diff --git a/g10/getkey.c b/g10/getkey.c index b111376c9..f0132bb08 100644 --- a/g10/getkey.c +++ b/g10/getkey.c @@ -1,4537 +1,4537 @@ /* getkey.c - Get a key from the database * Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, * 2007, 2008, 2010 Free Software Foundation, Inc. * Copyright (C) 2015, 2016 g10 Code GmbH * * This file is part of GnuPG. * * GnuPG is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * GnuPG is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #include #include #include #include #include #include "gpg.h" #include "../common/util.h" #include "packet.h" #include "../common/iobuf.h" #include "keydb.h" #include "options.h" #include "main.h" #include "trustdb.h" #include "../common/i18n.h" #include "keyserver-internal.h" #include "call-agent.h" #include "../common/host2net.h" #include "../common/mbox-util.h" #include "../common/status.h" #define MAX_PK_CACHE_ENTRIES PK_UID_CACHE_SIZE #define MAX_UID_CACHE_ENTRIES PK_UID_CACHE_SIZE #if MAX_PK_CACHE_ENTRIES < 2 #error We need the cache for key creation #endif /* Flags values returned by the lookup code. Note that the values are * directly used by the KEY_CONSIDERED status line. */ #define LOOKUP_NOT_SELECTED (1<<0) #define LOOKUP_ALL_SUBKEYS_EXPIRED (1<<1) /* or revoked */ /* A context object used by the lookup functions. */ struct getkey_ctx_s { /* Part of the search criteria: whether the search is an exact search or not. A search that is exact requires that a key or subkey meet all of the specified criteria. A search that is not exact allows selecting a different key or subkey from the keyblock that matched the critera. Further, an exact search returns the key or subkey that matched whereas a non-exact search typically returns the primary key. See finish_lookup for details. */ int exact; /* Part of the search criteria: Whether the caller only wants keys with an available secret key. This is used by getkey_next to get the next result with the same initial criteria. */ int want_secret; /* Part of the search criteria: The type of the requested key. A mask of PUBKEY_USAGE_SIG, PUBKEY_USAGE_ENC and PUBKEY_USAGE_CERT. If non-zero, then for a key to match, it must implement one of the required uses. */ int req_usage; /* The database handle. */ KEYDB_HANDLE kr_handle; /* Whether we should call xfree() on the context when the context is released using getkey_end()). */ int not_allocated; /* This variable is used as backing store for strings which have their address used in ITEMS. */ strlist_t extra_list; /* Part of the search criteria: The low-level search specification as passed to keydb_search. */ int nitems; /* This must be the last element in the structure. When we allocate the structure, we allocate it so that ITEMS can hold NITEMS. */ KEYDB_SEARCH_DESC items[1]; }; #if 0 static struct { int any; int okay_count; int nokey_count; int error_count; } lkup_stats[21]; #endif typedef struct keyid_list { struct keyid_list *next; char fpr[MAX_FINGERPRINT_LEN]; u32 keyid[2]; } *keyid_list_t; #if MAX_PK_CACHE_ENTRIES typedef struct pk_cache_entry { struct pk_cache_entry *next; u32 keyid[2]; PKT_public_key *pk; } *pk_cache_entry_t; static pk_cache_entry_t pk_cache; static int pk_cache_entries; /* Number of entries in pk cache. */ static int pk_cache_disabled; #endif #if MAX_UID_CACHE_ENTRIES < 5 #error we really need the userid cache #endif typedef struct user_id_db { struct user_id_db *next; keyid_list_t keyids; int len; char name[1]; } *user_id_db_t; static user_id_db_t user_id_db; static int uid_cache_entries; /* Number of entries in uid cache. */ static void merge_selfsigs (ctrl_t ctrl, kbnode_t keyblock); static int lookup (ctrl_t ctrl, getkey_ctx_t ctx, int want_secret, kbnode_t *ret_keyblock, kbnode_t *ret_found_key); static kbnode_t finish_lookup (kbnode_t keyblock, unsigned int req_usage, int want_exact, int want_secret, unsigned int *r_flags); static void print_status_key_considered (kbnode_t keyblock, unsigned int flags); #if 0 static void print_stats () { int i; for (i = 0; i < DIM (lkup_stats); i++) { if (lkup_stats[i].any) es_fprintf (es_stderr, "lookup stats: mode=%-2d ok=%-6d nokey=%-6d err=%-6d\n", i, lkup_stats[i].okay_count, lkup_stats[i].nokey_count, lkup_stats[i].error_count); } } #endif /* Cache a copy of a public key in the public key cache. PK is not * cached if caching is disabled (via getkey_disable_caches), if * PK->FLAGS.DONT_CACHE is set, we don't know how to derive a key id * from the public key (e.g., unsupported algorithm), or a key with * the key id is already in the cache. * * The public key packet is copied into the cache using * copy_public_key. Thus, any secret parts are not copied, for * instance. * * This cache is filled by get_pubkey and is read by get_pubkey and * get_pubkey_fast. */ void cache_public_key (PKT_public_key * pk) { #if MAX_PK_CACHE_ENTRIES pk_cache_entry_t ce, ce2; u32 keyid[2]; if (pk_cache_disabled) return; if (pk->flags.dont_cache) return; if (is_ELGAMAL (pk->pubkey_algo) || pk->pubkey_algo == PUBKEY_ALGO_DSA || pk->pubkey_algo == PUBKEY_ALGO_ECDSA || pk->pubkey_algo == PUBKEY_ALGO_EDDSA || pk->pubkey_algo == PUBKEY_ALGO_ECDH || is_RSA (pk->pubkey_algo)) { keyid_from_pk (pk, keyid); } else return; /* Don't know how to get the keyid. */ for (ce = pk_cache; ce; ce = ce->next) if (ce->keyid[0] == keyid[0] && ce->keyid[1] == keyid[1]) { if (DBG_CACHE) log_debug ("cache_public_key: already in cache\n"); return; } if (pk_cache_entries >= MAX_PK_CACHE_ENTRIES) { int n; /* Remove the last 50% of the entries. */ for (ce = pk_cache, n = 0; ce && n < pk_cache_entries/2; n++) ce = ce->next; if (ce && ce != pk_cache && ce->next) { ce2 = ce->next; ce->next = NULL; ce = ce2; for (; ce; ce = ce2) { ce2 = ce->next; free_public_key (ce->pk); xfree (ce); pk_cache_entries--; } } log_assert (pk_cache_entries < MAX_PK_CACHE_ENTRIES); } pk_cache_entries++; ce = xmalloc (sizeof *ce); ce->next = pk_cache; pk_cache = ce; ce->pk = copy_public_key (NULL, pk); ce->keyid[0] = keyid[0]; ce->keyid[1] = keyid[1]; #endif } /* Return a const utf-8 string with the text "[User ID not found]". This function is required so that we don't need to switch gettext's encoding temporary. */ static const char * user_id_not_found_utf8 (void) { static char *text; if (!text) text = native_to_utf8 (_("[User ID not found]")); return text; } /* Return the user ID from the given keyblock. * We use the primary uid flag which has been set by the merge_selfsigs * function. The returned value is only valid as long as the given * keyblock is not changed. */ static const char * get_primary_uid (KBNODE keyblock, size_t * uidlen) { KBNODE k; const char *s; for (k = keyblock; k; k = k->next) { if (k->pkt->pkttype == PKT_USER_ID && !k->pkt->pkt.user_id->attrib_data && k->pkt->pkt.user_id->flags.primary) { *uidlen = k->pkt->pkt.user_id->len; return k->pkt->pkt.user_id->name; } } s = user_id_not_found_utf8 (); *uidlen = strlen (s); return s; } static void release_keyid_list (keyid_list_t k) { while (k) { keyid_list_t k2 = k->next; xfree (k); k = k2; } } /**************** * Store the association of keyid and userid * Feed only public keys to this function. */ static void cache_user_id (KBNODE keyblock) { user_id_db_t r; const char *uid; size_t uidlen; keyid_list_t keyids = NULL; KBNODE k; for (k = keyblock; k; k = k->next) { if (k->pkt->pkttype == PKT_PUBLIC_KEY || k->pkt->pkttype == PKT_PUBLIC_SUBKEY) { keyid_list_t a = xmalloc_clear (sizeof *a); /* Hmmm: For a long list of keyids it might be an advantage * to append the keys. */ fingerprint_from_pk (k->pkt->pkt.public_key, a->fpr, NULL); keyid_from_pk (k->pkt->pkt.public_key, a->keyid); /* First check for duplicates. */ for (r = user_id_db; r; r = r->next) { keyid_list_t b; for (b = r->keyids; b; b = b->next) { if (!memcmp (b->fpr, a->fpr, MAX_FINGERPRINT_LEN)) { if (DBG_CACHE) log_debug ("cache_user_id: already in cache\n"); release_keyid_list (keyids); xfree (a); return; } } } /* Now put it into the cache. */ a->next = keyids; keyids = a; } } if (!keyids) BUG (); /* No key no fun. */ uid = get_primary_uid (keyblock, &uidlen); if (uid_cache_entries >= MAX_UID_CACHE_ENTRIES) { /* fixme: use another algorithm to free some cache slots */ r = user_id_db; user_id_db = r->next; release_keyid_list (r->keyids); xfree (r); uid_cache_entries--; } r = xmalloc (sizeof *r + uidlen - 1); r->keyids = keyids; r->len = uidlen; memcpy (r->name, uid, r->len); r->next = user_id_db; user_id_db = r; uid_cache_entries++; } /* Disable and drop the public key cache (which is filled by cache_public_key and get_pubkey). Note: there is currently no way to re-enable this cache. */ void getkey_disable_caches () { #if MAX_PK_CACHE_ENTRIES { pk_cache_entry_t ce, ce2; for (ce = pk_cache; ce; ce = ce2) { ce2 = ce->next; free_public_key (ce->pk); xfree (ce); } pk_cache_disabled = 1; pk_cache_entries = 0; pk_cache = NULL; } #endif /* fixme: disable user id cache ? */ } void pubkey_free (pubkey_t key) { if (key) { xfree (key->pk); release_kbnode (key->keyblock); xfree (key); } } void pubkeys_free (pubkey_t keys) { while (keys) { pubkey_t next = keys->next; pubkey_free (keys); keys = next; } } /* Returns all keys that match the search specification SEARCH_TERMS. * * This function also checks for and warns about duplicate entries in * the keydb, which can occur if the user has configured multiple * keyrings or keyboxes or if a keyring or keybox was corrupted. * * Note: SEARCH_TERMS will not be expanded (i.e., it may not be a * group). * * USE is the operation for which the key is required. It must be * either PUBKEY_USAGE_ENC, PUBKEY_USAGE_SIG, PUBKEY_USAGE_CERT or * PUBKEY_USAGE_AUTH. * * INCLUDE_UNUSABLE indicates whether disabled keys are allowed. * (Recipients specified with --encrypt-to and --hidden-encrypt-to may * be disabled. It is possible to edit disabled keys.) * * SOURCE is the context in which SEARCH_TERMS was specified, e.g., * "--encrypt-to", etc. If this function is called interactively, * then this should be NULL. * * If WARN_POSSIBLY_AMBIGUOUS is set, then emits a warning if the user * does not specify a long key id or a fingerprint. * * The results are placed in *KEYS. *KEYS must be NULL! * * Fixme: Currently, only PUBKEY_USAGE_ENC and PUBKEY_USAGE_SIG are * implemented. */ gpg_error_t get_pubkeys (ctrl_t ctrl, char *search_terms, int use, int include_unusable, char *source, int warn_possibly_ambiguous, pubkey_t *r_keys) { /* We show a warning when a key appears multiple times in the DB. * This can happen for two reasons: * * - The user has configured multiple keyrings or keyboxes. * * - The keyring or keybox has been corrupted in some way, e.g., a * bug or a random process changing them. * * For each duplicate, we only want to show the key once. Hence, * this list. */ static strlist_t key_dups; gpg_error_t err; char *use_str; /* USE transformed to a string. */ KEYDB_SEARCH_DESC desc; GETKEY_CTX ctx; pubkey_t results = NULL; pubkey_t r; int count; char fingerprint[2 * MAX_FINGERPRINT_LEN + 1]; if (DBG_LOOKUP) { log_debug ("\n"); log_debug ("%s: Checking %s=%s\n", __func__, source ? source : "user input", search_terms); } if (*r_keys) log_bug ("%s: KEYS should be NULL!\n", __func__); switch (use) { case PUBKEY_USAGE_ENC: use_str = "encrypt"; break; case PUBKEY_USAGE_SIG: use_str = "sign"; break; case PUBKEY_USAGE_CERT: use_str = "cetify"; break; case PUBKEY_USAGE_AUTH: use_str = "authentication"; break; default: log_bug ("%s: Bad value for USE (%d)\n", __func__, use); } if (use == PUBKEY_USAGE_CERT || use == PUBKEY_USAGE_AUTH) log_bug ("%s: use=%s is unimplemented.\n", __func__, use_str); err = classify_user_id (search_terms, &desc, 1); if (err) { log_info (_("key \"%s\" not found: %s\n"), search_terms, gpg_strerror (err)); if (!opt.quiet && source) log_info (_("(check argument of option '%s')\n"), source); goto leave; } if (warn_possibly_ambiguous && ! (desc.mode == KEYDB_SEARCH_MODE_LONG_KID || desc.mode == KEYDB_SEARCH_MODE_FPR16 || desc.mode == KEYDB_SEARCH_MODE_FPR20 || desc.mode == KEYDB_SEARCH_MODE_FPR)) { log_info (_("Warning: '%s' should be a long key ID or a fingerprint\n"), search_terms); if (!opt.quiet && source) log_info (_("(check argument of option '%s')\n"), source); } /* Gather all of the results. */ ctx = NULL; count = 0; do { PKT_public_key *pk; KBNODE kb; pk = xtrycalloc (1, sizeof *pk); if (!pk) { err = gpg_error_from_syserror (); goto leave; } pk->req_usage = use; if (! ctx) err = get_pubkey_byname (ctrl, &ctx, pk, search_terms, &kb, NULL, include_unusable, 1); else err = getkey_next (ctrl, ctx, pk, &kb); if (gpg_err_code (err) == GPG_ERR_NOT_FOUND) /* No more results. */ { xfree (pk); break; } else if (err) /* An error (other than "not found"). */ { log_error (_("error looking up: %s\n"), gpg_strerror (err)); xfree (pk); break; } /* Another result! */ count ++; r = xtrycalloc (1, sizeof (*r)); if (!r) { err = gpg_error_from_syserror (); xfree (pk); goto leave; } r->pk = pk; r->keyblock = kb; r->next = results; results = r; } while (ctx); getkey_end (ctrl, ctx); if (DBG_LOOKUP) { log_debug ("%s resulted in %d matches.\n", search_terms, count); for (r = results; r; r = r->next) log_debug (" %s\n", hexfingerprint (r->keyblock->pkt->pkt.public_key, fingerprint, sizeof (fingerprint))); } if (! results && gpg_err_code (err) == GPG_ERR_NOT_FOUND) { /* No match. */ if (DBG_LOOKUP) log_debug ("%s: '%s' not found.\n", __func__, search_terms); log_info (_("key \"%s\" not found\n"), search_terms); if (!opt.quiet && source) log_info (_("(check argument of option '%s')\n"), source); goto leave; } else if (gpg_err_code (err) == GPG_ERR_NOT_FOUND) ; /* No more matches. */ else if (err) { /* Some other error. An error message was already printed out. * Free RESULTS and continue. */ goto leave; } /* Check for duplicates. */ if (DBG_LOOKUP) log_debug ("%s: Checking results of %s='%s' for dups\n", __func__, source ? source : "user input", search_terms); count = 0; for (r = results; r; r = r->next) { pubkey_t *prevp; pubkey_t next; pubkey_t r2; int dups = 0; prevp = &r->next; next = r->next; while ((r2 = next)) { if (cmp_public_keys (r->keyblock->pkt->pkt.public_key, r2->keyblock->pkt->pkt.public_key) != 0) { /* Not a dup. */ prevp = &r2->next; next = r2->next; continue; } dups ++; count ++; /* Remove R2 from the list. */ *prevp = r2->next; release_kbnode (r2->keyblock); next = r2->next; xfree (r2); } if (dups) { hexfingerprint (r->keyblock->pkt->pkt.public_key, fingerprint, sizeof fingerprint); if (! strlist_find (key_dups, fingerprint)) { char fingerprint_formatted[MAX_FORMATTED_FINGERPRINT_LEN + 1]; log_info (_("Warning: %s appears in the keyring %d times\n"), format_hexfingerprint (fingerprint, fingerprint_formatted, sizeof fingerprint_formatted), 1 + dups); add_to_strlist (&key_dups, fingerprint); } } } if (DBG_LOOKUP && count) { log_debug ("After removing %d dups:\n", count); for (r = results, count = 0; r; r = r->next) log_debug (" %d: %s\n", count, hexfingerprint (r->keyblock->pkt->pkt.public_key, fingerprint, sizeof fingerprint)); } leave: if (err) pubkeys_free (results); else *r_keys = results; return err; } static void pk_from_block (PKT_public_key *pk, kbnode_t keyblock, kbnode_t found_key) { kbnode_t a = found_key ? found_key : keyblock; log_assert (a->pkt->pkttype == PKT_PUBLIC_KEY || a->pkt->pkttype == PKT_PUBLIC_SUBKEY); copy_public_key (pk, a->pkt->pkt.public_key); } /* Return the public key with the key id KEYID and store it at PK. * The resources in *PK should be released using * release_public_key_parts(). This function also stores a copy of * the public key in the user id cache (see cache_public_key). * * If PK is NULL, this function just stores the public key in the * cache and returns the usual return code. * * PK->REQ_USAGE (which is a mask of PUBKEY_USAGE_SIG, * PUBKEY_USAGE_ENC and PUBKEY_USAGE_CERT) is passed through to the * lookup function. If this is non-zero, only keys with the specified * usage will be returned. As such, it is essential that * PK->REQ_USAGE be correctly initialized! * * Returns 0 on success, GPG_ERR_NO_PUBKEY if there is no public key * with the specified key id, or another error code if an error * occurs. * * If the data was not read from the cache, then the self-signed data * has definitely been merged into the public key using * merge_selfsigs. */ int get_pubkey (ctrl_t ctrl, PKT_public_key * pk, u32 * keyid) { int internal = 0; int rc = 0; #if MAX_PK_CACHE_ENTRIES if (pk) { /* Try to get it from the cache. We don't do this when pk is NULL as it does not guarantee that the user IDs are cached. */ pk_cache_entry_t ce; for (ce = pk_cache; ce; ce = ce->next) { if (ce->keyid[0] == keyid[0] && ce->keyid[1] == keyid[1]) /* XXX: We don't check PK->REQ_USAGE here, but if we don't read from the cache, we do check it! */ { copy_public_key (pk, ce->pk); return 0; } } } #endif /* More init stuff. */ if (!pk) { internal++; pk = xtrycalloc (1, sizeof *pk); if (!pk) { rc = gpg_error_from_syserror (); goto leave; } } /* Do a lookup. */ { struct getkey_ctx_s ctx; KBNODE kb = NULL; KBNODE found_key = NULL; memset (&ctx, 0, sizeof ctx); ctx.exact = 1; /* Use the key ID exactly as given. */ ctx.not_allocated = 1; if (ctrl && ctrl->cached_getkey_kdb) { ctx.kr_handle = ctrl->cached_getkey_kdb; ctrl->cached_getkey_kdb = NULL; keydb_search_reset (ctx.kr_handle); } else { ctx.kr_handle = keydb_new (); if (!ctx.kr_handle) { rc = gpg_error_from_syserror (); goto leave; } } ctx.nitems = 1; ctx.items[0].mode = KEYDB_SEARCH_MODE_LONG_KID; ctx.items[0].u.kid[0] = keyid[0]; ctx.items[0].u.kid[1] = keyid[1]; ctx.req_usage = pk->req_usage; rc = lookup (ctrl, &ctx, 0, &kb, &found_key); if (!rc) { pk_from_block (pk, kb, found_key); } getkey_end (ctrl, &ctx); release_kbnode (kb); } if (!rc) goto leave; rc = GPG_ERR_NO_PUBKEY; leave: if (!rc) cache_public_key (pk); if (internal) free_public_key (pk); return rc; } /* Similar to get_pubkey, but it does not take PK->REQ_USAGE into * account nor does it merge in the self-signed data. This function * also only considers primary keys. It is intended to be used as a * quick check of the key to avoid recursion. It should only be used * in very certain cases. Like get_pubkey and unlike any of the other * lookup functions, this function also consults the user id cache * (see cache_public_key). * * Return the public key in *PK. The resources in *PK should be * released using release_public_key_parts(). */ int get_pubkey_fast (PKT_public_key * pk, u32 * keyid) { int rc = 0; KEYDB_HANDLE hd; KBNODE keyblock; u32 pkid[2]; log_assert (pk); #if MAX_PK_CACHE_ENTRIES { /* Try to get it from the cache */ pk_cache_entry_t ce; for (ce = pk_cache; ce; ce = ce->next) { if (ce->keyid[0] == keyid[0] && ce->keyid[1] == keyid[1] /* Only consider primary keys. */ && ce->pk->keyid[0] == ce->pk->main_keyid[0] && ce->pk->keyid[1] == ce->pk->main_keyid[1]) { if (pk) copy_public_key (pk, ce->pk); return 0; } } } #endif hd = keydb_new (); if (!hd) return gpg_error_from_syserror (); rc = keydb_search_kid (hd, keyid); if (gpg_err_code (rc) == GPG_ERR_NOT_FOUND) { keydb_release (hd); return GPG_ERR_NO_PUBKEY; } rc = keydb_get_keyblock (hd, &keyblock); keydb_release (hd); if (rc) { log_error ("keydb_get_keyblock failed: %s\n", gpg_strerror (rc)); return GPG_ERR_NO_PUBKEY; } log_assert (keyblock && keyblock->pkt && keyblock->pkt->pkttype == PKT_PUBLIC_KEY); /* We return the primary key. If KEYID matched a subkey, then we return an error. */ keyid_from_pk (keyblock->pkt->pkt.public_key, pkid); if (keyid[0] == pkid[0] && keyid[1] == pkid[1]) copy_public_key (pk, keyblock->pkt->pkt.public_key); else rc = GPG_ERR_NO_PUBKEY; release_kbnode (keyblock); /* Not caching key here since it won't have all of the fields properly set. */ return rc; } /* Return the key block for the key with key id KEYID or NULL, if an * error occurs. Use release_kbnode() to release the key block. * * The self-signed data has already been merged into the public key * using merge_selfsigs. */ kbnode_t get_pubkeyblock (ctrl_t ctrl, u32 * keyid) { struct getkey_ctx_s ctx; int rc = 0; KBNODE keyblock = NULL; memset (&ctx, 0, sizeof ctx); /* No need to set exact here because we want the entire block. */ ctx.not_allocated = 1; ctx.kr_handle = keydb_new (); if (!ctx.kr_handle) return NULL; ctx.nitems = 1; ctx.items[0].mode = KEYDB_SEARCH_MODE_LONG_KID; ctx.items[0].u.kid[0] = keyid[0]; ctx.items[0].u.kid[1] = keyid[1]; rc = lookup (ctrl, &ctx, 0, &keyblock, NULL); getkey_end (ctrl, &ctx); return rc ? NULL : keyblock; } /* Return the public key with the key id KEYID iff the secret key is * available and store it at PK. The resources should be released * using release_public_key_parts(). * * Unlike other lookup functions, PK may not be NULL. PK->REQ_USAGE * is passed through to the lookup function and is a mask of * PUBKEY_USAGE_SIG, PUBKEY_USAGE_ENC and PUBKEY_USAGE_CERT. Thus, it * must be valid! If this is non-zero, only keys with the specified * usage will be returned. * * Returns 0 on success. If a public key with the specified key id is * not found or a secret key is not available for that public key, an * error code is returned. Note: this function ignores legacy keys. * An error code is also return if an error occurs. * * The self-signed data has already been merged into the public key * using merge_selfsigs. */ gpg_error_t get_seckey (ctrl_t ctrl, PKT_public_key *pk, u32 *keyid) { gpg_error_t err; struct getkey_ctx_s ctx; kbnode_t keyblock = NULL; kbnode_t found_key = NULL; memset (&ctx, 0, sizeof ctx); ctx.exact = 1; /* Use the key ID exactly as given. */ ctx.not_allocated = 1; ctx.kr_handle = keydb_new (); if (!ctx.kr_handle) return gpg_error_from_syserror (); ctx.nitems = 1; ctx.items[0].mode = KEYDB_SEARCH_MODE_LONG_KID; ctx.items[0].u.kid[0] = keyid[0]; ctx.items[0].u.kid[1] = keyid[1]; ctx.req_usage = pk->req_usage; err = lookup (ctrl, &ctx, 1, &keyblock, &found_key); if (!err) { pk_from_block (pk, keyblock, found_key); } getkey_end (ctrl, &ctx); release_kbnode (keyblock); if (!err) { err = agent_probe_secret_key (/*ctrl*/NULL, pk); if (err) release_public_key_parts (pk); } return err; } /* Skip unusable keys. A key is unusable if it is revoked, expired or disabled or if the selected user id is revoked or expired. */ static int skip_unusable (void *opaque, u32 * keyid, int uid_no) { ctrl_t ctrl = opaque; int unusable = 0; KBNODE keyblock; PKT_public_key *pk; keyblock = get_pubkeyblock (ctrl, keyid); if (!keyblock) { log_error ("error checking usability status of %s\n", keystr (keyid)); goto leave; } pk = keyblock->pkt->pkt.public_key; /* Is the key revoked or expired? */ if (pk->flags.revoked || pk->has_expired) unusable = 1; /* Is the user ID in question revoked or expired? */ if (!unusable && uid_no) { KBNODE node; int uids_seen = 0; for (node = keyblock; node; node = node->next) { if (node->pkt->pkttype == PKT_USER_ID) { PKT_user_id *user_id = node->pkt->pkt.user_id; uids_seen ++; if (uids_seen != uid_no) continue; if (user_id->flags.revoked || user_id->flags.expired) unusable = 1; break; } } /* If UID_NO is non-zero, then the keyblock better have at least that many UIDs. */ log_assert (uids_seen == uid_no); } if (!unusable) unusable = pk_is_disabled (pk); leave: release_kbnode (keyblock); return unusable; } /* Search for keys matching some criteria. If RETCTX is not NULL, then the constructed context is returned in *RETCTX so that getpubkey_next can be used to get subsequent results. In this case, getkey_end() must be used to free the search context. If RETCTX is not NULL, then RET_KDBHD must be NULL. If NAMELIST is not NULL, then a search query is constructed using classify_user_id on each of the strings in the list. (Recall: the database does an OR of the terms, not an AND.) If NAMELIST is NULL, then all results are returned. If PK is not NULL, the public key of the first result is returned in *PK. Note: PK->REQ_USAGE must be valid!!! If PK->REQ_USAGE is set, it is used to filter the search results. See the documentation for finish_lookup to understand exactly how this is used. Note: The self-signed data has already been merged into the public key using merge_selfsigs. Free *PK by calling release_public_key_parts (or, if PK was allocated using xfree, you can use free_public_key, which calls release_public_key_parts(PK) and then xfree(PK)). If WANT_SECRET is set, then only keys with an available secret key (either locally or via key registered on a smartcard) are returned. If INCLUDE_UNUSABLE is set, then unusable keys (see the documentation for skip_unusable for an exact definition) are skipped unless they are looked up by key id or by fingerprint. If RET_KB is not NULL, the keyblock is returned in *RET_KB. This should be freed using release_kbnode(). If RET_KDBHD is not NULL, then the new database handle used to conduct the search is returned in *RET_KDBHD. This can be used to get subsequent results using keydb_search_next. Note: in this case, no advanced filtering is done for subsequent results (e.g., WANT_SECRET and PK->REQ_USAGE are not respected). This function returns 0 on success. Otherwise, an error code is returned. In particular, GPG_ERR_NO_PUBKEY or GPG_ERR_NO_SECKEY (if want_secret is set) is returned if the key is not found. */ static int key_byname (ctrl_t ctrl, GETKEY_CTX *retctx, strlist_t namelist, PKT_public_key *pk, int want_secret, int include_unusable, KBNODE * ret_kb, KEYDB_HANDLE * ret_kdbhd) { int rc = 0; int n; strlist_t r; GETKEY_CTX ctx; KBNODE help_kb = NULL; KBNODE found_key = NULL; if (retctx) { /* Reset the returned context in case of error. */ log_assert (!ret_kdbhd); /* Not allowed because the handle is stored in the context. */ *retctx = NULL; } if (ret_kdbhd) *ret_kdbhd = NULL; if (!namelist) /* No search terms: iterate over the whole DB. */ { ctx = xmalloc_clear (sizeof *ctx); ctx->nitems = 1; ctx->items[0].mode = KEYDB_SEARCH_MODE_FIRST; if (!include_unusable) { ctx->items[0].skipfnc = skip_unusable; ctx->items[0].skipfncvalue = ctrl; } } else { /* Build the search context. */ for (n = 0, r = namelist; r; r = r->next) n++; /* CTX has space for a single search term at the end. Thus, we need to allocate sizeof *CTX plus (n - 1) sizeof CTX->ITEMS. */ ctx = xmalloc_clear (sizeof *ctx + (n - 1) * sizeof ctx->items); ctx->nitems = n; for (n = 0, r = namelist; r; r = r->next, n++) { gpg_error_t err; err = classify_user_id (r->d, &ctx->items[n], 1); if (ctx->items[n].exact) ctx->exact = 1; if (err) { xfree (ctx); return gpg_err_code (err); /* FIXME: remove gpg_err_code. */ } if (!include_unusable && ctx->items[n].mode != KEYDB_SEARCH_MODE_SHORT_KID && ctx->items[n].mode != KEYDB_SEARCH_MODE_LONG_KID && ctx->items[n].mode != KEYDB_SEARCH_MODE_FPR16 && ctx->items[n].mode != KEYDB_SEARCH_MODE_FPR20 && ctx->items[n].mode != KEYDB_SEARCH_MODE_FPR) { ctx->items[n].skipfnc = skip_unusable; ctx->items[n].skipfncvalue = ctrl; } } } ctx->want_secret = want_secret; ctx->kr_handle = keydb_new (); if (!ctx->kr_handle) { rc = gpg_error_from_syserror (); getkey_end (ctrl, ctx); return rc; } if (!ret_kb) ret_kb = &help_kb; if (pk) { ctx->req_usage = pk->req_usage; } rc = lookup (ctrl, ctx, want_secret, ret_kb, &found_key); if (!rc && pk) { pk_from_block (pk, *ret_kb, found_key); } release_kbnode (help_kb); if (retctx) /* Caller wants the context. */ *retctx = ctx; else { if (ret_kdbhd) { *ret_kdbhd = ctx->kr_handle; ctx->kr_handle = NULL; } getkey_end (ctrl, ctx); } return rc; } /* Find a public key identified by NAME. * * If name appears to be a valid RFC822 mailbox (i.e., email * address) and auto key lookup is enabled (no_akl == 0), then the * specified auto key lookup methods (--auto-key-lookup) are used to * import the key into the local keyring. Otherwise, just the local * keyring is consulted. * * If RETCTX is not NULL, then the constructed context is returned in * *RETCTX so that getpubkey_next can be