diff --git a/g10/build-packet.c b/g10/build-packet.c index 4bfc2ac10..1353a863c 100644 --- a/g10/build-packet.c +++ b/g10/build-packet.c @@ -1,1677 +1,1677 @@ /* build-packet.c - assemble packets and write them * Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, * 2006, 2010, 2011 Free Software Foundation, Inc. * * This file is part of GnuPG. * * GnuPG is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * GnuPG is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #include #include #include #include #include #include "gpg.h" #include "util.h" #include "packet.h" #include "status.h" #include "iobuf.h" #include "i18n.h" #include "options.h" #include "host2net.h" static int do_user_id( IOBUF out, int ctb, PKT_user_id *uid ); static int do_key (iobuf_t out, int ctb, PKT_public_key *pk); static int do_symkey_enc( IOBUF out, int ctb, PKT_symkey_enc *enc ); static int do_pubkey_enc( IOBUF out, int ctb, PKT_pubkey_enc *enc ); static u32 calc_plaintext( PKT_plaintext *pt ); static int do_plaintext( IOBUF out, int ctb, PKT_plaintext *pt ); static int do_encrypted( IOBUF out, int ctb, PKT_encrypted *ed ); static int do_encrypted_mdc( IOBUF out, int ctb, PKT_encrypted *ed ); static int do_compressed( IOBUF out, int ctb, PKT_compressed *cd ); static int do_signature( IOBUF out, int ctb, PKT_signature *sig ); static int do_onepass_sig( IOBUF out, int ctb, PKT_onepass_sig *ops ); static int calc_header_length( u32 len, int new_ctb ); static int write_16(IOBUF inp, u16 a); static int write_32(IOBUF inp, u32 a); static int write_header( IOBUF out, int ctb, u32 len ); static int write_sign_packet_header( IOBUF out, int ctb, u32 len ); static int write_header2( IOBUF out, int ctb, u32 len, int hdrlen ); static int write_new_header( IOBUF out, int ctb, u32 len, int hdrlen ); /* Returns 1 if CTB is a new format ctb and 0 if CTB is an old format ctb. */ static int ctb_new_format_p (int ctb) { /* Bit 7 must always be set. */ log_assert ((ctb & (1 << 7))); /* Bit 6 indicates whether the packet is a new format packet. */ return (ctb & (1 << 6)); } /* Extract the packet type from a CTB. */ static int ctb_pkttype (int ctb) { if (ctb_new_format_p (ctb)) /* Bits 0 through 5 are the packet type. */ return (ctb & ((1 << 6) - 1)); else /* Bits 2 through 5 are the packet type. */ return (ctb & ((1 << 6) - 1)) >> 2; } /**************** * Build a packet and write it to INP * Returns: 0 := okay * >0 := error * Note: Caller must free the packet */ int build_packet( IOBUF out, PACKET *pkt ) { int new_ctb=0, rc=0, ctb; int pkttype; if( DBG_PACKET ) log_debug("build_packet() type=%d\n", pkt->pkttype ); log_assert( pkt->pkt.generic ); switch ((pkttype = pkt->pkttype)) { case PKT_PUBLIC_KEY: if (pkt->pkt.public_key->seckey_info) pkttype = PKT_SECRET_KEY; break; case PKT_PUBLIC_SUBKEY: if (pkt->pkt.public_key->seckey_info) pkttype = PKT_SECRET_SUBKEY; break; case PKT_PLAINTEXT: new_ctb = pkt->pkt.plaintext->new_ctb; break; case PKT_ENCRYPTED: case PKT_ENCRYPTED_MDC: new_ctb = pkt->pkt.encrypted->new_ctb; break; case PKT_COMPRESSED:new_ctb = pkt->pkt.compressed->new_ctb; break; case PKT_USER_ID: if( pkt->pkt.user_id->attrib_data ) pkttype = PKT_ATTRIBUTE; break; default: break; } if( new_ctb || pkttype > 15 ) /* new format */ ctb = 0xc0 | (pkttype & 0x3f); else ctb = 0x80 | ((pkttype & 15)<<2); switch( pkttype ) { case PKT_ATTRIBUTE: case PKT_USER_ID: rc = do_user_id( out, ctb, pkt->pkt.user_id ); break; case PKT_OLD_COMMENT: case PKT_COMMENT: /* Ignore these. Theoretically, this will never be called as we have no way to output comment packets any longer, but just in case there is some code path that would end up outputting a comment that was written before comments were dropped (in the public key?) this is a no-op. */ break; case PKT_PUBLIC_SUBKEY: case PKT_PUBLIC_KEY: case PKT_SECRET_SUBKEY: case PKT_SECRET_KEY: rc = do_key (out, ctb, pkt->pkt.public_key); break; case PKT_SYMKEY_ENC: rc = do_symkey_enc( out, ctb, pkt->pkt.symkey_enc ); break; case PKT_PUBKEY_ENC: rc = do_pubkey_enc( out, ctb, pkt->pkt.pubkey_enc ); break; case PKT_PLAINTEXT: rc = do_plaintext( out, ctb, pkt->pkt.plaintext ); break; case PKT_ENCRYPTED: rc = do_encrypted( out, ctb, pkt->pkt.encrypted ); break; case PKT_ENCRYPTED_MDC: rc = do_encrypted_mdc( out, ctb, pkt->pkt.encrypted ); break; case PKT_COMPRESSED: rc = do_compressed( out, ctb, pkt->pkt.compressed ); break; case PKT_SIGNATURE: rc = do_signature( out, ctb, pkt->pkt.signature ); break; case PKT_ONEPASS_SIG: rc = do_onepass_sig( out, ctb, pkt->pkt.onepass_sig ); break; case PKT_RING_TRUST: break; /* ignore it (keyring.c does write it directly)*/ case PKT_MDC: /* we write it directly, so we should never see it here. */ default: log_bug("invalid packet type in build_packet()\n"); break; } return rc; } /* * Write the mpi A to OUT. */ gpg_error_t gpg_mpi_write (iobuf_t out, gcry_mpi_t a) { int rc; if (gcry_mpi_get_flag (a, GCRYMPI_FLAG_OPAQUE)) { unsigned int nbits; const unsigned char *p; unsigned char lenhdr[2]; /* gcry_log_debugmpi ("a", a); */ p = gcry_mpi_get_opaque (a, &nbits); if (p) { /* Strip leading zero bits. */ for (; nbits >= 8 && !*p; p++, nbits -= 8) ; if (nbits >= 8 && !(*p & 0x80)) if (--nbits >= 7 && !(*p & 0x40)) if (--nbits >= 6 && !(*p & 0x20)) if (--nbits >= 5 && !(*p & 0x10)) if (--nbits >= 4 && !(*p & 0x08)) if (--nbits >= 3 && !(*p & 0x04)) if (--nbits >= 2 && !(*p & 0x02)) if (--nbits >= 1 && !(*p & 0x01)) --nbits; } /* gcry_log_debug (" [%u bit]\n", nbits); */ /* gcry_log_debughex (" ", p, (nbits+7)/8); */ lenhdr[0] = nbits >> 8; lenhdr[1] = nbits; rc = iobuf_write (out, lenhdr, 2); if (!rc && p) rc = iobuf_write (out, p, (nbits+7)/8); } else { char buffer[(MAX_EXTERN_MPI_BITS+7)/8+2]; /* 2 is for the mpi length. */ size_t nbytes; nbytes = DIM(buffer); rc = gcry_mpi_print (GCRYMPI_FMT_PGP, buffer, nbytes, &nbytes, a ); if( !rc ) rc = iobuf_write( out, buffer, nbytes ); else if (gpg_err_code(rc) == GPG_ERR_TOO_SHORT ) { log_info ("mpi too large (%u bits)\n", gcry_mpi_get_nbits (a)); /* The buffer was too small. We better tell the user about the MPI. */ rc = gpg_error (GPG_ERR_TOO_LARGE); } } return