diff --git a/g10/cpr.c b/g10/cpr.c index 3d39d6bda..d502e8b52 100644 --- a/g10/cpr.c +++ b/g10/cpr.c @@ -1,664 +1,664 @@ /* status.c - Status message and command-fd interface * Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, * 2004, 2005, 2006, 2010 Free Software Foundation, Inc. * * This file is part of GnuPG. * * GnuPG is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * GnuPG is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #include #include #include #include #include #include #ifdef HAVE_SIGNAL_H # include #endif #include "gpg.h" #include "../common/util.h" #include "../common/status.h" #include "../common/ttyio.h" #include "options.h" #include "main.h" #include "../common/i18n.h" #define CONTROL_D ('D' - 'A' + 1) /* The stream to output the status information. Output is disabled if this is NULL. */ static estream_t statusfp; static void progress_cb (void *ctx, const char *what, int printchar, int current, int total) { char buf[50]; (void)ctx; if ( printchar == '\n' && !strcmp (what, "primegen") ) snprintf (buf, sizeof buf, "%.20s X 100 100", what ); else snprintf (buf, sizeof buf, "%.20s %c %d %d", what, printchar=='\n'?'X':printchar, current, total ); write_status_text (STATUS_PROGRESS, buf); } /* Return true if the status message NO may currently be issued. We - need this to avoid syncronisation problem while auto retrieving a + need this to avoid synchronization problem while auto retrieving a key. There it may happen that a status NODATA is issued for a non available key and the user may falsely interpret this has a missing signature. */ static int status_currently_allowed (int no) { if (!glo_ctrl.in_auto_key_retrieve) return 1; /* Yes. */ /* We allow some statis anyway, so that import statistics are correct and to avoid problems if the retrieval subsystem will prompt the user. */ switch (no) { case STATUS_GET_BOOL: case STATUS_GET_LINE: case STATUS_GET_HIDDEN: case STATUS_GOT_IT: case STATUS_IMPORTED: case STATUS_IMPORT_OK: case STATUS_IMPORT_CHECK: case STATUS_IMPORT_RES: return 1; /* Yes. */ default: break; } return 0; /* No. */ } void set_status_fd (int fd) { static int last_fd = -1; if (fd != -1 && last_fd == fd) return; if (statusfp && statusfp != es_stdout && statusfp != es_stderr ) es_fclose (statusfp); statusfp = NULL; if (fd == -1) return; if (! gnupg_fd_valid (fd)) log_fatal ("status-fd is invalid: %s\n", strerror (errno)); if (fd == 1) statusfp = es_stdout; else if (fd == 2) statusfp = es_stderr; else statusfp = es_fdopen (fd, "w"); if (!statusfp) { log_fatal ("can't open fd %d for status output: %s\n", fd, strerror (errno)); } last_fd = fd; gcry_set_progress_handler (progress_cb, NULL); } int is_status_enabled () { return !!statusfp; } void write_status ( int no ) { write_status_text( no, NULL ); } /* Write a status line with code NO followed by the string TEXT and * directly followed by the remaining strings up to a NULL. Embedded * CR and LFs in the strings (but not in TEXT) are C-style escaped.*/ void write_status_strings (int no, const char *text, ...) { va_list arg_ptr; const char *s; if (!statusfp || !status_currently_allowed (no) ) return; /* Not enabled or allowed. */ es_fputs ("[GNUPG:] ", statusfp); es_fputs (get_status_string (no), statusfp); if ( text ) { es_putc ( ' ', statusfp); va_start (arg_ptr, text); s = text; do { for (; *s; s++) { if (*s == '\n') es_fputs ("\\n", statusfp); else if (*s == '\r') es_fputs ("\\r", statusfp); else es_fputc (*(const byte *)s, statusfp); } } while ((s = va_arg (arg_ptr, const char*))); va_end (arg_ptr); } es_putc ('\n', statusfp); if (es_fflush (statusfp) && opt.exit_on_status_write_error) g10_exit (0); } void write_status_text (int no, const char *text) { write_status_strings (no, text, NULL); } /* Write a status line with code NO followed by the output of the * printf style FORMAT. Embedded CR and LFs are C-style escaped. */ void write_status_printf (int no, const char *format, ...) { va_list arg_ptr; char *buf; if (!statusfp || !status_currently_allowed (no) ) return; /* Not enabled or allowed. */ es_fputs ("[GNUPG:] ", statusfp); es_fputs (get_status_string (no), statusfp); if (format) { es_putc ( ' ', statusfp); va_start (arg_ptr, format); buf = gpgrt_vbsprintf (format, arg_ptr); if (!buf) log_error ("error printing status line: %s\n", gpg_strerror (gpg_err_code_from_syserror ())); else { if (strpbrk (buf, "\r\n")) { const byte *s; for (s=buf; *s; s++) { if (*s == '\n') es_fputs ("\\n", statusfp); else if (*s == '\r') es_fputs ("\\r", statusfp); else es_fputc (*s, statusfp); } } else es_fputs (buf, statusfp); gpgrt_free (buf); } va_end (arg_ptr); } es_putc ('\n', statusfp); if (es_fflush (statusfp) && opt.exit_on_status_write_error) g10_exit (0); } /* Write an ERROR status line using a full gpg-error error value. */ void write_status_error (const char *where, gpg_error_t err) { if (!statusfp || !status_currently_allowed (STATUS_ERROR)) return; /* Not enabled or allowed. */ es_fprintf (statusfp, "[GNUPG:] %s %s %u\n", get_status_string (STATUS_ERROR), where, err); if (es_fflush (statusfp) && opt.exit_on_status_write_error) g10_exit (0); } /* Same as above but outputs the error code only. */ void write_status_errcode (const char *where, int errcode) { if (!statusfp || !status_currently_allowed (STATUS_ERROR)) return; /* Not enabled or allowed. */ es_fprintf (statusfp, "[GNUPG:] %s %s %u\n", get_status_string (STATUS_ERROR), where, gpg_err_code (errcode)); if (es_fflush (statusfp) && opt.exit_on_status_write_error) g10_exit (0); } /* Write a FAILURE status line. */ void write_status_failure (const char *where, gpg_error_t err) { static int any_failure_printed; if (!statusfp || !status_currently_allowed (STATUS_FAILURE)) return; /* Not enabled or allowed. */ if (any_failure_printed) return; any_failure_printed = 1; es_fprintf (statusfp, "[GNUPG:] %s %s %u\n", get_status_string (STATUS_FAILURE), where, err); if (es_fflush (statusfp) && opt.exit_on_status_write_error) g10_exit (0); } /* * Write a status line with a buffer using %XX escapes. If WRAP is > * 0 wrap the line after this length. If STRING is not NULL it will * be prepended to the buffer, no escaping is done for string. * A wrap of -1 forces spaces not to be encoded as %20. */ void write_status_text_and_buffer (int no, const char *string, const char *buffer, size_t len, int wrap) { const char *s, *text; int esc, first; int lower_limit = ' '; size_t n, count, dowrap; if (!statusfp || !status_currently_allowed (no)) return; /* Not enabled or allowed. */ if (wrap == -1) { lower_limit--; wrap = 0; } text = get_status_string (no); count = dowrap = first = 1; do { if (dowrap) { es_fprintf (statusfp, "[GNUPG:] %s ", text); count = dowrap = 0; if (first && string) { es_fputs (string, statusfp); count += strlen (string); /* Make sure that there is a space after the string. */ if (*string && string[strlen (string)-1] != ' ') { es_putc (' ', statusfp); count++; } } first = 0; } for (esc=0, s=buffer, n=len; n && !esc; s++, n--) { if (*s == '%' || *(const byte*)s <= lower_limit || *(const byte*)s == 127 ) esc = 1; if (wrap && ++count > wrap) { dowrap=1; break; } } if (esc) { s--; n++; } if (s != buffer) es_fwrite (buffer, s-buffer, 1, statusfp); if ( esc ) { es_fprintf (statusfp, "%%%02X", *(const byte*)s ); s++; n--; } buffer = s; len = n; if (dowrap && len) es_putc ('\n', statusfp); } while (len); es_putc ('\n',statusfp); if (es_fflush (statusfp) && opt.exit_on_status_write_error) g10_exit (0); } void write_status_buffer (int no, const char *buffer, size_t len, int wrap) { write_status_text_and_buffer (no, NULL, buffer, len, wrap); } /* Print the BEGIN_SIGNING status message. If MD is not NULL it is used to retrieve the hash algorithms used for the message. */ void write_status_begin_signing (gcry_md_hd_t md) { if (md) { char buf[100]; size_t buflen; int i, ga; buflen = 0; for (i=1; i <= 110; i++) { ga = map_md_openpgp_to_gcry (i); if (ga && gcry_md_is_enabled (md, ga) && buflen+10 < DIM(buf)) { snprintf (buf+buflen, DIM(buf) - buflen, "%sH%d", buflen? " ":"",i); buflen += strlen (buf+buflen); } } write_status_text (STATUS_BEGIN_SIGNING, buf); } else write_status ( STATUS_BEGIN_SIGNING ); } static int myread(int fd, void *buf, size_t count) { int rc; do { rc = read( fd, buf, count ); } while (rc == -1 && errno == EINTR); if (!rc && count) { static int eof_emmited=0; if ( eof_emmited < 3 ) { *(char*)buf = CONTROL_D; rc = 1; eof_emmited++; } else /* Ctrl-D not caught - do something reasonable */ { #ifdef HAVE_DOSISH_SYSTEM #ifndef HAVE_W32CE_SYSTEM raise (SIGINT); /* Nothing to hangup under DOS. */ #endif #else raise (SIGHUP); /* No more input data. */ #endif } } return rc; } /* Request a string from the client over the command-fd. If GETBOOL is set the function returns a static string (do not free) if the entered value was true or NULL if the entered value was false. */ static char * do_get_from_fd ( const char *keyword, int hidden, int getbool ) { int i, len; char *string; if (statusfp != es_stdout) es_fflush (es_stdout); write_status_text (getbool? STATUS_GET_BOOL : hidden? STATUS_GET_HIDDEN : STATUS_GET_LINE, keyword); for (string = NULL, i = len = 200; ; i++ ) { if (i >= len-1 ) { /* On the first iteration allocate a new buffer. If that * buffer is too short at further iterations do a poor man's * realloc. */ char *save = string; len += 100; string = hidden? xmalloc_secure ( len ) : xmalloc ( len ); if (save) { memcpy (string, save, i); xfree (save); } else i = 0; } /* Fixme: why not use our read_line function here? */ if ( myread( opt.command_fd, string+i, 1) != 1 || string[i] == '\n' ) break; else if ( string[i] == CONTROL_D ) { /* Found ETX - Cancel the line and return a sole ETX. */ string[0] = CONTROL_D; i = 1; break; } } string[i] = 0; write_status (STATUS_GOT_IT); if (getbool) /* Fixme: is this correct??? */ return (string[0] == 'Y' || string[0] == 'y') ? "" : NULL; return string; } int cpr_enabled() { if( opt.command_fd != -1 ) return 1; return 0; } char * cpr_get_no_help( const char *keyword, const char *prompt ) { char *p; if( opt.command_fd != -1 ) return do_get_from_fd ( keyword, 0, 0 ); for(;;) { p = tty_get( prompt ); return p; } } char * cpr_get( const char *keyword, const char *prompt ) { char *p; if( opt.command_fd != -1 ) return do_get_from_fd ( keyword, 0, 0 ); for(;;) { p = tty_get( prompt ); if( *p=='?' && !p[1] && !(keyword && !*keyword)) { xfree(p); display_online_help( keyword ); } else return p; } } char * cpr_get_utf8( const char *keyword, const char *prompt ) { char *p; p = cpr_get( keyword, prompt ); if( p ) { char *utf8 = native_to_utf8( p ); xfree( p ); p = utf8; } return p; } char * cpr_get_hidden( const char *keyword, const char *prompt ) { char *p; if( opt.command_fd != -1 ) return do_get_from_fd ( keyword, 1, 0 ); for(;;) { p = tty_get_hidden( prompt ); if( *p == '?' && !p[1] ) { xfree(p); display_online_help( keyword ); } else return p; } } void cpr_kill_prompt(void) { if( opt.command_fd != -1 ) return; tty_kill_prompt(); return; } int cpr_get_answer_is_yes_def (const char *keyword, const char *prompt, int def_yes) { int yes; char *p; if( opt.command_fd != -1 ) return !!do_get_from_fd ( keyword, 0, 1 ); for(;;) { p = tty_get( prompt ); trim_spaces(p); /* it is okay to do this here */ if( *p == '?' && !p[1] ) { xfree(p); display_online_help( keyword ); } else { tty_kill_prompt(); yes = answer_is_yes_no_default (p, def_yes); xfree(p); return yes; } } } int cpr_get_answer_is_yes (const char *keyword, const char *prompt) { return cpr_get_answer_is_yes_def (keyword, prompt, 0); } int cpr_get_answer_yes_no_quit( const char *keyword, const char *prompt ) { int yes; char *p; if( opt.command_fd != -1 ) return !!do_get_from_fd ( keyword, 0, 1 ); for(;;) { p = tty_get( prompt ); trim_spaces(p); /* it is okay to do this here */ if( *p == '?' && !p[1] ) { xfree(p); display_online_help( keyword ); } else { tty_kill_prompt(); yes = answer_is_yes_no_quit(p); xfree(p); return yes; } } } int cpr_get_answer_okay_cancel (const char *keyword, const char *prompt, int def_answer) { int yes; char *answer = NULL; char *p; if( opt.command_fd != -1 ) answer = do_get_from_fd ( keyword, 0, 0 ); if (answer) { yes = answer_is_okay_cancel (answer, def_answer); xfree (answer); return yes; } for(;;) { p = tty_get( prompt ); trim_spaces(p); /* it is okay to do this here */ if (*p == '?' && !p[1]) { xfree(p); display_online_help (keyword); } else { tty_kill_prompt(); yes = answer_is_okay_cancel (p, def_answer); xfree(p); return yes; } } } diff --git a/kbx/keybox-blob.c b/kbx/keybox-blob.c index 0bcd4a323..8ac67afbe 100644 --- a/kbx/keybox-blob.c +++ b/kbx/keybox-blob.c @@ -1,1114 +1,1114 @@ /* keybox-blob.c - KBX Blob handling * Copyright (C) 2000, 2001, 2002, 2003, 2008 Free Software Foundation, Inc. * * This file is part of GnuPG. * * GnuPG is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * GnuPG is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ /* * The keybox data format The KeyBox uses an augmented OpenPGP/X.509 key format. This makes random access to a keyblock/certificate easier and also gives the opportunity to store additional information (e.g. the fingerprint) along with the key. All integers are stored in network byte order, offsets are counted from the beginning of the Blob. ** Overview of blob types | Byte 4 | Blob type | |--------+--------------| | 0 | Empty blob | | 1 | First blob | | 2 | OpenPGP blob | | 3 | X.509 blob | ** The First blob The first blob of a plain KBX file has a special format: - u32 Length of this blob - byte Blob type (1) - byte Version number (1) - u16 Header flags bit 0 - RFU bit 1 - Is being or has been used for OpenPGP blobs - b4 Magic 'KBXf' - u32 RFU - u32 file_created_at - u32 last_maintenance_run - u32 RFU - u32 RFU ** The OpenPGP and X.509 blobs The OpenPGP and X.509 blobs are very similar, things which are X.509 specific are noted like [X.509: xxx] - u32 Length of this blob (including these 4 bytes) - byte Blob type 2 = OpenPGP 3 = X509 - byte Version number of this blob type 1 = Blob with 20 byte fingerprints 2 = Blob with 32 byte fingerprints and no keyids. - u16 Blob flags bit 0 = contains secret key material (not used) bit 1 = ephemeral blob (e.g. used while querying external resources) - u32 Offset to the OpenPGP keyblock or the X.509 DER encoded certificate - u32 The length of the keyblock or certificate - u16 [NKEYS] Number of keys (at least 1!) [X509: always 1] - u16 Size of the key information structure (at least 28 or 56). - NKEYS times: Version 1 blob: - b20 The fingerprint of the key. Fingerprints are always 20 bytes, MD5 left padded with zeroes. - u32 Offset to the n-th key's keyID (a keyID is always 8 byte) or 0 if not known which is the case only for X.509. Note that this separate keyid is not anymore used by gnupg since the support for v3 keys has been removed. We create this field anyway for backward compatibility with old EOL-ed versions. Eventually we will completely move to the version 2 blob format. - u16 Key flags bit 0 = qualified signature (not yet implemented} - u16 RFU - bN Optional filler up to the specified length of this structure. Version 2 blob: - b32 The fingerprint of the key. This fingerprint is either 20 or 32 bytes. A 20 byte fingerprint is right filled with zeroes. - u16 Key flags bit 0 = qualified signature (not yet implemented} bit 7 = 32 byte fingerprint in use. - u16 RFU - b20 keygrip - bN Optional filler up to the specified length of this structure. - u16 Size of