu_reader = my_rapdu_send_apdu;
   reader_table[slot].check_pinpad = NULL;
   reader_table[slot].dump_status_reader = NULL;
   reader_table[slot].pinpad_verify = NULL;
   reader_table[slot].pinpad_modify = NULL;
 
   dump_reader_status (slot);
   rapdu_msg_release (msg);
   unlock_slot (slot);
   return slot;
 
  failure:
   rapdu_msg_release (msg);
   rapdu_release (slotp->rapdu.handle);
   slotp->used = 0;
   unlock_slot (slot);
   return -1;
 }
 
 #endif /*USE_G10CODE_RAPDU*/
 
 
 
 /*
        Driver Access
  */
 
 
 /* Open the reader and return an internal slot number or -1 on
    error. If PORTSTR is NULL we default to a suitable port (for ctAPI:
    the first USB reader.  For PC/SC the first listed reader). */
 int
 apdu_open_reader (const char *portstr)
 {
   static int pcsc_api_loaded, ct_api_loaded;
 
 #ifdef HAVE_LIBUSB
   if (!opt.disable_ccid)
     {
       int slot, i;
       const char *s;
 
       slot = open_ccid_reader (portstr);
       if (slot != -1)
         return slot; /* got one */
 
       /* If a CCID reader specification has been given, the user does
          not want a fallback to other drivers. */
       if (portstr)
         for (s=portstr, i=0; *s; s++)
           if (*s == ':' && (++i == 3))
             return -1;
     }
 
 #endif /* HAVE_LIBUSB */
 
   if (opt.ctapi_driver && *opt.ctapi_driver)
     {
       int port = portstr? atoi (portstr) : 32768;
 
       if (!ct_api_loaded)
         {
           void *handle;
 
           handle = dlopen (opt.ctapi_driver, RTLD_LAZY);
           if (!handle)
             {
               log_error ("apdu_open_reader: failed to open driver: %s\n",
                          dlerror ());
               return -1;
             }
           CT_init = dlsym (handle, "CT_init");
           CT_data = dlsym (handle, "CT_data");
           CT_close = dlsym (handle, "CT_close");
           if (!CT_init || !CT_data || !CT_close)
             {
               log_error ("apdu_open_reader: invalid CT-API driver\n");
               dlclose (handle);
               return -1;
             }
           ct_api_loaded = 1;
         }
       return open_ct_reader (port);
     }
 
 
   /* No ctAPI configured, so lets try the PC/SC API */
   if (!pcsc_api_loaded)
     {
 #ifndef NEED_PCSC_WRAPPER
       void *handle;
 
       handle = dlopen (opt.pcsc_driver, RTLD_LAZY);
       if (!handle)
         {
           log_error ("apdu_open_reader: failed to open driver `%s': %s\n",
                      opt.pcsc_driver, dlerror ());
           return -1;
         }
 
       pcsc_establish_context = dlsym (handle, "SCardEstablishContext");
       pcsc_release_context   = dlsym (handle, "SCardReleaseContext");
       pcsc_list_readers      = dlsym (handle, "SCardListReaders");
 #if defined(_WIN32) || defined(__CYGWIN__)
       if (!pcsc_list_readers)
         pcsc_list_readers    = dlsym (handle, "SCardListReadersA");
 #endif
       pcsc_get_status_change = dlsym (handle, "SCardGetStatusChange");
 #if defined(_WIN32) || defined(__CYGWIN__)
       if (!pcsc_get_status_change)
         pcsc_get_status_change = dlsym (handle, "SCardGetStatusChangeA");
 #endif
       pcsc_connect           = dlsym (handle, "SCardConnect");
 #if defined(_WIN32) || defined(__CYGWIN__)
       if (!pcsc_connect)
         pcsc_connect         = dlsym (handle, "SCardConnectA");
 #endif
       pcsc_reconnect         = dlsym (handle, "SCardReconnect");
 #if defined(_WIN32) || defined(__CYGWIN__)
       if (!pcsc_reconnect)
         pcsc_reconnect       = dlsym (handle, "SCardReconnectA");
 #endif
       pcsc_disconnect        = dlsym (handle, "SCardDisconnect");
       pcsc_status            = dlsym (handle, "SCardStatus");
 #if defined(_WIN32) || defined(__CYGWIN__)
       if (!pcsc_status)
         pcsc_status          = dlsym (handle, "SCardStatusA");
 #endif
       pcsc_begin_transaction = dlsym (handle, "SCardBeginTransaction");
       pcsc_end_transaction   = dlsym (handle, "SCardEndTransaction");
       pcsc_transmit          = dlsym (handle, "SCardTransmit");
       pcsc_set_timeout       = dlsym (handle, "SCardSetTimeout");
       pcsc_control           = dlsym (handle, "SCardControl");
 
       if (!pcsc_establish_context
           || !pcsc_release_context
           || !pcsc_list_readers
           || !pcsc_get_status_change
           || !pcsc_connect
           || !pcsc_reconnect
           || !pcsc_disconnect
           || !pcsc_status
           || !pcsc_begin_transaction
           || !pcsc_end_transaction
           || !pcsc_transmit
           || !pcsc_control
           /* || !pcsc_set_timeout */)
         {
           /* Note that set_timeout is currently not used and also not
              available under Windows. */
           log_error ("apdu_open_reader: invalid PC/SC driver "
                      "(%d%d%d%d%d%d%d%d%d%d%d%d%d)\n",
                      !!pcsc_establish_context,
                      !!pcsc_release_context,
                      !!pcsc_list_readers,
                      !!pcsc_get_status_change,
                      !!pcsc_connect,
                      !!pcsc_reconnect,
                      !!pcsc_disconnect,
                      !!pcsc_status,
                      !!pcsc_begin_transaction,
                      !!pcsc_end_transaction,
                      !!pcsc_transmit,
                      !!pcsc_set_timeout,
                      !!pcsc_control );
           dlclose (handle);
           return -1;
         }
 #endif /*!NEED_PCSC_WRAPPER*/
       pcsc_api_loaded = 1;
     }
 
   return open_pcsc_reader (portstr);
 }
 
 
 /* Open an remote reader and return an internal slot number or -1 on
    error. This function is an alternative to apdu_open_reader and used
    with remote readers only.  Note that the supplied CLOSEFNC will
    only be called once and the slot will not be valid afther this.
 
    If PORTSTR is NULL we default to the first availabe port.
 */
 int
 apdu_open_remote_reader (const char *portstr,
                          const unsigned char *cookie, size_t length,
                          int (*readfnc) (void *opaque,
                                          void *buffer, size_t size),
                          void *readfnc_value,
                          int (*writefnc) (void *opaque,
                                           const void *buffer, size_t size),
                          void *writefnc_value,
                          void (*closefnc) (void *opaque),
                          void *closefnc_value)
 {
 #ifdef USE_G10CODE_RAPDU
   return open_rapdu_reader (portstr? atoi (portstr) : 0,
                             cookie, length,
                             readfnc, readfnc_value,
                             writefnc, writefnc_value,
                             closefnc, closefnc_value);
 #else
   (void)portstr;
   (void)cookie;
   (void)length;
   (void)readfnc;
   (void)readfnc_value;
   (void)writefnc;
   (void)writefnc_value;
   (void)closefnc;
   (void)closefnc_value;
 #ifdef _WIN32
   errno = ENOENT;
 #else
   errno = ENOSYS;
 #endif
   return -1;
 #endif
 }
 
 
 int
 apdu_close_reader (int slot)
 {
   int sw;
 
   if (slot < 0 || slot >= MAX_READER || !reader_table[slot].used )
     return SW_HOST_NO_DRIVER;
   sw = apdu_disconnect (slot);
   if (sw)
     return sw;
   if (reader_table[slot].close_reader)
     return reader_table[slot].close_reader (slot);
   return SW_HOST_NOT_SUPPORTED;
 }
 
 
 /* Function suitable for a cleanup function to close all reader.  It
    should not be used if the reader will be opened again.  The reason
    for implementing this to properly close USB devices so that they
    will startup the next time without error. */
 void
 apdu_prepare_exit (void)
 {
   static int sentinel;
   int slot;
 
   if (!sentinel)
     {
       sentinel = 1;
       for (slot = 0; slot < MAX_READER; slot++)
         if (reader_table[slot].used)
           {
             apdu_disconnect (slot);
             if (reader_table[slot].close_reader)
               reader_table[slot].close_reader (slot);
             reader_table[slot].used = 0;
           }
       sentinel = 0;
     }
 }
 
 
 /* Shutdown a reader; that is basically the same as a close but keeps
    the handle ready for later use. A apdu_reset_reader or apdu_connect
    should be used to get it active again. */
 int
 apdu_shutdown_reader (int slot)
 {
   int sw;
 
   if (slot < 0 || slot >= MAX_READER || !reader_table[slot].used )
     return SW_HOST_NO_DRIVER;
   sw = apdu_disconnect (slot);
   if (sw)
     return sw;
   if (reader_table[slot].shutdown_reader)
     return reader_table[slot].shutdown_reader (slot);
   return SW_HOST_NOT_SUPPORTED;
 }
 
 /* Enumerate all readers and return information on whether this reader
    is in use.  The caller should start with SLOT set to 0 and
    increment it with each call until an error is returned. */
 int
 apdu_enum_reader (int slot, int *used)
 {
   if (slot < 0 || slot >= MAX_READER)
     return SW_HOST_NO_DRIVER;
   *used = reader_table[slot].used;
   return 0;
 }
 
 
 /* Connect a card.  This is used to power up the card and make sure
    that an ATR is available.  Depending on the reader backend it may
    return an error for an inactive card or if no card is
    available.  */
 int
 apdu_connect (int slot)
 {
   int sw;
   unsigned int status;
 
   if (slot < 0 || slot >= MAX_READER || !reader_table[slot].used )
     return SW_HOST_NO_DRIVER;
 
   /* Only if the access method provides a connect function we use it.
      If not, we expect that the card has been implicitly connected by
      apdu_open_reader.  */
   if (reader_table[slot].connect_card)
     {
       sw = lock_slot (slot);
       if (!sw)
         {
           sw = reader_table[slot].connect_card (slot);
           unlock_slot (slot);
         }
     }
   else
     sw = 0;
 
   /* We need to call apdu_get_status_internal, so that the last-status
      machinery gets setup properly even if a card is inserted while
      scdaemon is fired up and apdu_get_status has not yet been called.
      Without that we would force a reset of the card with the next
      call to apdu_get_status.  */
   apdu_get_status_internal (slot, 1, 1, &status, NULL);
   if (sw)
     ;
   else if (!(status & APDU_CARD_PRESENT))
     sw = SW_HOST_NO_CARD;
   else if ((status & APDU_CARD_PRESENT) && !(status & APDU_CARD_ACTIVE))
     sw = SW_HOST_CARD_INACTIVE;
 
 
   return sw;
 }
 
 
 int
 apdu_disconnect (int slot)
 {
   int sw;
 
   if (slot < 0 || slot >= MAX_READER || !reader_table[slot].used )
     return SW_HOST_NO_DRIVER;
 
   if (reader_table[slot].disconnect_card)
     {
       sw = lock_slot (slot);
       if (!sw)
         {
           sw = reader_table[slot].disconnect_card (slot);
           unlock_slot (slot);
         }
     }
   else
     sw = 0;
   return sw;
 }
 
 
 /* Set the progress callback of SLOT to CB and its args to CB_ARG.  If
    CB is NULL the progress callback is removed.  */
 int
 apdu_set_progress_cb (int slot, gcry_handler_progress_t cb, void *cb_arg)
 {
   int sw;
 
   if (slot < 0 || slot >= MAX_READER || !reader_table[slot].used )
     return SW_HOST_NO_DRIVER;
 
   if (reader_table[slot].set_progress_cb)
     {
       sw = lock_slot (slot);
       if (!sw)
         {
           sw = reader_table[slot].set_progress_cb (slot, cb, cb_arg);
           unlock_slot (slot);
         }
     }
   else
     sw = 0;
   return sw;
 }
 
 
 /* Do a reset for the card in reader at SLOT. */
 int
 apdu_reset (int slot)
 {
   int sw;
 
   if (slot < 0 || slot >= MAX_READER || !reader_table[slot].used )
     return SW_HOST_NO_DRIVER;
 
   if ((sw = lock_slot (slot)))
     return sw;
 
   reader_table[slot].last_status = 0;
   if (reader_table[slot].reset_reader)
     sw = reader_table[slot].reset_reader (slot);
 
   if (!sw)
     {
       /* If we got to here we know that a card is present
          and usable.  Thus remember this.  */
       reader_table[slot].last_status = (APDU_CARD_USABLE
                                         | APDU_CARD_PRESENT
                                         | APDU_CARD_ACTIVE);
     }
 
   unlock_slot (slot);
   return sw;
 }
 
 
 /* Activate a card if it has not yet been done.  This is a kind of
    reset-if-required.  It is useful to test for presence of a card
    before issuing a bunch of apdu commands.  It does not wait on a
    locked card. */
 int
 apdu_activate (int slot)
 {
   int sw;
   unsigned int s;
 
   if (slot < 0 || slot >= MAX_READER || !reader_table[slot].used )
     return SW_HOST_NO_DRIVER;
 
   if ((sw = trylock_slot (slot)))
     return sw;
 
   if (reader_table[slot].get_status_reader)
     sw = reader_table[slot].get_status_reader (slot, &s);
 
   if (!sw)
     {
       if (!(s & 2))  /* Card not present.  */
         sw = SW_HOST_NO_CARD;
       else if ( ((s & 2) && !(s & 4))
                 || !reader_table[slot].atrlen )
         {
           /* We don't have an ATR or a card is present though inactive:
              do a reset now. */
           if (reader_table[slot].reset_reader)
             {
               reader_table[slot].last_status = 0;
               sw = reader_table[slot].reset_reader (slot);
               if (!sw)
                 {
                   /* If we got to here we know that a card is present
                      and usable.  Thus remember this.  */
                   reader_table[slot].last_status = (APDU_CARD_USABLE
                                                     | APDU_CARD_PRESENT
                                                     | APDU_CARD_ACTIVE);
                 }
             }
         }
     }
 
   unlock_slot (slot);
   return sw;
 }
 
 
 unsigned char *
 apdu_get_atr (int slot, size_t *atrlen)
 {
   unsigned char *buf;
 
   if (slot < 0 || slot >= MAX_READER || !reader_table[slot].used )
     return NULL;
   if (!reader_table[slot].atrlen)
     return NULL;
   buf = xtrymalloc (reader_table[slot].atrlen);
   if (!buf)
     return NULL;
   memcpy (buf, reader_table[slot].atr, reader_table[slot].atrlen);
   *atrlen = reader_table[slot].atrlen;
   return buf;
 }
 
 
 
 /* Retrieve the status for SLOT. The function does only wait for the
    card to become available if HANG is set to true. On success the
    bits in STATUS will be set to
 
      APDU_CARD_USABLE  (bit 0) = card present and usable
      APDU_CARD_PRESENT (bit 1) = card present
      APDU_CARD_ACTIVE  (bit 2) = card active
                        (bit 3) = card access locked [not yet implemented]
 
    For must applications, testing bit 0 is sufficient.
 
    CHANGED will receive the value of the counter tracking the number
    of card insertions.  This value may be used to detect a card
    change.
 */
 static int
 apdu_get_status_internal (int slot, int hang, int no_atr_reset,
                           unsigned int *status, unsigned int *changed)
 {
   int sw;
   unsigned int s;
 
   if (slot < 0 || slot >= MAX_READER || !reader_table[slot].used )
     return SW_HOST_NO_DRIVER;
 
   if ((sw = hang? lock_slot (slot) : trylock_slot (slot)))
     return sw;
 
   if (reader_table[slot].get_status_reader)
     sw = reader_table[slot].get_status_reader (slot, &s);
 
   unlock_slot (slot);
 
   if (sw)
     {
       reader_table[slot].last_status = 0;
       return sw;
     }
 
   /* Keep track of changes.  */
   if (s != reader_table[slot].last_status
       || !reader_table[slot].any_status )
     {
       reader_table[slot].change_counter++;
       /* Make sure that the ATR is invalid so that a reset will be
          triggered by apdu_activate.  */
       if (!no_atr_reset)
         reader_table[slot].atrlen = 0;
     }
   reader_table[slot].any_status = 1;
   reader_table[slot].last_status = s;
 
   if (status)
     *status = s;
   if (changed)
     *changed = reader_table[slot].change_counter;
   return 0;
 }
 
 
 /* See above for a description.  */
 int
 apdu_get_status (int slot, int hang,
                  unsigned int *status, unsigned int *changed)
 {
   return apdu_get_status_internal (slot, hang, 0, status, changed);
 }
 
 
 /* Check whether the reader supports the ISO command code COMMAND on
    the pinpad.  Return 0 on success.  For a description of the pin
    parameters, see ccid-driver.c */
 int
 apdu_check_pinpad (int slot, int command, pininfo_t *pininfo)
 {
   if (slot < 0 || slot >= MAX_READER || !reader_table[slot].used )
     return SW_HOST_NO_DRIVER;
 
   if (opt.enable_pinpad_varlen)
     pininfo->fixedlen = 0;
 
   if (reader_table[slot].check_pinpad)
     {
       int sw;
 
       if ((sw = lock_slot (slot)))
         return sw;
 
       sw = reader_table[slot].check_pinpad (slot, command, pininfo);
       unlock_slot (slot);
       return sw;
     }
   else
     return SW_HOST_NOT_SUPPORTED;
 }
 
 
 int
 apdu_pinpad_verify (int slot, int class, int ins, int p0, int p1,
 		    pininfo_t *pininfo)
 {
   if (slot < 0 || slot >= MAX_READER || !reader_table[slot].used )
     return SW_HOST_NO_DRIVER;
 
   if (reader_table[slot].pinpad_verify)
     {
       int sw;
 
       if ((sw = lock_slot (slot)))
         return sw;
 
       sw = reader_table[slot].pinpad_verify (slot, class, ins, p0, p1,
 					     pininfo);
       unlock_slot (slot);
       return sw;
     }
   else
     return SW_HOST_NOT_SUPPORTED;
 }
 
 
 int
 apdu_pinpad_modify (int slot, int class, int ins, int p0, int p1,
 		    pininfo_t *pininfo)
 {
   if (slot < 0 || slot >= MAX_READER || !reader_table[slot].used )
     return SW_HOST_NO_DRIVER;
 
   if (reader_table[slot].pinpad_modify)
     {
       int sw;
 
       if ((sw = lock_slot (slot)))
         return sw;
 
       sw = reader_table[slot].pinpad_modify (slot, class, ins, p0, p1,
                                              pininfo);
       unlock_slot (slot);
       return sw;
     }
   else
     return SW_HOST_NOT_SUPPORTED;
 }
 
 
 /* Dispatcher for the actual send_apdu function. Note, that this
    function should be called in locked state. */
 static int
 send_apdu (int slot, unsigned char *apdu, size_t apdulen,
            unsigned char *buffer, size_t *buflen, pininfo_t *pininfo)
 {
   if (slot < 0 || slot >= MAX_READER || !reader_table[slot].used )
     return SW_HOST_NO_DRIVER;
 
   if (reader_table[slot].send_apdu_reader)
     return reader_table[slot].send_apdu_reader (slot,
                                                 apdu, apdulen,
                                                 buffer, buflen,
                                                 pininfo);
   else
     return SW_HOST_NOT_SUPPORTED;
 }
 
 
 /* Core APDU tranceiver function. Parameters are described at
    apdu_send_le with the exception of PININFO which indicates pinpad
    related operations if not NULL.  If EXTENDED_MODE is not 0
    command chaining or extended length will be used according to these
    values:
        n < 0 := Use command chaining with the data part limited to -n
                 in each chunk.  If -1 is used a default value is used.
       n == 0 := No extended mode or command chaining.
       n == 1 := Use extended length for input and output without a
                 length limit.
        n > 1 := Use extended length with up to N bytes.
 
