diff --git a/scd/app-nks.c b/scd/app-nks.c index 8a99864cb..b09b71e67 100644 --- a/scd/app-nks.c +++ b/scd/app-nks.c @@ -1,2587 +1,2587 @@ /* app-nks.c - The Telesec NKS card application. * Copyright (C) 2004, 2007-2009 Free Software Foundation, Inc. * Copyright (C) 2004, 2007-2009, 2013-2015, 2020, 2022 g10 Code GmbH * * This file is part of GnuPG. * * GnuPG is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * GnuPG is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ /* Notes: * * - We are now targeting TCOS 3 cards and it may happen that there is * a regression towards TCOS 2 cards. Please report. * * - The NKS3 AUT key is not used. It seems that it is only useful for * the internal authentication command and not accessible by other * applications. The key itself is in the encryption class but the * corresponding certificate has only the digitalSignature * capability. * Update: This changed for the Signature Card V2 (nks version 15) * * - If required, we automagically switch between the NKS application * and the SigG or eSign application. This avoids to use the DINSIG * application which is somewhat limited, has no support for Secure * Messaging as required by TCOS 3 and has no way to change the PIN * or even set the NullPIN. With the Signature Card v2 (nks version * 15) the Esign application is used instead of the SigG. * * - We use the prefix NKS-DF01 for TCOS 2 cards and NKS-NKS3 for newer * cards. This is because the NKS application has moved to DF02 with * TCOS 3 and thus we better use a DF independent tag. * * - We use only the global PINs for the NKS application. * * * * Here is a table with PIN stati collected from 3 cards. * * | app | pwid | NKS3 | SIG_B | SIG_N | * |-----+------+-----------+-----------+-----------| * | NKS | 0x00 | null - | - - | - - | * | | 0x01 | 0 3 | - - | - - | * | | 0x02 | 3 null | 15 3 | 15 null | * | | 0x03 | - 3 | null - | 3 - | * | | 0x04 | | null 0 | 3 3 | * | SIG | 0x00 | null - | - - | - - | * | | 0x01 | 0 null | - null | - null | * | | 0x02 | 3 null | 15 0 | 15 0 | * | | 0x03 | - 0 | null null | null null | * - SIG is either SIGG or ESIGN. * - "-" indicates reference not found (SW 6A88). * - "null" indicates a NULLPIN (SW 6985). * - The first value in each cell is the global PIN; * the second is the local PIN (high bit of pwid set). * - The NKS3 card is some older test card. * - The SIG_B is a Signature Card V2.0 with Brainpool curves. * Here the PIN 0x82 has been changed from the NULLPIN. * - The SIG_N is a Signature Card V2.0 with NIST curves. * The PIN was enabled using the TCOS Windows tool. */ #include #include #include #include #include #include #include "scdaemon.h" #include "../common/i18n.h" #include "iso7816.h" #include "../common/tlv.h" #include "apdu.h" #include "../common/host2net.h" static char const aid_nks[] = { 0xD2, 0x76, 0x00, 0x00, 0x03, 0x01, 0x02 }; static char const aid_sigg[] = { 0xD2, 0x76, 0x00, 0x00, 0x66, 0x01 }; static char const aid_esign[] = { 0xA0, 0x00, 0x00, 0x01, 0x67, 0x45, 0x53, 0x49, 0x47, 0x4E }; static char const aid_idlm[] = { 0xD2, 0x76, 0x00, 0x00, 0x03, 0x0c, 0x01 }; /* The ids of the different apps on our TCOS cards. */ #define NKS_APP_NKS 0 #define NKS_APP_SIGG 1 #define NKS_APP_ESIGN 2 #define NKS_APP_IDLM 3 static struct { int nks_app_id;/* One of NKS_APP_*. Keep them sorted so that no * unnecessary application switching is needed. */ int fid; /* File ID. */ int nks_ver; /* 0 for NKS version 2, 3 for version 3, etc. */ int certtype; /* Type of certificate or 0 if it is not a certificate. */ int iskeypair; /* If true has the FID of the corresponding certificate. * If no certificate is known a value of -1 is used. */ int isauthkey; /* True if file is a key usable for authentication. */ int issignkey; /* True if file is a key usable for signing. */ int isencrkey; /* True if file is a key usable for decryption. */ unsigned char kid; /* Corresponding key references. */ } filelist[] = { { 0, 0x4531, 0, 0, 0xC000, 1,1,0, 0x80}, /* EF_PK.NKS.SIG */ /* */ /* nks15: EF.PK.NKS.ADS */ { 0, 0xC000, 0, 101 }, /* EF_C.NKS.SIG */ /* */ /* nks15: EF.C.ICC.ADS (sign key) */ { 0, 0x4331, 0, 100 }, /* Unnamed. */ /* */ /* nks15: EF.C.ICC.RFU1 */ /* */ /* (second cert for sign key) */ { 0, 0x4332, 0, 100 }, { 0, 0xB000, 0, 110 }, /* EF_PK.RCA.NKS */ { 0, 0x45B1, 0, 0, 0xC200, 0,0,1, 0x81}, /* EF_PK.NKS.ENC */ /* */ /* nks15: EF.PK.ICC.ENC1 */ { 0, 0xC200, 0, 101 }, /* EF_C.NKS.ENC */ /* nks15: EF.C.ICC.ENC1 (Cert-encr) */ { 0, 0x43B1, 0, 100 }, /* Unnamed */ /* */ /* nks15: EF.C.ICC.RFU2 */ /* */ /* (second cert for enc1 key) */ { 0, 0x43B2, 0, 100 }, { 0, 0x4371,15, 100 }, /* EF.C.ICC.RFU3 */ /* */ /* (second cert for auth key) */ { 0, 0x45B2, 3, 0, 0xC201, 0,0,1, 0x83}, /* EF_PK.NKS.ENC1024 */ /* */ /* nks15: EF.PK.ICC.ENC2 */ { 0, 0xC201, 3, 101 }, /* EF_C.NKS.ENC1024 */ { 0, 0xC20E,15, 111 }, /* EF.C.CSP.RCA1 (RootCA 1) */ { 0, 0xC208,15, 101 }, /* EF.C.CSP.SCA1 (SubCA 1) */ { 0, 0xC10E,15, 111 }, /* EF.C.CSP.RCA2 (RootCA 2) */ { 0, 0xC108,15, 101 }, /* EF.C.CSP.SCA2 (SubCA 2) */ { 0, 0x4571,15, 0, 0xC500, 1,0,0, 0x82}, /* EF.PK.ICC.AUT */ { 0, 0xC500,15, 101 }, /* EF.C.ICC.AUT (Cert-auth) */ { 0, 0xC201,15, 101 }, /* EF.C.ICC.ENC2 (Cert-encr) */ /* (empty on delivery) */ { 1, 0x4531, 3, 0, 0xC000, 0,1,1, 0x84}, /* EF_PK.CH.SIG */ { 1, 0xC000, 0, 101 }, /* EF_C.CH.SIG */ { 1, 0xC008, 3, 101 }, /* EF_C.CA.SIG */ { 1, 0xC00E, 3, 111 }, /* EF_C.RCA.SIG */ { 2, 0x4531, 15, 0, 0xC001, 0,1,0, 0x84}, /* EF_PK.CH.SIG */ { 2, 0xC000, 15,101 }, /* EF.C.SCA.QES (SubCA) */ { 2, 0xC001, 15,100 }, /* EF.C.ICC.QES (Cert) */ { 2, 0xC00E, 15,111 }, /* EF.C.RCA.QES (RootCA */ { 3, 0x4E03, 3, 0, -1 }, /* EK_PK_03 */ { 3, 0x4E04, 3, 0, -1 }, /* EK_PK_04 */ { 3, 0x4E05, 3, 0, -1 }, /* EK_PK_05 */ { 3, 0x4E06, 3, 0, -1 }, /* EK_PK_06 */ { 3, 0x4E07, 3, 0, -1 }, /* EK_PK_07 */ { 3, 0x4E08, 3, 0, -1 }, /* EK_PK_08 */ { 0, 0 } }; /* Object to cache information gathered from FIDs. */ struct fid_cache_s { struct fid_cache_s *next; int nks_app_id; int fid; /* Zero for an unused slot. */ unsigned int got_keygrip:1; /* The keygrip and algo are valid. */ int algo; char *algostr; /* malloced. */ char keygripstr[2*KEYGRIP_LEN+1]; }; /* Object with application (i.e. NKS) specific data. */ struct app_local_s { int active_nks_app; /* One of the NKS_APP_ constants. */ int only_idlm; /* The application is fixed to IDLM (IDKey card). */ int qes_app_id; /* Either NKS_APP_SIGG or NKS_APP_ESIGN. */ int sigg_msig_checked;/* True if we checked for a mass signature card. */ int sigg_is_msig; /* True if this is a mass signature card. */ int need_app_select; /* Need to re-select the application. */ struct fid_cache_s *fid_cache; /* Linked list with cached infos. */ }; static gpg_error_t readcert_from_ef (app_t app, int fid, unsigned char **cert, size_t *certlen); static gpg_error_t switch_application (app_t app, int nks_app_id); static const char *parse_pwidstr (app_t app, const char *pwidstr, int new_mode, int *r_nks_app_id, int *r_pwid); static gpg_error_t verify_pin (app_t app, int pwid, const char *desc, gpg_error_t (*pincb)(void*, const char *, char **), void *pincb_arg); static gpg_error_t parse_keyref (app_t app, const char *keyref, int want_keypair, int *r_fididx); static void flush_fid_cache (app_t app) { while (app->app_local->fid_cache) { struct fid_cache_s *next = app->app_local->fid_cache->next; if (app->app_local->fid_cache) xfree (app->app_local->fid_cache->algostr); xfree (app->app_local->fid_cache); app->app_local->fid_cache = next; } } /* Release local data. */ static void do_deinit (app_t app) { if (app && app->app_local) { flush_fid_cache (app); xfree (app->app_local); app->app_local = NULL; } } static int all_zero_p (void *buffer, size_t length) { char *p; for (p=buffer; length; length--, p++) if (*p) return 0; return 1; } /* Return an allocated string with the serial number in a format to be * show to the user. May return NULL on malloc problem. */ static char * get_dispserialno (app_t app) { char *result; /* We only need to strip the last zero which is not printed on the * card. */ result = app_get_serialno (app); if (result && *result && result[strlen(result)-1] == '0') result[strlen(result)-1] = 0; return result; } static gpg_error_t pubkey_from_pk_file (app_t app, int pkfid, int cfid, unsigned char **r_pk, size_t *r_pklen) { gpg_error_t err; unsigned char *buffer[2]; size_t buflen[2]; int i; int offset[2] = { 0, 0 }; *r_pk = NULL; *r_pklen = 0; if (app->appversion == 15) { /* Signature Card v2 - get keygrip from the certificate. */ unsigned char *cert; size_t certlen; if (cfid == -1) return gpg_error (GPG_ERR_NOT_SUPPORTED); /* Fall back to certificate reading. */ err = readcert_from_ef (app, cfid, &cert, &certlen); if (err) { log_error ("nks: error reading certificate %04X: %s\n", cfid, gpg_strerror (err)); return err; } err = app_help_pubkey_from_cert (cert, certlen, r_pk, r_pklen); xfree (cert); if (err) log_error ("nks: error parsing certificate %04X: %s\n", cfid, gpg_strerror (err)); return err; } err = iso7816_select_file (app_get_slot (app), pkfid, 0); if (err) return err; err = iso7816_read_record (app_get_slot (app), 1, 1, 0, &buffer[0], &buflen[0]); if (err) return err; err = iso7816_read_record (app_get_slot (app), 2, 1, 0, &buffer[1], &buflen[1]); if (err) { xfree (buffer[0]); return err; } if (app->appversion < 3) { /* Old versions of NKS store the values in a TLV encoded format. We need to do some checks. */ for (i=0; i < 2; i++) { /* Check that the value appears like an integer encoded as Simple-TLV. We don't check the tag because the tests cards I have use 1 for both, the modulus and the exponent - the example in the documentation gives 2 for the exponent. */ if (buflen[i] < 3) err = gpg_error (GPG_ERR_TOO_SHORT); else if (buffer[i][1] != buflen[i]-2 ) err = gpg_error (GPG_ERR_INV_OBJ); else offset[i] = 2; if (err) { xfree (buffer[0]); xfree (buffer[1]); return err; } } } else { /* Remove leading zeroes to get a correct keygrip. Take care of negative numbers. We should also fix it the same way in libgcrypt but we can't yet rely on it yet. */ for (i=0; i < 2; i++) { while (buflen[i]-offset[i] > 1 && !buffer[i][offset[i]] && !(buffer[i][offset[i]+1] & 0x80)) offset[i]++; } } /* Check whether negative values are not prefixed with a zero and fix that. */ for (i=0; i < 2; i++) { if ((buflen[i]-offset[i]) && (buffer[i][offset[i]] & 0x80)) { unsigned char *newbuf; size_t newlen; newlen = 1 + buflen[i] - offset[i]; newbuf = xtrymalloc (newlen); if (!newbuf) { err = gpg_error_from_syserror (); xfree (buffer[0]); xfree (buffer[1]); return err; } newbuf[0] = 0; memcpy (newbuf+1, buffer[i]+offset[i], buflen[i] - offset[i]); xfree (buffer[i]); buffer[i] = newbuf; buflen[i] = newlen; offset[i] = 0; } } *r_pk = make_canon_sexp_from_rsa_pk (buffer[0]+offset[0], buflen[0]-offset[0], buffer[1]+offset[1], buflen[1]-offset[1], r_pklen); xfree (buffer[0]); xfree (buffer[1]); return err; } /* Read the file with PKFID, assume it contains a public key and * return its keygrip in the caller provided 41 byte buffer R_GRIPSTR. * This works only for RSA card. For the Signature Card v2 ECC is * used and Read Record needs to be replaced by read binary. Given * all the ECC parameters required, we don't do that but rely that the * corresponding certificate at CFID is already available and get the * public key from there. Note that a CFID of 1 is indicates that a * certificate is not known. If R_ALGO is not NULL the public key * algorithm for the returned KEYGRIP is stored there. If R_ALGOSTR * is not NULL the public key algo string (e.g. "rsa2048") is stored * there. */ static gpg_error_t keygripstr_from_pk_file (app_t app, int pkfid, int cfid, char *r_gripstr, int *r_algo, char **r_algostr) { gpg_error_t err; int algo = 0; /* Public key algo. */ char *algostr = NULL; /* Public key algo string. */ struct fid_cache_s *ci; unsigned char *pk; size_t pklen; for (ci = app->app_local->fid_cache; ci; ci = ci->next) if (ci->fid && ci->nks_app_id == app->app_local->active_nks_app && ci->fid == pkfid) { if (!ci->got_keygrip) return gpg_error (GPG_ERR_NOT_FOUND); if (r_algostr && !ci->algostr) break; /* Not in the cache - try w/o cache. */ memcpy (r_gripstr, ci->keygripstr, 2*KEYGRIP_LEN+1); if (r_algo) *r_algo = ci->algo; if (r_algostr) { *r_algostr = xtrystrdup (ci->algostr); if (!*r_algostr) return gpg_error_from_syserror (); } return 0; /* Found in cache. */ } err = pubkey_from_pk_file (app, pkfid, cfid, &pk, &pklen); if (!err) err = app_help_get_keygrip_string_pk (pk, pklen, r_gripstr, NULL, &algo, &algostr); xfree (pk); if (!err) { if (r_algostr) { *r_algostr = algostr; algostr = NULL; } /* FIXME: We need to implement not_found caching. */ for (ci = app->app_local->fid_cache; ci; ci = ci->next) if (ci->fid && ci->nks_app_id == app->app_local->active_nks_app && ci->fid == pkfid) { /* Update the keygrip. */ memcpy (ci->keygripstr, r_gripstr, 2*KEYGRIP_LEN+1); ci->algo = algo; xfree (ci->algostr); ci->algostr = algostr? xtrystrdup (algostr) : NULL; ci->got_keygrip = 1; break; } if (!ci) { for (ci = app->app_local->fid_cache; ci; ci = ci->next) if (!ci->fid) break; if (!ci) ci = xtrycalloc (1, sizeof *ci); if (!ci) ; /* Out of memory - it is a cache, so we ignore it. */ else { ci->nks_app_id = app->app_local->active_nks_app; ci->fid = pkfid; memcpy (ci->keygripstr, r_gripstr, 2*KEYGRIP_LEN+1); ci->algo = algo; ci->got_keygrip = 1; ci->next = app->app_local->fid_cache; app->app_local->fid_cache = ci; } } } xfree (algostr); return err; } /* Parse KEYREF and return the index into the FILELIST at R_IDX. * Returns 0 on success and switches to the requested application. * The public key algo is stored at R_ALGO unless it is NULL. */ static gpg_error_t find_fid_by_keyref (app_t app, const char *keyref, int *r_idx, int *r_algo) { gpg_error_t err; int idx; char keygripstr[2*KEYGRIP_LEN+1]; if (!keyref || !keyref[0]) err = gpg_error (GPG_ERR_INV_ID); else if (keyref[0] != 'N' && strlen (keyref) == 40) /* This is a keygrip. */ { struct fid_cache_s *ci; /* FIXME: Our cache structure needs to be revised. It doesn't * take the app_id into account and we don't have a way to * directly access the FID item if there are several of them * with different app_ids. We disable the cache for now. */ for (ci = app->app_local->fid_cache ; ci; ci = ci->next) if (ci->fid && ci->got_keygrip && !strcmp (ci->keygripstr, keyref)) break; if (ci && 0 ) /* Cached (disabled) */ { for (idx=0; filelist[idx].fid; idx++) if (filelist[idx].fid == ci->fid) break; if (!filelist[idx].fid) { log_debug ("nks: Ooops: Unkown FID cached!