the serial number (may be zero) - bN The serial number. N as given above. - u16 Number of user IDs - u16 [NUIDS] Size of user ID information structure - NUIDS times: For X509, the first user ID is the Issuer, the second the Subject and the others are subjectAltNames. For OpenPGP we only store the information from UserID packets here. - u32 Blob offset to the n-th user ID - u32 Length of this user ID. - u16 User ID flags. (not yet used) - byte Validity - byte RFU - u16 [NSIGS] Number of signatures - u16 Size of signature information (4) - NSIGS times: - u32 Expiration time of signature with some special values. Since version 2.1.20 these special valuesare not anymore used for OpenPGP: - 0x00000000 = not checked - 0x00000001 = missing key - 0x00000002 = bad signature - 0x10000000 = valid and expires at some date in 1978. - 0xffffffff = valid and does not expire - u8 Assigned ownertrust [X509: not used] - u8 All_Validity OpenPGP: See ../g10/trustdb/TRUST_* [not yet used] X509: Bit 4 set := key has been revoked. Note that this value matches TRUST_FLAG_REVOKED - u16 RFU - u32 Recheck_after - - u32 Latest timestamp in the keyblock (useful for KS syncronsiation?) + - u32 Latest timestamp in the keyblock (useful for KS synchronization?) - u32 Blob created at - u32 [NRES] Size of reserved space (not including this field) - bN Reserved space of size NRES for future use. - bN Arbitrary space for example used to store data which is not part of the keyblock or certificate. For example the v3 key IDs go here. - bN Space for the keyblock or certificate. - bN RFU. This is the remaining space after keyblock and before the checksum. It is not covered by the checksum. - - b20 SHA-1 checksum (useful for KS syncronisation?) + - b20 SHA-1 checksum (useful for KS synchronization?) Note, that KBX versions before GnuPG 2.1 used an MD5 checksum. However it was only created but never checked. Thus we do not expect problems if we switch to SHA-1. If the checksum fails and the first 4 bytes are zero, we can try again with MD5. SHA-1 has the advantage that it is faster on CPUs with dedicated SHA-1 support. */ #include #include #include #include #include #include #include #include "keybox-defs.h" #include #ifdef KEYBOX_WITH_X509 #include #endif #include "../common/gettime.h" /* special values of the signature status */ #define SF_NONE(a) ( !(a) ) #define SF_NOKEY(a) ((a) & (1<<0)) #define SF_BAD(a) ((a) & (1<<1)) #define SF_VALID(a) ((a) & (1<<29)) struct membuf { size_t len; size_t size; char *buf; int out_of_core; }; struct keyboxblob_key { char fpr[32]; u32 off_kid; ulong off_kid_addr; u16 flags; u16 fprlen; /* Either 20 or 32 */ }; struct keyboxblob_uid { u32 off; ulong off_addr; char *name; /* used only with x509 */ u32 len; u16 flags; byte validity; }; struct keyid_list { struct keyid_list *next; int seqno; byte kid[8]; }; struct fixup_list { struct fixup_list *next; u32 off; u32 val; }; struct keyboxblob { byte *blob; size_t bloblen; off_t fileoffset; /* stuff used only by keybox_create_blob */ unsigned char *serialbuf; const unsigned char *serial; size_t seriallen; int nkeys; struct keyboxblob_key *keys; int nuids; struct keyboxblob_uid *uids; int nsigs; u32 *sigs; struct fixup_list *fixups; int fixup_out_of_core; struct keyid_list *temp_kids; struct membuf bufbuf; /* temporary store for the blob */ struct membuf *buf; }; /* A simple implementation of a dynamic buffer. Use init_membuf() to create a buffer, put_membuf to append bytes and get_membuf to release and return the buffer. Allocation errors are detected but only returned at the final get_membuf(), this helps not to clutter the code with out of core checks. */ static void init_membuf (struct membuf *mb, int initiallen) { mb->len = 0; mb->size = initiallen; mb->out_of_core = 0; mb->buf = xtrymalloc (initiallen); if (!mb->buf) mb->out_of_core = 1; } static void put_membuf (struct membuf *mb, const void *buf, size_t len) { if (mb->out_of_core) return; if (mb->len + len >= mb->size) { char *p; mb->size += len + 1024; p = xtryrealloc (mb->buf, mb->size); if (!p) { mb->out_of_core = 1; return; } mb->buf = p; } if (buf) memcpy (mb->buf + mb->len, buf, len); else memset (mb->buf + mb->len, 0, len); mb->len += len; } static void * get_membuf (struct membuf *mb, size_t *len) { char *p; if (mb->out_of_core) { xfree (mb->buf); mb->buf = NULL; return NULL; } p = mb->buf; *len = mb->len; mb->buf = NULL; mb->out_of_core = 1; /* don't allow a reuse */ return p; } static void put8 (struct membuf *mb, byte a ) { put_membuf (mb, &a, 1); } static void put16 (struct membuf *mb, u16 a ) { unsigned char tmp[2]; tmp[0] = a>>8; tmp[1] = a; put_membuf (mb, tmp, 2); } static void put32 (struct membuf *mb, u32 a ) { unsigned char tmp[4]; tmp[0] = a>>24; tmp[1] = a>>16; tmp[2] = a>>8; tmp[3] = a; put_membuf (mb, tmp, 4); } /* Store a value in the fixup list */ static void add_fixup (KEYBOXBLOB blob, u32 off, u32 val) { struct fixup_list *fl; if (blob->fixup_out_of_core) return; fl = xtrycalloc(1, sizeof *fl); if (!fl) blob->fixup_out_of_core = 1; else { fl->off = off; fl->val = val; fl->next = blob->fixups; blob->fixups = fl; } } /* OpenPGP specific stuff */ /* We must store the keyid at some place because we can't calculate the offset yet. This is only used for v3 keyIDs. Function returns an index value for later fixup or -1 for out of core. The value must be a non-zero value. */ static int pgp_temp_store_kid (KEYBOXBLOB blob, struct _keybox_openpgp_key_info *kinfo) { struct keyid_list *k, *r; k = xtrymalloc (sizeof *k); if (!k) return -1; memcpy (k->kid, kinfo->keyid, 8); k->seqno = 0; k->next = blob->temp_kids; blob->temp_kids = k; for (r=k; r; r = r->next) k->seqno++; return k->seqno; } /* Helper for pgp_create_key_part. */ static gpg_error_t pgp_create_key_part_single (KEYBOXBLOB blob, int n, struct _keybox_openpgp_key_info *kinfo) { size_t fprlen; int off; fprlen = kinfo->fprlen; memcpy (blob->keys[n].fpr, kinfo->fpr, fprlen); blob->keys[n].fprlen = fprlen; if (fprlen < 20) /* v3 fpr - shift right and fill with zeroes. */ { memmove (blob->keys[n].fpr + 20 - fprlen, blob->keys[n].fpr, fprlen); memset (blob->keys[n].fpr, 0, 20 - fprlen); off = pgp_temp_store_kid (blob, kinfo); if (off == -1) return gpg_error_from_syserror (); blob->keys[n].off_kid = off; } else blob->keys[n].off_kid = 0; /* Will be fixed up later */ blob->keys[n].flags = 0; return 0; } static gpg_error_t pgp_create_key_part (KEYBOXBLOB blob, keybox_openpgp_info_t info) { gpg_error_t err; int n = 0; struct _keybox_openpgp_key_info *kinfo; err = pgp_create_key_part_single (blob, n++, &info->primary); if (err) return err; if (info->nsubkeys) for (kinfo = &info->subkeys; kinfo; kinfo = kinfo->next) if ((err=pgp_create_key_part_single (blob, n++, kinfo))) return err; assert (n == blob->nkeys); return 0; } static void pgp_create_uid_part (KEYBOXBLOB blob, keybox_openpgp_info_t info) { int n = 0; struct _keybox_openpgp_uid_info *u; if (info->nuids) { for (u = &info->uids; u; u = u->next) { blob->uids[n].off = u->off; blob->uids[n].len = u->len; blob->uids[n].flags = 0; blob->uids[n].validity = 0; n++; } } assert (n == blob->nuids); } static void pgp_create_sig_part (KEYBOXBLOB blob, u32 *sigstatus) { int n; for (n=0; n < blob->nsigs; n++) { blob->sigs[n] = sigstatus? sigstatus[n+1] : 0; } } static int pgp_create_blob_keyblock (KEYBOXBLOB blob, const unsigned char *image, size_t imagelen) { struct membuf *a = blob->buf; int n; u32 kbstart = a->len; add_fixup (blob, 8, kbstart); for (n = 0; n < blob->nuids; n++) add_fixup (blob, blob->uids[n].off_addr, kbstart + blob->uids[n].off); put_membuf (a, image, imagelen); add_fixup (blob, 12, a->len - kbstart); return 0; } #ifdef KEYBOX_WITH_X509 /* X.509 specific stuff */ /* Write the raw certificate out */ static int x509_create_blob_cert (KEYBOXBLOB blob, ksba_cert_t cert) { struct membuf *a = blob->buf; const unsigned char *image; size_t length; u32 kbstart = a->len; /* Store our offset for later fixup */ add_fixup (blob, 8, kbstart); image = ksba_cert_get_image (cert, &length); if (!image) return gpg_error (GPG_ERR_GENERAL); put_membuf (a, image, length); add_fixup (blob, 12, a->len - kbstart); return 0; } #endif /*KEYBOX_WITH_X509*/ /* Write a stored keyID out to the buffer */ static void write_stored_kid (KEYBOXBLOB blob, int seqno) { struct keyid_list *r; for ( r = blob->temp_kids; r; r = r->next ) { if (r->seqno == seqno ) { put_membuf (blob->buf, r->kid, 8); return; } } never_reached (); } /* Release a list of key IDs */ static void release_kid_list (struct keyid_list *kl) { struct keyid_list *r, *r2; for ( r = kl; r; r = r2 ) { r2 = r->next; xfree (r); } } /* Create a new blob header. If WANT_FPR32 is set a version 2 blob is * created. */ static int create_blob_header (KEYBOXBLOB blob, int blobtype, int as_ephemeral, int want_fpr32) { struct membuf *a = blob->buf; int i; put32 ( a, 0 ); /* blob length, needs fixup */ put8 ( a, blobtype); put8 ( a, want_fpr32? 2:1 ); /* blob type version */ put16 ( a, as_ephemeral? 2:0 ); /* blob flags */ put32 ( a, 0 ); /* offset to the raw data, needs fixup */ put32 ( a, 0 ); /* length of the raw data, needs fixup */ put16 ( a, blob->nkeys ); if (want_fpr32) put16 ( a, 32 + 2 + 2 + 20); /* size of key info */ else put16 ( a, 20 + 4 + 2 + 2 ); /* size of key info */ for ( i=0; i < blob->nkeys; i++ ) { if (want_fpr32) { put_membuf (a, blob->keys[i].fpr, blob->keys[i].fprlen); blob->keys[i].off_kid_addr = a->len; if (blob->keys[i].fprlen == 32) put16 ( a, (blob->keys[i].flags | 0x80)); else put16 ( a, blob->keys[i].flags); put16 ( a, 0 ); /* reserved */ /* FIXME: Put the real grip here instead of the filler. */ put_membuf (a, "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0", 20); } else { log_assert (blob->keys[i].fprlen <= 20); put_membuf (a, blob->keys[i].fpr, 20); blob->keys[i].off_kid_addr = a->len; put32 ( a, 0 ); /* offset to keyid, fixed up later */ put16 ( a, blob->keys[i].flags ); put16 ( a, 0 ); /* reserved */ } } put16 (a, blob->seriallen); /*fixme: check that it fits into 16 bits*/ if (blob->serial) put_membuf (a, blob->serial, blob->seriallen); put16 ( a, blob->nuids ); put16 ( a, 4 + 4 + 2 + 1 + 1 ); /* size of uid info */ for (i=0; i < blob->nuids; i++) { blob->uids[i].off_addr = a->len; put32 ( a, 0 ); /* offset to userid, fixed up later */ put32 ( a, blob->uids[i].len ); put16 ( a, blob->uids[i].flags ); put8 ( a, 0 ); /* validity */ put8 ( a, 0 ); /* reserved */ } put16 ( a, blob->nsigs ); put16 ( a, 4 ); /* size of sig info */ for (i=0; i < blob->nsigs; i++) { put32 ( a, blob->sigs[i]); } put8 ( a, 0 ); /* assigned ownertrust */ put8 ( a, 0 ); /* validity of all user IDs */ put16 ( a, 0 ); /* reserved */ put32 ( a, 0 ); /* time of next recheck */ put32 ( a, 0 ); /* newest timestamp (none) */ put32 ( a, make_timestamp() ); /* creation time */ put32 ( a, 0 ); /* size of reserved space */ /* reserved space (which is currently of size 0) */ /* space where we write keyIDs and other stuff so that the pointers can actually point to somewhere */ if (blobtype == KEYBOX_BLOBTYPE_PGP && !want_fpr32) { /* For version 1 blobs, we need to store the keyids for all v3 * keys because those key IDs are not part of the fingerprint. * While we are doing that, we fixup all the keyID offsets. For * version 2 blobs (which can't carry v3 keys) we compute the * keyids in the fly because they are just stripped down * fingerprints. */ for (i=0; i < blob->nkeys; i++ ) { if (blob->keys[i].off_kid) { /* this is a v3 one */ add_fixup (blob, blob->keys[i].off_kid_addr, a->len); write_stored_kid (blob, blob->keys[i].off_kid); } else { /* the better v4 key IDs - just store an offset 8 bytes back */ add_fixup (blob, blob->keys[i].off_kid_addr, blob->keys[i].off_kid_addr - 8); } } } if (blobtype == KEYBOX_BLOBTYPE_X509) { /* We don't want to point to ASN.1 encoded UserIDs (DNs) but to the utf-8 string representation of them */ for (i=0; i < blob->nuids; i++ ) { if (blob->uids[i].name) { /* this is a v3 one */ add_fixup (blob, blob->uids[i].off_addr, a->len); put_membuf (blob->buf, blob->uids[i].name, blob->uids[i].len); } } } return 0; } static int create_blob_trailer (KEYBOXBLOB blob) { (void)blob; return 0; } static int create_blob_finish (KEYBOXBLOB blob) { struct membuf *a = blob->buf; unsigned char *p; unsigned char *pp; size_t n; /* Write a placeholder for the checksum */ put_membuf (a, NULL, 20); /* get the memory area */ n = 0; /* (Just to avoid compiler warning.) */ p = get_membuf (a, &n); if (!p) return gpg_error (GPG_ERR_ENOMEM); assert (n >= 20); /* fixup the length */ add_fixup (blob, 0, n); /* do the fixups */ if (blob->fixup_out_of_core) { xfree (p); return gpg_error (GPG_ERR_ENOMEM); } { struct fixup_list *fl, *next; for (fl = blob->fixups; fl; fl = next) { assert (fl->off+4 <= n); p[fl->off+0] = fl->val >> 24; p[fl->off+1] = fl->val >> 16; p[fl->off+2] = fl->val >> 8; p[fl->off+3] = fl->val; next = fl->next; xfree (fl); } blob->fixups = NULL; } /* Compute and store the SHA-1 checksum. */ gcry_md_hash_buffer (GCRY_MD_SHA1, p + n - 20, p, n - 20); pp = xtrymalloc (n); if ( !pp ) { xfree (p); return gpg_error_from_syserror (); } memcpy (pp , p, n); xfree (p); blob->blob = pp; blob->bloblen = n; return 0; } gpg_error_t _keybox_create_openpgp_blob (KEYBOXBLOB *r_blob, keybox_openpgp_info_t info, const unsigned char *image, size_t imagelen, int as_ephemeral) { gpg_error_t err; KEYBOXBLOB blob; int need_fpr32 = 0; *r_blob = NULL; /* Check whether we need a blob with 32 bit fingerprints. We could * use this always but for backward compatiblity we do this only for * v5 keys. */ if (info->primary.version == 5) need_fpr32 = 1; else { struct _keybox_openpgp_key_info *kinfo; for (kinfo = &info->subkeys; kinfo; kinfo = kinfo->next) if (kinfo->version == 5) { need_fpr32 = 1; break; } } blob = xtrycalloc (1, sizeof *blob); if (!blob) return gpg_error_from_syserror (); blob->nkeys = 1 + info->nsubkeys; blob->keys = xtrycalloc (blob->nkeys, sizeof *blob->keys ); if (!blob->keys) { err = gpg_error_from_syserror (); goto leave; } blob->nuids = info->nuids; if (blob->nuids) { blob->uids = xtrycalloc (blob->nuids, sizeof *blob->uids ); if (!blob->uids) { err = gpg_error_from_syserror (); goto leave; } } blob->nsigs = info->nsigs; if (blob->nsigs) { blob->sigs = xtrycalloc (blob->nsigs, sizeof *blob->sigs ); if (!blob->sigs) { err = gpg_error_from_syserror (); goto leave; } } err = pgp_create_key_part (blob, info); if (err) goto leave; pgp_create_uid_part (blob, info); pgp_create_sig_part (blob, NULL); init_membuf (&blob->bufbuf, 1024); blob->buf = &blob->bufbuf; err = create_blob_header (blob, KEYBOX_BLOBTYPE_PGP, as_ephemeral, need_fpr32); if (err) goto leave; err = pgp_create_blob_keyblock (blob, image, imagelen); if (err) goto leave; err = create_blob_trailer (blob); if (err) goto leave; err = create_blob_finish (blob); if (err) goto leave; leave: release_kid_list (blob->temp_kids); blob->temp_kids = NULL; if (err) _keybox_release_blob (blob); else *r_blob = blob; return err; } #ifdef KEYBOX_WITH_X509 /* Return an allocated string with the email address extracted from a DN. Note hat we use this code also in ../sm/keylist.c. */ static char * x509_email_kludge (const char *name) { const char *p, *string; unsigned char *buf; int n; string = name; for (;;) { p = strstr (string, "1.2.840.113549.1.9.1=#"); if (!p) return NULL; if (p == name || (p > string+1 && p[-1] == ',' && p[-2] != '\\')) { name = p + 22; break; } string = p + 22; } /* This looks pretty