used to get subsequent * results. In this case, getkey_end() must be used to free the * search context. If RETCTX is not NULL, then RET_KDBHD must be * NULL. * * If PK is not NULL, the public key of the first result is returned * in *PK. Note: PK->REQ_USAGE must be valid!!! PK->REQ_USAGE is * passed through to the lookup function and is a mask of * PUBKEY_USAGE_SIG, PUBKEY_USAGE_ENC and PUBKEY_USAGE_CERT. If this * is non-zero, only keys with the specified usage will be returned. * Note: The self-signed data has already been merged into the public * key using merge_selfsigs. Free *PK by calling * release_public_key_parts (or, if PK was allocated using xfree, you * can use free_public_key, which calls release_public_key_parts(PK) * and then xfree(PK)). * * NAME is a string, which is turned into a search query using * classify_user_id. * * If RET_KEYBLOCK is not NULL, the keyblock is returned in * *RET_KEYBLOCK. This should be freed using release_kbnode(). * * If RET_KDBHD is not NULL, then the new database handle used to * conduct the search is returned in *RET_KDBHD. This can be used to * get subsequent results using keydb_search_next or to modify the * returned record. Note: in this case, no advanced filtering is done * for subsequent results (e.g., PK->REQ_USAGE is not respected). * Unlike RETCTX, this is always returned. * * If INCLUDE_UNUSABLE is set, then unusable keys (see the * documentation for skip_unusable for an exact definition) are * skipped unless they are looked up by key id or by fingerprint. * * If NO_AKL is set, then the auto key locate functionality is * disabled and only the local key ring is considered. Note: the * local key ring is consulted even if local is not in the * --auto-key-locate option list! * * This function returns 0 on success. Otherwise, an error code is * returned. In particular, GPG_ERR_NO_PUBKEY or GPG_ERR_NO_SECKEY * (if want_secret is set) is returned if the key is not found. */ int get_pubkey_byname (ctrl_t ctrl, GETKEY_CTX * retctx, PKT_public_key * pk, const char *name, KBNODE * ret_keyblock, KEYDB_HANDLE * ret_kdbhd, int include_unusable, int no_akl) { int rc; strlist_t namelist = NULL; struct akl *akl; int is_mbox; int nodefault = 0; int anylocalfirst = 0; /* If RETCTX is not NULL, then RET_KDBHD must be NULL. */ log_assert (retctx == NULL || ret_kdbhd == NULL); if (retctx) *retctx = NULL; /* Does NAME appear to be a mailbox (mail address)? */ is_mbox = is_valid_mailbox (name); /* The auto-key-locate feature works as follows: there are a number * of methods to look up keys. By default, the local keyring is * tried first. Then, each method listed in the --auto-key-locate is * tried in the order it appears. * * This can be changed as follows: * * - if nodefault appears anywhere in the list of options, then * the local keyring is not tried first, or, * * - if local appears anywhere in the list of options, then the * local keyring is not tried first, but in the order in which * it was listed in the --auto-key-locate option. * * Note: we only save the search context in RETCTX if the local * method is the first method tried (either explicitly or * implicitly). */ if (!no_akl) { /* auto-key-locate is enabled. */ /* nodefault is true if "nodefault" or "local" appear. */ for (akl = opt.auto_key_locate; akl; akl = akl->next) if (akl->type == AKL_NODEFAULT || akl->type == AKL_LOCAL) { nodefault = 1; break; } /* anylocalfirst is true if "local" appears before any other search methods (except "nodefault"). */ for (akl = opt.auto_key_locate; akl; akl = akl->next) if (akl->type != AKL_NODEFAULT) { if (akl->type == AKL_LOCAL) anylocalfirst = 1; break; } } if (!nodefault) { /* "nodefault" didn't occur. Thus, "local" is implicitly the * first method to try. */ anylocalfirst = 1; } if (nodefault && is_mbox) { /* Either "nodefault" or "local" (explicitly) appeared in the * auto key locate list and NAME appears to be an email address. * Don't try the local keyring. */ rc = GPG_ERR_NO_PUBKEY; } else { /* Either "nodefault" and "local" don't appear in the auto key * locate list (in which case we try the local keyring first) or * NAME does not appear to be an email address (in which case we * only try the local keyring). In this case, lookup NAME in * the local keyring. */ add_to_strlist (&namelist, name); rc = key_byname (ctrl, retctx, namelist, pk, 0, include_unusable, ret_keyblock, ret_kdbhd); } /* If the requested name resembles a valid mailbox and automatic retrieval has been enabled, we try to import the key. */ if (gpg_err_code (rc) == GPG_ERR_NO_PUBKEY && !no_akl && is_mbox) { /* NAME wasn't present in the local keyring (or we didn't try * the local keyring). Since the auto key locate feature is * enabled and NAME appears to be an email address, try the auto * locate feature. */ for (akl = opt.auto_key_locate; akl; akl = akl->next) { unsigned char *fpr = NULL; size_t fpr_len; int did_akl_local = 0; int no_fingerprint = 0; const char *mechanism = "?"; switch (akl->type) { case AKL_NODEFAULT: /* This is a dummy mechanism. */ mechanism = "None"; rc = GPG_ERR_NO_PUBKEY; break; case AKL_LOCAL: mechanism = "Local"; did_akl_local = 1; if (retctx) { getkey_end (ctrl, *retctx); *retctx = NULL; } add_to_strlist (&namelist, name); rc = key_byname (ctrl, anylocalfirst ? retctx : NULL, namelist, pk, 0, include_unusable, ret_keyblock, ret_kdbhd); break; case AKL_CERT: mechanism = "DNS CERT"; glo_ctrl.in_auto_key_retrieve++; rc = keyserver_import_cert (ctrl, name, 0, &fpr, &fpr_len); glo_ctrl.in_auto_key_retrieve--; break; case AKL_PKA: mechanism = "PKA"; glo_ctrl.in_auto_key_retrieve++; rc = keyserver_import_pka (ctrl, name, &fpr, &fpr_len); glo_ctrl.in_auto_key_retrieve--; break; case AKL_DANE: mechanism = "DANE"; glo_ctrl.in_auto_key_retrieve++; rc = keyserver_import_cert (ctrl, name, 1, &fpr, &fpr_len); glo_ctrl.in_auto_key_retrieve--; break; case AKL_WKD: mechanism = "WKD"; glo_ctrl.in_auto_key_retrieve++; rc = keyserver_import_wkd (ctrl, name, 0, &fpr, &fpr_len); glo_ctrl.in_auto_key_retrieve--; break; case AKL_LDAP: mechanism = "LDAP"; glo_ctrl.in_auto_key_retrieve++; rc = keyserver_import_ldap (ctrl, name, &fpr, &fpr_len); glo_ctrl.in_auto_key_retrieve--; break; case AKL_KEYSERVER: /* Strictly speaking, we don't need to only use a valid * mailbox for the getname search, but it helps cut down * on the problem of searching for something like "john" * and getting a whole lot of keys back. */ if (keyserver_any_configured (ctrl)) { mechanism = "keyserver"; glo_ctrl.in_auto_key_retrieve++; rc = keyserver_import_name (ctrl, name, &fpr, &fpr_len, opt.keyserver); glo_ctrl.in_auto_key_retrieve--; } else { mechanism = "Unconfigured keyserver"; rc = GPG_ERR_NO_PUBKEY; } break; case AKL_SPEC: { struct keyserver_spec *keyserver; mechanism = akl->spec->uri; keyserver = keyserver_match (akl->spec); glo_ctrl.in_auto_key_retrieve++; rc = keyserver_import_name (ctrl, name, &fpr, &fpr_len, keyserver); glo_ctrl.in_auto_key_retrieve--; } break; } /* Use the fingerprint of the key that we actually fetched. * This helps prevent problems where the key that we fetched * doesn't have the same name that we used to fetch it. In * the case of CERT and PKA, this is an actual security * requirement as the URL might point to a key put in by an * attacker. By forcing the use of the fingerprint, we * won't use the attacker's key here. */ if (!rc && fpr) { char fpr_string[MAX_FINGERPRINT_LEN * 2 + 1]; log_assert (fpr_len <= MAX_FINGERPRINT_LEN); free_strlist (namelist); namelist = NULL; bin2hex (fpr, fpr_len, fpr_string); if (opt.verbose) log_info ("auto-key-locate found fingerprint %s\n", fpr_string); add_to_strlist (&namelist, fpr_string); } else if (!rc && !fpr && !did_akl_local) { /* The acquisition method said no failure occurred, but * it didn't return a fingerprint. That's a failure. */ no_fingerprint = 1; rc = GPG_ERR_NO_PUBKEY; } xfree (fpr); fpr = NULL; if (!rc && !did_akl_local) { /* There was no error and we didn't do a local lookup. * This means that we imported a key into the local * keyring. Try to read the imported key from the * keyring. */ if (retctx) { getkey_end (ctrl, *retctx); *retctx = NULL; } rc = key_byname (ctrl, anylocalfirst ? retctx : NULL, namelist, pk, 0, include_unusable, ret_keyblock, ret_kdbhd); } if (!rc) { /* Key found. */ if (opt.verbose) log_info (_("automatically retrieved '%s' via %s\n"), name, mechanism); break; } if (gpg_err_code (rc) != GPG_ERR_NO_PUBKEY || opt.verbose || no_fingerprint) log_info (_("error retrieving '%s' via %s: %s\n"), name, mechanism, no_fingerprint ? _("No fingerprint") : gpg_strerror (rc)); } } if (rc && retctx) { getkey_end (ctrl, *retctx); *retctx = NULL; } if (retctx && *retctx) { log_assert (!(*retctx)->extra_list); (*retctx)->extra_list = namelist; } else free_strlist (namelist); return rc; } /* Comparison machinery for get_best_pubkey_byname. */ /* First we have a struct to cache computed information about the key * in question. */ struct pubkey_cmp_cookie { int valid; /* Is this cookie valid? */ PKT_public_key key; /* The key. */ PKT_user_id *uid; /* The matching UID packet. */ unsigned int validity; /* Computed validity of (KEY, UID). */ u32 creation_time; /* Creation time of the newest subkey capable of encryption. */ }; /* Then we have a series of helper functions. */ static int key_is_ok (const PKT_public_key *key) { return (! key->has_expired && ! key->flags.revoked && key->flags.valid && ! key->flags.disabled); } static int uid_is_ok (const PKT_public_key *key, const PKT_user_id *uid) { return key_is_ok (key) && ! uid->flags.revoked; } static int subkey_is_ok (const PKT_public_key *sub) { return ! sub->flags.revoked && sub->flags.valid && ! sub->flags.disabled; } /* Finally this function compares a NEW key to the former candidate * OLD. Returns < 0 if the old key is worse, > 0 if the old key is * better, == 0 if it is a tie. */ static int pubkey_cmp (ctrl_t ctrl, const char *name, struct pubkey_cmp_cookie *old, struct pubkey_cmp_cookie *new, KBNODE new_keyblock) { kbnode_t n; new->creation_time = 0; for (n = find_next_kbnode (new_keyblock, PKT_PUBLIC_SUBKEY); n; n = find_next_kbnode (n, PKT_PUBLIC_SUBKEY)) { PKT_public_key *sub = n->pkt->pkt.public_key; if ((sub->pubkey_usage & PUBKEY_USAGE_ENC) == 0) continue; if (! subkey_is_ok (sub)) continue; if (sub->timestamp > new->creation_time) new->creation_time = sub->timestamp; } for (n = find_next_kbnode (new_keyblock, PKT_USER_ID); n; n = find_next_kbnode (n, PKT_USER_ID)) { PKT_user_id *uid = n->pkt->pkt.user_id; char *mbox = mailbox_from_userid (uid->name); int match = mbox ? strcasecmp (name, mbox) == 0 : 0; xfree (mbox); if (! match) continue; new->uid = scopy_user_id (uid); new->validity = get_validity (ctrl, new_keyblock, &new->key, uid, NULL, 0) & TRUST_MASK; new->valid = 1; if (! old->valid) return -1; /* No OLD key. */ if (! uid_is_ok (&old->key, old->uid) && uid_is_ok (&new->key, uid)) return -1; /* Validity of the NEW key is better. */ if (old->validity < new->validity) return -1; /* Validity of the NEW key is better. */ if (old->validity == new->validity && uid_is_ok (&new->key, uid) && old->creation_time < new->creation_time) return -1; /* Both keys are of the same validity, but the NEW key is newer. */ } /* Stick with the OLD key. */ return 1; } /* This function works like get_pubkey_byname, but if the name * resembles a mail address, the results are ranked and only the best * result is returned. */ gpg_error_t get_best_pubkey_byname (ctrl_t ctrl, GETKEY_CTX *retctx, PKT_public_key *pk, const char *name, KBNODE *ret_keyblock, int include_unusable, int no_akl) { gpg_error_t err; struct getkey_ctx_s *ctx = NULL; if (retctx) *retctx = NULL; err = get_pubkey_byname (ctrl, &ctx, pk, name, ret_keyblock, NULL, include_unusable, no_akl); if (err) { getkey_end (ctrl, ctx); return err; } if (is_valid_mailbox (name) && ctx) { /* Rank results and return only the most relevant key. */ struct pubkey_cmp_cookie best = { 0 }; struct pubkey_cmp_cookie new = { 0 }; kbnode_t new_keyblock; while (getkey_next (ctrl, ctx, &new.key, &new_keyblock) == 0) { int diff = pubkey_cmp (ctrl, name, &best, &new, new_keyblock); release_kbnode (new_keyblock); if (diff < 0) { /* New key is better. */ release_public_key_parts (&best.key); free_user_id (best.uid); best = new; } else if (diff > 0) { /* Old key is better. */ release_public_key_parts (&new.key); free_user_id (new.uid); new.uid = NULL; } else { /* A tie. Keep the old key. */ release_public_key_parts (&new.key); free_user_id (new.uid); new.uid = NULL; } } getkey_end (ctrl, ctx); ctx = NULL; free_user_id (best.uid); best.uid = NULL; if (best.valid) { if (retctx || ret_keyblock) { ctx = xtrycalloc (1, sizeof **retctx); if (! ctx) err = gpg_error_from_syserror (); else { ctx->kr_handle = keydb_new (); if (! ctx->kr_handle) { err = gpg_error_from_syserror (); xfree (ctx); ctx = NULL; if (retctx) *retctx = NULL; } else { u32 *keyid = pk_keyid (&best.key); ctx->exact = 1; ctx->nitems = 1; ctx->items[0].mode = KEYDB_SEARCH_MODE_LONG_KID; ctx->items[0].u.kid[0] = keyid[0]; ctx->items[0].u.kid[1] = keyid[1]; if (ret_keyblock) { release_kbnode (*ret_keyblock); *ret_keyblock = NULL; err = getkey_next (ctrl, ctx, NULL, ret_keyblock); } } } } if (pk) *pk = best.key; else release_public_key_parts (&best.key); } } if (err && ctx) { getkey_end (ctrl, ctx); ctx = NULL; } if (retctx && ctx) *retctx = ctx; else getkey_end (ctrl, ctx); return err; } /* Get a public key from a file. * * PK is the buffer to store the key. The caller needs to make sure * that PK->REQ_USAGE is valid. PK->REQ_USAGE is passed through to * the lookup function and is a mask of PUBKEY_USAGE_SIG, * PUBKEY_USAGE_ENC and PUBKEY_USAGE_CERT. If this is non-zero, only * keys with the specified usage will be returned. * * FNAME is the file name. That file should contain exactly one * keyblock. * * This function returns 0 on success. Otherwise, an error code is * returned. In particular, GPG_ERR_NO_PUBKEY is returned if the key * is not found. * * The self-signed data has already been merged into the public key * using merge_selfsigs. The caller must release the content of PK by * calling release_public_key_parts (or, if PK was malloced, using * free_public_key). */ gpg_error_t get_pubkey_fromfile (ctrl_t ctrl, PKT_public_key *pk, const char *fname) { gpg_error_t err; kbnode_t keyblock; kbnode_t found_key; unsigned int infoflags; err = read_key_from_file (ctrl, fname, &keyblock); if (!err) { /* Warning: node flag bits 0 and 1 should be preserved by * merge_selfsigs. FIXME: Check whether this still holds. */ merge_selfsigs (ctrl, keyblock); found_key = finish_lookup (keyblock, pk->req_usage, 0, 0, &infoflags); print_status_key_considered (keyblock, infoflags); if (found_key) pk_from_block (pk, keyblock, found_key); else err = gpg_error (GPG_ERR_UNUSABLE_PUBKEY); } release_kbnode (keyblock); return err; } /* Lookup a key with the specified fingerprint. * * If PK is not NULL, the public key of the first result is returned * in *PK. Note: this function does an exact search and thus the * returned public key may be a subkey rather than the primary key. * Note: The self-signed data has already been merged into the public * key using merge_selfsigs. Free *PK by calling * release_public_key_parts (or, if PK was allocated using xfree, you * can use free_public_key, which calls release_public_key_parts(PK) * and then xfree(PK)). * * If PK->REQ_USAGE is set, it is used to filter the search results. * (Thus, if PK is not NULL, PK->REQ_USAGE must be valid!!!) See the * documentation for finish_lookup to understand exactly how this is * used. * * If R_KEYBLOCK is not NULL, then the first result's keyblock is * returned in *R_KEYBLOCK. This should be freed using * release_kbnode(). * * FPRINT is a byte array whose contents is the fingerprint to use as * the search term. FPRINT_LEN specifies the length of the * fingerprint (in bytes). Currently, only 16 and 20-byte * fingerprints are supported. * * FIXME: We should replace this with the _byname function. This can * be done by creating a userID conforming to the unified fingerprint * style. */ int get_pubkey_byfprint (ctrl_t ctrl, PKT_public_key *pk, kbnode_t *r_keyblock, const byte * fprint, size_t fprint_len) { int rc; if (r_keyblock) *r_keyblock = NULL; if (fprint_len == 20 || fprint_len == 16) { struct getkey_ctx_s ctx; KBNODE kb = NULL; KBNODE found_key = NULL; memset (&ctx, 0, sizeof ctx); ctx.exact = 1; ctx.not_allocated = 1; ctx.kr_handle = keydb_new (); if (!ctx.kr_handle) return gpg_error_from_syserror (); ctx.nitems = 1; ctx.items[0].mode = fprint_len == 16 ? KEYDB_SEARCH_MODE_FPR16 : KEYDB_SEARCH_MODE_FPR20; memcpy (ctx.items[0].u.fpr, fprint, fprint_len); if (pk) ctx.req_usage = pk->req_usage; rc = lookup (ctrl, &ctx, 0, &kb, &found_key); if (!rc && pk) pk_from_block (pk, kb, found_key); if (!rc && r_keyblock) { *r_keyblock = kb; kb = NULL; } release_kbnode (kb); getkey_end (ctrl, &ctx); } else rc = GPG_ERR_GENERAL; /* Oops */ return rc; } /* This function is similar to get_pubkey_byfprint, but it doesn't * merge the self-signed data into the public key and subkeys or into * the user ids. It also doesn't add the key to the user id cache. * Further, this function ignores PK->REQ_USAGE. * * This function is intended to avoid recursion and, as such, should * only be used in very specific situations. * * Like get_pubkey_byfprint, PK may be NULL. In that case, this * function effectively just checks for the existence of the key. */ gpg_error_t get_pubkey_byfprint_fast (PKT_public_key * pk, const byte * fprint, size_t fprint_len) { gpg_error_t err; KBNODE keyblock; err = get_keyblock_byfprint_fast (&keyblock, NULL, fprint, fprint_len, 0); if (!err) { if (pk) copy_public_key (pk, keyblock->pkt->pkt.public_key); release_kbnode (keyblock); } return err; } /* This function is similar to get_pubkey_byfprint_fast but returns a * keydb handle at R_HD and the keyblock at R_KEYBLOCK. R_KEYBLOCK or * R_HD may be NULL. If LOCK is set the handle has been opend in * locked mode and keydb_disable_caching () has been called. On error * R_KEYBLOCK is set to NULL but R_HD must be released by the caller; * it may have a value of NULL, though. This allows to do an insert * operation on a locked keydb handle. */ gpg_error_t get_keyblock_byfprint_fast (kbnode_t *r_keyblock, KEYDB_HANDLE *r_hd, const byte *fprint, size_t fprint_len, int lock) { gpg_error_t err; KEYDB_HANDLE hd; kbnode_t keyblock; byte fprbuf[MAX_FINGERPRINT_LEN]; int i; if (r_keyblock) *r_keyblock = NULL; if (r_hd) *r_hd = NULL; for (i = 0; i < MAX_FINGERPRINT_LEN && i < fprint_len; i++) fprbuf[i] = fprint[i]; while (i < MAX_FINGERPRINT_LEN) fprbuf[i++] = 0; hd = keydb_new (); if (!hd) return gpg_error_from_syserror (); if (lock) { err = keydb_lock (hd); if (err) { /* If locking did not work, we better don't return a handle * at all - there was a reason that locking has been * requested. */ keydb_release (hd); return err; } keydb_disable_caching (hd); } /* Fo all other errors we return the handle. */ if (r_hd) *r_hd = hd; err = keydb_search_fpr (hd, fprbuf); if (gpg_err_code (err) == GPG_ERR_NOT_FOUND) { if (!r_hd) keydb_release (hd); return gpg_error (GPG_ERR_NO_PUBKEY); } err = keydb_get_keyblock (hd, &keyblock); if (err) { log_error ("keydb_get_keyblock failed: %s\n", gpg_strerror (err)); if (!r_hd) keydb_release (hd); return gpg_error (GPG_ERR_NO_PUBKEY); } log_assert (keyblock->pkt->pkttype == PKT_PUBLIC_KEY || keyblock->pkt->pkttype == PKT_PUBLIC_SUBKEY); /* Not caching key here since it won't have all of the fields properly set. */ if (r_keyblock) *r_keyblock = keyblock; else release_kbnode (keyblock); if (!r_hd) keydb_release (hd); return 0; } const char * parse_def_secret_key (ctrl_t ctrl) { KEYDB_HANDLE hd = NULL; strlist_t t; static int warned; for (t = opt.def_secret_key; t; t = t->next) { gpg_error_t err; KEYDB_SEARCH_DESC desc; KBNODE kb; KBNODE node; err = classify_user_id (t->d, &desc, 1); if (err) { log_error (_("secret key \"%s\" not found: %s\n"), t->d, gpg_strerror (err)); if (!opt.quiet) log_info (_("(check argument of option '%s')\n"), "--default-key"); continue; } if (! hd) { hd = keydb_new (); if (!hd) return NULL; } else keydb_search_reset (hd); err = keydb_search (hd, &desc, 1, NULL); if (gpg_err_code (err) == GPG_ERR_NOT_FOUND) continue; if (err) { log_error (_("key \"%s\" not found: %s\n"), t->d, gpg_strerror (err)); t = NULL; break; } err = keydb_get_keyblock (hd, &kb); if (err) { log_error (_("error reading keyblock: %s\n"), gpg_strerror (err)); continue; } merge_selfsigs (ctrl, kb); err = gpg_error (GPG_ERR_NO_SECKEY); node = kb; do { PKT_public_key *pk = node->pkt->pkt.public_key; /* Check that the key has the signing capability. */ if (! (pk->pubkey_usage & PUBKEY_USAGE_SIG)) continue; /* Check if the key is valid. */ if (pk->flags.revoked) { if (DBG_LOOKUP) log_debug ("not using %s as default key, %s", keystr_from_pk (pk), "revoked"); continue; } if (pk->has_expired) { if (DBG_LOOKUP) log_debug ("not using %s as default key, %s", keystr_from_pk (pk), "expired"); continue; } if (pk_is_disabled (pk)) { if (DBG_LOOKUP) log_debug ("not using %s as default key, %s", keystr_from_pk (pk), "disabled"); continue; } err = agent_probe_secret_key (ctrl, pk); if (! err) /* This is a valid key. */ break; } while ((node = find_next_kbnode (node, PKT_PUBLIC_SUBKEY))); release_kbnode (kb); if (err) { if (! warned && ! opt.quiet) { log_info (_("Warning: not using '%s' as default key: %s\n"), t->d, gpg_strerror (GPG_ERR_NO_SECKEY)); print_reported_error (err, GPG_ERR_NO_SECKEY); } } else { if (! warned && ! opt.quiet) log_info (_("using \"%s\" as default secret key for signing\n"), t->d); break; } } if (! warned && opt.def_secret_key && ! t) log_info (_("all values passed to '%s' ignored\n"), "--default-key"); warned = 1; if (hd) keydb_release (hd); if (t) return t->d; return NULL; } /* Look up a secret key. * * If PK is not NULL, the public key of the first result is returned * in *PK. Note: PK->REQ_USAGE must be valid!!! If PK->REQ_USAGE is * set, it is used to filter the search results. See the * documentation for finish_lookup to understand exactly how this is * used. Note: The self-signed data has already been merged into the * public key using merge_selfsigs. Free *PK by calling * release_public_key_parts (or, if PK was allocated using xfree, you * can use free_public_key, which calls release_public_key_parts(PK) * and then xfree(PK)). * * If --default-key was set, then the specified key is looked up. (In * this case, the default key is returned even if it is considered * unusable. See the documentation for skip_unusable for exactly what * this means.) * * Otherwise, this initiates a DB scan that returns all keys that are * usable (see previous paragraph for exactly what usable means) and * for which a secret key is available. * * This function returns the first match. Additional results can be * returned using getkey_next. */ gpg_error_t get_seckey_default (ctrl_t ctrl, PKT_public_key *pk) { gpg_error_t err; strlist_t namelist = NULL; int include_unusable = 1; const char *def_secret_key = parse_def_secret_key (ctrl); if (def_secret_key) add_to_strlist (&namelist, def_secret_key); else include_unusable = 0; err = key_byname (ctrl, NULL, namelist, pk, 1, include_unusable, NULL, NULL); free_strlist (namelist); return err; } /* Search for keys matching some criteria. * * If RETCTX is not NULL, then the constructed context is returned in * *RETCTX so that getpubkey_next can be used to get subsequent * results. In this case, getkey_end() must be used to free the * search context. If RETCTX is not NULL, then RET_KDBHD must be * NULL. * * If PK is not NULL, the public key of the first result is returned * in *PK. Note: PK->REQ_USAGE must be valid!!! If PK->REQ_USAGE is * set, it is used to filter the search results. See the * documentation for finish_lookup to understand exactly how this is * used. Note: The self-signed data has already been merged into the * public key using merge_selfsigs. Free *PK by calling * release_public_key_parts (or, if PK was allocated using xfree, you * can use free_public_key, which calls release_public_key_parts(PK) * and then xfree(PK)). * * If NAMES is not NULL, then a search query is constructed using * classify_user_id on each of the strings in the list. (Recall: the * database does an OR of the terms, not an AND.) If NAMES is * NULL, then all results are returned. * * If WANT_SECRET is set, then only keys with an available secret key * (either locally or via key registered on a smartcard) are returned. * * This function does not skip unusable keys (see the documentation * for skip_unusable for an exact definition). * * If RET_KEYBLOCK is not NULL, the keyblock is returned in * *RET_KEYBLOCK. This should be freed using release_kbnode(). * * This function returns 0 on success. Otherwise, an error code is * returned. In particular, GPG_ERR_NO_PUBKEY or GPG_ERR_NO_SECKEY * (if want_secret is set) is returned if the key is not found. */ gpg_error_t getkey_bynames (ctrl_t ctrl, getkey_ctx_t *retctx, PKT_public_key *pk, strlist_t names, int want_secret, kbnode_t *ret_keyblock) { return key_byname (ctrl, retctx, names, pk, want_secret, 1, ret_keyblock, NULL); } /* Search for one key matching some criteria. * * If RETCTX is not NULL, then the constructed context is returned in * *RETCTX so that getpubkey_next can be used to get subsequent * results. In this case, getkey_end() must be used to free the * search context. If RETCTX is not NULL, then RET_KDBHD must be * NULL. * * If PK is not NULL, the public key of the first result is returned * in *PK. Note: PK->REQ_USAGE must be valid!!! If PK->REQ_USAGE is * set, it is used to filter the search results. See the * documentation for finish_lookup to understand exactly how this is * used. Note: The self-signed data has already been merged into the * public key using merge_selfsigs. Free *PK by calling * release_public_key_parts (or, if PK was allocated using xfree, you * can use free_public_key, which calls release_public_key_parts(PK) * and then xfree(PK)). * * If NAME is not NULL, then a search query is constructed using * classify_user_id on the string. In this case, even unusable keys * (see the documentation for skip_unusable for an exact definition of * unusable) are returned. Otherwise, if --default-key was set, then * that key is returned (even if it is unusable). If neither of these * conditions holds, then the first usable key is returned. * * If WANT_SECRET is set, then only keys with an available secret key * (either locally or via key registered on a smartcard) are returned. * * This function does not skip unusable keys (see the documentation * for skip_unusable for an exact definition). * * If RET_KEYBLOCK is not NULL, the keyblock is returned in * *RET_KEYBLOCK. This should be freed using release_kbnode(). * * This function returns 0 on success. Otherwise, an error code is * returned. In particular, GPG_ERR_NO_PUBKEY or GPG_ERR_NO_SECKEY * (if want_secret is set) is returned if the key is not found. * * FIXME: We also have the get_pubkey_byname function which has a * different semantic. Should be merged with this one. */ gpg_error_t getkey_byname (ctrl_t ctrl, getkey_ctx_t *retctx, PKT_public_key *pk, const char *name, int want_secret, kbnode_t *ret_keyblock) { gpg_error_t err; strlist_t namelist = NULL; int with_unusable = 1; const char *def_secret_key = NULL; if (want_secret && !name) def_secret_key = parse_def_secret_key (ctrl); if (want_secret && !name && def_secret_key) add_to_strlist (&namelist, def_secret_key); else if (name) add_to_strlist (&namelist, name); else with_unusable = 0; err = key_byname (ctrl, retctx, namelist, pk, want_secret, with_unusable, ret_keyblock, NULL); /* FIXME: Check that we really return GPG_ERR_NO_SECKEY if WANT_SECRET has been used. */ free_strlist (namelist); return err; } /* Return the next search result. * * If PK is not NULL, the public key of the next result is returned in * *PK. Note: The self-signed data has already been merged into the * public key using merge_selfsigs. Free *PK by calling * release_public_key_parts (or, if PK was allocated using xmalloc, you * can use free_public_key, which calls release_public_key_parts(PK) * and then xfree(PK)). * * RET_KEYBLOCK can be given as NULL; if it is not NULL it the entire * found keyblock is returned which must be released with * release_kbnode. If the function returns an error NULL is stored at * RET_KEYBLOCK. * * The self-signed data has already been merged into the public key * using merge_selfsigs. */ gpg_error_t getkey_next (ctrl_t ctrl, getkey_ctx_t ctx, PKT_public_key *pk, kbnode_t *ret_keyblock) { int rc; /* Fixme: Make sure this is proper gpg_error */ KBNODE keyblock = NULL; KBNODE found_key = NULL; /* We need to disable the caching so that for an exact key search we won't get the result back from the cache and thus end up in an endless loop. The endless loop can occur, because the cache is used without respecting the current file pointer! */ keydb_disable_caching (ctx->kr_handle); /* FOUND_KEY is only valid as long as RET_KEYBLOCK is. If the * caller wants PK, but not RET_KEYBLOCK, we need hand in our own * keyblock. */ if (pk && ret_keyblock == NULL) ret_keyblock = &keyblock; rc = lookup (ctrl, ctx, ctx->want_secret, ret_keyblock, pk ? &found_key : NULL); if (!rc && pk) { log_assert (found_key); pk_from_block (pk, NULL, found_key); release_kbnode (keyblock); } return rc; } /* Release any resources used by a key listing context. This must be * called on the context returned by, e.g., getkey_byname. */ void getkey_end (ctrl_t ctrl, getkey_ctx_t ctx) { if (ctx) { #ifdef HAVE_W32_SYSTEM /* FIXME: This creates a big regression for Windows because the * keyring is only released after the global ctrl is released. * So if an operation does a getkey and then tries to modify the * keyring it will fail on Windows with a sharing violation. We * need to modify all keyring write operations to also take the * ctrl and close the cached_getkey_kdb handle to make writing * work. See: GnuPG-bug-id: 3097 */ (void)ctrl; keydb_release (ctx->kr_handle); #else /*!HAVE_W32_SYSTEM*/ if (ctrl && !ctrl->cached_getkey_kdb) ctrl->cached_getkey_kdb = ctx->kr_handle; else keydb_release (ctx->kr_handle); #endif /*!HAVE_W32_SYSTEM*/ free_strlist (ctx->extra_list); if (!ctx->not_allocated) xfree (ctx); } } /************************************************ ************* Merging stuff ******************** ************************************************/ /* Set the mainkey_id fields for all keys in KEYBLOCK. This is * usually done by merge_selfsigs but at some places we only need the * main_kid not a full merge. The function also guarantees that all * pk->keyids are computed. */ void setup_main_keyids (kbnode_t keyblock) { u32 kid[2], mainkid[2]; kbnode_t kbctx, node; PKT_public_key *pk; if (keyblock->pkt->pkttype != PKT_PUBLIC_KEY) BUG (); pk = keyblock->pkt->pkt.public_key; keyid_from_pk (pk, mainkid); for (kbctx=NULL; (node = walk_kbnode (keyblock, &kbctx, 0)); ) { if (!