\n"); err = gpg_error (GPG_ERR_BUG); goto leave; } err = switch_application (app, filelist[idx].nks_app_id); if (err) goto leave; if (r_algo) *r_algo = ci->algo; } else /* Not cached. */ { for (idx=0; filelist[idx].fid; idx++) { if (!filelist[idx].iskeypair) continue; if (app->app_local->only_idlm) { if (filelist[idx].nks_app_id != NKS_APP_IDLM) continue; } else { if (filelist[idx].nks_app_id != NKS_APP_NKS && filelist[idx].nks_app_id != app->app_local->qes_app_id) continue; err = switch_application (app, filelist[idx].nks_app_id); if (err) goto leave; } err = keygripstr_from_pk_file (app, filelist[idx].fid, filelist[idx].iskeypair, keygripstr, r_algo, NULL); if (err) { log_info ("nks: no keygrip for FID 0x%04X: %s - ignored\n", filelist[idx].fid, gpg_strerror (err)); continue; } if (!strcmp (keygripstr, keyref)) break; /* Found */ } if (!filelist[idx].fid) { err = gpg_error (GPG_ERR_NOT_FOUND); goto leave; } /* (No need to switch the app as that has already been done * in the loop.) */ } *r_idx = idx; err = 0; } else /* This is a usual keyref. */ { err = parse_keyref (app, keyref, 1, &idx); if (err) goto leave; *r_idx = idx; err = switch_application (app, filelist[idx].nks_app_id); if (err) goto leave; if (r_algo) { /* We need to get the public key algo. */ err = keygripstr_from_pk_file (app, filelist[idx].fid, filelist[idx].iskeypair, keygripstr, r_algo, NULL); if (err) log_error ("nks: no keygrip for FID 0x%04X: %s\n", filelist[idx].fid, gpg_strerror (err)); } } leave: return err; } /* TCOS responds to a verify with empty data (i.e. without the Lc * byte) with the status of the PIN. PWID is the PIN ID. NKS_APP_ID * gives the application to first switch to. Returns: * ISO7816_VERIFY_* codes or non-negative number of verification * attempts left. */ static int get_chv_status (app_t app, int nks_app_id, int pwid) { if (switch_application (app, nks_app_id)) return (nks_app_id == NKS_APP_NKS ? ISO7816_VERIFY_ERROR : ISO7816_VERIFY_NO_PIN); return iso7816_verify_status (app_get_slot (app), pwid); } /* Implement the GETATTR command. This is similar to the LEARN command but returns just one value via the status interface. */ static gpg_error_t do_getattr (app_t app, ctrl_t ctrl, const char *name) { static struct { const char *name; int special; } table[] = { { "$AUTHKEYID", 1 }, { "$ENCRKEYID", 2 }, { "$SIGNKEYID", 3 }, { "NKS-VERSION", 4 }, /* Legacy (printed decimal) */ { "CHV-STATUS", 5 }, { "$DISPSERIALNO",6 }, { "SERIALNO", 0 } }; gpg_error_t err = 0; int idx; char *p, *p2; char buffer[100]; int nksver = app->appversion; err = switch_application (app, NKS_APP_NKS); if (err) return err; for (idx=0; (idx < DIM(table) && ascii_strcasecmp (table[idx].name, name)); idx++) ; if (!(idx < DIM (table))) return gpg_error (GPG_ERR_INV_NAME); switch (table[idx].special) { case 0: /* SERIALNO */ { p = app_get_serialno (app); if (p) { send_status_direct (ctrl, "SERIALNO", p); xfree (p); } } break; case 1: /* $AUTHKEYID */ { /* NetKey 3.0 cards define an authentication key but according to the specs this key is only usable for encryption and not signing. it might work anyway but it has not yet been tested - fixme. Thus for now we use the NKS signature key for authentication for netkey 3. For the Signature Card V2.0 the auth key is defined and thus we use it. */ const char *tmp = nksver == 15? "NKS-NKS3.4571" : "NKS-NKS3.4531"; send_status_info (ctrl, table[idx].name, tmp, strlen (tmp), NULL, 0); } break; case 2: /* $ENCRKEYID */ { char const tmp[] = "NKS-NKS3.45B1"; send_status_info (ctrl, table[idx].name, tmp, strlen (tmp), NULL, 0); } break; case 3: /* $SIGNKEYID */ { char const tmp[] = "NKS-NKS3.4531"; send_status_info (ctrl, table[idx].name, tmp, strlen (tmp), NULL, 0); } break; case 4: /* NKS-VERSION */ snprintf (buffer, sizeof buffer, "%d", app->appversion); send_status_info (ctrl, table[idx].name, buffer, strlen (buffer), NULL, 0); break; case 5: /* CHV-STATUS */ { /* Return the status for the the PINs as described in the * table below. See the macros ISO7816_VERIFY_* for a list * for each slot. The order is * * | idx | name | * |-----+------------| * | 0 | PW1.CH | * | 1 | PW2.CH | * | 2 | PW1.CH.SIG | * | 3 | PW2.CH.SIG | * * See parse_pwidstr for details of the mapping. */ int tmp[4]; /* We use a helper array so that we can control that there is * no superfluous application switches. */ if (app->appversion == 15) { tmp[0] = get_chv_status (app, 0, 0x03); tmp[1] = get_chv_status (app, 0, 0x04); } else { tmp[0] = get_chv_status (app, 0, 0x00); tmp[1] = get_chv_status (app, 0, 0x01); } tmp[2] = get_chv_status (app, app->app_local->qes_app_id, 0x81); if (app->appversion == 15) tmp[3] = get_chv_status (app, app->app_local->qes_app_id, 0x82); else tmp[3] = get_chv_status (app, app->app_local->qes_app_id, 0x83); snprintf (buffer, sizeof buffer, "%d %d %d %d", tmp[0], tmp[1], tmp[2], tmp[3]); send_status_info (ctrl, table[idx].name, buffer, strlen (buffer), NULL, 0); } break; case 6: /* $DISPSERIALNO */ { p = app_get_serialno (app); p2 = get_dispserialno (app); if (p && p2 && strcmp (p, p2)) send_status_info (ctrl, table[idx].name, p2, strlen (p2), NULL, (size_t)0); else /* No abbreviated S/N or identical to the full full S/N. */ err = gpg_error (GPG_ERR_INV_NAME); /* No Abbreviated S/N. */ xfree (p); xfree (p2); } break; default: err = gpg_error (GPG_ERR_NOT_IMPLEMENTED); break; } return err; } /* Parse a keyref (NKS_*.*) and return the corresponding EF as an * index into the filetable. With WANT_KEYPAIR set a keypair EF is * requested; otherwise also cert EFs are returned. */ static gpg_error_t parse_keyref (app_t app, const char *keyref, int want_keypair, int *r_fididx) { int nks_app_id, fid, idx; if (!ascii_strncasecmp (keyref, "NKS-NKS3.", 9)) nks_app_id = NKS_APP_NKS; else if (!ascii_strncasecmp (keyref, "NKS-ESIGN.", 10) && (!want_keypair || app->app_local->qes_app_id == NKS_APP_ESIGN)) nks_app_id = NKS_APP_ESIGN; else if (!ascii_strncasecmp (keyref, "NKS-SIGG.", 9) && (!want_keypair || app->app_local->qes_app_id == NKS_APP_SIGG)) nks_app_id = NKS_APP_SIGG; else if (!ascii_strncasecmp (keyref, "NKS-IDLM.", 9)) nks_app_id = NKS_APP_IDLM; else if (!ascii_strncasecmp (keyref, "NKS-DF01.", 9)) nks_app_id = NKS_APP_NKS; else return gpg_error (GPG_ERR_INV_ID); keyref += nks_app_id == NKS_APP_ESIGN? 10 : 9; if (!hexdigitp (keyref) || !hexdigitp (keyref+1) || !hexdigitp (keyref+2) || !hexdigitp (keyref+3) || keyref[4]) return gpg_error (GPG_ERR_INV_ID); fid = xtoi_4 (keyref); for (idx=0; filelist[idx].fid; idx++) if (filelist[idx].fid == fid && filelist[idx].nks_app_id == nks_app_id && ((want_keypair && filelist[idx].iskeypair) || (!want_keypair && (filelist[idx].certtype || filelist[idx].iskeypair > 0)))) break; if (!filelist[idx].fid) return gpg_error (GPG_ERR_NOT_FOUND); *r_fididx = idx; return 0; } const char * get_nks_tag (app_t app, int nks_app_id) { const char *tag; if (nks_app_id == NKS_APP_ESIGN) tag = "ESIGN"; else if (nks_app_id == NKS_APP_SIGG) tag = "SIGG"; else if (nks_app_id == NKS_APP_IDLM) tag = "IDLM"; else if (app->appversion < 3) tag = "DF01"; else tag = "NKS3"; return tag; } static void set_usage_string (char usagebuf[5], int i) { int usageidx = 0; if (filelist[i].issignkey) usagebuf[usageidx++] = 's'; if (filelist[i].isauthkey) usagebuf[usageidx++] = 'a'; if (filelist[i].isencrkey) usagebuf[usageidx++] = 'e'; if (!usageidx) usagebuf[usageidx++] = '-'; usagebuf[usageidx] = 0; } static void do_learn_status_core (app_t app, ctrl_t ctrl, unsigned int flags, int nks_app_id) { gpg_error_t err; char ct_buf[100], id_buf[100]; int i; const char *tag = get_nks_tag (app, nks_app_id); /* Output information about all useful objects in the NKS application. */ for (i=0; filelist[i].fid; i++) { if (filelist[i].nks_ver > app->appversion) continue; if (filelist[i].nks_app_id != nks_app_id) continue; - if (filelist[i].certtype && !(flags &1)) + if (filelist[i].certtype && !(flags & APP_LEARN_FLAG_KEYPAIRINFO)) { size_t len; len = app_help_read_length_of_cert (app->slot, filelist[i].fid, NULL); if (len) { /* FIXME: We should store the length in the application's context so that a following readcert does only need to read that many bytes. */ snprintf (ct_buf, sizeof ct_buf, "%d", filelist[i].certtype); snprintf (id_buf, sizeof id_buf, "NKS-%s.%04X", tag, filelist[i].fid); send_status_info (ctrl, "CERTINFO", ct_buf, strlen (ct_buf), id_buf, strlen (id_buf), NULL, (size_t)0); } } else if (filelist[i].iskeypair) { char gripstr[40+1]; char usagebuf[5]; char *algostr = NULL; err = keygripstr_from_pk_file (app, filelist[i].fid, filelist[i].iskeypair, gripstr, NULL, &algostr); if (err) log_error ("can't get keygrip from FID 0x%04X: %s\n", filelist[i].fid, gpg_strerror (err)); else { snprintf (id_buf, sizeof id_buf, "NKS-%s.%04X", tag, filelist[i].fid); set_usage_string (usagebuf, i); send_status_info (ctrl, "KEYPAIRINFO", gripstr, 40, id_buf, strlen (id_buf), usagebuf, strlen (usagebuf), "-", (size_t)1, algostr, strlen (algostr), NULL, (size_t)0); } xfree (algostr); } } } static gpg_error_t do_learn_status (app_t app, ctrl_t ctrl, unsigned int flags) { gpg_error_t err; do_getattr (app, ctrl, "CHV-STATUS"); err = switch_application (app, NKS_APP_NKS); if (err) return err; do_learn_status_core (app, ctrl, flags, app->app_local->active_nks_app); if (app->app_local->only_idlm) return 0; /* ready. */ err = switch_application (app, app->app_local->qes_app_id); if (err) return 0; /* Silently ignore if we can't switch to SigG. */ do_learn_status_core (app, ctrl, flags, app->app_local->qes_app_id); return 0; } /* Helper to read a certificate from the file FID. The function * assumes that the application has already been selected. */ static gpg_error_t readcert_from_ef (app_t app, int fid, unsigned char **cert, size_t *certlen) { gpg_error_t err; unsigned char *buffer; const unsigned char *p; size_t buflen, n; int class, tag, constructed, ndef; size_t totobjlen, objlen, hdrlen; int rootca = 0; *cert = NULL; *certlen = 0; /* Read the entire file. fixme: This could be optimized by first reading the header to figure out how long the certificate actually is. */ err = iso7816_select_file (app->slot, fid, 0); if (err) { log_error ("nks: error selecting FID 0x%04X: %s\n", fid, gpg_strerror (err)); return err; } err = iso7816_read_binary (app->slot, 0, 0, &buffer, &buflen); if (err) { log_error ("nks: error reading certificate from FID 0x%04X: %s\n", fid, gpg_strerror (err)); return err; } if (!buflen || *buffer == 0xff || all_zero_p (buffer, buflen)) { log_info ("nks: no certificate contained in FID 0x%04X\n", fid); err = gpg_error (GPG_ERR_NOT_FOUND); goto leave; } /* Now figure something out about the object. */ p = buffer; n = buflen; err = parse_ber_header (&p, &n, &class, &tag, &constructed, &ndef, &objlen, &hdrlen); if (err) goto leave; if ( class == CLASS_UNIVERSAL && tag == TAG_SEQUENCE && constructed ) ; else if ( class == CLASS_UNIVERSAL && tag == TAG_SET && constructed ) rootca = 1; else return gpg_error (GPG_ERR_INV_OBJ); totobjlen = objlen + hdrlen; log_assert (totobjlen <= buflen); err = parse_ber_header (&p, &n, &class, &tag, &constructed, &ndef, &objlen, &hdrlen); if (err) goto leave; if (rootca) ; else if (class == CLASS_UNIVERSAL && tag == TAG_OBJECT_ID && !constructed) { const unsigned char *save_p; /* The certificate seems to be contained in a userCertificate container. Skip this and assume the following sequence is the certificate. */ if (n < objlen) { err = gpg_error (GPG_ERR_INV_OBJ); goto leave; } p += objlen; n -= objlen; save_p = p; err = parse_ber_header (&p, &n, &class, &tag, &constructed, &ndef, &objlen, &hdrlen); if (err) goto leave; if ( !