much like an email address in the subject's DN we use this to add an additional user ID entry. This way, OpenSSL generated keys get a nicer and usable listing. */ for (n=0, p=name; hexdigitp (p) && hexdigitp (p+1); p +=2, n++) ; if (!n) return NULL; buf = xtrymalloc (n+3); if (!buf) return NULL; /* oops, out of core */ *buf = '<'; for (n=1, p=name; hexdigitp (p); p +=2, n++) buf[n] = xtoi_2 (p); buf[n++] = '>'; buf[n] = 0; return (char*)buf; } /* Note: We should move calculation of the digest into libksba and remove that parameter */ int _keybox_create_x509_blob (KEYBOXBLOB *r_blob, ksba_cert_t cert, unsigned char *sha1_digest, int as_ephemeral) { int i, rc = 0; KEYBOXBLOB blob; unsigned char *sn; char *p; char **names = NULL; size_t max_names; *r_blob = NULL; blob = xtrycalloc (1, sizeof *blob); if( !blob ) return gpg_error_from_syserror (); sn = ksba_cert_get_serial (cert); if (sn) { size_t n, len; n = gcry_sexp_canon_len (sn, 0, NULL, NULL); if (n < 2) { xfree (sn); return gpg_error (GPG_ERR_GENERAL); } blob->serialbuf = sn; sn++; n--; /* skip '(' */ for (len=0; n && *sn && *sn != ':' && digitp (sn); n--, sn++) len = len*10 + atoi_1 (sn); if (*sn != ':') { xfree (blob->serialbuf); blob->serialbuf = NULL; return gpg_error (GPG_ERR_GENERAL); } sn++; blob->serial = sn; blob->seriallen = len; } blob->nkeys = 1; /* create list of names */ blob->nuids = 0; max_names = 100; names = xtrymalloc (max_names * sizeof *names); if (!names) { rc = gpg_error_from_syserror (); goto leave; } p = ksba_cert_get_issuer (cert, 0); if (!p) { rc = gpg_error (GPG_ERR_MISSING_VALUE); goto leave; } names[blob->nuids++] = p; for (i=0; (p = ksba_cert_get_subject (cert, i)); i++) { if (blob->nuids >= max_names) { char **tmp; max_names += 100; tmp = xtryrealloc (names, max_names * sizeof *names); if (!tmp) { rc = gpg_error_from_syserror (); goto leave; } names = tmp; } names[blob->nuids++] = p; if (!i && (p=x509_email_kludge (p))) names[blob->nuids++] = p; /* due to !i we don't need to check bounds*/ } /* space for signature information */ blob->nsigs = 1; blob->keys = xtrycalloc (blob->nkeys, sizeof *blob->keys ); blob->uids = xtrycalloc (blob->nuids, sizeof *blob->uids ); blob->sigs = xtrycalloc (blob->nsigs, sizeof *blob->sigs ); if (!blob->keys || !blob->uids || !blob->sigs) { rc = gpg_error (GPG_ERR_ENOMEM); goto leave; } memcpy (blob->keys[0].fpr, sha1_digest, 20); blob->keys[0].off_kid = 0; /* We don't have keyids */ blob->keys[0].flags = 0; /* issuer and subject names */ for (i=0; i < blob->nuids; i++) { blob->uids[i].name = names[i]; blob->uids[i].len = strlen(names[i]); names[i] = NULL; blob->uids[i].flags = 0; blob->uids[i].validity = 0; } xfree (names); names = NULL; /* signatures */ blob->sigs[0] = 0; /* not yet checked */ /* Create a temporary buffer for further processing */ init_membuf (&blob->bufbuf, 1024); blob->buf = &blob->bufbuf; /* write out what we already have */ rc = create_blob_header (blob, KEYBOX_BLOBTYPE_X509, as_ephemeral, 0); if (rc) goto leave; rc = x509_create_blob_cert (blob, cert); if (rc) goto leave; rc = create_blob_trailer (blob); if (rc) goto leave; rc = create_blob_finish ( blob ); if (rc) goto leave; leave: release_kid_list (blob->temp_kids); blob->temp_kids = NULL; if (names) { for (i=0; i < blob->nuids; i++) xfree (names[i]); xfree (names); } if (rc) { _keybox_release_blob (blob); *r_blob = NULL; } else { *r_blob = blob; } return rc; } #endif /*KEYBOX_WITH_X509*/ int _keybox_new_blob (KEYBOXBLOB *r_blob, unsigned char *image, size_t imagelen, off_t off) { KEYBOXBLOB blob; *r_blob = NULL; blob = xtrycalloc (1, sizeof *blob); if (!blob) return gpg_error_from_syserror (); blob->blob = image; blob->bloblen = imagelen; blob->fileoffset = off; *r_blob = blob; return 0; } void _keybox_release_blob (KEYBOXBLOB blob) { int i; if (!blob) return; if (blob->buf) { size_t len; xfree (get_membuf (blob->buf, &len)); } xfree (blob->keys ); xfree (blob->serialbuf); for (i=0; i < blob->nuids; i++) xfree (blob->uids[i].name); xfree (blob->uids ); xfree (blob->sigs ); xfree (blob->blob ); xfree (blob ); } const unsigned char * _keybox_get_blob_image ( KEYBOXBLOB blob, size_t *n ) { *n = blob->bloblen; return blob->blob; } off_t _keybox_get_blob_fileoffset (KEYBOXBLOB blob) { return blob->fileoffset; } void _keybox_update_header_blob (KEYBOXBLOB blob, int for_openpgp) { if (blob->bloblen >= 32 && blob->blob[4] == KEYBOX_BLOBTYPE_HEADER) { u32 val = make_timestamp (); /* Update the last maintenance run times tamp. */ blob->blob[20] = (val >> 24); blob->blob[20+1] = (val >> 16); blob->blob[20+2] = (val >> 8); blob->blob[20+3] = (val ); if (for_openpgp) blob->blob[7] |= 0x02; /* OpenPGP data may be available. */ } } diff --git a/scd/ccid-driver.c b/scd/ccid-driver.c index 657766e30..e092a2b9a 100644 --- a/scd/ccid-driver.c +++ b/scd/ccid-driver.c @@ -1,3876 +1,3876 @@ /* ccid-driver.c - USB ChipCardInterfaceDevices driver * Copyright (C) 2003, 2004, 2005, 2006, 2007 * 2008, 2009, 2013 Free Software Foundation, Inc. * Written by Werner Koch. * * This file is part of GnuPG. * * GnuPG is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * GnuPG is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * ALTERNATIVELY, this file may be distributed under the terms of the * following license, in which case the provisions of this license are * required INSTEAD OF the GNU General Public License. If you wish to * allow use of your version of this file only under the terms of the * GNU General Public License, and not to allow others to use your * version of this file under the terms of the following license, * indicate your decision by deleting this paragraph and the license * below. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, and the entire permission notice in its entirety, * including the disclaimer of warranties. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote * products derived from this software without specific prior * written permission. * * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. */ /* CCID (ChipCardInterfaceDevices) is a specification for accessing smartcard via a reader connected to the USB. This is a limited driver allowing to use some CCID drivers directly without any other specila drivers. This is a fallback driver to be used when nothing else works or the system should be kept minimal for security reasons. It makes use of the libusb library to gain portable access to USB. This driver has been tested with the SCM SCR335 and SPR532 smartcard readers and requires that a reader implements APDU or TPDU level exchange and does fully automatic initialization. */ #ifdef HAVE_CONFIG_H # include #endif #if defined(HAVE_LIBUSB) || defined(TEST) #include #include #include #include #include #include #include #include #include #include #ifdef HAVE_NPTH # include #endif /*HAVE_NPTH*/ #include #include "scdaemon.h" #include "iso7816.h" #define CCID_DRIVER_INCLUDE_USB_IDS 1 #include "ccid-driver.h" #define DRVNAME "ccid-driver: " /* Max length of buffer with out CCID message header of 10-byte Sending: 547 for RSA-4096 key import APDU size = 540 (24+4+256+256) commnd + lc + le = 4 + 3 + 0 Sending: write data object of cardholder certificate APDU size = 2048 commnd + lc + le = 4 + 3 + 0 Receiving: 2048 for cardholder certificate */ #define CCID_MAX_BUF (2048+7+10) /* CCID command timeout. */ #define CCID_CMD_TIMEOUT (5*1000) /* Depending on how this source is used we either define our error * output to go to stderr or to the GnuPG based logging functions. We * use the latter when GNUPG_SCD_MAIN_HEADER is defined. */ #if defined(GNUPG_SCD_MAIN_HEADER) # include GNUPG_SCD_MAIN_HEADER # define DEBUGOUT(t) do { if (debug_level) \ log_debug (DRVNAME t); } while (0) # define DEBUGOUT_1(t,a) do { if (debug_level) \ log_debug (DRVNAME t,(a)); } while (0) # define DEBUGOUT_2(t,a,b) do { if (debug_level) \ log_debug (DRVNAME t,(a),(b)); } while (0) # define DEBUGOUT_3(t,a,b,c) do { if (debug_level) \ log_debug (DRVNAME t,(a),(b),(c));} while (0) # define DEBUGOUT_4(t,a,b,c,d) do { if (debug_level) \ log_debug (DRVNAME t,(a),(b),(c),(d));} while (0) # define DEBUGOUT_CONT(t) do { if (debug_level) \ log_printf (t); } while (0) # define DEBUGOUT_CONT_1(t,a) do { if (debug_level) \ log_printf (t,(a)); } while (0) # define DEBUGOUT_CONT_2(t,a,b) do { if (debug_level) \ log_printf (t,(a),(b)); } while (0) # define DEBUGOUT_CONT_3(t,a,b,c) do { if (debug_level) \ log_printf (t,(a),(b),(c)); } while (0) # define DEBUGOUT_LF() do { if (debug_level) \ log_printf ("\n"); } while (0) #else /* Other usage of this source - don't use gnupg specifics. */ # define DEBUGOUT(t) do { if (debug_level) \ fprintf (stderr, DRVNAME t); } while (0) # define DEBUGOUT_1(t,a) do { if (debug_level) \ fprintf (stderr, DRVNAME t, (a)); } while (0) # define DEBUGOUT_2(t,a,b) do { if (debug_level) \ fprintf (stderr, DRVNAME t, (a), (b)); } while (0) # define DEBUGOUT_3(t,a,b,c) do { if (debug_level) \ fprintf (stderr, DRVNAME t, (a), (b), (c)); } while (0) # define DEBUGOUT_4(t,a,b,c,d) do { if (debug_level) \ fprintf (stderr, DRVNAME t, (a), (b), (c), (d));} while(0) # define DEBUGOUT_CONT(t) do { if (debug_level) \ fprintf (stderr, t); } while (0) # define DEBUGOUT_CONT_1(t,a) do { if (debug_level) \ fprintf (stderr, t, (a)); } while (0) # define DEBUGOUT_CONT_2(t,a,b) do { if (debug_level) \ fprintf (stderr, t, (a), (b)); } while (0) # define DEBUGOUT_CONT_3(t,a,b,c) do { if (debug_level) \ fprintf (stderr, t, (a), (b), (c)); } while (0) # define DEBUGOUT_LF() do { if (debug_level) \ putc ('\n', stderr); } while (0) #endif /* This source is not used by scdaemon. */ #ifndef EAGAIN #define EAGAIN EWOULDBLOCK #endif enum { RDR_to_PC_NotifySlotChange= 0x50, RDR_to_PC_HardwareError = 0x51, PC_to_RDR_SetParameters = 0x61, PC_to_RDR_IccPowerOn = 0x62, PC_to_RDR_IccPowerOff = 0x63, PC_to_RDR_GetSlotStatus = 0x65, PC_to_RDR_Secure = 0x69, PC_to_RDR_T0APDU = 0x6a, PC_to_RDR_Escape = 0x6b, PC_to_RDR_GetParameters = 0x6c, PC_to_RDR_ResetParameters = 0x6d, PC_to_RDR_IccClock = 0x6e, PC_to_RDR_XfrBlock = 0x6f, PC_to_RDR_Mechanical = 0x71, PC_to_RDR_Abort = 0x72, PC_to_RDR_SetDataRate = 0x73, RDR_to_PC_DataBlock = 0x80, RDR_to_PC_SlotStatus = 0x81, RDR_to_PC_Parameters = 0x82, RDR_to_PC_Escape = 0x83, RDR_to_PC_DataRate = 0x84 }; /* Two macro to detect whether a CCID command has failed and to get the error code. These macros assume that we can access the mandatory first 10 bytes of a CCID message in BUF. */ #define CCID_COMMAND_FAILED(buf) ((buf)[7] & 0x40) #define CCID_ERROR_CODE(buf) (((unsigned char *)(buf))[8]) /* Store information on the driver's state. A pointer to such a structure is used as handle for most functions. */ struct ccid_driver_s { libusb_device_handle *idev; unsigned int bai; unsigned short id_vendor; unsigned short id_product; int ifc_no; int ep_bulk_out; int ep_bulk_in; int ep_intr; int seqno; unsigned char t1_ns; unsigned char t1_nr; unsigned char nonnull_nad; int max_ifsd; int max_ccid_msglen; int ifsc; unsigned char apdu_level:2; /* Reader supports short APDU level exchange. With a value of 2 short and extended level is supported.*/ unsigned int auto_voltage:1; unsigned int auto_param:1; unsigned int auto_pps:1; unsigned int auto_ifsd:1; unsigned int has_pinpad:2; unsigned int enodev_seen:1; int powered_off; time_t last_progress; /* Last time we sent progress line. */ /* The progress callback and its first arg as supplied to ccid_set_progress_cb. */ void (*progress_cb)(void *, const char *, int, int, int); void *progress_cb_arg; void (*prompt_cb)(void *, int); void *prompt_cb_arg; unsigned char intr_buf[64]; struct libusb_transfer *transfer; }; static int initialized_usb; /* Tracks whether USB has been initialized. */ static int debug_level; /* Flag to control the debug output. 0 = No debugging 1 = USB I/O info 2 = Level 1 + T=1 protocol tracing 3 = Level 2 + USB/I/O tracing of SlotStatus. */ static int ccid_usb_thread_is_alive; static unsigned int compute_edc (const unsigned char *data, size_t datalen, int use_crc); static int bulk_out (ccid_driver_t handle, unsigned char *msg, size_t msglen, int no_debug); static int bulk_in (ccid_driver_t handle, unsigned char *buffer, size_t length, size_t *nread, int expected_type, int seqno, int timeout, int no_debug); static int abort_cmd (ccid_driver_t handle, int seqno); static int send_escape_cmd (ccid_driver_t handle, const unsigned char *data, size_t datalen, unsigned char *result, size_t resultmax, size_t *resultlen); /* Convert a little endian stored 4 byte value into an unsigned integer. */ static unsigned int convert_le_u32 (const unsigned char *buf) { return buf[0] | (buf[1] << 8) | (buf[2] << 16) | ((unsigned int)buf[3] << 24); } /* Convert a little endian stored 2 byte value into an unsigned integer. */ static unsigned int convert_le_u16 (const unsigned char *buf) { return buf[0] | (buf[1] << 8); } static void set_msg_len (unsigned char *msg, unsigned int length) { msg[1] = length; msg[2] = length >> 8; msg[3] = length >> 16; msg[4] = length >> 24; } static void print_progress (ccid_driver_t handle) { time_t ct = time (NULL); /* We don't want to print progress lines too often. */ if (ct == handle->last_progress) return; if (handle->progress_cb) handle->progress_cb (handle->progress_cb_arg, "card_busy", 'w', 0, 0); handle->last_progress = ct; } /* Pint an error message for a failed CCID command including a textual error code. MSG shall be the CCID message at a minimum of 10 bytes. */ static void print_command_failed (const unsigned char *msg) { const char *t; char buffer[100]; int ec; if (!debug_level) return; ec = CCID_ERROR_CODE (msg); switch (ec) { case 0x00: t = "Command not supported"; break; case 0xE0: t = "Slot busy"; break; case 0xEF: t = "PIN cancelled"; break; case 0xF0: t = "PIN timeout"; break; case 0xF2: t = "Automatic sequence ongoing"; break; case 0xF3: t = "Deactivated Protocol"; break; case 0xF4: t = "Procedure byte conflict"; break; case 0xF5: t = "ICC class not supported"; break; case 0xF6: t = "ICC protocol not supported"; break; case 0xF7: t = "Bad checksum in ATR"; break; case 0xF8: t = "Bad TS in ATR"; break; case 0xFB: t = "An all inclusive hardware error occurred"; break; case 0xFC: t = "Overrun error while talking to the ICC"; break; case 0xFD: t = "Parity error while talking to the ICC"; break; case 0xFE: t = "CCID timed out while talking to the ICC"; break; case 0xFF: t = "Host aborted the current activity"; break; default: if (ec > 0 && ec < 128) sprintf (buffer, "Parameter error at offset %d", ec); else sprintf (buffer, "Error code %02X", ec); t = buffer; break; } DEBUGOUT_1 ("CCID command failed: %s\n", t); } static void print_pr_data (const unsigned char *data, size_t datalen, size_t off) { int any = 0; for (; off < datalen; off++) { if (!any || !