 */
 static int
 send_le (int slot, int class, int ins, int p0, int p1,
          int lc, const char *data, int le,
          unsigned char **retbuf, size_t *retbuflen,
          pininfo_t *pininfo, int extended_mode)
 {
 #define SHORT_RESULT_BUFFER_SIZE 258
   /* We allocate 8 extra bytes as a safety margin towards a driver bug.  */
   unsigned char short_result_buffer[SHORT_RESULT_BUFFER_SIZE+10];
   unsigned char *result_buffer = NULL;
   size_t result_buffer_size;
   unsigned char *result;
   size_t resultlen;
   unsigned char short_apdu_buffer[5+256+1];
   unsigned char *apdu_buffer = NULL;
   size_t apdu_buffer_size;
   unsigned char *apdu;
   size_t apdulen;
   int sw;
   long rc; /* We need a long here due to PC/SC. */
   int did_exact_length_hack = 0;
   int use_chaining = 0;
   int use_extended_length = 0;
   int lc_chunk;
 
   if (slot < 0 || slot >= MAX_READER || !reader_table[slot].used )
     return SW_HOST_NO_DRIVER;
 
   if (DBG_CARD_IO)
     log_debug ("send apdu: c=%02X i=%02X p1=%02X p2=%02X lc=%d le=%d em=%d\n",
                class, ins, p0, p1, lc, le, extended_mode);
 
   if (lc != -1 && (lc > 255 || lc < 0))
     {
       /* Data does not fit into an APDU.  What we do now depends on
          the EXTENDED_MODE parameter.  */
       if (!extended_mode)
         return SW_WRONG_LENGTH; /* No way to send such an APDU.  */
       else if (extended_mode > 0)
         use_extended_length = 1;
       else if (extended_mode < 0)
         {
           /* Send APDU using chaining mode.  */
           if (lc > 16384)
             return SW_WRONG_LENGTH;   /* Sanity check.  */
           if ((class&0xf0) != 0)
             return SW_HOST_INV_VALUE; /* Upper 4 bits need to be 0.  */
           use_chaining = extended_mode == -1? 255 : -extended_mode;
           use_chaining &= 0xff;
         }
       else
         return SW_HOST_INV_VALUE;
     }
   else if (lc == -1 && extended_mode > 0)
     use_extended_length = 1;
 
   if (le != -1 && (le > (extended_mode > 0? 255:256) || le < 0))
     {
       /* Expected Data does not fit into an APDU.  What we do now
          depends on the EXTENDED_MODE parameter.  Note that a check
          for command chaining does not make sense because we are
          looking at Le.  */
       if (!extended_mode)
         return SW_WRONG_LENGTH; /* No way to send such an APDU.  */
       else if (use_extended_length)
         ; /* We are already using extended length.  */
       else if (extended_mode > 0)
         use_extended_length = 1;
       else
         return SW_HOST_INV_VALUE;
     }
 
   if ((!data && lc != -1) || (data && lc == -1))
     return SW_HOST_INV_VALUE;
 
   if (use_extended_length)
     {
       if (reader_table[slot].is_t0)
         return SW_HOST_NOT_SUPPORTED;
 
       /* Space for: cls/ins/p1/p2+Z+2_byte_Lc+Lc+2_byte_Le.  */
       apdu_buffer_size = 4 + 1 + (lc >= 0? (2+lc):0) + 2;
       apdu_buffer = xtrymalloc (apdu_buffer_size + 10);
       if (!apdu_buffer)
         return SW_HOST_OUT_OF_CORE;
       apdu = apdu_buffer;
     }
   else
     {
       apdu_buffer_size = sizeof short_apdu_buffer;
       apdu = short_apdu_buffer;
     }
 
   if (use_extended_length && (le > 256 || le < 0))
     {
       result_buffer_size = le < 0? 4096 : le;
       result_buffer = xtrymalloc (result_buffer_size + 10);
       if (!result_buffer)
         {
           xfree (apdu_buffer);
           return SW_HOST_OUT_OF_CORE;
         }
       result = result_buffer;
     }
   else
     {
       result_buffer_size = SHORT_RESULT_BUFFER_SIZE;
       result = short_result_buffer;
     }
 #undef SHORT_RESULT_BUFFER_SIZE
 
   if ((sw = lock_slot (slot)))
     {
       xfree (apdu_buffer);
       xfree (result_buffer);
       return sw;
     }
 
   do
     {
       if (use_extended_length)
         {
           use_chaining = 0;
           apdulen = 0;
           apdu[apdulen++] = class;
           apdu[apdulen++] = ins;
           apdu[apdulen++] = p0;
           apdu[apdulen++] = p1;
           if (lc > 0)
             {
               apdu[apdulen++] = 0;  /* Z byte: Extended length marker.  */
               apdu[apdulen++] = ((lc >> 8) & 0xff);
               apdu[apdulen++] = (lc & 0xff);
               memcpy (apdu+apdulen, data, lc);
               data += lc;
               apdulen += lc;
             }
           if (le != -1)
             {
               if (lc <= 0)
                 apdu[apdulen++] = 0;  /* Z byte: Extended length marker.  */
               apdu[apdulen++] = ((le >> 8) & 0xff);
               apdu[apdulen++] = (le & 0xff);
             }
         }
       else
         {
           apdulen = 0;
           apdu[apdulen] = class;
           if (use_chaining && lc > 255)
             {
               apdu[apdulen] |= 0x10;
               assert (use_chaining < 256);
               lc_chunk = use_chaining;
               lc -= use_chaining;
             }
           else
             {
               use_chaining = 0;
               lc_chunk = lc;
             }
           apdulen++;
           apdu[apdulen++] = ins;
           apdu[apdulen++] = p0;
           apdu[apdulen++] = p1;
           if (lc_chunk != -1)
             {
               apdu[apdulen++] = lc_chunk;
               memcpy (apdu+apdulen, data, lc_chunk);
               data += lc_chunk;
               apdulen += lc_chunk;
               /* T=0 does not allow the use of Lc together with Le;
                  thus disable Le in this case.  */
               if (reader_table[slot].is_t0)
                 le = -1;
             }
           if (le != -1 && !use_chaining)
             apdu[apdulen++] = le; /* Truncation is okay (0 means 256). */
         }
 
     exact_length_hack:
       /* As a safeguard don't pass any garbage to the driver.  */
       assert (apdulen <= apdu_buffer_size);
       memset (apdu+apdulen, 0, apdu_buffer_size - apdulen);
       resultlen = result_buffer_size;
       rc = send_apdu (slot, apdu, apdulen, result, &resultlen, pininfo);
       if (rc || resultlen < 2)
         {
           log_info ("apdu_send_simple(%d) failed: %s\n",
                     slot, apdu_strerror (rc));
           unlock_slot (slot);
           xfree (apdu_buffer);
           xfree (result_buffer);
           return rc? rc : SW_HOST_INCOMPLETE_CARD_RESPONSE;
         }
       sw = (result[resultlen-2] << 8) | result[resultlen-1];
       if (!use_extended_length
           && !did_exact_length_hack && SW_EXACT_LENGTH_P (sw))
         {
           apdu[apdulen-1] = (sw & 0x00ff);
           did_exact_length_hack = 1;
           goto exact_length_hack;
         }
     }
   while (use_chaining && sw == SW_SUCCESS);
 
   if (apdu_buffer)
     {
       xfree (apdu_buffer);
       apdu_buffer = NULL;
       apdu_buffer_size = 0;
     }
 
   /* Store away the returned data but strip the statusword. */
   resultlen -= 2;
   if (DBG_CARD_IO)
     {
       log_debug (" response: sw=%04X  datalen=%d\n",
                  sw, (unsigned int)resultlen);
       if ( !retbuf && (sw == SW_SUCCESS || (sw & 0xff00) == SW_MORE_DATA))
         log_printhex ("    dump: ", result, resultlen);
     }
 
   if (sw == SW_SUCCESS || sw == SW_EOF_REACHED)
     {
       if (retbuf)
         {
           *retbuf = xtrymalloc (resultlen? resultlen : 1);
           if (!*retbuf)
             {
               unlock_slot (slot);
               xfree (result_buffer);
               return SW_HOST_OUT_OF_CORE;
             }
           *retbuflen = resultlen;
           memcpy (*retbuf, result, resultlen);
         }
     }
   else if ((sw & 0xff00) == SW_MORE_DATA)
     {
       unsigned char *p = NULL, *tmp;
       size_t bufsize = 4096;
 
       /* It is likely that we need to return much more data, so we
          start off with a large buffer. */
       if (retbuf)
         {
           *retbuf = p = xtrymalloc (bufsize);
           if (!*retbuf)
             {
               unlock_slot (slot);
               xfree (result_buffer);
               return SW_HOST_OUT_OF_CORE;
             }
           assert (resultlen < bufsize);
           memcpy (p, result, resultlen);
           p += resultlen;
         }
 
       do
         {
           int len = (sw & 0x00ff);
 
           if (DBG_CARD_IO)
             log_debug ("apdu_send_simple(%d): %d more bytes available\n",
                        slot, len);
           apdu_buffer_size = sizeof short_apdu_buffer;
           apdu = short_apdu_buffer;
           apdulen = 0;
           apdu[apdulen++] = class;
           apdu[apdulen++] = 0xC0;
           apdu[apdulen++] = 0;
           apdu[apdulen++] = 0;
           apdu[apdulen++] = len;
           assert (apdulen <= apdu_buffer_size);
           memset (apdu+apdulen, 0, apdu_buffer_size - apdulen);
           resultlen = result_buffer_size;
           rc = send_apdu (slot, apdu, apdulen, result, &resultlen, NULL);
           if (rc || resultlen < 2)
             {
               log_error ("apdu_send_simple(%d) for get response failed: %s\n",
                          slot, apdu_strerror (rc));
               unlock_slot (slot);
               xfree (result_buffer);
               return rc? rc : SW_HOST_INCOMPLETE_CARD_RESPONSE;
             }
           sw = (result[resultlen-2] << 8) | result[resultlen-1];
           resultlen -= 2;
           if (DBG_CARD_IO)
             {
               log_debug ("     more: sw=%04X  datalen=%d\n",
                          sw, (unsigned int)resultlen);
               if (!retbuf && (sw==SW_SUCCESS || (sw&0xff00)==SW_MORE_DATA))
                 log_printhex ("     dump: ", result, resultlen);
             }
 
           if ((sw & 0xff00) == SW_MORE_DATA
               || sw == SW_SUCCESS
               || sw == SW_EOF_REACHED )
             {
               if (retbuf && resultlen)
                 {
                   if (p - *retbuf + resultlen > bufsize)
                     {
                       bufsize += resultlen > 4096? resultlen: 4096;
                       tmp = xtryrealloc (*retbuf, bufsize);
                       if (!tmp)
                         {
                           unlock_slot (slot);
                           xfree (result_buffer);
                           return SW_HOST_OUT_OF_CORE;
                         }
                       p = tmp + (p - *retbuf);
                       *retbuf = tmp;
                     }
                   memcpy (p, result, resultlen);
                   p += resultlen;
                 }
             }
           else
             log_info ("apdu_send_simple(%d) "
                       "got unexpected status %04X from get response\n",
                       slot, sw);
         }
       while ((sw & 0xff00) == SW_MORE_DATA);
 
       if (retbuf)
         {
           *retbuflen = p - *retbuf;
           tmp = xtryrealloc (*retbuf, *retbuflen);
           if (tmp)
             *retbuf = tmp;
         }
     }
 
   unlock_slot (slot);
   xfree (result_buffer);
 
   if (DBG_CARD_IO && retbuf && sw == SW_SUCCESS)
     log_printhex ("      dump: ", *retbuf, *retbuflen);
 
   return sw;
 }
 
 /* Send an APDU to the card in SLOT.  The APDU is created from all
    given parameters: CLASS, INS, P0, P1, LC, DATA, LE.  A value of -1
    for LC won't sent this field and the data field; in this case DATA
    must also be passed as NULL.  If EXTENDED_MODE is not 0 command
    chaining or extended length will be used; see send_le for details.
    The return value is the status word or -1 for an invalid SLOT or
    other non card related error.  If RETBUF is not NULL, it will
    receive an allocated buffer with the returned data.  The length of
    that data will be put into *RETBUFLEN.  The caller is reponsible
    for releasing the buffer even in case of errors.  */
 int
 apdu_send_le(int slot, int extended_mode,
              int class, int ins, int p0, int p1,
              int lc, const char *data, int le,
              unsigned char **retbuf, size_t *retbuflen)
 {
   return send_le (slot, class, ins, p0, p1,
                   lc, data, le,
                   retbuf, retbuflen,
                   NULL, extended_mode);
 }
 
 
 /* Send an APDU to the card in SLOT.  The APDU is created from all
    given parameters: CLASS, INS, P0, P1, LC, DATA.  A value of -1 for
    LC won't sent this field and the data field; in this case DATA must
    also be passed as NULL.  If EXTENDED_MODE is not 0 command chaining
    or extended length will be used; see send_le for details.  The
    return value is the status word or -1 for an invalid SLOT or other
    non card related error.  If RETBUF is not NULL, it will receive an
    allocated buffer with the returned data.  The length of that data
    will be put into *RETBUFLEN.  The caller is reponsible for
    releasing the buffer even in case of errors.  */
 int
 apdu_send (int slot, int extended_mode,
            int class, int ins, int p0, int p1,
            int lc, const char *data, unsigned char **retbuf, size_t *retbuflen)
 {
   return send_le (slot, class, ins, p0, p1, lc, data, 256,
                   retbuf, retbuflen, NULL, extended_mode);
 }
 
 /* Send an APDU to the card in SLOT.  The APDU is created from all
    given parameters: CLASS, INS, P0, P1, LC, DATA.  A value of -1 for
    LC won't sent this field and the data field; in this case DATA must
    also be passed as NULL.  If EXTENDED_MODE is not 0 command chaining
    or extended length will be used; see send_le for details.  The
    return value is the status word or -1 for an invalid SLOT or other
    non card related error.  No data will be returned.  */
 int
 apdu_send_simple (int slot, int extended_mode,
                   int class, int ins, int p0, int p1,
                   int lc, const char *data)
 {
   return send_le (slot, class, ins, p0, p1, lc, data, -1, NULL, NULL, NULL,
                   extended_mode);
 }
 
 
 /* This is a more generic version of the apdu sending routine.  It
    takes an already formatted APDU in APDUDATA or length APDUDATALEN
    and returns with an APDU including the status word.  With
    HANDLE_MORE set to true this function will handle the MORE DATA
    status and return all APDUs concatenated with one status word at
    the end.  If EXTENDED_LENGTH is != 0 extended lengths are allowed
    with a max. result data length of EXTENDED_LENGTH bytes.  The
    function does not return a regular status word but 0 on success.
    If the slot is locked, the function returns immediately with an
    error.  */
 int
 apdu_send_direct (int slot, size_t extended_length,
                   const unsigned char *apdudata, size_t apdudatalen,
                   int handle_more,
                   unsigned char **retbuf, size_t *retbuflen)
 {
 #define SHORT_RESULT_BUFFER_SIZE 258
   unsigned char short_result_buffer[SHORT_RESULT_BUFFER_SIZE+10];
   unsigned char *result_buffer = NULL;
   size_t result_buffer_size;
   unsigned char *result;
   size_t resultlen;
   unsigned char short_apdu_buffer[5+256+10];
   unsigned char *apdu_buffer = NULL;
   unsigned char *apdu;
   size_t apdulen;
   int sw;
   long rc; /* we need a long here due to PC/SC. */
   int class;
 
   if (slot < 0 || slot >= MAX_READER || !reader_table[slot].used )
     return SW_HOST_NO_DRIVER;
 
   if (apdudatalen > 65535)
     return SW_HOST_INV_VALUE;
 
   if (apdudatalen > sizeof short_apdu_buffer - 5)
     {
       apdu_buffer = xtrymalloc (apdudatalen + 5);
       if (!apdu_buffer)
         return SW_HOST_OUT_OF_CORE;
       apdu = apdu_buffer;
     }
   else
     {
       apdu = short_apdu_buffer;
     }
   apdulen = apdudatalen;
   memcpy (apdu, apdudata, apdudatalen);
   class = apdulen? *apdu : 0;
 
   if (extended_length >= 256 && extended_length <= 65536)
     {
       result_buffer_size = extended_length;
       result_buffer = xtrymalloc (result_buffer_size + 10);
       if (!result_buffer)
         {
           xfree (apdu_buffer);
           return SW_HOST_OUT_OF_CORE;
         }
       result = result_buffer;
     }
   else
     {
       result_buffer_size = SHORT_RESULT_BUFFER_SIZE;
       result = short_result_buffer;
     }
 #undef SHORT_RESULT_BUFFER_SIZE
 
   if ((sw = trylock_slot (slot)))
     {
       xfree (apdu_buffer);
       xfree (result_buffer);
       return sw;
     }
 
   resultlen = result_buffer_size;
   rc = send_apdu (slot, apdu, apdulen, result, &resultlen, NULL);
   xfree (apdu_buffer);
   apdu_buffer = NULL;
   if (rc || resultlen < 2)
     {
       log_error ("apdu_send_direct(%d) failed: %s\n",
                  slot, apdu_strerror (rc));
       unlock_slot (slot);
       xfree (result_buffer);
       return rc? rc : SW_HOST_INCOMPLETE_CARD_RESPONSE;
     }
   sw = (result[resultlen-2] << 8) | result[resultlen-1];
   /* Store away the returned data but strip the statusword. */
   resultlen -= 2;
   if (DBG_CARD_IO)
     {
       log_debug (" response: sw=%04X  datalen=%d\n",
                  sw, (unsigned int)resultlen);
       if ( !retbuf && (sw == SW_SUCCESS || (sw & 0xff00) == SW_MORE_DATA))
         log_printhex ("     dump: ", result, resultlen);
     }
 
   if (handle_more && (sw & 0xff00) == SW_MORE_DATA)
     {
       unsigned char *p = NULL, *tmp;
       size_t bufsize = 4096;
 
       /* It is likely that we need to return much more data, so we
          start off with a large buffer. */
       if (retbuf)
         {
           *retbuf = p = xtrymalloc (bufsize + 2);
           if (!*retbuf)
             {
               unlock_slot (slot);
               xfree (result_buffer);
               return SW_HOST_OUT_OF_CORE;
             }
           assert (resultlen < bufsize);
           memcpy (p, result, resultlen);
           p += resultlen;
         }
 
       do
         {
           int len = (sw & 0x00ff);
 
           if (DBG_CARD_IO)
             log_debug ("apdu_send_direct(%d): %d more bytes available\n",
                        slot, len);
           apdu = short_apdu_buffer;
           apdulen = 0;
           apdu[apdulen++] = class;
           apdu[apdulen++] = 0xC0;
           apdu[apdulen++] = 0;
           apdu[apdulen++] = 0;
           apdu[apdulen++] = len;
           memset (apdu+apdulen, 0, sizeof (short_apdu_buffer) - apdulen);
           resultlen = result_buffer_size;
           rc = send_apdu (slot, apdu, apdulen, result, &resultlen, NULL);
           if (rc || resultlen < 2)
             {
               log_error ("apdu_send_direct(%d) for get response failed: %s\n",
                          slot, apdu_strerror (rc));
               unlock_slot (slot);
               xfree (result_buffer);
               return rc ? rc : SW_HOST_INCOMPLETE_CARD_RESPONSE;
             }
           sw = (result[resultlen-2] << 8) | result[resultlen-1];
           resultlen -= 2;
           if (DBG_CARD_IO)
             {
               log_debug ("     more: sw=%04X  datalen=%d\n",
                          sw, (unsigned int)resultlen);
               if (!retbuf && (sw==SW_SUCCESS || (sw&0xff00)==SW_MORE_DATA))
                 log_printhex ("     dump: ", result, resultlen);
             }
 
           if ((sw & 0xff00) == SW_MORE_DATA
               || sw == SW_SUCCESS
               || sw == SW_EOF_REACHED )
             {
               if (retbuf && resultlen)
                 {
                   if (p - *retbuf + resultlen > bufsize)
                     {
                       bufsize += resultlen > 4096? resultlen: 4096;
                       tmp = xtryrealloc (*retbuf, bufsize + 2);
                       if (!tmp)
                         {
                           unlock_slot (slot);
                           xfree (result_buffer);
                           return SW_HOST_OUT_OF_CORE;
                         }
                       p = tmp + (p - *retbuf);
                       *retbuf = tmp;
                     }
                   memcpy (p, result, resultlen);
                   p += resultlen;
                 }
             }
           else
             log_info ("apdu_send_direct(%d) "
                       "got unexpected status %04X from get response\n",
                       slot, sw);
         }
       while ((sw & 0xff00) == SW_MORE_DATA);
 
       if (retbuf)
         {
           *retbuflen = p - *retbuf;
           tmp = xtryrealloc (*retbuf, *retbuflen + 2);
           if (tmp)
             *retbuf = tmp;
         }
     }
   else
     {
       if (retbuf)
         {
           *retbuf = xtrymalloc ((resultlen? resultlen : 1)+2);
           if (!*retbuf)
             {
               unlock_slot (slot);
               xfree (result_buffer);
               return SW_HOST_OUT_OF_CORE;
             }
           *retbuflen = resultlen;
           memcpy (*retbuf, result, resultlen);
         }
     }
 
   unlock_slot (slot);
   xfree (result_buffer);
 
   /* Append the status word.  Note that we reserved the two extra
      bytes while allocating the buffer.  */
   if (retbuf)
     {
       (*retbuf)[(*retbuflen)++] = (sw >> 8);
       (*retbuf)[(*retbuflen)++] = sw;
     }
 
   if (DBG_CARD_IO && retbuf)
     log_printhex ("      dump: ", *retbuf, *retbuflen);
 
   return 0;
 }
diff --git a/scd/ccid-driver.c b/scd/ccid-driver.c
index 490569f14..8a68a443f 100644
--- a/scd/ccid-driver.c
+++ b/scd/ccid-driver.c
@@ -1,3877 +1,3879 @@
 /* ccid-driver.c - USB ChipCardInterfaceDevices driver
  * Copyright (C) 2003, 2004, 2005, 2006, 2007
  *               2008, 2009, 2013  Free Software Foundation, Inc.
  * Written by Werner Koch.
  *
  * This file is part of GnuPG.
  *
  * GnuPG is free software; you can redistribute it and/or modify
  * it under the terms of the GNU General Public License as published by
  * the Free Software Foundation; either version 3 of the License, or
  * (at your option) any later version.
  *
  * GnuPG is distributed in the hope that it will be useful,
  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  * GNU General Public License for more details.
  *
  * You should have received a copy of the GNU General Public License
  * along with this program; if not, see <http://www.gnu.org/licenses/>.
  *
  * ALTERNATIVELY, this file may be distributed under the terms of the
  * following license, in which case the provisions of this license are
  * required INSTEAD OF the GNU General Public License. If you wish to
  * allow use of your version of this file only under the terms of the
  * GNU General Public License, and not to allow others to use your
  * version of this file under the terms of the following license,
  * indicate your decision by deleting this paragraph and the license
  * below.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, and the entire permission notice in its entirety,
  *    including the disclaimer of warranties.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  * 3. The name of the author may not be used to endorse or promote
  *    products derived from this software without specific prior
  *    written permission.
  *
  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
  * OF THE POSSIBILITY OF SUCH DAMAGE.
  *
  * $Date$
  */
 
 
 /* CCID (ChipCardInterfaceDevices) is a specification for accessing
    smartcard via a reader connected to the USB.
 