(class == CLASS_UNIVERSAL && tag == TAG_SEQUENCE && constructed) ) return gpg_error (GPG_ERR_INV_OBJ); totobjlen = objlen + hdrlen; log_assert (save_p + totobjlen <= buffer + buflen); memmove (buffer, save_p, totobjlen); } *cert = buffer; buffer = NULL; *certlen = totobjlen; leave: xfree (buffer); return err; } /* * Iterate over FILELIST, supporting two use cases: * * (1) With WANT_KEYGRIPSTR=, finding matching entry. * (2) With WANT_KEYGRIPSTR=NULL, listing entries * by CAPABILITY (possibly == 0, for all entries). * * Caller supplies an array KEYGRIPSTR. * Caller should start *IDX_P == -1, and keep the index value in IDX_P. * * Returns 0 on success, otherwise returns error value. * * When all entries are tried, returns GPG_ERR_NOT_FOUND for the use * case of (1). Returns GPG_ERR_TRUE for the use case of (2). */ static gpg_error_t iterate_over_filelist (app_t app, const char *want_keygripstr, int capability, char keygripstr[2*KEYGRIP_LEN+1], int *idx_p) { gpg_error_t err; int idx = *idx_p; for (idx++; filelist[idx].fid; idx++) { if (filelist[idx].nks_ver > app->appversion) continue; /* EF not support by this card version. */ if (!filelist[idx].iskeypair) continue; /* Skip - We are only interested in keypairs. */ if (app->app_local->only_idlm) { /* IDLM cards have no other applications we want to switch * to. We skip all EFs which are not known for IDLM. */ if (filelist[idx].nks_app_id != NKS_APP_IDLM) continue; } else { /* Skip all EFs which are not for NKS or the card's * implementation for a qualified electoric signature (QES) * which is either the old SIGG or the newer ESIGN. */ if (filelist[idx].nks_app_id != NKS_APP_NKS && filelist[idx].nks_app_id != app->app_local->qes_app_id) continue; /* Switch if needed. Note that the filelist should be * sorted to avoid unnecessary switches. */ err = switch_application (app, filelist[idx].nks_app_id); if (err) { *idx_p = idx; return err; } } /* Get the keygrip from the EF. Note that this functions * consults the cache to avoid computing the keygrip again. */ err = keygripstr_from_pk_file (app, filelist[idx].fid, filelist[idx].iskeypair, keygripstr, NULL, NULL); if (err) { log_error ("can't get keygrip from FID 0x%04X: %s\n", filelist[idx].fid, gpg_strerror (err)); continue; } if (want_keygripstr) { /* If the keygrip matches the requested one we are ready. */ if (!strcmp (keygripstr, want_keygripstr)) { /* Found */ *idx_p = idx; return 0; } } else /* No keygrip requested - list all . */ { /* If a capability has been requested return only keys with * that capability. */ if (capability == GCRY_PK_USAGE_SIGN) { if (!filelist[idx].issignkey) continue; } if (capability == GCRY_PK_USAGE_ENCR) { if (!filelist[idx].isencrkey) continue; } if (capability == GCRY_PK_USAGE_AUTH) { if (!filelist[idx].isauthkey) continue; } /* Found. Return but save the last idenx of the loop. */ *idx_p = idx; return 0; } } if (!want_keygripstr) err = gpg_error (GPG_ERR_TRUE); else err = gpg_error (GPG_ERR_NOT_FOUND); return err; } /* Read the certificate with id CERTID (as returned by learn_status in the CERTINFO status lines) and return it in the freshly allocated buffer put into CERT and the length of the certificate put into CERTLEN. */ static gpg_error_t do_readcert (app_t app, const char *certid, unsigned char **cert, size_t *certlen) { int idx, fid; gpg_error_t err; *cert = NULL; *certlen = 0; /* Handle the case with KEYGRIP. We got a keygrip if the string has * a length of 40 and does not start with an N as in NKS-* */ if (certid[0] != 'N' && strlen (certid) == 40) { char keygripstr[2*KEYGRIP_LEN+1]; idx = -1; err = iterate_over_filelist (app, certid, 0, keygripstr, &idx); if (err) return err; /* Switching is not required here because iterate_over_filelist * has already done that. */ } else /* This is not a keygrip. */ { err = parse_keyref (app, certid, 0, &idx); if (err) return err; err = switch_application (app, filelist[idx].nks_app_id); if (err) return err; } /* If the requested objects is a plain public key, redirect it to the corresponding certificate. The whole system is a bit messy because we sometime use the key directly or let the caller retrieve the key from the certificate. The rationale for that is to support not-yet stored certificates. */ if (filelist[idx].iskeypair > 0) fid = filelist[idx].iskeypair; else fid = filelist[idx].fid; return readcert_from_ef (app, fid, cert, certlen); } /* Handle the READKEY command. On success a canonical encoded S-expression with the public key will get stored at PK and its length at PKLEN; the caller must release that buffer. On error PK and PKLEN are not changed and an error code is returned. As of now this function is only useful for the internal authentication key. Other keys are automagically retrieved by means of the certificate parsing code in commands.c:cmd_readkey. For internal use PK and PKLEN may be NULL to just check for an existing key. */ static gpg_error_t do_readkey (app_t app, ctrl_t ctrl, const char *keyid, unsigned int flags, unsigned char **pk, size_t *pklen) { gpg_error_t err; unsigned char *dummy_pk = NULL; size_t dummy_pklen = 0; if (!pk) pk = &dummy_pk; if (!pklen) pklen = &dummy_pklen; (void)ctrl; if ((flags & APP_READKEY_FLAG_ADVANCED)) return GPG_ERR_NOT_SUPPORTED; /* We use a generic name to retrieve PK.AUT.IFD-SPK. */ if (!strcmp (keyid, "$IFDAUTHKEY") && app->appversion >= 3) { unsigned short path[1] = { 0x4500 }; unsigned char *buffer[2]; size_t buflen[2]; /* Access the KEYD file which is always in the master directory. */ err = iso7816_select_path (app_get_slot (app), path, DIM (path), 0); if (err) goto leave; /* Due to the above select we need to re-select our application. */ app->app_local->need_app_select = 1; /* Get the two records. */ err = iso7816_read_record (app_get_slot (app), 5, 1, 0, &buffer[0], &buflen[0]); if (err) goto leave; if (all_zero_p (buffer[0], buflen[0])) { xfree (buffer[0]); err = gpg_error (GPG_ERR_NOT_FOUND); goto leave; } err = iso7816_read_record (app_get_slot (app), 6, 1, 0, &buffer[1], &buflen[1]); if (err) { xfree (buffer[0]); goto leave; } if ((flags & APP_READKEY_FLAG_INFO)) { /* FIXME */ } if (pk && pklen && pk != &dummy_pk) { *pk = make_canon_sexp_from_rsa_pk (buffer[0], buflen[0], buffer[1], buflen[1], pklen); if (!*pk) err = gpg_error_from_syserror (); } xfree (buffer[0]); xfree (buffer[1]); } else if (keyid[0] != 'N' && strlen (keyid) == 40) { char keygripstr[2*KEYGRIP_LEN+1]; int i = -1; err = iterate_over_filelist (app, keyid, 0, keygripstr, &i); if (err) goto leave; err = pubkey_from_pk_file (app, filelist[i].fid, filelist[i].iskeypair, pk, pklen); if (!err && (flags & APP_READKEY_FLAG_INFO)) { char *algostr; char usagebuf[5]; char id_buf[100]; if (app_help_get_keygrip_string_pk (*pk, *pklen, NULL, NULL, NULL, &algostr)) algostr = NULL; /* Ooops. */ snprintf (id_buf, sizeof id_buf, "NKS-%s.%04X", get_nks_tag (app, filelist[i].nks_app_id), filelist[i].fid); set_usage_string (usagebuf, i); send_status_info (ctrl, "KEYPAIRINFO", keygripstr, strlen (keygripstr), id_buf, strlen (id_buf), usagebuf, strlen (usagebuf), "-", (size_t)1, algostr, strlen (algostr?algostr:""), NULL, (size_t)0); xfree (algostr); } } else if (!strncmp (keyid, "NKS-IDLM.", 9)) { keyid += 9; if (!hexdigitp (keyid) || !hexdigitp (keyid+1) || !hexdigitp (keyid+2) || !hexdigitp (keyid+3) || keyid[4]) { err = gpg_error (GPG_ERR_INV_ID); goto leave; } err = pubkey_from_pk_file (app, xtoi_4 (keyid), -1, pk, pklen); /* FIXME: Implement KEYPAIRINFO. */ } else /* Return the error code expected by cmd_readkey. */ err = gpg_error (GPG_ERR_UNSUPPORTED_OPERATION); leave: xfree (dummy_pk); return err; } /* Write the certificate (CERT,CERTLEN) to the card at CERTREFSTR. * CERTREFSTR is of the form "NKS_.". */ static gpg_error_t do_writecert (app_t app, ctrl_t ctrl, const char *certid, gpg_error_t (*pincb)(void*, const char *, char **), void *pincb_arg, const unsigned char *cert, size_t certlen) { gpg_error_t err; int i, fid, pwid; int nks_app_id, tmp_app_id; const char *desc; (void)ctrl; if (!strncmp (certid, "NKS-NKS3.", 9)) nks_app_id = NKS_APP_NKS; else if (!strncmp (certid, "NKS-ESIGN.", 10)) nks_app_id = NKS_APP_ESIGN; else if (!strncmp (certid, "NKS-SIGG.", 9)) nks_app_id = NKS_APP_SIGG; else if (!strncmp (certid, "NKS-DF01.", 9)) nks_app_id = NKS_APP_NKS; else if (!strncmp (certid, "NKS-IDLM.", 9)) nks_app_id = NKS_APP_IDLM; else return gpg_error (GPG_ERR_INV_ID); certid += nks_app_id == NKS_APP_ESIGN? 10 : 9; err = switch_application (app, nks_app_id); if (err) return err; if (!hexdigitp (certid) || !hexdigitp (certid+1) || !hexdigitp (certid+2) || !hexdigitp (certid+3) || certid[4]) return gpg_error (GPG_ERR_INV_ID); fid = xtoi_4 (certid); for (i=0; filelist[i].fid; i++) if ((filelist[i].certtype || filelist[i].iskeypair > 0) && filelist[i].nks_app_id == nks_app_id && filelist[i].fid == fid) break; if (!filelist[i].fid) return gpg_error (GPG_ERR_NOT_FOUND); /* If the requested objects is a plain public key, redirect it to * the corresponding certificate. This makes it easier for the user * to figure out which CERTID to use. For example gpg-card shows * the id of the key and not of the certificate. */ if (filelist[i].iskeypair > 0) fid = filelist[i].iskeypair; /* We have no selective flush mechanism and given the rare use of * writecert it won't harm to flush the entire cache. */ flush_fid_cache (app); /* The certificates we support all require PW1.CH. Note that we * check that the nks_app_id matches which sorts out CERTID values * which are subkeys to a different nks_app_id. */ desc = parse_pwidstr (app, "PW1.CH", 0, &tmp_app_id, &pwid); if (!desc || tmp_app_id != nks_app_id) return gpg_error (GPG_ERR_INV_ID); err = verify_pin (app, pwid, desc, pincb, pincb_arg); if (err) return err; /* Select the file and write the certificate. */ err = iso7816_select_file (app_get_slot (app), fid, 0); if (err) { log_error ("nks: error selecting FID 0x%04X: %s\n", fid, gpg_strerror (err)); return err; } err = iso7816_update_binary (app_get_slot (app), 1, 0, cert, certlen); if (err) { log_error ("nks: error updating certificate at FID 0x%04X: %s\n", fid, gpg_strerror (err)); return err; } return 0; } /* Handle the WRITEKEY command for NKS. This function expects a canonical encoded S-expression with the public key in KEYDATA and its length in KEYDATALEN. The only supported KEYID is "$IFDAUTHKEY" to store the terminal key on the card. Bit 0 of FLAGS indicates whether an existing key shall get overwritten. PINCB and PINCB_ARG are the usual arguments for the pinentry callback. */ static gpg_error_t do_writekey (app_t app, ctrl_t ctrl, const char *keyid, unsigned int flags, gpg_error_t (*pincb)(void*, const char *, char **), void *pincb_arg, const unsigned char *keydata, size_t keydatalen) { gpg_error_t err; int force = (flags & 1); const unsigned char *rsa_n = NULL; const unsigned char *rsa_e = NULL; size_t rsa_n_len, rsa_e_len; unsigned int nbits; (void)pincb; (void)pincb_arg; if (!strcmp (keyid, "$IFDAUTHKEY") && app->appversion >= 3) ; else return gpg_error (GPG_ERR_INV_ID); if (!force && !do_readkey (app, ctrl, keyid, 0, NULL, NULL)) return gpg_error (GPG_ERR_EEXIST); /* Parse the S-expression. */ err = get_rsa_pk_from_canon_sexp (keydata, keydatalen, &rsa_n, &rsa_n_len, &rsa_e, &rsa_e_len); if (err) goto leave; /* Check that the parameters match the requirements. */ nbits = app_help_count_bits (rsa_n, rsa_n_len); if (nbits != 1024) { log_error (_("RSA modulus missing or not of size %d bits\n"), 1024); err = gpg_error (GPG_ERR_BAD_PUBKEY); goto leave; } nbits = app_help_count_bits (rsa_e, rsa_e_len); if (nbits < 2 || nbits > 32) { log_error (_("RSA public exponent missing or larger than %d bits\n"), 32); err = gpg_error (GPG_ERR_BAD_PUBKEY); goto leave; } /* /\* Store them. *\/ */ /* err = verify_pin (app, 0, NULL, pincb, pincb_arg); */ /* if (err) */ /* goto leave; */ /* Send the MSE:Store_Public_Key. */ /* We will need to clear the cache here. */ err = gpg_error (GPG_ERR_NOT_IMPLEMENTED); /* mse = xtrymalloc (1000); */ /* mse[0] = 0x80; /\* Algorithm reference. *\/ */ /* mse[1] = 1; */ /* mse[2] = 0x17; */ /* mse[3] = 0x84; /\* Private key reference. *\/ */ /* mse[4] = 1; */ /* mse[5] = 0x77; */ /* mse[6] = 0x7F; /\* Public key parameter. *\/ */ /* mse[7] = 0x49; */ /* mse[8] = 0x81; */ /* mse[9] = 3 + 0x80 + 2 + rsa_e_len; */ /* mse[10] = 0x81; /\* RSA modulus of 128 byte. *\/ */ /* mse[11] = 0x81; */ /* mse[12] = rsa_n_len; */ /* memcpy (mse+12, rsa_n, rsa_n_len); */ /* mse[10] = 0x82; /\* RSA public exponent of up to 4 bytes. *\/ */ /* mse[12] = rsa_e_len; */ /* memcpy (mse+12, rsa_e, rsa_e_len); */ /* err = iso7816_manage_security_env (app->slot, 0x81, 0xB6, */ /* mse, sizeof mse); */ leave: return err; } /* Return an allocated string to be used as prompt. Returns NULL on * malloc error. */ static char * make_prompt (app_t app, int remaining, const char *firstline, const char *extraline) { char *serial, *tmpbuf, *result; serial = get_dispserialno (app); /* TRANSLATORS: Put a \x1f right before a colon. This can be * used by pinentry to nicely align the names and values. Keep * the %s at the start and end of the string. */ result = xtryasprintf (_("%s" "Number\x1f: %s%%0A" "Holder\x1f: %s" "%s"), "\x1e", serial, "", ""); xfree (serial); if (!result) return NULL; /* Out of core. */ /* Append a "remaining attempts" info if needed. */ if (remaining != -1 && remaining < 3) { char *rembuf; /* TRANSLATORS: This is the number of remaining attempts to * enter a PIN. Use %%0A (double-percent,0A) for a linefeed. */ rembuf = xtryasprintf (_("Remaining attempts: %d"), remaining); if (rembuf) { tmpbuf = strconcat (firstline, "%0A%0A", result, "%0A%0A", rembuf, NULL); xfree (rembuf); } else tmpbuf = NULL; xfree (result); result = tmpbuf; } else { tmpbuf = strconcat (firstline, "%0A%0A", result, extraline? "%0A%0A":"", extraline, NULL); xfree (result); result = tmpbuf; } return result; } static gpg_error_t basic_pin_checks (const char *pinvalue, int minlen, int maxlen) { if (strlen (pinvalue) < minlen) { log_error ("PIN is too short; minimum length is %d\n", minlen); return gpg_error (GPG_ERR_BAD_PIN); } if (strlen (pinvalue) > maxlen) { log_error ("PIN is too large; maximum length is %d\n", maxlen); return gpg_error (GPG_ERR_BAD_PIN); } return 0; } /* Verify the PIN if required. */ static gpg_error_t verify_pin (app_t app, int pwid, const char *desc, gpg_error_t (*pincb)(void*, const char *, char **), void *pincb_arg) { int rc; pininfo_t pininfo; char *prompt; const char *extrapromptline = NULL; int remaining, nullpin; if (!desc) desc = "||PIN"; memset (&pininfo, 0, sizeof pininfo); pininfo.fixedlen = -1; /* FIXME: TCOS allows to read the min. and max. values - do this. */ if (app->appversion == 15) { if (app->app_local->active_nks_app == NKS_APP_NKS && pwid == 0x03) pininfo.minlen = 6; else if (app->app_local->active_nks_app == NKS_APP_ESIGN && pwid == 0x81) pininfo.minlen = 6; else pininfo.minlen = 8; pininfo.maxlen = 24; } else if (app->app_local->active_nks_app == NKS_APP_IDLM) { if (pwid == 0x00) pininfo.minlen = 6; else pininfo.minlen = 8; pininfo.maxlen = 24; } else { /* For NKS3 we used these fixed values; let's keep this. */ pininfo.minlen = 6; pininfo.maxlen = 16; } remaining = iso7816_verify_status (app_get_slot (app), pwid); nullpin = (remaining == ISO7816_VERIFY_NULLPIN); if (remaining < 0) remaining = -1; /* We don't care about the concrete error. */ if (remaining < 3) { if (remaining >= 0) log_info ("nks: PIN has %d attempts left\n", remaining); } if (nullpin) { log_info ("nks: The NullPIN for PIN 0x%02x has not yet been changed\n", pwid); extrapromptline = _("Note: PIN has not yet been enabled."); } if (!opt.disable_pinpad && !iso7816_check_pinpad (app->slot, ISO7816_VERIFY, &pininfo) ) { prompt = make_prompt (app, remaining, desc, extrapromptline); rc = pincb (pincb_arg, prompt, NULL); xfree (prompt); if (rc) { log_info (_("PIN callback returned error: %s\n"), gpg_strerror (rc)); return rc; } rc = iso7816_verify_kp (app->slot, pwid, &pininfo); pincb (pincb_arg, NULL, NULL); /* Dismiss the prompt. */ } else { char *pinvalue; prompt = make_prompt (app, remaining, desc, extrapromptline); rc = pincb (pincb_arg, prompt, &pinvalue); xfree (prompt); if (rc) { log_info ("PIN callback returned error: %s\n", gpg_strerror (rc)); return rc; } rc = basic_pin_checks (pinvalue, pininfo.minlen, pininfo.maxlen); if (rc) { xfree (pinvalue); return rc; } rc = iso7816_verify (app->slot, pwid, pinvalue, strlen (pinvalue)); xfree (pinvalue); } if (rc) { if ( gpg_err_code (rc) == GPG_ERR_USE_CONDITIONS ) log_error (_("the NullPIN has not yet been changed\n")); else log_error ("verify PIN failed\n"); return rc; } return 0; } /* Create the signature and return the allocated result in OUTDATA. If a PIN is required the PINCB will be used to ask for the PIN; that callback should return the PIN in an allocated buffer and store that in the 3rd argument. */ static gpg_error_t do_sign (app_t app, ctrl_t ctrl, const char *keyidstr, int hashalgo, gpg_error_t (*pincb)(void*, const char *, char **), void *pincb_arg, const void *indata, size_t indatalen, unsigned char **outdata, size_t *outdatalen ) { static unsigned char sha1_prefix[15] = /* Object ID is 1.3.14.3.2.26 */ { 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14 }; static unsigned char rmd160_prefix[15] = /* Object ID is 1.3.36.3.2.1 */ { 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x24, 0x03, 0x02, 0x01, 0x05, 0x00, 0x04, 0x14 }; static unsigned char sha224_prefix[19] = /* (2.16.840.1.101.3.4.2.4) */ { 0x30, 0x2D, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04, 0x05, 0x00, 0x04, 0x1C }; static unsigned char sha256_prefix[19] = /* (2.16.840.1.101.3.4.2.1) */ { 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20 }; static unsigned char sha384_prefix[19] = /* (2.16.840.1.101.3.4.2.2) */ { 0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30 }; static unsigned char sha512_prefix[19] = /* (2.16.840.1.101.3.4.2.3) */ { 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40 }; gpg_error_t err; int idx; int pwid; unsigned char kid; unsigned char data[83]; /* Must be large enough for a SHA-1 digest + the largest OID prefix. */ size_t datalen; int algo; unsigned int digestlen; /* Length of the hash. */ unsigned char oidbuf[64]; size_t oidbuflen; (void)ctrl; switch (indatalen) { case 20: /* plain SHA-1 or RMD160 digest */ case 28: /* plain SHA-224 digest */ case 32: /* plain SHA-256 digest */ case 48: /* plain SHA-384 digest */ case 64: /* plain SHA-512 digest */ case 35: /* ASN.1 encoded SHA-1 or RMD160 digest */ case 47: /* ASN.1 encoded SHA-224 digest */ case 51: /* ASN.1 encoded SHA-256 digest */ case 67: /* ASN.1 encoded SHA-384 digest */ case 83: /* ASN.1 encoded SHA-512 digest */ break; default: log_info ("nks: invalid length of input data: %zu\n", indatalen); return gpg_error (GPG_ERR_INV_VALUE); } err = find_fid_by_keyref (app, keyidstr, &idx, &algo); if (err) return err; if (app->app_local->active_nks_app == NKS_APP_SIGG && app->app_local->sigg_is_msig) { log_info ("mass signature cards are not allowed\n"); return gpg_error (GPG_ERR_NOT_SUPPORTED); } if (!filelist[idx].issignkey) { log_debug ("key %s is not a signing key\n", keyidstr); return gpg_error (GPG_ERR_INV_ID); } kid = filelist[idx].kid; digestlen = gcry_md_get_algo_dlen (hashalgo); /* Prepare the input object from INDATA. */ if (algo == GCRY_PK_ECC) { if (digestlen != 32 && digestlen != 48 && digestlen != 64) { log_error ("nks: ECC signing not possible: dlen=%u\n", digestlen); return gpg_error (GPG_ERR_DIGEST_ALGO); } if (indatalen == digestlen) { /* Already prepared. */ datalen = indatalen; log_assert (datalen <= sizeof data); memcpy (data, indata, datalen); } else if (indatalen > digestlen) { /* Assume a PKCS#1 prefix and remove it. */ oidbuflen = sizeof oidbuf; err = gcry_md_get_asnoid (hashalgo, &oidbuf, &oidbuflen); if (err) { log_error ("nks: no OID for hash algo %d\n", hashalgo); return gpg_error (GPG_ERR_INTERNAL); } if (indatalen != oidbuflen + digestlen || memcmp (indata, oidbuf, oidbuflen)) { log_error ("nks: input data too long for ECC: len=%zu\n", indatalen); return gpg_error (GPG_ERR_INV_VALUE); } datalen = indatalen - oidbuflen; log_assert (datalen <= sizeof data); memcpy (data, (const char*)indata + oidbuflen, datalen); } else { log_error ("nks: input data too short for ECC: len=%zu\n", indatalen); return gpg_error (GPG_ERR_INV_VALUE); } } else if (app->appversion > 2 && (indatalen == 35 || indatalen == 47 || indatalen == 51 || indatalen == 67 || indatalen == 83)) { /* Verify that the caller has sent a proper ASN.1 encoded hash for RMD160 or SHA-{1,224,256,384,512}. */ #define X(algo,prefix,plaindigestlen) \ if (hashalgo == (algo) \ && indatalen == sizeof prefix + (plaindigestlen) \ && !memcmp (indata, prefix, sizeof prefix)) \ ; X(GCRY_MD_RMD160, rmd160_prefix, 20) else X(GCRY_MD_SHA1, sha1_prefix, 20) else X(GCRY_MD_SHA224, sha224_prefix, 28) else X(GCRY_MD_SHA256, sha256_prefix, 32) else X(GCRY_MD_SHA384, sha384_prefix, 48) else X(GCRY_MD_SHA512, sha512_prefix, 64) else return gpg_error (GPG_ERR_UNSUPPORTED_ALGORITHM); #undef X log_assert (indatalen <= sizeof data); memcpy (data, indata, indatalen); datalen = indatalen; } else if (indatalen == 35) { /* Alright, the caller was so kind to send us an already prepared DER object. This is for TCOS 2. */ if (hashalgo == GCRY_MD_SHA1 && !memcmp (indata, sha1_prefix, 15)) ; else if (hashalgo == GCRY_MD_RMD160 && !memcmp (indata,rmd160_prefix,15)) ; else return gpg_error (GPG_ERR_UNSUPPORTED_ALGORITHM); memcpy (data, indata, indatalen); datalen = 35; } /* Concatenate prefix and digest. * Note that the X macro creates an "else if". Ugly - I know. */ #define X(algo,prefix,plaindigestlen) \ if ((hashalgo == (algo)) && (indatalen == (plaindigestlen))) \ { \ datalen = sizeof prefix + indatalen; \ log_assert (datalen <= sizeof data); \ memcpy (data, prefix, sizeof prefix); \ memcpy (data + sizeof prefix, indata, indatalen); \ } else X(GCRY_MD_RMD160, rmd160_prefix, 20) else X(GCRY_MD_SHA1, sha1_prefix, 20) else X(GCRY_MD_SHA224, sha224_prefix, 28) else X(GCRY_MD_SHA256, sha256_prefix, 32) else X(GCRY_MD_SHA384, sha384_prefix, 48) else X(GCRY_MD_SHA512, sha512_prefix, 64) else return gpg_error (GPG_ERR_INV_VALUE); #undef X /* Send an MSE for PSO:Computer_Signature. */ if (app->appversion > 2 && app->app_local->active_nks_app != NKS_APP_ESIGN) { unsigned char mse[6]; mse[0] = 0x80; /* Algorithm reference. */ mse[1] = 1; mse[2] = 2; /* RSA, card does pkcs#1 v1.5 padding, no ASN.1 check. */ mse[3] = 0x84; /* Private key reference. */ mse[4] = 1; mse[5] = kid; err = iso7816_manage_security_env (app_get_slot (app), 0x41, 0xB6, mse, sizeof mse); } if (app->app_local->active_nks_app == NKS_APP_ESIGN) pwid = 0x81; else if (app->appversion == 15) pwid = 0x03; else pwid = 0x00; if (!err) err = verify_pin (app, pwid, NULL, pincb, pincb_arg); /* Compute the signature. */ if (!err) err = iso7816_compute_ds (app_get_slot (app), 0, data, datalen, 0, outdata, outdatalen); return err; } /* Decrypt the data in INDATA and return the allocated result in OUTDATA. If a PIN is required the PINCB will be used to ask for the PIN; it should return the PIN in an allocated buffer and put it into PIN. */ static gpg_error_t do_decipher (app_t app, ctrl_t ctrl, const char *keyidstr, gpg_error_t (*pincb)(void*, const char *, char **), void *pincb_arg, const void *indata, size_t indatalen, unsigned char **outdata, size_t *outdatalen, unsigned int *r_info) { gpg_error_t err; int idx; int kid; int algo; int pwid; int padind; int extended_mode; (void)ctrl; (void)r_info; if (!indatalen) return gpg_error (GPG_ERR_INV_VALUE); err = find_fid_by_keyref (app, keyidstr, &idx, &algo); if (err) return err; if (!filelist[idx].isencrkey) return gpg_error (GPG_ERR_INV_ID); kid = filelist[idx].kid; if (app->appversion <= 2) { static const unsigned char mse[] = { 0x80, 1, 0x10, /* Select algorithm RSA. */ 0x84, 1, 0x81 /* Select local secret key 1 for decryption. */ }; err = iso7816_manage_security_env (app_get_slot (app), 0xC1, 0xB8, mse, sizeof mse); extended_mode = 0; padind = 0x81; } else if (algo == GCRY_PK_ECC) { unsigned char mse[3]; mse[0] = 0x84; /* Private key reference. */ mse[1] = 1; mse[2] = kid; err = iso7816_manage_security_env (app_get_slot (app), 0x41, 0xB8, mse, sizeof mse); extended_mode = 0; padind = 0x00; } else { unsigned char mse[6]; mse[0] = 0x80; /* Algorithm reference. */ mse[1] = 1; mse[2] = 0x0a; /* RSA no padding. (0x1A is pkcs#1.5 padding.) */ mse[3] = 0x84; /* Private key reference. */ mse[4] = 1; mse[5] = kid; err = iso7816_manage_security_env (app_get_slot (app), 0x41, 0xB8, mse, sizeof mse); extended_mode = 1; padind = 0x81; } if (err) { log_error ("nks: MSE failed: %s\n", gpg_strerror (err)); goto leave; } /* We use the Global PIN 1 */ if (app->appversion == 15) pwid = 0x03; else pwid = 0x00; err = verify_pin (app, pwid, NULL, pincb, pincb_arg); if (err) goto leave; err = iso7816_decipher (app_get_slot (app), extended_mode, indata, indatalen, 0, padind, outdata, outdatalen); leave: return err; } /* Parse a password ID string. Returns NULL on error or a string * suitable as passphrase prompt on success. On success stores the * reference value for the password at R_PWID and a flag indicating * which app is to be used at R_NKS_APP_ID. If NEW_MODE is true, the * returned description is suitable for a new password. Here is a * take mapping the PWIDSTR to the used PWIDs: * * | pwidstr | | NKS3 | NKS15 | IDKEY1 | * |------------+--------------+------+-------+--------| * | PW1.CH | Global PIN 1 | 0x00 | 0x03 | 0x00 | * | PW2.CH | Global PIN 2 | 0x01 | 0x04 | 0x01 | * | PW1.CH.SIG | SigG PIN 1 | 0x81 | 0x81 | - | * | PW2.CH.SIG | SigG PIN 2 | 0x83 | 0x82 | - | * * The names for PWIDSTR are taken from the NKS3 specs; the specs of * other cards use different names but we keep using the. PIN1 can be * used to unlock PIN2 and vice versa; for consistence with other * cards we name PIN2 a "PUK". The IDKEY card also features a Card * Reset Key (CR Key 0x01) which can also be used to reset PIN1. * * For testing it is possible to specify the PWID directly; the * prompts are then not very descriptive: * * NKS.0xnn - Switch to NKS and select id 0xnn * SIGG.0xnn - Switch to SigG and select id 0xnn * ESIGN.0xnn - Switch to ESIGN and select id 0xnn */ static const char * parse_pwidstr (app_t app, const char *pwidstr, int new_mode, int *r_nks_app_id, int *r_pwid) { const char *desc; int nks15 = app->appversion == 15; if (!pwidstr) desc = NULL; else if (!strcmp (pwidstr, "PW1.CH")) { *r_nks_app_id = NKS_APP_NKS; *r_pwid = nks15? 0x03 : 0x00; /* TRANSLATORS: Do not translate the "|*|" prefixes but keep them verbatim at the start of the string. */ desc = (new_mode ? _("|N|Please enter a new PIN for the standard keys.") : _("||Please enter the PIN for the standard keys.")); } else if (!strcmp (pwidstr, "PW2.CH")) { *r_nks_app_id = NKS_APP_NKS; *r_pwid = nks15? 0x04 : 0x01; desc = (new_mode ? _("|NP|Please enter a new PIN Unblocking Code (PUK) " "for the standard keys.") : _("|P|Please enter the PIN Unblocking Code (PUK) " "for the standard keys.")); } else if (!strcmp (pwidstr, "PW1.CH.SIG") && !app->app_local->only_idlm) { *r_nks_app_id = app->app_local->qes_app_id; *r_pwid = 0x81; desc = (new_mode ? _("|N|Please enter a new PIN for the key to create " "qualified signatures.") : _("||Please enter the PIN for the key to create " "qualified signatures.")); } else if (!strcmp (pwidstr, "PW2.CH.SIG") && !app->app_local->only_idlm) { *r_nks_app_id = app->app_local->qes_app_id; *r_pwid = nks15? 0x82 : 0x83; desc = (new_mode ? _("|NP|Please enter a new PIN Unblocking Code (PUK) " "for the key to create qualified signatures.") : _("|P|Please enter the PIN Unblocking Code (PUK) " "for the key to create qualified signatures.")); } else if (!strncmp (pwidstr, "NKS.0x", 6) && hexdigitp (pwidstr+6) && hexdigitp (pwidstr+7) && !pwidstr[8]) { /* Hack to help debugging. */ *r_nks_app_id = NKS_APP_NKS; *r_pwid = xtoi_2 (pwidstr+6); desc = (new_mode ? "|N|Please enter a new PIN for the given NKS pwid" : "||Please enter the PIN for the given NKS pwid" ); } else if (!strncmp (pwidstr, "SIGG.0x", 7) && hexdigitp (pwidstr+7) && hexdigitp (pwidstr+8) && !pwidstr[9]) { /* Hack to help debugging. */ *r_nks_app_id = NKS_APP_SIGG; *r_pwid = xtoi_2 (pwidstr+7); desc = (new_mode ? "|N|Please enter a new PIN for the given SIGG pwid" : "||Please enter the PIN for the given SIGG pwid" ); } else if (!strncmp (pwidstr, "ESIGN.0x", 8) && hexdigitp (pwidstr+8) && hexdigitp (pwidstr+9) && !pwidstr[10]) { /* Hack to help debugging. */ *r_nks_app_id = NKS_APP_ESIGN; *r_pwid = xtoi_2 (pwidstr+8); desc = (new_mode ? "|N|Please enter a new PIN for the given ESIGN pwid" : "||Please enter the PIN for the given ESIGN pwid" ); } else if (!strncmp (pwidstr, "IDLM.0x", 7) && hexdigitp (pwidstr+7) && hexdigitp (pwidstr+8) && !pwidstr[9]) { /* Hack to help debugging. */ *r_nks_app_id = NKS_APP_IDLM; *r_pwid = xtoi_2 (pwidstr+7); desc = (new_mode ? "|N|Please enter a new PIN for the given IDLM pwid" : "||Please enter the PIN for the given IDLM pwid" ); } else { *r_pwid = 0; /* Only to avoid gcc warning in calling function. */ desc = NULL; /* Error. */ } return desc; } /* Handle the PASSWD command. See parse_pwidstr() for allowed values for CHVNOSTR. */ static gpg_error_t do_change_pin (app_t app, ctrl_t ctrl, const char *pwidstr, unsigned int flags, gpg_error_t (*pincb)(void*, const char *, char **), void *pincb_arg) { gpg_error_t err; char *newpin = NULL; char *oldpin = NULL; size_t newpinlen; size_t oldpinlen; int nks_app_id; const char *newdesc; int pwid; pininfo_t pininfo; int remaining; char *prompt; (void)ctrl; /* The minimum length is enforced by TCOS, the maximum length is just a reasonable value. */ memset (&pininfo, 0, sizeof pininfo); pininfo.minlen = 6; pininfo.maxlen = 16; newdesc = parse_pwidstr (app, pwidstr, 