(node->pkt->pkttype == PKT_PUBLIC_KEY || node->pkt->pkttype == PKT_PUBLIC_SUBKEY)) continue; pk = node->pkt->pkt.public_key; keyid_from_pk (pk, kid); /* Make sure pk->keyid is set. */ if (!pk->main_keyid[0] && !pk->main_keyid[1]) { pk->main_keyid[0] = mainkid[0]; pk->main_keyid[1] = mainkid[1]; } } } /* KEYBLOCK corresponds to a public key block. This function merges * much of the information from the self-signed data into the public * key, public subkey and user id data structures. If you use the * high-level search API (e.g., get_pubkey) for looking up key blocks, * then you don't need to call this function. This function is * useful, however, if you change the keyblock, e.g., by adding or * removing a self-signed data packet. */ void merge_keys_and_selfsig (ctrl_t ctrl, kbnode_t keyblock) { if (!keyblock) ; else if (keyblock->pkt->pkttype == PKT_PUBLIC_KEY) merge_selfsigs (ctrl, keyblock); else log_debug ("FIXME: merging secret key blocks is not anymore available\n"); } static int parse_key_usage (PKT_signature * sig) { int key_usage = 0; const byte *p; size_t n; byte flags; p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_KEY_FLAGS, &n); if (p && n) { /* First octet of the keyflags. */ flags = *p; if (flags & 1) { key_usage |= PUBKEY_USAGE_CERT; flags &= ~1; } if (flags & 2) { key_usage |= PUBKEY_USAGE_SIG; flags &= ~2; } /* We do not distinguish between encrypting communications and encrypting storage. */ if (flags & (0x04 | 0x08)) { key_usage |= PUBKEY_USAGE_ENC; flags &= ~(0x04 | 0x08); } if (flags & 0x20) { key_usage |= PUBKEY_USAGE_AUTH; flags &= ~0x20; } if (flags) key_usage |= PUBKEY_USAGE_UNKNOWN; if (!key_usage) key_usage |= PUBKEY_USAGE_NONE; } else if (p) /* Key flags of length zero. */ key_usage |= PUBKEY_USAGE_NONE; /* We set PUBKEY_USAGE_UNKNOWN to indicate that this key has a capability that we do not handle. This serves to distinguish between a zero key usage which we handle as the default capabilities for that algorithm, and a usage that we do not handle. Likewise we use PUBKEY_USAGE_NONE to indicate that key_flags have been given but they do not specify any usage. */ return key_usage; } /* Apply information from SIGNODE (which is the valid self-signature * associated with that UID) to the UIDNODE: * - weather the UID has been revoked * - assumed creation date of the UID * - temporary store the keyflags here * - temporary store the key expiration time here * - mark whether the primary user ID flag hat been set. * - store the preferences */ static void fixup_uidnode (KBNODE uidnode, KBNODE signode, u32 keycreated) { PKT_user_id *uid = uidnode->pkt->pkt.user_id; PKT_signature *sig = signode->pkt->pkt.signature; const byte *p, *sym, *aead, *hash, *zip; size_t n, nsym, naead, nhash, nzip; sig->flags.chosen_selfsig = 1;/* We chose this one. */ uid->created = 0; /* Not created == invalid. */ if (IS_UID_REV (sig)) { uid->flags.revoked = 1; return; /* Has been revoked. */ } else uid->flags.revoked = 0; uid->expiredate = sig->expiredate; if (sig->flags.expired) { uid->flags.expired = 1; return; /* Has expired. */ } else uid->flags.expired = 0; uid->created = sig->timestamp; /* This one is okay. */ uid->selfsigversion = sig->version; /* If we got this far, it's not expired :) */ uid->flags.expired = 0; /* Store the key flags in the helper variable for later processing. */ uid->help_key_usage = parse_key_usage (sig); /* Ditto for the key expiration. */ p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_KEY_EXPIRE, NULL); if (p && buf32_to_u32 (p)) uid->help_key_expire = keycreated + buf32_to_u32 (p); else uid->help_key_expire = 0; /* Set the primary user ID flag - we will later wipe out some * of them to only have one in our keyblock. */ uid->flags.primary = 0; p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_PRIMARY_UID, NULL); if (p && *p) uid->flags.primary = 2; /* We could also query this from the unhashed area if it is not in * the hased area and then later try to decide which is the better * there should be no security problem with this. * For now we only look at the hashed one. */ /* Now build the preferences list. These must come from the hashed section so nobody can modify the ciphers a key is willing to accept. */ p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_PREF_SYM, &n); sym = p; nsym = p ? n : 0; p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_PREF_AEAD, &n); aead = p; naead = p ? n : 0; p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_PREF_HASH, &n); hash = p; nhash = p ? n : 0; p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_PREF_COMPR, &n); zip = p; nzip = p ? n : 0; if (uid->prefs) xfree (uid->prefs); n = nsym + naead + nhash + nzip; if (!n) uid->prefs = NULL; else { uid->prefs = xmalloc (sizeof (*uid->prefs) * (n + 1)); n = 0; for (; nsym; nsym--, n++) { uid->prefs[n].type = PREFTYPE_SYM; uid->prefs[n].value = *sym++; } for (; naead; naead--, n++) { uid->prefs[n].type = PREFTYPE_AEAD; uid->prefs[n].value = *aead++; } for (; nhash; nhash--, n++) { uid->prefs[n].type = PREFTYPE_HASH; uid->prefs[n].value = *hash++; } for (; nzip; nzip--, n++) { uid->prefs[n].type = PREFTYPE_ZIP; uid->prefs[n].value = *zip++; } uid->prefs[n].type = PREFTYPE_NONE; /* End of list marker */ uid->prefs[n].value = 0; } /* See whether we have the MDC feature. */ uid->flags.mdc = 0; p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_FEATURES, &n); if (p && n && (p[0] & 0x01)) uid->flags.mdc = 1; /* See whether we have the AEAD feature. */ uid->flags.aead = 0; p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_FEATURES, &n); if (p && n && (p[0] & 0x02)) uid->flags.aead = 1; /* And the keyserver modify flag. */ uid->flags.ks_modify = 1; p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_KS_FLAGS, &n); if (p && n && (p[0] & 0x80)) uid->flags.ks_modify = 0; } static void sig_to_revoke_info (PKT_signature * sig, struct revoke_info *rinfo) { rinfo->date = sig->timestamp; rinfo->algo = sig->pubkey_algo; rinfo->keyid[0] = sig->keyid[0]; rinfo->keyid[1] = sig->keyid[1]; } /* Given a keyblock, parse the key block and extract various pieces of * information and save them with the primary key packet and the user * id packets. For instance, some information is stored in signature * packets. We find the latest such valid packet (since the user can * change that information) and copy its contents into the * PKT_public_key. * * Note that R_REVOKED may be set to 0, 1 or 2. * * This function fills in the following fields in the primary key's * keyblock: * * main_keyid (computed) * revkey / numrevkeys (derived from self signed key data) * flags.valid (whether we have at least 1 self-sig) * flags.maybe_revoked (whether a designed revoked the key, but * we are missing the key to check the sig) * selfsigversion (highest version of any valid self-sig) * pubkey_usage (derived from most recent self-sig or most * recent user id) * has_expired (various sources) * expiredate (various sources) * * See the documentation for fixup_uidnode for how the user id packets * are modified. In addition to that the primary user id's is_primary * field is set to 1 and the other user id's is_primary are set to 0. */ static void merge_selfsigs_main (ctrl_t ctrl, kbnode_t keyblock, int *r_revoked, struct revoke_info *rinfo) { PKT_public_key *pk = NULL; KBNODE k; u32 kid[2]; u32 sigdate, uiddate, uiddate2; KBNODE signode, uidnode, uidnode2; u32 curtime = make_timestamp (); unsigned int key_usage = 0; u32 keytimestamp = 0; u32 key_expire = 0; int key_expire_seen = 0; byte sigversion = 0; *r_revoked = 0; memset (rinfo, 0, sizeof (*rinfo)); /* Section 11.1 of RFC 4880 determines the order of packets within a * message. There are three sections, which must occur in the * following order: the public key, the user ids and user attributes * and the subkeys. Within each section, each primary packet (e.g., * a user id packet) is followed by one or more signature packets, * which modify that packet. */ /* According to Section 11.1 of RFC 4880, the public key must be the first packet. Note that parse_keyblock_image ensures that the first packet is the public key. */ if (keyblock->pkt->pkttype != PKT_PUBLIC_KEY) BUG (); pk = keyblock->pkt->pkt.public_key; keytimestamp = pk->timestamp; keyid_from_pk (pk, kid); pk->main_keyid[0] = kid[0]; pk->main_keyid[1] = kid[1]; if (pk->version < 4) { /* Before v4 the key packet itself contains the expiration date * and there was no way to change it, so we start with the one * from the key packet. */ key_expire = pk->max_expiredate; key_expire_seen = 1; } /* First pass: * * - Find the latest direct key self-signature. We assume that the * newest one overrides all others. * * - Determine whether the key has been revoked. * * - Gather all revocation keys (unlike other data, we don't just * take them from the latest self-signed packet). * * - Determine max (sig[...]->version). */ /* Reset this in case this key was already merged. */ xfree (pk->revkey); pk->revkey = NULL; pk->numrevkeys = 0; signode = NULL; sigdate = 0; /* Helper variable to find the latest signature. */ /* According to Section 11.1 of RFC 4880, the public key comes first * and is immediately followed by any signature packets that modify * it. */ for (k = keyblock; k && k->pkt->pkttype != PKT_USER_ID && k->pkt->pkttype != PKT_ATTRIBUTE && k->pkt->pkttype != PKT_PUBLIC_SUBKEY; k = k->next) { if (k->pkt->pkttype == PKT_SIGNATURE) { PKT_signature *sig = k->pkt->pkt.signature; if (sig->keyid[0] == kid[0] && sig->keyid[1] == kid[1]) { /* Self sig. */ if (check_key_signature (ctrl, keyblock, k, NULL)) ; /* Signature did not verify. */ else if (IS_KEY_REV (sig)) { /* Key has been revoked - there is no way to * override such a revocation, so we theoretically * can stop now. We should not cope with expiration * times for revocations here because we have to * assume that an attacker can generate all kinds of * signatures. However due to the fact that the key * has been revoked it does not harm either and by * continuing we gather some more info on that * key. */ *r_revoked = 1; sig_to_revoke_info (sig, rinfo); } else if (IS_KEY_SIG (sig)) { /* Add the indicated revocations keys from all * signatures not just the latest. We do this * because you need multiple 1F sigs to properly * handle revocation keys (PGP does it this way, and * a revocation key could be sensitive and hence in * a different signature). */ if (sig->revkey) { int i; pk->revkey = xrealloc (pk->revkey, sizeof (struct revocation_key) * (pk->numrevkeys + sig->numrevkeys)); for (i = 0; i < sig->numrevkeys; i++) memcpy (&pk->revkey[pk->numrevkeys++], &sig->revkey[i], sizeof (struct revocation_key)); } if (sig->timestamp >= sigdate) { /* This is the latest signature so far. */ if (sig->flags.expired) ; /* Signature has expired - ignore it. */ else { sigdate = sig->timestamp; signode = k; if (sig->version > sigversion) sigversion = sig->version; } } } } } } /* Remove dupes from the revocation keys. */ if (pk->revkey) { int i, j, x, changed = 0; for (i = 0; i < pk->numrevkeys; i++) { for (j = i + 1; j < pk->numrevkeys; j++) { if (memcmp (&pk->revkey[i], &pk->revkey[j], sizeof (struct revocation_key)) == 0) { /* remove j */ for (x = j; x < pk->numrevkeys - 1; x++) pk->revkey[x] = pk->revkey[x + 1]; pk->numrevkeys--; j--; changed = 1; } } } if (changed) pk->revkey = xrealloc (pk->revkey, pk->numrevkeys * sizeof (struct revocation_key)); } /* SIGNODE is the 1F signature packet with the latest creation time. * Extract some information from it. */ if (signode) { /* Some information from a direct key signature take precedence * over the same information given in UID sigs. */ PKT_signature *sig = signode->pkt->pkt.signature; const byte *p; key_usage = parse_key_usage (sig); p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_KEY_EXPIRE, NULL); if (p && buf32_to_u32 (p)) { key_expire = keytimestamp + buf32_to_u32 (p); key_expire_seen = 1; } /* Mark that key as valid: One direct key signature should * render a key as valid. */ pk->flags.valid = 1; } /* Pass 1.5: Look for key revocation signatures that were not made * by the key (i.e. did a revocation key issue a revocation for * us?). Only bother to do this if there is a revocation key in the * first place and we're not revoked already. */ if (!*r_revoked && pk->revkey) for (k = keyblock; k && k->pkt->pkttype != PKT_USER_ID; k = k->next) { if (k->pkt->pkttype == PKT_SIGNATURE) { PKT_signature *sig = k->pkt->pkt.signature; if (IS_KEY_REV (sig) && (sig->keyid[0] != kid[0] || sig->keyid[1] != kid[1])) { int rc = check_revocation_keys (ctrl, pk, sig); if (rc == 0) { *r_revoked = 2; sig_to_revoke_info (sig, rinfo); /* Don't continue checking since we can't be any * more revoked than this. */ break; } else if (gpg_err_code (rc) == GPG_ERR_NO_PUBKEY) pk->flags.maybe_revoked = 1; /* A failure here means the sig did not verify, was * not issued by a revocation key, or a revocation * key loop was broken. If a revocation key isn't * findable, however, the key might be revoked and * we don't know it. */ /* Fixme: In the future handle subkey and cert * revocations? PGP doesn't, but it's in 2440. */ } } } /* Second pass: Look at the self-signature of all user IDs. */ /* According to RFC 4880 section 11.1, user id and attribute packets * are in the second section, after the public key packet and before * the subkey packets. */ signode = uidnode = NULL; sigdate = 0; /* Helper variable to find the latest signature in one UID. */ for (k = keyblock; k && k->pkt->pkttype != PKT_PUBLIC_SUBKEY; k = k->next) { if (k->pkt->pkttype == PKT_USER_ID || k->pkt->pkttype == PKT_ATTRIBUTE) { /* New user id packet. */ /* Apply the data from the most recent self-signed packet to * the preceding user id packet. */ if (uidnode && signode) { fixup_uidnode (uidnode, signode, keytimestamp); pk->flags.valid = 1; } /* Clear SIGNODE. The only relevant self-signed data for * UIDNODE follows it. */ if (k->pkt->pkttype == PKT_USER_ID) uidnode = k; else uidnode = NULL; signode = NULL; sigdate = 0; } else if (k->pkt->pkttype == PKT_SIGNATURE && uidnode) { PKT_signature *sig = k->pkt->pkt.signature; if (sig->keyid[0] == kid[0] && sig->keyid[1] == kid[1]) { if (check_key_signature (ctrl, keyblock, k, NULL)) ; /* signature did not verify */ else if ((IS_UID_SIG (sig) || IS_UID_REV (sig)) && sig->timestamp >= sigdate) { /* Note: we allow invalidation of cert revocations * by a newer signature. An attacker can't use this * because a key should be revoked with a key revocation. * The reason why we have to allow for that is that at * one time an email address may become invalid but later * the same email address may become valid again (hired, * fired, hired again). */ sigdate = sig->timestamp; signode = k; signode->pkt->pkt.signature->flags.chosen_selfsig = 0; if (sig->version > sigversion) sigversion = sig->version; } } } } if (uidnode && signode) { fixup_uidnode (uidnode, signode, keytimestamp); pk->flags.valid = 1; } /* If the key isn't valid yet, and we have * --allow-non-selfsigned-uid set, then force it valid. */ if (!pk->flags.valid && opt.allow_non_selfsigned_uid) { if (opt.verbose) log_info (_("Invalid key %s made valid by" " --allow-non-selfsigned-uid\n"), keystr_from_pk (pk)); pk->flags.valid = 1; } /* The key STILL isn't valid, so try and find an ultimately * trusted signature. */ if (!pk->flags.valid) { uidnode = NULL; for (k = keyblock; k && k->pkt->pkttype != PKT_PUBLIC_SUBKEY; k = k->next) { if (k->pkt->pkttype == PKT_USER_ID) uidnode = k; else if (k->pkt->pkttype == PKT_SIGNATURE && uidnode) { PKT_signature *sig = k->pkt->pkt.signature; if (sig->keyid[0] != kid[0] || sig->keyid[1] != kid[1]) { PKT_public_key *ultimate_pk; ultimate_pk = xmalloc_clear (sizeof (*ultimate_pk)); /* We don't want to use the full get_pubkey to avoid * infinite recursion in certain cases. There is no * reason to check that an ultimately trusted key is * still valid - if it has been revoked the user * should also remove the ultimate trust flag. */ if (get_pubkey_fast (ultimate_pk, sig->keyid) == 0 && check_key_signature2 (ctrl, keyblock, k, ultimate_pk, NULL, NULL, NULL, NULL) == 0 && get_ownertrust (ctrl, ultimate_pk) == TRUST_ULTIMATE) { free_public_key (ultimate_pk); pk->flags.valid = 1; break; } free_public_key (ultimate_pk); } } } } /* Record the highest selfsig version so we know if this is a v3 key * through and through, or a v3 key with a v4 selfsig somewhere. * This is useful in a few places to know if the key must be treated * as PGP2-style or OpenPGP-style. Note that a selfsig revocation * with a higher version number will also raise this value. This is * okay since such a revocation must be issued by the user (i.e. it * cannot be issued by someone else to modify the key behavior.) */ pk->selfsigversion = sigversion; /* Now that we had a look at all user IDs we can now get some * information from those user IDs. */ if (!key_usage) { /* Find the latest user ID with key flags set. */ uiddate = 0; /* Helper to find the latest user ID. */ for (k = keyblock; k && k->pkt->pkttype != PKT_PUBLIC_SUBKEY; k = k->next) { if (k->pkt->pkttype == PKT_USER_ID) { PKT_user_id *uid = k->pkt->pkt.user_id; if (uid->help_key_usage && uid->created > uiddate) { key_usage = uid->help_key_usage; uiddate = uid->created; } } } } if (!key_usage) { /* No key flags at all: get it from the algo. */ key_usage = openpgp_pk_algo_usage (pk->pubkey_algo); } else { /* Check that the usage matches the usage as given by the algo. */ int x = openpgp_pk_algo_usage (pk->pubkey_algo); if (x) /* Mask it down to the actual allowed usage. */ key_usage &= x; } /* Whatever happens, it's a primary key, so it can certify. */ pk->pubkey_usage = key_usage | PUBKEY_USAGE_CERT; if (!key_expire_seen) { /* Find the latest valid user ID with a key expiration set * Note, that this may be a different one from the above because * some user IDs may have no expiration date set. */ uiddate = 0; for (k = keyblock; k && k->pkt->pkttype != PKT_PUBLIC_SUBKEY; k = k->next) { if (k->pkt->pkttype == PKT_USER_ID) { PKT_user_id *uid = k->pkt->pkt.user_id; if (uid->help_key_expire && uid->created > uiddate) { key_expire = uid->help_key_expire; uiddate = uid->created; } } } } /* Currently only v3 keys have a maximum expiration date, but I'll * bet v5 keys get this feature again. */ if (key_expire == 0 || (pk->max_expiredate && key_expire > pk->max_expiredate)) key_expire = pk->max_expiredate; pk->has_expired = key_expire >= curtime ? 0 : key_expire; pk->expiredate = key_expire; /* Fixme: we should see how to get rid of the expiretime fields but * this needs changes at other places too. */ /* And now find the real primary user ID and delete all others. */ uiddate = uiddate2 = 0; uidnode = uidnode2 = NULL; for (k = keyblock; k && k->pkt->pkttype != PKT_PUBLIC_SUBKEY; k = k->next) { if (k->pkt->pkttype == PKT_USER_ID && !k->pkt->pkt.user_id->attrib_data) { PKT_user_id *uid = k->pkt->pkt.user_id; if (uid->flags.primary) { if (uid->created > uiddate) { uiddate = uid->created; uidnode = k; } else if (uid->created == uiddate && uidnode) { /* The dates are equal, so we need to do a different * (and arbitrary) comparison. This should rarely, * if ever, happen. It's good to try and guarantee * that two different GnuPG users with two different * keyrings at least pick the same primary. */ if (cmp_user_ids (uid, uidnode->pkt->pkt.user_id) > 0) uidnode = k; } } else { if (uid->created > uiddate2) { uiddate2 = uid->created; uidnode2 = k; } else if (uid->created == uiddate2 && uidnode2) { if (cmp_user_ids (uid, uidnode2->pkt->pkt.user_id) > 0) uidnode2 = k; } } } } if (uidnode) { for (k = keyblock; k && k->pkt->pkttype != PKT_PUBLIC_SUBKEY; k = k->next) { if (k->pkt->pkttype == PKT_USER_ID && !k->pkt->pkt.user_id->attrib_data) { PKT_user_id *uid = k->pkt->pkt.user_id; if (k != uidnode) uid->flags.primary = 0; } } } else if (uidnode2) { /* None is flagged primary - use the latest user ID we have, * and disambiguate with the arbitrary packet comparison. */ uidnode2->pkt->pkt.user_id->flags.primary = 1; } else { /* None of our uids were self-signed, so pick the one that * sorts first to be the primary. This is the best we can do * here since there are no self sigs to date the uids. */ uidnode = NULL; for (k = keyblock; k && k->pkt->pkttype != PKT_PUBLIC_SUBKEY; k = k->next) { if (k->pkt->pkttype == PKT_USER_ID && !k->pkt->pkt.user_id->attrib_data) { if (!uidnode) { uidnode = k; uidnode->pkt->pkt.user_id->flags.primary = 1; continue; } else { if (cmp_user_ids (k->pkt->pkt.user_id, uidnode->pkt->pkt.user_id) > 0) { uidnode->pkt->pkt.user_id->flags.primary = 0; uidnode = k; uidnode->pkt->pkt.user_id->flags.primary = 1; } else { /* just to be safe: */ k->pkt->pkt.user_id->flags.primary = 0; } } } } } } /* Convert a buffer to a signature. Useful for 0x19 embedded sigs. * Caller must free the signature when they are done. */ static PKT_signature * buf_to_sig (const byte * buf, size_t len) { PKT_signature *sig = xmalloc_clear (sizeof (PKT_signature)); IOBUF iobuf = iobuf_temp_with_content (buf, len); int save_mode = set_packet_list_mode (0); if (parse_signature (iobuf, PKT_SIGNATURE, len, sig) != 0) { - xfree (sig); + free_seckey_enc (sig); sig = NULL; } set_packet_list_mode (save_mode); iobuf_close (iobuf); return sig; } /* Use the self-signed data to fill in various fields in subkeys. * * KEYBLOCK is the whole keyblock. SUBNODE is the subkey to fill in. * * Sets the following fields on the subkey: * * main_keyid * flags.valid if the subkey has a valid self-sig binding * flags.revoked * flags.backsig * pubkey_usage * has_expired * expired_date * * On this subkey's most revent valid self-signed packet, the * following field is set: * * flags.chosen_selfsig */ static void merge_selfsigs_subkey (ctrl_t ctrl, kbnode_t keyblock, kbnode_t subnode) { PKT_public_key *mainpk = NULL, *subpk = NULL; PKT_signature *sig; KBNODE k; u32 mainkid[2]; u32 sigdate = 0; KBNODE signode; u32 curtime = make_timestamp (); unsigned int key_usage = 0; u32 keytimestamp = 0; u32 key_expire = 0; const byte *p; if (subnode->pkt->pkttype != PKT_PUBLIC_SUBKEY) BUG (); mainpk = keyblock->pkt->pkt.public_key; if (mainpk->version < 4) return;/* (actually this should never happen) */ keyid_from_pk (mainpk, mainkid); subpk = subnode->pkt->pkt.public_key; keytimestamp = subpk->timestamp; subpk->flags.valid = 0; subpk->flags.exact = 0; subpk->main_keyid[0] = mainpk->main_keyid[0]; subpk->main_keyid[1] = mainpk->main_keyid[1]; /* Find the latest key binding self-signature. */ signode = NULL; sigdate = 0; /* Helper to find the latest signature. */ for (k = subnode->next; k && k->pkt->pkttype != PKT_PUBLIC_SUBKEY; k = k->next) { if (k->pkt->pkttype == PKT_SIGNATURE) { sig = k->pkt->pkt.signature; if (sig->keyid[0] == mainkid[0] && sig->keyid[1] == mainkid[1]) { if (check_key_signature (ctrl, keyblock, k, NULL)) ; /* Signature did not verify. */ else if (IS_SUBKEY_REV (sig)) { /* Note that this means that the date on a * revocation sig does not matter - even if the * binding sig is dated after the revocation sig, * the subkey is still marked as revoked. This * seems ok, as it is just as easy to make new * subkeys rather than re-sign old ones as the * problem is in the distribution. Plus, PGP (7) * does this the same way. */ subpk->flags.revoked = 1; sig_to_revoke_info (sig, &subpk->revoked); /* Although we could stop now, we continue to * figure out other information like the old expiration * time. */ } else if (IS_SUBKEY_SIG (sig) && sig->timestamp >= sigdate) { if (sig->flags.expired) ; /* Signature has expired - ignore it. */ else { sigdate = sig->timestamp; signode = k; signode->pkt->pkt.signature->flags.chosen_selfsig = 0; } } } } } /* No valid key binding. */ if (!signode) return; sig = signode->pkt->pkt.signature; sig->flags.chosen_selfsig = 1; /* So we know which selfsig we chose later. */ key_usage = parse_key_usage (sig); if (!key_usage) { /* No key flags at all: get it from the algo. */ key_usage = openpgp_pk_algo_usage (subpk->pubkey_algo); } else { /* Check that the usage matches the usage as given by the algo. */ int x = openpgp_pk_algo_usage (subpk->pubkey_algo); if (x) /* Mask it down to the actual allowed usage. */ key_usage &= x; } subpk->pubkey_usage = key_usage; p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_KEY_EXPIRE, NULL); if (p && buf32_to_u32 (p)) key_expire = keytimestamp + buf32_to_u32 (p); else key_expire = 0; subpk->has_expired = key_expire >= curtime ? 