(off % 16)) { if (any) DEBUGOUT_LF (); DEBUGOUT_1 (" [%04lu] ", (unsigned long) off); } DEBUGOUT_CONT_1 (" %02X", data[off]); any = 1; } if (any && (off % 16)) DEBUGOUT_LF (); } static void print_p2r_header (const char *name, const unsigned char *msg, size_t msglen) { DEBUGOUT_1 ("%s:\n", name); if (msglen < 7) return; DEBUGOUT_1 (" dwLength ..........: %u\n", convert_le_u32 (msg+1)); DEBUGOUT_1 (" bSlot .............: %u\n", msg[5]); DEBUGOUT_1 (" bSeq ..............: %u\n", msg[6]); } static void print_p2r_iccpoweron (const unsigned char *msg, size_t msglen) { print_p2r_header ("PC_to_RDR_IccPowerOn", msg, msglen); if (msglen < 10) return; DEBUGOUT_2 (" bPowerSelect ......: 0x%02x (%s)\n", msg[7], msg[7] == 0? "auto": msg[7] == 1? "5.0 V": msg[7] == 2? "3.0 V": msg[7] == 3? "1.8 V":""); print_pr_data (msg, msglen, 8); } static void print_p2r_iccpoweroff (const unsigned char *msg, size_t msglen) { print_p2r_header ("PC_to_RDR_IccPowerOff", msg, msglen); print_pr_data (msg, msglen, 7); } static void print_p2r_getslotstatus (const unsigned char *msg, size_t msglen) { print_p2r_header ("PC_to_RDR_GetSlotStatus", msg, msglen); print_pr_data (msg, msglen, 7); } static void print_p2r_xfrblock (const unsigned char *msg, size_t msglen) { unsigned int val; print_p2r_header ("PC_to_RDR_XfrBlock", msg, msglen); if (msglen < 10) return; DEBUGOUT_1 (" bBWI ..............: 0x%02x\n", msg[7]); val = convert_le_u16 (msg+8); DEBUGOUT_2 (" wLevelParameter ...: 0x%04x%s\n", val, val == 1? " (continued)": val == 2? " (continues+ends)": val == 3? " (continues+continued)": val == 16? " (DataBlock-expected)":""); print_pr_data (msg, msglen, 10); } static void print_p2r_getparameters (const unsigned char *msg, size_t msglen) { print_p2r_header ("PC_to_RDR_GetParameters", msg, msglen); print_pr_data (msg, msglen, 7); } static void print_p2r_resetparameters (const unsigned char *msg, size_t msglen) { print_p2r_header ("PC_to_RDR_ResetParameters", msg, msglen); print_pr_data (msg, msglen, 7); } static void print_p2r_setparameters (const unsigned char *msg, size_t msglen) { print_p2r_header ("PC_to_RDR_SetParameters", msg, msglen); if (msglen < 10) return; DEBUGOUT_1 (" bProtocolNum ......: 0x%02x\n", msg[7]); print_pr_data (msg, msglen, 8); } static void print_p2r_escape (const unsigned char *msg, size_t msglen) { print_p2r_header ("PC_to_RDR_Escape", msg, msglen); print_pr_data (msg, msglen, 7); } static void print_p2r_iccclock (const unsigned char *msg, size_t msglen) { print_p2r_header ("PC_to_RDR_IccClock", msg, msglen); if (msglen < 10) return; DEBUGOUT_1 (" bClockCommand .....: 0x%02x\n", msg[7]); print_pr_data (msg, msglen, 8); } static void print_p2r_to0apdu (const unsigned char *msg, size_t msglen) { print_p2r_header ("PC_to_RDR_T0APDU", msg, msglen); if (msglen < 10) return; DEBUGOUT_1 (" bmChanges .........: 0x%02x\n", msg[7]); DEBUGOUT_1 (" bClassGetResponse .: 0x%02x\n", msg[8]); DEBUGOUT_1 (" bClassEnvelope ....: 0x%02x\n", msg[9]); print_pr_data (msg, msglen, 10); } static void print_p2r_secure (const unsigned char *msg, size_t msglen) { unsigned int val; print_p2r_header ("PC_to_RDR_Secure", msg, msglen); if (msglen < 10) return; DEBUGOUT_1 (" bBMI ..............: 0x%02x\n", msg[7]); val = convert_le_u16 (msg+8); DEBUGOUT_2 (" wLevelParameter ...: 0x%04x%s\n", val, val == 1? " (continued)": val == 2? " (continues+ends)": val == 3? " (continues+continued)": val == 16? " (DataBlock-expected)":""); print_pr_data (msg, msglen, 10); } static void print_p2r_mechanical (const unsigned char *msg, size_t msglen) { print_p2r_header ("PC_to_RDR_Mechanical", msg, msglen); if (msglen < 10) return; DEBUGOUT_1 (" bFunction .........: 0x%02x\n", msg[7]); print_pr_data (msg, msglen, 8); } static void print_p2r_abort (const unsigned char *msg, size_t msglen) { print_p2r_header ("PC_to_RDR_Abort", msg, msglen); print_pr_data (msg, msglen, 7); } static void print_p2r_setdatarate (const unsigned char *msg, size_t msglen) { print_p2r_header ("PC_to_RDR_SetDataRate", msg, msglen); if (msglen < 10) return; print_pr_data (msg, msglen, 7); } static void print_p2r_unknown (const unsigned char *msg, size_t msglen) { print_p2r_header ("Unknown PC_to_RDR command", msg, msglen); if (msglen < 10) return; print_pr_data (msg, msglen, 0); } static void print_r2p_header (const char *name, const unsigned char *msg, size_t msglen) { DEBUGOUT_1 ("%s:\n", name); if (msglen < 9) return; DEBUGOUT_1 (" dwLength ..........: %u\n", convert_le_u32 (msg+1)); DEBUGOUT_1 (" bSlot .............: %u\n", msg[5]); DEBUGOUT_1 (" bSeq ..............: %u\n", msg[6]); DEBUGOUT_1 (" bStatus ...........: %u\n", msg[7]); if (msg[8]) DEBUGOUT_1 (" bError ............: %u\n", msg[8]); } static void print_r2p_datablock (const unsigned char *msg, size_t msglen) { print_r2p_header ("RDR_to_PC_DataBlock", msg, msglen); if (msglen < 10) return; if (msg[9]) DEBUGOUT_2 (" bChainParameter ...: 0x%02x%s\n", msg[9], msg[9] == 1? " (continued)": msg[9] == 2? " (continues+ends)": msg[9] == 3? " (continues+continued)": msg[9] == 16? " (XferBlock-expected)":""); print_pr_data (msg, msglen, 10); } static void print_r2p_slotstatus (const unsigned char *msg, size_t msglen) { print_r2p_header ("RDR_to_PC_SlotStatus", msg, msglen); if (msglen < 10) return; DEBUGOUT_2 (" bClockStatus ......: 0x%02x%s\n", msg[9], msg[9] == 0? " (running)": msg[9] == 1? " (stopped-L)": msg[9] == 2? " (stopped-H)": msg[9] == 3? " (stopped)":""); print_pr_data (msg, msglen, 10); } static void print_r2p_parameters (const unsigned char *msg, size_t msglen) { print_r2p_header ("RDR_to_PC_Parameters", msg, msglen); if (msglen < 10) return; DEBUGOUT_1 (" protocol ..........: T=%d\n", msg[9]); if (msglen == 17 && msg[9] == 1) { /* Protocol T=1. */ DEBUGOUT_1 (" bmFindexDindex ....: %02X\n", msg[10]); DEBUGOUT_1 (" bmTCCKST1 .........: %02X\n", msg[11]); DEBUGOUT_1 (" bGuardTimeT1 ......: %02X\n", msg[12]); DEBUGOUT_1 (" bmWaitingIntegersT1: %02X\n", msg[13]); DEBUGOUT_1 (" bClockStop ........: %02X\n", msg[14]); DEBUGOUT_1 (" bIFSC .............: %d\n", msg[15]); DEBUGOUT_1 (" bNadValue .........: %d\n", msg[16]); } else print_pr_data (msg, msglen, 10); } static void print_r2p_escape (const unsigned char *msg, size_t msglen) { print_r2p_header ("RDR_to_PC_Escape", msg, msglen); if (msglen < 10) return; DEBUGOUT_1 (" buffer[9] .........: %02X\n", msg[9]); print_pr_data (msg, msglen, 10); } static void print_r2p_datarate (const unsigned char *msg, size_t msglen) { print_r2p_header ("RDR_to_PC_DataRate", msg, msglen); if (msglen < 10) return; if (msglen >= 18) { DEBUGOUT_1 (" dwClockFrequency ..: %u\n", convert_le_u32 (msg+10)); DEBUGOUT_1 (" dwDataRate ..... ..: %u\n", convert_le_u32 (msg+14)); print_pr_data (msg, msglen, 18); } else print_pr_data (msg, msglen, 10); } static void print_r2p_unknown (const unsigned char *msg, size_t msglen) { print_r2p_header ("Unknown RDR_to_PC command", msg, msglen); if (msglen < 10) return; DEBUGOUT_1 (" bMessageType ......: %02X\n", msg[0]); DEBUGOUT_1 (" buffer[9] .........: %02X\n", msg[9]); print_pr_data (msg, msglen, 10); } /* Parse a CCID descriptor, optionally print all available features and test whether this reader is usable by this driver. Returns 0 if it is usable. Note, that this code is based on the one in lsusb.c of the usb-utils package, I wrote on 2003-09-01. -wk. */ static int parse_ccid_descriptor (ccid_driver_t handle, unsigned short bcd_device, const unsigned char *buf, size_t buflen) { unsigned int i; unsigned int us; int have_t1 = 0, have_tpdu=0; handle->nonnull_nad = 0; handle->auto_ifsd = 0; handle->max_ifsd = 32; handle->has_pinpad = 0; handle->apdu_level = 0; handle->auto_voltage = 0; handle->auto_param = 0; handle->auto_pps = 0; DEBUGOUT_3 ("idVendor: %04X idProduct: %04X bcdDevice: %04X\n", handle->id_vendor, handle->id_product, bcd_device); if (buflen < 54 || buf[0] < 54) { DEBUGOUT ("CCID device descriptor is too short\n"); return -1; } DEBUGOUT ("ChipCard Interface Descriptor:\n"); DEBUGOUT_1 (" bLength %5u\n", buf[0]); DEBUGOUT_1 (" bDescriptorType %5u\n", buf[1]); DEBUGOUT_2 (" bcdCCID %2x.%02x", buf[3], buf[2]); if (buf[3] != 1 || buf[2] != 0) DEBUGOUT_CONT(" (Warning: Only accurate for version 1.0)"); DEBUGOUT_LF (); DEBUGOUT_1 (" nMaxSlotIndex %5u\n", buf[4]); DEBUGOUT_2 (" bVoltageSupport %5u %s\n", buf[5], (buf[5] == 1? "5.0V" : buf[5] == 2? "3.0V" : buf[5] == 3? "1.8V":"?")); us = convert_le_u32 (buf+6); DEBUGOUT_1 (" dwProtocols %5u ", us); if ((us & 1)) DEBUGOUT_CONT (" T=0"); if ((us & 2)) { DEBUGOUT_CONT (" T=1"); have_t1 = 1; } if ((us & ~3)) DEBUGOUT_CONT (" (Invalid values detected)"); DEBUGOUT_LF (); us = convert_le_u32(buf+10); DEBUGOUT_1 (" dwDefaultClock %5u\n", us); us = convert_le_u32(buf+14); DEBUGOUT_1 (" dwMaxiumumClock %5u\n", us); DEBUGOUT_1 (" bNumClockSupported %5u\n", buf[18]); us = convert_le_u32(buf+19); DEBUGOUT_1 (" dwDataRate %7u bps\n", us); us = convert_le_u32(buf+23); DEBUGOUT_1 (" dwMaxDataRate %7u bps\n", us); DEBUGOUT_1 (" bNumDataRatesSupp. %5u\n", buf[27]); us = convert_le_u32(buf+28); DEBUGOUT_1 (" dwMaxIFSD %5u\n", us); handle->max_ifsd = us; us = convert_le_u32(buf+32); DEBUGOUT_1 (" dwSyncProtocols %08X ", us); if ((us&1)) DEBUGOUT_CONT ( " 2-wire"); if ((us&2)) DEBUGOUT_CONT ( " 3-wire"); if ((us&4)) DEBUGOUT_CONT ( " I2C"); DEBUGOUT_LF (); us = convert_le_u32(buf+36); DEBUGOUT_1 (" dwMechanical %08X ", us); if ((us & 1)) DEBUGOUT_CONT (" accept"); if ((us & 2)) DEBUGOUT_CONT (" eject"); if ((us & 4)) DEBUGOUT_CONT (" capture"); if ((us & 8)) DEBUGOUT_CONT (" lock"); DEBUGOUT_LF (); us = convert_le_u32(buf+40); DEBUGOUT_1 (" dwFeatures %08X\n", us); if ((us & 0x0002)) { DEBUGOUT (" Auto configuration based on ATR (assumes auto voltage)\n"); handle->auto_voltage = 1; } if ((us & 0x0004)) DEBUGOUT (" Auto activation on insert\n"); if ((us & 0x0008)) { DEBUGOUT (" Auto voltage selection\n"); handle->auto_voltage = 1; } if ((us & 0x0010)) DEBUGOUT (" Auto clock change\n"); if ((us & 0x0020)) DEBUGOUT (" Auto baud rate change\n"); if ((us & 0x0040)) { DEBUGOUT (" Auto parameter negotiation made by CCID\n"); handle->auto_param = 1; } else if ((us & 0x0080)) { DEBUGOUT (" Auto PPS made by CCID\n"); handle->auto_pps = 1; } if ((us & (0x0040 | 0x0080)) == (0x0040 | 0x0080)) DEBUGOUT (" WARNING: conflicting negotiation features\n"); if ((us & 0x0100)) DEBUGOUT (" CCID can set ICC in clock stop mode\n"); if ((us & 0x0200)) { DEBUGOUT (" NAD value other than 0x00 accepted\n"); handle->nonnull_nad = 1; } if ((us & 0x0400)) { DEBUGOUT (" Auto IFSD exchange\n"); handle->auto_ifsd = 1; } if ((us & 0x00010000)) { DEBUGOUT (" TPDU level exchange\n"); have_tpdu = 1; } else if ((us & 0x00020000)) { DEBUGOUT (" Short APDU level exchange\n"); handle->apdu_level = 1; } else if ((us & 0x00040000)) { DEBUGOUT (" Short and extended APDU level exchange\n"); handle->apdu_level = 2; } else if ((us & 0x00070000)) DEBUGOUT (" WARNING: conflicting exchange levels\n"); us = convert_le_u32(buf+44); DEBUGOUT_1 (" dwMaxCCIDMsgLen %5u\n", us); handle->max_ccid_msglen = us; DEBUGOUT ( " bClassGetResponse "); if (buf[48] == 0xff) DEBUGOUT_CONT ("echo\n"); else DEBUGOUT_CONT_1 (" %02X\n", buf[48]); DEBUGOUT ( " bClassEnvelope "); if (buf[49] == 0xff) DEBUGOUT_CONT ("echo\n"); else DEBUGOUT_CONT_1 (" %02X\n", buf[48]); DEBUGOUT ( " wlcdLayout "); if (!buf[50] && !buf[51]) DEBUGOUT_CONT ("none\n"); else DEBUGOUT_CONT_2 ("%u cols %u lines\n", buf[50], buf[51]); DEBUGOUT_1 (" bPINSupport %5u ", buf[52]); if ((buf[52] & 1)) { DEBUGOUT_CONT ( " verification"); handle->has_pinpad |= 1; } if ((buf[52] & 2)) { DEBUGOUT_CONT ( " modification"); handle->has_pinpad |= 2; } DEBUGOUT_LF (); DEBUGOUT_1 (" bMaxCCIDBusySlots %5u\n", buf[53]); if (buf[0] > 54) { DEBUGOUT (" junk "); for (i=54; i < buf[0]-54; i++) DEBUGOUT_CONT_1 (" %02X", buf[i]); DEBUGOUT_LF (); } if (!have_t1 || !(have_tpdu || handle->apdu_level)) { DEBUGOUT ("this drivers requires that the reader supports T=1, " "TPDU or APDU level exchange - this is not available\n"); return -1; } /* SCM drivers get stuck in their internal USB stack if they try to send a frame of n*wMaxPacketSize back to us. Given that wMaxPacketSize is 64 for these readers we set the IFSD to a value lower than that: 64 - 10 CCID header - 4 T1frame - 2 reserved = 48 Product Ids: 0xe001 - SCR 331 0x5111 - SCR 331-DI 0x5115 - SCR 335 0xe003 - SPR 532 The 0x5117 - SCR 3320 USB ID-000 reader seems to be very slow but enabling this workaround boosts the performance to a more or less acceptable level (tested by David). */ if (handle->id_vendor == VENDOR_SCM && handle->max_ifsd > 48 && ( (handle->id_product == SCM_SCR331 && bcd_device < 0x0516) ||(handle->id_product == SCM_SCR331DI && bcd_device < 0x0620) ||(handle->id_product == SCM_SCR335 && bcd_device < 0x0514) ||(handle->id_product == SCM_SPR532 && bcd_device < 0x0504) ||(handle->id_product == SCM_SCR3320 && bcd_device < 0x0522) )) { DEBUGOUT ("enabling workaround for buggy SCM readers\n"); handle->max_ifsd = 48; } if (handle->id_vendor == VENDOR_GEMPC) { DEBUGOUT ("enabling product quirk: disable non-null NAD\n"); handle->nonnull_nad = 0; } return 0; } static char * get_escaped_usb_string (libusb_device_handle *idev, int idx, const char *prefix, const char *suffix) { int rc; unsigned char buf[280]; unsigned char *s; unsigned int langid; size_t i, n, len; char *result; if (!idx) return NULL; /* Fixme: The next line is for the current Valgrid without support for USB IOCTLs. */ memset (buf, 0, sizeof buf); /* First get the list of supported languages and use the first one. If we do don't find it we try to use English. Note that this is all in a 2 bute Unicode encoding using little endian. */ #ifdef USE_NPTH npth_unprotect (); #endif rc = libusb_control_transfer (idev, LIBUSB_ENDPOINT_IN, LIBUSB_REQUEST_GET_DESCRIPTOR, (LIBUSB_DT_STRING << 8), 0, (char*)buf, sizeof buf, 1000 /* ms timeout */); #ifdef USE_NPTH npth_protect (); #endif if (rc < 4) langid = 0x0409; /* English. */ else langid = (buf[3] << 8) | buf[2]; #ifdef USE_NPTH npth_unprotect (); #endif rc = libusb_control_transfer (idev, LIBUSB_ENDPOINT_IN, LIBUSB_REQUEST_GET_DESCRIPTOR, (LIBUSB_DT_STRING << 8) + idx, langid, (char*)buf, sizeof buf, 1000 /* ms timeout */); #ifdef USE_NPTH npth_protect (); #endif if (rc < 2 || buf[1] != LIBUSB_DT_STRING) return NULL; /* Error or not a string. */ len = buf[0]; if (len > rc) return NULL; /* Larger than our buffer. */ for (s=buf+2, i=2, n=0; i+1 < len; i += 2, s += 2) { if (s[1]) n++; /* High byte set. */ else if (*s <= 0x20 || *s >= 0x7f || *s == '%' || *s == ':') n += 3 ; else n++; } result = malloc (strlen (prefix) + n + strlen (suffix) + 1); if (!result) return NULL; strcpy (result, prefix); n = strlen (prefix); for (s=buf+2, i=2; i+1 < len; i += 2, s += 2) { if (s[1]) result[n++] = '\xff'; /* High byte set. */ else if (*s <= 0x20 || *s >= 0x7f || *s == '%' || *s == ':') { sprintf (result+n, "%%%02X", *s); n += 3; } else result[n++] = *s; } strcpy (result+n, suffix); return result; } /* This function creates an reader id to be used to find the same physical reader after a reset. It returns an allocated and possibly percent escaped string or NULL if not enough memory is available. */ static char * make_reader_id (libusb_device_handle *idev, unsigned int vendor, unsigned int product, unsigned char serialno_index) { char *rid; char prefix[20]; sprintf (prefix, "%04X:%04X:", (vendor & 0xffff), (product & 0xffff)); rid = get_escaped_usb_string (idev, serialno_index, prefix, ":0"); if (!rid) { rid = malloc (strlen (prefix) + 3 + 1); if (!rid) return NULL; strcpy (rid, prefix); strcat (rid, "X:0"); } return rid; } /* Helper to find the endpoint from an interface descriptor. */ static int find_endpoint (const struct libusb_interface_descriptor *ifcdesc, int mode) { int no; int want_bulk_in = 0; if (mode == 1) want_bulk_in = 0x80; for (no=0; no < ifcdesc->bNumEndpoints; no++) { const struct libusb_endpoint_descriptor *ep = ifcdesc->endpoint + no; if (ep->bDescriptorType != LIBUSB_DT_ENDPOINT) ; else if (mode == 2 && ((ep->bmAttributes & LIBUSB_TRANSFER_TYPE_MASK) == LIBUSB_TRANSFER_TYPE_INTERRUPT) && (ep->bEndpointAddress & 0x80)) return ep->bEndpointAddress; else if ((mode == 0 || mode == 1) && ((ep->bmAttributes & LIBUSB_TRANSFER_TYPE_MASK) == LIBUSB_TRANSFER_TYPE_BULK) && (ep->bEndpointAddress & 0x80) == want_bulk_in) return ep->bEndpointAddress; } return -1; } /* Helper for scan_devices. This function returns true if a requested device has been found or the caller should stop scanning for other reasons. */ static void scan_usb_device (int *count, char **rid_list, struct libusb_device *dev) { int ifc_no; int set_no; const struct libusb_interface_descriptor *ifcdesc; char *rid; libusb_device_handle *idev = NULL; int err; struct libusb_config_descriptor *config; struct libusb_device_descriptor desc; char *p; err = libusb_get_device_descriptor (dev, &desc); if (err) return; err = libusb_get_active_config_descriptor (dev, &config); if (err) return; for (ifc_no=0; ifc_no < config->bNumInterfaces; ifc_no++) for (set_no=0; set_no < config->interface[ifc_no].num_altsetting; set_no++) { ifcdesc = (config->interface[ifc_no].altsetting + set_no); /* The second condition is for older SCM SPR 532 who did not know about the assigned CCID class. The third condition does the same for a Cherry SmartTerminal ST-2000. Instead of trying to interpret the strings we simply check the product ID. */ if (ifcdesc && ifcdesc->extra && ((ifcdesc->bInterfaceClass == 11 && ifcdesc->bInterfaceSubClass == 0 && ifcdesc->bInterfaceProtocol == 0) || (ifcdesc->bInterfaceClass == 255 && desc.idVendor == VENDOR_SCM && desc.idProduct == SCM_SPR532) || (ifcdesc->bInterfaceClass == 255 && desc.idVendor == VENDOR_CHERRY && desc.idProduct == CHERRY_ST2000))) { ++*count; err = libusb_open (dev, &idev); if (err) { DEBUGOUT_1 ("usb_open failed: %s\n", libusb_error_name (err)); continue; /* with next setting. */ } rid = make_reader_id (idev, desc.idVendor, desc.idProduct, desc.iSerialNumber); if (!rid) { libusb_free_config_descriptor (config); return; } /* We are collecting infos about all available CCID readers. Store them and continue. */ DEBUGOUT_2 ("found CCID reader %d (ID=%s)\n", *count, rid); p = malloc ((*rid_list? strlen (*rid_list):0) + 1 + strlen (rid) + 1); if (p) { *p = 0; if (*rid_list) { strcat (p, *rid_list); free (*rid_list); } strcat (p, rid); strcat (p, "\n"); *rid_list = p; } else /* Out of memory. */ { libusb_free_config_descriptor (config); free (rid); return; } free (rid); libusb_close (idev); idev = NULL; } } libusb_free_config_descriptor (config); } /* Scan all CCID devices. The function returns 0 if a reader has been found or when a scan returned without error. R_RID should be the address where to store the list of reader_ids we found. If on return this list is empty, no CCID device has been found; otherwise it points to an allocated linked list of reader IDs. */ static int scan_devices (char **r_rid) { char *rid_list = NULL; int count = 0; libusb_device **dev_list = NULL; libusb_device *dev; int i; ssize_t n; /* Set return values to a default. */ if (r_rid) *r_rid = NULL; n = libusb_get_device_list (NULL, &dev_list); for (i = 0; i < n; i++) { dev = dev_list[i]; scan_usb_device (&count, &rid_list, dev); } libusb_free_device_list (dev_list, 1); *r_rid = rid_list; return 0; } /* Set the level of debugging to LEVEL and return the old level. -1 just returns the old level. A level of 0 disables debugging, 1 enables debugging, 2 enables additional tracing of the T=1 protocol, 3 additionally enables debugging for GetSlotStatus, other values are not yet defined. Note that libusb may provide its own debugging feature which is enabled by setting the envvar USB_DEBUG. */ int ccid_set_debug_level (int level) { int old = debug_level; if (level != -1) debug_level = level; return old; } char * ccid_get_reader_list (void) { char *reader_list; if (!initialized_usb) { int rc; if ((rc = libusb_init (NULL))) { DEBUGOUT_1 ("usb_init failed: %s.\n", libusb_error_name (rc)); return NULL; } initialized_usb = 1; } if (scan_devices (&reader_list)) return NULL; /* Error. */ return reader_list; } /* Vendor specific custom initialization. */ static int ccid_vendor_specific_init (ccid_driver_t handle) { if (handle->id_vendor == VENDOR_VEGA && handle->id_product == VEGA_ALPHA) { int r; /* * Vega alpha has a feature to show retry counter on the pinpad * display. But it assumes that the card returns the value of * retry counter by VERIFY with empty data (return code of * 63Cx). Unfortunately, existing OpenPGP cards don't support * VERIFY command with empty data. This vendor specific command * sequence is to disable the feature. */ const unsigned char cmd[] = { '\xb5', '\x01', '\x00', '\x03', '\x00' }; r = send_escape_cmd (handle, cmd, sizeof (cmd), NULL, 0, NULL); if (r != 0 && r != CCID_DRIVER_ERR_CARD_INACTIVE && r != CCID_DRIVER_ERR_NO_CARD) return r; } return 0; } #define MAX_DEVICE 4 /* See MAX_READER in apdu.c. */ struct ccid_dev_table { int n; /* Index to ccid_usb_dev_list */ int interface_number; int setting_number; unsigned char *ifcdesc_extra; int ep_bulk_out; int ep_bulk_in; int ep_intr; size_t ifcdesc_extra_len; }; static libusb_device **ccid_usb_dev_list; static struct ccid_dev_table ccid_dev_table[MAX_DEVICE]; gpg_error_t ccid_dev_scan (int *idx_max_p, struct ccid_dev_table **t_p) { ssize_t n; libusb_device *dev; int i; int ifc_no; int set_no; int idx = 0; int err = 0; *idx_max_p = 0; *t_p = NULL; if (!initialized_usb) { int rc; if ((rc = libusb_init (NULL))) { DEBUGOUT_1 ("usb_init failed: %s.\n", libusb_error_name (rc)); return gpg_error (GPG_ERR_ENODEV); } initialized_usb = 1; } n = libusb_get_device_list (NULL, &ccid_usb_dev_list); for (i = 0; i < n; i++) { struct libusb_config_descriptor *config; struct libusb_device_descriptor desc; dev = ccid_usb_dev_list[i]; if (libusb_get_device_descriptor (dev, &desc)) continue; if (libusb_get_active_config_descriptor (dev, &config)) continue; for (ifc_no=0; ifc_no < config->bNumInterfaces; ifc_no++) for (set_no=0; set_no < config->interface[ifc_no].num_altsetting; set_no++) { const struct libusb_interface_descriptor *ifcdesc; ifcdesc = &config->interface[ifc_no].altsetting[set_no]; /* The second condition is for older SCM SPR 532 who did not know about the assigned CCID class. The third condition does the same for a Cherry SmartTerminal ST-2000. Instead of trying to interpret the strings we simply check the product ID. */ if (ifcdesc && ifcdesc->extra && ((ifcdesc->bInterfaceClass == 11 && ifcdesc->bInterfaceSubClass == 0 && ifcdesc->bInterfaceProtocol == 0) || (ifcdesc->bInterfaceClass == 255 && desc.idVendor == VENDOR_SCM && desc.idProduct == SCM_SPR532) || (ifcdesc->bInterfaceClass == 255 && desc.idVendor == VENDOR_CHERRY && desc.idProduct == CHERRY_ST2000))) { /* Found a reader. */ unsigned char *ifcdesc_extra; ifcdesc_extra = malloc (ifcdesc->extra_length); if (!ifcdesc_extra) { err = gpg_error_from_syserror (); libusb_free_config_descriptor (config); goto scan_finish; } memcpy (ifcdesc_extra, ifcdesc->extra, ifcdesc->extra_length); ccid_dev_table[idx].n = i; ccid_dev_table[idx].interface_number = ifc_no; ccid_dev_table[idx].setting_number = set_no; ccid_dev_table[idx].ifcdesc_extra = ifcdesc_extra; ccid_dev_table[idx].ifcdesc_extra_len = ifcdesc->extra_length; ccid_dev_table[idx].ep_bulk_out = find_endpoint (ifcdesc, 0); ccid_dev_table[idx].ep_bulk_in = find_endpoint (ifcdesc, 1); ccid_dev_table[idx].ep_intr = find_endpoint (ifcdesc, 2); idx++; if (idx >= MAX_DEVICE) { libusb_free_config_descriptor (config); err = 0; goto scan_finish; } } } libusb_free_config_descriptor (config); } scan_finish: if (err) { for (i = 0; i < idx; i++) { free (ccid_dev_table[idx].ifcdesc_extra); ccid_dev_table[idx].n = 0; ccid_dev_table[idx].interface_number = 0; ccid_dev_table[idx].setting_number = 0; ccid_dev_table[idx].ifcdesc_extra = NULL; ccid_dev_table[idx].ifcdesc_extra_len = 0; ccid_dev_table[idx].ep_bulk_out = 0; ccid_dev_table[idx].ep_bulk_in = 0; ccid_dev_table[idx].ep_intr = 0; } libusb_free_device_list (ccid_usb_dev_list, 1); ccid_usb_dev_list = NULL; } else { *idx_max_p = idx; if (idx) *t_p = ccid_dev_table; else *t_p = NULL; } return err; } void ccid_dev_scan_finish (struct ccid_dev_table *tbl, int max) { int i; for (i = 0; i < max; i++) { free (tbl[i].ifcdesc_extra); tbl[i].n = 0; tbl[i].interface_number = 0; tbl[i].setting_number = 0; tbl[i].ifcdesc_extra = NULL; tbl[i].ifcdesc_extra_len = 0; tbl[i].ep_bulk_out = 0; tbl[i].ep_bulk_in = 0; tbl[i].ep_intr = 0; } libusb_free_device_list (ccid_usb_dev_list, 1); ccid_usb_dev_list = NULL; } unsigned int ccid_get_BAI (int idx, struct ccid_dev_table *tbl) { int n; int bus, addr, intf; unsigned int bai; libusb_device *dev; n = tbl[idx].n; dev = ccid_usb_dev_list[n]; bus = libusb_get_bus_number (dev); addr = libusb_get_device_address (dev); intf = tbl[idx].interface_number; bai = (bus << 16) | (addr << 8) | intf; return bai; } int ccid_compare_BAI (ccid_driver_t handle, unsigned int bai) { return handle->bai == bai; } static void intr_cb (struct libusb_transfer *transfer) { ccid_driver_t handle = transfer->user_data; DEBUGOUT_1 ("CCID: interrupt callback %d\n", transfer->status); if (transfer->status == LIBUSB_TRANSFER_TIMED_OUT) { int err; submit_again: /* Submit the URB again to keep watching the INTERRUPT transfer. */ err = libusb_submit_transfer (transfer); if (err == LIBUSB_ERROR_NO_DEVICE) goto device_removed; DEBUGOUT_1 ("CCID submit transfer again %d\n", err); } else if (transfer->status == LIBUSB_TRANSFER_COMPLETED) { if (transfer->actual_length == 2 && transfer->buffer[0] == 0x50 && (transfer->buffer[1] & 1) == 0) { DEBUGOUT ("CCID: card removed\n"); handle->powered_off = 1; scd_kick_the_loop (); } else { /* Event other than card removal. */ goto submit_again; } } else if (transfer->status == LIBUSB_TRANSFER_CANCELLED) handle->powered_off = 1; else { device_removed: DEBUGOUT ("CCID: device removed\n"); handle->powered_off = 1; scd_kick_the_loop (); } } static void ccid_setup_intr (ccid_driver_t handle) { struct libusb_transfer *transfer; int err; transfer = libusb_alloc_transfer (0); handle->transfer = transfer; libusb_fill_interrupt_transfer (transfer, handle->idev, handle->ep_intr, handle->intr_buf, sizeof (handle->intr_buf), intr_cb, handle, 0); err = libusb_submit_transfer (transfer); DEBUGOUT_2 ("CCID submit transfer (%x): %d", handle->ep_intr, err); } static void * ccid_usb_thread (void *arg) { libusb_context *ctx = arg; while (ccid_usb_thread_is_alive) { #ifdef USE_NPTH npth_unprotect (); #endif libusb_handle_events_completed (ctx, NULL); #ifdef USE_NPTH npth_protect (); #endif } return NULL; } static int ccid_open_usb_reader (const char *spec_reader_name, int idx, struct ccid_dev_table *ccid_table, ccid_driver_t *handle, char **rdrname_p) { libusb_device *dev; libusb_device_handle *idev = NULL; char *rid = NULL; int rc = 0; int ifc_no, set_no; struct libusb_device_descriptor desc; int n; int bus, addr; unsigned int bai; n = ccid_table[idx].n; ifc_no = ccid_table[idx].interface_number; set_no = ccid_table[idx].setting_number; dev = ccid_usb_dev_list[n]; bus = libusb_get_bus_number (dev); addr = libusb_get_device_address (dev); bai = (bus << 16) | (addr << 8) | ifc_no; rc = libusb_open (dev, &idev); if (rc) { DEBUGOUT_1 ("usb_open failed: %s\n", libusb_error_name (rc)); free (*handle); *handle = NULL; return rc; } if (ccid_usb_thread_is_alive++ == 0) { npth_t thread; npth_attr_t tattr; int err; err = npth_attr_init (&tattr); if (err) { DEBUGOUT_1 ("npth_attr_init failed: %s\n", strerror (err)); free (*handle); *handle = NULL; return err; } npth_attr_setdetachstate (&tattr, NPTH_CREATE_DETACHED); err = npth_create (&thread, &tattr, ccid_usb_thread, NULL); if (err) { DEBUGOUT_1 ("npth_create failed: %s\n", strerror (err)); free (*handle); *handle = NULL; return err; } npth_attr_destroy (&tattr); } rc = libusb_get_device_descriptor (dev, &desc); if (rc) { DEBUGOUT ("get_device_descripor failed\n"); goto leave; } rid = make_reader_id (idev, desc.idVendor, desc.idProduct, desc.iSerialNumber); /* Check to see if reader name matches the spec. */ if (spec_reader_name && strncmp (rid, spec_reader_name, strlen (spec_reader_name))) { DEBUGOUT ("device not matched\n"); rc = CCID_DRIVER_ERR_NO_READER; goto leave; } (*handle)->id_vendor = desc.idVendor; (*handle)->id_product = desc.idProduct; (*handle)->idev = idev; (*handle)->bai = bai; (*handle)->ifc_no = ifc_no; (*handle)->ep_bulk_out = ccid_table[idx].ep_bulk_out; (*handle)->ep_bulk_in = ccid_table[idx].ep_bulk_in; (*handle)->ep_intr = ccid_table[idx].ep_intr; DEBUGOUT_2 ("using CCID reader %d (ID=%s)\n", idx, rid); if (parse_ccid_descriptor (*handle, desc.bcdDevice, ccid_table[idx].ifcdesc_extra, ccid_table[idx].ifcdesc_extra_len)) { DEBUGOUT ("device not supported\n"); rc = CCID_DRIVER_ERR_NO_READER; goto leave; } rc = libusb_claim_interface (idev, ifc_no); if (rc) { DEBUGOUT_1 ("usb_claim_interface failed: %d\n", rc); rc = CCID_DRIVER_ERR_CARD_IO_ERROR; goto leave; } /* Submit SET_INTERFACE control transfer which can reset the device. */ rc = libusb_set_interface_alt_setting (idev, ifc_no, set_no); if (rc) { DEBUGOUT_1 ("usb_set_interface_alt_setting failed: %d\n", rc); rc = CCID_DRIVER_ERR_CARD_IO_ERROR; goto leave; } rc = ccid_vendor_specific_init (*handle); leave: if (rc) { --ccid_usb_thread_is_alive; free (rid); libusb_close (idev); free (*handle); *handle = NULL; } else { if (rdrname_p) *rdrname_p = rid; else free (rid); } return rc; } /* Open the reader with the internal number READERNO and return a pointer to be used as handle in HANDLE. Returns 0 on success. */ int ccid_open_reader (const char *spec_reader_name, int idx, struct ccid_dev_table *ccid_table, ccid_driver_t *handle, char **rdrname_p) { *handle = calloc (1, sizeof **handle); if (!