1, &nks_app_id, &pwid); if (!newdesc) return gpg_error (GPG_ERR_INV_ID); if ((flags & APP_CHANGE_FLAG_CLEAR)) return gpg_error (GPG_ERR_UNSUPPORTED_OPERATION); err = switch_application (app, nks_app_id); if (err) return err; if ((flags & APP_CHANGE_FLAG_NULLPIN)) { /* With the nullpin flag, we do not verify the PIN - it would fail if the Nullpin is still set. */ oldpin = xtrycalloc (1, 6); if (!oldpin) { err = gpg_error_from_syserror (); goto leave; } if (app->appversion == 15) { memset (oldpin, '0', 5); oldpinlen = 5; /* 5 ascii zeroes. */ } else { oldpinlen = 6; /* 6 binary Nuls. */ } } else { const char *desc; int dummy1, dummy2; if ((flags & APP_CHANGE_FLAG_RESET)) { /* Reset mode: Ask for the alternate PIN. */ const char *altpwidstr; if (!strcmp (pwidstr, "PW1.CH")) altpwidstr = "PW2.CH"; else if (!strcmp (pwidstr, "PW2.CH")) altpwidstr = "PW1.CH"; else if (!strcmp (pwidstr, "PW1.CH.SIG")) altpwidstr = "PW2.CH.SIG"; else if (!strcmp (pwidstr, "PW2.CH.SIG")) altpwidstr = "PW1.CH.SIG"; else { err = gpg_error (GPG_ERR_BUG); goto leave; } desc = parse_pwidstr (app, altpwidstr, 0, &dummy1, &dummy2); remaining = iso7816_verify_status (app_get_slot (app), dummy2); } else { /* Regular change mode: Ask for the old PIN. */ desc = parse_pwidstr (app, pwidstr, 0, &dummy1, &dummy2); remaining = iso7816_verify_status (app_get_slot (app), pwid); } if (remaining < 0) remaining = -1; /* We don't care about the concrete error. */ if (remaining < 3) { if (remaining >= 0) log_info ("nks: PIN has %d attempts left\n", remaining); } prompt = make_prompt (app, remaining, desc, NULL); err = pincb (pincb_arg, prompt, &oldpin); xfree (prompt); if (err) { log_error ("error getting old PIN: %s\n", gpg_strerror (err)); goto leave; } oldpinlen = strlen (oldpin); err = basic_pin_checks (oldpin, pininfo.minlen, pininfo.maxlen); if (err) goto leave; } prompt = make_prompt (app, -1, newdesc, NULL); err = pincb (pincb_arg, prompt, &newpin); xfree (prompt); if (err) { log_error (_("error getting new PIN: %s\n"), gpg_strerror (err)); goto leave; } newpinlen = strlen (newpin); err = basic_pin_checks (newpin, pininfo.minlen, pininfo.maxlen); if (err) goto leave; if ((flags & APP_CHANGE_FLAG_RESET)) { char *data; size_t datalen = oldpinlen + newpinlen; data = xtrymalloc (datalen); if (!data) { err = gpg_error_from_syserror (); goto leave; } memcpy (data, oldpin, oldpinlen); memcpy (data+oldpinlen, newpin, newpinlen); err = iso7816_reset_retry_counter_with_rc (app->slot, pwid, data, datalen); wipememory (data, datalen); xfree (data); } else err = iso7816_change_reference_data (app->slot, pwid, oldpin, oldpinlen, newpin, newpinlen); leave: xfree (oldpin); xfree (newpin); return err; } /* Perform a simple verify operation. KEYIDSTR should be NULL or empty. */ static gpg_error_t do_check_pin (app_t app, ctrl_t ctrl, const char *pwidstr, gpg_error_t (*pincb)(void*, const char *, char **), void *pincb_arg) { gpg_error_t err; int pwid; int nks_app_id; const char *desc; (void)ctrl; desc = parse_pwidstr (app, pwidstr, 0, &nks_app_id, &pwid); if (!desc) return gpg_error (GPG_ERR_INV_ID); err = switch_application (app, nks_app_id); if (err) return err; return verify_pin (app, pwid, desc, pincb, pincb_arg); } /* Process the various keygrip based info requests. */ static gpg_error_t do_with_keygrip (app_t app, ctrl_t ctrl, int action, const char *want_keygripstr, int capability) { gpg_error_t err; char keygripstr[2*KEYGRIP_LEN+1]; char *serialno = NULL; int data = 0; int idx = -1; /* First a quick check for valid parameters. */ switch (action) { case KEYGRIP_ACTION_LOOKUP: if (!want_keygripstr) { return gpg_error (GPG_ERR_NOT_FOUND); } break; case KEYGRIP_ACTION_SEND_DATA: data = 1; break; case KEYGRIP_ACTION_WRITE_STATUS: break; default: return gpg_error (GPG_ERR_INV_ARG); } /* Allocate the S/N string if needed. */ if (action != KEYGRIP_ACTION_LOOKUP) { serialno = app_get_serialno (app); if (!serialno) return gpg_error_from_syserror (); } while (1) { err = iterate_over_filelist (app, want_keygripstr, capability, keygripstr, &idx); if (err) break; if (want_keygripstr) { if (!err) break; } else { char idbuf[20]; char usagebuf[5]; snprintf (idbuf, sizeof idbuf, "NKS-%s.%04X", get_nks_tag (app, app->app_local->active_nks_app), filelist[idx].fid); set_usage_string (usagebuf, idx); send_keyinfo (ctrl, data, keygripstr, serialno, idbuf, usagebuf); } } xfree (serialno); return err; } /* Return the version of the NKS application. */ static int get_nks_version (int slot) { unsigned char *result = NULL; size_t resultlen; int type; if (iso7816_apdu_direct (slot, "\x80\xaa\x06\x00\x00", 5, 0, NULL, &result, &resultlen)) return 2; /* NKS 2 does not support this command. */ /* Example values: 04 11 19 22 21 6A 20 80 03 03 01 01 01 00 00 00 * 05 a0 22 3e c8 0c 04 20 0f 01 b6 01 01 00 00 02 * vv tt ccccccccccccccccc aa bb cc vv ff rr rr xx * vendor -----------+ | | | | | | | | | | * chip type -----------+ | | | | | | | | | * chip id ----------------+ | | | | | | | | * card type --------------------------------+ | | | | | | | * OS version of card type ---------------------+ | | | | | | * OS release of card type ------------------------+ | | | | | * Completion code version number --------------------+ | | | | * File system version ----------------------------------+ | | | * RFU (00) ------------------------------------------------+ | | * RFU (00) ---------------------------------------------------+ | * Authentication key identifier ---------------------------------+ * * vendor 4 := Philips * 5 := Infinion * card type 3 := TCOS 3 * 15 := TCOS Signature Card (bb,cc is the ROM mask version) * Completion code version number Bit 7..5 := pre-completion code version * Bit 4..0 := completion code version * (pre-completion by chip vendor) * (completion by OS developer) */ if (resultlen < 16) type = 0; /* Invalid data returned. */ else type = result[8]; xfree (result); return type; } /* Switch to the NKS app identified by NKS_APP_ID if not yet done. * Returns 0 on success. */ static gpg_error_t switch_application (app_t app, int nks_app_id) { gpg_error_t err; if (app->app_local->only_idlm) return 0; /* No switching at all */ if (app->app_local->active_nks_app == nks_app_id && !app->app_local->need_app_select) return 0; /* Already switched. */ log_info ("nks: switching to %s\n", nks_app_id == NKS_APP_ESIGN? "eSign" : nks_app_id == NKS_APP_SIGG? "SigG" : "NKS"); if (nks_app_id == NKS_APP_ESIGN) err = iso7816_select_application (app_get_slot (app), aid_esign, sizeof aid_esign, 0); else if (nks_app_id == NKS_APP_SIGG) err = iso7816_select_application (app_get_slot (app), aid_sigg, sizeof aid_sigg, 0); else err = iso7816_select_application (app->slot, aid_nks, sizeof aid_nks, 0); if (!err && nks_app_id == NKS_APP_SIGG && app->appversion >= 3 && !app->app_local->sigg_msig_checked) { /* Check whether this card is a mass signature card. */ unsigned char *buffer; size_t buflen; const unsigned char *tmpl; size_t tmpllen; app->app_local->sigg_msig_checked = 1; app->app_local->sigg_is_msig = 1; err = iso7816_select_file (app->slot, 0x5349, 0); if (!err) err = iso7816_read_record (app->slot, 1, 1, 0, &buffer, &buflen); if (!err) { tmpl = find_tlv (buffer, buflen, 0x7a, &tmpllen); if (tmpl && tmpllen == 12 && !memcmp (tmpl, "\x93\x02\x00\x01\xA4\x06\x83\x01\x81\x83\x01\x83", 12)) app->app_local->sigg_is_msig = 0; xfree (buffer); } if (app->app_local->sigg_is_msig) log_info ("nks: This is a mass signature card\n"); } if (!err) { app->app_local->need_app_select = 0; app->app_local->active_nks_app = nks_app_id; } else log_error ("nks: error switching to %s: %s\n", nks_app_id == NKS_APP_ESIGN? "eSign" : nks_app_id == NKS_APP_SIGG? "SigG" : "NKS", gpg_strerror (err)); return err; } /* Select the NKS application. */ gpg_error_t app_select_nks (app_t app) { int slot = app->slot; int rc; int is_idlm = 0; rc = iso7816_select_application (slot, aid_nks, sizeof aid_nks, 0); if (rc) { is_idlm = 1; rc = iso7816_select_application (slot, aid_idlm, sizeof aid_idlm, 0); } if (!rc) { app->apptype = APPTYPE_NKS; app->app_local = xtrycalloc (1, sizeof *app->app_local); if (!app->app_local) { rc = gpg_error (gpg_err_code_from_errno (errno)); goto leave; } app->appversion = get_nks_version (slot); app->app_local->only_idlm = is_idlm; if (is_idlm) /* Set it once, there won't be any switching. */ app->app_local->active_nks_app = NKS_APP_IDLM; if (opt.verbose) { log_info ("Detected NKS version: %d\n", app->appversion); if (is_idlm) log_info ("Using only the IDLM application\n"); } if (app->appversion == 15) app->app_local->qes_app_id = NKS_APP_ESIGN; else app->app_local->qes_app_id = NKS_APP_SIGG; app->fnc.deinit = do_deinit; app->fnc.learn_status = do_learn_status; app->fnc.readcert = do_readcert; app->fnc.readkey = do_readkey; app->fnc.getattr = do_getattr; app->fnc.setattr = NULL; app->fnc.writecert = do_writecert; app->fnc.writekey = do_writekey; app->fnc.genkey = NULL; app->fnc.sign = do_sign; app->fnc.auth = NULL; app->fnc.decipher = do_decipher; app->fnc.change_pin = do_change_pin; app->fnc.check_pin = do_check_pin; app->fnc.with_keygrip = do_with_keygrip; } leave: if (rc) do_deinit (app); return rc; } diff --git a/scd/app-sc-hsm.c b/scd/app-sc-hsm.c index 1425b435b..ab9400719 100644 --- a/scd/app-sc-hsm.c +++ b/scd/app-sc-hsm.c @@ -1,2087 +1,2087 @@ /* app-sc-hsm.c - The SmartCard-HSM card application (www.smartcard-hsm.com). * Copyright (C) 2005 Free Software Foundation, Inc. * Copyright (C) 2014 Andreas Schwier * * This file is part of GnuPG. * * GnuPG is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * GnuPG is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ /* Code in this driver is based on app-p15.c with modifications. */ #include #include #include #include #include #include #include #include "scdaemon.h" #include "iso7816.h" #include "../common/tlv.h" #include "apdu.h" /* The AID of the SmartCard-HSM applet. */ static char const sc_hsm_aid[] = { 0xE8, 0x2B, 0x06, 0x01, 0x04, 0x01, 0x81, 0xC3, 0x1F, 0x02, 0x01 }; /* Special file identifier for SmartCard-HSM */ typedef enum { SC_HSM_PRKD_PREFIX = 0xC4, SC_HSM_CD_PREFIX = 0xC8, SC_HSM_DCOD_PREFIX = 0xC9, SC_HSM_CA_PREFIX = 0xCA, SC_HSM_KEY_PREFIX = 0xCC, SC_HSM_EE_PREFIX = 0xCE } fid_prefix_type_t; /* The key types supported by the SmartCard-HSM */ typedef enum { KEY_TYPE_RSA, KEY_TYPE_ECC } key_type_t; /* A bit array with for the key usage flags from the commonKeyAttributes. */ struct keyusage_flags_s { unsigned int encrypt: 1; unsigned int decrypt: 1; unsigned int sign: 1; unsigned int sign_recover: 1; unsigned int wrap: 1; unsigned int unwrap: 1; unsigned int verify: 1; unsigned int verify_recover: 1; unsigned int derive: 1; unsigned int non_repudiation: 1; }; typedef struct keyusage_flags_s keyusage_flags_t; /* This is an object to store information about a Certificate Directory File (CDF) in a format suitable for further processing by us. To keep memory management, simple we use a linked list of items; i.e. one such object represents one certificate and the list the entire CDF. */ struct cdf_object_s { /* Link to next item when used in a linked list. */ struct cdf_object_s *next; /* Length and allocated buffer with the Id of this object. */ size_t objidlen; unsigned char *objid; /* To avoid reading a certificate more than once, we cache it in an allocated memory IMAGE of IMAGELEN. */ size_t imagelen; unsigned char *image; /* EF containing certificate */ unsigned short fid; }; typedef struct cdf_object_s *cdf_object_t; /* This is an object to store information about a Private Key Directory File (PrKDF) in a format suitable for further processing by us. To keep memory management, simple we use a linked list of items; i.e. one such object represents one certificate and the list the entire PrKDF. */ struct prkdf_object_s { /* Link to next item when used in a linked list. */ struct prkdf_object_s *next; /* Key type */ key_type_t keytype; /* Key size in bits or 0 if unknown */ size_t keysize; /* Length and allocated buffer with the Id of this object. */ size_t objidlen; unsigned char *objid; /* The key's usage flags. */ keyusage_flags_t usageflags; /* The keyReference */ unsigned char key_reference; }; typedef struct prkdf_object_s *prkdf_object_t; /* Context local to this application. */ struct app_local_s { /* Information on all certificates. */ cdf_object_t certificate_info; /* Information on all trusted certificates. */ cdf_object_t trusted_certificate_info; /* Information on all private keys. */ prkdf_object_t private_key_info; }; /*** Local prototypes. ***/ static gpg_error_t readcert_by_cdf (app_t app, cdf_object_t cdf, unsigned char **r_cert, size_t *r_certlen); /* Release the CDF object A */ static void release_cdflist (cdf_object_t a) { while (a) { cdf_object_t tmp = a->next; xfree (a->image); xfree (a->objid); xfree (a); a = tmp; } } /* Release the PrKDF object A. */ static void release_prkdflist (prkdf_object_t a) { while (a) { prkdf_object_t tmp = a->next; xfree (a->objid); xfree (a); a = tmp; } } /* Release all local resources. */ static void do_deinit (app_t app) { if (app && app->app_local) { release_cdflist (app->app_local->certificate_info); release_cdflist (app->app_local->trusted_certificate_info); release_prkdflist (app->app_local->private_key_info); xfree (app->app_local); app->app_local = NULL; } } /* Get the list of EFs from the SmartCard-HSM. * On success a dynamically buffer containing the EF list is returned. * The caller is responsible for freeing the buffer. */ static gpg_error_t list_ef (int slot, unsigned char **result, size_t *resultlen) { int sw; if (!result || !resultlen) return gpg_error (GPG_ERR_INV_VALUE); *result = NULL; *resultlen = 0; sw = apdu_send_le (slot, 1, 0x80, 0x58, 0x00, 0x00, -1, NULL, 65536, result, resultlen); if (sw != SW_SUCCESS) { /* Make sure that pending buffers are released. */ xfree (*result); *result = NULL; *resultlen = 0; } return iso7816_map_sw (sw); } /* Do a select and a read for the file with EFID. EFID_DESC is a description of the EF to be used with error messages. On