    This is a limited driver allowing to use some CCID drivers directly
    without any other specila drivers. This is a fallback driver to be
    used when nothing else works or the system should be kept minimal
    for security reasons.  It makes use of the libusb library to gain
    portable access to USB.
 
    This driver has been tested with the SCM SCR335 and SPR532
    smartcard readers and requires that a reader implements APDU or
    TPDU level exchange and does fully automatic initialization.
 */
 
 #ifdef HAVE_CONFIG_H
 # include <config.h>
 #endif
 
 #if defined(HAVE_LIBUSB) || defined(TEST)
 
 #include <errno.h>
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
 #include <assert.h>
 #include <sys/types.h>
 #include <sys/stat.h>
 #include <fcntl.h>
 #include <time.h>
 #ifdef HAVE_PTH
 # include <pth.h>
 #endif /*HAVE_PTH*/
 
 #include <usb.h>
 
 #include "scdaemon.h"
 #include "iso7816.h"
 #include "ccid-driver.h"
 #include "../include/host2net.h"
 
 #define DRVNAME "ccid-driver: "
 
 /* Max length of buffer with out CCID message header of 10-byte
    Sending: 547 for RSA-4096 key import
         APDU size = 540 (24+4+256+256)
         commnd + lc + le = 4 + 3 + 0
    Sending: write data object of cardholder certificate
         APDU size = 2048
         commnd + lc + le = 4 + 3 + 0
    Receiving: 2048 for cardholder certificate
 */
 #define CCID_MAX_BUF (2048+7+10)
 
 /* Depending on how this source is used we either define our error
    output to go to stderr or to the jnlib based logging functions.  We
    use the latter when GNUPG_MAJOR_VERSION is defines or when both,
    GNUPG_SCD_MAIN_HEADER and HAVE_JNLIB_LOGGING are defined.
 */
 #if defined(GNUPG_MAJOR_VERSION) \
     || (defined(GNUPG_SCD_MAIN_HEADER) && defined(HAVE_JNLIB_LOGGING))
 
 #if defined(GNUPG_SCD_MAIN_HEADER)
 #  include GNUPG_SCD_MAIN_HEADER
 #elif GNUPG_MAJOR_VERSION == 1 /* GnuPG Version is < 1.9. */
 #  include "options.h"
 #  include "util.h"
 #  include "memory.h"
 #  include "cardglue.h"
 # else /* This is the modularized GnuPG 1.9 or later. */
 #  include "scdaemon.h"
 #endif
 
 
 # define DEBUGOUT(t)         do { if (debug_level) \
                                   log_debug (DRVNAME t); } while (0)
 # define DEBUGOUT_1(t,a)     do { if (debug_level) \
                                   log_debug (DRVNAME t,(a)); } while (0)
 # define DEBUGOUT_2(t,a,b)   do { if (debug_level) \
                                   log_debug (DRVNAME t,(a),(b)); } while (0)
 # define DEBUGOUT_3(t,a,b,c) do { if (debug_level) \
                                   log_debug (DRVNAME t,(a),(b),(c));} while (0)
 # define DEBUGOUT_4(t,a,b,c,d) do { if (debug_level) \
                               log_debug (DRVNAME t,(a),(b),(c),(d));} while (0)
 # define DEBUGOUT_CONT(t)    do { if (debug_level) \
                                   log_printf (t); } while (0)
 # define DEBUGOUT_CONT_1(t,a)  do { if (debug_level) \
                                   log_printf (t,(a)); } while (0)
 # define DEBUGOUT_CONT_2(t,a,b)   do { if (debug_level) \
                                   log_printf (t,(a),(b)); } while (0)
 # define DEBUGOUT_CONT_3(t,a,b,c) do { if (debug_level) \
                                   log_printf (t,(a),(b),(c)); } while (0)
 # define DEBUGOUT_LF()       do { if (debug_level) \
                                   log_printf ("\n"); } while (0)
 
 #else /* Other usage of this source - don't use gnupg specifics. */
 
 # define DEBUGOUT(t)          do { if (debug_level) \
                      fprintf (stderr, DRVNAME t); } while (0)
 # define DEBUGOUT_1(t,a)      do { if (debug_level) \
                      fprintf (stderr, DRVNAME t, (a)); } while (0)
 # define DEBUGOUT_2(t,a,b)    do { if (debug_level) \
                      fprintf (stderr, DRVNAME t, (a), (b)); } while (0)
 # define DEBUGOUT_3(t,a,b,c)  do { if (debug_level) \
                      fprintf (stderr, DRVNAME t, (a), (b), (c)); } while (0)
 # define DEBUGOUT_4(t,a,b,c,d)  do { if (debug_level) \
                      fprintf (stderr, DRVNAME t, (a), (b), (c), (d));} while(0)
 # define DEBUGOUT_CONT(t)     do { if (debug_level) \
                      fprintf (stderr, t); } while (0)
 # define DEBUGOUT_CONT_1(t,a) do { if (debug_level) \
                      fprintf (stderr, t, (a)); } while (0)
 # define DEBUGOUT_CONT_2(t,a,b) do { if (debug_level) \
                      fprintf (stderr, t, (a), (b)); } while (0)
 # define DEBUGOUT_CONT_3(t,a,b,c) do { if (debug_level) \
                      fprintf (stderr, t, (a), (b), (c)); } while (0)
 # define DEBUGOUT_LF()        do { if (debug_level) \
                      putc ('\n', stderr); } while (0)
 
 #endif /* This source not used by scdaemon. */
 
 
 #ifndef EAGAIN
 #define EAGAIN  EWOULDBLOCK
 #endif
 
 
 
 enum {
   RDR_to_PC_NotifySlotChange= 0x50,
   RDR_to_PC_HardwareError   = 0x51,
 
   PC_to_RDR_SetParameters   = 0x61,
   PC_to_RDR_IccPowerOn      = 0x62,
   PC_to_RDR_IccPowerOff     = 0x63,
   PC_to_RDR_GetSlotStatus   = 0x65,
   PC_to_RDR_Secure          = 0x69,
   PC_to_RDR_T0APDU          = 0x6a,
   PC_to_RDR_Escape          = 0x6b,
   PC_to_RDR_GetParameters   = 0x6c,
   PC_to_RDR_ResetParameters = 0x6d,
   PC_to_RDR_IccClock        = 0x6e,
   PC_to_RDR_XfrBlock        = 0x6f,
   PC_to_RDR_Mechanical      = 0x71,
   PC_to_RDR_Abort           = 0x72,
   PC_to_RDR_SetDataRate     = 0x73,
 
   RDR_to_PC_DataBlock       = 0x80,
   RDR_to_PC_SlotStatus      = 0x81,
   RDR_to_PC_Parameters      = 0x82,
   RDR_to_PC_Escape          = 0x83,
   RDR_to_PC_DataRate        = 0x84
 };
 
 
 /* Two macro to detect whether a CCID command has failed and to get
    the error code.  These macros assume that we can access the
    mandatory first 10 bytes of a CCID message in BUF. */
 #define CCID_COMMAND_FAILED(buf) ((buf)[7] & 0x40)
 #define CCID_ERROR_CODE(buf)     (((unsigned char *)(buf))[8])
 
 
 /* We need to know the vendor to do some hacks. */
 enum {
   VENDOR_CHERRY = 0x046a,
   VENDOR_SCM    = 0x04e6,
   VENDOR_OMNIKEY= 0x076b,
   VENDOR_GEMPC  = 0x08e6,
   VENDOR_VEGA   = 0x0982,
   VENDOR_REINER = 0x0c4b,
   VENDOR_KAAN   = 0x0d46,
   VENDOR_VASCO  = 0x1a44,
   VENDOR_FSIJ   = 0x234b,
 };
 
 /* Some product ids.  */
 #define SCM_SCR331      0xe001
 #define SCM_SCR331DI    0x5111
 #define SCM_SCR335      0x5115
 #define SCM_SCR3320     0x5117
 #define SCM_SPR532      0xe003
 #define CHERRY_ST2000   0x003e
 #define VASCO_920       0x0920
 #define GEMPC_PINPAD    0x3478
 #define GEMPC_CT30      0x3437
 #define VEGA_ALPHA      0x0008
 #define CYBERJACK_GO    0x0504
 
 /* A list and a table with special transport descriptions. */
 enum {
   TRANSPORT_USB    = 0, /* Standard USB transport. */
   TRANSPORT_CM4040 = 1  /* As used by the Cardman 4040. */
 };
 
 static struct
 {
   char *name;  /* Device name. */
   int  type;
 
 } transports[] = {
   { "/dev/cmx0", TRANSPORT_CM4040 },
   { "/dev/cmx1", TRANSPORT_CM4040 },
   { NULL },
 };
 
 
 /* Store information on the driver's state.  A pointer to such a
    structure is used as handle for most functions. */
 struct ccid_driver_s
 {
   usb_dev_handle *idev;
   char *rid;
   int dev_fd;  /* -1 for USB transport or file descriptor of the
                    transport device. */
   unsigned short id_vendor;
   unsigned short id_product;
   unsigned short bcd_device;
   int ifc_no;
   int ep_bulk_out;
   int ep_bulk_in;
   int ep_intr;
   int seqno;
   unsigned char t1_ns;
   unsigned char t1_nr;
   unsigned char nonnull_nad;
   int max_ifsd;
   int max_ccid_msglen;
   int ifsc;
   unsigned char apdu_level:2;     /* Reader supports short APDU level
                                      exchange.  With a value of 2 short
                                      and extended level is supported.*/
   unsigned int auto_voltage:1;
   unsigned int auto_param:1;
   unsigned int auto_pps:1;
   unsigned int auto_ifsd:1;
   unsigned int powered_off:1;
   unsigned int has_pinpad:2;
   unsigned int enodev_seen:1;
 
   time_t last_progress; /* Last time we sent progress line.  */
 
   /* The progress callback and its first arg as supplied to
      ccid_set_progress_cb.  */
   void (*progress_cb)(void *, const char *, int, int, int);
   void *progress_cb_arg;
 };
 
 
 static int initialized_usb; /* Tracks whether USB has been initialized. */
 static int debug_level;     /* Flag to control the debug output.
                                0 = No debugging
                                1 = USB I/O info
                                2 = Level 1 + T=1 protocol tracing
                                3 = Level 2 + USB/I/O tracing of SlotStatus.
                               */
 
 
 static unsigned int compute_edc (const unsigned char *data, size_t datalen,
                                  int use_crc);
 static int bulk_out (ccid_driver_t handle, unsigned char *msg, size_t msglen,
                      int no_debug);
 static int bulk_in (ccid_driver_t handle, unsigned char *buffer, size_t length,
                     size_t *nread, int expected_type, int seqno, int timeout,
                     int no_debug);
 static int abort_cmd (ccid_driver_t handle, int seqno);
 static int send_escape_cmd (ccid_driver_t handle, const unsigned char *data,
                             size_t datalen, unsigned char *result,
                             size_t resultmax, size_t *resultlen);
 
 /* Convert a little endian stored 4 byte value into an unsigned
    integer. */
 static unsigned int
 convert_le_u32 (const unsigned char *buf)
 {
   return buf[0] | (buf[1] << 8) | (buf[2] << 16) | ((unsigned int)buf[3] << 24);
 }
 
 
 /* Convert a little endian stored 2 byte value into an unsigned
    integer. */
 static unsigned int
 convert_le_u16 (const unsigned char *buf)
 {
   return buf[0] | (buf[1] << 8);
 }
 
 static void
 set_msg_len (unsigned char *msg, unsigned int length)
 {
   msg[1] = length;
   msg[2] = length >> 8;
   msg[3] = length >> 16;
   msg[4] = length >> 24;
 }
 
 
 static void
 my_sleep (int seconds)
 {
 #ifdef HAVE_PTH
   /* With Pth we also call the standard sleep(0) so that the process
      may give up its timeslot.  */
   if (!seconds)
     {
 # ifdef HAVE_W32_SYSTEM
       Sleep (0);
 # else
       sleep (0);
 # endif
     }
   pth_sleep (seconds);
 #else
 # ifdef HAVE_W32_SYSTEM
   Sleep (seconds*1000);
 # else
   sleep (seconds);
 # endif
 #endif
 }
 
 static void
 print_progress (ccid_driver_t handle)
 {
   time_t ct = time (NULL);
 
   /* We don't want to print progress lines too often. */
   if (ct == handle->last_progress)
     return;
 
   if (handle->progress_cb)
     handle->progress_cb (handle->progress_cb_arg, "card_busy", 'w', 0, 0);
 
   handle->last_progress = ct;
 }
 
 
 
 /* Pint an error message for a failed CCID command including a textual
    error code.  MSG shall be the CCID message at a minimum of 10 bytes. */
 static void
 print_command_failed (const unsigned char *msg)
 {
   const char *t;
   char buffer[100];
   int ec;
 
   if (!debug_level)
     return;
 
   ec = CCID_ERROR_CODE (msg);
   switch (ec)
     {
     case 0x00: t = "Command not supported"; break;
 
     case 0xE0: t = "Slot busy"; break;
     case 0xEF: t = "PIN cancelled"; break;
     case 0xF0: t = "PIN timeout"; break;
 
     case 0xF2: t = "Automatic sequence ongoing"; break;
     case 0xF3: t = "Deactivated Protocol"; break;
     case 0xF4: t = "Procedure byte conflict"; break;
     case 0xF5: t = "ICC class not supported"; break;
     case 0xF6: t = "ICC protocol not supported"; break;
     case 0xF7: t = "Bad checksum in ATR"; break;
     case 0xF8: t = "Bad TS in ATR"; break;
 
     case 0xFB: t = "An all inclusive hardware error occurred"; break;
     case 0xFC: t = "Overrun error while talking to the ICC"; break;
     case 0xFD: t = "Parity error while talking to the ICC"; break;
     case 0xFE: t = "CCID timed out while talking to the ICC"; break;
     case 0xFF: t = "Host aborted the current activity"; break;
 
     default:
       if (ec > 0 && ec < 128)
         sprintf (buffer, "Parameter error at offset %d", ec);
       else
         sprintf (buffer, "Error code %02X", ec);
       t = buffer;
       break;
     }
   DEBUGOUT_1 ("CCID command failed: %s\n", t);
 }
 
 
 static void
 print_pr_data (const unsigned char *data, size_t datalen, size_t off)
 {
   int any = 0;
 
   for (; off < datalen; off++)
     {
       if (!any || !(off % 16))
         {
           if (any)
             DEBUGOUT_LF ();
           DEBUGOUT_1 ("  [%04lu] ", (unsigned long) off);
         }
       DEBUGOUT_CONT_1 (" %02X", data[off]);
       any = 1;
     }
   if (any && (off % 16))
     DEBUGOUT_LF ();
 }
 
 
 static void
 print_p2r_header (const char *name, const unsigned char *msg, size_t msglen)
 {
   DEBUGOUT_1 ("%s:\n", name);
   if (msglen < 7)
     return;
   DEBUGOUT_1 ("  dwLength ..........: %u\n", convert_le_u32 (msg+1));
   DEBUGOUT_1 ("  bSlot .............: %u\n", msg[5]);
   DEBUGOUT_1 ("  bSeq ..............: %u\n", msg[6]);
 }
 
 
 static void
 print_p2r_iccpoweron (const unsigned char *msg, size_t msglen)
 {
   print_p2r_header ("PC_to_RDR_IccPowerOn", msg, msglen);
   if (msglen < 10)
     return;
   DEBUGOUT_2 ("  bPowerSelect ......: 0x%02x (%s)\n", msg[7],
               msg[7] == 0? "auto":
               msg[7] == 1? "5.0 V":
               msg[7] == 2? "3.0 V":
               msg[7] == 3? "1.8 V":"");
   print_pr_data (msg, msglen, 8);
 }
 
 
 static void
 print_p2r_iccpoweroff (const unsigned char *msg, size_t msglen)
 {
   print_p2r_header ("PC_to_RDR_IccPowerOff", msg, msglen);
   print_pr_data (msg, msglen, 7);
 }
 
 
 static void
 print_p2r_getslotstatus (const unsigned char *msg, size_t msglen)
 {
   print_p2r_header ("PC_to_RDR_GetSlotStatus", msg, msglen);
   print_pr_data (msg, msglen, 7);
 }
 
 
 static void
 print_p2r_xfrblock (const unsigned char *msg, size_t msglen)
 {
   unsigned int val;
 
   print_p2r_header ("PC_to_RDR_XfrBlock", msg, msglen);
   if (msglen < 10)
     return;
   DEBUGOUT_1 ("  bBWI ..............: 0x%02x\n", msg[7]);
   val = convert_le_u16 (msg+8);
   DEBUGOUT_2 ("  wLevelParameter ...: 0x%04x%s\n", val,
               val == 1? " (continued)":
               val == 2? " (continues+ends)":
               val == 3? " (continues+continued)":
               val == 16? " (DataBlock-expected)":"");
   print_pr_data (msg, msglen, 10);
 }
 
 
 static void
 print_p2r_getparameters (const unsigned char *msg, size_t msglen)
 {
   print_p2r_header ("PC_to_RDR_GetParameters", msg, msglen);
   print_pr_data (msg, msglen, 7);
 }
 
 
 static void
 print_p2r_resetparameters (const unsigned char *msg, size_t msglen)
 {
   print_p2r_header ("PC_to_RDR_ResetParameters", msg, msglen);
   print_pr_data (msg, msglen, 7);
 }
 
 
 static void
 print_p2r_setparameters (const unsigned char *msg, size_t msglen)
 {
   print_p2r_header ("PC_to_RDR_SetParameters", msg, msglen);
   if (msglen < 10)
     return;
   DEBUGOUT_1 ("  bProtocolNum ......: 0x%02x\n", msg[7]);
   print_pr_data (msg, msglen, 8);
 }
 
 
 static void
 print_p2r_escape (const unsigned char *msg, size_t msglen)
 {
   print_p2r_header ("PC_to_RDR_Escape", msg, msglen);
   print_pr_data (msg, msglen, 7);
 }
 
 
 static void
 print_p2r_iccclock (const unsigned char *msg, size_t msglen)
 {
   print_p2r_header ("PC_to_RDR_IccClock", msg, msglen);
   if (msglen < 10)
     return;
   DEBUGOUT_1 ("  bClockCommand .....: 0x%02x\n", msg[7]);
   print_pr_data (msg, msglen, 8);
 }
 
 
 static void
 print_p2r_to0apdu (const unsigned char *msg, size_t msglen)
 {
   print_p2r_header ("PC_to_RDR_T0APDU", msg, msglen);
   if (msglen < 10)
     return;
   DEBUGOUT_1 ("  bmChanges .........: 0x%02x\n", msg[7]);
   DEBUGOUT_1 ("  bClassGetResponse .: 0x%02x\n", msg[8]);
   DEBUGOUT_1 ("  bClassEnvelope ....: 0x%02x\n", msg[9]);
   print_pr_data (msg, msglen, 10);
 }
 
 
 static void
 print_p2r_secure (const unsigned char *msg, size_t msglen)
 {
   unsigned int val;
 
   print_p2r_header ("PC_to_RDR_Secure", msg, msglen);
   if (msglen < 10)
     return;
   DEBUGOUT_1 ("  bBMI ..............: 0x%02x\n", msg[7]);
   val = convert_le_u16 (msg+8);
   DEBUGOUT_2 ("  wLevelParameter ...: 0x%04x%s\n", val,
               val == 1? " (continued)":
               val == 2? " (continues+ends)":
               val == 3? " (continues+continued)":
               val == 16? " (DataBlock-expected)":"");
   print_pr_data (msg, msglen, 10);
 }
 
 
 static void
 print_p2r_mechanical (const unsigned char *msg, size_t msglen)
 {
   print_p2r_header ("PC_to_RDR_Mechanical", msg, msglen);
   if (msglen < 10)
     return;
   DEBUGOUT_1 ("  bFunction .........: 0x%02x\n", msg[7]);
   print_pr_data (msg, msglen, 8);
 }
 
 
 static void
 print_p2r_abort (const unsigned char *msg, size_t msglen)
 {
   print_p2r_header ("PC_to_RDR_Abort", msg, msglen);
   print_pr_data (msg, msglen, 7);
 }
 
 
 static void
 print_p2r_setdatarate (const unsigned char *msg, size_t msglen)
 {
   print_p2r_header ("PC_to_RDR_SetDataRate", msg, msglen);
   if (msglen < 10)
     return;
   print_pr_data (msg, msglen, 7);
 }
 
 
 static void
 print_p2r_unknown (const unsigned char *msg, size_t msglen)
 {
   print_p2r_header ("Unknown PC_to_RDR command", msg, msglen);
   if (msglen < 10)
     return;
   print_pr_data (msg, msglen, 0);
 }
 
 
 static void
 print_r2p_header (const char *name, const unsigned char *msg, size_t msglen)
 {
   DEBUGOUT_1 ("%s:\n", name);
   if (msglen < 9)
     return;
   DEBUGOUT_1 ("  dwLength ..........: %u\n", convert_le_u32 (msg+1));
   DEBUGOUT_1 ("  bSlot .............: %u\n", msg[5]);
   DEBUGOUT_1 ("  bSeq ..............: %u\n", msg[6]);
   DEBUGOUT_1 ("  bStatus ...........: %u\n", msg[7]);
   if (msg[8])
     DEBUGOUT_1 ("  bError ............: %u\n", msg[8]);
 }
 
 
 static void
 print_r2p_datablock (const unsigned char *msg, size_t msglen)
 {
   print_r2p_header ("RDR_to_PC_DataBlock", msg, msglen);
   if (msglen < 10)
     return;
   if (msg[9])
     DEBUGOUT_2 ("  bChainParameter ...: 0x%02x%s\n", msg[9],
                 msg[9] == 1? " (continued)":
                 msg[9] == 2? " (continues+ends)":
                 msg[9] == 3? " (continues+continued)":
                 msg[9] == 16? " (XferBlock-expected)":"");
   print_pr_data (msg, msglen, 10);
 }
 
 
 static void
 print_r2p_slotstatus (const unsigned char *msg, size_t msglen)
 {
   print_r2p_header ("RDR_to_PC_SlotStatus", msg, msglen);
   if (msglen < 10)
     return;
   DEBUGOUT_2 ("  bClockStatus ......: 0x%02x%s\n", msg[9],
               msg[9] == 0? " (running)":
               msg[9] == 1? " (stopped-L)":
               msg[9] == 2? " (stopped-H)":
               msg[9] == 3? " (stopped)":"");
   print_pr_data (msg, msglen, 10);
 }
 
 
 static void
 print_r2p_parameters (const unsigned char *msg, size_t msglen)
 {
   print_r2p_header ("RDR_to_PC_Parameters", msg, msglen);
   if (msglen < 10)
     return;
 