0 : key_expire; subpk->expiredate = key_expire; /* Algo doesn't exist. */ if (openpgp_pk_test_algo (subpk->pubkey_algo)) return; subpk->flags.valid = 1; /* Find the most recent 0x19 embedded signature on our self-sig. */ if (!subpk->flags.backsig) { int seq = 0; size_t n; PKT_signature *backsig = NULL; sigdate = 0; /* We do this while() since there may be other embedded * signatures in the future. We only want 0x19 here. */ while ((p = enum_sig_subpkt (sig->hashed, SIGSUBPKT_SIGNATURE, &n, &seq, NULL))) if (n > 3 && ((p[0] == 3 && p[2] == 0x19) || (p[0] == 4 && p[1] == 0x19))) { PKT_signature *tempsig = buf_to_sig (p, n); if (tempsig) { if (tempsig->timestamp > sigdate) { if (backsig) free_seckey_enc (backsig); backsig = tempsig; sigdate = backsig->timestamp; } else free_seckey_enc (tempsig); } } seq = 0; /* It is safe to have this in the unhashed area since the 0x19 * is located on the selfsig for convenience, not security. */ while ((p = enum_sig_subpkt (sig->unhashed, SIGSUBPKT_SIGNATURE, &n, &seq, NULL))) if (n > 3 && ((p[0] == 3 && p[2] == 0x19) || (p[0] == 4 && p[1] == 0x19))) { PKT_signature *tempsig = buf_to_sig (p, n); if (tempsig) { if (tempsig->timestamp > sigdate) { if (backsig) free_seckey_enc (backsig); backsig = tempsig; sigdate = backsig->timestamp; } else free_seckey_enc (tempsig); } } if (backsig) { /* At this point, backsig contains the most recent 0x19 sig. * Let's see if it is good. */ /* 2==valid, 1==invalid, 0==didn't check */ if (check_backsig (mainpk, subpk, backsig) == 0) subpk->flags.backsig = 2; else subpk->flags.backsig = 1; free_seckey_enc (backsig); } } } /* Merge information from the self-signatures with the public key, * subkeys and user ids to make using them more easy. * * See documentation for merge_selfsigs_main, merge_selfsigs_subkey * and fixup_uidnode for exactly which fields are updated. */ static void merge_selfsigs (ctrl_t ctrl, kbnode_t keyblock) { KBNODE k; int revoked; struct revoke_info rinfo; PKT_public_key *main_pk; prefitem_t *prefs; unsigned int mdc_feature; unsigned int aead_feature; if (keyblock->pkt->pkttype != PKT_PUBLIC_KEY) { if (keyblock->pkt->pkttype == PKT_SECRET_KEY) { log_error ("expected public key but found secret key " "- must stop\n"); /* We better exit here because a public key is expected at * other places too. FIXME: Figure this out earlier and * don't get to here at all */ g10_exit (1); } BUG (); } merge_selfsigs_main (ctrl, keyblock, &revoked, &rinfo); /* Now merge in the data from each of the subkeys. */ for (k = keyblock; k; k = k->next) { if (k->pkt->pkttype == PKT_PUBLIC_SUBKEY) { merge_selfsigs_subkey (ctrl, keyblock, k); } } main_pk = keyblock->pkt->pkt.public_key; if (revoked || main_pk->has_expired || !main_pk->flags.valid) { /* If the primary key is revoked, expired, or invalid we * better set the appropriate flags on that key and all * subkeys. */ for (k = keyblock; k; k = k->next) { if (k->pkt->pkttype == PKT_PUBLIC_KEY || k->pkt->pkttype == PKT_PUBLIC_SUBKEY) { PKT_public_key *pk = k->pkt->pkt.public_key; if (!main_pk->flags.valid) pk->flags.valid = 0; if (revoked && !pk->flags.revoked) { pk->flags.revoked = revoked; memcpy (&pk->revoked, &rinfo, sizeof (rinfo)); } if (main_pk->has_expired) pk->has_expired = main_pk->has_expired; } } return; } /* Set the preference list of all keys to those of the primary real * user ID. Note: we use these preferences when we don't know by * which user ID the key has been selected. * fixme: we should keep atoms of commonly used preferences or * use reference counting to optimize the preference lists storage. * FIXME: it might be better to use the intersection of * all preferences. * Do a similar thing for the MDC feature flag. */ prefs = NULL; mdc_feature = aead_feature = 0; for (k = keyblock; k && k->pkt->pkttype != PKT_PUBLIC_SUBKEY; k = k->next) { if (k->pkt->pkttype == PKT_USER_ID && !k->pkt->pkt.user_id->attrib_data && k->pkt->pkt.user_id->flags.primary) { prefs = k->pkt->pkt.user_id->prefs; mdc_feature = k->pkt->pkt.user_id->flags.mdc; aead_feature = k->pkt->pkt.user_id->flags.aead; break; } } for (k = keyblock; k; k = k->next) { if (k->pkt->pkttype == PKT_PUBLIC_KEY || k->pkt->pkttype == PKT_PUBLIC_SUBKEY) { PKT_public_key *pk = k->pkt->pkt.public_key; if (pk->prefs) xfree (pk->prefs); pk->prefs = copy_prefs (prefs); pk->flags.mdc = mdc_feature; pk->flags.aead = aead_feature; } } } /* See whether the key satisfies any additional requirements specified * in CTX. If so, return the node of an appropriate key or subkey. * Otherwise, return NULL if there was no appropriate key. * * Note that we do not return a reference, i.e. the result must not be * freed using 'release_kbnode'. * * In case the primary key is not required, select a suitable subkey. * We need the primary key if PUBKEY_USAGE_CERT is set in REQ_USAGE or * we are in PGP7 mode and PUBKEY_USAGE_SIG is set in * REQ_USAGE. * * If any of PUBKEY_USAGE_SIG, PUBKEY_USAGE_ENC and PUBKEY_USAGE_CERT * are set in REQ_USAGE, we filter by the key's function. Concretely, * if PUBKEY_USAGE_SIG and PUBKEY_USAGE_CERT are set, then we only * return a key if it is (at least) either a signing or a * certification key. * * If REQ_USAGE is set, then we reject any keys that are not good * (i.e., valid, not revoked, not expired, etc.). This allows the * getkey functions to be used for plain key listings. * * Sets the matched key's user id field (pk->user_id) to the user id * that matched the low-level search criteria or NULL. * * If R_FLAGS is not NULL set certain flags for more detailed error * reporting. Used flags are: * * - LOOKUP_ALL_SUBKEYS_EXPIRED :: All Subkeys are expired or have * been revoked. * - LOOKUP_NOT_SELECTED :: No suitable key found * * This function needs to handle several different cases: * * 1. No requested usage and no primary key requested * Examples for this case are that we have a keyID to be used * for decrytion or verification. * 2. No usage but primary key requested * This is the case for all functions which work on an * entire keyblock, e.g. for editing or listing * 3. Usage and primary key requested * FIXME * 4. Usage but no primary key requested * FIXME * */ static kbnode_t finish_lookup (kbnode_t keyblock, unsigned int req_usage, int want_exact, int want_secret, unsigned int *r_flags) { kbnode_t k; /* If WANT_EXACT is set, the key or subkey that actually matched the low-level search criteria. */ kbnode_t foundk = NULL; /* The user id (if any) that matched the low-level search criteria. */ PKT_user_id *foundu = NULL; u32 latest_date; kbnode_t latest_key; PKT_public_key *pk; int req_prim; u32 curtime = make_timestamp (); if (r_flags) *r_flags = 0; #define USAGE_MASK (PUBKEY_USAGE_SIG|PUBKEY_USAGE_ENC|PUBKEY_USAGE_CERT) req_usage &= USAGE_MASK; /* Request the primary if we're certifying another key, and also if * signing data while --pgp7 is on since pgp 7 do * not understand signatures made by a signing subkey. PGP 8 does. */ req_prim = ((req_usage & PUBKEY_USAGE_CERT) || (PGP7 && (req_usage & PUBKEY_USAGE_SIG))); log_assert (keyblock->pkt->pkttype == PKT_PUBLIC_KEY); /* For an exact match mark the primary or subkey that matched the low-level search criteria. */ if (want_exact) { for (k = keyblock; k; k = k->next) { if ((k->flag & 1)) { log_assert (k->pkt->pkttype == PKT_PUBLIC_KEY || k->pkt->pkttype == PKT_PUBLIC_SUBKEY); foundk = k; pk = k->pkt->pkt.public_key; pk->flags.exact = 1; break; } } } /* Get the user id that matched that low-level search criteria. */ for (k = keyblock; k; k = k->next) { if ((k->flag & 2)) { log_assert (k->pkt->pkttype == PKT_USER_ID); foundu = k->pkt->pkt.user_id; break; } } if (DBG_LOOKUP) log_debug ("finish_lookup: checking key %08lX (%s)(req_usage=%x)\n", (ulong) keyid_from_pk (keyblock->pkt->pkt.public_key, NULL), foundk ? "one" : "all", req_usage); if (!req_usage) { latest_key = foundk ? foundk : keyblock; goto found; } latest_date = 0; latest_key = NULL; /* Set LATEST_KEY to the latest (the one with the most recent * timestamp) good (valid, not revoked, not expired, etc.) subkey. * * Don't bother if we are only looking for a primary key or we need * an exact match and the exact match is not a subkey. */ if (req_prim || (foundk && foundk->pkt->pkttype != PKT_PUBLIC_SUBKEY)) ; else { kbnode_t nextk; int n_subkeys = 0; int n_revoked_or_expired = 0; /* Either start a loop or check just this one subkey. */ for (k = foundk ? foundk : keyblock; k; k = nextk) { if (foundk) { /* If FOUNDK is not NULL, then only consider that exact key, i.e., don't iterate. */ nextk = NULL; } else nextk = k->next; if (k->pkt->pkttype != PKT_PUBLIC_SUBKEY) continue; pk = k->pkt->pkt.public_key; if (DBG_LOOKUP) log_debug ("\tchecking subkey %08lX\n", (ulong) keyid_from_pk (pk, NULL)); if (!pk->flags.valid) { if (DBG_LOOKUP) log_debug ("\tsubkey not valid\n"); continue; } if (!((pk->pubkey_usage & USAGE_MASK) & req_usage)) { if (DBG_LOOKUP) log_debug ("\tusage does not match: want=%x have=%x\n", req_usage, pk->pubkey_usage); continue; } n_subkeys++; if (pk->flags.revoked) { if (DBG_LOOKUP) log_debug ("\tsubkey has been revoked\n"); n_revoked_or_expired++; continue; } if (pk->has_expired) { if (DBG_LOOKUP) log_debug ("\tsubkey has expired\n"); n_revoked_or_expired++; continue; } if (pk->timestamp > curtime && !opt.ignore_valid_from) { if (DBG_LOOKUP) log_debug ("\tsubkey not yet valid\n"); continue; } if (want_secret && agent_probe_secret_key (NULL, pk)) { if (DBG_LOOKUP) log_debug ("\tno secret key\n"); continue; } if (DBG_LOOKUP) log_debug ("\tsubkey might be fine\n"); /* In case a key has a timestamp of 0 set, we make sure that it is used. A better change would be to compare ">=" but that might also change the selected keys and is as such a more intrusive change. */ if (pk->timestamp > latest_date || (!pk->timestamp && !latest_date)) { latest_date = pk->timestamp; latest_key = k; } } if (n_subkeys == n_revoked_or_expired && r_flags) *r_flags |= LOOKUP_ALL_SUBKEYS_EXPIRED; } /* Check if the primary key is ok (valid, not revoke, not expire, * matches requested usage) if: * * - we didn't find an appropriate subkey and we're not doing an * exact search, * * - we're doing an exact match and the exact match was the * primary key, or, * * - we're just considering the primary key. */ if ((!latest_key && !want_exact) || foundk == keyblock || req_prim) { if (DBG_LOOKUP && !foundk && !req_prim) log_debug ("\tno suitable subkeys found - trying primary\n"); pk = keyblock->pkt->pkt.public_key; if (!pk->flags.valid) { if (DBG_LOOKUP) log_debug ("\tprimary key not valid\n"); } else if (!((pk->pubkey_usage & USAGE_MASK) & req_usage)) { if (DBG_LOOKUP) log_debug ("\tprimary key usage does not match: " "want=%x have=%x\n", req_usage, pk->pubkey_usage); } else if (pk->flags.revoked) { if (DBG_LOOKUP) log_debug ("\tprimary key has been revoked\n"); } else if (pk->has_expired) { if (DBG_LOOKUP) log_debug ("\tprimary key has expired\n"); } else /* Okay. */ { if (DBG_LOOKUP) log_debug ("\tprimary key may be used\n"); latest_key = keyblock; } } if (!latest_key) { if (DBG_LOOKUP) log_debug ("\tno suitable key found - giving up\n"); if (r_flags) *r_flags |= LOOKUP_NOT_SELECTED; return NULL; /* Not found. */ } found: if (DBG_LOOKUP) log_debug ("\tusing key %08lX\n", (ulong) keyid_from_pk (latest_key->pkt->pkt.public_key, NULL)); if (latest_key) { pk = latest_key->pkt->pkt.public_key; free_user_id (pk->user_id); pk->user_id = scopy_user_id (foundu); } if (latest_key != keyblock && opt.verbose) { char *tempkeystr = xstrdup (keystr_from_pk (latest_key->pkt->pkt.public_key)); log_info (_("using subkey %s instead of primary key %s\n"), tempkeystr, keystr_from_pk (keyblock->pkt->pkt.public_key)); xfree (tempkeystr); } cache_user_id (keyblock); return latest_key ? latest_key : keyblock; /* Found. */ } /* Print a KEY_CONSIDERED status line. */ static void print_status_key_considered (kbnode_t keyblock, unsigned int flags) { char hexfpr[2*MAX_FINGERPRINT_LEN + 1]; kbnode_t node; char flagbuf[20]; if (!is_status_enabled ()) return; for (node=keyblock; node; node = node->next) if (node->pkt->pkttype == PKT_PUBLIC_KEY || node->pkt->pkttype == PKT_SECRET_KEY) break; if (!node) { log_error ("%s: keyblock w/o primary key\n", __func__); return; } hexfingerprint (node->pkt->pkt.public_key, hexfpr, sizeof hexfpr); snprintf (flagbuf, sizeof flagbuf, " %u", flags); write_status_strings (STATUS_KEY_CONSIDERED, hexfpr, flagbuf, NULL); } /* A high-level function to lookup keys. * * This function builds on top of the low-level keydb API. It first * searches the database using the description stored in CTX->ITEMS, * then it filters the results using CTX and, finally, if WANT_SECRET * is set, it ignores any keys for which no secret key is available. * * Unlike the low-level search functions, this function also merges * all of the self-signed data into the keys, subkeys and user id * packets (see the merge_selfsigs for details). * * On success the key's keyblock is stored at *RET_KEYBLOCK, and the * specific subkey is stored at *RET_FOUND_KEY. Note that we do not * return a reference in *RET_FOUND_KEY, i.e. the result must not be * freed using 'release_kbnode', and it is only valid until * *RET_KEYBLOCK is deallocated. Therefore, if RET_FOUND_KEY is not * NULL, then RET_KEYBLOCK must not be NULL. */ static int lookup (ctrl_t ctrl, getkey_ctx_t ctx, int want_secret, kbnode_t *ret_keyblock, kbnode_t *ret_found_key) { int rc; int no_suitable_key = 0; KBNODE keyblock = NULL; KBNODE found_key = NULL; unsigned int infoflags; log_assert (ret_found_key == NULL || ret_keyblock != NULL); if (ret_keyblock) *ret_keyblock = NULL; for (;;) { rc = keydb_search (ctx->kr_handle, ctx->items, ctx->nitems, NULL); if (rc) break; /* If we are iterating over the entire database, then we need to * change from KEYDB_SEARCH_MODE_FIRST, which does an implicit * reset, to KEYDB_SEARCH_MODE_NEXT, which gets the next record. */ if (ctx->nitems && ctx->items->mode == KEYDB_SEARCH_MODE_FIRST) ctx->items->mode = KEYDB_SEARCH_MODE_NEXT; rc = keydb_get_keyblock (ctx->kr_handle, &keyblock); if (rc) { log_error ("keydb_get_keyblock failed: %s\n", gpg_strerror (rc)); goto skip; } if (want_secret) { rc = agent_probe_any_secret_key (NULL, keyblock); if (gpg_err_code(rc) == GPG_ERR_NO_SECKEY) goto skip; /* No secret key available. */ if (rc) goto found; /* Unexpected error. */ } /* Warning: node flag bits 0 and 1 should be preserved by * merge_selfsigs. */ merge_selfsigs (ctrl, keyblock); found_key = finish_lookup (keyblock, ctx->req_usage, ctx->exact, want_secret, &infoflags); print_status_key_considered (keyblock, infoflags); if (found_key) { no_suitable_key = 0; goto found; } else { no_suitable_key = 1; } skip: /* Release resources and continue search. */ release_kbnode (keyblock); keyblock = NULL; /* The keyblock cache ignores the current "file position". * Thus, if we request the next result and the cache matches * (and it will since it is what we just looked for), we'll get * the same entry back! We can avoid this infinite loop by * disabling the cache. */ keydb_disable_caching (ctx->kr_handle); } found: if (rc && gpg_err_code (rc) != GPG_ERR_NOT_FOUND) log_error ("keydb_search failed: %s\n", gpg_strerror (rc)); if (!rc) { if (ret_keyblock) { *ret_keyblock = keyblock; /* Return the keyblock. */ keyblock = NULL; } } else if (gpg_err_code (rc) == GPG_ERR_NOT_FOUND && no_suitable_key) rc = want_secret? GPG_ERR_UNUSABLE_SECKEY : GPG_ERR_UNUSABLE_PUBKEY; else if (gpg_err_code (rc) == GPG_ERR_NOT_FOUND) rc = want_secret? GPG_ERR_NO_SECKEY : GPG_ERR_NO_PUBKEY; release_kbnode (keyblock); if (ret_found_key) { if (! rc) *ret_found_key = found_key; else *ret_found_key = NULL; } return rc; } /* Enumerate some secret keys (specifically, those specified with * --default-key and --try-secret-key). Use the following procedure: * * 1) Initialize a void pointer to NULL * 2) Pass a reference to this pointer to this function (content) * and provide space for the secret key (sk) * 3) Call this function as long as it does not return an error (or * until you are done). The error code GPG_ERR_EOF indicates the * end of the listing. * 4) Call this function a last time with SK set to NULL, * so that can free it's context. * * In pseudo-code: * * void *ctx = NULL; * PKT_public_key *sk = xmalloc_clear (sizeof (*sk)); * * while ((err = enum_secret_keys (&ctx, sk))) * { // Process SK. * if (done) * break; * free_public_key (sk); * sk = xmalloc_clear (sizeof (*sk)); * } * * // Release any resources used by CTX. * enum_secret_keys (&ctx, NULL); * free_public_key (sk); * * if (gpg_err_code (err) != GPG_ERR_EOF) * ; // An error occurred. */ gpg_error_t enum_secret_keys (ctrl_t ctrl, void **context, PKT_public_key *sk) { gpg_error_t err = 0; const char *name; kbnode_t keyblock; struct { int eof; int state; strlist_t sl; kbnode_t keyblock; kbnode_t node; getkey_ctx_t ctx; } *c = *context; if (!c) { /* Make a new context. */ c = xtrycalloc (1, sizeof *c); if (!c) return gpg_error_from_syserror (); *context = c; } if (!sk) { /* Free the context. */ release_kbnode (c->keyblock); getkey_end (ctrl, c->ctx); xfree (c); *context = NULL; return 0; } if (c->eof) return gpg_error (GPG_ERR_EOF); for (;;) { /* Loop until we have a keyblock. */ while (!c->keyblock) { /* Loop over the list of secret keys. */ do { name = NULL; keyblock = NULL; switch (c->state) { case 0: /* First try to use the --default-key. */ name = parse_def_secret_key (ctrl); c->state = 1; break; case 1: /* Init list of keys to try. */ c->sl = opt.secret_keys_to_try; c->state++; break; case 2: /* Get next item from list. */ if (c->sl) { name = c->sl->d; c->sl = c->sl->next; } else c->state++; break; case 3: /* Init search context to enum all secret keys. */ err = getkey_bynames (ctrl, &c->ctx, NULL, NULL, 1, &keyblock); if (err) { release_kbnode (keyblock); keyblock = NULL; getkey_end (ctrl, c->ctx); c->ctx = NULL; } c->state++; break; case 4: /* Get next item from the context. */ if (c->ctx) { err = getkey_next (ctrl, c->ctx, NULL, &keyblock); if (err) { release_kbnode (keyblock); keyblock = NULL; getkey_end (ctrl, c->ctx); c->ctx = NULL; } } else c->state++; break; default: /* No more names to check - stop. */ c->eof = 1; return gpg_error (GPG_ERR_EOF); } } while ((!name || !*name) && !keyblock); if (keyblock) c->node = c->keyblock = keyblock; else { err = getkey_byname (ctrl, NULL, NULL, name, 1, &c->keyblock); if (err) { /* getkey_byname might return a keyblock even in the error case - I have not checked. Thus better release it. */ release_kbnode (c->keyblock); c->keyblock = NULL; } else c->node = c->keyblock; } } /* Get the next key from the current keyblock. */ for (; c->node; c->node = c->node->next) { if (c->node->pkt->pkttype == PKT_PUBLIC_KEY || c->node->pkt->pkttype == PKT_PUBLIC_SUBKEY) { copy_public_key (sk, c->node->pkt->pkt.public_key); c->node = c->node->next; return 0; /* Found. */ } } /* Dispose the keyblock and continue. */ release_kbnode (c->keyblock); c->keyblock = NULL; } } gpg_error_t get_seckey_default_or_card (ctrl_t ctrl, PKT_public_key *pk, const byte *fpr_card, size_t fpr_len) { gpg_error_t err; strlist_t namelist = NULL; const char *def_secret_key = parse_def_secret_key (ctrl); if (def_secret_key) add_to_strlist (&namelist, def_secret_key); else if (fpr_card) return get_pubkey_byfprint (ctrl, pk, NULL, fpr_card, fpr_len); if (!fpr_card || (def_secret_key && def_secret_key[strlen (def_secret_key)-1] == '!')) err = key_byname (ctrl, NULL, namelist, pk, 1, 0, NULL, NULL); else { /* Default key is specified and card key is also available. */ kbnode_t k, keyblock = NULL; err = key_byname (ctrl, NULL, namelist, pk, 1, 0, &keyblock, NULL); if (!err) for (k = keyblock; k; k = k->next) { PKT_public_key *pk_candidate; char fpr[MAX_FINGERPRINT_LEN]; if (k->pkt->pkttype != PKT_PUBLIC_KEY &&k->pkt->pkttype != PKT_PUBLIC_SUBKEY) continue; pk_candidate = k->pkt->pkt.public_key; if (!pk_candidate->flags.valid) continue; if (!((pk_candidate->pubkey_usage & USAGE_MASK) & pk->req_usage)) continue; fingerprint_from_pk (pk_candidate, fpr, NULL); if (!memcmp (fpr_card, fpr, fpr_len)) { release_public_key_parts (pk); copy_public_key (pk, pk_candidate); break; } } release_kbnode (keyblock); } free_strlist (namelist); return err; } /********************************************* *********** User ID printing helpers ******* *********************************************/ /* Return a string with a printable representation of the user_id. * this string must be freed by xfree. If R_NOUID is not NULL it is * set to true if a user id was not found; otherwise to false. */ static char * get_user_id_string (ctrl_t ctrl, u32 * keyid, int mode, size_t *r_len, int *r_nouid) { user_id_db_t r; keyid_list_t a; int pass = 0; char *p; if (r_nouid) *r_nouid = 0; /* Try it two times; second pass reads from the database. */ do { for (r = user_id_db; r; r = r->next) { for (a = r->keyids; a; a = a->next) { if (a->keyid[0] == keyid[0] && a->keyid[1] == keyid[1]) { if (mode == 2) { /* An empty string as user id is possible. Make sure that the malloc allocates one byte and does not bail out. */ p = xmalloc (r->len? r->len : 1); memcpy (p, r->name, r->len); if (r_len) *r_len = r->len; } else { if (mode) p = xasprintf ("%08lX%08lX %.*s", (ulong) keyid[0], (ulong) keyid[1], r->len, r->name); else p = xasprintf ("%s %.*s", keystr (keyid), r->len, r->name); if (r_len) *r_len = strlen (p); } return p; } } } } while (++pass < 2 && !get_pubkey (ctrl, NULL, keyid)); if (mode == 2) p = xstrdup (user_id_not_found_utf8 ()); else if (mode) p = xasprintf ("%08lX%08lX [?]", (ulong) keyid[0], (ulong) keyid[1]); else p = xasprintf ("%s [?]", keystr (keyid)); if (r_nouid) *r_nouid = 1; if (r_len) *r_len = strlen (p); return p; } char * get_user_id_string_native (ctrl_t ctrl, u32 * keyid) { char *p = get_user_id_string (ctrl, keyid, 0, NULL, NULL); char *p2 = utf8_to_native (p, strlen (p), 0); xfree (p); return p2; } char * get_long_user_id_string (ctrl_t ctrl, u32 * keyid) { return get_user_id_string (ctrl, keyid, 1, NULL, NULL); } /* Please try to use get_user_byfpr instead of this one. */ char * get_user_id (ctrl_t ctrl, u32 *keyid, size_t *rn, int *r_nouid) { return get_user_id_string (ctrl, keyid, 2, rn, r_nouid); } /* Please try to use get_user_id_byfpr_native instead of this one. */ char * get_user_id_native (ctrl_t ctrl, u32 *keyid) { size_t rn; char *p = get_user_id (ctrl, keyid, &rn, NULL); char *p2 = utf8_to_native (p, rn, 0); xfree (p); return p2; } /* Return the user id for a key designated by its fingerprint, FPR, which must be MAX_FINGERPRINT_LEN bytes in size. Note: the returned string, which must be freed using xfree, may not be NUL terminated. To determine the length of the string, you must use *RN. */ char * get_user_id_byfpr (ctrl_t ctrl, const byte *fpr, size_t *rn) { user_id_db_t r; char *p; int pass = 0; /* Try it two times; second pass reads from the database. */ do { for (r = user_id_db; r; r = r->next) { keyid_list_t a; for (a = r->keyids; a; a = a->next) { if (!memcmp (a->fpr, fpr, MAX_FINGERPRINT_LEN)) { /* An empty string as user id is possible. Make sure that the malloc allocates one byte and does not bail out. */ p = xmalloc (r->len? r->len : 1); memcpy (p, r->name, r->len); *rn = r->len; return p; } } } } while (++pass < 2 && !get_pubkey_byfprint (ctrl, NULL, NULL, fpr, MAX_FINGERPRINT_LEN)); p = xstrdup (user_id_not_found_utf8 ()); *rn = strlen (p); return p; } /* Like get_user_id_byfpr, but convert the string to the native encoding. The returned string needs to be freed. Unlike get_user_id_byfpr, the returned string is NUL terminated. */ char * get_user_id_byfpr_native (ctrl_t ctrl, const byte *fpr) { size_t rn; char *p = get_user_id_byfpr (ctrl, fpr, &rn); char *p2 = utf8_to_native (p, rn, 0); xfree (p); return p2; } /* Return the database handle used by this context. The context still owns the handle. */ KEYDB_HANDLE get_ctx_handle (GETKEY_CTX ctx) { return ctx->kr_handle; } static void free_akl (struct akl *akl) { if (! akl) return; if (akl->spec) free_keyserver_spec (akl->spec); xfree (akl); } void release_akl (void) { while (opt.auto_key_locate) { struct akl *akl2 = opt.auto_key_locate; opt.auto_key_locate = opt.auto_key_locate->next; free_akl (akl2); } } /* Returns false on error. */ int parse_auto_key_locate (const char *options_arg) { char *tok; char *options, *options_buf; options = options_buf = xstrdup (options_arg); while ((tok = optsep (&options))) { struct akl *akl, *check, *last = NULL; int dupe = 0; if (tok[0] == '\0') continue; akl = xmalloc_clear (sizeof (*akl)); if (ascii_strcasecmp (tok, "clear") == 0) { xfree (akl); free_akl (opt.auto_key_locate); opt.auto_key_locate = NULL; continue; } else if (ascii_strcasecmp (tok, "nodefault") == 0) akl->type = AKL_NODEFAULT; else if (ascii_strcasecmp (tok, "local") == 0) akl->type = AKL_LOCAL; else if (ascii_strcasecmp (tok, "ldap") == 0) akl->type = AKL_LDAP; else if (ascii_strcasecmp (tok, "keyserver") == 0) akl->type = AKL_KEYSERVER; else if (ascii_strcasecmp (tok, "cert") == 0) akl->type = AKL_CERT; else if (ascii_strcasecmp (tok, "pka") == 0) akl->type = AKL_PKA; else if (ascii_strcasecmp (tok, "dane") == 0) akl->type = AKL_DANE; else if (ascii_strcasecmp (tok, "wkd") == 0) akl->type = AKL_WKD; else if ((akl->spec = parse_keyserver_uri (tok, 1))) akl->type = AKL_SPEC; else { free_akl (akl); xfree (options_buf); return 0; } /* We must maintain the order the user gave us */ for (check = opt.auto_key_locate; check; last = check, check = check->next) { /* Check for duplicates */ if (check->type == akl->type && (akl->type != AKL_SPEC || (akl->type == AKL_SPEC && strcmp (check->spec->uri, akl->spec->uri) == 0))) { dupe = 1; free_akl (akl); break; } } if (!dupe) { if (last) last->next = akl; else opt.auto_key_locate = akl; } } xfree (options_buf); return 1; } /* The list of key origins. */ static struct { const char *name; int origin; } key_origin_list[] = { { "self", KEYORG_SELF }, { "file", KEYORG_FILE }, { "url", KEYORG_URL }, { "wkd", KEYORG_WKD }, { "dane", KEYORG_DANE }, { "ks-pref", KEYORG_KS_PREF }, { "ks", KEYORG_KS }, { "unknown", KEYORG_UNKNOWN } }; /* Parse the argument for --key-origin. Return false on error. */ int parse_key_origin (char *string) { int i; char *comma; comma = strchr (string, ','); if (comma) *comma = 0; if (!ascii_strcasecmp (string, "help")) { log_info (_("valid values for option '%s':\n"), "--key-origin"); for (i=0; i < DIM (key_origin_list); i++) log_info (" %s\n", key_origin_list[i].name); g10_exit (1); } for (i=0; i < DIM (key_origin_list); i++) if (!ascii_strcasecmp (string, key_origin_list[i].name)) { opt.key_origin = key_origin_list[i].origin; xfree (opt.key_origin_url); opt.key_origin_url = NULL; if (comma && comma[1]) { opt.key_origin_url = xstrdup (comma+1); trim_spaces (opt.key_origin_url); } return 1; } if (comma) *comma = ','; return 0; } /* Return a string or "?" for the key ORIGIN. */ const char * key_origin_string (int origin) { int i; for (i=0; i < DIM (key_origin_list); i++) if (key_origin_list[i].origin == origin) return key_origin_list[i].name; return "?"; } /* Returns true if a secret key is available for the public key with key id KEYID; returns false if not. This function ignores legacy keys. Note: this is just a fast check and does not tell us whether the secret key is valid; this check merely indicates whether there is some secret key with the specified key id. */ int have_secret_key_with_kid (u32 *keyid) { gpg_error_t err; KEYDB_HANDLE kdbhd; KEYDB_SEARCH_DESC desc; kbnode_t keyblock; kbnode_t node; int result = 0; kdbhd = keydb_new (); if (!kdbhd) return 0; memset (&desc, 0, sizeof desc); desc.mode = KEYDB_SEARCH_MODE_LONG_KID; desc.u.kid[0] = keyid[0]; desc.u.kid[1] = keyid[1]; while (!result) { err = keydb_search (kdbhd, &desc, 1, NULL); if (err) break; err = keydb_get_keyblock (kdbhd, &keyblock); if (err) { log_error (_("error reading keyblock: %s\n"), gpg_strerror (err)); break; } for (node = keyblock; node; node = node->next) { /* Bit 0 of the flags is set if the search found the key using that key or subkey. Note: a search will only ever match a single key or subkey. */ if ((node->flag & 1)) { log_assert (node->pkt->pkttype == PKT_PUBLIC_KEY || node->pkt->pkttype == PKT_PUBLIC_SUBKEY); if (!agent_probe_secret_key (NULL, node->pkt->pkt.public_key)) result = 1; /* Secret key available. */ else result = 0; break; } } release_kbnode (keyblock); } keydb_release (kdbhd); return result; } diff --git a/g10/gpgcompose.c b/g10/gpgcompose.c index 094bc7614..b3f7ecdce 100644 --- a/g10/gpgcompose.c +++ b/g10/gpgcompose.c @@ -1,3087 +1,3087 @@ /* gpgcompose.c - Maintainer tool to create OpenPGP messages by hand. * Copyright (C) 2016 g10 Code GmbH * * This file is part of GnuPG. * * GnuPG is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * GnuPG is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #include #include #include "gpg.h" #include "packet.h" #include "keydb.h" #include "main.h" #include "options.h" static int do_debug; #define debug(fmt, ...) \ do { if (do_debug) log_debug (fmt, ##__VA_ARGS__); } while (0) /* --encryption, for instance, adds a filter in front of out. There is an operator (--encryption-pop) to end this. We use the following infrastructure to make it easy to pop the state. */ struct filter { void *func; void *context; int pkttype; int partial_block_mode; struct filter *next; }; /* Hack to ass CTRL to some functions. */ static ctrl_t global_ctrl; static struct filter *filters; static void filter_push (iobuf_t out, void *func, void *context, int type, int partial_block_mode) { gpg_error_t err; struct filter *f = xmalloc_clear (sizeof (*f)); f->next = filters; f->func = func; f->context = context; f->pkttype = type; f->partial_block_mode = partial_block_mode; filters = f; err = iobuf_push_filter (out, func, context); if (err) log_fatal ("Adding filter: %s\n", gpg_strerror (err)); } static void filter_pop (iobuf_t out, int expected_type) { gpg_error_t err; struct filter *f = filters; log_assert (f); if (f->pkttype != expected_type) log_fatal ("Attempted to pop a %s container, " "but current container is a %s container.