success BUFFER and BUFLEN contain the entire content of the EF. The caller must free BUFFER only on success. */ static gpg_error_t select_and_read_binary (int slot, unsigned short efid, const char *efid_desc, unsigned char **buffer, size_t *buflen, int maxread) { gpg_error_t err; unsigned char cdata[4]; int sw; cdata[0] = 0x54; /* Create ISO 7861-4 odd ins READ BINARY */ cdata[1] = 0x02; cdata[2] = 0x00; cdata[3] = 0x00; sw = apdu_send_le(slot, 1, 0x00, 0xB1, efid >> 8, efid & 0xFF, 4, cdata, maxread, buffer, buflen); if (sw == SW_EOF_REACHED) sw = SW_SUCCESS; err = iso7816_map_sw (sw); if (err) { log_error ("error reading %s (0x%04X): %s\n", efid_desc, efid, gpg_strerror (err)); return err; } return 0; } /* Parse a cert Id string (or a key Id string) and return the binary object Id string in a newly allocated buffer stored at R_OBJID and R_OBJIDLEN. On Error NULL will be stored there and an error code returned. On success caller needs to free the buffer at R_OBJID. */ static gpg_error_t parse_certid (const char *certid, unsigned char **r_objid, size_t *r_objidlen) { const char *s; size_t objidlen; unsigned char *objid; int i; *r_objid = NULL; *r_objidlen = 0; if (strncmp (certid, "HSM.", 4)) return gpg_error (GPG_ERR_INV_ID); certid += 4; for (s=certid, objidlen=0; hexdigitp (s); s++, objidlen++) ; if (*s || !objidlen || (objidlen%2)) return gpg_error (GPG_ERR_INV_ID); objidlen /= 2; objid = xtrymalloc (objidlen); if (!objid) return gpg_error_from_syserror (); for (s=certid, i=0; i < objidlen; i++, s+=2) objid[i] = xtoi_2 (s); *r_objid = objid; *r_objidlen = objidlen; return 0; } /* Find a certificate object by the certificate ID CERTID and store a pointer to it at R_CDF. */ static gpg_error_t cdf_object_from_certid (app_t app, const char *certid, cdf_object_t *r_cdf) { gpg_error_t err; size_t objidlen; unsigned char *objid; cdf_object_t cdf; err = parse_certid (certid, &objid, &objidlen); if (err) return err; for (cdf = app->app_local->certificate_info; cdf; cdf = cdf->next) if (cdf->objidlen == objidlen && !memcmp (cdf->objid, objid, objidlen)) break; if (!cdf) for (cdf = app->app_local->trusted_certificate_info; cdf; cdf = cdf->next) if (cdf->objidlen == objidlen && !memcmp (cdf->objid, objid, objidlen)) break; xfree (objid); if (!cdf) return gpg_error (GPG_ERR_NOT_FOUND); *r_cdf = cdf; return 0; } /* Find a private key object by the key Id string KEYIDSTR and store a pointer to it at R_PRKDF. */ static gpg_error_t prkdf_object_from_keyidstr (app_t app, const char *keyidstr, prkdf_object_t *r_prkdf) { gpg_error_t err; size_t objidlen; unsigned char *objid; prkdf_object_t prkdf; err = parse_certid (keyidstr, &objid, &objidlen); if (err) return err; for (prkdf = app->app_local->private_key_info; prkdf; prkdf = prkdf->next) if (prkdf->objidlen == objidlen && !memcmp (prkdf->objid, objid, objidlen)) break; xfree (objid); if (!prkdf) return gpg_error (GPG_ERR_NOT_FOUND); *r_prkdf = prkdf; return 0; } /* Parse the BIT STRING with the keyUsageFlags from the CommonKeyAttributes. */ static gpg_error_t parse_keyusage_flags (const unsigned char *der, size_t derlen, keyusage_flags_t *usageflags) { unsigned int bits, mask; int i, unused, full; memset (usageflags, 0, sizeof *usageflags); if (!derlen) return gpg_error (GPG_ERR_INV_OBJ); unused = *der++; derlen--; if ((!derlen && unused) || unused/8 > derlen) return gpg_error (GPG_ERR_ENCODING_PROBLEM); full = derlen - (unused+7)/8; unused %= 8; mask = 0; for (i=1; unused; i <<= 1, unused--) mask |= i; /* First octet */ if (derlen) { bits = *der++; derlen--; if (full) full--; else { bits &= ~mask; mask = 0; } } else bits = 0; if ((bits & 0x80)) usageflags->encrypt = 1; if ((bits & 0x40)) usageflags->decrypt = 1; if ((bits & 0x20)) usageflags->sign = 1; if ((bits & 0x10)) usageflags->sign_recover = 1; if ((bits & 0x08)) usageflags->wrap = 1; if ((bits & 0x04)) usageflags->unwrap = 1; if ((bits & 0x02)) usageflags->verify = 1; if ((bits & 0x01)) usageflags->verify_recover = 1; /* Second octet. */ if (derlen) { bits = *der++; derlen--; if (full) full--; else { bits &= ~mask; } } else bits = 0; if ((bits & 0x80)) usageflags->derive = 1; if ((bits & 0x40)) usageflags->non_repudiation = 1; return 0; } /* Read and parse a Private Key Directory File containing a single key description in PKCS#15 format. For each private key a matching certificate description is created, if the certificate EF exists and contains a X.509 certificate. Example data: 0000 30 2A 30 13 0C 11 4A 6F 65 20 44 6F 65 20 28 52 0*0...Joe Doe (R 0010 53 41 32 30 34 38 29 30 07 04 01 01 03 02 02 74 SA2048)0.......t 0020 A1 0A 30 08 30 02 04 00 02 02 08 00 ..0.0....... Decoded example: SEQUENCE SIZE( 42 ) SEQUENCE SIZE( 19 ) UTF8-STRING SIZE( 17 ) -- label 0000 4A 6F 65 20 44 6F 65 20 28 52 53 41 32 30 34 38 Joe Doe (RSA2048 0010 29 ) SEQUENCE SIZE( 7 ) OCTET-STRING SIZE( 1 ) -- id 0000 01 BIT-STRING SIZE( 2 ) -- key usage 0000 02 74 A1 [ CONTEXT 1 ] IMPLICIT SEQUENCE SIZE( 10 ) SEQUENCE SIZE( 8 ) SEQUENCE SIZE( 2 ) OCTET-STRING SIZE( 0 ) -- empty path, req object in PKCS#15 INTEGER SIZE( 2 ) -- modulus size in bits 0000 08 00 */ static gpg_error_t read_ef_prkd (app_t app, unsigned short fid, prkdf_object_t *prkdresult, cdf_object_t *cdresult) { gpg_error_t err; unsigned char *buffer = NULL; size_t buflen; const unsigned char *p; size_t n, objlen, hdrlen; int class, tag, constructed, ndef; int i; const unsigned char *pp; size_t nn; int where; const char *errstr = NULL; prkdf_object_t prkdf = NULL; cdf_object_t cdf = NULL; unsigned long ul; const unsigned char *objid; size_t objidlen; keyusage_flags_t usageflags; const char *s; key_type_t keytype; size_t keysize; if (!fid) return gpg_error (GPG_ERR_NO_DATA); /* No private keys. */ err = select_and_read_binary (app->slot, fid, "PrKDF", &buffer, &buflen, 255); if (err) return err; p = buffer; n = buflen; err = parse_ber_header (&p, &n, &class, &tag, &constructed, &ndef, &objlen, &hdrlen); if (!err && (objlen > n || (tag != TAG_SEQUENCE && tag != 0x00))) err = gpg_error (GPG_ERR_INV_OBJ); if (err) { log_error ("error parsing PrKDF record: %s\n", gpg_strerror (err)); goto leave; } keytype = tag == 0x00 ? KEY_TYPE_ECC : KEY_TYPE_RSA; pp = p; nn = objlen; p += objlen; n -= objlen; /* Parse the commonObjectAttributes. */ where = __LINE__; err = parse_ber_header (&pp, &nn, &class, &tag, &constructed, &ndef, &objlen, &hdrlen); if (!err && (objlen > nn || tag != TAG_SEQUENCE)) err = gpg_error (GPG_ERR_INV_OBJ); if (err) goto parse_error; { const unsigned char *ppp = pp; size_t nnn = objlen; pp += objlen; nn -= objlen; /* Search the optional AuthId. We need to skip the optional Label (UTF8STRING) and the optional CommonObjectFlags (BITSTRING). */ where = __LINE__; err = parse_ber_header (&ppp, &nnn, &class, &tag, &constructed, &ndef, &objlen, &hdrlen); if (!err && (objlen > nnn || class != CLASS_UNIVERSAL)) err = gpg_error (GPG_ERR_INV_OBJ); if (gpg_err_code (err) == GPG_ERR_EOF) goto no_authid; if (err) goto parse_error; if (tag == TAG_UTF8_STRING) { ppp += objlen; /* Skip the Label. */ nnn -= objlen; where = __LINE__; err = parse_ber_header (&ppp, &nnn, &class, &tag, &constructed, &ndef, &objlen, &hdrlen); if (!err && (objlen > nnn || class != CLASS_UNIVERSAL)) err = gpg_error (GPG_ERR_INV_OBJ); if (gpg_err_code (err) == GPG_ERR_EOF) goto no_authid; if (err) goto parse_error; } if (tag == TAG_BIT_STRING) { ppp += objlen; /* Skip the CommonObjectFlags. */ nnn -= objlen; where = __LINE__; err = parse_ber_header (&ppp, &nnn, &class, &tag, &constructed, &ndef, &objlen, &hdrlen); if (!err && (objlen > nnn || class != CLASS_UNIVERSAL)) err = gpg_error (GPG_ERR_INV_OBJ); if (gpg_err_code (err) == GPG_ERR_EOF) goto no_authid; if (err) goto parse_error; } if (tag == TAG_OCTET_STRING && objlen) { /* AuthId ignored */ } no_authid: ; } /* Parse the commonKeyAttributes. */ where = __LINE__; err = parse_ber_header (&pp, &nn, &class, &tag, &constructed, &ndef, &objlen, &hdrlen); if (!err && (objlen > nn || tag != TAG_SEQUENCE)) err = gpg_error (GPG_ERR_INV_OBJ); if (err) goto parse_error; { const unsigned char *ppp = pp; size_t nnn = objlen; pp += objlen; nn -= objlen; /* Get the Id. */ where = __LINE__; err = parse_ber_header (&ppp, &nnn, &class, &tag, &constructed, &ndef, &objlen, &hdrlen); if (!err && (objlen > nnn || class != CLASS_UNIVERSAL || tag != TAG_OCTET_STRING)) err = gpg_error (GPG_ERR_INV_OBJ); if (err) goto parse_error; objid = ppp; objidlen = objlen; ppp += objlen; nnn -= objlen; /* Get the KeyUsageFlags. */ where = __LINE__; err = parse_ber_header (&ppp, &nnn, &class, &tag, &constructed, &ndef, &objlen, &hdrlen); if (!err && (objlen > nnn || class != CLASS_UNIVERSAL || tag != TAG_BIT_STRING)) err = gpg_error (GPG_ERR_INV_OBJ); if (err) goto parse_error; err = parse_keyusage_flags (ppp, objlen, &usageflags); if (err) goto parse_error; ppp += objlen; nnn -= objlen; /* Find the keyReference */ where = __LINE__; err = parse_ber_header (&ppp, &nnn, &class, &tag, &constructed, &ndef, &objlen, &hdrlen); if (gpg_err_code (err) == GPG_ERR_EOF) goto leave_cki; if (!err && objlen > nnn) err = gpg_error (GPG_ERR_INV_OBJ); if (err) goto parse_error; if (class == CLASS_UNIVERSAL && tag == TAG_BOOLEAN) { /* Skip the native element. */ ppp += objlen; nnn -= objlen; err = parse_ber_header (&ppp, &nnn, &class, &tag, &constructed, &ndef, &objlen, &hdrlen); if (gpg_err_code (err) == GPG_ERR_EOF) goto leave_cki; if (!err && objlen > nnn) err = gpg_error (GPG_ERR_INV_OBJ); if (err) goto parse_error; } if (class == CLASS_UNIVERSAL && tag == TAG_BIT_STRING) { /* Skip the accessFlags. */ ppp += objlen; nnn -= objlen; err = parse_ber_header (&ppp, &nnn, &class, &tag, &constructed, &ndef, &objlen, &hdrlen); if (gpg_err_code (err) == GPG_ERR_EOF) goto leave_cki; if (!err && objlen > nnn) err = gpg_error (GPG_ERR_INV_OBJ); if (err) goto parse_error; } if (class == CLASS_UNIVERSAL && tag == TAG_INTEGER) { /* Yep, this is the keyReference. Note: UL is currently not used. */ for (ul=0; objlen; objlen--) { ul <<= 8; ul |= (*ppp++) & 0xff; nnn--; } } leave_cki: ; } /* Skip subClassAttributes. */ where = __LINE__; err = parse_ber_header (&pp, &nn, &class, &tag, &constructed, &ndef, &objlen, &hdrlen); if (!err && objlen > nn) err = gpg_error (GPG_ERR_INV_OBJ); if (err) goto parse_error; if (class == CLASS_CONTEXT && tag == 0) { pp += objlen; nn -= objlen; where = __LINE__; err = parse_ber_header (&pp, &nn, &class, &tag, &constructed, &ndef, &objlen, &hdrlen); } /* Parse the keyAttributes. */ if (!err && (objlen > nn || class != CLASS_CONTEXT || tag != 1)) err = gpg_error (GPG_ERR_INV_OBJ); if (err) goto parse_error; nn = objlen; where = __LINE__; err = parse_ber_header (&pp, &nn, &class, &tag, &constructed, &ndef, &objlen, &hdrlen); if (!err && objlen > nn) err = gpg_error (GPG_ERR_INV_OBJ); if (err) goto parse_error; nn = objlen; /* Check that the reference is a Path object. */ where = __LINE__; err = parse_ber_header (&pp, &nn, &class, &tag, &constructed, &ndef, &objlen, &hdrlen); if (!err && objlen > nn) err = gpg_error (GPG_ERR_INV_OBJ); if (err) goto parse_error; if (class != CLASS_UNIVERSAL || tag != TAG_SEQUENCE) { errstr = "unsupported reference type"; goto parse_error; } pp += objlen; nn -= objlen; /* Parse the key size object. */ where = __LINE__; err = parse_ber_header (&pp, &nn, &class, &tag, &constructed, &ndef, &objlen, &hdrlen); if (!err && objlen > nn) err = gpg_error (GPG_ERR_INV_OBJ); if (err) goto parse_error; keysize = 0; if (class == CLASS_UNIVERSAL && tag == TAG_INTEGER && objlen == 2) { keysize = *pp++ << 8; keysize += *pp++; } /* Create a new PrKDF list item. */ prkdf = xtrycalloc (1, sizeof *prkdf); if (!prkdf) { err = gpg_error_from_syserror (); goto leave; } prkdf->keytype = keytype; prkdf->keysize = keysize; prkdf->objidlen = objidlen; prkdf->objid = xtrymalloc (objidlen); if (!prkdf->objid) { err = gpg_error_from_syserror (); xfree (prkdf); prkdf = NULL; goto leave; } memcpy (prkdf->objid, objid, objidlen); prkdf->usageflags = usageflags; prkdf->key_reference = fid & 0xFF; log_debug ("PrKDF %04hX: id=", fid); for (i=0; i < prkdf->objidlen; i++) log_printf ("%02X", prkdf->objid[i]); log_printf (" keyref=0x%02X", prkdf->key_reference); log_printf (" keysize=%zu", prkdf->keysize); log_printf (" usage="); s = ""; if (prkdf->usageflags.encrypt) { log_printf ("%sencrypt", s); s = ","; } if (prkdf->usageflags.decrypt) { log_printf ("%sdecrypt", s); s = ","; } if (prkdf->usageflags.sign) { log_printf ("%ssign", s); s = ","; } if (prkdf->usageflags.sign_recover) { log_printf ("%ssign_recover", s); s = ","; } if (prkdf->usageflags.wrap ) { log_printf ("%swrap", s); s = ","; } if (prkdf->usageflags.unwrap ) { log_printf ("%sunwrap", s); s = ","; } if (prkdf->usageflags.verify ) { log_printf ("%sverify", s); s = ","; } if (prkdf->usageflags.verify_recover) { log_printf ("%sverify_recover", s); s = ","; } if (prkdf->usageflags.derive ) { log_printf ("%sderive", s); s = ","; } if (prkdf->usageflags.non_repudiation) { log_printf ("%snon_repudiation", s); } log_printf ("\n"); xfree (buffer); buffer = NULL; buflen = 0; err = select_and_read_binary (app->slot, ((SC_HSM_EE_PREFIX << 8) | (fid & 0xFF)), "CertEF", &buffer, &buflen, 1); if (!err && buffer[0] == 0x30) { /* Create a matching CDF list item. */ cdf = xtrycalloc (1, sizeof *cdf); if (!cdf) { err = gpg_error_from_syserror (); goto leave; } cdf->objidlen = prkdf->objidlen; cdf->objid = xtrymalloc (cdf->objidlen); if (!cdf->objid) { err = gpg_error_from_syserror (); xfree (cdf); cdf = NULL; goto leave; } memcpy (cdf->objid, prkdf->objid, objidlen); cdf->fid = (SC_HSM_EE_PREFIX << 8) | (fid & 0xFF); log_debug ("CDF %04hX: id=", fid); for (i=0; i < cdf->objidlen; i++) log_printf ("%02X", cdf->objid[i]); log_printf (" fid=%04X\n", cdf->fid); } goto leave; /* Ready. */ parse_error: log_error ("error parsing PrKDF record (%d): %s - skipped\n", where, errstr? errstr : gpg_strerror (err)); err = 0; leave: xfree (buffer); if (err) { if (prkdf) { if (prkdf->objid) xfree (prkdf->objid); xfree (prkdf); } if (cdf) { if (cdf->objid) xfree (cdf->objid); xfree (cdf); } } else { if (prkdf) prkdf->next = *prkdresult; *prkdresult = prkdf; if (cdf) { cdf->next = *cdresult; *cdresult = cdf; } } return err; } /* Read and parse the Certificate Description File identified by FID. On success a the CDF list gets stored at RESULT and the caller is then responsible of releasing the object. Example data: 0000 30 35 30 11 0C 0B 43 65 72 74 69 66 69 63 61 74 050...Certificat 0010 65 03 02 06 40 30 16 04 14 C2 01 7C 2F BA A4 4A e...