   DEBUGOUT_1 ("  protocol ..........: T=%d\n", msg[9]);
   if (msglen == 17 && msg[9] == 1)
     {
       /* Protocol T=1.  */
       DEBUGOUT_1 ("  bmFindexDindex ....: %02X\n", msg[10]);
       DEBUGOUT_1 ("  bmTCCKST1 .........: %02X\n", msg[11]);
       DEBUGOUT_1 ("  bGuardTimeT1 ......: %02X\n", msg[12]);
       DEBUGOUT_1 ("  bmWaitingIntegersT1: %02X\n", msg[13]);
       DEBUGOUT_1 ("  bClockStop ........: %02X\n", msg[14]);
       DEBUGOUT_1 ("  bIFSC .............: %d\n", msg[15]);
       DEBUGOUT_1 ("  bNadValue .........: %d\n", msg[16]);
     }
   else
     print_pr_data (msg, msglen, 10);
 }
 
 
 static void
 print_r2p_escape (const unsigned char *msg, size_t msglen)
 {
   print_r2p_header ("RDR_to_PC_Escape", msg, msglen);
   if (msglen < 10)
     return;
   DEBUGOUT_1 ("  buffer[9] .........: %02X\n", msg[9]);
   print_pr_data (msg, msglen, 10);
 }
 
 
 static void
 print_r2p_datarate (const unsigned char *msg, size_t msglen)
 {
   print_r2p_header ("RDR_to_PC_DataRate", msg, msglen);
   if (msglen < 10)
     return;
   if (msglen >= 18)
     {
       DEBUGOUT_1 ("  dwClockFrequency ..: %u\n", convert_le_u32 (msg+10));
       DEBUGOUT_1 ("  dwDataRate ..... ..: %u\n", convert_le_u32 (msg+14));
       print_pr_data (msg, msglen, 18);
     }
   else
     print_pr_data (msg, msglen, 10);
 }
 
 
 static void
 print_r2p_unknown (const unsigned char *msg, size_t msglen)
 {
   print_r2p_header ("Unknown RDR_to_PC command", msg, msglen);
   if (msglen < 10)
     return;
   DEBUGOUT_1 ("  bMessageType ......: %02X\n", msg[0]);
   DEBUGOUT_1 ("  buffer[9] .........: %02X\n", msg[9]);
   print_pr_data (msg, msglen, 10);
 }
 
 
 /* Given a handle used for special transport prepare it for use.  In
    particular setup all information in way that resembles what
    parse_cccid_descriptor does. */
 static void
 prepare_special_transport (ccid_driver_t handle)
 {
   assert (!handle->id_vendor);
 
   handle->nonnull_nad = 0;
   handle->auto_ifsd = 0;
   handle->max_ifsd = 32;
   handle->max_ccid_msglen = CCID_MAX_BUF;
   handle->has_pinpad = 0;
   handle->apdu_level = 0;
   switch (handle->id_product)
     {
     case TRANSPORT_CM4040:
       DEBUGOUT ("setting up transport for CardMan 4040\n");
       handle->apdu_level = 1;
       break;
 
     default: assert (!"transport not defined");
     }
 }
 
 /* Parse a CCID descriptor, optionally print all available features
    and test whether this reader is usable by this driver.  Returns 0
    if it is usable.
 
    Note, that this code is based on the one in lsusb.c of the
    usb-utils package, I wrote on 2003-09-01. -wk. */
 static int
 parse_ccid_descriptor (ccid_driver_t handle,
                        const unsigned char *buf, size_t buflen)
 {
   unsigned int i;
   unsigned int us;
   int have_t1 = 0, have_tpdu=0;
 
 
   handle->nonnull_nad = 0;
   handle->auto_ifsd = 0;
   handle->max_ifsd = 32;
   handle->has_pinpad = 0;
   handle->apdu_level = 0;
   handle->auto_voltage = 0;
   handle->auto_param = 0;
   handle->auto_pps = 0;
   DEBUGOUT_3 ("idVendor: %04X  idProduct: %04X  bcdDevice: %04X\n",
               handle->id_vendor, handle->id_product, handle->bcd_device);
   if (buflen < 54 || buf[0] < 54)
     {
       DEBUGOUT ("CCID device descriptor is too short\n");
       return -1;
     }
 
   DEBUGOUT   ("ChipCard Interface Descriptor:\n");
   DEBUGOUT_1 ("  bLength             %5u\n", buf[0]);
   DEBUGOUT_1 ("  bDescriptorType     %5u\n", buf[1]);
   DEBUGOUT_2 ("  bcdCCID             %2x.%02x", buf[3], buf[2]);
     if (buf[3] != 1 || buf[2] != 0)
       DEBUGOUT_CONT("  (Warning: Only accurate for version 1.0)");
   DEBUGOUT_LF ();
 
   DEBUGOUT_1 ("  nMaxSlotIndex       %5u\n", buf[4]);
   DEBUGOUT_2 ("  bVoltageSupport     %5u  %s\n",
               buf[5], (buf[5] == 1? "5.0V" : buf[5] == 2? "3.0V"
                        : buf[5] == 3? "1.8V":"?"));
 
   us = convert_le_u32 (buf+6);
   DEBUGOUT_1 ("  dwProtocols         %5u ", us);
   if ((us & 1))
     DEBUGOUT_CONT (" T=0");
   if ((us & 2))
     {
       DEBUGOUT_CONT (" T=1");
       have_t1 = 1;
     }
   if ((us & ~3))
     DEBUGOUT_CONT (" (Invalid values detected)");
   DEBUGOUT_LF ();
 
   us = convert_le_u32(buf+10);
   DEBUGOUT_1 ("  dwDefaultClock      %5u\n", us);
   us = convert_le_u32(buf+14);
   DEBUGOUT_1 ("  dwMaxiumumClock     %5u\n", us);
   DEBUGOUT_1 ("  bNumClockSupported  %5u\n", buf[18]);
   us = convert_le_u32(buf+19);
   DEBUGOUT_1 ("  dwDataRate        %7u bps\n", us);
   us = convert_le_u32(buf+23);
   DEBUGOUT_1 ("  dwMaxDataRate     %7u bps\n", us);
   DEBUGOUT_1 ("  bNumDataRatesSupp.  %5u\n", buf[27]);
 
   us = convert_le_u32(buf+28);
   DEBUGOUT_1 ("  dwMaxIFSD           %5u\n", us);
   handle->max_ifsd = us;
 
   us = convert_le_u32(buf+32);
   DEBUGOUT_1 ("  dwSyncProtocols  %08X ", us);
   if ((us&1))
     DEBUGOUT_CONT ( " 2-wire");
   if ((us&2))
     DEBUGOUT_CONT ( " 3-wire");
   if ((us&4))
     DEBUGOUT_CONT ( " I2C");
   DEBUGOUT_LF ();
 
   us = convert_le_u32(buf+36);
   DEBUGOUT_1 ("  dwMechanical     %08X ", us);
   if ((us & 1))
     DEBUGOUT_CONT (" accept");
   if ((us & 2))
     DEBUGOUT_CONT (" eject");
   if ((us & 4))
     DEBUGOUT_CONT (" capture");
   if ((us & 8))
     DEBUGOUT_CONT (" lock");
   DEBUGOUT_LF ();
 
   us = convert_le_u32(buf+40);
   DEBUGOUT_1 ("  dwFeatures       %08X\n", us);
   if ((us & 0x0002))
     {
       DEBUGOUT ("    Auto configuration based on ATR (assumes auto voltage)\n");
       handle->auto_voltage = 1;
     }
   if ((us & 0x0004))
     DEBUGOUT ("    Auto activation on insert\n");
   if ((us & 0x0008))
     {
       DEBUGOUT ("    Auto voltage selection\n");
       handle->auto_voltage = 1;
     }
   if ((us & 0x0010))
     DEBUGOUT ("    Auto clock change\n");
   if ((us & 0x0020))
     DEBUGOUT ("    Auto baud rate change\n");
   if ((us & 0x0040))
     {
       DEBUGOUT ("    Auto parameter negotiation made by CCID\n");
       handle->auto_param = 1;
     }
   else if ((us & 0x0080))
     {
       DEBUGOUT ("    Auto PPS made by CCID\n");
       handle->auto_pps = 1;
     }
   if ((us & (0x0040 | 0x0080)) == (0x0040 | 0x0080))
     DEBUGOUT ("    WARNING: conflicting negotiation features\n");
 
   if ((us & 0x0100))
     DEBUGOUT ("    CCID can set ICC in clock stop mode\n");
   if ((us & 0x0200))
     {
       DEBUGOUT ("    NAD value other than 0x00 accepted\n");
       handle->nonnull_nad = 1;
     }
   if ((us & 0x0400))
     {
       DEBUGOUT ("    Auto IFSD exchange\n");
       handle->auto_ifsd = 1;
     }
 
   if ((us & 0x00010000))
     {
       DEBUGOUT ("    TPDU level exchange\n");
       have_tpdu = 1;
     }
   else if ((us & 0x00020000))
     {
       DEBUGOUT ("    Short APDU level exchange\n");
       handle->apdu_level = 1;
     }
   else if ((us & 0x00040000))
     {
       DEBUGOUT ("    Short and extended APDU level exchange\n");
       handle->apdu_level = 2;
     }
   else if ((us & 0x00070000))
     DEBUGOUT ("    WARNING: conflicting exchange levels\n");
 
   us = convert_le_u32(buf+44);
   DEBUGOUT_1 ("  dwMaxCCIDMsgLen     %5u\n", us);
   handle->max_ccid_msglen = us;
 
   DEBUGOUT (  "  bClassGetResponse    ");
   if (buf[48] == 0xff)
     DEBUGOUT_CONT ("echo\n");
   else
     DEBUGOUT_CONT_1 ("  %02X\n", buf[48]);
 
   DEBUGOUT (  "  bClassEnvelope       ");
   if (buf[49] == 0xff)
     DEBUGOUT_CONT ("echo\n");
   else
     DEBUGOUT_CONT_1 ("  %02X\n", buf[48]);
 
   DEBUGOUT (  "  wlcdLayout           ");
   if (!buf[50] && !buf[51])
     DEBUGOUT_CONT ("none\n");
   else
     DEBUGOUT_CONT_2 ("%u cols %u lines\n", buf[50], buf[51]);
 
   DEBUGOUT_1 ("  bPINSupport         %5u ", buf[52]);
   if ((buf[52] & 1))
     {
       DEBUGOUT_CONT ( " verification");
       handle->has_pinpad |= 1;
     }
   if ((buf[52] & 2))
     {
       DEBUGOUT_CONT ( " modification");
       handle->has_pinpad |= 2;
     }
   DEBUGOUT_LF ();
 
   DEBUGOUT_1 ("  bMaxCCIDBusySlots   %5u\n", buf[53]);
 
   if (buf[0] > 54) {
     DEBUGOUT ("  junk             ");
     for (i=54; i < buf[0]-54; i++)
       DEBUGOUT_CONT_1 (" %02X", buf[i]);
     DEBUGOUT_LF ();
   }
 
   if (!have_t1 || !(have_tpdu  || handle->apdu_level))
     {
       DEBUGOUT ("this drivers requires that the reader supports T=1, "
                 "TPDU or APDU level exchange - this is not available\n");
       return -1;
     }
 
 
   /* SCM drivers get stuck in their internal USB stack if they try to
      send a frame of n*wMaxPacketSize back to us.  Given that
      wMaxPacketSize is 64 for these readers we set the IFSD to a value
      lower than that:
         64 - 10 CCID header -  4 T1frame - 2 reserved = 48
      Product Ids:
 	 0xe001 - SCR 331
 	 0x5111 - SCR 331-DI
 	 0x5115 - SCR 335
 	 0xe003 - SPR 532
      The
          0x5117 - SCR 3320 USB ID-000 reader
      seems to be very slow but enabling this workaround boosts the
      performance to a a more or less acceptable level (tested by David).
 
   */
   if (handle->id_vendor == VENDOR_SCM
       && handle->max_ifsd > 48
       && (  (handle->id_product == SCM_SCR331   && handle->bcd_device < 0x0516)
           ||(handle->id_product == SCM_SCR331DI && handle->bcd_device < 0x0620)
           ||(handle->id_product == SCM_SCR335   && handle->bcd_device < 0x0514)
           ||(handle->id_product == SCM_SPR532   && handle->bcd_device < 0x0504)
           ||(handle->id_product == SCM_SCR3320  && handle->bcd_device < 0x0522)
           ))
     {
       DEBUGOUT ("enabling workaround for buggy SCM readers\n");
       handle->max_ifsd = 48;
     }
 
   if (handle->id_vendor == VENDOR_GEMPC && handle->id_product == GEMPC_CT30)
     {
       DEBUGOUT ("enabling product quirk: disable non-null NAD\n");
       handle->nonnull_nad = 0;
     }
 
   return 0;
 }
 
 
 static char *
 get_escaped_usb_string (usb_dev_handle *idev, int idx,
                         const char *prefix, const char *suffix)
 {
   int rc;
   unsigned char buf[280];
   unsigned char *s;
   unsigned int langid;
   size_t i, n, len;
   char *result;
 
   if (!idx)
     return NULL;
 
   /* Fixme: The next line is for the current Valgrid without support
      for USB IOCTLs. */
   memset (buf, 0, sizeof buf);
 
   /* First get the list of supported languages and use the first one.
      If we do don't find it we try to use English.  Note that this is
      all in a 2 bute Unicode encoding using little endian. */
   rc = usb_control_msg (idev, USB_ENDPOINT_IN, USB_REQ_GET_DESCRIPTOR,
                         (USB_DT_STRING << 8), 0,
                         (char*)buf, sizeof buf, 1000 /* ms timeout */);
   if (rc < 4)
     langid = 0x0409; /* English.  */
   else
     langid = (buf[3] << 8) | buf[2];
 
   rc = usb_control_msg (idev, USB_ENDPOINT_IN, USB_REQ_GET_DESCRIPTOR,
                         (USB_DT_STRING << 8) + idx, langid,
                         (char*)buf, sizeof buf, 1000 /* ms timeout */);
   if (rc < 2 || buf[1] != USB_DT_STRING)
     return NULL; /* Error or not a string. */
   len = buf[0];
   if (len > rc)
     return NULL; /* Larger than our buffer. */
 
   for (s=buf+2, i=2, n=0; i+1 < len; i += 2, s += 2)
     {
       if (s[1])
         n++; /* High byte set. */
       else if (*s <= 0x20 || *s >= 0x7f || *s == '%' || *s == ':')
         n += 3 ;
       else
         n++;
     }
 
   result = malloc (strlen (prefix) + n + strlen (suffix) + 1);
   if (!result)
     return NULL;
 
   strcpy (result, prefix);
   n = strlen (prefix);
   for (s=buf+2, i=2; i+1 < len; i += 2, s += 2)
     {
       if (s[1])
         result[n++] = '\xff'; /* High byte set. */
       else if (*s <= 0x20 || *s >= 0x7f || *s == '%' || *s == ':')
         {
           sprintf (result+n, "%%%02X", *s);
           n += 3;
         }
       else
         result[n++] = *s;
     }
   strcpy (result+n, suffix);
 
   return result;
 }
 
 /* This function creates an reader id to be used to find the same
    physical reader after a reset.  It returns an allocated and possibly
    percent escaped string or NULL if not enough memory is available. */
 static char *
 make_reader_id (usb_dev_handle *idev,
                 unsigned int vendor, unsigned int product,
                 unsigned char serialno_index)
 {
   char *rid;
   char prefix[20];
 
   sprintf (prefix, "%04X:%04X:", (vendor & 0xffff), (product & 0xffff));
   rid = get_escaped_usb_string (idev, serialno_index, prefix, ":0");
   if (!rid)
     {
       rid = malloc (strlen (prefix) + 3 + 1);
       if (!rid)
         return NULL;
       strcpy (rid, prefix);
       strcat (rid, "X:0");
     }
   return rid;
 }
 
 
 /* Helper to find the endpoint from an interface descriptor.  */
 static int
 find_endpoint (struct usb_interface_descriptor *ifcdesc, int mode)
 {
   int no;
   int want_bulk_in = 0;
 
   if (mode == 1)
     want_bulk_in = 0x80;
   for (no=0; no < ifcdesc->bNumEndpoints; no++)
     {
       struct usb_endpoint_descriptor *ep = ifcdesc->endpoint + no;
       if (ep->bDescriptorType != USB_DT_ENDPOINT)
         ;
       else if (mode == 2
           && ((ep->bmAttributes & USB_ENDPOINT_TYPE_MASK)
               == USB_ENDPOINT_TYPE_INTERRUPT)
           && (ep->bEndpointAddress & 0x80))
         return (ep->bEndpointAddress & 0x0f);
       else if (((ep->bmAttributes & USB_ENDPOINT_TYPE_MASK)
                 == USB_ENDPOINT_TYPE_BULK)
                && (ep->bEndpointAddress & 0x80) == want_bulk_in)
         return (ep->bEndpointAddress & 0x0f);
     }
   /* Should never happen.  */
   return mode == 2? 0x83 : mode == 1? 0x82 :1;
 }
 
 
 /* Helper for scan_or_find_devices. This function returns true if a
    requested device has been found or the caller should stop scanning
    for other reasons. */
 static int
 scan_or_find_usb_device (int scan_mode,
                          int *readerno, int *count, char **rid_list,
                          const char *readerid,
                          struct usb_device *dev,
                          char **r_rid,
                          struct usb_device **r_dev,
                          usb_dev_handle **r_idev,
                          unsigned char **ifcdesc_extra,
                          size_t *ifcdesc_extra_len,
                          int *interface_number,
                          int *ep_bulk_out, int *ep_bulk_in, int *ep_intr)
 {
   int cfg_no;
   int ifc_no;
   int set_no;
   struct usb_config_descriptor *config;
   struct usb_interface *interface;
   struct usb_interface_descriptor *ifcdesc;
   char *rid;
   usb_dev_handle *idev;
 
   *r_idev = NULL;
 
   for (cfg_no=0; cfg_no < dev->descriptor.bNumConfigurations; cfg_no++)
     {
       config = dev->config + cfg_no;
       if(!config)
         continue;
 
       for (ifc_no=0; ifc_no < config->bNumInterfaces; ifc_no++)
         {
           interface = config->interface + ifc_no;
           if (!interface)
             continue;
 
           for (set_no=0; set_no < interface->num_altsetting; set_no++)
             {
               ifcdesc = (interface->altsetting + set_no);
               /* The second condition is for older SCM SPR 532 who did
                  not know about the assigned CCID class.  The third
                  condition does the same for a Cherry SmartTerminal
                  ST-2000.  Instead of trying to interpret the strings
                  we simply check the product ID. */
               if (ifcdesc && ifcdesc->extra
                   && ((ifcdesc->bInterfaceClass == 11
                        && ifcdesc->bInterfaceSubClass == 0
                        && ifcdesc->bInterfaceProtocol == 0)
                       || (ifcdesc->bInterfaceClass == 255
                           && dev->descriptor.idVendor == VENDOR_SCM
                           && dev->descriptor.idProduct == SCM_SPR532)
                       || (ifcdesc->bInterfaceClass == 255
                           && dev->descriptor.idVendor == VENDOR_CHERRY
                           && dev->descriptor.idProduct == CHERRY_ST2000)))
                 {
                   idev = usb_open (dev);
                   if (!idev)
                     {
                       DEBUGOUT_1 ("usb_open failed: %s\n",
                                   strerror (errno));
                       continue; /* with next setting. */
                     }
 
                   rid = make_reader_id (idev,
                                         dev->descriptor.idVendor,
                                         dev->descriptor.idProduct,
                                         dev->descriptor.iSerialNumber);
                   if (rid)
                     {
                       if (scan_mode)
                         {
                           char *p;
 
                           /* We are collecting infos about all
                              available CCID readers.  Store them and
                              continue. */
                           DEBUGOUT_2 ("found CCID reader %d (ID=%s)\n",
                                       *count, rid );
                           p = malloc ((*rid_list? strlen (*rid_list):0) + 1
                                       + strlen (rid) + 1);
                           if (p)
                             {
                               *p = 0;
                               if (*rid_list)
                                 {
                                   strcat (p, *rid_list);
                                   free (*rid_list);
                                 }
                               strcat (p, rid);
                               strcat (p, "\n");
                               *rid_list = p;
                             }
                           else /* Out of memory. */
                             free (rid);
 
                           rid = NULL;
                           ++*count;
                         }
                       else if (!*readerno
                                || (*readerno < 0
                                    && readerid
                                    && !strcmp (readerid, rid)))
                         {
                           /* We found the requested reader. */
                           if (ifcdesc_extra && ifcdesc_extra_len)
                             {
                               *ifcdesc_extra = malloc (ifcdesc
                                                        ->extralen);
                               if (!*ifcdesc_extra)
                                 {
                                   usb_close (idev);
                                   free (rid);
                                   return 1; /* Out of core. */
                                 }
                               memcpy (*ifcdesc_extra, ifcdesc->extra,
                                       ifcdesc->extralen);
                               *ifcdesc_extra_len = ifcdesc->extralen;
                             }
 
                           if (interface_number)
                             *interface_number = (ifcdesc->bInterfaceNumber);
 
                           if (ep_bulk_out)
                             *ep_bulk_out = find_endpoint (ifcdesc, 0);
                           if (ep_bulk_in)
                             *ep_bulk_in = find_endpoint (ifcdesc, 1);
                           if (ep_intr)
                             *ep_intr = find_endpoint (ifcdesc, 2);
 
                           if (r_dev)
                             *r_dev = dev;
                           if (r_rid)
                             {
                               *r_rid = rid;
                               rid = NULL;
                             }
                           else
                             free (rid);
 
                           *r_idev = idev;
                           return 1; /* Found requested device. */
                         }
                       else
                         {
                           /* This is not yet the reader we want.
                              fixme: We should avoid the extra usb_open
                              in this case. */
                           if (*readerno >= 0)
                             --*readerno;
                         }
                       free (rid);
                     }
 
                   usb_close (idev);
                   idev = NULL;
                   return 0;
                 }
             }
         }
     }
 
   return 0;
 }
 
 /* Combination function to either scan all CCID devices or to find and
    open one specific device.
 