\n", pkttype_str (f->pkttype), pkttype_str (expected_type)); if (f->pkttype == PKT_ENCRYPTED) { err = iobuf_pop_filter (out, f->func, f->context); if (err) log_fatal ("Popping encryption filter: %s\n", gpg_strerror (err)); } else log_fatal ("FILTERS appears to be corrupted.\n"); if (f->partial_block_mode) iobuf_set_partial_body_length_mode (out, 0); filters = f->next; xfree (f); } /* Return if CIPHER_ID is a valid cipher. */ static int valid_cipher (int cipher_id) { return (cipher_id == CIPHER_ALGO_IDEA || cipher_id == CIPHER_ALGO_3DES || cipher_id == CIPHER_ALGO_CAST5 || cipher_id == CIPHER_ALGO_BLOWFISH || cipher_id == CIPHER_ALGO_AES || cipher_id == CIPHER_ALGO_AES192 || cipher_id == CIPHER_ALGO_AES256 || cipher_id == CIPHER_ALGO_TWOFISH || cipher_id == CIPHER_ALGO_CAMELLIA128 || cipher_id == CIPHER_ALGO_CAMELLIA192 || cipher_id == CIPHER_ALGO_CAMELLIA256); } /* Parse a session key encoded as a string of the form x:HEXDIGITS where x is the algorithm id. (This is the format emitted by gpg --show-session-key.) */ struct session_key { int algo; int keylen; char *key; }; static struct session_key parse_session_key (const char *option, char *p, int require_algo) { char *tail; struct session_key sk; memset (&sk, 0, sizeof (sk)); /* Check for the optional "cipher-id:" at the start of the string. */ errno = 0; sk.algo = strtol (p, &tail, 10); if (! errno && tail && *tail == ':') { if (! valid_cipher (sk.algo)) log_info ("%s: %d is not a known cipher (but using anyways)\n", option, sk.algo); p = tail + 1; } else if (require_algo) log_fatal ("%s: Session key must have the form algo:HEXCHARACTERS.\n", option); else sk.algo = 0; /* Ignore a leading 0x. */ if (p[0] == '0' && p[1] == 'x') p += 2; if (strlen (p) % 2 != 0) log_fatal ("%s: session key must consist of an even number of hexadecimal characters.\n", option); sk.keylen = strlen (p) / 2; sk.key = xmalloc (sk.keylen); if (hex2bin (p, sk.key, sk.keylen) == -1) log_fatal ("%s: Session key must only contain hexadecimal characters\n", option); return sk; } /* A callback. OPTION_STR is the option that was matched. ARGC is the number of arguments following the option and ARGV are those arguments. (Thus, argv[0] is the first string following the option and argv[-1] is the option.) COOKIE is the opaque value passed to process_options. */ typedef int (*option_prcessor_t) (const char *option_str, int argc, char *argv[], void *cookie); struct option { /* The option that this matches. This must start with "--" or be the empty string. The empty string matches bare arguments. */ const char *option; /* The function to call to process this option. */ option_prcessor_t func; /* Documentation. */ const char *help; }; /* Merge two lists of options. Note: this makes a shallow copy! The caller must xfree() the result. */ static struct option * merge_options (struct option a[], struct option b[]) { int i, j; struct option *c; for (i = 0; a[i].option; i ++) ; for (j = 0; b[j].option; j ++) ; c = xmalloc ((i + j + 1) * sizeof (struct option)); memcpy (c, a, i * sizeof (struct option)); memcpy (&c[i], b, j * sizeof (struct option)); c[i + j].option = NULL; if (a[i].help && b[j].help) c[i + j].help = xasprintf ("%s\n\n%s", a[i].help, b[j].help); else if (a[i].help) c[i + j].help = a[i].help; else if (b[j].help) c[i + j].help = b[j].help; return c; } /* Returns whether ARG is an option. All options start with --. */ static int is_option (const char *arg) { return arg[0] == '-' && arg[1] == '-'; } /* OPTIONS is a NULL terminated array of struct option:s. Finds the entry that is the same as ARG. Returns -1 if no entry is found. The empty string option matches bare arguments. */ static int match_option (const struct option options[], const char *arg) { int i; int bare_arg = ! is_option (arg); for (i = 0; options[i].option; i ++) if ((! bare_arg && strcmp (options[i].option, arg) == 0) /* Non-options match the empty string. */ || (bare_arg && options[i].option[0] == '\0')) return i; return -1; } static void show_help (struct option options[]) { int i; int max_length = 0; int space; for (i = 0; options[i].option; i ++) { const char *option = options[i].option[0] ? options[i].option : "ARG"; int l = strlen (option); if (l > max_length) max_length = l; } space = 72 - (max_length + 2); if (space < 40) space = 40; for (i = 0; ; i ++) { const char *option = options[i].option; const char *help = options[i].help; int l; int j; char *tmp; char *formatted; char *p; char *newline; if (! option && ! help) break; if (option) { const char *o = option[0] ? option : "ARG"; l = strlen (o); fprintf (stdout, "%s", o); } if (! help) { fputc ('\n', stdout); continue; } if (option) for (j = l; j < max_length + 2; j ++) fputc (' ', stdout); #define BOLD_START "\033[1m" #define NORMAL_RESTORE "\033[0m" #define BOLD(x) BOLD_START x NORMAL_RESTORE if (! option || options[i].func) tmp = (char *) help; else tmp = xasprintf ("%s " BOLD("(Unimplemented.)"), help); if (! option) space = 72; formatted = format_text (tmp, space, space + 4); if (!formatted) abort (); if (tmp != help) xfree (tmp); if (! option) { printf ("\n%s\n", formatted); break; } for (p = formatted; p && *p; p = (*newline == '\0') ? newline : newline + 1) { newline = strchr (p, '\n'); if (! newline) newline = &p[strlen (p)]; l = (size_t) newline - (size_t) p; if (p != formatted) for (j = 0; j < max_length + 2; j ++) fputc (' ', stdout); fwrite (p, l, 1, stdout); fputc ('\n', stdout); } xfree (formatted); } } /* Return value is number of consumed argv elements. */ static int process_options (const char *parent_option, struct option break_options[], struct option local_options[], void *lcookie, struct option global_options[], void *gcookie, int argc, char *argv[]) { int i; for (i = 0; i < argc; i ++) { int j; struct option *option; void *cookie; int bare_arg; option_prcessor_t func; int consumed; if (break_options) { j = match_option (break_options, argv[i]); if (j != -1) /* Match. Break out. */ return i; } j = match_option (local_options, argv[i]); if (j == -1) { if (global_options) j = match_option (global_options, argv[i]); if (j == -1) { if (strcmp (argv[i], "--help") == 0) { if (! global_options) show_help (local_options); else { struct option *combined = merge_options (local_options, global_options); show_help (combined); xfree (combined); } g10_exit (0); } if (parent_option) log_fatal ("%s: Unknown option: %s\n", parent_option, argv[i]); else log_fatal ("Unknown option: %s\n", argv[i]); } option = &global_options[j]; cookie = gcookie; } else { option = &local_options[j]; cookie = lcookie; } bare_arg = strcmp (option->option, "") == 0; func = option->func; if (! func) { if (bare_arg) log_fatal ("Bare arguments unimplemented.\n"); else log_fatal ("Unimplemented option: %s\n", option->option); } consumed = func (bare_arg ? parent_option : argv[i], argc - i - !bare_arg, &argv[i + !bare_arg], cookie); i += consumed; if (bare_arg) i --; } return i; } /* The keys, subkeys, user ids and user attributes in the order that they were added. */ PACKET components[20]; /* The number of components. */ int ncomponents; static int add_component (int pkttype, void *component) { int i = ncomponents ++; log_assert (i < sizeof (components) / sizeof (components[0])); log_assert (pkttype == PKT_PUBLIC_KEY || pkttype == PKT_PUBLIC_SUBKEY || pkttype == PKT_SECRET_KEY || pkttype == PKT_SECRET_SUBKEY || pkttype == PKT_USER_ID || pkttype == PKT_ATTRIBUTE); components[i].pkttype = pkttype; components[i].pkt.generic = component; return i; } static void dump_component (PACKET *pkt) { struct kbnode_struct kbnode; if (! do_debug) return; memset (&kbnode, 0, sizeof (kbnode)); kbnode.pkt = pkt; dump_kbnode (&kbnode); } /* Returns the first primary key in COMPONENTS or NULL if there is none. */ static PKT_public_key * primary_key (void) { int i; for (i = 0; i < ncomponents; i ++) if (components[i].pkttype == PKT_PUBLIC_KEY) return components[i].pkt.public_key; return NULL; } /* The last session key (updated when adding a SK-ESK, PK-ESK or SED packet. */ static DEK session_key; static int user_id (const char *option, int argc, char *argv[], void *cookie); static int public_key (const char *option, int argc, char *argv[], void *cookie); static int sk_esk (const char *option, int argc, char *argv[], void *cookie); static int pk_esk (const char *option, int argc, char *argv[], void *cookie); static int encrypted (const char *option, int argc, char *argv[], void *cookie); static int encrypted_pop (const char *option, int argc, char *argv[], void *cookie); static int literal (const char *option, int argc, char *argv[], void *cookie); static int signature (const char *option, int argc, char *argv[], void *cookie); static int copy (const char *option, int argc, char *argv[], void *cookie); static struct option major_options[] = { { "--user-id", user_id, "Create a user id packet." }, { "--public-key", public_key, "Create a public key packet." }, { "--private-key", NULL, "Create a private key packet." }, { "--public-subkey", public_key, "Create a subkey packet." }, { "--private-subkey", NULL, "Create a private subkey packet." }, { "--sk-esk", sk_esk, "Create a symmetric-key encrypted session key packet." }, { "--pk-esk", pk_esk, "Create a public-key encrypted session key packet." }, { "--encrypted", encrypted, "Create a symmetrically encrypted data packet." }, { "--encrypted-mdc", encrypted, "Create a symmetrically encrypted and integrity protected data packet." }, { "--encrypted-pop", encrypted_pop, "Pop the most recent encryption container started by either" " --encrypted or --encrypted-mdc." }, { "--compressed", NULL, "Create a compressed data packet." }, { "--literal", literal, "Create a literal (plaintext) data packet." }, { "--signature", signature, "Create a signature packet." }, { "--onepass-sig", NULL, "Create a one-pass signature packet." }, { "--copy", copy, "Copy the specified file." }, { NULL, NULL, "To get more information about a given command, use:\n\n" " $ gpgcompose --command --help to list a command's options."}, }; static struct option global_options[] = { { NULL, NULL, NULL }, }; /* Make our lives easier and use a static limit for the user name. 10k is way more than enough anyways... */ const int user_id_max_len = 10 * 1024; static int user_id_name (const char *option, int argc, char *argv[], void *cookie) { PKT_user_id *uid = cookie; int l; if (argc == 0) log_fatal ("Usage: %s USER_ID\n", option); if (uid->len) log_fatal ("Attempt to set user id multiple times.\n"); l = strlen (argv[0]); if (l > user_id_max_len) log_fatal ("user id too long (max: %d)\n", user_id_max_len); memcpy (uid->name, argv[0], l); uid->name[l] = 0; uid->len = l; return 1; } static struct option user_id_options[] = { { "", user_id_name, "Set the user id. This is usually in the format " "\"Name (comment) \"" }, { NULL, NULL, "Example:\n\n" " $ gpgcompose --user-id \"USERID\" | " GPG_NAME " --list-packets" } }; static int user_id (const char *option, int argc, char *argv[], void *cookie) { iobuf_t out = cookie; gpg_error_t err; PKT_user_id *uid = xmalloc_clear (sizeof (*uid) + user_id_max_len); int c = add_component (PKT_USER_ID, uid); int processed; processed = process_options (option, major_options, user_id_options, uid, global_options, NULL, argc, argv); if (! uid->len) log_fatal ("%s: user id not given", option); err = build_packet (out, &components[c]); if (err) log_fatal ("Serializing user id packet: %s\n", gpg_strerror (err)); debug ("Wrote user id packet:\n"); dump_component (&components[c]); return processed; } static int pk_search_terms (const char *option, int argc, char *argv[], void *cookie) { gpg_error_t err; KEYDB_HANDLE hd; KEYDB_SEARCH_DESC desc; kbnode_t kb; PKT_public_key *pk = cookie; PKT_public_key *pk_ref; int i; if (argc == 0) log_fatal ("Usage: %s KEYID\n", option); if (pk->pubkey_algo) log_fatal ("%s: multiple keys provided\n", option); err = classify_user_id (argv[0], &desc, 0); if (err) log_fatal ("search terms '%s': %s\n", argv[0], gpg_strerror (err)); hd = keydb_new (); err = keydb_search (hd, &desc, 1, NULL); if (err) log_fatal ("looking up '%s': %s\n", argv[0], gpg_strerror (err)); err = keydb_get_keyblock (hd, &kb); if (err) log_fatal ("retrieving keyblock for '%s': %s\n", argv[0], gpg_strerror (err)); keydb_release (hd); pk_ref = kb->pkt->pkt.public_key; /* Copy the timestamp (if not already set), algo and public key parameters. */ if (! pk->timestamp) pk->timestamp = pk_ref->timestamp; pk->pubkey_algo = pk_ref->pubkey_algo; for (i = 0; i < pubkey_get_npkey (pk->pubkey_algo); i ++) pk->pkey[i] = gcry_mpi_copy (pk_ref->pkey[i]); release_kbnode (kb); return 1; } static int pk_timestamp (const char *option, int argc, char *argv[], void *cookie) { PKT_public_key *pk = cookie; char *tail = NULL; if (argc == 0) log_fatal ("Usage: %s TIMESTAMP\n", option); errno = 0; pk->timestamp = parse_timestamp (argv[0], &tail); if (errno || (tail && *tail)) log_fatal ("Invalid value passed to %s (%s)\n", option, argv[0]); return 1; } #define TIMESTAMP_HELP \ "Either as seconds since the epoch or as an ISO 8601 formatted " \ "string (yyyymmddThhmmss, where the T is a literal)." static struct option pk_options[] = { { "--timestamp", pk_timestamp, "The creation time. " TIMESTAMP_HELP }, { "", pk_search_terms, "The key to copy the creation time and public key parameters from." }, { NULL, NULL, "Example:\n\n" " $ gpgcompose --public-key $KEYID --user-id \"USERID\" \\\n" " | " GPG_NAME " --list-packets" } }; static int public_key (const char *option, int argc, char *argv[], void *cookie) { gpg_error_t err; iobuf_t out = cookie; PKT_public_key *pk; int c; int processed; int t = (strcmp (option, "--public-key") == 0 ? PKT_PUBLIC_KEY : PKT_PUBLIC_SUBKEY); (void) option; pk = xmalloc_clear (sizeof (*pk)); pk->version = 4; c = add_component (t, pk); processed = process_options (option, major_options, pk_options, pk, global_options, NULL, argc, argv); if (! pk->pubkey_algo) log_fatal ("%s: key to extract public key parameters from not given", option); /* Clear the keyid in case we updated one of the relevant fields after accessing it. */ pk->keyid[0] = pk->keyid[1] = 0; err = build_packet (out, &components[c]); if (err) log_fatal ("serializing %s packet: %s\n", t == PKT_PUBLIC_KEY ? "public key" : "subkey", gpg_strerror (err)); debug ("Wrote %s packet:\n", t == PKT_PUBLIC_KEY ? "public key" : "subkey"); dump_component (&components[c]); return processed; } struct signinfo { /* Key with which to sign. */ kbnode_t issuer_kb; PKT_public_key *issuer_pk; /* Overrides the issuer's key id. */ u32 issuer_keyid[2]; /* Sets the issuer's keyid to the primary key's key id. */ int issuer_keyid_self; /* Key to sign. */ PKT_public_key *pk; /* Subkey to sign. */ PKT_public_key *sk; /* User id to sign. */ PKT_user_id *uid; int class; int digest_algo; u32 timestamp; u32 key_expiration; byte *cipher_algorithms; int cipher_algorithms_len; byte *digest_algorithms; int digest_algorithms_len; byte *compress_algorithms; int compress_algorithms_len; u32 expiration; int exportable_set; int exportable; int revocable_set; int revocable; int trust_level_set; byte trust_args[2]; char *trust_scope; struct revocation_key *revocation_key; int nrevocation_keys; struct notation *notations; byte *key_server_preferences; int key_server_preferences_len; char *key_server; int primary_user_id_set; int primary_user_id; char *policy_uri; byte *key_flags; int key_flags_len; char *signers_user_id; byte reason_for_revocation_code; char *reason_for_revocation; byte *features; int features_len; /* Whether to corrupt the signature. */ int corrupt; }; static int sig_issuer (const char *option, int argc, char *argv[], void *cookie) { gpg_error_t err; KEYDB_HANDLE hd; KEYDB_SEARCH_DESC desc; struct signinfo *si = cookie; if (argc == 0) log_fatal ("Usage: %s KEYID\n", option); if (si->issuer_pk) log_fatal ("%s: multiple keys provided\n", option); err = classify_user_id (argv[0], &desc, 0); if (err) log_fatal ("search terms '%s': %s\n", argv[0], gpg_strerror (err)); hd = keydb_new (); err = keydb_search (hd, &desc, 1, NULL); if (err) log_fatal ("looking up '%s': %s\n", argv[0], gpg_strerror (err)); err = keydb_get_keyblock (hd, &si->issuer_kb); if (err) log_fatal ("retrieving keyblock for '%s': %s\n", argv[0], gpg_strerror (err)); keydb_release (hd); si->issuer_pk = si->issuer_kb->pkt->pkt.public_key; return 1; } static int sig_issuer_keyid (const char *option, int argc, char *argv[], void *cookie) { gpg_error_t err; KEYDB_SEARCH_DESC desc; struct signinfo *si = cookie; if (argc == 0) log_fatal ("Usage: %s KEYID|self\n", option); if (si->issuer_keyid[0] || si->issuer_keyid[1] || si->issuer_keyid_self) log_fatal ("%s given multiple times.\n", option); if (strcasecmp (argv[0], "self") == 0) { si->issuer_keyid_self = 1; return 1; } err = classify_user_id (argv[0], &desc, 0); if (err) log_fatal ("search terms '%s': %s\n", argv[0], gpg_strerror (err)); if (desc.mode != KEYDB_SEARCH_MODE_LONG_KID) log_fatal ("%s is not a valid long key id.\n", argv[0]); keyid_copy (si->issuer_keyid, desc.u.kid); return 1; } static int sig_pk (const char *option, int argc, char *argv[], void *cookie) { struct signinfo *si = cookie; int i; char *tail = NULL; if (argc == 0) log_fatal ("Usage: %s COMPONENT_INDEX\n", option); errno = 0; i = strtoul (argv[0], &tail, 10); if (errno || (tail && *tail)) log_fatal ("Invalid value passed to %s (%s)\n", option, argv[0]); if (i >= ncomponents) log_fatal ("%d: No such component (have %d components so far)\n", i, ncomponents); if (! (components[i].pkttype == PKT_PUBLIC_KEY || components[i].pkttype == PKT_PUBLIC_SUBKEY)) log_fatal ("Component %d is not a public key or a subkey.", i); if (strcmp (option, "--pk") == 0) { if (si->pk) log_fatal ("%s already given.\n", option); si->pk = components[i].pkt.public_key; } else if (strcmp (option, "--sk") == 0) { if (si->sk) log_fatal ("%s already given.\n", option); si->sk = components[i].pkt.public_key; } else log_fatal ("Cannot handle %s\n", option); return 1; } static int sig_user_id (const char *option, int argc, char *argv[], void *cookie) { struct signinfo *si = cookie; int i; char *tail = NULL; if (argc == 0) log_fatal ("Usage: %s COMPONENT_INDEX\n", option); if (si->uid) log_fatal ("%s already given.\n", option); errno = 0; i = strtoul (argv[0], &tail, 10); if (errno || (tail && *tail)) log_fatal ("Invalid value passed to %s (%s)\n", option, argv[0]); if (i >= ncomponents) log_fatal ("%d: No such component (have %d components so far)\n", i, ncomponents); if (! (components[i].pkttype != PKT_USER_ID || components[i].pkttype == PKT_ATTRIBUTE)) log_fatal ("Component %d is not a public key or a subkey.", i); si->uid = components[i].pkt.user_id; return 1; } static int sig_class (const char *option, int argc, char *argv[], void *cookie) { struct signinfo *si = cookie; int i; char *tail = NULL; if (argc == 0) log_fatal ("Usage: %s CLASS\n", option); errno = 0; i = strtoul (argv[0], &tail, 0); if (errno || (tail && *tail)) log_fatal ("Invalid value passed to %s (%s)\n", option, argv[0]); si->class = i; return 1; } static int sig_digest (const char *option, int argc, char *argv[], void *cookie) { struct signinfo *si = cookie; int i; char *tail = NULL; if (argc == 0) log_fatal ("Usage: %s DIGEST_ALGO\n", option); errno = 0; i = strtoul (argv[0], &tail, 10); if (errno || (tail && *tail)) log_fatal ("Invalid value passed to %s (%s)\n", option, argv[0]); si->digest_algo = i; return 1; } static int sig_timestamp (const char *option, int argc, char *argv[], void *cookie) { struct signinfo *si = cookie; char *tail = NULL; if (argc == 0) log_fatal ("Usage: %s TIMESTAMP\n", option); errno = 0; si->timestamp = parse_timestamp (argv[0], &tail); if (errno || (tail && *tail)) log_fatal ("Invalid value passed to %s (%s)\n", option, argv[0]); return 1; } static int sig_expiration (const char *option, int argc, char *argv[], void *cookie) { struct signinfo *si = cookie; int is_expiration = strcmp (option, "--expiration") == 0; u32 *i = is_expiration ? &si->expiration : &si->key_expiration; if (! is_expiration) log_assert (strcmp (option, "--key-expiration") == 0); if (argc == 0) log_fatal ("Usage: %s DURATION\n", option); *i = parse_expire_string (argv[0]); if (*i == (u32)-1) log_fatal ("Invalid value passed to %s (%s)\n", option, argv[0]); return 1; } static int sig_int_list (const char *option, int argc, char *argv[], void *cookie) { struct signinfo *si = cookie; int nvalues = 1; char *values = xmalloc (nvalues * sizeof (values[0])); char *tail = argv[0]; int i; byte **a; int *n; if (argc == 0) log_fatal ("Usage: %s VALUE[,VALUE...]\n", option); for (i = 0; tail && *tail; i ++) { int v; char *old_tail = tail; errno = 0; v = strtol (tail, &tail, 0); if (errno || old_tail == tail || (tail && !(*tail == ',' || *tail == 0))) log_fatal ("Invalid value passed to %s (%s). " "Expected a list of comma separated numbers\n", option, argv[0]); if (! (0 <= v && v <= 255)) log_fatal ("%s: %d is out of range (Expected: 0-255)\n", option, v); if (i == nvalues) { nvalues *= 2; values = xrealloc (values, nvalues * sizeof (values[0])); } values[i] = v; if (*tail == ',') tail ++; else log_assert (*tail == 0); } if (strcmp ("--cipher-algos", option) == 0) { a = &si->cipher_algorithms; n = &si->cipher_algorithms_len; } else if (strcmp ("--digest-algos", option) == 0) { a = &si->digest_algorithms; n = &si->digest_algorithms_len; } else if (strcmp ("--compress-algos", option) == 0) { a = &si->compress_algorithms; n = &si->compress_algorithms_len; } else log_fatal ("Cannot handle %s\n", option); if (*a) log_fatal ("Option %s given multiple times.\n", option); *a = values; *n = i; return 1; } static int sig_flag (const char *option, int argc, char *argv[], void *cookie) { struct signinfo *si = cookie; int range[2] = {0, 255}; char *tail; int v; if (strcmp (option, "--primary-user-id") == 0) range[1] = 1; if (argc <= 1) { if (range[0] == 0 && range[1] == 1) log_fatal ("Usage: %s 0|1\n", option); else log_fatal ("Usage: %s %d-%d\n", option, range[0], range[1]); } errno = 0; v = strtol (argv[0], &tail, 0); if (errno || (tail && *tail) || !(range[0] <= v && v <= range[1])) log_fatal ("Invalid value passed to %s (%s). Expected %d-%d\n", option, argv[0], range[0], range[1]); if (strcmp (option, "--exportable") == 0) { si->exportable_set = 1; si->exportable = v; } else if (strcmp (option, "--revocable") == 0) { si->revocable_set = 1; si->revocable = v; } else if (strcmp (option, "--primary-user-id") == 0) { si->primary_user_id_set = 1; si->primary_user_id = v; } else log_fatal ("Cannot handle %s\n", option); return 1; } static int sig_trust_level (const char *option, int argc, char *argv[], void *cookie) { struct signinfo *si = cookie; int i; char *tail; if (argc <= 1) log_fatal ("Usage: %s DEPTH TRUST_AMOUNT\n", option); for (i = 0; i < sizeof (si->trust_args) / sizeof (si->trust_args[0]); i ++) { int v; errno = 0; v = strtol (argv[i], &tail, 0); if (errno || (tail && *tail) || !(0 <= v && v <= 255)) log_fatal ("Invalid value passed to %s (%s). Expected 0-255\n", option, argv[i]); si->trust_args[i] = v; } si->trust_level_set = 1; return 2; } static int sig_string_arg (const char *option, int argc, char *argv[], void *cookie) { struct signinfo *si = cookie; char *p = argv[0]; char **s; if (argc == 0) log_fatal ("Usage: %s STRING\n", option); if (strcmp (option, "--trust-scope") == 0) s = &si->trust_scope; else if (strcmp (option, "--key-server") == 0) s = &si->key_server; else if (strcmp (option, "--signers-user-id") == 0) s = &si->signers_user_id; else if (strcmp (option, "--policy-uri") == 0) s = &si->policy_uri; else log_fatal ("Cannot handle %s\n", option); if (*s) log_fatal ("%s already given.\n", option); *s = xstrdup (p); return 1; } static int sig_revocation_key (const char *option, int argc, char *argv[], void *cookie) { gpg_error_t err; struct signinfo *si = cookie; int v; char *tail; PKT_public_key pk; struct revocation_key *revkey; if (argc < 2) log_fatal ("Usage: %s CLASS KEYID\n", option); memset (&pk, 0, sizeof (pk)); errno = 0; v = strtol (argv[0], &tail, 16); if (errno || (tail && *tail) || !(0 <= v && v <= 255)) log_fatal ("%s: Invalid class value (%s). Expected 0-255\n", option, argv[0]); pk.req_usage = PUBKEY_USAGE_SIG; err = get_pubkey_byname (NULL, NULL, &pk, argv[1], NULL, NULL, 1, 1); if (err) log_fatal ("looking up key %s: %s\n", argv[1], gpg_strerror (err)); si->nrevocation_keys ++; si->revocation_key = xrealloc (si->revocation_key, si->nrevocation_keys * sizeof (*si->revocation_key)); revkey = &si->revocation_key[si->nrevocation_keys - 1]; revkey->class = v; revkey->algid = pk.pubkey_algo; fingerprint_from_pk (&pk, revkey->fpr, NULL); release_public_key_parts (&pk); return 2; } static int sig_notation (const char *option, int argc, char *argv[], void *cookie) { struct signinfo *si = cookie; int is_blob = strcmp (option, "--notation") != 0; struct notation *notation; char *p = argv[0]; int p_free = 0; char *data; int data_size; int data_len; if (argc == 0) log_fatal ("Usage: %s [!<]name=value\n", option); if ((p[0] == '!' && p[1] == '<') || p[0] == '<') /* Read from a file. */ { char *filename = NULL; iobuf_t in; int prefix; if (p[0] == '<') p ++; else { /* Remove the '<', which string_to_notation does not understand, and preserve the '!'. */ p = xstrdup (&p[1]); p_free = 1; p[0] = '!'; } filename = strchr (p, '='); if (! filename) log_fatal ("No value specified. Usage: %s [!