@0.....|/..J 0020 4A BB B8 49 11 DB 4A CA AA 7E 6A 2D 1B A1 08 30 J..I..J..~j-...0 0030 06 30 04 04 02 CA 00 .0..... Decoded example: SEQUENCE SIZE( 53 ) SEQUENCE SIZE( 17 ) UTF8-STRING SIZE( 11 ) -- label 0000 43 65 72 74 69 66 69 63 61 74 65 Certificate BIT-STRING SIZE( 2 ) -- common object attributes 0000 06 40 SEQUENCE SIZE( 22 ) OCTET-STRING SIZE( 20 ) -- id 0000 C2 01 7C 2F BA A4 4A 4A BB B8 49 11 DB 4A CA AA 0010 7E 6A 2D 1B A1 [ CONTEXT 1 ] IMPLICIT SEQUENCE SIZE( 8 ) SEQUENCE SIZE( 6 ) SEQUENCE SIZE( 4 ) OCTET-STRING SIZE( 2 ) -- path 0000 CA 00 .. */ static gpg_error_t read_ef_cd (app_t app, unsigned short fid, cdf_object_t *result) { gpg_error_t err; unsigned char *buffer = NULL; size_t buflen; const unsigned char *p; size_t n, objlen, hdrlen; int class, tag, constructed, ndef; int i; const unsigned char *pp; size_t nn; int where; const char *errstr = NULL; cdf_object_t cdf = NULL; const unsigned char *objid; size_t objidlen; if (!fid) return gpg_error (GPG_ERR_NO_DATA); /* No certificates. */ err = select_and_read_binary (app->slot, fid, "CDF", &buffer, &buflen, 255); if (err) return err; p = buffer; n = buflen; err = parse_ber_header (&p, &n, &class, &tag, &constructed, &ndef, &objlen, &hdrlen); if (!err && (objlen > n || tag != TAG_SEQUENCE)) err = gpg_error (GPG_ERR_INV_OBJ); if (err) { log_error ("error parsing CDF record: %s\n", gpg_strerror (err)); goto leave; } pp = p; nn = objlen; p += objlen; n -= objlen; /* Skip the commonObjectAttributes. */ where = __LINE__; err = parse_ber_header (&pp, &nn, &class, &tag, &constructed, &ndef, &objlen, &hdrlen); if (!err && (objlen > nn || tag != TAG_SEQUENCE)) err = gpg_error (GPG_ERR_INV_OBJ); if (err) goto parse_error; pp += objlen; nn -= objlen; /* Parse the commonCertificateAttributes. */ where = __LINE__; err = parse_ber_header (&pp, &nn, &class, &tag, &constructed, &ndef, &objlen, &hdrlen); if (!err && (objlen > nn || tag != TAG_SEQUENCE)) err = gpg_error (GPG_ERR_INV_OBJ); if (err) goto parse_error; { const unsigned char *ppp = pp; size_t nnn = objlen; pp += objlen; nn -= objlen; /* Get the Id. */ where = __LINE__; err = parse_ber_header (&ppp, &nnn, &class, &tag, &constructed, &ndef, &objlen, &hdrlen); if (!err && (objlen > nnn || class != CLASS_UNIVERSAL || tag != TAG_OCTET_STRING)) err = gpg_error (GPG_ERR_INV_OBJ); if (err) goto parse_error; objid = ppp; objidlen = objlen; } /* Parse the certAttribute. */ where = __LINE__; err = parse_ber_header (&pp, &nn, &class, &tag, &constructed, &ndef, &objlen, &hdrlen); if (!err && (objlen > nn || class != CLASS_CONTEXT || tag != 1)) err = gpg_error (GPG_ERR_INV_OBJ); if (err) goto parse_error; nn = objlen; where = __LINE__; err = parse_ber_header (&pp, &nn, &class, &tag, &constructed, &ndef, &objlen, &hdrlen); if (!err && (objlen > nn || class != CLASS_UNIVERSAL || tag != TAG_SEQUENCE)) err = gpg_error (GPG_ERR_INV_OBJ); if (err) goto parse_error; nn = objlen; /* Check that the reference is a Path object. */ where = __LINE__; err = parse_ber_header (&pp, &nn, &class, &tag, &constructed, &ndef, &objlen, &hdrlen); if (!err && objlen > nn) err = gpg_error (GPG_ERR_INV_OBJ); if (err) goto parse_error; if (class != CLASS_UNIVERSAL || tag != TAG_SEQUENCE) { err = gpg_error (GPG_ERR_INV_OBJ); goto parse_error; } nn = objlen; /* Parse the Path object. */ where = __LINE__; err = parse_ber_header (&pp, &nn, &class, &tag, &constructed, &ndef, &objlen, &hdrlen); if (!err && objlen > nn) err = gpg_error (GPG_ERR_INV_OBJ); if (err) goto parse_error; /* Make sure that the next element is a non zero path and of even length (FID are two bytes each). */ if (class != CLASS_UNIVERSAL || tag != TAG_OCTET_STRING || (objlen & 1) ) { errstr = "invalid path reference"; goto parse_error; } /* Create a new CDF list item. */ cdf = xtrycalloc (1, sizeof *cdf); if (!cdf) { err = gpg_error_from_syserror (); goto leave; } cdf->objidlen = objidlen; cdf->objid = xtrymalloc (objidlen); if (!cdf->objid) { err = gpg_error_from_syserror (); xfree (cdf); cdf = NULL; goto leave; } memcpy (cdf->objid, objid, objidlen); cdf->fid = (SC_HSM_CA_PREFIX << 8) | (fid & 0xFF); log_debug ("CDF %04hX: id=", fid); for (i=0; i < cdf->objidlen; i++) log_printf ("%02X", cdf->objid[i]); goto leave; parse_error: log_error ("error parsing CDF record (%d): %s - skipped\n", where, errstr? errstr : gpg_strerror (err)); err = 0; leave: xfree (buffer); if (err) { if (cdf) { if (cdf->objid) xfree (cdf->objid); xfree (cdf); } } else { if (cdf) cdf->next = *result; *result = cdf; } return err; } /* Read the device certificate and extract the serial number. EF.C_DevAut (2F02) contains two CVCs, the first is the device certificate, the second is the issuer certificate. Example data: 0000 7F 21 81 E2 7F 4E 81 9B 5F 29 01 00 42 0B 55 54 .!...N.._)..B.UT 0010 43 43 30 32 30 30 30 30 32 7F 49 4F 06 0A 04 00 CC0200002.IO.... 0020 7F 00 07 02 02 02 02 03 86 41 04 6D FF D6 85 57 .........A.m...W 0030 40 FB 10 5D 94 71 8A 94 D2 5E 50 33 E7 1E C0 6C @..].q...^P3...l 0040 63 D5 C8 FC BA F3 02 1D 70 23 F6 47 E8 35 48 EF c.......p#.G.5H. 0050 B5 94 72 3C 6F BE C0 EB 9A C7 FB 06 59 26 CF 65 ..r...<. 0150 6B AC 06 EA 5F 20 0B 55 54 43 43 30 32 30 30 30 k..._ .UTCC02000 0160 30 32 7F 4C 10 06 0B 2B 06 01 04 01 81 C3 1F 03 02.L...+........ 0170 01 01 53 01 80 5F 25 06 01 03 00 03 02 08 5F 24 ..S.._%......._$ 0180 06 02 01 00 03 02 07 5F 37 40 93 C1 42 8B B3 8E ......._7@..B... 0190 42 61 6F 2C 19 E6 98 41 BD AA 60 BD E0 DD 4E F0 Bao,...A..`...N. 01A0 15 D5 4F 71 B7 BB C3 3A F2 AD 27 5E DD EE 6D 12 ..Oq...:..'^..m. 01B0 76 E6 2B A0 4C 01 CA C1 26 0C 45 6D C6 CB EC 92 v.+.L...&.Em.... 01C0 BF 38 18 AD 8F B2 29 40 A9 51 .8....)@.Q The certificate format is defined in BSI TR-03110: 7F21 [ APPLICATION 33 ] IMPLICIT SEQUENCE SIZE( 226 ) 7F4E [ APPLICATION 78 ] IMPLICIT SEQUENCE SIZE( 155 ) 5F29 [ APPLICATION 41 ] SIZE( 1 ) -- profile id 0000 00 42 [ APPLICATION 2 ] SIZE( 11 ) -- CAR 0000 55 54 43 43 30 32 30 30 30 30 32 UTCC0200002 7F49 [ APPLICATION 73 ] IMPLICIT SEQUENCE SIZE( 79 ) -- public key OBJECT IDENTIFIER = { id-TA-ECDSA-SHA-256 } 86 [ CONTEXT 6 ] SIZE( 65 ) 0000 04 6D FF D6 85 57 40 FB 10 5D 94 71 8A 94 D2 5E 0010 50 33 E7 1E C0 6C 63 D5 C8 FC BA F3 02 1D 70 23 0020 F6 47 E8 35 48 EF B5 94 72 3C 6F BE C0 EB 9A C7 0030 FB 06 59 26 CF 65 EF A1 72 E0 98 F3 F0 44 1B B7 0040 71 5F20 [ APPLICATION 32 ] SIZE( 16 ) -- CHR 0000 55 54 43 43 30 32 30 30 30 31 33 30 30 30 30 30 UTCC020001300000 7F4C [ APPLICATION 76 ] IMPLICIT SEQUENCE SIZE( 16 ) -- CHAT OBJECT IDENTIFIER = { 1 3 6 1 4 1 24991 3 1 1 } 53 [ APPLICATION 19 ] SIZE( 1 ) 0000 00 5F25 [ APPLICATION 37 ] SIZE( 6 ) -- Valid from 0000 01 04 00 07 01 01 5F24 [ APPLICATION 36 ] SIZE( 6 ) -- Valid to 0000 02 01 00 03 02 07 5F37 [ APPLICATION 55 ] SIZE( 64 ) -- Signature 0000 7F 73 04 3B 06 63 79 41 BE 1A 9F FC F6 77 67 2B 0010 8A 41 D1 11 F6 9B 54 44 AD 19 FB B8 0C C6 2F 34 0020 71 8E 4F F6 92 59 34 61 D9 4F 4A 86 36 A8 D8 9A 0030 C6 3C 17 7E 71 CE A8 26 D0 C5 25 61 78 9D 01 F8 The serial number is contained in tag 5F20, while the last 5 digits are truncated. */ static gpg_error_t read_serialno(app_t app) { gpg_error_t err; unsigned char *buffer = NULL; size_t buflen; const unsigned char *p,*chr; size_t n, objlen, hdrlen, chrlen; int class, tag, constructed, ndef; err = select_and_read_binary (app->slot, 0x2F02, "EF.C_DevAut", &buffer, &buflen, 512); if (err) return err; p = buffer; n = buflen; err = parse_ber_header (&p, &n, &class, &tag, &constructed, &ndef, &objlen, &hdrlen); if (!err && (objlen > n || tag != 0x21)) err = gpg_error (GPG_ERR_INV_OBJ); if (err) { log_error ("error parsing C_DevAut: %s\n", gpg_strerror (err)); goto leave; } chr = find_tlv (p, objlen, 0x5F20, &chrlen); if (!chr || chrlen <= 5) { err = gpg_error (GPG_ERR_INV_OBJ); log_error ("CHR not found in CVC\n"); goto leave; } chrlen -= 5; app->serialno = xtrymalloc (chrlen); if (!app->serialno) { err = gpg_error_from_syserror (); goto leave; } app->serialnolen = chrlen; memcpy (app->serialno, chr, chrlen); leave: xfree (buffer); return err; } /* Get all the basic information from the SmartCard-HSM, check the structure and initialize our local context. This is used once at application initialization. */ static gpg_error_t read_meta (app_t app) { gpg_error_t err; unsigned char *eflist = NULL; size_t eflistlen = 0; int i; err = read_serialno(app); if (err) return err; err = list_ef (app->slot, &eflist, &eflistlen); if (err) return err; for (i = 0; i < eflistlen; i += 2) { switch(eflist[i]) { case SC_HSM_KEY_PREFIX: if (eflist[i + 1] == 0) /* No key with ID=0 */ break; err = read_ef_prkd (app, ((SC_HSM_PRKD_PREFIX << 8) | eflist[i + 1]), &app->app_local->private_key_info, &app->app_local->certificate_info); if (gpg_err_code (err) == GPG_ERR_NO_DATA) err = 0; if (err) return err; break; case SC_HSM_CD_PREFIX: err = read_ef_cd (app, ((eflist[i] << 8) | eflist[i + 1]), &app->app_local->trusted_certificate_info); if (gpg_err_code (err) == GPG_ERR_NO_DATA) err = 0; if (err) return err; break; } } xfree (eflist); return err; } /* Helper to do_learn_status: Send information about all certificates listed in CERTINFO back. Use CERTTYPE as type of the certificate. */ static gpg_error_t send_certinfo (ctrl_t ctrl, const char *certtype, cdf_object_t certinfo) { for (; certinfo; certinfo = certinfo->next) { char *buf, *p; buf = xtrymalloc (4 + certinfo->objidlen*2 + 1); if (!buf) return gpg_error_from_syserror (); p = stpcpy (buf, "HSM."); bin2hex (certinfo->objid, certinfo->objidlen, p); send_status_info (ctrl, "CERTINFO", certtype, strlen (certtype), buf, strlen (buf), NULL, (size_t)0); xfree (buf); } return 0; } /* Get the keygrip of the private key object PRKDF. On success the keygrip gets returned in the caller provided 41 byte buffer R_GRIPSTR. */ static gpg_error_t keygripstr_from_prkdf (app_t app, prkdf_object_t prkdf, char *r_gripstr) { gpg_error_t err; cdf_object_t cdf; unsigned char *der; size_t derlen; ksba_cert_t cert; /* Look for a matching certificate. A certificate matches if the Id matches the one of the private key info. */ for (cdf = app->app_local->certificate_info; cdf; cdf = cdf->next) if (cdf->objidlen == prkdf->objidlen && !memcmp (cdf->objid, prkdf->objid, prkdf->objidlen)) break; if (!cdf) return gpg_error (GPG_ERR_NOT_FOUND); err = readcert_by_cdf (app, cdf, &der, &derlen); if (err) return err; err = ksba_cert_new (&cert); if (!err) err = ksba_cert_init_from_mem (cert, der, derlen); xfree (der); if (!err) err = app_help_get_keygrip_string (cert, r_gripstr, NULL, NULL); ksba_cert_release (cert); return err; } /* Helper to do_learn_status: Send information about all known keypairs back. */ static gpg_error_t send_keypairinfo (app_t app, ctrl_t ctrl, prkdf_object_t keyinfo) { gpg_error_t err; for (; keyinfo; keyinfo = keyinfo->next) { char gripstr[40+1]; char *buf, *p; buf = xtrymalloc (4 + keyinfo->objidlen*2 + 1); if (!buf) return gpg_error_from_syserror (); p = stpcpy (buf, "HSM."); bin2hex (keyinfo->objid, keyinfo->objidlen, p); err = keygripstr_from_prkdf (app, keyinfo, gripstr); if (err) { log_error ("can't get keygrip from %04X\n", keyinfo->key_reference); } else { assert (strlen (gripstr) == 40); send_status_info (ctrl, "KEYPAIRINFO", gripstr, 40, buf, strlen (buf), NULL, (size_t)0); } xfree (buf); } return 0; } /* This is the handler for the LEARN command. */ static gpg_error_t do_learn_status (app_t app, ctrl_t ctrl, unsigned int flags) { gpg_error_t err; - if ((flags & 1)) + if ((flags & APP_LEARN_FLAG_KEYPAIRINFO)) err = 0; else { err = send_certinfo (ctrl, "100", app->app_local->certificate_info); if (!err) err = send_certinfo (ctrl, "101", app->app_local->trusted_certificate_info); } if (!err) err = send_keypairinfo (app, ctrl, app->app_local->private_key_info); return err; } /* Read a certificate using the information in CDF and return the certificate in a newly allocated buffer R_CERT and its length R_CERTLEN. */ static gpg_error_t readcert_by_cdf (app_t app, cdf_object_t cdf, unsigned char **r_cert, size_t *r_certlen) { gpg_error_t err; unsigned char *buffer = NULL; const unsigned char *p, *save_p; size_t buflen, n; int class, tag, constructed, ndef; size_t totobjlen, objlen, hdrlen; int rootca; int i; *r_cert = NULL; *r_certlen = 0; /* First check whether it has been cached. */ if (cdf->image) { *r_cert = xtrymalloc (cdf->imagelen); if (!*r_cert) return gpg_error_from_syserror (); memcpy (*r_cert, cdf->image, cdf->imagelen); *r_certlen = cdf->imagelen; return 0; } err = select_and_read_binary (app->slot, cdf->fid, "CD", &buffer, &buflen, 4096); if (err) { log_error ("error reading certificate with Id "); for (i=0; i < cdf->objidlen; i++) log_printf ("%02X", cdf->objid[i]); log_printf (": %s\n", gpg_strerror (err)); goto leave; } /* Check whether this is really a certificate. */ p = buffer; n = buflen; err = parse_ber_header (&p, &n, &class, &tag, &constructed, &ndef, &objlen, &hdrlen); if (err) goto leave; if (class == CLASS_UNIVERSAL && tag == TAG_SEQUENCE && constructed) rootca = 0; else if ( class == CLASS_UNIVERSAL && tag == TAG_SET && constructed ) rootca = 1; else { err = gpg_error (GPG_ERR_INV_OBJ); goto leave; } totobjlen = objlen + hdrlen; assert (totobjlen <= buflen); err = parse_ber_header (&p, &n, &class, &tag, &constructed, &ndef, &objlen, &hdrlen); if (err) goto leave; if (!rootca && class == CLASS_UNIVERSAL && tag == TAG_OBJECT_ID && !constructed) { /* The certificate seems to be contained in a userCertificate container. Skip this and assume the following sequence is the certificate. */ if (n < objlen) { err = gpg_error (GPG_ERR_INV_OBJ); goto leave; } p += objlen; n -= objlen; save_p = p; err = parse_ber_header (&p, &n, &class, &tag, &constructed, &ndef, &objlen, &hdrlen); if (err) goto leave; if ( !