    The function returns 0 if a reader has been found or when a scan
    returned without error.
 
    With READERNO = -1 and READERID is NULL, scan mode is used and
    R_RID should be the address where to store the list of reader_ids
    we found.  If on return this list is empty, no CCID device has been
    found; otherwise it points to an allocated linked list of reader
    IDs.  Note that in this mode the function always returns NULL.
 
    With READERNO >= 0 or READERID is not NULL find mode is used.  This
    uses the same algorithm as the scan mode but stops and returns at
    the entry number READERNO and return the handle for the the opened
    USB device. If R_RID is not NULL it will receive the reader ID of
    that device.  If R_DEV is not NULL it will the device pointer of
    that device.  If IFCDESC_EXTRA is NOT NULL it will receive a
    malloced copy of the interfaces "extra: data filed;
    IFCDESC_EXTRA_LEN receive the length of this field.  If there is
    no reader with number READERNO or that reader is not usable by our
    implementation NULL will be returned.  The caller must close a
    returned USB device handle and free (if not passed as NULL) the
    returned reader ID info as well as the IFCDESC_EXTRA.  On error
    NULL will get stored at R_RID, R_DEV, IFCDESC_EXTRA and
    IFCDESC_EXTRA_LEN.  With READERID being -1 the function stops if
    the READERID was found.
 
    If R_FD is not -1 on return the device is not using USB for
    transport but the device associated with that file descriptor.  In
    this case INTERFACE will receive the transport type and the other
    USB specific return values are not used; the return value is
    (void*)(1).
 
    Note that the first entry of the returned reader ID list in scan mode
    corresponds with a READERNO of 0 in find mode.
 */
 static int
 scan_or_find_devices (int readerno, const char *readerid,
                       char **r_rid,
                       struct usb_device **r_dev,
                       unsigned char **ifcdesc_extra,
                       size_t *ifcdesc_extra_len,
                       int *interface_number,
                       int *ep_bulk_out, int *ep_bulk_in, int *ep_intr,
                       usb_dev_handle **r_idev,
                       int *r_fd)
 {
   char *rid_list = NULL;
   int count = 0;
   struct usb_bus *busses, *bus;
   struct usb_device *dev = NULL;
   usb_dev_handle *idev = NULL;
   int scan_mode = (readerno == -1 && !readerid);
   int i;
 
   /* Set return values to a default. */
   if (r_rid)
     *r_rid = NULL;
   if (r_dev)
     *r_dev = NULL;
   if (ifcdesc_extra)
     *ifcdesc_extra = NULL;
   if (ifcdesc_extra_len)
     *ifcdesc_extra_len = 0;
   if (interface_number)
     *interface_number = 0;
   if (r_idev)
     *r_idev = NULL;
   if (r_fd)
     *r_fd = -1;
 
   /* See whether we want scan or find mode. */
   if (scan_mode)
     {
       assert (r_rid);
     }
 
   usb_find_busses();
   usb_find_devices();
 
 #ifdef HAVE_USB_GET_BUSSES
   busses = usb_get_busses();
 #else
   busses = usb_busses;
 #endif
 
   for (bus = busses; bus; bus = bus->next)
     {
       for (dev = bus->devices; dev; dev = dev->next)
         {
           if (scan_or_find_usb_device (scan_mode, &readerno, &count, &rid_list,
                                        readerid,
                                        dev,
                                        r_rid,
                                        r_dev,
                                        &idev,
                                        ifcdesc_extra,
                                        ifcdesc_extra_len,
                                        interface_number,
                                        ep_bulk_out, ep_bulk_in, ep_intr))
             {
               /* Found requested device or out of core. */
               if (!idev)
                 {
                   free (rid_list);
                   return -1; /* error */
                 }
               *r_idev = idev;
               return 0;
             }
         }
     }
 
   /* Now check whether there are any devices with special transport types. */
   for (i=0; transports[i].name; i++)
     {
       int fd;
       char *rid, *p;
 
       fd = open (transports[i].name, O_RDWR);
       if (fd == -1 && scan_mode && errno == EBUSY)
         {
           /* Ignore this error in scan mode because it indicates that
              the device exists but is already open (most likely by us)
              and thus in general suitable as a reader.  */
         }
       else if (fd == -1)
         {
           DEBUGOUT_2 ("failed to open `%s': %s\n",
                      transports[i].name, strerror (errno));
           continue;
         }
 
       rid = malloc (strlen (transports[i].name) + 30 + 10);
       if (!rid)
         {
           if (fd != -1)
             close (fd);
           free (rid_list);
           return -1; /* Error. */
         }
       sprintf (rid, "0000:%04X:%s:0", transports[i].type, transports[i].name);
       if (scan_mode)
         {
           DEBUGOUT_2 ("found CCID reader %d (ID=%s)\n", count, rid);
           p = malloc ((rid_list? strlen (rid_list):0) + 1 + strlen (rid) + 1);
           if (!p)
             {
               if (fd != -1)
                 close (fd);
               free (rid_list);
               free (rid);
               return -1; /* Error. */
             }
           *p = 0;
           if (rid_list)
             {
               strcat (p, rid_list);
               free (rid_list);
             }
           strcat (p, rid);
           strcat (p, "\n");
           rid_list = p;
           ++count;
         }
       else if (!readerno ||
                (readerno < 0 && readerid && !strcmp (readerid, rid)))
         {
           /* Found requested device. */
           if (interface_number)
             *interface_number = transports[i].type;
           if (r_rid)
             *r_rid = rid;
           else
             free (rid);
           if (r_fd)
             *r_fd = fd;
           return 0; /* Okay, found device */
         }
       else /* This is not yet the reader we want. */
         {
           if (readerno >= 0)
             --readerno;
         }
       free (rid);
       if (fd != -1)
         close (fd);
     }
 
   if (scan_mode)
     {
       *r_rid = rid_list;
       return 0;
     }
   else
     return -1;
 }
 
 
 /* Set the level of debugging to LEVEL and return the old level.  -1
    just returns the old level.  A level of 0 disables debugging, 1
    enables debugging, 2 enables additional tracing of the T=1
    protocol, 3 additionally enables debugging for GetSlotStatus, other
    values are not yet defined.
 
    Note that libusb may provide its own debugging feature which is
    enabled by setting the envvar USB_DEBUG.  */
 int
 ccid_set_debug_level (int level)
 {
   int old = debug_level;
   if (level != -1)
     debug_level = level;
   return old;
 }
 
 
 char *
 ccid_get_reader_list (void)
 {
   char *reader_list;
 
   if (!initialized_usb)
     {
       usb_init ();
       initialized_usb = 1;
     }
 
   if (scan_or_find_devices (-1, NULL, &reader_list, NULL, NULL, NULL, NULL,
                             NULL, NULL, NULL, NULL, NULL))
     return NULL; /* Error. */
   return reader_list;
 }
 
 
 /* Vendor specific custom initialization.  */
 static int
 ccid_vendor_specific_init (ccid_driver_t handle)
 {
   if (handle->id_vendor == VENDOR_VEGA && handle->id_product == VEGA_ALPHA)
     {
       int r;
       /*
        * Vega alpha has a feature to show retry counter on the pinpad
        * display.  But it assumes that the card returns the value of
        * retry counter by VERIFY with empty data (return code of
        * 63Cx).  Unfortunately, existing OpenPGP cards don't support
        * VERIFY command with empty data.  This vendor specific command
        * sequence is to disable the feature.
        */
       const unsigned char cmd[] = { '\xb5', '\x01', '\x00', '\x03', '\x00' };
 
       r = send_escape_cmd (handle, cmd, sizeof (cmd), NULL, 0, NULL);
       if (r != 0 && r != CCID_DRIVER_ERR_CARD_INACTIVE
           && r != CCID_DRIVER_ERR_NO_CARD)
         return r;
     }
 
   return 0;
 }
 
 
 /* Open the reader with the internal number READERNO and return a
    pointer to be used as handle in HANDLE.  Returns 0 on success. */
 int
 ccid_open_reader (ccid_driver_t *handle, const char *readerid)
 {
   int rc = 0;
   struct usb_device *dev = NULL;
   usb_dev_handle *idev = NULL;
   int dev_fd = -1;
   char *rid = NULL;
   unsigned char *ifcdesc_extra = NULL;
   size_t ifcdesc_extra_len;
   int readerno;
   int ifc_no, ep_bulk_out, ep_bulk_in, ep_intr;
 
   *handle = NULL;
 
   if (!initialized_usb)
     {
       usb_init ();
       initialized_usb = 1;
     }
 
   /* See whether we want to use the reader ID string or a reader
      number. A readerno of -1 indicates that the reader ID string is
      to be used. */
   if (readerid && strchr (readerid, ':'))
     readerno = -1; /* We want to use the readerid.  */
   else if (readerid)
     {
       readerno = atoi (readerid);
       if (readerno < 0)
         {
           DEBUGOUT ("no CCID readers found\n");
           rc = CCID_DRIVER_ERR_NO_READER;
           goto leave;
         }
     }
   else
     readerno = 0;  /* Default. */
 
   if (scan_or_find_devices (readerno, readerid, &rid, &dev,
                             &ifcdesc_extra, &ifcdesc_extra_len,
                             &ifc_no, &ep_bulk_out, &ep_bulk_in, &ep_intr,
                             &idev, &dev_fd) )
     {
       if (readerno == -1)
         DEBUGOUT_1 ("no CCID reader with ID %s\n", readerid );
       else
         DEBUGOUT_1 ("no CCID reader with number %d\n", readerno );
       rc = CCID_DRIVER_ERR_NO_READER;
       goto leave;
     }
 
   /* Okay, this is a CCID reader. */
   *handle = calloc (1, sizeof **handle);
   if (!*handle)
     {
       DEBUGOUT ("out of memory\n");
       rc = CCID_DRIVER_ERR_OUT_OF_CORE;
       goto leave;
     }
   (*handle)->rid = rid;
   if (idev) /* Regular USB transport. */
     {
       (*handle)->idev = idev;
       (*handle)->dev_fd = -1;
       (*handle)->id_vendor = dev->descriptor.idVendor;
       (*handle)->id_product = dev->descriptor.idProduct;
       (*handle)->bcd_device = dev->descriptor.bcdDevice;
       (*handle)->ifc_no = ifc_no;
       (*handle)->ep_bulk_out = ep_bulk_out;
       (*handle)->ep_bulk_in = ep_bulk_in;
       (*handle)->ep_intr = ep_intr;
     }
   else if (dev_fd != -1) /* Device transport. */
     {
       (*handle)->idev = NULL;
       (*handle)->dev_fd = dev_fd;
       (*handle)->id_vendor = 0;  /* Magic vendor for special transport. */
       (*handle)->id_product = ifc_no; /* Transport type */
       prepare_special_transport (*handle);
     }
   else
     {
       assert (!"no transport"); /* Bug. */
     }
 
   DEBUGOUT_2 ("using CCID reader %d (ID=%s)\n",  readerno, rid );
 
   if (idev)
     {
       if (parse_ccid_descriptor (*handle, ifcdesc_extra, ifcdesc_extra_len))
         {
           DEBUGOUT ("device not supported\n");
           rc = CCID_DRIVER_ERR_NO_READER;
           goto leave;
         }
 
       rc = usb_claim_interface (idev, ifc_no);
       if (rc)
         {
           DEBUGOUT_1 ("usb_claim_interface failed: %d\n", rc);
           rc = CCID_DRIVER_ERR_CARD_IO_ERROR;
           goto leave;
         }
     }
 
   rc = ccid_vendor_specific_init (*handle);
 
  leave:
   free (ifcdesc_extra);
   if (rc)
     {
       free (rid);
       if (idev)
         usb_close (idev);
       if (dev_fd != -1)
         close (dev_fd);
       free (*handle);
       *handle = NULL;
     }
 
   return rc;
 }
 
 
 static void
 do_close_reader (ccid_driver_t handle)
 {
   int rc;
   unsigned char msg[100];
   size_t msglen;
   unsigned char seqno;
 
   if (!handle->powered_off)
     {
       msg[0] = PC_to_RDR_IccPowerOff;
       msg[5] = 0; /* slot */
       msg[6] = seqno = handle->seqno++;
       msg[7] = 0; /* RFU */
       msg[8] = 0; /* RFU */
       msg[9] = 0; /* RFU */
       set_msg_len (msg, 0);
       msglen = 10;
 
       rc = bulk_out (handle, msg, msglen, 0);
       if (!rc)
         bulk_in (handle, msg, sizeof msg, &msglen, RDR_to_PC_SlotStatus,
                  seqno, 2000, 0);
       handle->powered_off = 1;
     }
   if (handle->idev)
     {
       usb_release_interface (handle->idev, handle->ifc_no);
       usb_close (handle->idev);
       handle->idev = NULL;
     }
   if (handle->dev_fd != -1)
     {
       close (handle->dev_fd);
       handle->dev_fd = -1;
     }
 }
 
 
 /* Reset a reader on HANDLE.  This is useful in case a reader has been
    plugged of and inserted at a different port.  By resetting the
    handle, the same reader will be get used.  Note, that on error the
    handle won't get released.
 
    This does not return an ATR, so ccid_get_atr should be called right
    after this one.
 */
 int
 ccid_shutdown_reader (ccid_driver_t handle)
 {
   int rc = 0;
   struct usb_device *dev = NULL;
   usb_dev_handle *idev = NULL;
   unsigned char *ifcdesc_extra = NULL;
   size_t ifcdesc_extra_len;
   int ifc_no, ep_bulk_out, ep_bulk_in, ep_intr;
 
   if (!handle || !handle->rid)
     return CCID_DRIVER_ERR_INV_VALUE;
 
   do_close_reader (handle);
 
   if (scan_or_find_devices (-1, handle->rid, NULL, &dev,
                             &ifcdesc_extra, &ifcdesc_extra_len,
                             &ifc_no, &ep_bulk_out, &ep_bulk_in, &ep_intr,
                             &idev, NULL) || !idev)
     {
       DEBUGOUT_1 ("no CCID reader with ID %s\n", handle->rid);
       return CCID_DRIVER_ERR_NO_READER;
     }
 
   if (idev)
     {
       handle->idev = idev;
       handle->ifc_no = ifc_no;
       handle->ep_bulk_out = ep_bulk_out;
       handle->ep_bulk_in = ep_bulk_in;
       handle->ep_intr = ep_intr;
 
       if (parse_ccid_descriptor (handle, ifcdesc_extra, ifcdesc_extra_len))
         {
           DEBUGOUT ("device not supported\n");
           rc = CCID_DRIVER_ERR_NO_READER;
           goto leave;
         }
 
       rc = usb_claim_interface (idev, ifc_no);
       if (rc)
         {
           DEBUGOUT_1 ("usb_claim_interface failed: %d\n", rc);
           rc = CCID_DRIVER_ERR_CARD_IO_ERROR;
           goto leave;
         }
     }
 
  leave:
   free (ifcdesc_extra);
   if (rc)
     {
       if (handle->idev)
         usb_close (handle->idev);
       handle->idev = NULL;
       if (handle->dev_fd != -1)
         close (handle->dev_fd);
       handle->dev_fd = -1;
     }
 
   return rc;
 
 }
 
 
 int
 ccid_set_progress_cb (ccid_driver_t handle,
                       void (*cb)(void *, const char *, int, int, int),
                       void *cb_arg)
 {
   if (!handle || !handle->rid)
     return CCID_DRIVER_ERR_INV_VALUE;
 
   handle->progress_cb = cb;
   handle->progress_cb_arg = cb_arg;
   return 0;
 }
 
 
 /* Close the reader HANDLE. */
 int
 ccid_close_reader (ccid_driver_t handle)
 {
   if (!handle || (!handle->idev && handle->dev_fd == -1))
     return 0;
 
   do_close_reader (handle);
   free (handle->rid);
   free (handle);
   return 0;
 }
 
 
 /* Return False if a card is present and powered. */
 int
 ccid_check_card_presence (ccid_driver_t handle)
 {
   (void)handle;  /* Not yet implemented.  */
   return -1;
 }
 
 
 /* Write NBYTES of BUF to file descriptor FD. */
 static int
 writen (int fd, const void *buf, size_t nbytes)
 {
   size_t nleft = nbytes;
   int nwritten;
 
   while (nleft > 0)
     {
       nwritten = write (fd, buf, nleft);
       if (nwritten < 0)
         {
           if (errno == EINTR)
             nwritten = 0;
           else
             return -1;
         }
       nleft -= nwritten;
       buf = (const char*)buf + nwritten;
     }
 
   return 0;
 }
 
 
 /* Write a MSG of length MSGLEN to the designated bulk out endpoint.
    Returns 0 on success. */
 static int
 bulk_out (ccid_driver_t handle, unsigned char *msg, size_t msglen,
           int no_debug)
 {
   int rc;
 
   /* No need to continue and clutter the log with USB write error
      messages after we got the first ENODEV.  */
   if (handle->enodev_seen)
     return CCID_DRIVER_ERR_NO_READER;
 
   if (debug_level && (!no_debug || debug_level >= 3))
     {
       switch (msglen? msg[0]:0)
         {
         case PC_to_RDR_IccPowerOn:
           print_p2r_iccpoweron (msg, msglen);
           break;
         case PC_to_RDR_IccPowerOff:
           print_p2r_iccpoweroff (msg, msglen);
           break;
 	case PC_to_RDR_GetSlotStatus:
           print_p2r_getslotstatus (msg, msglen);
           break;
         case PC_to_RDR_XfrBlock:
           print_p2r_xfrblock (msg, msglen);
           break;
 	case PC_to_RDR_GetParameters:
           print_p2r_getparameters (msg, msglen);
           break;
         case PC_to_RDR_ResetParameters:
           print_p2r_resetparameters (msg, msglen);
           break;
 	case PC_to_RDR_SetParameters:
           print_p2r_setparameters (msg, msglen);
           break;
         case PC_to_RDR_Escape:
           print_p2r_escape (msg, msglen);
           break;
         case PC_to_RDR_IccClock:
           print_p2r_iccclock (msg, msglen);
           break;
 	case PC_to_RDR_T0APDU:
           print_p2r_to0apdu (msg, msglen);
           break;
         case PC_to_RDR_Secure:
           print_p2r_secure (msg, msglen);
           break;
         case PC_to_RDR_Mechanical:
           print_p2r_mechanical (msg, msglen);
           break;
         case PC_to_RDR_Abort:
           print_p2r_abort (msg, msglen);
           break;
         case PC_to_RDR_SetDataRate:
           print_p2r_setdatarate (msg, msglen);
           break;
         default:
           print_p2r_unknown (msg, msglen);
           break;
         }
     }
 
   if (handle->idev)
     {
       rc = usb_bulk_write (handle->idev,
                            handle->ep_bulk_out,
                            (char*)msg, msglen,
                            5000 /* ms timeout */);
       if (rc == msglen)
         return 0;
 #ifdef ENODEV
       if (rc == -(ENODEV))
         {
           /* The Linux libusb returns a negative error value.  Catch
              the most important one.  */
           errno = ENODEV;
           rc = -1;
         }
 #endif /*ENODEV*/
 
       if (rc == -1)
         {
           DEBUGOUT_1 ("usb_bulk_write error: %s\n", strerror (errno));
 #ifdef ENODEV
           if (errno == ENODEV)
             {
               handle->enodev_seen = 1;
               return CCID_DRIVER_ERR_NO_READER;
             }
 #endif /*ENODEV*/
         }
       else
         DEBUGOUT_1 ("usb_bulk_write failed: %d\n", rc);
     }
   else
     {
       rc = writen (handle->dev_fd, msg, msglen);
       if (!rc)
         return 0;
       DEBUGOUT_2 ("writen to %d failed: %s\n",
                   handle->dev_fd, strerror (errno));
 