<]name=value\n", option); filename ++; prefix = (size_t) filename - (size_t) p; errno = 0; in = iobuf_open (filename); if (! in) log_fatal ("Opening '%s': %s\n", filename, errno ? strerror (errno): "unknown error"); /* A notation can be at most about a few dozen bytes short of 64k. Since this is relatively small, we just allocate that much instead of trying to dynamically size a buffer. */ data_size = 64 * 1024; data = xmalloc (data_size); log_assert (prefix <= data_size); memcpy (data, p, prefix); data_len = iobuf_read (in, &data[prefix], data_size - prefix - 1); if (data_len == -1) /* EOF => 0 bytes read. */ data_len = 0; if (data_len == data_size - prefix - 1) /* Technically, we should do another read and check for EOF, but what's one byte more or less? */ log_fatal ("Notation data doesn't fit in the packet.\n"); iobuf_close (in); /* NUL terminate it. */ data[prefix + data_len] = 0; if (p_free) xfree (p); p = data; p_free = 1; data = &p[prefix]; if (is_blob) p[prefix - 1] = 0; } else if (is_blob) { data = strchr (p, '='); if (! data) { data = p; data_len = 0; } else { p = xstrdup (p); p_free = 1; data = strchr (p, '='); log_assert (data); /* NUL terminate the name. */ *data = 0; data ++; data_len = strlen (data); } } if (is_blob) notation = blob_to_notation (p, data, data_len); else notation = string_to_notation (p, 1); if (! notation) log_fatal ("creating notation: an unknown error occurred.\n"); notation->next = si->notations; si->notations = notation; if (p_free) xfree (p); return 1; } static int sig_big_endian_arg (const char *option, int argc, char *argv[], void *cookie) { struct signinfo *si = cookie; char *p = argv[0]; int i; int l; char *bytes; if (argc == 0) log_fatal ("Usage: %s HEXDIGITS\n", option); /* Skip a leading "0x". */ if (p[0] == '0' && p[1] == 'x') p += 2; for (i = 0; i < strlen (p); i ++) if (!hexdigitp (&p[i])) log_fatal ("%s: argument ('%s') must consist of hex digits.\n", option, p); if (strlen (p) % 2 != 0) log_fatal ("%s: argument ('%s') must contain an even number of hex digits.\n", option, p); l = strlen (p) / 2; bytes = xmalloc (l); hex2bin (p, bytes, l); if (strcmp (option, "--key-server-preferences") == 0) { if (si->key_server_preferences) log_fatal ("%s given multiple times.\n", option); si->key_server_preferences = bytes; si->key_server_preferences_len = l; } else if (strcmp (option, "--key-flags") == 0) { if (si->key_flags) log_fatal ("%s given multiple times.\n", option); si->key_flags = bytes; si->key_flags_len = l; } else if (strcmp (option, "--features") == 0) { if (si->features) log_fatal ("%s given multiple times.\n", option); si->features = bytes; si->features_len = l; } else log_fatal ("Cannot handle %s\n", option); return 1; } static int sig_reason_for_revocation (const char *option, int argc, char *argv[], void *cookie) { struct signinfo *si = cookie; int v; char *tail; if (argc < 2) log_fatal ("Usage: %s REASON_CODE REASON_STRING\n", option); errno = 0; v = strtol (argv[0], &tail, 16); if (errno || (tail && *tail) || !(0 <= v && v <= 255)) log_fatal ("%s: Invalid reason code (%s). Expected 0-255\n", option, argv[0]); if (si->reason_for_revocation) log_fatal ("%s given multiple times.\n", option); si->reason_for_revocation_code = v; si->reason_for_revocation = xstrdup (argv[1]); return 2; } static int sig_corrupt (const char *option, int argc, char *argv[], void *cookie) { struct signinfo *si = cookie; (void) option; (void) argc; (void) argv; (void) cookie; si->corrupt = 1; return 0; } static struct option sig_options[] = { { "--issuer", sig_issuer, "The key to use to generate the signature."}, { "--issuer-keyid", sig_issuer_keyid, "Set the issuer's key id. This is useful for creating a " "self-signature. As a special case, the value \"self\" refers " "to the primary key's key id. " "(RFC 4880, Section 5.2.3.5)" }, { "--pk", sig_pk, "The primary keyas an index into the components (keys and uids) " "created so far where the first component has the index 0." }, { "--sk", sig_pk, "The subkey as an index into the components (keys and uids) created " "so far where the first component has the index 0. Only needed for " "0x18, 0x19, and 0x28 signatures." }, { "--user-id", sig_user_id, "The user id as an index into the components (keys and uids) created " "so far where the first component has the index 0. Only needed for " "0x10-0x13 and 0x30 signatures." }, { "--class", sig_class, "The signature's class. Valid values are " "0x10-0x13 (user id and primary-key certification), " "0x18 (subkey binding), " "0x19 (primary key binding), " "0x1f (direct primary key signature), " "0x20 (key revocation), " "0x28 (subkey revocation), and " "0x30 (certification revocation)." }, { "--digest", sig_digest, "The digest algorithm" }, { "--timestamp", sig_timestamp, "The signature's creation time. " TIMESTAMP_HELP " 0 means now. " "(RFC 4880, Section 5.2.3.4)" }, { "--key-expiration", sig_expiration, "The number of days until the associated key expires. To specify " "seconds, prefix the value with \"seconds=\". It is also possible " "to use 'y', 'm' and 'w' as simple multipliers. For instance, 2y " "means 2 years, etc. " "(RFC 4880, Section 5.2.3.6)" }, { "--cipher-algos", sig_int_list, "A comma separated list of the preferred cipher algorithms (identified by " "their number, see RFC 4880, Section 9). " "(RFC 4880, Section 5.2.3.7)" }, { "--digest-algos", sig_int_list, "A comma separated list of the preferred algorithms (identified by " "their number, see RFC 4880, Section 9). " "(RFC 4880, Section 5.2.3.8)" }, { "--compress-algos", sig_int_list, "A comma separated list of the preferred algorithms (identified by " "their number, see RFC 4880, Section 9)." "(RFC 4880, Section 5.2.3.9)" }, { "--expiration", sig_expiration, "The number of days until the signature expires. To specify seconds, " "prefix the value with \"seconds=\". It is also possible to use 'y', " "'m' and 'w' as simple multipliers. For instance, 2y means 2 years, " "etc. " "(RFC 4880, Section 5.2.3.10)" }, { "--exportable", sig_flag, "Mark this signature as exportable (1) or local (0). " "(RFC 4880, Section 5.2.3.11)" }, { "--revocable", sig_flag, "Mark this signature as revocable (1, revocations are ignored) " "or non-revocable (0). " "(RFC 4880, Section 5.2.3.12)" }, { "--trust-level", sig_trust_level, "Set the trust level. This takes two integer arguments (0-255): " "the trusted-introducer level and the degree of trust. " "(RFC 4880, Section 5.2.3.13.)" }, { "--trust-scope", sig_string_arg, "A regular expression that limits the scope of --trust-level. " "(RFC 4880, Section 5.2.3.14.)" }, { "--revocation-key", sig_revocation_key, "Specify a designated revoker. Takes two arguments: the class " "(normally 0x80 or 0xC0 (sensitive)) and the key id of the " "designatured revoker. May be given multiple times. " "(RFC 4880, Section 5.2.3.15)" }, { "--notation", sig_notation, "Add a human-readable notation of the form \"[!<]name=value\" where " "\"!\" means that the critical flag should be set and \"<\" means " "that VALUE is a file to read the data from. " "(RFC 4880, Section 5.2.3.16)" }, { "--notation-binary", sig_notation, "Add a binary notation of the form \"[!<]name=value\" where " "\"!\" means that the critical flag should be set and \"<\" means " "that VALUE is a file to read the data from. " "(RFC 4880, Section 5.2.3.16)" }, { "--key-server-preferences", sig_big_endian_arg, "Big-endian number encoding the keyserver preferences. " "(RFC 4880, Section 5.2.3.17)" }, { "--key-server", sig_string_arg, "The preferred keyserver. (RFC 4880, Section 5.2.3.18)" }, { "--primary-user-id", sig_flag, "Sets the primary user id flag. (RFC 4880, Section 5.2.3.19)" }, { "--policy-uri", sig_string_arg, "URI of a document that describes the issuer's signing policy. " "(RFC 4880, Section 5.2.3.20)" }, { "--key-flags", sig_big_endian_arg, "Big-endian number encoding the key flags. " "(RFC 4880, Section 5.2.3.21)" }, { "--signers-user-id", sig_string_arg, "The user id (as a string) responsible for the signing. " "(RFC 4880, Section 5.2.3.22)" }, { "--reason-for-revocation", sig_reason_for_revocation, "Takes two arguments: a reason for revocation code and a " "user-provided string. " "(RFC 4880, Section 5.2.3.23)" }, { "--features", sig_big_endian_arg, "Big-endian number encoding the feature flags. " "(RFC 4880, Section 5.2.3.24)" }, { "--signature-target", NULL, "Takes three arguments: the target signature's public key algorithm " " (as an integer), the hash algorithm (as an integer) and the hash " " (as a hexadecimal string). " "(RFC 4880, Section 5.2.3.25)" }, { "--embedded-signature", NULL, "An embedded signature. This must be immediately followed by a " "signature packet (created using --signature ...) or a filename " "containing the packet." "(RFC 4880, Section 5.2.3.26)" }, { "--hashed", NULL, "The following attributes will be placed in the hashed area of " "the signature. (This is the default and it reset at the end of" "each signature.)" }, { "--unhashed", NULL, "The following attributes will be placed in the unhashed area of " "the signature (and thus not integrity protected)." }, { "--corrupt", sig_corrupt, "Corrupt the signature." }, { NULL, NULL, "Example:\n\n" " $ gpgcompose --public-key $KEYID --user-id USERID \\\n" " --signature --class 0x10 --issuer $KEYID --issuer-keyid self \\\n" " | " GPG_NAME " --list-packets"} }; static int mksubpkt_callback (PKT_signature *sig, void *cookie) { struct signinfo *si = cookie; int i; if (si->key_expiration) { char buf[4]; buf[0] = (si->key_expiration >> 24) & 0xff; buf[1] = (si->key_expiration >> 16) & 0xff; buf[2] = (si->key_expiration >> 8) & 0xff; buf[3] = si->key_expiration & 0xff; build_sig_subpkt (sig, SIGSUBPKT_KEY_EXPIRE, buf, 4); } if (si->cipher_algorithms) build_sig_subpkt (sig, SIGSUBPKT_PREF_SYM, si->cipher_algorithms, si->cipher_algorithms_len); if (si->digest_algorithms) build_sig_subpkt (sig, SIGSUBPKT_PREF_HASH, si->digest_algorithms, si->digest_algorithms_len); if (si->compress_algorithms) build_sig_subpkt (sig, SIGSUBPKT_PREF_COMPR, si->compress_algorithms, si->compress_algorithms_len); if (si->exportable_set) { char buf = si->exportable; build_sig_subpkt (sig, SIGSUBPKT_EXPORTABLE, &buf, 1); } if (si->trust_level_set) build_sig_subpkt (sig, SIGSUBPKT_TRUST, si->trust_args, sizeof (si->trust_args)); if (si->trust_scope) build_sig_subpkt (sig, SIGSUBPKT_REGEXP, si->trust_scope, strlen (si->trust_scope)); for (i = 0; i < si->nrevocation_keys; i ++) { struct revocation_key *revkey = &si->revocation_key[i]; gpg_error_t err = keygen_add_revkey (sig, revkey); if (err) { u32 keyid[2]; keyid_from_fingerprint (global_ctrl, revkey->fpr, 20, keyid); log_fatal ("adding revocation key %s: %s\n", keystr (keyid), gpg_strerror (err)); } } /* keygen_add_revkey sets revocable=0 so be sure to do this after adding the rev keys. */ if (si->revocable_set) { char buf = si->revocable; build_sig_subpkt (sig, SIGSUBPKT_REVOCABLE, &buf, 1); } keygen_add_notations (sig, si->notations); if (si->key_server_preferences) build_sig_subpkt (sig, SIGSUBPKT_KS_FLAGS, si->key_server_preferences, si->key_server_preferences_len); if (si->key_server) build_sig_subpkt (sig, SIGSUBPKT_PREF_KS, si->key_server, strlen (si->key_server)); if (si->primary_user_id_set) { char buf = si->primary_user_id; build_sig_subpkt (sig, SIGSUBPKT_PRIMARY_UID, &buf, 1); } if (si->policy_uri) build_sig_subpkt (sig, SIGSUBPKT_POLICY, si->policy_uri, strlen (si->policy_uri)); if (si->key_flags) build_sig_subpkt (sig, SIGSUBPKT_KEY_FLAGS, si->key_flags, si->key_flags_len); if (si->signers_user_id) build_sig_subpkt (sig, SIGSUBPKT_SIGNERS_UID, si->signers_user_id, strlen (si->signers_user_id)); if (si->reason_for_revocation) { int len = 1 + strlen (si->reason_for_revocation); char *buf; buf = xmalloc (len); buf[0] = si->reason_for_revocation_code; memcpy (&buf[1], si->reason_for_revocation, len - 1); build_sig_subpkt (sig, SIGSUBPKT_REVOC_REASON, buf, len); xfree (buf); } if (si->features) build_sig_subpkt (sig, SIGSUBPKT_FEATURES, si->features, si->features_len); return 0; } static int signature (const char *option, int argc, char *argv[], void *cookie) { gpg_error_t err; iobuf_t out = cookie; struct signinfo si; int processed; PKT_public_key *pk; PKT_signature *sig; PACKET pkt; u32 keyid_orig[2], keyid[2]; (void) option; memset (&si, 0, sizeof (si)); memset (&pkt, 0, sizeof (pkt)); processed = process_options (option, major_options, sig_options, &si, global_options, NULL, argc, argv); if (ncomponents) { int pkttype = components[ncomponents - 1].pkttype; if (pkttype == PKT_PUBLIC_KEY) { if (! si.class) /* Direct key sig. */ si.class = 0x1F; } else if (pkttype == PKT_PUBLIC_SUBKEY) { if (! si.sk) si.sk = components[ncomponents - 1].pkt.public_key; if (! si.class) /* Subkey binding sig. */ si.class = 0x18; } else if (pkttype == PKT_USER_ID) { if (! si.uid) si.uid = components[ncomponents - 1].pkt.user_id; if (! si.class) /* Certification of a user id and public key packet. */ si.class = 0x10; } } pk = NULL; if (! si.pk || ! si.issuer_pk) /* No primary key specified. Default to the first one that we find. */ { int i; for (i = 0; i < ncomponents; i ++) if (components[i].pkttype == PKT_PUBLIC_KEY) { pk = components[i].pkt.public_key; break; } } if (! si.pk) { if (! pk) log_fatal ("%s: no primary key given and no primary key available", "--pk"); si.pk = pk; } if (! si.issuer_pk) { if (! pk) log_fatal ("%s: no issuer key given and no primary key available", "--issuer"); si.issuer_pk = pk; } if (si.class == 0x18 || si.class == 0x19 || si.class == 0x28) /* Requires the primary key and a subkey. */ { if (! si.sk) log_fatal ("sig class 0x%x requires a subkey (--sk)\n", si.class); } else if (si.class == 0x10 || si.class == 0x11 || si.class == 0x12 || si.class == 0x13 || si.class == 0x30) /* Requires the primary key and a user id. */ { if (! si.uid) log_fatal ("sig class 0x%x requires a uid (--uid)\n", si.class); } else if (si.class == 0x1F || si.class == 0x20) /* Just requires the primary key. */ ; else log_fatal ("Unsupported signature class: 0x%x\n", si.class); sig = xmalloc_clear (sizeof (*sig)); /* Save SI.ISSUER_PK->KEYID. */ keyid_copy (keyid_orig, pk_keyid (si.issuer_pk)); if (si.issuer_keyid[0] || si.issuer_keyid[1]) keyid_copy (si.issuer_pk->keyid, si.issuer_keyid); else if (si.issuer_keyid_self) { PKT_public_key *pripk = primary_key(); if (! pripk) log_fatal ("--issuer-keyid self given, but no primary key available.\n"); keyid_copy (si.issuer_pk->keyid, pk_keyid (pripk)); } /* Changing the issuer's key id is fragile. Check to make sure make_keysig_packet didn't recompute the keyid. */ keyid_copy (keyid, si.issuer_pk->keyid); err = make_keysig_packet (global_ctrl, &sig, si.pk, si.uid, si.sk, si.issuer_pk, si.class, si.digest_algo, si.timestamp, si.expiration, mksubpkt_callback, &si, NULL); log_assert (keyid_cmp (keyid, si.issuer_pk->keyid) == 0); if (err) log_fatal ("Generating signature: %s\n", gpg_strerror (err)); /* Restore SI.PK->KEYID. */ keyid_copy (si.issuer_pk->keyid, keyid_orig); if (si.corrupt) { /* Set the top 32-bits to 0xBAD0DEAD. */ int bits = gcry_mpi_get_nbits (sig->data[0]); gcry_mpi_t x = gcry_mpi_new (0); gcry_mpi_add_ui (x, x, 0xBAD0DEAD); gcry_mpi_lshift (x, x, bits > 32 ? bits - 32 : bits); gcry_mpi_clear_highbit (sig->data[0], bits > 32 ? bits - 32 : 0); gcry_mpi_add (sig->data[0], sig->data[0], x); gcry_mpi_release (x); } pkt.pkttype = PKT_SIGNATURE; pkt.pkt.signature = sig; err = build_packet (out, &pkt); if (err) log_fatal ("serializing public key packet: %s\n", gpg_strerror (err)); debug ("Wrote signature packet:\n"); dump_component (&pkt); - xfree (sig); + free_seckey_enc (sig); release_kbnode (si.issuer_kb); xfree (si.revocation_key); return processed; } struct sk_esk_info { /* The cipher used for encrypting the session key (when a session key is used). */ int cipher; /* The cipher used for encryping the SED packet. */ int sed_cipher; /* S2K related data. */ int hash; int mode; int mode_set; byte salt[8]; int salt_set; int iterations; /* If applying the S2K function to the passphrase is the session key or if it is the decryption key for the session key. */ int s2k_is_session_key; /* Generate a new, random session key. */ int new_session_key; /* The unencrypted session key. */ int session_key_len; char *session_key; char *password; }; static int sk_esk_cipher (const char *option, int argc, char *argv[], void *cookie) { struct sk_esk_info *si = cookie; char *usage = "integer|IDEA|3DES|CAST5|BLOWFISH|AES|AES192|AES256|CAMELLIA128|CAMELLIA192|CAMELLIA256"; int cipher; if (argc == 0) log_fatal ("Usage: %s %s\n", option, usage); if (strcasecmp (argv[0], "IDEA") == 0) cipher = CIPHER_ALGO_IDEA; else if (strcasecmp (argv[0], "3DES") == 0) cipher = CIPHER_ALGO_3DES; else if (strcasecmp (argv[0], "CAST5") == 0) cipher = CIPHER_ALGO_CAST5; else if (strcasecmp (argv[0], "BLOWFISH") == 0) cipher = CIPHER_ALGO_BLOWFISH; else if (strcasecmp (argv[0], "AES") == 0) cipher = CIPHER_ALGO_AES; else if (strcasecmp (argv[0], "AES192") == 0) cipher = CIPHER_ALGO_AES192; else if (strcasecmp (argv[0], "TWOFISH") == 0) cipher = CIPHER_ALGO_TWOFISH; else if (strcasecmp (argv[0], "CAMELLIA128") == 0) cipher = CIPHER_ALGO_CAMELLIA128; else if (strcasecmp (argv[0], "CAMELLIA192") == 0) cipher = CIPHER_ALGO_CAMELLIA192; else if (strcasecmp (argv[0], "CAMELLIA256") == 0) cipher = CIPHER_ALGO_CAMELLIA256; else { char *tail; int v; errno = 0; v = strtol (argv[0], &tail, 0); if (errno || (tail && *tail) || ! valid_cipher (v)) log_fatal ("Invalid or unsupported value. Usage: %s %s\n", option, usage); cipher = v; } if (strcmp (option, "--cipher") == 0) { if (si->cipher) log_fatal ("%s given multiple times.", option); si->cipher = cipher; } else if (strcmp (option, "--sed-cipher") == 0) { if (si->sed_cipher) log_fatal ("%s given multiple times.", option); si->sed_cipher = cipher; } return 1; } static int sk_esk_mode (const char *option, int argc, char *argv[], void *cookie) { struct sk_esk_info *si = cookie; char *usage = "integer|simple|salted|iterated"; if (argc == 0) log_fatal ("Usage: %s %s\n", option, usage); if (si->mode) log_fatal ("%s given multiple times.", option); if (strcasecmp (argv[0], "simple") == 0) si->mode = 0; else if (strcasecmp (argv[0], "salted") == 0) si->mode = 1; else if (strcasecmp (argv[0], "iterated") == 0) si->mode = 3; else { char *tail; int v; errno = 0; v = strtol (argv[0], &tail, 0); if (errno || (tail && *tail) || ! (v == 0 || v == 1 || v == 3)) log_fatal ("Invalid or unsupported value. Usage: %s %s\n", option, usage); si->mode = v; } si->mode_set = 1; return 1; } static int sk_esk_hash_algorithm (const char *option, int argc, char *argv[], void *cookie) { struct sk_esk_info *si = cookie; char *usage = "integer|MD5|SHA1|RMD160|SHA256|SHA384|SHA512|SHA224"; if (argc == 0) log_fatal ("Usage: %s %s\n", option, usage); if (si->hash) log_fatal ("%s given multiple times.", option); if (strcasecmp (argv[0], "MD5") == 0) si->hash = DIGEST_ALGO_MD5; else if (strcasecmp (argv[0], "SHA1") == 0) si->hash = DIGEST_ALGO_SHA1; else if (strcasecmp (argv[0], "RMD160") == 0) si->hash = DIGEST_ALGO_RMD160; else if (strcasecmp (argv[0], "SHA256") == 0) si->hash = DIGEST_ALGO_SHA256; else if (strcasecmp (argv[0], "SHA384") == 0) si->hash = DIGEST_ALGO_SHA384; else if (strcasecmp (argv[0], "SHA512") == 0) si->hash = DIGEST_ALGO_SHA512; else if (strcasecmp (argv[0], "SHA224") == 0) si->hash = DIGEST_ALGO_SHA224; else { char *tail; int v; errno = 0; v = strtol (argv[0], &tail, 0); if (errno || (tail && *tail) || ! (v == DIGEST_ALGO_MD5 || v == DIGEST_ALGO_SHA1 || v == DIGEST_ALGO_RMD160 || v == DIGEST_ALGO_SHA256 || v == DIGEST_ALGO_SHA384 || v == DIGEST_ALGO_SHA512 || v == DIGEST_ALGO_SHA224)) log_fatal ("Invalid or unsupported value. Usage: %s %s\n", option, usage); si->hash = v; } return 1; } static int sk_esk_salt (const char *option, int argc, char *argv[], void *cookie) { struct sk_esk_info *si = cookie; char *usage = "16-HEX-CHARACTERS"; char *p = argv[0]; if (argc == 0) log_fatal ("Usage: %s %s\n", option, usage); if (si->salt_set) log_fatal ("%s given multiple times.", option); if (p[0] == '0' && p[1] == 'x') p += 2; if (strlen (p) != 16) log_fatal ("%s: Salt must be exactly 16 hexadecimal characters (have: %zd)\n", option, strlen (p)); if (hex2bin (p, si->salt, sizeof (si->salt)) == -1) log_fatal ("%s: Salt must only contain hexadecimal characters\n", option); si->salt_set = 1; return 1; } static int sk_esk_iterations (const char *option, int argc, char *argv[], void *cookie) { struct sk_esk_info *si = cookie; char *usage = "ITERATION-COUNT"; char *tail; int v; if (argc == 0) log_fatal ("Usage: %s %s\n", option, usage); errno = 0; v = strtol (argv[0], &tail, 0); if (errno || (tail && *tail) || v < 0) log_fatal ("%s: Non-negative integer expected.\n", option); si->iterations = v; return 1; } static int sk_esk_session_key (const char *option, int argc, char *argv[], void *cookie) { struct sk_esk_info *si = cookie; char *usage = "HEX-CHARACTERS|auto|none"; char *p = argv[0]; struct session_key sk; if (argc == 0) log_fatal ("Usage: %s %s\n", option, usage); if (si->session_key || si->s2k_is_session_key || si->new_session_key) log_fatal ("%s given multiple times.", option); if (strcasecmp (p, "none") == 0) { si->s2k_is_session_key = 1; return 1; } if (strcasecmp (p, "new") == 0) { si->new_session_key = 1; return 1; } if (strcasecmp (p, "auto") == 0) return 1; sk = parse_session_key (option, p, 0); if (si->session_key) log_fatal ("%s given multiple times.", option); if (sk.algo) si->sed_cipher = sk.algo; si->session_key_len = sk.keylen; si->session_key = sk.key; return 1; } static int sk_esk_password (const char *option, int argc, char *argv[], void *cookie) { struct sk_esk_info *si = cookie; char *usage = "PASSWORD"; if (argc == 0) log_fatal ("Usage: --sk-esk %s\n", usage); if (si->password) log_fatal ("%s given multiple times.", option); si->password = xstrdup (argv[0]); return 1; } static struct option sk_esk_options[] = { { "--cipher", sk_esk_cipher, "The encryption algorithm for encrypting the session key. " "One of IDEA, 3DES, CAST5, BLOWFISH, AES (default), AES192, " "AES256, TWOFISH, CAMELLIA128, CAMELLIA192, or CAMELLIA256." }, { "--sed-cipher", sk_esk_cipher, "The encryption algorithm for encrypting the SED packet. " "One of IDEA, 3DES, CAST5, BLOWFISH, AES, AES192, " "AES256 (default), TWOFISH, CAMELLIA128, CAMELLIA192, or CAMELLIA256." }, { "--mode", sk_esk_mode, "The S2K mode. Either one of the strings \"simple\", \"salted\" " "or \"iterated\" or an integer." }, { "--hash", sk_esk_hash_algorithm, "The hash algorithm to used to derive the key. One of " "MD5, SHA1 (default), RMD160, SHA256, SHA384, SHA512, or SHA224." }, { "--salt", sk_esk_salt, "The S2K salt encoded as 16 hexadecimal characters. One needed " "if the S2K function is in salted or iterated mode." }, { "--iterations", sk_esk_iterations, "The iteration count. If not provided, a reasonable value is chosen. " "Note: due to the encoding scheme, not every value is valid. For " "convenience, the provided value will be rounded appropriately. " "Only needed if the S2K function is in iterated mode." }, { "--session-key", sk_esk_session_key, "The session key to be encrypted by the S2K function as a hexadecimal " "string. If this is \"new\", then a new session key is generated." "If this is \"auto\", then either the last session key is " "used, if the was none, one is generated. If this is \"none\", then " "the session key is the result of applying the S2K algorithms to the " "password. The session key may be prefaced with an integer and a colon " "to indicate the cipher to use for the SED packet (making --sed-cipher " "unnecessary and allowing the direct use of the result of " "\"" GPG_NAME " --show-session-key\")." }, { "", sk_esk_password, "The password." }, { NULL, NULL, "Example:\n\n" " $ gpgcompose --sk-esk foobar --encrypted \\\n" " --literal --value foo | " GPG_NAME " --list-packets" } }; static int sk_esk (const char *option, int argc, char *argv[], void *cookie) { iobuf_t out = cookie; gpg_error_t err; int processed; struct sk_esk_info si; DEK sesdek; DEK s2kdek; PKT_symkey_enc *ske; PACKET pkt; memset (&si, 0, sizeof (si)); processed = process_options (option, major_options, sk_esk_options, &si, global_options, NULL, argc, argv); if (! si.password) log_fatal ("%s: missing password. Usage: %s PASSWORD", option, option); /* Fill in defaults, if appropriate. */ if (! si.cipher) si.cipher = CIPHER_ALGO_AES; if (! si.sed_cipher) si.sed_cipher = CIPHER_ALGO_AES256; if (! si.hash) si.hash = DIGEST_ALGO_SHA1; if (! si.mode_set) /* Salted and iterated. */ si.mode = 3; if (si.mode != 0 && ! si.salt_set) /* Generate a salt. */ gcry_randomize (si.salt, 8, GCRY_STRONG_RANDOM); if (si.mode == 0) { if (si.iterations) log_info ("%s: --iterations provided, but not used for mode=0\n", option); si.iterations = 0; } else if (! si.iterations) si.iterations = 10000; memset (&sesdek, 0, sizeof (sesdek)); /* The session key is used to encrypt the SED packet. */ sesdek.algo = si.sed_cipher; if (si.session_key) /* Copy the unencrypted session key into SESDEK. */ { sesdek.keylen = openpgp_cipher_get_algo_keylen (sesdek.algo); if (sesdek.keylen != si.session_key_len) log_fatal ("%s: Cipher algorithm requires a %d byte session key, but provided session key is %d bytes.", option, sesdek.keylen, si.session_key_len); log_assert (sesdek.keylen <= sizeof (sesdek.key)); memcpy (sesdek.key, si.session_key, sesdek.keylen); } else if (! si.s2k_is_session_key || si.new_session_key) /* We need a session key, but one wasn't provided. Generate it. */ make_session_key (&sesdek); /* The encrypted session key needs 1 + SESDEK.KEYLEN bytes of space. */ ske = xmalloc_clear (sizeof (*ske) + sesdek.keylen); ske->version = 4; ske->cipher_algo = si.cipher; ske->s2k.mode = si.mode; ske->s2k.hash_algo = si.hash; log_assert (sizeof (si.salt) == sizeof (ske->s2k.salt)); memcpy (ske->s2k.salt, si.salt, sizeof (ske->s2k.salt)); if (! si.s2k_is_session_key) /* 0 means get the default. */ ske->s2k.count = encode_s2k_iterations (si.iterations); /* Derive the symmetric key that is either the session key or the key used to encrypt the session key. */ memset (&s2kdek, 0, sizeof (s2kdek)); s2kdek.algo = si.cipher; s2kdek.keylen = openpgp_cipher_get_algo_keylen (s2kdek.algo); err = gcry_kdf_derive (si.password, strlen (si.password), ske->s2k.mode == 3 ? GCRY_KDF_ITERSALTED_S2K : ske->s2k.mode == 1 ? GCRY_KDF_SALTED_S2K : GCRY_KDF_SIMPLE_S2K, ske->s2k.hash_algo, ske->s2k.salt, 8, S2K_DECODE_COUNT (ske->s2k.count), /* The size of the desired key and its buffer. */ s2kdek.keylen, s2kdek.key); if (err) log_fatal ("gcry_kdf_derive failed: %s", gpg_strerror (err)); if (si.s2k_is_session_key) { ske->seskeylen = 0; session_key = s2kdek; } else /* Encrypt the session key using the s2k specifier. */ { DEK *sesdekp = &sesdek; /* Now encrypt the session key (or rather, the algorithm used to encrypt the SKESK plus the session key) using ENCKEY. */ err = encrypt_seskey (&s2kdek, 0, &sesdekp, (void**)&ske->seskey, (size_t *)&ske->seskeylen); if (err) log_fatal ("encrypt_seskey failed: %s\n", gpg_strerror (err)); /* Save the session key for later. */ session_key = sesdek; } pkt.pkttype = PKT_SYMKEY_ENC; pkt.pkt.symkey_enc = ske; err = build_packet (out, &pkt); if (err) log_fatal ("Serializing sym-key encrypted packet: %s\n", gpg_strerror (err)); debug ("Wrote sym-key encrypted packet:\n"); dump_component (&pkt); xfree (si.session_key); xfree (si.password); xfree (ske); return processed; } struct pk_esk_info { int session_key_set; int new_session_key; int sed_cipher; int session_key_len; char *session_key; int throw_keyid; char *keyid; }; static int pk_esk_session_key (const char *option, int argc, char *argv[], void *cookie) { struct pk_esk_info *pi = cookie; char *usage = "HEX-CHARACTERS|auto|none"; char *p = argv[0]; struct session_key sk; if (argc == 0) log_fatal ("Usage: %s %s\n", option, usage); if (pi->session_key_set) log_fatal ("%s given multiple times.", option); pi->session_key_set = 1; if (strcasecmp (p, "new") == 0) { pi->new_session_key = 1; return 1; } if (strcasecmp (p, "auto") == 0) return 1; sk = parse_session_key (option, p, 0); if (pi->session_key) log_fatal ("%s given multiple times.", option); if (sk.algo) pi->sed_cipher = sk.algo; pi->session_key_len = sk.keylen; pi->session_key = sk.key; return 1; } static int pk_esk_throw_keyid (const char *option, int argc, char *argv[], void *cookie) { struct pk_esk_info *pi = cookie; (void) option; (void) argc; (void) argv; pi->throw_keyid = 1; return 0; } static int pk_esk_keyid (const char *option, int argc, char *argv[], void *cookie) { struct pk_esk_info *pi = cookie; char *usage = "KEYID"; if (argc == 0) log_fatal ("Usage: %s %s\n", option, usage); if (pi->keyid) log_fatal ("Multiple key ids given, but only one is allowed."); pi->keyid = xstrdup (argv[0]); return 1; } static struct option pk_esk_options[] = { { "--session-key", pk_esk_session_key, "The session key to be encrypted by the S2K function as a hexadecimal " "string. If this is not given or is \"auto\", then the current " "session key is used. If there is no session key or this is \"new\", " "then a new session key is generated. The session key may be " "prefaced with an integer and a colon to indicate the cipher to use " "for the SED packet (making --sed-cipher unnecessary and allowing the " "direct use of the result of \"" GPG_NAME " --show-session-key\")." }, { "--throw-keyid", pk_esk_throw_keyid, "Throw the keyid." }, { "", pk_esk_keyid, "The key id." }, { NULL, NULL, "Example:\n\n" " $ gpgcompose --pk-esk $KEYID --encrypted --literal --value foo \\\n" " | " GPG_NAME " --list-packets"} }; static int pk_esk (const char *option, int argc, char *argv[], void *cookie) { iobuf_t out = cookie; gpg_error_t err; int processed; struct pk_esk_info pi; PKT_public_key pk; memset (&pi, 0, sizeof (pi)); processed = process_options (option, major_options, pk_esk_options, &pi, global_options, NULL, argc, argv); if (! pi.keyid) log_fatal ("%s: missing keyid. Usage: %s KEYID", option, option); memset (&pk, 0, sizeof (pk)); pk.req_usage = PUBKEY_USAGE_ENC; err = get_pubkey_byname (NULL, NULL, &pk, pi.keyid, NULL, NULL, 1, 1); if (err) log_fatal ("%s: looking up key %s: %s\n", option, pi.keyid, gpg_strerror (err)); if (pi.sed_cipher) /* Have a session key. */ { session_key.algo = pi.sed_cipher; session_key.keylen = pi.session_key_len; log_assert (session_key.keylen <= sizeof (session_key.key)); memcpy (session_key.key, pi.session_key, session_key.keylen); } if (pi.new_session_key || ! session_key.algo) { if (! pi.new_session_key) /* Default to AES256. */ session_key.algo = CIPHER_ALGO_AES256; make_session_key (&session_key); } err = write_pubkey_enc (global_ctrl, &pk, pi.throw_keyid, &session_key, out); if (err) log_fatal ("%s: writing pk_esk packet for %s: %s\n", option, pi.keyid, gpg_strerror (err)); debug ("Wrote pk_esk packet for %s\n", pi.keyid); xfree (pi.keyid); xfree (pi.session_key); return processed; } struct encinfo { int saw_session_key; }; static int encrypted_session_key (const char *option, int argc, char *argv[], void *cookie) { struct encinfo *ei = cookie; char *usage = "HEX-CHARACTERS|auto"; char *p = argv[0]; struct session_key sk; if (argc == 0) log_fatal ("Usage: %s %s\n", option, usage); if (ei->saw_session_key) log_fatal ("%s given multiple times.", option); ei->saw_session_key = 1; if (strcasecmp (p, "auto") == 0) return 1; sk = parse_session_key (option, p, 1); session_key.algo = sk.algo; log_assert (sk.keylen <= sizeof (session_key.key)); memcpy (session_key.key, sk.key, sk.keylen); xfree (sk.key); return 1; } static struct option encrypted_options[] = { { "--session-key", encrypted_session_key, "The session key to be encrypted by the S2K function as a hexadecimal " "string. If this is not given or is \"auto\", then the last session key " "is used. If there was none, then an error is raised. The session key " "must be prefaced with an integer and a colon to indicate the cipher " "to use (this is format used by \"" GPG_NAME " --show-session-key\")." }, { NULL, NULL, "After creating the packet, this command clears the current " "session key.