(class == CLASS_UNIVERSAL && tag == TAG_SEQUENCE && constructed) ) { err = gpg_error (GPG_ERR_INV_OBJ); goto leave; } totobjlen = objlen + hdrlen; assert (save_p + totobjlen <= buffer + buflen); memmove (buffer, save_p, totobjlen); } *r_cert = buffer; buffer = NULL; *r_certlen = totobjlen; /* Try to cache it. */ if (!cdf->image && (cdf->image = xtrymalloc (*r_certlen))) { memcpy (cdf->image, *r_cert, *r_certlen); cdf->imagelen = *r_certlen; } leave: xfree (buffer); return err; } /* Handler for the READCERT command. Read the certificate with id CERTID (as returned by learn_status in the CERTINFO status lines) and return it in the freshly allocated buffer to be stored at R_CERT and its length at R_CERTLEN. A error code will be returned on failure and R_CERT and R_CERTLEN will be set to (NULL,0). */ static gpg_error_t do_readcert (app_t app, const char *certid, unsigned char **r_cert, size_t *r_certlen) { gpg_error_t err; cdf_object_t cdf; *r_cert = NULL; *r_certlen = 0; err = cdf_object_from_certid (app, certid, &cdf); if (!err) err = readcert_by_cdf (app, cdf, r_cert, r_certlen); return err; } /* Implement the GETATTR command. This is similar to the LEARN command but returns just one value via the status interface. */ static gpg_error_t do_getattr (app_t app, ctrl_t ctrl, const char *name) { if (!strcmp (name, "$AUTHKEYID")) { char *buf, *p; prkdf_object_t prkdf; /* We return the ID of the first private key capable of signing. */ for (prkdf = app->app_local->private_key_info; prkdf; prkdf = prkdf->next) if (prkdf->usageflags.sign) break; if (prkdf) { buf = xtrymalloc (4 + prkdf->objidlen*2 + 1); if (!buf) return gpg_error_from_syserror (); p = stpcpy (buf, "HSM."); bin2hex (prkdf->objid, prkdf->objidlen, p); send_status_info (ctrl, name, buf, strlen (buf), NULL, 0); xfree (buf); return 0; } } else if (!strcmp (name, "$DISPSERIALNO")) { send_status_info (ctrl, name, app->serialno, app->serialnolen, NULL, 0); return 0; } return gpg_error (GPG_ERR_INV_NAME); } /* Apply PKCS#1 V1.5 padding for signature operation. The function * combines padding, digest info and the hash value. The buffer must * be allocated by the caller matching the key size. */ static void apply_PKCS_padding(const unsigned char *dig, int diglen, const unsigned char *prefix, int prefixlen, unsigned char *buff, int bufflen) { int i, n_ff; /* Caller must ensure a sufficient buffer. */ if (diglen + prefixlen + 4 > bufflen) return; n_ff = bufflen - diglen - prefixlen - 3; *buff++ = 0x00; *buff++ = 0x01; for (i=0; i < n_ff; i++) *buff++ = 0xFF; *buff++ = 0x00; if (prefix) memcpy (buff, prefix, prefixlen); buff += prefixlen; memcpy (buff, dig, diglen); } /* Decode a digest info structure (DI,DILEN) to extract the hash * value. The buffer HASH to receive the digest must be provided by * the caller with HASHLEN pointing to the inbound length. HASHLEN is * updated to the outbound length. */ static int hash_from_digestinfo (const unsigned char *di, size_t dilen, unsigned char *hash, size_t *hashlen) { const unsigned char *p,*pp; size_t n, nn, objlen, hdrlen; int class, tag, constructed, ndef; gpg_error_t err; p = di; n = dilen; err = parse_ber_header (&p, &n, &class, &tag, &constructed, &ndef, &objlen, &hdrlen); if (!err && (objlen > n || tag != TAG_SEQUENCE)) err = gpg_error (GPG_ERR_INV_OBJ); if ( err ) return err; pp = p; nn = objlen; err = parse_ber_header (&pp, &nn, &class, &tag, &constructed, &ndef, &objlen, &hdrlen); if (!err && (objlen > nn || tag != TAG_SEQUENCE)) err = gpg_error (GPG_ERR_INV_OBJ); if ( err ) return err; pp += objlen; nn -= objlen; err = parse_ber_header (&pp, &nn, &class, &tag, &constructed, &ndef, &objlen, &hdrlen); if (!err && (objlen > nn || tag != TAG_OCTET_STRING)) err = gpg_error (GPG_ERR_INV_OBJ); if ( err ) return err; if (*hashlen < objlen) return gpg_error (GPG_ERR_TOO_SHORT); memcpy (hash, pp, objlen); *hashlen = objlen; return 0; } /* Perform PIN verification */ static gpg_error_t verify_pin (app_t app, gpg_error_t (*pincb)(void*, const char *, char **), void *pincb_arg) { gpg_error_t err; pininfo_t pininfo; char *pinvalue; char *prompt; int sw; sw = apdu_send_simple (app->slot, 0, 0x00, ISO7816_VERIFY, 0x00, 0x81, -1, NULL); if (sw == SW_SUCCESS) return 0; /* PIN already verified */ if (sw == SW_REF_DATA_INV) { log_error ("SmartCard-HSM not initialized. Run sc-hsm-tool first\n"); return gpg_error (GPG_ERR_NO_PIN); } if (sw == SW_CHV_BLOCKED) { log_error ("PIN Blocked\n"); return gpg_error (GPG_ERR_PIN_BLOCKED); } memset (&pininfo, 0, sizeof pininfo); pininfo.fixedlen = 0; pininfo.minlen = 6; pininfo.maxlen = 15; prompt = "||Please enter the PIN"; if (!opt.disable_pinpad && !iso7816_check_pinpad (app->slot, ISO7816_VERIFY, &pininfo) ) { err = pincb (pincb_arg, prompt, NULL); if (err) { log_info ("PIN callback returned error: %s\n", gpg_strerror (err)); return err; } err = iso7816_verify_kp (app->slot, 0x81, &pininfo); pincb (pincb_arg, NULL, NULL); /* Dismiss the prompt. */ } else { err = pincb (pincb_arg, prompt, &pinvalue); if (err) { log_info ("PIN callback returned error: %s\n", gpg_strerror (err)); return err; } err = iso7816_verify (app->slot, 0x81, pinvalue, strlen(pinvalue)); xfree (pinvalue); } if (err) { log_error ("PIN verification failed: %s\n", gpg_strerror (err)); return err; } log_debug ("PIN verification succeeded\n"); return err; } /* Handler for the PKSIGN command. Create the signature and return the allocated result in OUTDATA. If a PIN is required, the PINCB will be used to ask for the PIN; that callback should return the PIN in an allocated buffer and store that as the 3rd argument. The API is somewhat inconsistent: The caller can either supply a plain hash and the algorithm in hashalgo or a complete DigestInfo structure. The former is detect by characteristic length of the provided data (20,28,32,48 or 64 byte). The function returns the RSA block in the size of the modulus or the ECDSA signature in X9.62 format (SEQ/INT(r)/INT(s)) */ static gpg_error_t do_sign (app_t app, ctrl_t ctrl, const char *keyidstr, int hashalgo, gpg_error_t (*pincb)(void*, const char *, char **), void *pincb_arg, const void *indata, size_t indatalen, unsigned char **outdata, size_t *outdatalen ) { static unsigned char rmd160_prefix[15] = /* Object ID is 1.3.36.3.2.1 */ { 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x24, 0x03, 0x02, 0x01, 0x05, 0x00, 0x04, 0x14 }; static unsigned char sha1_prefix[15] = /* (1.3.14.3.2.26) */ { 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14 }; static unsigned char sha224_prefix[19] = /* (2.16.840.1.101.3.4.2.4) */ { 0x30, 0x2D, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04, 0x05, 0x00, 0x04, 0x1C }; static unsigned char sha256_prefix[19] = /* (2.16.840.1.101.3.4.2.1) */ { 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20 }; static unsigned char sha384_prefix[19] = /* (2.16.840.1.101.3.4.2.2) */ { 0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30 }; static unsigned char sha512_prefix[19] = /* (2.16.840.1.101.3.4.2.3) */ { 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40 }; gpg_error_t err; unsigned char cdsblk[256]; /* Raw PKCS#1 V1.5 block with padding (RSA) or hash. */ prkdf_object_t prkdf; /* The private key object. */ size_t cdsblklen; unsigned char algoid; int sw; (void)ctrl; if (!keyidstr || !*keyidstr) return gpg_error (GPG_ERR_INV_VALUE); if (indatalen > 124) /* Limit for 1024 bit key */ return gpg_error (GPG_ERR_INV_VALUE); err = prkdf_object_from_keyidstr (app, keyidstr, &prkdf); if (err) return err; if (!(prkdf->usageflags.sign || prkdf->usageflags.sign_recover ||prkdf->usageflags.non_repudiation)) { log_error ("key %s may not be used for signing\n", keyidstr); return gpg_error (GPG_ERR_WRONG_KEY_USAGE); } if (prkdf->keytype == KEY_TYPE_RSA) { algoid = 0x20; cdsblklen = prkdf->keysize >> 3; if (!cdsblklen) cdsblklen = 256; if (hashalgo == GCRY_MD_SHA1 && indatalen == 20) apply_PKCS_padding (indata, indatalen, sha1_prefix, sizeof(sha1_prefix), cdsblk, cdsblklen); else if (hashalgo == GCRY_MD_MD5 && indatalen == 20) apply_PKCS_padding (indata, indatalen, rmd160_prefix, sizeof(rmd160_prefix), cdsblk, cdsblklen); else if (hashalgo == GCRY_MD_SHA224 && indatalen == 28) apply_PKCS_padding (indata, indatalen, sha224_prefix, sizeof(sha224_prefix), cdsblk, cdsblklen); else if (hashalgo == GCRY_MD_SHA256 && indatalen == 32) apply_PKCS_padding (indata, indatalen, sha256_prefix, sizeof(sha256_prefix), cdsblk, cdsblklen); else if (hashalgo == GCRY_MD_SHA384 && indatalen == 48) apply_PKCS_padding (indata, indatalen, sha384_prefix, sizeof(sha384_prefix), cdsblk, cdsblklen); else if (hashalgo == GCRY_MD_SHA512 && indatalen == 64) apply_PKCS_padding (indata, indatalen, sha512_prefix, sizeof(sha512_prefix), cdsblk, cdsblklen); else /* Assume it's already a digest info or TLS_MD5SHA1 */ apply_PKCS_padding (indata, indatalen, NULL, 0, cdsblk, cdsblklen); } else { algoid = 0x70; if (indatalen != 20 && indatalen != 28 && indatalen != 32 && indatalen != 48 && indatalen != 64) { cdsblklen = sizeof(cdsblk); err = hash_from_digestinfo (indata, indatalen, cdsblk, &cdsblklen); if (err) { log_error ("DigestInfo invalid: %s\n", gpg_strerror (err)); return err; } } else { memcpy (cdsblk, indata, indatalen); cdsblklen = indatalen; } } err = verify_pin (app, pincb, pincb_arg); if (err) return err; sw = apdu_send_le (app->slot, 1, 0x80, 0x68, prkdf->key_reference, algoid, cdsblklen, cdsblk, 0, outdata, outdatalen); return iso7816_map_sw (sw); } /* Handler for the PKAUTH command. This is basically the same as the PKSIGN command but we first check that the requested key is suitable for authentication; that is, it must match the criteria used for the attribute $AUTHKEYID. See do_sign for calling conventions; there is no HASHALGO, though. */ static gpg_error_t do_auth (app_t app, ctrl_t ctrl, const char *keyidstr, gpg_error_t (*pincb)(void*, const char *, char **), void *pincb_arg, const void *indata, size_t indatalen, unsigned char **outdata, size_t *outdatalen ) { gpg_error_t err; prkdf_object_t prkdf; int algo; if (!keyidstr || !*keyidstr) return gpg_error (GPG_ERR_INV_VALUE); err = prkdf_object_from_keyidstr (app, keyidstr, &prkdf); if (err) return err; if (!prkdf->usageflags.sign) { log_error ("key %s may not be used for authentication\n", keyidstr); return gpg_error (GPG_ERR_WRONG_KEY_USAGE); } algo = indatalen == 36? MD_USER_TLS_MD5SHA1 : GCRY_MD_SHA1; return do_sign (app, ctrl, keyidstr, algo, pincb, pincb_arg, indata, indatalen, outdata, outdatalen); } /* Check PKCS#1 V1.5 padding and extract plain text. The function * allocates a buffer for the plain text. The caller must release the * buffer. */ static gpg_error_t strip_PKCS15_padding(unsigned char *src, int srclen, unsigned char **dst, size_t *dstlen) { unsigned char *p; if (srclen < 2) return gpg_error (GPG_ERR_DECRYPT_FAILED); if (*src++ != 0x00) return gpg_error (GPG_ERR_DECRYPT_FAILED); if (*src++ != 0x02) return gpg_error (GPG_ERR_DECRYPT_FAILED); srclen -= 2; while ((srclen > 0) && *src) { src++; srclen--; } if (srclen < 2) return gpg_error (GPG_ERR_DECRYPT_FAILED); src++; srclen--; p = xtrymalloc (srclen); if (!p) return gpg_error_from_syserror (); memcpy (p, src, srclen); *dst = p; *dstlen = srclen; return 0; } /* Decrypt a PKCS#1 V1.5 formatted cryptogram using the referenced key. */ static gpg_error_t do_decipher (app_t app, ctrl_t ctrl, const char *keyidstr, gpg_error_t (*pincb)(void*, const char *, char **), void *pincb_arg, const void *indata, size_t indatalen, unsigned char **outdata, size_t *outdatalen, unsigned int *r_info) { gpg_error_t err; unsigned char p1blk[256]; /* Enciphered P1 block */ prkdf_object_t prkdf; /* The private key object. */ unsigned char *rspdata; size_t rspdatalen; size_t p1blklen; int sw; (void)ctrl; if (!keyidstr || !*keyidstr || !indatalen) return gpg_error (GPG_ERR_INV_VALUE); err = prkdf_object_from_keyidstr (app, keyidstr, &prkdf); if (err) return err; if (!(prkdf->usageflags.decrypt || prkdf->usageflags.unwrap)) { log_error ("key %s may not be used for deciphering\n", keyidstr); return gpg_error (GPG_ERR_WRONG_KEY_USAGE); } if (prkdf->keytype != KEY_TYPE_RSA) return gpg_error (GPG_ERR_NOT_SUPPORTED); p1blklen = prkdf->keysize >> 3; if (!p1blklen) p1blklen = 256; /* The input may be shorter (due to MPIs not storing leading zeroes) or longer than the block size. We put INDATA right aligned into the buffer. If INDATA is longer than the block size we truncate it on the left. */ memset (p1blk, 0, sizeof(p1blk)); if (indatalen > p1blklen) memcpy (p1blk, (unsigned char *)indata + (indatalen - p1blklen), p1blklen); else memcpy (p1blk + (p1blklen - indatalen), indata, indatalen); err = verify_pin(app, pincb, pincb_arg); if (err) return err; sw = apdu_send_le (app->slot, 1, 0x80, 0x62, prkdf->key_reference, 0x21, p1blklen, p1blk, 0, &rspdata, &rspdatalen); err = iso7816_map_sw (sw); if (err) { log_error ("Decrypt failed: %s\n", gpg_strerror (err)); return err; } err = strip_PKCS15_padding (rspdata, rspdatalen, outdata, outdatalen); xfree (rspdata); if (!err) *r_info |= APP_DECIPHER_INFO_NOPAD; return err; } /* * Select the SmartCard-HSM application on the card in SLOT. */ gpg_error_t app_select_sc_hsm (app_t app) { int slot = app->slot; int rc; rc = iso7816_select_application (slot, sc_hsm_aid, sizeof sc_hsm_aid, 0); if (!rc) { app->apptype = APPTYPE_SC_HSM; app->app_local = xtrycalloc (1, sizeof *app->app_local); if (!app->app_local) { rc = gpg_error_from_syserror (); goto leave; } rc = read_meta (app); if (rc) goto leave; app->fnc.deinit = do_deinit; app->fnc.learn_status = do_learn_status; app->fnc.readcert = do_readcert; app->fnc.getattr = do_getattr; app->fnc.setattr = NULL; app->fnc.genkey = NULL; app->fnc.sign = do_sign; app->fnc.auth = do_auth; app->fnc.decipher = do_decipher; app->fnc.change_pin = NULL; app->fnc.check_pin = NULL; leave: if (rc) do_deinit (app); } return rc; }