     }
   return CCID_DRIVER_ERR_CARD_IO_ERROR;
 }
 
 
 /* Read a maximum of LENGTH bytes from the bulk in endpoint into
    BUFFER and return the actual read number if bytes in NREAD. SEQNO
    is the sequence number used to send the request and EXPECTED_TYPE
    the type of message we expect. Does checks on the ccid
    header. TIMEOUT is the timeout value in ms. NO_DEBUG may be set to
    avoid debug messages in case of no error; this can be overriden
    with a glibal debug level of at least 3. Returns 0 on success. */
 static int
 bulk_in (ccid_driver_t handle, unsigned char *buffer, size_t length,
          size_t *nread, int expected_type, int seqno, int timeout,
          int no_debug)
 {
   int rc;
   size_t msglen;
   int eagain_retries = 0;
 
   /* Fixme: The next line for the current Valgrind without support
      for USB IOCTLs. */
   memset (buffer, 0, length);
  retry:
   if (handle->idev)
     {
       rc = usb_bulk_read (handle->idev,
                           handle->ep_bulk_in,
                           (char*)buffer, length,
                           timeout);
       if (rc < 0)
         {
           rc = errno;
           DEBUGOUT_1 ("usb_bulk_read error: %s\n", strerror (rc));
           if (rc == EAGAIN && eagain_retries++ < 3)
             {
               my_sleep (1);
               goto retry;
             }
           return CCID_DRIVER_ERR_CARD_IO_ERROR;
         }
       *nread = msglen = rc;
     }
   else
     {
       rc = read (handle->dev_fd, buffer, length);
       if (rc < 0)
         {
           rc = errno;
           DEBUGOUT_2 ("read from %d failed: %s\n",
                       handle->dev_fd, strerror (rc));
           if (rc == EAGAIN && eagain_retries++ < 5)
             {
               my_sleep (1);
               goto retry;
             }
           return CCID_DRIVER_ERR_CARD_IO_ERROR;
         }
       *nread = msglen = rc;
     }
   eagain_retries = 0;
 
   if (msglen < 10)
     {
       DEBUGOUT_1 ("bulk-in msg too short (%u)\n", (unsigned int)msglen);
       abort_cmd (handle, seqno);
       return CCID_DRIVER_ERR_INV_VALUE;
     }
   if (buffer[5] != 0)
     {
       DEBUGOUT_1 ("unexpected bulk-in slot (%d)\n", buffer[5]);
       return CCID_DRIVER_ERR_INV_VALUE;
     }
   if (buffer[6] != seqno)
     {
       DEBUGOUT_2 ("bulk-in seqno does not match (%d/%d)\n",
                   seqno, buffer[6]);
       /* Retry until we are synced again.  */
       goto retry;
     }
 
   /* We need to handle the time extension request before we check that
      we got the expected message type.  This is in particular required
      for the Cherry keyboard which sends a time extension request for
      each key hit.  */
   if ( !(buffer[7] & 0x03) && (buffer[7] & 0xC0) == 0x80)
     {
       /* Card present and active, time extension requested. */
       DEBUGOUT_2 ("time extension requested (%02X,%02X)\n",
                   buffer[7], buffer[8]);
       goto retry;
     }
 
   if (buffer[0] != expected_type)
     {
       DEBUGOUT_1 ("unexpected bulk-in msg type (%02x)\n", buffer[0]);
       abort_cmd (handle, seqno);
       return CCID_DRIVER_ERR_INV_VALUE;
     }
 
   if (debug_level && (!no_debug || debug_level >= 3))
     {
       switch (buffer[0])
         {
         case RDR_to_PC_DataBlock:
           print_r2p_datablock (buffer, msglen);
           break;
         case RDR_to_PC_SlotStatus:
           print_r2p_slotstatus (buffer, msglen);
           break;
         case RDR_to_PC_Parameters:
           print_r2p_parameters (buffer, msglen);
           break;
         case RDR_to_PC_Escape:
           print_r2p_escape (buffer, msglen);
           break;
         case RDR_to_PC_DataRate:
           print_r2p_datarate (buffer, msglen);
           break;
         default:
           print_r2p_unknown (buffer, msglen);
           break;
         }
     }
   if (CCID_COMMAND_FAILED (buffer))
     print_command_failed (buffer);
 
   /* Check whether a card is at all available.  Note: If you add new
      error codes here, check whether they need to be ignored in
      send_escape_cmd. */
   switch ((buffer[7] & 0x03))
     {
     case 0: /* no error */ break;
     case 1: return CCID_DRIVER_ERR_CARD_INACTIVE;
     case 2: return CCID_DRIVER_ERR_NO_CARD;
     case 3: /* RFU */ break;
     }
   return 0;
 }
 
 
 
 /* Send an abort sequence and wait until everything settled.  */
 static int
 abort_cmd (ccid_driver_t handle, int seqno)
 {
   int rc;
   char dummybuf[8];
   unsigned char msg[100];
   size_t msglen;
 
   if (!handle->idev)
     {
       /* I don't know how to send an abort to non-USB devices.  */
       rc = CCID_DRIVER_ERR_NOT_SUPPORTED;
     }
 
   seqno &= 0xff;
   DEBUGOUT_1 ("sending abort sequence for seqno %d\n", seqno);
   /* Send the abort command to the control pipe.  Note that we don't
      need to keep track of sent abort commands because there should
      never be another thread using the same slot concurrently.  */
   rc = usb_control_msg (handle->idev,
                         0x21,/* bmRequestType: host-to-device,
                                 class specific, to interface.  */
                         1,   /* ABORT */
                         (seqno << 8 | 0 /* slot */),
                         handle->ifc_no,
                         dummybuf, 0,
                         1000 /* ms timeout */);
   if (rc < 0)
     {
       DEBUGOUT_1 ("usb_control_msg error: %s\n", strerror (errno));
       return CCID_DRIVER_ERR_CARD_IO_ERROR;
     }
 
   /* Now send the abort command to the bulk out pipe using the same
      SEQNO and SLOT.  Do this in a loop to so that all seqno are
      tried.  */
   seqno--;  /* Adjust for next increment.  */
   do
     {
       seqno++;
       msg[0] = PC_to_RDR_Abort;
       msg[5] = 0; /* slot */
       msg[6] = seqno;
       msg[7] = 0; /* RFU */
       msg[8] = 0; /* RFU */
       msg[9] = 0; /* RFU */
       msglen = 10;
       set_msg_len (msg, 0);
 
       rc = usb_bulk_write (handle->idev,
                            handle->ep_bulk_out,
                            (char*)msg, msglen,
                            5000 /* ms timeout */);
       if (rc == msglen)
         rc = 0;
       else if (rc == -1)
         DEBUGOUT_1 ("usb_bulk_write error in abort_cmd: %s\n",
                     strerror (errno));
       else
         DEBUGOUT_1 ("usb_bulk_write failed in abort_cmd: %d\n", rc);
 
       if (rc)
         return rc;
 
       rc = usb_bulk_read (handle->idev,
                           handle->ep_bulk_in,
                           (char*)msg, sizeof msg,
                           5000 /*ms timeout*/);
       if (rc < 0)
         {
           DEBUGOUT_1 ("usb_bulk_read error in abort_cmd: %s\n",
                       strerror (errno));
           return CCID_DRIVER_ERR_CARD_IO_ERROR;
         }
       msglen = rc;
 
       if (msglen < 10)
         {
           DEBUGOUT_1 ("bulk-in msg in abort_cmd too short (%u)\n",
                       (unsigned int)msglen);
           return CCID_DRIVER_ERR_INV_VALUE;
         }
       if (msg[5] != 0)
         {
           DEBUGOUT_1 ("unexpected bulk-in slot (%d) in abort_cmd\n", msg[5]);
           return CCID_DRIVER_ERR_INV_VALUE;
         }
 
       DEBUGOUT_3 ("status: %02X  error: %02X  octet[9]: %02X\n",
                   msg[7], msg[8], msg[9]);
       if (CCID_COMMAND_FAILED (msg))
         print_command_failed (msg);
     }
   while (msg[0] != RDR_to_PC_SlotStatus && msg[5] != 0 && msg[6] != seqno);
 
   handle->seqno = ((seqno + 1) & 0xff);
   DEBUGOUT ("sending abort sequence succeeded\n");
 
   return 0;
 }
 
 
 /* Note that this function won't return the error codes NO_CARD or
    CARD_INACTIVE.  IF RESULT is not NULL, the result from the
    operation will get returned in RESULT and its length in RESULTLEN.
    If the response is larger than RESULTMAX, an error is returned and
    the required buffer length returned in RESULTLEN.  */
 static int
 send_escape_cmd (ccid_driver_t handle,
                  const unsigned char *data, size_t datalen,
                  unsigned char *result, size_t resultmax, size_t *resultlen)
 {
   int rc;
   unsigned char msg[100];
   size_t msglen;
   unsigned char seqno;
 
   if (resultlen)
     *resultlen = 0;
 
   if (datalen > sizeof msg - 10)
     return CCID_DRIVER_ERR_INV_VALUE; /* Escape data too large.  */
 
   msg[0] = PC_to_RDR_Escape;
   msg[5] = 0; /* slot */
   msg[6] = seqno = handle->seqno++;
   msg[7] = 0; /* RFU */
   msg[8] = 0; /* RFU */
   msg[9] = 0; /* RFU */
   memcpy (msg+10, data, datalen);
   msglen = 10 + datalen;
   set_msg_len (msg, datalen);
 
   rc = bulk_out (handle, msg, msglen, 0);
   if (rc)
     return rc;
   rc = bulk_in (handle, msg, sizeof msg, &msglen, RDR_to_PC_Escape,
                 seqno, 5000, 0);
   if (result)
     switch (rc)
       {
         /* We need to ignore certain errorcode here. */
       case 0:
       case CCID_DRIVER_ERR_CARD_INACTIVE:
       case CCID_DRIVER_ERR_NO_CARD:
         {
           if (msglen > resultmax)
             rc = CCID_DRIVER_ERR_INV_VALUE; /* Response too large. */
           else
             {
               memcpy (result, msg, msglen);
               *resultlen = msglen;
               rc = 0;
             }
         }
         break;
       default:
         break;
       }
 
   return rc;
 }
 
 
 int
 ccid_transceive_escape (ccid_driver_t handle,
                         const unsigned char *data, size_t datalen,
                         unsigned char *resp, size_t maxresplen, size_t *nresp)
 {
   return send_escape_cmd (handle, data, datalen, resp, maxresplen, nresp);
 }
 
 
 
 /* experimental */
 int
 ccid_poll (ccid_driver_t handle)
 {
   int rc;
   unsigned char msg[10];
   size_t msglen;
   int i, j;
 
   if (handle->idev)
     {
       rc = usb_bulk_read (handle->idev,
                           handle->ep_intr,
                           (char*)msg, sizeof msg,
                           0 /* ms timeout */ );
       if (rc < 0 && errno == ETIMEDOUT)
         return 0;
     }
   else
     return 0;
 
   if (rc < 0)
     {
       DEBUGOUT_1 ("usb_intr_read error: %s\n", strerror (errno));
       return CCID_DRIVER_ERR_CARD_IO_ERROR;
     }
 
   msglen = rc;
   rc = 0;
 
   if (msglen < 1)
     {
       DEBUGOUT ("intr-in msg too short\n");
       return CCID_DRIVER_ERR_INV_VALUE;
     }
 
   if (msg[0] == RDR_to_PC_NotifySlotChange)
     {
       DEBUGOUT ("notify slot change:");
       for (i=1; i < msglen; i++)
         for (j=0; j < 4; j++)
           DEBUGOUT_CONT_3 (" %d:%c%c",
                            (i-1)*4+j,
                            (msg[i] & (1<<(j*2)))? 'p':'-',
                            (msg[i] & (2<<(j*2)))? '*':' ');
       DEBUGOUT_LF ();
     }
   else if (msg[0] == RDR_to_PC_HardwareError)
     {
       DEBUGOUT ("hardware error occured\n");
     }
   else
     {
       DEBUGOUT_1 ("unknown intr-in msg of type %02X\n", msg[0]);
     }
 
   return 0;
 }
 
 
 /* Note that this function won't return the error codes NO_CARD or
    CARD_INACTIVE */
 int
 ccid_slot_status (ccid_driver_t handle, int *statusbits)
 {
   int rc;
   unsigned char msg[100];
   size_t msglen;
   unsigned char seqno;
   int retries = 0;
 
  retry:
   msg[0] = PC_to_RDR_GetSlotStatus;
   msg[5] = 0; /* slot */
   msg[6] = seqno = handle->seqno++;
   msg[7] = 0; /* RFU */
   msg[8] = 0; /* RFU */
   msg[9] = 0; /* RFU */
   set_msg_len (msg, 0);
 
   rc = bulk_out (handle, msg, 10, 1);
   if (rc)
     return rc;
   /* Note that we set the NO_DEBUG flag here, so that the logs won't
      get cluttered up by a ticker function checking for the slot
      status and debugging enabled. */
   rc = bulk_in (handle, msg, sizeof msg, &msglen, RDR_to_PC_SlotStatus,
                 seqno, retries? 1000 : 200, 1);
   if (rc == CCID_DRIVER_ERR_CARD_IO_ERROR && retries < 3)
     {
       if (!retries)
         {
           DEBUGOUT ("USB: CALLING USB_CLEAR_HALT\n");
           usb_clear_halt (handle->idev, handle->ep_bulk_in);
           usb_clear_halt (handle->idev, handle->ep_bulk_out);
         }
       else
           DEBUGOUT ("USB: RETRYING bulk_in AGAIN\n");
       retries++;
       goto retry;
     }
   if (rc && rc != CCID_DRIVER_ERR_NO_CARD
       && rc != CCID_DRIVER_ERR_CARD_INACTIVE)
     return rc;
   *statusbits = (msg[7] & 3);
 
   return 0;
 }
 
 
 /* Parse ATR string (of ATRLEN) and update parameters at PARAM.
    Calling this routine, it should prepare default values at PARAM
    beforehand.  This routine assumes that card is accessed by T=1
    protocol.  It doesn't analyze historical bytes at all.
 
    Returns < 0 value on error:
      -1 for parse error or integrity check error
      -2 for card doesn't support T=1 protocol
      -3 for parameters are nod explicitly defined by ATR
      -4 for this driver doesn't support CRC
 
    Returns >= 0 on success:
       0 for card is negotiable mode
       1 for card is specific mode (and not negotiable)
  */
 static int
 update_param_by_atr (unsigned char *param, unsigned char *atr, size_t atrlen)
 {
   int i = -1;
   int t, y, chk;
   int historical_bytes_num, negotiable = 1;
 
 #define NEXTBYTE() do { i++; if (atrlen <= i) return -1; } while (0)
 
   NEXTBYTE ();
 
   if (atr[i] == 0x3F)
     param[1] |= 0x02;           /* Convention is inverse.  */
   NEXTBYTE ();
 
   y = (atr[i] >> 4);
   historical_bytes_num = atr[i] & 0x0f;
   NEXTBYTE ();
 
   if ((y & 1))
     {
       param[0] = atr[i];        /* TA1 - Fi & Di */
       NEXTBYTE ();
     }
 
   if ((y & 2))
     NEXTBYTE ();                /* TB1 - ignore */
 
   if ((y & 4))
     {
       param[2] = atr[i];        /* TC1 - Guard Time */
       NEXTBYTE ();
     }
 
   if ((y & 8))
     {
       y = (atr[i] >> 4);        /* TD1 */
       t = atr[i] & 0x0f;
       NEXTBYTE ();
 
       if ((y & 1))
         {                       /* TA2 - PPS mode */
           if ((atr[i] & 0x0f) != 1)
             return -2;          /* Wrong card protocol (!= 1).  */
 
           if ((atr[i] & 0x10) != 0x10)
             return -3; /* Transmission parameters are implicitly defined. */
 
           negotiable = 0;       /* TA2 means specific mode.  */
           NEXTBYTE ();
         }
 
       if ((y & 2))
         NEXTBYTE ();            /* TB2 - ignore */
 
       if ((y & 4))
         NEXTBYTE ();            /* TC2 - ignore */
 
       if ((y & 8))
         {
           y = (atr[i] >> 4);    /* TD2 */
           t = atr[i] & 0x0f;
           NEXTBYTE ();
         }
       else
         y = 0;
 
       while (y)
         {
           if ((y & 1))
             {                   /* TAx */
               if (t == 1)
                 param[5] = atr[i]; /* IFSC */
               else if (t == 15)
                 /* XXX: check voltage? */
                 param[4] = (atr[i] >> 6); /* ClockStop */
 
               NEXTBYTE ();
             }
 
           if ((y & 2))
             {
               if (t == 1)
                 param[3] = atr[i]; /* TBx - BWI & CWI */
               NEXTBYTE ();
             }
 
           if ((y & 4))
             {
               if (t == 1)
                 param[1] |= (atr[i] & 0x01); /* TCx - LRC/CRC */
               NEXTBYTE ();
 
               if (param[1] & 0x01)
                 return -4;      /* CRC not supported yet.  */
             }
 
           if ((y & 8))
             {
               y = (atr[i] >> 4); /* TDx */
               t = atr[i] & 0x0f;
               NEXTBYTE ();
             }
           else
             y = 0;
         }
     }
 
   i += historical_bytes_num - 1;
   NEXTBYTE ();
   if (atrlen != i+1)
     return -1;
 
 #undef NEXTBYTE
 
   chk = 0;
   do
     {
       chk ^= atr[i];
       i--;
     }
   while (i > 0);
 
   if (chk != 0)
     return -1;
 
   return negotiable;
 }
 
 
 /* Return the ATR of the card.  This is not a cached value and thus an
    actual reset is done.  */
 int
 ccid_get_atr (ccid_driver_t handle,
               unsigned char *atr, size_t maxatrlen, size_t *atrlen)
 {
   int rc;
   int statusbits;
   unsigned char msg[100];
   unsigned char *tpdu;
   size_t msglen, tpdulen;
   unsigned char seqno;
   int use_crc = 0;
   unsigned int edc;
   int tried_iso = 0;
   int got_param;
   unsigned char param[7] = { /* For Protocol T=1 */
     0x11, /* bmFindexDindex */
     0x10, /* bmTCCKST1 */
     0x00, /* bGuardTimeT1 */
     0x4d, /* bmWaitingIntegersT1 */
     0x00, /* bClockStop */
     0x20, /* bIFSC */
     0x00  /* bNadValue */
   };
 
   /* First check whether a card is available.  */
   rc = ccid_slot_status (handle, &statusbits);
   if (rc)
     return rc;
   if (statusbits == 2)
     return CCID_DRIVER_ERR_NO_CARD;
 