*handle) { DEBUGOUT ("out of memory\n"); return CCID_DRIVER_ERR_OUT_OF_CORE; } return ccid_open_usb_reader (spec_reader_name, idx, ccid_table, handle, rdrname_p); } int ccid_require_get_status (ccid_driver_t handle) { /* When a card reader supports interrupt transfer to check the status of card, it is possible to submit only an interrupt transfer, and no check is required by application layer. USB can detect removal of a card and can detect removal of a reader. */ if (handle->ep_intr >= 0) return 0; /* Libusb actually detects the removal of USB device in use. However, there is no good API to handle the removal (yet), cleanly and with good portability. There is libusb_set_pollfd_notifiers function, but it doesn't offer libusb_device_handle* data to its callback. So, when it watches multiple devices, there is no way to know which device is removed. Once, we will have a good programming interface of libusb, we can list tokens (with no interrupt transfer support, but always with card inserted) here to return 0, so that scdaemon can submit minimum packet on wire. */ return 1; } static void do_close_reader (ccid_driver_t handle) { int rc; unsigned char msg[100]; size_t msglen; unsigned char seqno; if (!handle->powered_off) { msg[0] = PC_to_RDR_IccPowerOff; msg[5] = 0; /* slot */ msg[6] = seqno = handle->seqno++; msg[7] = 0; /* RFU */ msg[8] = 0; /* RFU */ msg[9] = 0; /* RFU */ set_msg_len (msg, 0); msglen = 10; rc = bulk_out (handle, msg, msglen, 0); if (!rc) bulk_in (handle, msg, sizeof msg, &msglen, RDR_to_PC_SlotStatus, seqno, 2000, 0); } if (handle->transfer) { if (!handle->powered_off) { DEBUGOUT ("libusb_cancel_transfer\n"); rc = libusb_cancel_transfer (handle->transfer); if (rc != LIBUSB_ERROR_NOT_FOUND) while (!handle->powered_off) { DEBUGOUT ("libusb_handle_events_completed\n"); #ifdef USE_NPTH npth_unprotect (); #endif libusb_handle_events_completed (NULL, &handle->powered_off); #ifdef USE_NPTH npth_protect (); #endif } } libusb_free_transfer (handle->transfer); handle->transfer = NULL; } libusb_release_interface (handle->idev, handle->ifc_no); --ccid_usb_thread_is_alive; libusb_close (handle->idev); handle->idev = NULL; } int ccid_set_progress_cb (ccid_driver_t handle, void (*cb)(void *, const char *, int, int, int), void *cb_arg) { if (!handle) return CCID_DRIVER_ERR_INV_VALUE; handle->progress_cb = cb; handle->progress_cb_arg = cb_arg; return 0; } int ccid_set_prompt_cb (ccid_driver_t handle, void (*cb)(void *, int), void *cb_arg) { if (!handle) return CCID_DRIVER_ERR_INV_VALUE; handle->prompt_cb = cb; handle->prompt_cb_arg = cb_arg; return 0; } /* Close the reader HANDLE. */ int ccid_close_reader (ccid_driver_t handle) { if (!handle) return 0; do_close_reader (handle); free (handle); return 0; } /* Return False if a card is present and powered. */ int ccid_check_card_presence (ccid_driver_t handle) { (void)handle; /* Not yet implemented. */ return -1; } /* Write a MSG of length MSGLEN to the designated bulk out endpoint. Returns 0 on success. */ static int bulk_out (ccid_driver_t handle, unsigned char *msg, size_t msglen, int no_debug) { int rc; int transferred; /* No need to continue and clutter the log with USB write error messages after we got the first ENODEV. */ if (handle->enodev_seen) return CCID_DRIVER_ERR_NO_READER; if (debug_level && (!no_debug || debug_level >= 3)) { switch (msglen? msg[0]:0) { case PC_to_RDR_IccPowerOn: print_p2r_iccpoweron (msg, msglen); break; case PC_to_RDR_IccPowerOff: print_p2r_iccpoweroff (msg, msglen); break; case PC_to_RDR_GetSlotStatus: print_p2r_getslotstatus (msg, msglen); break; case PC_to_RDR_XfrBlock: print_p2r_xfrblock (msg, msglen); break; case PC_to_RDR_GetParameters: print_p2r_getparameters (msg, msglen); break; case PC_to_RDR_ResetParameters: print_p2r_resetparameters (msg, msglen); break; case PC_to_RDR_SetParameters: print_p2r_setparameters (msg, msglen); break; case PC_to_RDR_Escape: print_p2r_escape (msg, msglen); break; case PC_to_RDR_IccClock: print_p2r_iccclock (msg, msglen); break; case PC_to_RDR_T0APDU: print_p2r_to0apdu (msg, msglen); break; case PC_to_RDR_Secure: print_p2r_secure (msg, msglen); break; case PC_to_RDR_Mechanical: print_p2r_mechanical (msg, msglen); break; case PC_to_RDR_Abort: print_p2r_abort (msg, msglen); break; case PC_to_RDR_SetDataRate: print_p2r_setdatarate (msg, msglen); break; default: print_p2r_unknown (msg, msglen); break; } } #ifdef USE_NPTH npth_unprotect (); #endif rc = libusb_bulk_transfer (handle->idev, handle->ep_bulk_out, (char*)msg, msglen, &transferred, 5000 /* ms timeout */); #ifdef USE_NPTH npth_protect (); #endif if (rc == 0 && transferred == msglen) return 0; if (rc) { DEBUGOUT_1 ("usb_bulk_write error: %s\n", libusb_error_name (rc)); if (rc == LIBUSB_ERROR_NO_DEVICE) { handle->enodev_seen = 1; return CCID_DRIVER_ERR_NO_READER; } } return 0; } /* Read a maximum of LENGTH bytes from the bulk in endpoint into BUFFER and return the actual read number if bytes in NREAD. SEQNO is the sequence number used to send the request and EXPECTED_TYPE the type of message we expect. Does checks on the ccid header. TIMEOUT is the timeout value in ms. NO_DEBUG may be set to avoid debug messages in case of no error; this can be overridden with a glibal debug level of at least 3. Returns 0 on success. */ static int bulk_in (ccid_driver_t handle, unsigned char *buffer, size_t length, size_t *nread, int expected_type, int seqno, int timeout, int no_debug) { int rc; int msglen; int notified = 0; /* Fixme: The next line for the current Valgrind without support for USB IOCTLs. */ memset (buffer, 0, length); retry: #ifdef USE_NPTH npth_unprotect (); #endif rc = libusb_bulk_transfer (handle->idev, handle->ep_bulk_in, (char*)buffer, length, &msglen, timeout); #ifdef USE_NPTH npth_protect (); #endif if (rc) { DEBUGOUT_1 ("usb_bulk_read error: %s\n", libusb_error_name (rc)); if (rc == LIBUSB_ERROR_NO_DEVICE) { handle->enodev_seen = 1; return CCID_DRIVER_ERR_NO_READER; } return CCID_DRIVER_ERR_CARD_IO_ERROR; } if (msglen < 0) return CCID_DRIVER_ERR_INV_VALUE; /* Faulty libusb. */ *nread = msglen; if (msglen < 10) { DEBUGOUT_1 ("bulk-in msg too short (%u)\n", (unsigned int)msglen); abort_cmd (handle, seqno); return CCID_DRIVER_ERR_INV_VALUE; } if (buffer[5] != 0) { DEBUGOUT_1 ("unexpected bulk-in slot (%d)\n", buffer[5]); return CCID_DRIVER_ERR_INV_VALUE; } if (buffer[6] != seqno) { DEBUGOUT_2 ("bulk-in seqno does not match (%d/%d)\n", seqno, buffer[6]); /* Retry until we are synced again. */ goto retry; } /* We need to handle the time extension request before we check that we got the expected message type. This is in particular required for the Cherry keyboard which sends a time extension request for each key hit. */ if (!(buffer[7] & 0x03) && (buffer[7] & 0xC0) == 0x80) { /* Card present and active, time extension requested. */ DEBUGOUT_2 ("time extension requested (%02X,%02X)\n", buffer[7], buffer[8]); /* Gnuk enhancement to prompt user input by ack button */ if (buffer[8] == 0xff && !notified) { notified = 1; handle->prompt_cb (handle->prompt_cb_arg, 1); } goto retry; } if (notified) handle->prompt_cb (handle->prompt_cb_arg, 0); if (buffer[0] != expected_type && buffer[0] != RDR_to_PC_SlotStatus) { DEBUGOUT_1 ("unexpected bulk-in msg type (%02x)\n", buffer[0]); abort_cmd (handle, seqno); return CCID_DRIVER_ERR_INV_VALUE; } if (debug_level && (!no_debug || debug_level >= 3)) { switch (buffer[0]) { case RDR_to_PC_DataBlock: print_r2p_datablock (buffer, msglen); break; case RDR_to_PC_SlotStatus: print_r2p_slotstatus (buffer, msglen); break; case RDR_to_PC_Parameters: print_r2p_parameters (buffer, msglen); break; case RDR_to_PC_Escape: print_r2p_escape (buffer, msglen); break; case RDR_to_PC_DataRate: print_r2p_datarate (buffer, msglen); break; default: print_r2p_unknown (buffer, msglen); break; } } if (CCID_COMMAND_FAILED (buffer)) print_command_failed (buffer); /* Check whether a card is at all available. Note: If you add new error codes here, check whether they need to be ignored in send_escape_cmd. */ switch ((buffer[7] & 0x03)) { case 0: /* no error */ break; case 1: rc = CCID_DRIVER_ERR_CARD_INACTIVE; break; case 2: rc = CCID_DRIVER_ERR_NO_CARD; break; case 3: /* RFU */ break; } if (rc) { /* * Communication failure by device side. * Possibly, it was forcibly suspended and resumed. * * Only detect this kind of failure when interrupt transfer is * not supported. For card reader with interrupt transfer * support removal is detected by intr_cb. */ if (handle->ep_intr < 0) { DEBUGOUT ("CCID: card inactive/removed\n"); handle->powered_off = 1; scd_kick_the_loop (); } } return rc; } /* Send an abort sequence and wait until everything settled. */ static int abort_cmd (ccid_driver_t handle, int seqno) { int rc; char dummybuf[8]; unsigned char msg[100]; int msglen; seqno &= 0xff; DEBUGOUT_1 ("sending abort sequence for seqno %d\n", seqno); /* Send the abort command to the control pipe. Note that we don't need to keep track of sent abort commands because there should never be another thread using the same slot concurrently. */ #ifdef USE_NPTH npth_unprotect (); #endif rc = libusb_control_transfer (handle->idev, 0x21,/* bmRequestType: host-to-device, class specific, to interface. */ 1, /* ABORT */ (seqno << 8 | 0 /* slot */), handle->ifc_no, dummybuf, 0, 1000 /* ms timeout */); #ifdef USE_NPTH npth_protect (); #endif if (rc) { DEBUGOUT_1 ("usb_control_msg error: %s\n", libusb_error_name (rc)); return CCID_DRIVER_ERR_CARD_IO_ERROR; } /* Now send the abort command to the bulk out pipe using the same SEQNO and SLOT. Do this in a loop to so that all seqno are tried. */ seqno--; /* Adjust for next increment. */ do { int transferred; seqno++; msg[0] = PC_to_RDR_Abort; msg[5] = 0; /* slot */ msg[6] = seqno; msg[7] = 0; /* RFU */ msg[8] = 0; /* RFU */ msg[9] = 0; /* RFU */ msglen = 10; set_msg_len (msg, 0); #ifdef USE_NPTH npth_unprotect (); #endif rc = libusb_bulk_transfer (handle->idev, handle->ep_bulk_out, (char*)msg, msglen, &transferred, 5000 /* ms timeout */); #ifdef USE_NPTH npth_protect (); #endif if (rc == 0 && transferred == msglen) rc = 0; else if (rc) DEBUGOUT_1 ("usb_bulk_write error in abort_cmd: %s\n", libusb_error_name (rc)); if (rc) return rc; #ifdef USE_NPTH npth_unprotect (); #endif rc = libusb_bulk_transfer (handle->idev, handle->ep_bulk_in, (char*)msg, sizeof msg, &msglen, 5000 /*ms timeout*/); #ifdef USE_NPTH npth_protect (); #endif if (rc) { DEBUGOUT_1 ("usb_bulk_read error in abort_cmd: %s\n", libusb_error_name (rc)); return CCID_DRIVER_ERR_CARD_IO_ERROR; } if (msglen < 10) { DEBUGOUT_1 ("bulk-in msg in abort_cmd too short (%u)\n", (unsigned int)msglen); return CCID_DRIVER_ERR_INV_VALUE; } if (msg[5] != 0) { DEBUGOUT_1 ("unexpected bulk-in slot (%d) in abort_cmd\n", msg[5]); return CCID_DRIVER_ERR_INV_VALUE; } DEBUGOUT_3 ("status: %02X error: %02X octet[9]: %02X\n", msg[7], msg[8], msg[9]); if (CCID_COMMAND_FAILED (msg)) print_command_failed (msg); } while (msg[0] != RDR_to_PC_SlotStatus && msg[5] != 0 && msg[6] != seqno); handle->seqno = ((seqno + 1) & 0xff); DEBUGOUT ("sending abort sequence succeeded\n"); return 0; } /* Note that this function won't return the error codes NO_CARD or CARD_INACTIVE. IF RESULT is not NULL, the result from the operation will get returned in RESULT and its length in RESULTLEN. If the response is larger than RESULTMAX, an error is returned and the required buffer length returned in RESULTLEN. */ static int send_escape_cmd (ccid_driver_t handle, const unsigned char *data, size_t datalen, unsigned char *result, size_t resultmax, size_t *resultlen) { int rc; unsigned char msg[100]; size_t msglen; unsigned char seqno; if (resultlen) *resultlen = 0; if (datalen > sizeof msg - 10) return CCID_DRIVER_ERR_INV_VALUE; /* Escape data too large. */ msg[0] = PC_to_RDR_Escape; msg[5] = 0; /* slot */ msg[6] = seqno = handle->seqno++; msg[7] = 0; /* RFU */ msg[8] = 0; /* RFU */ msg[9] = 0; /* RFU */ memcpy (msg+10, data, datalen); msglen = 10 + datalen; set_msg_len (msg, datalen); rc = bulk_out (handle, msg, msglen, 0); if (rc) return rc; rc = bulk_in (handle, msg, sizeof msg, &msglen, RDR_to_PC_Escape, seqno, 5000, 0); if (result) switch (rc) { /* We need to ignore certain errorcode here. */ case 0: case CCID_DRIVER_ERR_CARD_INACTIVE: case CCID_DRIVER_ERR_NO_CARD: { if (msglen > resultmax) rc = CCID_DRIVER_ERR_INV_VALUE; /* Response too large. */ else { memcpy (result, msg, msglen); if (resultlen) *resultlen = msglen; rc = 0; } } break; default: break; } return rc; } int ccid_transceive_escape (ccid_driver_t handle, const unsigned char *data, size_t datalen, unsigned char *resp, size_t maxresplen, size_t *nresp) { return send_escape_cmd (handle, data, datalen, resp, maxresplen, nresp); } /* experimental */ int ccid_poll (ccid_driver_t handle) { int rc; unsigned char msg[10]; int msglen; int i, j; rc = libusb_interrupt_transfer (handle->idev, handle->ep_intr, (char*)msg, sizeof msg, &msglen, 0 /* ms timeout */ ); if (rc == LIBUSB_ERROR_TIMEOUT) return 0; if (rc) { DEBUGOUT_1 ("usb_intr_read error: %s\n", libusb_error_name (rc)); return CCID_DRIVER_ERR_CARD_IO_ERROR; } if (msglen < 1) { DEBUGOUT ("intr-in msg too short\n"); return CCID_DRIVER_ERR_INV_VALUE; } if (msg[0] == RDR_to_PC_NotifySlotChange) { DEBUGOUT ("notify slot change:"); for (i=1; i < msglen; i++) for (j=0; j < 4; j++) DEBUGOUT_CONT_3 (" %d:%c%c", (i-1)*4+j, (msg[i] & (1<<(j*2)))? 'p':'-', (msg[i] & (2<<(j*2)))? '*':' '); DEBUGOUT_LF (); } else if (msg[0] == RDR_to_PC_HardwareError) { DEBUGOUT ("hardware error occurred\n"); } else { DEBUGOUT_1 ("unknown intr-in msg of type %02X\n", msg[0]); } return 0; } /* Note that this function won't return the error codes NO_CARD or CARD_INACTIVE */ int ccid_slot_status (ccid_driver_t handle, int *statusbits, int on_wire) { int rc; unsigned char msg[100]; size_t msglen; unsigned char seqno; int retries = 0; if (handle->powered_off) return CCID_DRIVER_ERR_NO_READER; /* If the card (with its lower-level driver) doesn't require GET_STATUS on wire (because it supports INTERRUPT transfer for status change, or it's a token which has a card always inserted), no need to send on wire. */ if (!on_wire && !ccid_require_get_status (handle)) { /* Setup interrupt transfer at the initial call of slot_status with ON_WIRE == 0 */ if (handle->transfer == NULL && handle->ep_intr >= 0) ccid_setup_intr (handle); *statusbits = 0; return 0; } retry: msg[0] = PC_to_RDR_GetSlotStatus; msg[5] = 0; /* slot */ msg[6] = seqno = handle->seqno++; msg[7] = 0; /* RFU */ msg[8] = 0; /* RFU */ msg[9] = 0; /* RFU */ set_msg_len (msg, 0); rc = bulk_out (handle, msg, 10, 1); if (rc) return rc; /* Note that we set the NO_DEBUG flag here, so that the logs won't get cluttered up by a ticker function checking for the slot status and debugging enabled. */ rc = bulk_in (handle, msg, sizeof msg, &msglen, RDR_to_PC_SlotStatus, seqno, retries? 1000 : 200, 1); if (rc == CCID_DRIVER_ERR_CARD_IO_ERROR && retries < 3) { if (!retries) { DEBUGOUT ("USB: CALLING USB_CLEAR_HALT\n"); #ifdef USE_NPTH npth_unprotect (); #endif libusb_clear_halt (handle->idev, handle->ep_bulk_in); libusb_clear_halt (handle->idev, handle->ep_bulk_out); #ifdef USE_NPTH npth_protect (); #endif } else DEBUGOUT ("USB: RETRYING bulk_in AGAIN\n"); retries++; goto retry; } if (rc && rc != CCID_DRIVER_ERR_NO_CARD && rc != CCID_DRIVER_ERR_CARD_INACTIVE) return rc; *statusbits = (msg[7] & 3); return 0; } /* Parse ATR string (of ATRLEN) and update parameters at PARAM. Calling this routine, it should prepare default values at PARAM beforehand. This routine assumes that card is accessed by T=1 protocol. It doesn't analyze historical bytes at all. Returns < 0 value on error: -1 for parse error or integrity check error -2 for card doesn't support T=1 protocol -3 for parameters are nod explicitly defined by ATR -4 for this driver doesn't support CRC Returns >= 0 on success: 0 for card is negotiable mode 1 for card is specific mode (and not negotiable) */ static int update_param_by_atr (unsigned char *param, unsigned char *atr, size_t atrlen) { int i = -1; int t, y, chk; int historical_bytes_num, negotiable = 1; #define NEXTBYTE() do { i++; if (atrlen <= i) return -1; } while (0) NEXTBYTE (); if (atr[i] == 0x3F) param[1] |= 0x02; /* Convention is inverse. */ NEXTBYTE (); y = (atr[i] >> 4); historical_bytes_num = atr[i] & 0x0f; NEXTBYTE (); if ((y & 1)) { param[0] = atr[i]; /* TA1 - Fi & Di */ NEXTBYTE (); } if ((y & 2)) NEXTBYTE (); /* TB1 - ignore */ if ((y & 4)) { param[2] = atr[i]; /* TC1 - Guard Time */ NEXTBYTE (); } if ((y & 8)) { y = (atr[i] >> 4); /* TD1 */ t = atr[i] & 0x0f; NEXTBYTE (); if ((y & 1)) { /* TA2 - PPS mode */ if ((atr[i] & 0x0f) != 1) return -2; /* Wrong card protocol (!