\n\n" "Example: nested encryption packets:\n\n" " $ gpgcompose --sk-esk foo --encrypted-mdc \\\n" " --sk-esk bar --encrypted-mdc \\\n" " --literal --value 123 --encrypted-pop --encrypted-pop | " GPG_NAME" -d" } }; static int encrypted (const char *option, int argc, char *argv[], void *cookie) { iobuf_t out = cookie; int processed; struct encinfo ei; PKT_encrypted e; cipher_filter_context_t *cfx; memset (&ei, 0, sizeof (ei)); processed = process_options (option, major_options, encrypted_options, &ei, global_options, NULL, argc, argv); if (! session_key.algo) log_fatal ("%s: no session key configured\n" " (use e.g. --sk-esk PASSWORD or --pk-esk KEYID).\n", option); memset (&e, 0, sizeof (e)); /* We only need to set E->LEN, E->EXTRALEN (if E->LEN is not 0), and E->NEW_CTB. */ e.len = 0; e.new_ctb = 1; /* Register the cipher filter. */ cfx = xmalloc_clear (sizeof (*cfx)); /* Copy the session key. */ cfx->dek = xmalloc (sizeof (*cfx->dek)); *cfx->dek = session_key; if (do_debug) { char *buf; buf = xmalloc (2 * session_key.keylen + 1); debug ("session key: algo: %d; keylen: %d; key: %s\n", session_key.algo, session_key.keylen, bin2hex (session_key.key, session_key.keylen, buf)); xfree (buf); } if (strcmp (option, "--encrypted-mdc") == 0) cfx->dek->use_mdc = 1; else if (strcmp (option, "--encrypted") == 0) cfx->dek->use_mdc = 0; else log_fatal ("%s: option not handled by this function!\n", option); cfx->datalen = 0; filter_push (out, cipher_filter_cfb, cfx, PKT_ENCRYPTED, cfx->datalen == 0); debug ("Wrote encrypted packet:\n"); /* Clear the current session key. */ memset (&session_key, 0, sizeof (session_key)); return processed; } static struct option encrypted_pop_options[] = { { NULL, NULL, "Example:\n\n" " $ gpgcompose --sk-esk PASSWORD \\\n" " --encrypted-mdc \\\n" " --literal --value foo \\\n" " --encrypted-pop | " GPG_NAME " --list-packets" } }; static int encrypted_pop (const char *option, int argc, char *argv[], void *cookie) { iobuf_t out = cookie; int processed; processed = process_options (option, major_options, encrypted_pop_options, NULL, global_options, NULL, argc, argv); /* We only support a single option, --help, which causes the program * to exit. */ log_assert (processed == 0); filter_pop (out, PKT_ENCRYPTED); debug ("Popped encryption container.\n"); return processed; } struct data { int file; union { char *data; char *filename; }; struct data *next; }; /* This must be the first member of the struct to be able to use add_value! */ struct datahead { struct data *head; struct data **last_next; }; static int add_value (const char *option, int argc, char *argv[], void *cookie) { struct datahead *dh = cookie; struct data *d = xmalloc_clear (sizeof (struct data)); d->file = strcmp ("--file", option) == 0; if (! d->file) log_assert (strcmp ("--value", option) == 0); if (argc == 0) { if (d->file) log_fatal ("Usage: %s FILENAME\n", option); else log_fatal ("Usage: %s STRING\n", option); } if (! dh->last_next) /* First time through. Initialize DH->LAST_NEXT. */ { log_assert (! dh->head); dh->last_next = &dh->head; } if (d->file) d->filename = argv[0]; else d->data = argv[0]; /* Append it. */ *dh->last_next = d; dh->last_next = &d->next; return 1; } struct litinfo { /* This must be the first element for add_value to work! */ struct datahead data; int timestamp_set; u32 timestamp; char mode; int partial_body_length_encoding; char *name; }; static int literal_timestamp (const char *option, int argc, char *argv[], void *cookie) { struct litinfo *li = cookie; char *tail = NULL; if (argc == 0) log_fatal ("Usage: %s TIMESTAMP\n", option); errno = 0; li->timestamp = parse_timestamp (argv[0], &tail); if (errno || (tail && *tail)) log_fatal ("Invalid value passed to %s (%s)\n", option, argv[0]); li->timestamp_set = 1; return 1; } static int literal_mode (const char *option, int argc, char *argv[], void *cookie) { struct litinfo *li = cookie; if (argc == 0 || ! (strcmp (argv[0], "b") == 0 || strcmp (argv[0], "t") == 0 || strcmp (argv[0], "u") == 0)) log_fatal ("Usage: %s [btu]\n", option); li->mode = argv[0][0]; return 1; } static int literal_partial_body_length (const char *option, int argc, char *argv[], void *cookie) { struct litinfo *li = cookie; char *tail; int v; int range[2] = {0, 1}; if (argc <= 1) log_fatal ("Usage: %s [0|1]\n", option); errno = 0; v = strtol (argv[0], &tail, 0); if (errno || (tail && *tail) || !(range[0] <= v && v <= range[1])) log_fatal ("Invalid value passed to %s (%s). Expected %d-%d\n", option, argv[0], range[0], range[1]); li->partial_body_length_encoding = v; return 1; } static int literal_name (const char *option, int argc, char *argv[], void *cookie) { struct litinfo *li = cookie; if (argc <= 0) log_fatal ("Usage: %s NAME\n", option); if (strlen (argv[0]) > 255) log_fatal ("%s: name is too long (%zd > 255 characters).\n", option, strlen (argv[0])); li->name = argv[0]; return 1; } static struct option literal_options[] = { { "--value", add_value, "A string to store in the literal packet." }, { "--file", add_value, "A file to copy into the literal packet." }, { "--timestamp", literal_timestamp, "The literal packet's time stamp. This defaults to the current time." }, { "--mode", literal_mode, "The content's mode (normally 'b' (default), 't' or 'u')." }, { "--partial-body-length", literal_partial_body_length, "Force partial body length encoding." }, { "--name", literal_name, "The literal's name." }, { NULL, NULL, "Example:\n\n" " $ gpgcompose --literal --value foobar | " GPG_NAME " -d"} }; static int literal (const char *option, int argc, char *argv[], void *cookie) { iobuf_t out = cookie; gpg_error_t err; int processed; struct litinfo li; PKT_plaintext *pt; PACKET pkt; struct data *data; memset (&li, 0, sizeof (li)); processed = process_options (option, major_options, literal_options, &li, global_options, NULL, argc, argv); if (! li.data.head) log_fatal ("%s: no data provided (use --value or --file)", option); pt = xmalloc_clear (sizeof (*pt) + (li.name ? strlen (li.name) : 0)); pt->new_ctb = 1; if (li.timestamp_set) pt->timestamp = li.timestamp; else /* Default to the current time. */ pt->timestamp = make_timestamp (); pt->mode = li.mode; if (! pt->mode) /* Default to binary. */ pt->mode = 'b'; if (li.name) { strcpy (pt->name, li.name); pt->namelen = strlen (pt->name); } pkt.pkttype = PKT_PLAINTEXT; pkt.pkt.plaintext = pt; if (! li.partial_body_length_encoding) /* Compute the amount of data. */ { pt->len = 0; for (data = li.data.head; data; data = data->next) { if (data->file) { iobuf_t in; int overflow; off_t off; in = iobuf_open (data->filename); if (! in) /* An error opening the file. We do error handling below so just break here. */ { pt->len = 0; break; } off = iobuf_get_filelength (in, &overflow); iobuf_close (in); if (overflow || off == 0) /* Length is unknown or there was an error (unfortunately, iobuf_get_filelength doesn't distinguish between 0 length files and an error!). Fall back to partial body mode. */ { pt->len = 0; break; } pt->len += off; } else pt->len += strlen (data->data); } } err = build_packet (out, &pkt); if (err) log_fatal ("Serializing literal packet: %s\n", gpg_strerror (err)); /* Write out the data. */ for (data = li.data.head; data; data = data->next) { if (data->file) { iobuf_t in; errno = 0; in = iobuf_open (data->filename); if (! in) log_fatal ("Opening '%s': %s\n", data->filename, errno ? strerror (errno): "unknown error"); iobuf_copy (out, in); if (iobuf_error (in)) log_fatal ("Reading from %s: %s\n", data->filename, gpg_strerror (iobuf_error (in))); if (iobuf_error (out)) log_fatal ("Writing literal data from %s: %s\n", data->filename, gpg_strerror (iobuf_error (out))); iobuf_close (in); } else { err = iobuf_write (out, data->data, strlen (data->data)); if (err) log_fatal ("Writing literal data: %s\n", gpg_strerror (err)); } } if (! pt->len) { /* Disable partial body length mode. */ log_assert (pt->new_ctb == 1); iobuf_set_partial_body_length_mode (out, 0); } debug ("Wrote literal packet:\n"); dump_component (&pkt); while (li.data.head) { data = li.data.head->next; xfree (li.data.head); li.data.head = data; } xfree (pt); return processed; } static int copy_file (const char *option, int argc, char *argv[], void *cookie) { char **filep = cookie; if (argc == 0) log_fatal ("Usage: %s FILENAME\n", option); *filep = argv[0]; return 1; } static struct option copy_options[] = { { "", copy_file, "Copy the specified file to stdout." }, { NULL, NULL, "Example:\n\n" " $ gpgcompose --copy /etc/hostname\n\n" "This is particularly useful when combined with gpgsplit." } }; static int copy (const char *option, int argc, char *argv[], void *cookie) { iobuf_t out = cookie; char *file = NULL; iobuf_t in; int processed; processed = process_options (option, major_options, copy_options, &file, global_options, NULL, argc, argv); if (! file) log_fatal ("Usage: %s FILE\n", option); errno = 0; in = iobuf_open (file); if (! in) log_fatal ("Error opening %s: %s.\n", file, errno ? strerror (errno): "unknown error"); iobuf_copy (out, in); if (iobuf_error (out)) log_fatal ("Copying data to destination: %s\n", gpg_strerror (iobuf_error (out))); if (iobuf_error (in)) log_fatal ("Reading data from %s: %s\n", argv[0], gpg_strerror (iobuf_error (in))); iobuf_close (in); return processed; } int main (int argc, char *argv[]) { const char *filename = "-"; iobuf_t out; int preprocessed = 1; int processed; ctrl_t ctrl; opt.ignore_time_conflict = 1; /* Allow notations in the IETF space, for instance. */ opt.expert = 1; global_ctrl = ctrl = xcalloc (1, sizeof *ctrl); keydb_add_resource ("pubring" EXTSEP_S GPGEXT_GPG, KEYDB_RESOURCE_FLAG_DEFAULT); if (argc == 1) /* Nothing to do. */ return 0; if (strcmp (argv[1], "--output") == 0 || strcmp (argv[1], "-o") == 0) { filename = argv[2]; log_info ("Writing to %s\n", filename); preprocessed += 2; } out = iobuf_create (filename, 0); if (! out) log_fatal ("Failed to open stdout for writing\n"); processed = process_options (NULL, NULL, major_options, out, global_options, NULL, argc - preprocessed, &argv[preprocessed]); if (processed != argc - preprocessed) log_fatal ("Didn't process %d options.\n", argc - preprocessed - processed); iobuf_close (out); return 0; } /* Stubs duplicated from gpg.c. */ int g10_errors_seen = 0; /* Note: This function is used by signal handlers!. */ static void emergency_cleanup (void) { gcry_control (GCRYCTL_TERM_SECMEM ); } void g10_exit( int rc ) { gcry_control (GCRYCTL_UPDATE_RANDOM_SEED_FILE); emergency_cleanup (); rc = rc? rc : log_get_errorcount(0)? 2 : g10_errors_seen? 1 : 0; exit (rc); } void keyedit_menu (ctrl_t ctrl, const char *username, strlist_t locusr, strlist_t commands, int quiet, int seckey_check) { (void) ctrl; (void) username; (void) locusr; (void) commands; (void) quiet; (void) seckey_check; } void show_basic_key_info (ctrl_t ctrl, KBNODE keyblock) { (void)ctrl; (void) keyblock; } int keyedit_print_one_sig (ctrl_t ctrl, estream_t fp, int rc, kbnode_t keyblock, kbnode_t node, int *inv_sigs, int *no_key, int *oth_err, int is_selfsig, int print_without_key, int extended) { (void) ctrl; (void) fp; (void) rc; (void) keyblock; (void) node; (void) inv_sigs; (void) no_key; (void) oth_err; (void) is_selfsig; (void) print_without_key; (void) extended; return 0; } diff --git a/g10/sign.c b/g10/sign.c index df71ccce1..581a08f5b 100644 --- a/g10/sign.c +++ b/g10/sign.c @@ -1,1670 +1,1670 @@ /* sign.c - sign data * Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, * 2007, 2010, 2012 Free Software Foundation, Inc. * * This file is part of GnuPG. * * GnuPG is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * GnuPG is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #include #include #include #include #include #include "gpg.h" #include "options.h" #include "packet.h" #include "../common/status.h" #include "../common/iobuf.h" #include "keydb.h" #include "../common/util.h" #include "main.h" #include "filter.h" #include "../common/ttyio.h" #include "trustdb.h" #include "../common/status.h" #include "../common/i18n.h" #include "pkglue.h" #include "../common/sysutils.h" #include "call-agent.h" #include "../common/mbox-util.h" #include "../common/compliance.h" #ifdef HAVE_DOSISH_SYSTEM #define LF "\r\n" #else #define LF "\n" #endif static int recipient_digest_algo=0; /**************** * Create notations and other stuff. It is assumed that the stings in * STRLIST are already checked to contain only printable data and have * a valid NAME=VALUE format. */ static void mk_notation_policy_etc (PKT_signature *sig, PKT_public_key *pk, PKT_public_key *pksk) { const char *string; char *p = NULL; strlist_t pu = NULL; struct notation *nd = NULL; struct expando_args args; log_assert (sig->version >= 4); memset (&args, 0, sizeof(args)); args.pk = pk; args.pksk = pksk; /* Notation data. */ if (IS_SIG(sig) && opt.sig_notations) nd = opt.sig_notations; else if (IS_CERT(sig) && opt.cert_notations) nd = opt.cert_notations; if (nd) { struct notation *item; for (item = nd; item; item = item->next) { item->altvalue = pct_expando (item->value,&args); if (!item->altvalue) log_error (_("WARNING: unable to %%-expand notation " "(too large). Using unexpanded.\n")); } keygen_add_notations (sig, nd); for (item = nd; item; item = item->next) { xfree (item->altvalue); item->altvalue = NULL; } } /* Set policy URL. */ if (IS_SIG(sig) && opt.sig_policy_url) pu = opt.sig_policy_url; else if (IS_CERT(sig) && opt.cert_policy_url) pu = opt.cert_policy_url; for (; pu; pu = pu->next) { string = pu->d; p = pct_expando (string, &args); if (!p) { log_error(_("WARNING: unable to %%-expand policy URL " "(too large). Using unexpanded.\n")); p = xstrdup(string); } build_sig_subpkt (sig, (SIGSUBPKT_POLICY | ((pu->flags & 1)?SIGSUBPKT_FLAG_CRITICAL:0)), p, strlen (p)); xfree (p); } /* Preferred keyserver URL. */ if (IS_SIG(sig) && opt.sig_keyserver_url) pu = opt.sig_keyserver_url; for (; pu; pu = pu->next) { string = pu->d; p = pct_expando (string, &args); if (!p) { log_error (_("WARNING: unable to %%-expand preferred keyserver URL" " (too large). Using unexpanded.\n")); p = xstrdup (string); } build_sig_subpkt (sig, (SIGSUBPKT_PREF_KS | ((pu->flags & 1)?SIGSUBPKT_FLAG_CRITICAL:0)), p, strlen (p)); xfree (p); } /* Set signer's user id. */ if (IS_SIG (sig) && !opt.flags.disable_signer_uid) { char *mbox; /* For now we use the uid which was used to locate the key. */ if (pksk->user_id && (mbox = mailbox_from_userid (pksk->user_id->name))) { if (DBG_LOOKUP) log_debug ("setting Signer's UID to '%s'\n", mbox); build_sig_subpkt (sig, SIGSUBPKT_SIGNERS_UID, mbox, strlen (mbox)); xfree (mbox); } else if (opt.sender_list) { /* If a list of --sender was given we scan that list and use * the first one matching a user id of the current key. */ /* FIXME: We need to get the list of user ids for the PKSK * packet. That requires either a function to look it up * again or we need to extend the key packet struct to link * to the primary key which in turn could link to the user * ids. Too much of a change right now. Let's take just * one from the supplied list and hope that the caller * passed a matching one. */ build_sig_subpkt (sig, SIGSUBPKT_SIGNERS_UID, opt.sender_list->d, strlen (opt.sender_list->d)); } } } /* * Helper to hash a user ID packet. */ static void hash_uid (gcry_md_hd_t md, int sigversion, const PKT_user_id *uid) { byte buf[5]; (void)sigversion; if (uid->attrib_data) { buf[0] = 0xd1; /* Indicates an attribute packet. */ buf[1] = uid->attrib_len >> 24; /* Always use 4 length bytes. */ buf[2] = uid->attrib_len >> 16; buf[3] = uid->attrib_len >> 8; buf[4] = uid->attrib_len; } else { buf[0] = 0xb4; /* Indicates a userid packet. */ buf[1] = uid->len >> 24; /* Always use 4 length bytes. */ buf[2] = uid->len >> 16; buf[3] = uid->len >> 8; buf[4] = uid->len; } gcry_md_write( md, buf, 5 ); if (uid->attrib_data) gcry_md_write (md, uid->attrib_data, uid->attrib_len ); else gcry_md_write (md, uid->name, uid->len ); } /* * Helper to hash some parts from the signature */ static void hash_sigversion_to_magic (gcry_md_hd_t md, const PKT_signature *sig) { byte buf[6]; size_t n; gcry_md_putc (md, sig->version); gcry_md_putc (md, sig->sig_class); gcry_md_putc (md, sig->pubkey_algo); gcry_md_putc (md, sig->digest_algo); if (sig->hashed) { n = sig->hashed->len; gcry_md_putc (md, (n >> 8) ); gcry_md_putc (md, n ); gcry_md_write (md, sig->hashed->data, n ); n += 6; } else { gcry_md_putc (md, 0); /* Always hash the length of the subpacket. */ gcry_md_putc (md, 0); n = 6; } /* Add some magic. */ buf[0] = sig->version; buf[1] = 0xff; buf[2] = n >> 24; /* (n is only 16 bit, so this is always 0) */ buf[3] = n >> 16; buf[4] = n >> 8; buf[5] = n; gcry_md_write (md, buf, 6); } /* Perform the sign operation. If CACHE_NONCE is given the agent is advised to use that cached passphrase for the key. */ static int do_sign (ctrl_t ctrl, PKT_public_key *pksk, PKT_signature *sig, gcry_md_hd_t md, int mdalgo, const char *cache_nonce) { gpg_error_t err; byte *dp; char *hexgrip; if (pksk->timestamp > sig->timestamp ) { ulong d = pksk->timestamp - sig->timestamp; log_info (ngettext("key %s was created %lu second" " in the future (time warp or clock problem)\n", "key %s was created %lu seconds" " in the future (time warp or clock problem)\n", d), keystr_from_pk (pksk), d); if (!opt.ignore_time_conflict) return gpg_error (GPG_ERR_TIME_CONFLICT); } print_pubkey_algo_note (pksk->pubkey_algo); if (!mdalgo) mdalgo = gcry_md_get_algo (md); /* Check compliance. */ if (! gnupg_digest_is_allowed (opt.compliance, 1, mdalgo)) { log_error (_("digest algorithm '%s' may not be used in %s mode\n"), gcry_md_algo_name (mdalgo), gnupg_compliance_option_string (opt.compliance)); err = gpg_error (GPG_ERR_DIGEST_ALGO); goto leave; } if (! gnupg_pk_is_allowed (opt.compliance, PK_USE_SIGNING, pksk->pubkey_algo, pksk->pkey, nbits_from_pk (pksk), NULL)) { log_error (_("key %s may not be used for signing in %s mode\n"), keystr_from_pk (pksk), gnupg_compliance_option_string (opt.compliance)); err = gpg_error (GPG_ERR_PUBKEY_ALGO); goto leave; } if (!gnupg_rng_is_compliant (opt.compliance)) { err = gpg_error (GPG_ERR_FORBIDDEN); log_error (_("%s is not compliant with %s mode\n"), "RNG", gnupg_compliance_option_string (opt.compliance)); write_status_error ("random-compliance", err); goto leave; } print_digest_algo_note (mdalgo); dp = gcry_md_read (md, mdalgo); sig->digest_algo = mdalgo; sig->digest_start[0] = dp[0]; sig->digest_start[1] = dp[1]; mpi_release (sig->data[0]); sig->data[0] = NULL; mpi_release (sig->data[1]); sig->data[1] = NULL; err = hexkeygrip_from_pk (pksk, &hexgrip); if (!err) { char *desc; gcry_sexp_t s_sigval; desc = gpg_format_keydesc (ctrl, pksk, FORMAT_KEYDESC_NORMAL, 1); err = agent_pksign (NULL/*ctrl*/, cache_nonce, hexgrip, desc, pksk->keyid, pksk->main_keyid, pksk->pubkey_algo, dp, gcry_md_get_algo_dlen (mdalgo), mdalgo, &s_sigval); xfree (desc); if (err) ; else if (pksk->pubkey_algo == GCRY_PK_RSA || pksk->pubkey_algo == GCRY_PK_RSA_S) sig->data[0] = get_mpi_from_sexp (s_sigval, "s", GCRYMPI_FMT_USG); else if (openpgp_oid_is_ed25519 (pksk->pkey[0])) { sig->data[0] = get_mpi_from_sexp (s_sigval, "r", GCRYMPI_FMT_OPAQUE); sig->data[1] = get_mpi_from_sexp (s_sigval, "s", GCRYMPI_FMT_OPAQUE); } else { sig->data[0] = get_mpi_from_sexp (s_sigval, "r", GCRYMPI_FMT_USG); sig->data[1] = get_mpi_from_sexp (s_sigval, "s", GCRYMPI_FMT_USG); } gcry_sexp_release (s_sigval); } xfree (hexgrip); leave: if (err) log_error (_("signing failed: %s\n"), gpg_strerror (err)); else { if (opt.verbose) { char *ustr = get_user_id_string_native (ctrl, sig->keyid); log_info (_("%s/%s signature from: \"%s\"\n"), openpgp_pk_algo_name (pksk->pubkey_algo), openpgp_md_algo_name (sig->digest_algo), ustr); xfree (ustr); } } return err; } static int complete_sig (ctrl_t ctrl, PKT_signature *sig, PKT_public_key *pksk, gcry_md_hd_t md, const char *cache_nonce) { int rc; /* if (!(rc = check_secret_key (pksk, 0))) */ rc = do_sign (ctrl, pksk, sig, md, 0, cache_nonce); return rc; } /* Return true if the key seems to be on a version 1 OpenPGP card. This works by asking the agent and may fail if the card has not yet been used with the agent. */ static int openpgp_card_v1_p (PKT_public_key *pk) { gpg_error_t err; int result; /* Shortcut if we are not using RSA: The v1 cards only support RSA thus there is no point in looking any further. */ if (!is_RSA (pk->pubkey_algo)) return 0; if (!pk->flags.serialno_valid) { char *hexgrip; err = hexkeygrip_from_pk (pk, &hexgrip); if (err) { log_error ("error computing a keygrip: %s\n", gpg_strerror (err)); return 0; /* Ooops. */ } xfree (pk->serialno); agent_get_keyinfo (NULL, hexgrip, &pk->serialno, NULL); xfree (hexgrip); pk->flags.serialno_valid = 1; } if (!pk->serialno) result = 0; /* Error from a past agent_get_keyinfo or no card. */ else { /* The version number of the card is included in the serialno. */ result = !strncmp (pk->serialno, "D2760001240101", 14); } return result; } static int match_dsa_hash (unsigned int qbytes) { if (qbytes <= 20) return DIGEST_ALGO_SHA1; if (qbytes <= 28) return DIGEST_ALGO_SHA224; if (qbytes <= 32) return DIGEST_ALGO_SHA256; if (qbytes <= 48) return DIGEST_ALGO_SHA384; if (qbytes <= 66 ) /* 66 corresponds to 521 (64 to 512) */ return DIGEST_ALGO_SHA512; return DEFAULT_DIGEST_ALGO; /* DEFAULT_DIGEST_ALGO will certainly fail, but it's the best wrong answer we have if a digest larger than 512 bits is requested. */ } /* First try --digest-algo. If that isn't set, see if the recipient has a preferred algorithm (which is also filtered through --personal-digest-prefs). If we're making a signature without a particular recipient (i.e. signing, rather than signing+encrypting) then take the first algorithm in --personal-digest-prefs that is usable for the pubkey algorithm. If --personal-digest-prefs isn't set, then take the OpenPGP default (i.e. SHA-1). Note that Ed25519+EdDSA takes an input of arbitrary length and thus we don't enforce any particular algorithm like we do for standard ECDSA. However, we use SHA256 as the default algorithm. Possible improvement: Use the highest-ranked usable algorithm from the signing key prefs either before or after using the personal list? */ static int hash_for (PKT_public_key *pk) { if (opt.def_digest_algo) { return opt.def_digest_algo; } else if (recipient_digest_algo) { return recipient_digest_algo; } else if (pk->pubkey_algo == PUBKEY_ALGO_EDDSA && openpgp_oid_is_ed25519 (pk->pkey[0])) { if (opt.personal_digest_prefs) return opt.personal_digest_prefs[0].value; else return DIGEST_ALGO_SHA256; } else if (pk->pubkey_algo == PUBKEY_ALGO_DSA || pk->pubkey_algo == PUBKEY_ALGO_ECDSA) { unsigned int qbytes = gcry_mpi_get_nbits (pk->pkey[1]); if (pk->pubkey_algo == PUBKEY_ALGO_ECDSA) qbytes = ecdsa_qbits_from_Q (qbytes); qbytes = qbytes/8; /* It's a DSA key, so find a hash that is the same size as q or larger. If q is 160, assume it is an old DSA key and use a 160-bit hash unless --enable-dsa2 is set, in which case act like a new DSA key that just happens to have a 160-bit q (i.e. allow truncation). If q is not 160, by definition it must be a new DSA key. */ if (opt.personal_digest_prefs) { prefitem_t *prefs; if (qbytes != 20 || opt.flags.dsa2) { for (prefs=opt.personal_digest_prefs; prefs->type; prefs++) if (gcry_md_get_algo_dlen (prefs->value) >= qbytes) return prefs->value; } else { for (prefs=opt.personal_digest_prefs; prefs->type; prefs++) if (gcry_md_get_algo_dlen (prefs->value) == qbytes) return prefs->value; } } return match_dsa_hash(qbytes); } else if (openpgp_card_v1_p (pk)) { /* The sk lives on a smartcard, and old smartcards only handle SHA-1 and RIPEMD/160. Newer smartcards (v2.0) don't have this restriction anymore. Fortunately the serial number encodes the version of the card and thus we know that this key is on a v1 card. */ if(opt.personal_digest_prefs) { prefitem_t *prefs; for (prefs=opt.personal_digest_prefs;prefs->type;prefs++) if (prefs->value==DIGEST_ALGO_SHA1 || prefs->value==DIGEST_ALGO_RMD160) return prefs->value; } return DIGEST_ALGO_SHA1; } else if (opt.personal_digest_prefs) { /* It's not DSA, so we can use whatever the first hash algorithm is in the pref list */ return opt.personal_digest_prefs[0].value; } else return DEFAULT_DIGEST_ALGO; } static void print_status_sig_created (PKT_public_key *pk, PKT_signature *sig, int what) { byte array[MAX_FINGERPRINT_LEN]; char buf[100+MAX_FINGERPRINT_LEN*2]; size_t n; snprintf (buf, sizeof buf - 2*MAX_FINGERPRINT_LEN, "%c %d %d %02x %lu ", what, sig->pubkey_algo, sig->digest_algo, sig->sig_class, (ulong)sig->timestamp ); fingerprint_from_pk (pk, array, &n); bin2hex (array, n, buf + strlen (buf)); write_status_text( STATUS_SIG_CREATED, buf ); } /* * Loop over the secret certificates in SK_LIST and build the one pass * signature packets. OpenPGP says that the data should be bracket by * the onepass-sig and signature-packet; so we build these onepass * packet here in reverse order */ static int write_onepass_sig_packets (SK_LIST sk_list, IOBUF out, int sigclass ) { int skcount; SK_LIST sk_rover; for (skcount=0, sk_rover=sk_list; sk_rover; sk_rover = sk_rover->next) skcount++; for (; skcount; skcount--) { PKT_public_key *pk; PKT_onepass_sig *ops; PACKET pkt; int i, rc; for (i=0, sk_rover = sk_list; sk_rover; sk_rover = sk_rover->next ) { if (++i == skcount) break; } pk = sk_rover->pk; ops = xmalloc_clear (sizeof *ops); ops->sig_class = sigclass; ops->digest_algo = hash_for (pk); ops->pubkey_algo = pk->pubkey_algo; keyid_from_pk (pk, ops->keyid); ops->last = (skcount == 1); init_packet(&pkt); pkt.pkttype = PKT_ONEPASS_SIG; pkt.pkt.onepass_sig = ops; rc = build_packet (out, &pkt); free_packet (&pkt, NULL); if (rc) { log_error ("build onepass_sig packet failed: %s\n", gpg_strerror (rc)); return rc; } } return 0; } /* * Helper to write the plaintext (literal data) packet */ static int write_plaintext_packet (IOBUF out, IOBUF inp, const char *fname, int ptmode) { PKT_plaintext *pt = NULL; u32 filesize; int rc = 0; if (!opt.no_literal) pt=setup_plaintext_name(fname,inp); /* try to calculate the length of the data */ if ( !iobuf_is_pipe_filename (fname) && *fname ) { off_t tmpsize; int overflow; if( !