   /* For an inactive and also for an active card, issue the PowerOn
      command to get the ATR.  */
  again:
   msg[0] = PC_to_RDR_IccPowerOn;
   msg[5] = 0; /* slot */
   msg[6] = seqno = handle->seqno++;
   /* power select (0=auto, 1=5V, 2=3V, 3=1.8V) */
   msg[7] = handle->auto_voltage ? 0 : 1;
   msg[8] = 0; /* RFU */
   msg[9] = 0; /* RFU */
   set_msg_len (msg, 0);
   msglen = 10;
 
   rc = bulk_out (handle, msg, msglen, 0);
   if (rc)
     return rc;
   rc = bulk_in (handle, msg, sizeof msg, &msglen, RDR_to_PC_DataBlock,
                 seqno, 5000, 0);
   if (rc)
     return rc;
   if (!tried_iso && CCID_COMMAND_FAILED (msg) && CCID_ERROR_CODE (msg) == 0xbb
       && ((handle->id_vendor == VENDOR_CHERRY
            && handle->id_product == 0x0005)
           || (handle->id_vendor == VENDOR_GEMPC
               && handle->id_product == 0x4433)
           ))
     {
       tried_iso = 1;
       /* Try switching to ISO mode. */
       if (!send_escape_cmd (handle, (const unsigned char*)"\xF1\x01", 2,
                             NULL, 0, NULL))
         goto again;
     }
   else if (CCID_COMMAND_FAILED (msg))
     return CCID_DRIVER_ERR_CARD_IO_ERROR;
 
 
   handle->powered_off = 0;
 
   if (atr)
     {
       size_t n = msglen - 10;
 
       if (n > maxatrlen)
         n = maxatrlen;
       memcpy (atr, msg+10, n);
       *atrlen = n;
     }
 
   param[6] = handle->nonnull_nad? ((1 << 4) | 0): 0;
   rc = update_param_by_atr (param, msg+10, msglen - 10);
   if (rc < 0)
     {
       DEBUGOUT_1 ("update_param_by_atr failed: %d\n", rc);
       return CCID_DRIVER_ERR_CARD_IO_ERROR;
     }
 
   got_param = 0;
 
   if (handle->auto_param)
     {
       msg[0] = PC_to_RDR_GetParameters;
       msg[5] = 0; /* slot */
       msg[6] = seqno = handle->seqno++;
       msg[7] = 0; /* RFU */
       msg[8] = 0; /* RFU */
       msg[9] = 0; /* RFU */
       set_msg_len (msg, 0);
       msglen = 10;
       rc = bulk_out (handle, msg, msglen, 0);
       if (!rc)
         rc = bulk_in (handle, msg, sizeof msg, &msglen, RDR_to_PC_Parameters,
                       seqno, 2000, 0);
       if (rc)
         DEBUGOUT ("GetParameters failed\n");
       else if (msglen == 17 && msg[9] == 1)
         got_param = 1;
     }
   else if (handle->auto_pps)
     ;
   else if (rc == 1)             /* It's negotiable, send PPS.  */
     {
       msg[0] = PC_to_RDR_XfrBlock;
       msg[5] = 0; /* slot */
       msg[6] = seqno = handle->seqno++;
       msg[7] = 0;
       msg[8] = 0;
       msg[9] = 0;
       msg[10] = 0xff;           /* PPSS */
       msg[11] = 0x11;           /* PPS0: PPS1, Protocol T=1 */
       msg[12] = param[0];       /* PPS1: Fi / Di */
       msg[13] = 0xff ^ 0x11 ^ param[0]; /* PCK */
       set_msg_len (msg, 4);
       msglen = 10 + 4;
 
       rc = bulk_out (handle, msg, msglen, 0);
       if (rc)
         return rc;
 
       rc = bulk_in (handle, msg, sizeof msg, &msglen, RDR_to_PC_DataBlock,
                     seqno, 5000, 0);
       if (rc)
         return rc;
 
       if (msglen != 10 + 4)
         {
           DEBUGOUT_1 ("Setting PPS failed: %d\n", (int)msglen);
           return CCID_DRIVER_ERR_CARD_IO_ERROR;
         }
 
       if (msg[10] != 0xff || msg[11] != 0x11 || msg[12] != param[0])
         {
           DEBUGOUT_1 ("Setting PPS failed: 0x%02x\n", param[0]);
           return CCID_DRIVER_ERR_CARD_IO_ERROR;
         }
     }
 
   /* Setup parameters to select T=1. */
   msg[0] = PC_to_RDR_SetParameters;
   msg[5] = 0; /* slot */
   msg[6] = seqno = handle->seqno++;
   msg[7] = 1; /* Select T=1. */
   msg[8] = 0; /* RFU */
   msg[9] = 0; /* RFU */
 
   if (!got_param)
     memcpy (&msg[10], param, 7);
   set_msg_len (msg, 7);
   msglen = 10 + 7;
 
   rc = bulk_out (handle, msg, msglen, 0);
   if (rc)
     return rc;
   rc = bulk_in (handle, msg, sizeof msg, &msglen, RDR_to_PC_Parameters,
                 seqno, 5000, 0);
   if (rc)
     DEBUGOUT ("SetParameters failed (ignored)\n");
 
   if (!rc && msglen > 15 && msg[15] >= 16 && msg[15] <= 254 )
     handle->ifsc = msg[15];
   else
     handle->ifsc = 128; /* Something went wrong, assume 128 bytes.  */
 
   if (handle->nonnull_nad && msglen > 16 && msg[16] == 0)
     {
       DEBUGOUT ("Use Null-NAD, clearing handle->nonnull_nad.\n");
       handle->nonnull_nad = 0;
     }
 
   handle->t1_ns = 0;
   handle->t1_nr = 0;
 
   /* Send an S-Block with our maximum IFSD to the CCID.  */
   if (!handle->apdu_level && !handle->auto_ifsd)
     {
       tpdu = msg+10;
       /* NAD: DAD=1, SAD=0 */
       tpdu[0] = handle->nonnull_nad? ((1 << 4) | 0): 0;
       tpdu[1] = (0xc0 | 0 | 1); /* S-block request: change IFSD */
       tpdu[2] = 1;
       tpdu[3] = handle->max_ifsd? handle->max_ifsd : 32;
       tpdulen = 4;
       edc = compute_edc (tpdu, tpdulen, use_crc);
       if (use_crc)
         tpdu[tpdulen++] = (edc >> 8);
       tpdu[tpdulen++] = edc;
 
       msg[0] = PC_to_RDR_XfrBlock;
       msg[5] = 0; /* slot */
       msg[6] = seqno = handle->seqno++;
       msg[7] = 0;
       msg[8] = 0; /* RFU */
       msg[9] = 0; /* RFU */
       set_msg_len (msg, tpdulen);
       msglen = 10 + tpdulen;
 
       if (debug_level > 1)
         DEBUGOUT_3 ("T=1: put %c-block seq=%d%s\n",
                       ((msg[11] & 0xc0) == 0x80)? 'R' :
                                 (msg[11] & 0x80)? 'S' : 'I',
                       ((msg[11] & 0x80)? !!(msg[11]& 0x10)
                                        : !!(msg[11] & 0x40)),
                     (!(msg[11] & 0x80) && (msg[11] & 0x20)? " [more]":""));
 
       rc = bulk_out (handle, msg, msglen, 0);
       if (rc)
         return rc;
 
 
       rc = bulk_in (handle, msg, sizeof msg, &msglen,
                     RDR_to_PC_DataBlock, seqno, 5000, 0);
       if (rc)
         return rc;
 
       tpdu = msg + 10;
       tpdulen = msglen - 10;
 
       if (tpdulen < 4)
         return CCID_DRIVER_ERR_ABORTED;
 
       if (debug_level > 1)
         DEBUGOUT_4 ("T=1: got %c-block seq=%d err=%d%s\n",
                     ((msg[11] & 0xc0) == 0x80)? 'R' :
                               (msg[11] & 0x80)? 'S' : 'I',
                     ((msg[11] & 0x80)? !!(msg[11]& 0x10)
                                      : !!(msg[11] & 0x40)),
                     ((msg[11] & 0xc0) == 0x80)? (msg[11] & 0x0f) : 0,
                     (!(msg[11] & 0x80) && (msg[11] & 0x20)? " [more]":""));
 
       if ((tpdu[1] & 0xe0) != 0xe0 || tpdu[2] != 1)
         {
           DEBUGOUT ("invalid response for S-block (Change-IFSD)\n");
           return -1;
         }
       DEBUGOUT_1 ("IFSD has been set to %d\n", tpdu[3]);
     }
 
   return 0;
 }
 
 
 
 
 static unsigned int
 compute_edc (const unsigned char *data, size_t datalen, int use_crc)
 {
   if (use_crc)
     {
       return 0x42; /* Not yet implemented. */
     }
   else
     {
       unsigned char crc = 0;
 
       for (; datalen; datalen--)
         crc ^= *data++;
       return crc;
     }
 }
 
 
 /* Return true if APDU is an extended length one.  */
 static int
 is_exlen_apdu (const unsigned char *apdu, size_t apdulen)
 {
   if (apdulen < 7 || apdu[4])
     return 0;  /* Too short or no Z byte.  */
   return 1;
 }
 
 
 /* Helper for ccid_transceive used for APDU level exchanges.  */
 static int
 ccid_transceive_apdu_level (ccid_driver_t handle,
                             const unsigned char *apdu_buf, size_t apdu_len,
                             unsigned char *resp, size_t maxresplen,
                             size_t *nresp)
 {
   int rc;
   unsigned char msg[CCID_MAX_BUF];
   const unsigned char *apdu_p;
   size_t apdu_part_len;
   size_t msglen;
   unsigned char seqno;
   int bwi = 4;
   unsigned char chain = 0;
 
   if (apdu_len == 0 || apdu_len > sizeof (msg) - 10)
     return CCID_DRIVER_ERR_INV_VALUE; /* Invalid length. */
 
   apdu_p = apdu_buf;
   while (1)
     {
       apdu_part_len = apdu_len;
       if (apdu_part_len > handle->max_ccid_msglen - 10)
         {
           apdu_part_len = handle->max_ccid_msglen - 10;
           chain |= 0x01;
         }
 
       msg[0] = PC_to_RDR_XfrBlock;
       msg[5] = 0; /* slot */
       msg[6] = seqno = handle->seqno++;
       msg[7] = bwi;
       msg[8] = chain;
       msg[9] = 0;
       memcpy (msg+10, apdu_p, apdu_part_len);
       set_msg_len (msg, apdu_part_len);
       msglen = 10 + apdu_part_len;
 
       rc = bulk_out (handle, msg, msglen, 0);
       if (rc)
         return rc;
 
       apdu_p += apdu_part_len;
       apdu_len -= apdu_part_len;
 
       rc = bulk_in (handle, msg, sizeof msg, &msglen,
                     RDR_to_PC_DataBlock, seqno, 5000, 0);
       if (rc)
         return rc;
 
       if (!(chain & 0x01))
         break;
 
       chain = 0x02;
     }
 
   apdu_len = 0;
   while (1)
     {
       apdu_part_len = msglen - 10;
       if (resp && apdu_len + apdu_part_len <= maxresplen)
         memcpy (resp + apdu_len, msg+10, apdu_part_len);
       apdu_len += apdu_part_len;
 
       if (!(msg[9] & 0x01))
         break;
 
       msg[0] = PC_to_RDR_XfrBlock;
       msg[5] = 0; /* slot */
       msg[6] = seqno = handle->seqno++;
       msg[7] = bwi;
       msg[8] = 0x10;                /* Request next data block */
       msg[9] = 0;
       set_msg_len (msg, 0);
       msglen = 10;
 
       rc = bulk_out (handle, msg, msglen, 0);
       if (rc)
         return rc;
 
       rc = bulk_in (handle, msg, sizeof msg, &msglen,
                     RDR_to_PC_DataBlock, seqno, 5000, 0);
       if (rc)
         return rc;
     }
 
   if (resp)
     {
       if (apdu_len > maxresplen)
         {
           DEBUGOUT_2 ("provided buffer too short for received data "
                       "(%u/%u)\n",
                       (unsigned int)apdu_len, (unsigned int)maxresplen);
           return CCID_DRIVER_ERR_INV_VALUE;
         }
 
       *nresp = apdu_len;
     }
 
   return 0;
 }
 
 
 
 /*
   Protocol T=1 overview
 
   Block Structure:
            Prologue Field:
    1 byte     Node Address (NAD)
    1 byte     Protocol Control Byte (PCB)
    1 byte     Length (LEN)
            Information Field:
    0-254 byte APDU or Control Information (INF)
            Epilogue Field:
    1 byte     Error Detection Code (EDC)
 
   NAD:
    bit 7     unused
    bit 4..6  Destination Node Address (DAD)
    bit 3     unused
    bit 2..0  Source Node Address (SAD)
 
    If node adresses are not used, SAD and DAD should be set to 0 on
    the first block sent to the card.  If they are used they should
    have different values (0 for one is okay); that first block sets up
    the addresses of the nodes.
 
   PCB:
    Information Block (I-Block):
       bit 7    0
       bit 6    Sequence number (yep, that is modulo 2)
       bit 5    Chaining flag
       bit 4..0 reserved
    Received-Ready Block (R-Block):
       bit 7    1
       bit 6    0
       bit 5    0
       bit 4    Sequence number
       bit 3..0  0 = no error
                 1 = EDC or parity error
                 2 = other error
                 other values are reserved
    Supervisory Block (S-Block):
       bit 7    1
       bit 6    1
       bit 5    clear=request,set=response
       bit 4..0  0 = resyncronisation request
                 1 = information field size request
                 2 = abort request
                 3 = extension of BWT request
                 4 = VPP error
                 other values are reserved
 
 */
 
 int
 ccid_transceive (ccid_driver_t handle,
                  const unsigned char *apdu_buf, size_t apdu_buflen,
                  unsigned char *resp, size_t maxresplen, size_t *nresp)
 {
   int rc;
   /* The size of the buffer used to be 10+259.  For the via_escape
      hack we need one extra byte, thus 11+259.  */
   unsigned char send_buffer[11+259], recv_buffer[11+259];
   const unsigned char *apdu;
   size_t apdulen;
   unsigned char *msg, *tpdu, *p;
   size_t msglen, tpdulen, last_tpdulen, n;
   unsigned char seqno;
   unsigned int edc;
   int use_crc = 0;
   int hdrlen, pcboff;
   size_t dummy_nresp;
   int via_escape = 0;
   int next_chunk = 1;
   int sending = 1;
   int retries = 0;
   int resyncing = 0;
   int nad_byte;
 
   if (!nresp)
     nresp = &dummy_nresp;
   *nresp = 0;
 
   /* Smarter readers allow to send APDUs directly; divert here. */
   if (handle->apdu_level)
     {
       /* We employ a hack for Omnikey readers which are able to send
          TPDUs using an escape sequence.  There is no documentation
          but the Windows driver does it this way.  Tested using a
          CM6121.  This method works also for the Cherry XX44
          keyboards; however there are problems with the
          ccid_tranceive_secure which leads to a loss of sync on the
          CCID level.  If Cherry wants to make their keyboard work
          again, they should hand over some docs. */
       if ((handle->id_vendor == VENDOR_OMNIKEY
            || (!handle->idev && handle->id_product == TRANSPORT_CM4040))
           && handle->apdu_level < 2
           && is_exlen_apdu (apdu_buf, apdu_buflen))
         via_escape = 1;
       else
         return ccid_transceive_apdu_level (handle, apdu_buf, apdu_buflen,
                                            resp, maxresplen, nresp);
     }
 
   /* The other readers we support require sending TPDUs.  */
 
   tpdulen = 0; /* Avoid compiler warning about no initialization. */
   msg = send_buffer;
   hdrlen = via_escape? 11 : 10;
 
   /* NAD: DAD=1, SAD=0 */
   nad_byte = handle->nonnull_nad? ((1 << 4) | 0): 0;
   if (via_escape)
     nad_byte = 0;
 
   last_tpdulen = 0;  /* Avoid gcc warning (controlled by RESYNCING). */
   for (;;)
     {
       if (next_chunk)
         {
           next_chunk = 0;
 
           apdu = apdu_buf;
           apdulen = apdu_buflen;
           assert (apdulen);
 
           /* Construct an I-Block. */
           tpdu = msg + hdrlen;
           tpdu[0] = nad_byte;
           tpdu[1] = ((handle->t1_ns & 1) << 6); /* I-block */
           if (apdulen > handle->ifsc )
             {
               apdulen = handle->ifsc;
               apdu_buf += handle->ifsc;
               apdu_buflen -= handle->ifsc;
               tpdu[1] |= (1 << 5); /* Set more bit. */
             }
           tpdu[2] = apdulen;
           memcpy (tpdu+3, apdu, apdulen);
           tpdulen = 3 + apdulen;
           edc = compute_edc (tpdu, tpdulen, use_crc);
           if (use_crc)
             tpdu[tpdulen++] = (edc >> 8);
           tpdu[tpdulen++] = edc;
         }
 
       if (via_escape)
         {
           msg[0] = PC_to_RDR_Escape;
           msg[5] = 0; /* slot */
           msg[6] = seqno = handle->seqno++;
           msg[7] = 0; /* RFU */
           msg[8] = 0; /* RFU */
           msg[9] = 0; /* RFU */
           msg[10] = 0x1a; /* Omnikey command to send a TPDU.  */
           set_msg_len (msg, 1 + tpdulen);
         }
       else
         {
           msg[0] = PC_to_RDR_XfrBlock;
           msg[5] = 0; /* slot */
           msg[6] = seqno = handle->seqno++;
           msg[7] = 4; /* bBWI */
           msg[8] = 0; /* RFU */
           msg[9] = 0; /* RFU */
           set_msg_len (msg, tpdulen);
         }
       msglen = hdrlen + tpdulen;
       if (!resyncing)
         last_tpdulen = tpdulen;
       pcboff = hdrlen+1;
 
       if (debug_level > 1)
         DEBUGOUT_3 ("T=1: put %c-block seq=%d%s\n",
                     ((msg[pcboff] & 0xc0) == 0x80)? 'R' :
                     (msg[pcboff] & 0x80)? 'S' : 'I',
                     ((msg[pcboff] & 0x80)? !!(msg[pcboff]& 0x10)
                      : !!(msg[pcboff] & 0x40)),
                     (!(msg[pcboff] & 0x80) && (msg[pcboff] & 0x20)?
                      " [more]":""));
 
       rc = bulk_out (handle, msg, msglen, 0);
       if (rc)
         return rc;
 
       msg = recv_buffer;
       rc = bulk_in (handle, msg, sizeof recv_buffer, &msglen,
                     via_escape? RDR_to_PC_Escape : RDR_to_PC_DataBlock,
                     seqno, 5000, 0);
       if (rc)
         return rc;
 
       tpdu = msg + hdrlen;
       tpdulen = msglen - hdrlen;
       resyncing = 0;
 
       if (tpdulen < 4)
         {
           usb_clear_halt (handle->idev, handle->ep_bulk_in);
           return CCID_DRIVER_ERR_ABORTED;
         }
 
       if (debug_level > 1)
         DEBUGOUT_4 ("T=1: got %c-block seq=%d err=%d%s\n",
                     ((msg[pcboff] & 0xc0) == 0x80)? 'R' :
                               (msg[pcboff] & 0x80)? 'S' : 'I',
                     ((msg[pcboff] & 0x80)? !!(msg[pcboff]& 0x10)
                      : !!(msg[pcboff] & 0x40)),
                     ((msg[pcboff] & 0xc0) == 0x80)? (msg[pcboff] & 0x0f) : 0,
                     (!(msg[pcboff] & 0x80) && (msg[pcboff] & 0x20)?
                      " [more]":""));
 
       if (!(tpdu[1] & 0x80))
         { /* This is an I-block. */
           retries = 0;
           if (sending)
             { /* last block sent was successful. */
               handle->t1_ns ^= 1;
               sending = 0;
             }
 
           if (!!(tpdu[1] & 0x40) != handle->t1_nr)
             { /* Reponse does not match our sequence number. */
               msg = send_buffer;
               tpdu = msg + hdrlen;
               tpdu[0] = nad_byte;
               tpdu[1] = (0x80 | (handle->t1_nr & 1) << 4 | 2); /* R-block */
               tpdu[2] = 0;
               tpdulen = 3;
               edc = compute_edc (tpdu, tpdulen, use_crc);
               if (use_crc)
                 tpdu[tpdulen++] = (edc >> 8);
               tpdu[tpdulen++] = edc;
 
               continue;
             }
 
           handle->t1_nr ^= 1;
 
           p = tpdu + 3; /* Skip the prologue field. */
           n = tpdulen - 3 - 1; /* Strip the epilogue field. */
           /* fixme: verify the checksum. */
           if (resp)
             {
               if (n > maxresplen)
                 {
                   DEBUGOUT_2 ("provided buffer too short for received data "
                               "(%u/%u)\n",
                               (unsigned int)n, (unsigned int)maxresplen);
                   return CCID_DRIVER_ERR_INV_VALUE;
                 }
 
               memcpy (resp, p, n);
               resp += n;
               *nresp += n;
               maxresplen -= n;
             }
 
           if (!(tpdu[1] & 0x20))
             return 0; /* No chaining requested - ready. */
 
           msg = send_buffer;
           tpdu = msg + hdrlen;
           tpdu[0] = nad_byte;
           tpdu[1] = (0x80 | (handle->t1_nr & 1) << 4); /* R-block */
           tpdu[2] = 0;
           tpdulen = 3;
           edc = compute_edc (tpdu, tpdulen, use_crc);
           if (use_crc)
             tpdu[tpdulen++] = (edc >> 8);
           tpdu[tpdulen++] = edc;
         }
       else if ((tpdu[1] & 0xc0) == 0x80)
         { /* This is a R-block. */
           if ( (tpdu[1] & 0x0f))
             {
               retries++;
               if (via_escape && retries == 1 && (msg[pcboff] & 0x0f))
                 {
                   /* Error probably due to switching to TPDU.  Send a
                      resync request.  We use the recv_buffer so that
                      we don't corrupt the send_buffer.  */
                   msg = recv_buffer;
                   tpdu = msg + hdrlen;
                   tpdu[0] = nad_byte;
                   tpdu[1] = 0xc0; /* S-block resync request. */
                   tpdu[2] = 0;
                   tpdulen = 3;
                   edc = compute_edc (tpdu, tpdulen, use_crc);
                   if (use_crc)
                     tpdu[tpdulen++] = (edc >> 8);
                   tpdu[tpdulen++] = edc;
                   resyncing = 1;
                   DEBUGOUT ("T=1: requesting resync\n");
                 }
               else if (retries > 3)
                 {
                   DEBUGOUT ("T=1: 3 failed retries\n");
                   return CCID_DRIVER_ERR_CARD_IO_ERROR;
                 }
               else
                 {
                   /* Error: repeat last block */
                   msg = send_buffer;
                   tpdulen = last_tpdulen;
                 }
             }
           else if (sending && !!(tpdu[1] & 0x10) == handle->t1_ns)
             { /* Response does not match our sequence number. */
               DEBUGOUT ("R-block with wrong seqno received on more bit\n");
               return CCID_DRIVER_ERR_CARD_IO_ERROR;
             }
           else if (sending)
             { /* Send next chunk. */
               retries = 0;
               msg = send_buffer;
               next_chunk = 1;
               handle->t1_ns ^= 1;
             }
           else
             {
               DEBUGOUT ("unexpected ACK R-block received\n");
               return CCID_DRIVER_ERR_CARD_IO_ERROR;
             }
         }
       else
         { /* This is a S-block. */
           retries = 0;
           DEBUGOUT_2 ("T=1: S-block %s received cmd=%d\n",
                       (tpdu[1] & 0x20)? "response": "request",
                       (tpdu[1] & 0x1f));
           if ( !(tpdu[1] & 0x20) && (tpdu[1] & 0x1f) == 1 && tpdu[2] == 1)
             {
               /* Information field size request.  */
               unsigned char ifsc = tpdu[3];
 
               if (ifsc < 16 || ifsc > 254)
                 return CCID_DRIVER_ERR_CARD_IO_ERROR;
 
               msg = send_buffer;
               tpdu = msg + hdrlen;
               tpdu[0] = nad_byte;
               tpdu[1] = (0xc0 | 0x20 | 1); /* S-block response */
               tpdu[2] = 1;
               tpdu[3] = ifsc;
               tpdulen = 4;
               edc = compute_edc (tpdu, tpdulen, use_crc);
               if (use_crc)
                 tpdu[tpdulen++] = (edc >> 8);
               tpdu[tpdulen++] = edc;
               DEBUGOUT_1 ("T=1: requesting an ifsc=%d\n", ifsc);
             }
           else if ( !(tpdu[1] & 0x20) && (tpdu[1] & 0x1f) == 3 && tpdu[2])
             {
               /* Wait time extension request. */
               unsigned char bwi = tpdu[3];
               msg = send_buffer;
               tpdu = msg + hdrlen;
               tpdu[0] = nad_byte;
               tpdu[1] = (0xc0 | 0x20 | 3); /* S-block response */
               tpdu[2] = 1;
               tpdu[3] = bwi;
               tpdulen = 4;
               edc = compute_edc (tpdu, tpdulen, use_crc);
               if (use_crc)
                 tpdu[tpdulen++] = (edc >> 8);
               tpdu[tpdulen++] = edc;
               DEBUGOUT_1 ("T=1: waittime extension of bwi=%d\n", bwi);
               print_progress (handle);
             }
           else if ( (tpdu[1] & 0x20) && (tpdu[1] & 0x1f) == 0 && !tpdu[2])
             {
               DEBUGOUT ("T=1: resync ack from reader\n");
               /* Repeat previous block.  */
               msg = send_buffer;
               tpdulen = last_tpdulen;
             }
           else
             return CCID_DRIVER_ERR_CARD_IO_ERROR;
         }
     } /* end T=1 protocol loop. */
 
   return 0;
 }
 
 
 /* Send the CCID Secure command to the reader.  APDU_BUF should
    contain the APDU template.  PIN_MODE defines how the pin gets
    formatted:
 
      1 := The PIN is ASCII encoded and of variable length.  The
           length of the PIN entered will be put into Lc by the reader.
           The APDU should me made up of 4 bytes without Lc.
 