= 1). */ if ((atr[i] & 0x10) != 0x10) return -3; /* Transmission parameters are implicitly defined. */ negotiable = 0; /* TA2 means specific mode. */ NEXTBYTE (); } if ((y & 2)) NEXTBYTE (); /* TB2 - ignore */ if ((y & 4)) NEXTBYTE (); /* TC2 - ignore */ if ((y & 8)) { y = (atr[i] >> 4); /* TD2 */ t = atr[i] & 0x0f; NEXTBYTE (); } else y = 0; while (y) { if ((y & 1)) { /* TAx */ if (t == 1) param[5] = atr[i]; /* IFSC */ else if (t == 15) /* XXX: check voltage? */ param[4] = (atr[i] >> 6); /* ClockStop */ NEXTBYTE (); } if ((y & 2)) { if (t == 1) param[3] = atr[i]; /* TBx - BWI & CWI */ NEXTBYTE (); } if ((y & 4)) { if (t == 1) param[1] |= (atr[i] & 0x01); /* TCx - LRC/CRC */ NEXTBYTE (); if (param[1] & 0x01) return -4; /* CRC not supported yet. */ } if ((y & 8)) { y = (atr[i] >> 4); /* TDx */ t = atr[i] & 0x0f; NEXTBYTE (); } else y = 0; } } i += historical_bytes_num - 1; NEXTBYTE (); if (atrlen != i+1) return -1; #undef NEXTBYTE chk = 0; do { chk ^= atr[i]; i--; } while (i > 0); if (chk != 0) return -1; return negotiable; } /* Return the ATR of the card. This is not a cached value and thus an actual reset is done. */ int ccid_get_atr (ccid_driver_t handle, unsigned char *atr, size_t maxatrlen, size_t *atrlen) { int rc; int statusbits; unsigned char msg[100]; unsigned char *tpdu; size_t msglen, tpdulen; unsigned char seqno; int use_crc = 0; unsigned int edc; int tried_iso = 0; int got_param; unsigned char param[7] = { /* For Protocol T=1 */ 0x11, /* bmFindexDindex */ 0x10, /* bmTCCKST1 */ 0x00, /* bGuardTimeT1 */ 0x4d, /* bmWaitingIntegersT1 */ 0x00, /* bClockStop */ 0x20, /* bIFSC */ 0x00 /* bNadValue */ }; /* First check whether a card is available. */ rc = ccid_slot_status (handle, &statusbits, 1); if (rc) return rc; if (statusbits == 2) return CCID_DRIVER_ERR_NO_CARD; /* * In the first invocation of ccid_slot_status, card reader may * return CCID_DRIVER_ERR_CARD_INACTIVE and handle->powered_off may * become 1. Because inactive card is no problem (we are turning it * ON here), clear the flag. */ handle->powered_off = 0; /* For an inactive and also for an active card, issue the PowerOn command to get the ATR. */ again: msg[0] = PC_to_RDR_IccPowerOn; msg[5] = 0; /* slot */ msg[6] = seqno = handle->seqno++; /* power select (0=auto, 1=5V, 2=3V, 3=1.8V) */ msg[7] = handle->auto_voltage ? 0 : 1; msg[8] = 0; /* RFU */ msg[9] = 0; /* RFU */ set_msg_len (msg, 0); msglen = 10; rc = bulk_out (handle, msg, msglen, 0); if (rc) return rc; rc = bulk_in (handle, msg, sizeof msg, &msglen, RDR_to_PC_DataBlock, seqno, 5000, 0); if (rc) return rc; if (!tried_iso && CCID_COMMAND_FAILED (msg) && CCID_ERROR_CODE (msg) == 0xbb && ((handle->id_vendor == VENDOR_CHERRY && handle->id_product == 0x0005) || (handle->id_vendor == VENDOR_GEMPC && handle->id_product == 0x4433) )) { tried_iso = 1; /* Try switching to ISO mode. */ if (!send_escape_cmd (handle, (const unsigned char*)"\xF1\x01", 2, NULL, 0, NULL)) goto again; } else if (CCID_COMMAND_FAILED (msg)) return CCID_DRIVER_ERR_CARD_IO_ERROR; handle->powered_off = 0; if (atr) { size_t n = msglen - 10; if (n > maxatrlen) n = maxatrlen; memcpy (atr, msg+10, n); *atrlen = n; } param[6] = handle->nonnull_nad? ((1 << 4) | 0): 0; rc = update_param_by_atr (param, msg+10, msglen - 10); if (rc < 0) { DEBUGOUT_1 ("update_param_by_atr failed: %d\n", rc); return CCID_DRIVER_ERR_CARD_IO_ERROR; } got_param = 0; if (handle->auto_param) { msg[0] = PC_to_RDR_GetParameters; msg[5] = 0; /* slot */ msg[6] = seqno = handle->seqno++; msg[7] = 0; /* RFU */ msg[8] = 0; /* RFU */ msg[9] = 0; /* RFU */ set_msg_len (msg, 0); msglen = 10; rc = bulk_out (handle, msg, msglen, 0); if (!rc) rc = bulk_in (handle, msg, sizeof msg, &msglen, RDR_to_PC_Parameters, seqno, 2000, 0); if (rc) DEBUGOUT ("GetParameters failed\n"); else if (msglen == 17 && msg[9] == 1) got_param = 1; } else if (handle->auto_pps) ; else if (rc == 1) /* It's negotiable, send PPS. */ { msg[0] = PC_to_RDR_XfrBlock; msg[5] = 0; /* slot */ msg[6] = seqno = handle->seqno++; msg[7] = 0; msg[8] = 0; msg[9] = 0; msg[10] = 0xff; /* PPSS */ msg[11] = 0x11; /* PPS0: PPS1, Protocol T=1 */ msg[12] = param[0]; /* PPS1: Fi / Di */ msg[13] = 0xff ^ 0x11 ^ param[0]; /* PCK */ set_msg_len (msg, 4); msglen = 10 + 4; rc = bulk_out (handle, msg, msglen, 0); if (rc) return rc; rc = bulk_in (handle, msg, sizeof msg, &msglen, RDR_to_PC_DataBlock, seqno, 5000, 0); if (rc) return rc; if (msglen != 10 + 4) { DEBUGOUT_1 ("Setting PPS failed: %zu\n", msglen); return CCID_DRIVER_ERR_CARD_IO_ERROR; } if (msg[10] != 0xff || msg[11] != 0x11 || msg[12] != param[0]) { DEBUGOUT_1 ("Setting PPS failed: 0x%02x\n", param[0]); return CCID_DRIVER_ERR_CARD_IO_ERROR; } } /* Setup parameters to select T=1. */ msg[0] = PC_to_RDR_SetParameters; msg[5] = 0; /* slot */ msg[6] = seqno = handle->seqno++; msg[7] = 1; /* Select T=1. */ msg[8] = 0; /* RFU */ msg[9] = 0; /* RFU */ if (!got_param) memcpy (&msg[10], param, 7); set_msg_len (msg, 7); msglen = 10 + 7; rc = bulk_out (handle, msg, msglen, 0); if (rc) return rc; rc = bulk_in (handle, msg, sizeof msg, &msglen, RDR_to_PC_Parameters, seqno, 5000, 0); if (rc) DEBUGOUT ("SetParameters failed (ignored)\n"); if (!rc && msglen > 15 && msg[15] >= 16 && msg[15] <= 254 ) handle->ifsc = msg[15]; else handle->ifsc = 128; /* Something went wrong, assume 128 bytes. */ if (handle->nonnull_nad && msglen > 16 && msg[16] == 0) { DEBUGOUT ("Use Null-NAD, clearing handle->nonnull_nad.\n"); handle->nonnull_nad = 0; } handle->t1_ns = 0; handle->t1_nr = 0; /* Send an S-Block with our maximum IFSD to the CCID. */ if (!handle->apdu_level && !handle->auto_ifsd) { tpdu = msg+10; /* NAD: DAD=1, SAD=0 */ tpdu[0] = handle->nonnull_nad? ((1 << 4) | 0): 0; tpdu[1] = (0xc0 | 0 | 1); /* S-block request: change IFSD */ tpdu[2] = 1; tpdu[3] = handle->max_ifsd? handle->max_ifsd : 32; tpdulen = 4; edc = compute_edc (tpdu, tpdulen, use_crc); if (use_crc) tpdu[tpdulen++] = (edc >> 8); tpdu[tpdulen++] = edc; msg[0] = PC_to_RDR_XfrBlock; msg[5] = 0; /* slot */ msg[6] = seqno = handle->seqno++; msg[7] = 0; msg[8] = 0; /* RFU */ msg[9] = 0; /* RFU */ set_msg_len (msg, tpdulen); msglen = 10 + tpdulen; if (debug_level > 1) DEBUGOUT_3 ("T=1: put %c-block seq=%d%s\n", ((msg[11] & 0xc0) == 0x80)? 'R' : (msg[11] & 0x80)? 'S' : 'I', ((msg[11] & 0x80)? !!(msg[11]& 0x10) : !!(msg[11] & 0x40)), (!(msg[11] & 0x80) && (msg[11] & 0x20)? " [more]":"")); rc = bulk_out (handle, msg, msglen, 0); if (rc) return rc; rc = bulk_in (handle, msg, sizeof msg, &msglen, RDR_to_PC_DataBlock, seqno, 5000, 0); if (rc) return rc; tpdu = msg + 10; tpdulen = msglen - 10; if (tpdulen < 4) return CCID_DRIVER_ERR_ABORTED; if (debug_level > 1) DEBUGOUT_4 ("T=1: got %c-block seq=%d err=%d%s\n", ((msg[11] & 0xc0) == 0x80)? 'R' : (msg[11] & 0x80)? 'S' : 'I', ((msg[11] & 0x80)? !!(msg[11]& 0x10) : !!(msg[11] & 0x40)), ((msg[11] & 0xc0) == 0x80)? (msg[11] & 0x0f) : 0, (!(msg[11] & 0x80) && (msg[11] & 0x20)? " [more]":"")); if ((tpdu[1] & 0xe0) != 0xe0 || tpdu[2] != 1) { DEBUGOUT ("invalid response for S-block (Change-IFSD)\n"); return -1; } DEBUGOUT_1 ("IFSD has been set to %d\n", tpdu[3]); } return 0; } static unsigned int compute_edc (const unsigned char *data, size_t datalen, int use_crc) { if (use_crc) { return 0x42; /* Not yet implemented. */ } else { unsigned char crc = 0; for (; datalen; datalen--) crc ^= *data++; return crc; } } /* Return true if APDU is an extended length one. */ static int is_exlen_apdu (const unsigned char *apdu, size_t apdulen) { if (apdulen < 7 || apdu[4]) return 0; /* Too short or no Z byte. */ return 1; } /* Helper for ccid_transceive used for APDU level exchanges. */ static int ccid_transceive_apdu_level (ccid_driver_t handle, const unsigned char *apdu_buf, size_t apdu_len, unsigned char *resp, size_t maxresplen, size_t *nresp) { int rc; unsigned char msg[CCID_MAX_BUF]; const unsigned char *apdu_p; size_t apdu_part_len; size_t msglen; unsigned char seqno; int bwi = 4; unsigned char chain = 0; if (apdu_len == 0 || apdu_len > sizeof (msg) - 10) return CCID_DRIVER_ERR_INV_VALUE; /* Invalid length. */ apdu_p = apdu_buf; while (1) { apdu_part_len = apdu_len; if (apdu_part_len > handle->max_ccid_msglen - 10) { apdu_part_len = handle->max_ccid_msglen - 10; chain |= 0x01; } msg[0] = PC_to_RDR_XfrBlock; msg[5] = 0; /* slot */ msg[6] = seqno = handle->seqno++; msg[7] = bwi; msg[8] = chain; msg[9] = 0; memcpy (msg+10, apdu_p, apdu_part_len); set_msg_len (msg, apdu_part_len); msglen = 10 + apdu_part_len; rc = bulk_out (handle, msg, msglen, 0); if (rc) return rc; apdu_p += apdu_part_len; apdu_len -= apdu_part_len; rc = bulk_in (handle, msg, sizeof msg, &msglen, RDR_to_PC_DataBlock, seqno, CCID_CMD_TIMEOUT, 0); if (rc) return rc; if (!(chain & 0x01)) break; chain = 0x02; } apdu_len = 0; while (1) { apdu_part_len = msglen - 10; if (resp && apdu_len + apdu_part_len <= maxresplen) memcpy (resp + apdu_len, msg+10, apdu_part_len); apdu_len += apdu_part_len; if (!(msg[9] & 0x01)) break; msg[0] = PC_to_RDR_XfrBlock; msg[5] = 0; /* slot */ msg[6] = seqno = handle->seqno++; msg[7] = bwi; msg[8] = 0x10; /* Request next data block */ msg[9] = 0; set_msg_len (msg, 0); msglen = 10; rc = bulk_out (handle, msg, msglen, 0); if (rc) return rc; rc = bulk_in (handle, msg, sizeof msg, &msglen, RDR_to_PC_DataBlock, seqno, CCID_CMD_TIMEOUT, 0); if (rc) return rc; } if (resp) { if (apdu_len > maxresplen) { DEBUGOUT_2 ("provided buffer too short for received data " "(%u/%u)\n", (unsigned int)apdu_len, (unsigned int)maxresplen); return CCID_DRIVER_ERR_INV_VALUE; } *nresp = apdu_len; } return 0; } /* Protocol T=1 overview Block Structure: Prologue Field: 1 byte Node Address (NAD) 1 byte Protocol Control Byte (PCB) 1 byte Length (LEN) Information Field: 0-254 byte APDU or Control Information (INF) Epilogue Field: 1 byte Error Detection Code (EDC) NAD: bit 7 unused bit 4..6 Destination Node Address (DAD) bit 3 unused bit 2..0 Source Node Address (SAD) If node addresses are not used, SAD and DAD should be set to 0 on the first block sent to the card. If they are used they should have different values (0 for one is okay); that first block sets up the addresses of the nodes. PCB: Information Block (I-Block): bit 7 0 bit 6 Sequence number (yep, that is modulo 2) bit 5 Chaining flag bit 4..0 reserved Received-Ready Block (R-Block): bit 7 1 bit 6 0 bit 5 0 bit 4 Sequence number bit 3..0 0 = no error 1 = EDC or parity error 2 = other error other values are reserved Supervisory Block (S-Block): bit 7 1 bit 6 1 bit 5 clear=request,set=response - bit 4..0 0 = resyncronisation request + bit 4..0 0 = resynchronization request 1 = information field size request 2 = abort request 3 = extension of BWT request 4 = VPP error other values are reserved */ int ccid_transceive (ccid_driver_t handle, const unsigned char *apdu_buf, size_t apdu_buflen, unsigned char *resp, size_t maxresplen, size_t *nresp) { int rc; /* The size of the buffer used to be 10+259. For the via_escape hack we need one extra byte, thus 11+259. */ unsigned char send_buffer[11+259], recv_buffer[11+259]; const unsigned char *apdu; size_t apdulen; unsigned char *msg, *tpdu, *p; size_t msglen, tpdulen, last_tpdulen, n; unsigned char seqno; unsigned int edc; int use_crc = 0; int hdrlen, pcboff; size_t dummy_nresp; int via_escape = 0; int next_chunk = 1; int sending = 1; int retries = 0; int resyncing = 0; int nad_byte; int wait_more = 0; if (!nresp) nresp = &dummy_nresp; *nresp = 0; /* Smarter readers allow sending APDUs directly; divert here. */ if (handle->apdu_level) { /* We employ a hack for Omnikey readers which are able to send TPDUs using an escape sequence. There is no documentation but the Windows driver does it this way. Tested using a CM6121. This method works also for the Cherry XX44 keyboards; however there are problems with the ccid_transceive_secure which leads to a loss of sync on the CCID level. If Cherry wants to make their keyboard work again, they should hand over some docs. */ if ((handle->id_vendor == VENDOR_OMNIKEY) && handle->apdu_level < 2 && is_exlen_apdu (apdu_buf, apdu_buflen)) via_escape = 1; else return ccid_transceive_apdu_level (handle, apdu_buf, apdu_buflen, resp, maxresplen, nresp); } /* The other readers we support require sending TPDUs. */ tpdulen = 0; /* Avoid compiler warning about no initialization. */ msg = send_buffer; hdrlen = via_escape? 11 : 10; /* NAD: DAD=1, SAD=0 */ nad_byte = handle->nonnull_nad? ((1 << 4) | 0): 0; if (via_escape) nad_byte = 0; last_tpdulen = 0; /* Avoid gcc warning (controlled by RESYNCING). */ for (;;) { if (next_chunk) { next_chunk = 0; apdu = apdu_buf; apdulen = apdu_buflen; assert (apdulen); /* Construct an I-Block. */ tpdu = msg + hdrlen; tpdu[0] = nad_byte; tpdu[1] = ((handle->t1_ns & 1) << 6); /* I-block */ if (apdulen > handle->ifsc ) { apdulen = handle->ifsc; apdu_buf += handle->ifsc; apdu_buflen -= handle->ifsc; tpdu[1] |= (1 << 5); /* Set more bit. */ } tpdu[2] = apdulen; memcpy (tpdu+3, apdu, apdulen); tpdulen = 3 + apdulen; edc = compute_edc (tpdu, tpdulen, use_crc); if (use_crc) tpdu[tpdulen++] = (edc >> 8); tpdu[tpdulen++] = edc; } if (via_escape) { msg[0] = PC_to_RDR_Escape; msg[5] = 0; /* slot */ msg[6] = seqno = handle->seqno++; msg[7] = 0; /* RFU */ msg[8] = 0; /* RFU */ msg[9] = 0; /* RFU */ msg[10] = 0x1a; /* Omnikey command to send a TPDU. */ set_msg_len (msg, 1 + tpdulen); } else { msg[0] = PC_to_RDR_XfrBlock; msg[5] = 0; /* slot */ msg[6] = seqno = handle->seqno++; msg[7] = (wait_more ? wait_more : 1); /* bBWI */ msg[8] = 0; /* RFU */ msg[9] = 0; /* RFU */ set_msg_len (msg, tpdulen); } msglen = hdrlen + tpdulen; if (!resyncing) last_tpdulen = tpdulen; pcboff = hdrlen+1; if (debug_level > 1) DEBUGOUT_3 ("T=1: put %c-block seq=%d%s\n", ((msg[pcboff] & 0xc0) == 0x80)? 'R' : (msg[pcboff] & 0x80)? 'S' : 'I', ((msg[pcboff] & 0x80)? !!(msg[pcboff]& 0x10) : !!(msg[pcboff] & 0x40)), (!(msg[pcboff] & 0x80) && (msg[pcboff] & 0x20)? " [more]":"")); rc = bulk_out (handle, msg, msglen, 0); if (rc) return rc; msg = recv_buffer; rc = bulk_in (handle, msg, sizeof recv_buffer, &msglen, via_escape? RDR_to_PC_Escape : RDR_to_PC_DataBlock, seqno, (wait_more ? wait_more : 1) * CCID_CMD_TIMEOUT, 0); if (rc) return rc; tpdu = msg + hdrlen; tpdulen = msglen - hdrlen; resyncing = 0; if (tpdulen < 4) { #ifdef USE_NPTH npth_unprotect (); #endif libusb_clear_halt (handle->idev, handle->ep_bulk_in); #ifdef USE_NPTH npth_protect (); #endif return CCID_DRIVER_ERR_ABORTED; } if (debug_level > 1) DEBUGOUT_4 ("T=1: got %c-block seq=%d err=%d%s\n", ((msg[pcboff] & 0xc0) == 0x80)? 'R' : (msg[pcboff] & 0x80)? 'S' : 'I', ((msg[pcboff] & 0x80)? !!(msg[pcboff]& 0x10) : !!(msg[pcboff] & 0x40)), ((msg[pcboff] & 0xc0) == 0x80)? (msg[pcboff] & 0x0f) : 0, (!(msg[pcboff] & 0x80) && (msg[pcboff] & 0x20)? " [more]":"")); wait_more = 0; if (!(tpdu[1] & 0x80)) { /* This is an I-block. */ retries = 0; if (sending) { /* last block sent was successful. */ handle->t1_ns ^= 1; sending = 0; } if (!!(tpdu[1] & 0x40) != handle->t1_nr) { /* Response does not match our sequence number. */ msg = send_buffer; tpdu = msg + hdrlen; tpdu[0] = nad_byte; tpdu[1] = (0x80 | (handle->t1_nr & 1) << 4 | 2); /* R-block */ tpdu[2] = 0; tpdulen = 3; edc = compute_edc (tpdu, tpdulen, use_crc); if (use_crc) tpdu[tpdulen++] = (edc >> 8); tpdu[tpdulen++] = edc; continue; } handle->t1_nr ^= 1; p = tpdu + 3; /* Skip the prologue field. */ n = tpdulen - 3 - 1; /* Strip the epilogue field. */ /* fixme: verify the checksum. */ if (resp) { if (n > maxresplen) { DEBUGOUT_2 ("provided buffer too short for received data " "(%u/%u)\n", (unsigned int)n, (unsigned int)maxresplen); return CCID_DRIVER_ERR_INV_VALUE; } memcpy (resp, p, n); resp += n; *nresp += n; maxresplen -= n; } if (!