(tmpsize = iobuf_get_filelength(inp, &overflow)) && !overflow && opt.verbose) log_info (_("WARNING: '%s' is an empty file\n"), fname); /* We can't encode the length of very large files because OpenPGP uses only 32 bit for file sizes. So if the size of a file is larger than 2^32 minus some bytes for packet headers, we switch to partial length encoding. */ if ( tmpsize < (IOBUF_FILELENGTH_LIMIT - 65536) ) filesize = tmpsize; else filesize = 0; /* Because the text_filter modifies the length of the * data, it is not possible to know the used length * without a double read of the file - to avoid that * we simple use partial length packets. */ if ( ptmode == 't' || ptmode == 'u' || ptmode == 'm') filesize = 0; } else filesize = opt.set_filesize? opt.set_filesize : 0; /* stdin */ if (!opt.no_literal) { PACKET pkt; /* Note that PT has been initialized above in no_literal mode. */ pt->timestamp = make_timestamp (); pt->mode = ptmode; pt->len = filesize; pt->new_ctb = !pt->len; pt->buf = inp; init_packet(&pkt); pkt.pkttype = PKT_PLAINTEXT; pkt.pkt.plaintext = pt; /*cfx.datalen = filesize? calc_packet_length( &pkt ) : 0;*/ if( (rc = build_packet (out, &pkt)) ) log_error ("build_packet(PLAINTEXT) failed: %s\n", gpg_strerror (rc) ); pt->buf = NULL; free_packet (&pkt, NULL); } else { byte copy_buffer[4096]; int bytes_copied; while ((bytes_copied = iobuf_read(inp, copy_buffer, 4096)) != -1) if ( (rc=iobuf_write(out, copy_buffer, bytes_copied)) ) { log_error ("copying input to output failed: %s\n", gpg_strerror (rc)); break; } wipememory(copy_buffer,4096); /* burn buffer */ } /* fixme: it seems that we never freed pt/pkt */ return rc; } /* * Write the signatures from the SK_LIST to OUT. HASH must be a non-finalized * hash which will not be changes here. */ static int write_signature_packets (ctrl_t ctrl, SK_LIST sk_list, IOBUF out, gcry_md_hd_t hash, int sigclass, u32 timestamp, u32 duration, int status_letter, const char *cache_nonce) { SK_LIST sk_rover; /* Loop over the certificates with secret keys. */ for (sk_rover = sk_list; sk_rover; sk_rover = sk_rover->next) { PKT_public_key *pk; PKT_signature *sig; gcry_md_hd_t md; int rc; pk = sk_rover->pk; /* Build the signature packet. */ sig = xtrycalloc (1, sizeof *sig); if (!sig) return gpg_error_from_syserror (); if (duration || opt.sig_policy_url || opt.sig_notations || opt.sig_keyserver_url) sig->version = 4; else sig->version = pk->version; keyid_from_pk (pk, sig->keyid); sig->digest_algo = hash_for (pk); sig->pubkey_algo = pk->pubkey_algo; if (timestamp) sig->timestamp = timestamp; else sig->timestamp = make_timestamp(); if (duration) sig->expiredate = sig->timestamp + duration; sig->sig_class = sigclass; if (gcry_md_copy (&md, hash)) BUG (); if (sig->version >= 4) { build_sig_subpkt_from_sig (sig, pk); mk_notation_policy_etc (sig, NULL, pk); } hash_sigversion_to_magic (md, sig); gcry_md_final (md); rc = do_sign (ctrl, pk, sig, md, hash_for (pk), cache_nonce); gcry_md_close (md); if (!rc) { /* Write the packet. */ PACKET pkt; init_packet (&pkt); pkt.pkttype = PKT_SIGNATURE; pkt.pkt.signature = sig; rc = build_packet (out, &pkt); if (!rc && is_status_enabled()) print_status_sig_created (pk, sig, status_letter); free_packet (&pkt, NULL); if (rc) log_error ("build signature packet failed: %s\n", gpg_strerror (rc)); } else - xfree (sig); + free_seckey_enc (sig); if (rc) return rc; } return 0; } /**************** * Sign the files whose names are in FILENAME. * If DETACHED has the value true, * make a detached signature. If FILENAMES->d is NULL read from stdin * and ignore the detached mode. Sign the file with all secret keys * which can be taken from LOCUSR, if this is NULL, use the default one * If ENCRYPTFLAG is true, use REMUSER (or ask if it is NULL) to encrypt the * signed data for these users. * If OUTFILE is not NULL; this file is used for output and the function * does not ask for overwrite permission; output is then always * uncompressed, non-armored and in binary mode. */ int sign_file (ctrl_t ctrl, strlist_t filenames, int detached, strlist_t locusr, int encryptflag, strlist_t remusr, const char *outfile ) { const char *fname; armor_filter_context_t *afx; compress_filter_context_t zfx; md_filter_context_t mfx; text_filter_context_t tfx; progress_filter_context_t *pfx; encrypt_filter_context_t efx; IOBUF inp = NULL, out = NULL; PACKET pkt; int rc = 0; PK_LIST pk_list = NULL; SK_LIST sk_list = NULL; SK_LIST sk_rover = NULL; int multifile = 0; u32 duration=0; pfx = new_progress_context (); afx = new_armor_context (); memset( &zfx, 0, sizeof zfx); memset( &mfx, 0, sizeof mfx); memset( &efx, 0, sizeof efx); efx.ctrl = ctrl; init_packet( &pkt ); if( filenames ) { fname = filenames->d; multifile = !!filenames->next; } else fname = NULL; if( fname && filenames->next && (!detached || encryptflag) ) log_bug("multiple files can only be detached signed"); if(encryptflag==2 && (rc=setup_symkey(&efx.symkey_s2k,&efx.symkey_dek))) goto leave; if (opt.ask_sig_expire && !opt.batch) duration = ask_expire_interval(1,opt.def_sig_expire); else duration = parse_expire_string(opt.def_sig_expire); /* Note: In the old non-agent version the following call used to unprotect the secret key. This is now done on demand by the agent. */ if( (rc = build_sk_list (ctrl, locusr, &sk_list, PUBKEY_USAGE_SIG )) ) goto leave; if (encryptflag && (rc=build_pk_list (ctrl, remusr, &pk_list))) goto leave; /* prepare iobufs */ if( multifile ) /* have list of filenames */ inp = NULL; /* we do it later */ else { inp = iobuf_open(fname); if (inp && is_secured_file (iobuf_get_fd (inp))) { iobuf_close (inp); inp = NULL; gpg_err_set_errno (EPERM); } if( !inp ) { rc = gpg_error_from_syserror (); log_error (_("can't open '%s': %s\n"), fname? fname: "[stdin]", strerror(errno) ); goto leave; } handle_progress (pfx, inp, fname); } if( outfile ) { if (is_secured_filename ( outfile )) { out = NULL; gpg_err_set_errno (EPERM); } else out = iobuf_create (outfile, 0); if( !out ) { rc = gpg_error_from_syserror (); log_error(_("can't create '%s': %s\n"), outfile, strerror(errno) ); goto leave; } else if( opt.verbose ) log_info(_("writing to '%s'\n"), outfile ); } else if( (rc = open_outfile (-1, fname, opt.armor? 1: detached? 2:0, 0, &out))) goto leave; /* prepare to calculate the MD over the input */ if( opt.textmode && !outfile && !multifile ) { memset( &tfx, 0, sizeof tfx); iobuf_push_filter( inp, text_filter, &tfx ); } if ( gcry_md_open (&mfx.md, 0, 0) ) BUG (); if (DBG_HASHING) gcry_md_debug (mfx.md, "sign"); /* If we're encrypting and signing, it is reasonable to pick the hash algorithm to use out of the recipient key prefs. This is best effort only, as in a DSA2 and smartcard world there are cases where we cannot please everyone with a single hash (DSA2 wants >160 and smartcards want =160). In the future this could be more complex with different hashes for each sk, but the current design requires a single hash for all SKs. */ if(pk_list) { if(opt.def_digest_algo) { if(!opt.expert && select_algo_from_prefs(pk_list,PREFTYPE_HASH, opt.def_digest_algo, NULL)!=opt.def_digest_algo) log_info(_("WARNING: forcing digest algorithm %s (%d)" " violates recipient preferences\n"), gcry_md_algo_name (opt.def_digest_algo), opt.def_digest_algo ); } else { int algo, smartcard=0; union pref_hint hint; hint.digest_length = 0; /* Of course, if the recipient asks for something unreasonable (like the wrong hash for a DSA key) then don't do it. Check all sk's - if any are DSA or live on a smartcard, then the hash has restrictions and we may not be able to give the recipient what they want. For DSA, pass a hint for the largest q we have. Note that this means that a q>160 key will override a q=160 key and force the use of truncation for the q=160 key. The alternative would be to ignore the recipient prefs completely and get a different hash for each DSA key in hash_for(). The override behavior here is more or less reasonable as it is under the control of the user which keys they sign with for a given message and the fact that the message with multiple signatures won't be usable on an implementation that doesn't understand DSA2 anyway. */ for (sk_rover = sk_list; sk_rover; sk_rover = sk_rover->next ) { if (sk_rover->pk->pubkey_algo == PUBKEY_ALGO_DSA || sk_rover->pk->pubkey_algo == PUBKEY_ALGO_ECDSA) { int temp_hashlen = (gcry_mpi_get_nbits (sk_rover->pk->pkey[1])); if (sk_rover->pk->pubkey_algo == PUBKEY_ALGO_ECDSA) temp_hashlen = ecdsa_qbits_from_Q (temp_hashlen); temp_hashlen = (temp_hashlen+7)/8; /* Pick a hash that is large enough for our largest q */ if (hint.digest_lengthpk->is_protected */ /* && sk_rover->pk->protect.s2k.mode == 1002) */ /* smartcard = 1; */ } /* Current smartcards only do 160-bit hashes. If we have to have a >160-bit hash, then we can't use the recipient prefs as we'd need both =160 and >160 at the same time and recipient prefs currently require a single hash for all signatures. All this may well have to change as the cards add algorithms. */ if (!smartcard || (smartcard && hint.digest_length==20)) if ( (algo= select_algo_from_prefs(pk_list,PREFTYPE_HASH,-1,&hint)) > 0) recipient_digest_algo=algo; } } for (sk_rover = sk_list; sk_rover; sk_rover = sk_rover->next) gcry_md_enable (mfx.md, hash_for (sk_rover->pk)); if( !multifile ) iobuf_push_filter( inp, md_filter, &mfx ); if( detached && !encryptflag) afx->what = 2; if( opt.armor && !outfile ) push_armor_filter (afx, out); if( encryptflag ) { efx.pk_list = pk_list; /* fixme: set efx.cfx.datalen if known */ iobuf_push_filter( out, encrypt_filter, &efx ); } if (opt.compress_algo && !outfile && !detached) { int compr_algo=opt.compress_algo; /* If not forced by user */ if(compr_algo==-1) { /* If we're not encrypting, then select_algo_from_prefs will fail and we'll end up with the default. If we are encrypting, select_algo_from_prefs cannot fail since there is an assumed preference for uncompressed data. Still, if it did fail, we'll also end up with the default. */ if((compr_algo= select_algo_from_prefs(pk_list,PREFTYPE_ZIP,-1,NULL))==-1) compr_algo=default_compress_algo(); } else if(!opt.expert && pk_list && select_algo_from_prefs(pk_list,PREFTYPE_ZIP, compr_algo,NULL)!=compr_algo) log_info(_("WARNING: forcing compression algorithm %s (%d)" " violates recipient preferences\n"), compress_algo_to_string(compr_algo),compr_algo); /* algo 0 means no compression */ if( compr_algo ) push_compress_filter(out,&zfx,compr_algo); } /* Write the one-pass signature packets if needed */ if (!detached) { rc = write_onepass_sig_packets (sk_list, out, opt.textmode && !outfile ? 0x01:0x00); if (rc) goto leave; } write_status_begin_signing (mfx.md); /* Setup the inner packet. */ if( detached ) { if( multifile ) { strlist_t sl; if( opt.verbose ) log_info(_("signing:") ); /* must walk reverse trough this list */ for( sl = strlist_last(filenames); sl; sl = strlist_prev( filenames, sl ) ) { inp = iobuf_open(sl->d); if (inp && is_secured_file (iobuf_get_fd (inp))) { iobuf_close (inp); inp = NULL; gpg_err_set_errno (EPERM); } if( !inp ) { rc = gpg_error_from_syserror (); log_error(_("can't open '%s': %s\n"), sl->d,strerror(errno)); goto leave; } handle_progress (pfx, inp, sl->d); if( opt.verbose ) log_printf (" '%s'", sl->d ); if(opt.textmode) { memset( &tfx, 0, sizeof tfx); iobuf_push_filter( inp, text_filter, &tfx ); } iobuf_push_filter( inp, md_filter, &mfx ); while( iobuf_get(inp) != -1 ) ; iobuf_close(inp); inp = NULL; } if( opt.verbose ) log_printf ("\n"); } else { /* read, so that the filter can calculate the digest */ while( iobuf_get(inp) != -1 ) ; } } else { rc = write_plaintext_packet (out, inp, fname, opt.textmode && !outfile ? (opt.mimemode? 'm':'t'):'b'); } /* catch errors from above */ if (rc) goto leave; /* write the signatures */ rc = write_signature_packets (ctrl, sk_list, out, mfx.md, opt.textmode && !outfile? 0x01 : 0x00, 0, duration, detached ? 'D':'S', NULL); if( rc ) goto leave; leave: if( rc ) iobuf_cancel(out); else { iobuf_close(out); if (encryptflag) write_status( STATUS_END_ENCRYPTION ); } iobuf_close(inp); gcry_md_close ( mfx.md ); release_sk_list( sk_list ); release_pk_list( pk_list ); recipient_digest_algo=0; release_progress_context (pfx); release_armor_context (afx); return rc; } /**************** * make a clear signature. note that opt.armor is not needed */ int clearsign_file (ctrl_t ctrl, const char *fname, strlist_t locusr, const char *outfile ) { armor_filter_context_t *afx; progress_filter_context_t *pfx; gcry_md_hd_t textmd = NULL; IOBUF inp = NULL, out = NULL; PACKET pkt; int rc = 0; SK_LIST sk_list = NULL; SK_LIST sk_rover = NULL; u32 duration=0; pfx = new_progress_context (); afx = new_armor_context (); init_packet( &pkt ); if (opt.ask_sig_expire && !opt.batch) duration = ask_expire_interval (1,opt.def_sig_expire); else duration = parse_expire_string (opt.def_sig_expire); /* Note: In the old non-agent version the following call used to unprotect the secret key. This is now done on demand by the agent. */ if( (rc=build_sk_list (ctrl, locusr, &sk_list, PUBKEY_USAGE_SIG )) ) goto leave; /* prepare iobufs */ inp = iobuf_open(fname); if (inp && is_secured_file (iobuf_get_fd (inp))) { iobuf_close (inp); inp = NULL; gpg_err_set_errno (EPERM); } if( !inp ) { rc = gpg_error_from_syserror (); log_error (_("can't open '%s': %s\n"), fname? fname: "[stdin]", strerror(errno) ); goto leave; } handle_progress (pfx, inp, fname); if( outfile ) { if (is_secured_filename (outfile) ) { outfile = NULL; gpg_err_set_errno (EPERM); } else out = iobuf_create (outfile, 0); if( !out ) { rc = gpg_error_from_syserror (); log_error(_("can't create '%s': %s\n"), outfile, strerror(errno) ); goto leave; } else if( opt.verbose ) log_info(_("writing to '%s'\n"), outfile ); } else if ((rc = open_outfile (-1, fname, 1, 0, &out))) goto leave; iobuf_writestr(out, "-----BEGIN PGP SIGNED MESSAGE-----" LF ); { const char *s; int any = 0; byte hashs_seen[256]; memset( hashs_seen, 0, sizeof hashs_seen ); iobuf_writestr(out, "Hash: " ); for( sk_rover = sk_list; sk_rover; sk_rover = sk_rover->next ) { int i = hash_for (sk_rover->pk); if( !hashs_seen[ i & 0xff ] ) { s = gcry_md_algo_name ( i ); if( s ) { hashs_seen[ i & 0xff ] = 1; if( any ) iobuf_put(out, ',' ); iobuf_writestr(out, s ); any = 1; } } } log_assert(any); iobuf_writestr(out, LF ); } if( opt.not_dash_escaped ) iobuf_writestr( out, "NotDashEscaped: You need "GPG_NAME " to verify this message" LF ); iobuf_writestr(out, LF ); if ( gcry_md_open (&textmd, 0, 0) ) BUG (); for (sk_rover = sk_list; sk_rover; sk_rover = sk_rover->next) gcry_md_enable (textmd, hash_for(sk_rover->pk)); if ( DBG_HASHING ) gcry_md_debug ( textmd, "clearsign" ); copy_clearsig_text (out, inp, textmd, !opt.not_dash_escaped, opt.escape_from); /* fixme: check for read errors */ /* now write the armor */ afx->what = 2; push_armor_filter (afx, out); /* Write the signatures. */ rc = write_signature_packets (ctrl, sk_list, out, textmd, 0x01, 0, duration, 'C', NULL); if( rc ) goto leave; leave: if( rc ) iobuf_cancel(out); else iobuf_close(out); iobuf_close(inp); gcry_md_close ( textmd ); release_sk_list( sk_list ); release_progress_context (pfx); release_armor_context (afx); return rc; } /* * Sign and conventionally encrypt the given file. * FIXME: Far too much code is duplicated - revamp the whole file. */ int sign_symencrypt_file (ctrl_t ctrl, const char *fname, strlist_t locusr) { armor_filter_context_t *afx; progress_filter_context_t *pfx; compress_filter_context_t zfx; md_filter_context_t mfx; text_filter_context_t tfx; cipher_filter_context_t cfx; IOBUF inp = NULL, out = NULL; PACKET pkt; STRING2KEY *s2k = NULL; int rc = 0; SK_LIST sk_list = NULL; SK_LIST sk_rover = NULL; int algo; u32 duration=0; int canceled; pfx = new_progress_context (); afx = new_armor_context (); memset( &zfx, 0, sizeof zfx); memset( &mfx, 0, sizeof mfx); memset( &tfx, 0, sizeof tfx); memset( &cfx, 0, sizeof cfx); init_packet( &pkt ); if (opt.ask_sig_expire && !opt.batch) duration = ask_expire_interval (1, opt.def_sig_expire); else duration = parse_expire_string (opt.def_sig_expire); /* Note: In the old non-agent version the following call used to unprotect the secret key. This is now done on demand by the agent. */ rc = build_sk_list (ctrl, locusr, &sk_list, PUBKEY_USAGE_SIG); if (rc) goto leave; /* prepare iobufs */ inp = iobuf_open(fname); if (inp && is_secured_file (iobuf_get_fd (inp))) { iobuf_close (inp); inp = NULL; gpg_err_set_errno (EPERM); } if( !inp ) { rc = gpg_error_from_syserror (); log_error (_("can't open '%s': %s\n"), fname? fname: "[stdin]", strerror(errno) ); goto leave; } handle_progress (pfx, inp, fname); /* prepare key */ s2k = xmalloc_clear( sizeof *s2k ); s2k->mode = opt.s2k_mode; s2k->hash_algo = S2K_DIGEST_ALGO; algo = default_cipher_algo(); cfx.dek = passphrase_to_dek (algo, s2k, 1, 1, NULL, &canceled); if (!cfx.dek || !cfx.dek->keylen) { rc = gpg_error (canceled?GPG_ERR_CANCELED:GPG_ERR_BAD_PASSPHRASE); log_error(_("error creating passphrase: %s\n"), gpg_strerror (rc) ); goto leave; } cfx.dek->use_aead = use_aead (NULL, cfx.dek->algo); if (!cfx.dek->use_aead) cfx.dek->use_mdc = !!use_mdc (NULL, cfx.dek->algo); if (!opt.quiet || !opt.batch) log_info (_("%s.%s encryption will be used\n"), openpgp_cipher_algo_name (algo), cfx.dek->use_aead? openpgp_aead_algo_name (cfx.dek->use_aead) /**/ : "CFB"); /* now create the outfile */ rc = open_outfile (-1, fname, opt.armor? 1:0, 0, &out); if (rc) goto leave; /* prepare to calculate the MD over the input */ if (opt.textmode) iobuf_push_filter (inp, text_filter, &tfx); if ( gcry_md_open (&mfx.md, 0, 0) ) BUG (); if ( DBG_HASHING ) gcry_md_debug (mfx.md, "symc-sign"); for (sk_rover = sk_list; sk_rover; sk_rover = sk_rover->next) gcry_md_enable (mfx.md, hash_for (sk_rover->pk)); iobuf_push_filter (inp, md_filter, &mfx); /* Push armor output filter */ if (opt.armor) push_armor_filter (afx, out); /* Write the symmetric key packet */ /*(current filters: armor)*/ { PKT_symkey_enc *enc = xmalloc_clear( sizeof *enc ); enc->version = 4; enc->cipher_algo = cfx.dek->algo; enc->s2k = *s2k; pkt.pkttype = PKT_SYMKEY_ENC; pkt.pkt.symkey_enc = enc; if( (rc = build_packet( out, &pkt )) ) log_error("build symkey packet failed: %s\n", gpg_strerror (rc) ); xfree(enc); } /* Push the encryption filter */ iobuf_push_filter (out, cfx.dek->use_aead? cipher_filter_aead /**/ : cipher_filter_cfb, &cfx); /* Push the compress filter */ if (default_compress_algo()) { if (cfx.dek && (cfx.dek->use_mdc || cfx.dek->use_aead)) zfx.new_ctb = 1; push_compress_filter (out, &zfx,default_compress_algo() ); } /* Write the one-pass signature packets */ /*(current filters: zip - encrypt - armor)*/ rc = write_onepass_sig_packets (sk_list, out, opt.textmode? 0x01:0x00); if (rc) goto leave; write_status_begin_signing (mfx.md); /* Pipe data through all filters; i.e. write the signed stuff */ /*(current filters: zip - encrypt - armor)*/ rc = write_plaintext_packet (out, inp, fname, opt.textmode ? (opt.mimemode?'m':'t'):'b'); if (rc) goto leave; /* Write the signatures */ /*(current filters: zip - encrypt - armor)*/ rc = write_signature_packets (ctrl, sk_list, out, mfx.md, opt.textmode? 0x01 : 0x00, 0, duration, 'S', NULL); if( rc ) goto leave; leave: if( rc ) iobuf_cancel(out); else { iobuf_close(out); write_status( STATUS_END_ENCRYPTION ); } iobuf_close(inp); release_sk_list( sk_list ); gcry_md_close( mfx.md ); xfree(cfx.dek); xfree(s2k); release_progress_context (pfx); release_armor_context (afx); return rc; } /**************** * Create a v4 signature in *RET_SIG. * * PK is the primary key to sign (required for all sigs) * UID is the user id to sign (required for 0x10..0x13, 0x30) * SUBPK is subkey to sign (required for 0x18, 0x19, 0x28) * * PKSK is the signing key * * SIGCLASS is the type of signature to create. * * DIGEST_ALGO is the digest algorithm. If it is 0 the function * selects an appropriate one. * * TIMESTAMP is the timestamp to use for the signature. 0 means "now" * * DURATION is the amount of time (in seconds) until the signature * expires. * * This function creates the following subpackets: issuer, created, * and expire (if duration is not 0). Additional subpackets can be * added using MKSUBPKT, which is called after these subpackets are * added and before the signature is generated. OPAQUE is passed to * MKSUBPKT. */ int make_keysig_packet (ctrl_t ctrl, PKT_signature **ret_sig, PKT_public_key *pk, PKT_user_id *uid, PKT_public_key *subpk, PKT_public_key *pksk, int sigclass, int digest_algo, u32 timestamp, u32 duration, int (*mksubpkt)(PKT_signature *, void *), void *opaque, const char *cache_nonce) { PKT_signature *sig; int rc=0; int sigversion; gcry_md_hd_t md; log_assert ((sigclass >= 0x10 && sigclass <= 0x13) || sigclass == 0x1F || sigclass == 0x20 || sigclass == 0x18 || sigclass == 0x19 || sigclass == 0x30 || sigclass == 0x28 ); sigversion = 4; if (sigversion < pksk->version) sigversion = pksk->version; if( !digest_algo ) { /* Basically, this means use SHA1 always unless the user specified something (use whatever they said), or it's DSA (use the best match). They still can't pick an inappropriate hash for DSA or the signature will fail. Note that this still allows the caller of make_keysig_packet to override the user setting if it must. */ if(opt.cert_digest_algo) digest_algo=opt.cert_digest_algo; else if(pksk->pubkey_algo == PUBKEY_ALGO_DSA) digest_algo = match_dsa_hash (gcry_mpi_get_nbits (pksk->pkey[1])/8); else if (pksk->pubkey_algo == PUBKEY_ALGO_ECDSA || pksk->pubkey_algo == PUBKEY_ALGO_EDDSA) { if (openpgp_oid_is_ed25519 (pksk->pkey[0])) digest_algo = DIGEST_ALGO_SHA256; else digest_algo = match_dsa_hash (ecdsa_qbits_from_Q (gcry_mpi_get_nbits (pksk->pkey[1]))/8); } else digest_algo = DEFAULT_DIGEST_ALGO; } if ( gcry_md_open (&md, digest_algo, 0 ) ) BUG (); /* Hash the public key certificate. */ hash_public_key( md, pk ); if( sigclass == 0x18 || sigclass == 0x19 || sigclass == 0x28 ) { /* hash the subkey binding/backsig/revocation */ hash_public_key( md, subpk ); } else if( sigclass != 0x1F && sigclass != 0x20 ) { /* hash the user id */ hash_uid (md, sigversion, uid); } /* and make the signature packet */ sig = xmalloc_clear( sizeof *sig ); sig->version = sigversion; sig->flags.exportable=1; sig->flags.revocable=1; keyid_from_pk (pksk, sig->keyid); sig->pubkey_algo = pksk->pubkey_algo; sig->digest_algo = digest_algo; if(timestamp) sig->timestamp=timestamp; else sig->timestamp=make_timestamp(); if(duration) sig->expiredate=sig->timestamp+duration; sig->sig_class = sigclass; build_sig_subpkt_from_sig (sig, pksk); mk_notation_policy_etc (sig, pk, pksk); /* Crucial that the call to mksubpkt comes LAST before the calls to finalize the sig as that makes it possible for the mksubpkt function to get a reliable pointer to the subpacket area. */ if (mksubpkt) rc = (*mksubpkt)( sig, opaque ); if( !rc ) { hash_sigversion_to_magic (md, sig); gcry_md_final (md); rc = complete_sig (ctrl, sig, pksk, md, cache_nonce); } gcry_md_close (md); if( rc ) free_seckey_enc( sig ); else *ret_sig = sig; return rc; } /**************** * Create a new signature packet based on an existing one. * Only user ID signatures are supported for now. * PK is the public key to work on. * PKSK is the key used to make the signature. * * TODO: Merge this with make_keysig_packet. */ gpg_error_t update_keysig_packet (ctrl_t ctrl, PKT_signature **ret_sig, PKT_signature *orig_sig, PKT_public_key *pk, PKT_user_id *uid, PKT_public_key *subpk, PKT_public_key *pksk, int (*mksubpkt)(PKT_signature *, void *), void *opaque) { PKT_signature *sig; gpg_error_t rc = 0; int digest_algo; gcry_md_hd_t md; if ((!orig_sig || !pk || !pksk) || (orig_sig->sig_class >= 0x10 && orig_sig->sig_class <= 0x13 && !uid) || (orig_sig->sig_class == 0x18 && !subpk)) return GPG_ERR_GENERAL; if ( opt.cert_digest_algo ) digest_algo = opt.cert_digest_algo; else digest_algo = orig_sig->digest_algo; if ( gcry_md_open (&md, digest_algo, 0 ) ) BUG (); /* Hash the public key certificate and the user id. */ hash_public_key( md, pk ); if( orig_sig->sig_class == 0x18 ) hash_public_key( md, subpk ); else hash_uid (md, orig_sig->version, uid); /* create a new signature packet */ sig = copy_signature (NULL, orig_sig); sig->digest_algo=digest_algo; /* We need to create a new timestamp so that new sig expiration calculations are done correctly... */ sig->timestamp=make_timestamp(); /* ... but we won't make a timestamp earlier than the existing one. */ { int tmout = 0; while(sig->timestamp<=orig_sig->timestamp) { if (++tmout > 5 && !opt.ignore_time_conflict) { rc = gpg_error (GPG_ERR_TIME_CONFLICT); goto leave; } gnupg_sleep (1); sig->timestamp=make_timestamp(); } } /* Note that already expired sigs will remain expired (with a duration of 1) since build-packet.c:build_sig_subpkt_from_sig detects this case. */ /* Put the updated timestamp into the sig. Note that this will automagically lower any sig expiration dates to correctly correspond to the differences in the timestamps (i.e. the duration will shrink). */ build_sig_subpkt_from_sig (sig, pksk); if (mksubpkt) rc = (*mksubpkt)(sig, opaque); if (!rc) { hash_sigversion_to_magic (md, sig); gcry_md_final (md); rc = complete_sig (ctrl, sig, pksk, md, NULL); } leave: gcry_md_close (md); if( rc ) free_seckey_enc (sig); else *ret_sig = sig; return rc; }