    PINLEN_MIN and PINLEN_MAX define the limits for the pin length. 0
    may be used t enable reasonable defaults.
 
    When called with RESP and NRESP set to NULL, the function will
    merely check whether the reader supports the secure command for the
    given APDU and PIN_MODE. */
 int
 ccid_transceive_secure (ccid_driver_t handle,
                         const unsigned char *apdu_buf, size_t apdu_buflen,
                         pininfo_t *pininfo,
                         unsigned char *resp, size_t maxresplen, size_t *nresp)
 {
   int rc;
   unsigned char send_buffer[10+259], recv_buffer[10+259];
   unsigned char *msg, *tpdu, *p;
   size_t msglen, tpdulen, n;
   unsigned char seqno;
   size_t dummy_nresp;
   int testmode;
   int cherry_mode = 0;
+  int add_zero = 0;
   int enable_varlen = 0;
 
   testmode = !resp && !nresp;
 
   if (!nresp)
     nresp = &dummy_nresp;
   *nresp = 0;
 
   if (apdu_buflen >= 4 && apdu_buf[1] == 0x20 && (handle->has_pinpad & 1))
     ;
   else if (apdu_buflen >= 4 && apdu_buf[1] == 0x24 && (handle->has_pinpad & 2))
     ;
   else
     return CCID_DRIVER_ERR_NO_PINPAD;
 
   if (!pininfo->minlen)
     pininfo->minlen = 1;
   if (!pininfo->maxlen)
     pininfo->maxlen = 15;
 
   /* Note that the 25 is the maximum value the SPR532 allows.  */
   if (pininfo->minlen < 1 || pininfo->minlen > 25
       || pininfo->maxlen < 1 || pininfo->maxlen > 25
       || pininfo->minlen > pininfo->maxlen)
     return CCID_DRIVER_ERR_INV_VALUE;
 
   /* We have only tested a few readers so better don't risk anything
      and do not allow the use with other readers. */
   switch (handle->id_vendor)
     {
     case VENDOR_SCM:  /* Tested with SPR 532. */
     case VENDOR_KAAN: /* Tested with KAAN Advanced (1.02). */
     case VENDOR_FSIJ: /* Tested with Gnuk (0.21). */
       pininfo->maxlen = 25;
       enable_varlen = 1;
       break;
     case VENDOR_REINER: /* Tested with cyberJack go */
     case VENDOR_VASCO: /* Tested with DIGIPASS 920 */
       enable_varlen = 1;
       break;
     case VENDOR_CHERRY:
-      pininfo->maxlen = 25;
+      pininfo->maxlen = 15;
       enable_varlen = 1;
       /* The CHERRY XX44 keyboard echos an asterisk for each entered
          character on the keyboard channel.  We use a special variant
          of PC_to_RDR_Secure which directs these characters to the
          smart card's bulk-in channel.  We also need to append a zero
          Lc byte to the APDU.  It seems that it will be replaced with
          the actual length instead of being appended before the APDU
          is send to the card. */
+      add_zero = 1;
       if (handle->id_product != CHERRY_ST2000)
         cherry_mode = 1;
       break;
     default:
       if ((handle->id_vendor == VENDOR_GEMPC &&
            handle->id_product == GEMPC_PINPAD)
           || (handle->id_vendor == VENDOR_VEGA &&
               handle->id_product == VEGA_ALPHA))
         {
           enable_varlen = 0;
           pininfo->minlen = 4;
           pininfo->maxlen = 8;
           break;
         }
      return CCID_DRIVER_ERR_NOT_SUPPORTED;
     }
 
   if (enable_varlen)
     pininfo->fixedlen = 0;
 
   if (testmode)
     return 0; /* Success */
 
   if (pininfo->fixedlen < 0 || pininfo->fixedlen >= 16)
     return CCID_DRIVER_ERR_NOT_SUPPORTED;
 
   msg = send_buffer;
   if (handle->id_vendor == VENDOR_SCM)
     {
       DEBUGOUT ("sending escape sequence to switch to a case 1 APDU\n");
       rc = send_escape_cmd (handle, (const unsigned char*)"\x80\x02\x00", 3,
                             NULL, 0, NULL);
       if (rc)
         return rc;
     }
 
   msg[0] = cherry_mode? 0x89 : PC_to_RDR_Secure;
   msg[5] = 0; /* slot */
   msg[6] = seqno = handle->seqno++;
   msg[7] = 0; /* bBWI */
   msg[8] = 0; /* RFU */
   msg[9] = 0; /* RFU */
   msg[10] = apdu_buf[1] == 0x20 ? 0 : 1;
                /* Perform PIN verification or PIN modification. */
   msg[11] = 0; /* Timeout in seconds. */
   msg[12] = 0x82; /* bmFormatString: Byte, pos=0, left, ASCII. */
   if (handle->id_vendor == VENDOR_SCM)
     {
       /* For the SPR532 the next 2 bytes need to be zero.  We do this
          for all SCM products.  Kudos to Martin Paljak for this
          hint.  */
       msg[13] = msg[14] = 0;
     }
   else
     {
       msg[13] = pininfo->fixedlen; /* bmPINBlockString:
                                       0 bits of pin length to insert.
                                       PIN block size by fixedlen.  */
       msg[14] = 0x00; /* bmPINLengthFormat:
                          Units are bytes, position is 0. */
     }
 
   msglen = 15;
   if (apdu_buf[1] == 0x24)
     {
       msg[msglen++] = 0;    /* bInsertionOffsetOld */
       msg[msglen++] = pininfo->fixedlen;    /* bInsertionOffsetNew */
     }
 
   /* The following is a little endian word. */
   msg[msglen++] = pininfo->maxlen;   /* wPINMaxExtraDigit-Maximum.  */
   msg[msglen++] = pininfo->minlen;   /* wPINMaxExtraDigit-Minimum.  */
 
   if (apdu_buf[1] == 0x24)
     msg[msglen++] = apdu_buf[2] == 0 ? 0x03 : 0x01;
               /* bConfirmPIN
                *    0x00: new PIN once
                *    0x01: new PIN twice (confirmation)
                *    0x02: old PIN and new PIN once
                *    0x03: old PIN and new PIN twice (confirmation)
                */
 
   msg[msglen] = 0x02; /* bEntryValidationCondition:
                          Validation key pressed */
   if (pininfo->minlen && pininfo->maxlen && pininfo->minlen == pininfo->maxlen)
     msg[msglen] |= 0x01; /* Max size reached.  */
   msglen++;
 
   if (apdu_buf[1] == 0x20)
     msg[msglen++] = 0x01; /* bNumberMessage. */
   else
     msg[msglen++] = 0x03; /* bNumberMessage. */
 
   msg[msglen++] = 0x09; /* wLangId-Low:  English FIXME: use the first entry. */
   msg[msglen++] = 0x04; /* wLangId-High. */
 
   if (apdu_buf[1] == 0x20)
     msg[msglen++] = 0;    /* bMsgIndex. */
   else
     {
       msg[msglen++] = 0;    /* bMsgIndex1. */
       msg[msglen++] = 1;    /* bMsgIndex2. */
       msg[msglen++] = 2;    /* bMsgIndex3. */
     }
 
   /* Calculate Lc.  */
   n = pininfo->fixedlen;
   if (apdu_buf[1] == 0x24)
     n += pininfo->fixedlen;
 
   /* bTeoProlog follows: */
   msg[msglen++] = handle->nonnull_nad? ((1 << 4) | 0): 0;
   msg[msglen++] = ((handle->t1_ns & 1) << 6); /* I-block */
   if (n)
     msg[msglen++] = n + 5; /* apdulen should be filled for fixed length.  */
   else
     msg[msglen++] = 0; /* The apdulen will be filled in by the reader.  */
   /* APDU follows:  */
   msg[msglen++] = apdu_buf[0]; /* CLA */
   msg[msglen++] = apdu_buf[1]; /* INS */
   msg[msglen++] = apdu_buf[2]; /* P1 */
   msg[msglen++] = apdu_buf[3]; /* P2 */
-  if (cherry_mode)
+  if (add_zero)
     msg[msglen++] = 0;
   else if (pininfo->fixedlen != 0)
     {
       msg[msglen++] = n;
       memset (&msg[msglen], 0xff, n);
       msglen += n;
     }
   /* An EDC is not required. */
   set_msg_len (msg, msglen - 10);
 
   rc = bulk_out (handle, msg, msglen, 0);
   if (rc)
     return rc;
 
   msg = recv_buffer;
   rc = bulk_in (handle, msg, sizeof recv_buffer, &msglen,
                 RDR_to_PC_DataBlock, seqno, 30000, 0);
   if (rc)
     return rc;
 
   tpdu = msg + 10;
   tpdulen = msglen - 10;
 
   if (handle->apdu_level)
     {
       if (resp)
         {
           if (tpdulen > maxresplen)
             {
               DEBUGOUT_2 ("provided buffer too short for received data "
                           "(%u/%u)\n",
                           (unsigned int)tpdulen, (unsigned int)maxresplen);
               return CCID_DRIVER_ERR_INV_VALUE;
             }
 
           memcpy (resp, tpdu, tpdulen);
           *nresp = tpdulen;
         }
       return 0;
     }
 
   if (tpdulen < 4)
     {
       usb_clear_halt (handle->idev, handle->ep_bulk_in);
       return CCID_DRIVER_ERR_ABORTED;
     }
   if (debug_level > 1)
     DEBUGOUT_4 ("T=1: got %c-block seq=%d err=%d%s\n",
                 ((msg[11] & 0xc0) == 0x80)? 'R' :
                           (msg[11] & 0x80)? 'S' : 'I',
                 ((msg[11] & 0x80)? !!(msg[11]& 0x10) : !!(msg[11] & 0x40)),
                 ((msg[11] & 0xc0) == 0x80)? (msg[11] & 0x0f) : 0,
                 (!(msg[11] & 0x80) && (msg[11] & 0x20)? " [more]":""));
 
   if (!(tpdu[1] & 0x80))
     { /* This is an I-block. */
       /* Last block sent was successful. */
       handle->t1_ns ^= 1;
 
       if (!!(tpdu[1] & 0x40) != handle->t1_nr)
         { /* Reponse does not match our sequence number. */
           DEBUGOUT ("I-block with wrong seqno received\n");
           return CCID_DRIVER_ERR_CARD_IO_ERROR;
         }
 
       handle->t1_nr ^= 1;
 
       p = tpdu + 3; /* Skip the prologue field. */
       n = tpdulen - 3 - 1; /* Strip the epilogue field. */
       /* fixme: verify the checksum. */
       if (resp)
         {
           if (n > maxresplen)
             {
               DEBUGOUT_2 ("provided buffer too short for received data "
                           "(%u/%u)\n",
                           (unsigned int)n, (unsigned int)maxresplen);
               return CCID_DRIVER_ERR_INV_VALUE;
             }
 
           memcpy (resp, p, n);
           resp += n;
           *nresp += n;
           maxresplen -= n;
         }
 
       if (!(tpdu[1] & 0x20))
         return 0; /* No chaining requested - ready. */
 
       DEBUGOUT ("chaining requested but not supported for Secure operation\n");
       return CCID_DRIVER_ERR_CARD_IO_ERROR;
     }
   else if ((tpdu[1] & 0xc0) == 0x80)
     { /* This is a R-block. */
       if ( (tpdu[1] & 0x0f))
         { /* Error: repeat last block */
           DEBUGOUT ("No retries supported for Secure operation\n");
           return CCID_DRIVER_ERR_CARD_IO_ERROR;
         }
       else if (!!(tpdu[1] & 0x10) == handle->t1_ns)
         { /* Reponse does not match our sequence number. */
           DEBUGOUT ("R-block with wrong seqno received on more bit\n");
           return CCID_DRIVER_ERR_CARD_IO_ERROR;
         }
       else
         { /* Send next chunk. */
           DEBUGOUT ("chaining not supported on Secure operation\n");
           return CCID_DRIVER_ERR_CARD_IO_ERROR;
         }
     }
   else
     { /* This is a S-block. */
       DEBUGOUT_2 ("T=1: S-block %s received cmd=%d for Secure operation\n",
                   (tpdu[1] & 0x20)? "response": "request",
                   (tpdu[1] & 0x1f));
       return CCID_DRIVER_ERR_CARD_IO_ERROR;
     }
 
   return 0;
 }
 
 
 
 
 #ifdef TEST
 
 
 static void
 print_error (int err)
 {
   const char *p;
   char buf[50];
 
   switch (err)
     {
     case 0: p = "success";
     case CCID_DRIVER_ERR_OUT_OF_CORE: p = "out of core"; break;
     case CCID_DRIVER_ERR_INV_VALUE: p = "invalid value"; break;
     case CCID_DRIVER_ERR_NO_DRIVER: p = "no driver"; break;
     case CCID_DRIVER_ERR_NOT_SUPPORTED: p = "not supported"; break;
     case CCID_DRIVER_ERR_LOCKING_FAILED: p = "locking failed"; break;
     case CCID_DRIVER_ERR_BUSY: p = "busy"; break;
     case CCID_DRIVER_ERR_NO_CARD: p = "no card"; break;
     case CCID_DRIVER_ERR_CARD_INACTIVE: p = "card inactive"; break;
     case CCID_DRIVER_ERR_CARD_IO_ERROR: p = "card I/O error"; break;
     case CCID_DRIVER_ERR_GENERAL_ERROR: p = "general error"; break;
     case CCID_DRIVER_ERR_NO_READER: p = "no reader"; break;
     case CCID_DRIVER_ERR_ABORTED: p = "aborted"; break;
     default: sprintf (buf, "0x%05x", err); p = buf; break;
     }
   fprintf (stderr, "operation failed: %s\n", p);
 }
 
 
 static void
 print_data (const unsigned char *data, size_t length)
 {
   if (length >= 2)
     {
       fprintf (stderr, "operation status: %02X%02X\n",
                data[length-2], data[length-1]);
       length -= 2;
     }
   if (length)
     {
         fputs ("   returned data:", stderr);
         for (; length; length--, data++)
           fprintf (stderr, " %02X", *data);
         putc ('\n', stderr);
     }
 }
 
 static void
 print_result (int rc, const unsigned char *data, size_t length)
 {
   if (rc)
     print_error (rc);
   else if (data)
     print_data (data, length);
 }
 
 int
 main (int argc, char **argv)
 {
   int rc;
   ccid_driver_t ccid;
   int slotstat;
   unsigned char result[512];
   size_t resultlen;
   int no_pinpad = 0;
   int verify_123456 = 0;
   int did_verify = 0;
   int no_poll = 0;
 
   if (argc)
     {
       argc--;
       argv++;
     }
 
   while (argc)
     {
       if ( !strcmp (*argv, "--list"))
         {
           char *p;
           p = ccid_get_reader_list ();
           if (!p)
             return 1;
           fputs (p, stderr);
           free (p);
           return 0;
         }
       else if ( !strcmp (*argv, "--debug"))
         {
           ccid_set_debug_level (ccid_set_debug_level (-1)+1);
           argc--; argv++;
         }
       else if ( !strcmp (*argv, "--no-poll"))
         {
           no_poll = 1;
           argc--; argv++;
         }
       else if ( !strcmp (*argv, "--no-pinpad"))
         {
           no_pinpad = 1;
           argc--; argv++;
         }
       else if ( !strcmp (*argv, "--verify-123456"))
         {
           verify_123456 = 1;
           argc--; argv++;
         }
       else
         break;
     }
 
   rc = ccid_open_reader (&ccid, argc? *argv:NULL);
   if (rc)
     return 1;
 
   if (!no_poll)
     ccid_poll (ccid);
   fputs ("getting ATR ...\n", stderr);
   rc = ccid_get_atr (ccid, NULL, 0, NULL);
   if (rc)
     {
       print_error (rc);
       return 1;
     }
 
   if (!no_poll)
     ccid_poll (ccid);
   fputs ("getting slot status ...\n", stderr);
   rc = ccid_slot_status (ccid, &slotstat);
   if (rc)
     {
       print_error (rc);
       return 1;
     }
 
   if (!no_poll)
     ccid_poll (ccid);
 
   fputs ("selecting application OpenPGP ....\n", stderr);
   {
     static unsigned char apdu[] = {
       0, 0xA4, 4, 0, 6, 0xD2, 0x76, 0x00, 0x01, 0x24, 0x01};
     rc = ccid_transceive (ccid,
                           apdu, sizeof apdu,
                           result, sizeof result, &resultlen);
     print_result (rc, result, resultlen);
   }
 
 
   if (!no_poll)
     ccid_poll (ccid);
 
   fputs ("getting OpenPGP DO 0x65 ....\n", stderr);
   {
     static unsigned char apdu[] = { 0, 0xCA, 0, 0x65, 254 };
     rc = ccid_transceive (ccid, apdu, sizeof apdu,
                           result, sizeof result, &resultlen);
     print_result (rc, result, resultlen);
   }
 
   if (!no_pinpad)
     {
     }
 
   if (!no_pinpad)
     {
       static unsigned char apdu[] = { 0, 0x20, 0, 0x81 };
 
 
       if (ccid_transceive_secure (ccid,
                                   apdu, sizeof apdu,
                                   1, 0, 0, 0,
                                   NULL, 0, NULL))
         fputs ("can't verify using a PIN-Pad reader\n", stderr);
       else
         {
           fputs ("verifying CHV1 using the PINPad ....\n", stderr);
 
           rc = ccid_transceive_secure (ccid,
                                        apdu, sizeof apdu,
                                        1, 0, 0, 0,
                                        result, sizeof result, &resultlen);
           print_result (rc, result, resultlen);
           did_verify = 1;
         }
     }
 
   if (verify_123456 && !did_verify)
     {
       fputs ("verifying that CHV1 is 123456....\n", stderr);
       {
         static unsigned char apdu[] = {0, 0x20, 0, 0x81,
                                        6, '1','2','3','4','5','6'};
         rc = ccid_transceive (ccid, apdu, sizeof apdu,
                               result, sizeof result, &resultlen);
         print_result (rc, result, resultlen);
       }
     }
 
   if (!rc)
     {
       fputs ("getting OpenPGP DO 0x5E ....\n", stderr);
       {
         static unsigned char apdu[] = { 0, 0xCA, 0, 0x5E, 254 };
         rc = ccid_transceive (ccid, apdu, sizeof apdu,
                               result, sizeof result, &resultlen);
         print_result (rc, result, resultlen);
       }
     }
 
   ccid_close_reader (ccid);
 
   return 0;
 }
 
 /*
  * Local Variables:
  *  compile-command: "gcc -DTEST -Wall -I/usr/local/include -lusb -g ccid-driver.c"
  * End:
  */
 #endif /*TEST*/
 #endif /*HAVE_LIBUSB*/