(tpdu[1] & 0x20)) return 0; /* No chaining requested - ready. */ msg = send_buffer; tpdu = msg + hdrlen; tpdu[0] = nad_byte; tpdu[1] = (0x80 | (handle->t1_nr & 1) << 4); /* R-block */ tpdu[2] = 0; tpdulen = 3; edc = compute_edc (tpdu, tpdulen, use_crc); if (use_crc) tpdu[tpdulen++] = (edc >> 8); tpdu[tpdulen++] = edc; } else if ((tpdu[1] & 0xc0) == 0x80) { /* This is a R-block. */ if ( (tpdu[1] & 0x0f)) { retries++; if (via_escape && retries == 1 && (msg[pcboff] & 0x0f)) { /* Error probably due to switching to TPDU. Send a resync request. We use the recv_buffer so that we don't corrupt the send_buffer. */ msg = recv_buffer; tpdu = msg + hdrlen; tpdu[0] = nad_byte; tpdu[1] = 0xc0; /* S-block resync request. */ tpdu[2] = 0; tpdulen = 3; edc = compute_edc (tpdu, tpdulen, use_crc); if (use_crc) tpdu[tpdulen++] = (edc >> 8); tpdu[tpdulen++] = edc; resyncing = 1; DEBUGOUT ("T=1: requesting resync\n"); } else if (retries > 3) { DEBUGOUT ("T=1: 3 failed retries\n"); return CCID_DRIVER_ERR_CARD_IO_ERROR; } else { /* Error: repeat last block */ msg = send_buffer; tpdulen = last_tpdulen; } } else if (sending && !!(tpdu[1] & 0x10) == handle->t1_ns) { /* Response does not match our sequence number. */ DEBUGOUT ("R-block with wrong seqno received on more bit\n"); return CCID_DRIVER_ERR_CARD_IO_ERROR; } else if (sending) { /* Send next chunk. */ retries = 0; msg = send_buffer; next_chunk = 1; handle->t1_ns ^= 1; } else { DEBUGOUT ("unexpected ACK R-block received\n"); return CCID_DRIVER_ERR_CARD_IO_ERROR; } } else { /* This is a S-block. */ retries = 0; DEBUGOUT_2 ("T=1: S-block %s received cmd=%d\n", (tpdu[1] & 0x20)? "response": "request", (tpdu[1] & 0x1f)); if ( !(tpdu[1] & 0x20) && (tpdu[1] & 0x1f) == 1 && tpdu[2] == 1) { /* Information field size request. */ unsigned char ifsc = tpdu[3]; if (ifsc < 16 || ifsc > 254) return CCID_DRIVER_ERR_CARD_IO_ERROR; msg = send_buffer; tpdu = msg + hdrlen; tpdu[0] = nad_byte; tpdu[1] = (0xc0 | 0x20 | 1); /* S-block response */ tpdu[2] = 1; tpdu[3] = ifsc; tpdulen = 4; edc = compute_edc (tpdu, tpdulen, use_crc); if (use_crc) tpdu[tpdulen++] = (edc >> 8); tpdu[tpdulen++] = edc; DEBUGOUT_1 ("T=1: requesting an ifsc=%d\n", ifsc); } else if ( !(tpdu[1] & 0x20) && (tpdu[1] & 0x1f) == 3 && tpdu[2]) { /* Wait time extension request. */ unsigned char bwi = tpdu[3]; wait_more = bwi; msg = send_buffer; tpdu = msg + hdrlen; tpdu[0] = nad_byte; tpdu[1] = (0xc0 | 0x20 | 3); /* S-block response */ tpdu[2] = 1; tpdu[3] = bwi; tpdulen = 4; edc = compute_edc (tpdu, tpdulen, use_crc); if (use_crc) tpdu[tpdulen++] = (edc >> 8); tpdu[tpdulen++] = edc; DEBUGOUT_1 ("T=1: waittime extension of bwi=%d\n", bwi); print_progress (handle); } else if ( (tpdu[1] & 0x20) && (tpdu[1] & 0x1f) == 0 && !tpdu[2]) { DEBUGOUT ("T=1: resync ack from reader\n"); /* Repeat previous block. */ msg = send_buffer; tpdulen = last_tpdulen; } else return CCID_DRIVER_ERR_CARD_IO_ERROR; } } /* end T=1 protocol loop. */ return 0; } /* Send the CCID Secure command to the reader. APDU_BUF should contain the APDU template. PIN_MODE defines how the pin gets formatted: 1 := The PIN is ASCII encoded and of variable length. The length of the PIN entered will be put into Lc by the reader. The APDU should me made up of 4 bytes without Lc. PINLEN_MIN and PINLEN_MAX define the limits for the pin length. 0 may be used t enable reasonable defaults. When called with RESP and NRESP set to NULL, the function will merely check whether the reader supports the secure command for the given APDU and PIN_MODE. */ int ccid_transceive_secure (ccid_driver_t handle, const unsigned char *apdu_buf, size_t apdu_buflen, pininfo_t *pininfo, unsigned char *resp, size_t maxresplen, size_t *nresp) { int rc; unsigned char send_buffer[10+259], recv_buffer[10+259]; unsigned char *msg, *tpdu, *p; size_t msglen, tpdulen, n; unsigned char seqno; size_t dummy_nresp; int testmode; int cherry_mode = 0; int add_zero = 0; int enable_varlen = 0; testmode = !resp && !nresp; if (!nresp) nresp = &dummy_nresp; *nresp = 0; if (apdu_buflen >= 4 && apdu_buf[1] == 0x20 && (handle->has_pinpad & 1)) ; else if (apdu_buflen >= 4 && apdu_buf[1] == 0x24 && (handle->has_pinpad & 2)) ; else return CCID_DRIVER_ERR_NO_PINPAD; if (!pininfo->minlen) pininfo->minlen = 1; if (!pininfo->maxlen) pininfo->maxlen = 15; /* Note that the 25 is the maximum value the SPR532 allows. */ if (pininfo->minlen < 1 || pininfo->minlen > 25 || pininfo->maxlen < 1 || pininfo->maxlen > 25 || pininfo->minlen > pininfo->maxlen) return CCID_DRIVER_ERR_INV_VALUE; /* We have only tested a few readers so better don't risk anything and do not allow the use with other readers. */ switch (handle->id_vendor) { case VENDOR_SCM: /* Tested with SPR 532. */ case VENDOR_KAAN: /* Tested with KAAN Advanced (1.02). */ case VENDOR_FSIJ: /* Tested with Gnuk (0.21). */ pininfo->maxlen = 25; enable_varlen = 1; break; case VENDOR_REINER:/* Tested with cyberJack go */ case VENDOR_VASCO: /* Tested with DIGIPASS 920 */ enable_varlen = 1; break; case VENDOR_CHERRY: pininfo->maxlen = 15; enable_varlen = 1; /* The CHERRY XX44 keyboard echos an asterisk for each entered character on the keyboard channel. We use a special variant of PC_to_RDR_Secure which directs these characters to the smart card's bulk-in channel. We also need to append a zero Lc byte to the APDU. It seems that it will be replaced with the actual length instead of being appended before the APDU is send to the card. */ add_zero = 1; if (handle->id_product != CHERRY_ST2000) cherry_mode = 1; break; case VENDOR_NXP: if (handle->id_product == CRYPTOUCAN){ pininfo->maxlen = 25; enable_varlen = 1; } break; default: if ((handle->id_vendor == VENDOR_GEMPC && handle->id_product == GEMPC_PINPAD) || (handle->id_vendor == VENDOR_VEGA && handle->id_product == VEGA_ALPHA)) { enable_varlen = 0; pininfo->minlen = 4; pininfo->maxlen = 8; break; } return CCID_DRIVER_ERR_NOT_SUPPORTED; } if (enable_varlen) pininfo->fixedlen = 0; if (testmode) return 0; /* Success */ if (pininfo->fixedlen < 0 || pininfo->fixedlen >= 16) return CCID_DRIVER_ERR_NOT_SUPPORTED; msg = send_buffer; if (handle->id_vendor == VENDOR_SCM) { DEBUGOUT ("sending escape sequence to switch to a case 1 APDU\n"); rc = send_escape_cmd (handle, (const unsigned char*)"\x80\x02\x00", 3, NULL, 0, NULL); if (rc) return rc; } msg[0] = cherry_mode? 0x89 : PC_to_RDR_Secure; msg[5] = 0; /* slot */ msg[6] = seqno = handle->seqno++; msg[7] = 0; /* bBWI */ msg[8] = 0; /* RFU */ msg[9] = 0; /* RFU */ msg[10] = apdu_buf[1] == 0x20 ? 0 : 1; /* Perform PIN verification or PIN modification. */ msg[11] = 0; /* Timeout in seconds. */ msg[12] = 0x82; /* bmFormatString: Byte, pos=0, left, ASCII. */ if (handle->id_vendor == VENDOR_SCM) { /* For the SPR532 the next 2 bytes need to be zero. We do this for all SCM products. Kudos to Martin Paljak for this hint. */ msg[13] = msg[14] = 0; } else { msg[13] = pininfo->fixedlen; /* bmPINBlockString: 0 bits of pin length to insert. PIN block size by fixedlen. */ msg[14] = 0x00; /* bmPINLengthFormat: Units are bytes, position is 0. */ } msglen = 15; if (apdu_buf[1] == 0x24) { msg[msglen++] = 0; /* bInsertionOffsetOld */ msg[msglen++] = pininfo->fixedlen; /* bInsertionOffsetNew */ } /* The following is a little endian word. */ msg[msglen++] = pininfo->maxlen; /* wPINMaxExtraDigit-Maximum. */ msg[msglen++] = pininfo->minlen; /* wPINMaxExtraDigit-Minimum. */ if (apdu_buf[1] == 0x24) msg[msglen++] = apdu_buf[2] == 0 ? 0x03 : 0x01; /* bConfirmPIN * 0x00: new PIN once * 0x01: new PIN twice (confirmation) * 0x02: old PIN and new PIN once * 0x03: old PIN and new PIN twice (confirmation) */ msg[msglen] = 0x02; /* bEntryValidationCondition: Validation key pressed */ if (pininfo->minlen && pininfo->maxlen && pininfo->minlen == pininfo->maxlen) msg[msglen] |= 0x01; /* Max size reached. */ msglen++; if (apdu_buf[1] == 0x20) msg[msglen++] = 0x01; /* bNumberMessage. */ else msg[msglen++] = 0x03; /* bNumberMessage. */ msg[msglen++] = 0x09; /* wLangId-Low: English FIXME: use the first entry. */ msg[msglen++] = 0x04; /* wLangId-High. */ if (apdu_buf[1] == 0x20) msg[msglen++] = 0; /* bMsgIndex. */ else { msg[msglen++] = 0; /* bMsgIndex1. */ msg[msglen++] = 1; /* bMsgIndex2. */ msg[msglen++] = 2; /* bMsgIndex3. */ } /* Calculate Lc. */ n = pininfo->fixedlen; if (apdu_buf[1] == 0x24) n += pininfo->fixedlen; /* bTeoProlog follows: */ msg[msglen++] = handle->nonnull_nad? ((1 << 4) | 0): 0; msg[msglen++] = ((handle->t1_ns & 1) << 6); /* I-block */ if (n) msg[msglen++] = n + 5; /* apdulen should be filled for fixed length. */ else msg[msglen++] = 0; /* The apdulen will be filled in by the reader. */ /* APDU follows: */ msg[msglen++] = apdu_buf[0]; /* CLA */ msg[msglen++] = apdu_buf[1]; /* INS */ msg[msglen++] = apdu_buf[2]; /* P1 */ msg[msglen++] = apdu_buf[3]; /* P2 */ if (add_zero) msg[msglen++] = 0; else if (pininfo->fixedlen != 0) { msg[msglen++] = n; memset (&msg[msglen], 0xff, n); msglen += n; } /* An EDC is not required. */ set_msg_len (msg, msglen - 10); rc = bulk_out (handle, msg, msglen, 0); if (rc) return rc; msg = recv_buffer; rc = bulk_in (handle, msg, sizeof recv_buffer, &msglen, RDR_to_PC_DataBlock, seqno, 30000, 0); if (rc) return rc; tpdu = msg + 10; tpdulen = msglen - 10; if (handle->apdu_level) { if (resp) { if (tpdulen > maxresplen) { DEBUGOUT_2 ("provided buffer too short for received data " "(%u/%u)\n", (unsigned int)tpdulen, (unsigned int)maxresplen); return CCID_DRIVER_ERR_INV_VALUE; } memcpy (resp, tpdu, tpdulen); *nresp = tpdulen; } return 0; } if (tpdulen < 4) { #ifdef USE_NPTH npth_unprotect (); #endif libusb_clear_halt (handle->idev, handle->ep_bulk_in); #ifdef USE_NPTH npth_protect (); #endif return CCID_DRIVER_ERR_ABORTED; } if (debug_level > 1) DEBUGOUT_4 ("T=1: got %c-block seq=%d err=%d%s\n", ((msg[11] & 0xc0) == 0x80)? 'R' : (msg[11] & 0x80)? 'S' : 'I', ((msg[11] & 0x80)? !!(msg[11]& 0x10) : !!(msg[11] & 0x40)), ((msg[11] & 0xc0) == 0x80)? (msg[11] & 0x0f) : 0, (!(msg[11] & 0x80) && (msg[11] & 0x20)? " [more]":"")); if (!(tpdu[1] & 0x80)) { /* This is an I-block. */ /* Last block sent was successful. */ handle->t1_ns ^= 1; if (!!(tpdu[1] & 0x40) != handle->t1_nr) { /* Response does not match our sequence number. */ DEBUGOUT ("I-block with wrong seqno received\n"); return CCID_DRIVER_ERR_CARD_IO_ERROR; } handle->t1_nr ^= 1; p = tpdu + 3; /* Skip the prologue field. */ n = tpdulen - 3 - 1; /* Strip the epilogue field. */ /* fixme: verify the checksum. */ if (resp) { if (n > maxresplen) { DEBUGOUT_2 ("provided buffer too short for received data " "(%u/%u)\n", (unsigned int)n, (unsigned int)maxresplen); return CCID_DRIVER_ERR_INV_VALUE; } memcpy (resp, p, n); *nresp += n; } if (!(tpdu[1] & 0x20)) return 0; /* No chaining requested - ready. */ DEBUGOUT ("chaining requested but not supported for Secure operation\n"); return CCID_DRIVER_ERR_CARD_IO_ERROR; } else if ((tpdu[1] & 0xc0) == 0x80) { /* This is a R-block. */ if ( (tpdu[1] & 0x0f)) { /* Error: repeat last block */ DEBUGOUT ("No retries supported for Secure operation\n"); return CCID_DRIVER_ERR_CARD_IO_ERROR; } else if (!!(tpdu[1] & 0x10) == handle->t1_ns) { /* Response does not match our sequence number. */ DEBUGOUT ("R-block with wrong seqno received on more bit\n"); return CCID_DRIVER_ERR_CARD_IO_ERROR; } else { /* Send next chunk. */ DEBUGOUT ("chaining not supported on Secure operation\n"); return CCID_DRIVER_ERR_CARD_IO_ERROR; } } else { /* This is a S-block. */ DEBUGOUT_2 ("T=1: S-block %s received cmd=%d for Secure operation\n", (tpdu[1] & 0x20)? "response": "request", (tpdu[1] & 0x1f)); return CCID_DRIVER_ERR_CARD_IO_ERROR; } return 0; } #ifdef TEST static void print_error (int err) { const char *p; char buf[50]; switch (err) { case 0: p = "success"; case CCID_DRIVER_ERR_OUT_OF_CORE: p = "out of core"; break; case CCID_DRIVER_ERR_INV_VALUE: p = "invalid value"; break; case CCID_DRIVER_ERR_NO_DRIVER: p = "no driver"; break; case CCID_DRIVER_ERR_NOT_SUPPORTED: p = "not supported"; break; case CCID_DRIVER_ERR_LOCKING_FAILED: p = "locking failed"; break; case CCID_DRIVER_ERR_BUSY: p = "busy"; break; case CCID_DRIVER_ERR_NO_CARD: p = "no card"; break; case CCID_DRIVER_ERR_CARD_INACTIVE: p = "card inactive"; break; case CCID_DRIVER_ERR_CARD_IO_ERROR: p = "card I/O error"; break; case CCID_DRIVER_ERR_GENERAL_ERROR: p = "general error"; break; case CCID_DRIVER_ERR_NO_READER: p = "no reader"; break; case CCID_DRIVER_ERR_ABORTED: p = "aborted"; break; default: sprintf (buf, "0x%05x", err); p = buf; break; } fprintf (stderr, "operation failed: %s\n", p); } static void print_data (const unsigned char *data, size_t length) { if (length >= 2) { fprintf (stderr, "operation status: %02X%02X\n", data[length-2], data[length-1]); length -= 2; } if (length) { fputs (" returned data:", stderr); for (; length; length--, data++) fprintf (stderr, " %02X", *data); putc ('\n', stderr); } } static void print_result (int rc, const unsigned char *data, size_t length) { if (rc) print_error (rc); else if (data) print_data (data, length); } int main (int argc, char **argv) { int rc; ccid_driver_t ccid; int slotstat; unsigned char result[512]; size_t resultlen; int no_pinpad = 0; int verify_123456 = 0; int did_verify = 0; int no_poll = 0; if (argc) { argc--; argv++; } while (argc) { if ( !strcmp (*argv, "--list")) { char *p; p = ccid_get_reader_list (); if (!p) return 1; fputs (p, stderr); free (p); return 0; } else if ( !strcmp (*argv, "--debug")) { ccid_set_debug_level (ccid_set_debug_level (-1)+1); argc--; argv++; } else if ( !strcmp (*argv, "--no-poll")) { no_poll = 1; argc--; argv++; } else if ( !strcmp (*argv, "--no-pinpad")) { no_pinpad = 1; argc--; argv++; } else if ( !strcmp (*argv, "--verify-123456")) { verify_123456 = 1; argc--; argv++; } else break; } rc = ccid_open_reader (&ccid, argc? *argv:NULL, NULL); if (rc) return 1; if (!no_poll) ccid_poll (ccid); fputs ("getting ATR ...\n", stderr); rc = ccid_get_atr (ccid, NULL, 0, NULL); if (rc) { print_error (rc); return 1; } if (!no_poll) ccid_poll (ccid); fputs ("getting slot status ...\n", stderr); rc = ccid_slot_status (ccid, &slotstat, 1); if (rc) { print_error (rc); return 1; } if (!no_poll) ccid_poll (ccid); fputs ("selecting application OpenPGP ....\n", stderr); { static unsigned char apdu[] = { 0, 0xA4, 4, 0, 6, 0xD2, 0x76, 0x00, 0x01, 0x24, 0x01}; rc = ccid_transceive (ccid, apdu, sizeof apdu, result, sizeof result, &resultlen); print_result (rc, result, resultlen); } if (!no_poll) ccid_poll (ccid); fputs ("getting OpenPGP DO 0x65 ....\n", stderr); { static unsigned char apdu[] = { 0, 0xCA, 0, 0x65, 254 }; rc = ccid_transceive (ccid, apdu, sizeof apdu, result, sizeof result, &resultlen); print_result (rc, result, resultlen); } if (!no_pinpad) { } if (!no_pinpad) { static unsigned char apdu[] = { 0, 0x20, 0, 0x81 }; if (ccid_transceive_secure (ccid, apdu, sizeof apdu, 1, 0, 0, 0, NULL, 0, NULL)) fputs ("can't verify using a PIN-Pad reader\n", stderr); else { fputs ("verifying CHV1 using the PINPad ....\n", stderr); rc = ccid_transceive_secure (ccid, apdu, sizeof apdu, 1, 0, 0, 0, result, sizeof result, &resultlen); print_result (rc, result, resultlen); did_verify = 1; } } if (verify_123456 && !did_verify) { fputs ("verifying that CHV1 is 123456....\n", stderr); { static unsigned char apdu[] = {0, 0x20, 0, 0x81, 6, '1','2','3','4','5','6'}; rc = ccid_transceive (ccid, apdu, sizeof apdu, result, sizeof result, &resultlen); print_result (rc, result, resultlen); } } if (!rc) { fputs ("getting OpenPGP DO 0x5E ....\n", stderr); { static unsigned char apdu[] = { 0, 0xCA, 0, 0x5E, 254 }; rc = ccid_transceive (ccid, apdu, sizeof apdu, result, sizeof result, &resultlen); print_result (rc, result, resultlen); } } ccid_close_reader (ccid); return 0; } /* * Local Variables: * compile-command: "gcc -DTEST -Wall -I/usr/local/include -lusb -g ccid-driver.c" * End: */ #endif /*TEST*/ #endif /*HAVE_LIBUSB*/