rc; } /* * Write an opaque MPI to the output stream without length info. */ gpg_error_t gpg_mpi_write_nohdr (iobuf_t out, gcry_mpi_t a) { int rc; if (gcry_mpi_get_flag (a, GCRYMPI_FLAG_OPAQUE)) { unsigned int nbits; const void *p; p = gcry_mpi_get_opaque (a, &nbits); rc = p ? iobuf_write (out, p, (nbits+7)/8) : 0; } else rc = gpg_error (GPG_ERR_BAD_MPI); return rc; } /* Calculate the length of a packet described by PKT. */ u32 calc_packet_length( PACKET *pkt ) { u32 n=0; int new_ctb = 0; log_assert (pkt->pkt.generic); switch( pkt->pkttype ) { case PKT_PLAINTEXT: n = calc_plaintext( pkt->pkt.plaintext ); new_ctb = pkt->pkt.plaintext->new_ctb; break; case PKT_ATTRIBUTE: case PKT_USER_ID: case PKT_COMMENT: case PKT_PUBLIC_KEY: case PKT_SECRET_KEY: case PKT_SYMKEY_ENC: case PKT_PUBKEY_ENC: case PKT_ENCRYPTED: case PKT_SIGNATURE: case PKT_ONEPASS_SIG: case PKT_RING_TRUST: case PKT_COMPRESSED: default: log_bug("invalid packet type in calc_packet_length()"); break; } n += calc_header_length(n, new_ctb); return n; } static gpg_error_t write_fake_data (IOBUF out, gcry_mpi_t a) { unsigned int n; void *p; if (!a) return 0; p = gcry_mpi_get_opaque ( a, &n); if (!p) return 0; /* For example due to a read error in parse-packet.c:read_rest. */ return iobuf_write (out, p, (n+7)/8 ); } /* Serialize the user id (RFC 4880, Section 5.11) or the user attribute UID (Section 5.12) and write it to OUT. CTB is the serialization's CTB. It specifies the header format and the packet's type. The header length must not be set. */ static int do_user_id( IOBUF out, int ctb, PKT_user_id *uid ) { int rc; log_assert (ctb_pkttype (ctb) == PKT_USER_ID || ctb_pkttype (ctb) == PKT_ATTRIBUTE); if (uid->attrib_data) { write_header(out, ctb, uid->attrib_len); rc = iobuf_write( out, uid->attrib_data, uid->attrib_len ); } else { - write_header2( out, ctb, uid->len, 2 ); + write_header2( out, ctb, uid->len, 0 ); rc = iobuf_write( out, uid->name, uid->len ); } return rc; } /* Serialize the key (RFC 4880, Section 5.5) described by PK and write it to OUT. This function serializes both primary keys and subkeys with or without a secret part. CTB is the serialization's CTB. It specifies the header format and the packet's type. The header length must not be set. PK->VERSION specifies the serialization format. A value of 0 means to use the default version. Currently, only version 4 packets are supported. */ static int do_key (iobuf_t out, int ctb, PKT_public_key *pk) { gpg_error_t err = 0; /* The length of the body is stored in the packet's header, which occurs before the body. Unfortunately, we don't know the length of the packet's body until we've written all of the data! To work around this, we first write the data into this temporary buffer, then generate the header, and finally copy the contents of this buffer to OUT. */ iobuf_t a = iobuf_temp(); int i, nskey, npkey; log_assert (pk->version == 0 || pk->version == 4); log_assert (ctb_pkttype (ctb) == PKT_PUBLIC_KEY || ctb_pkttype (ctb) == PKT_PUBLIC_SUBKEY || ctb_pkttype (ctb) == PKT_SECRET_KEY || ctb_pkttype (ctb) == PKT_SECRET_SUBKEY); /* Write the version number - if none is specified, use 4 */ if ( !pk->version ) iobuf_put ( a, 4 ); else iobuf_put ( a, pk->version ); write_32 (a, pk->timestamp ); iobuf_put (a, pk->pubkey_algo ); /* Get number of secret and public parameters. They are held in one array: the public ones followed by the secret ones. */ nskey = pubkey_get_nskey (pk->pubkey_algo); npkey = pubkey_get_npkey (pk->pubkey_algo); /* If we don't have any public parameters - which is for example the case if we don't know the algorithm used - the parameters are stored as one blob in a faked (opaque) MPI. */ if (!npkey) { write_fake_data (a, pk->pkey[0]); goto leave; } log_assert (npkey < nskey); for (i=0; i < npkey; i++ ) { if ( (pk->pubkey_algo == PUBKEY_ALGO_ECDSA && (i == 0)) || (pk->pubkey_algo == PUBKEY_ALGO_EDDSA && (i == 0)) || (pk->pubkey_algo == PUBKEY_ALGO_ECDH && (i == 0 || i == 2))) err = gpg_mpi_write_nohdr (a, pk->pkey[i]); else err = gpg_mpi_write (a, pk->pkey[i]); if (err) goto leave; } if (pk->seckey_info) { /* This is a secret key packet. */ struct seckey_info *ski = pk->seckey_info; /* Build the header for protected (encrypted) secret parameters. */ if (ski->is_protected) { /* OpenPGP protection according to rfc2440. */ iobuf_put (a, ski->sha1chk? 0xfe : 0xff); iobuf_put (a, ski->algo); if (ski->s2k.mode >= 1000) { /* These modes are not possible in OpenPGP, we use them to implement our extensions, 101 can be viewed as a private/experimental extension (this is not specified in rfc2440 but the same scheme is used for all other algorithm identifiers). */ iobuf_put (a, 101); iobuf_put (a, ski->s2k.hash_algo); iobuf_write (a, "GNU", 3 ); iobuf_put (a, ski->s2k.mode - 1000); } else { iobuf_put (a, ski->s2k.mode); iobuf_put (a, ski->s2k.hash_algo); } if (ski->s2k.mode == 1 || ski->s2k.mode == 3) iobuf_write (a, ski->s2k.salt, 8); if (ski->s2k.mode == 3) iobuf_put (a, ski->s2k.count); /* For our special modes 1001, 1002 we do not need an IV. */ if (ski->s2k.mode != 1001 && ski->s2k.mode != 1002) iobuf_write (a, ski->iv, ski->ivlen); } else /* Not protected. */ iobuf_put (a, 0 ); if (ski->s2k.mode == 1001) ; /* GnuPG extension - don't write a secret key at all. */ else if (ski->s2k.mode == 1002) { /* GnuPG extension - divert to OpenPGP smartcard. */ /* Length of the serial number or 0 for no serial number. */ iobuf_put (a, ski->ivlen ); /* The serial number gets stored in the IV field. */ iobuf_write (a, ski->iv, ski->ivlen); } else if (ski->is_protected) { /* The secret key is protected - write it out as it is. */ byte *p; unsigned int ndatabits; log_assert (gcry_mpi_get_flag (pk->pkey[npkey], GCRYMPI_FLAG_OPAQUE)); p = gcry_mpi_get_opaque (pk->pkey[npkey], &ndatabits); if (p) iobuf_write (a, p, (ndatabits+7)/8 ); } else { /* Non-protected key. */ for ( ; i < nskey; i++ ) if ( (err = gpg_mpi_write (a, pk->pkey[i]))) goto leave; write_16 (a, ski->csum ); } } leave: if (!err) { /* Build the header of the packet - which we must do after writing all the other stuff, so that we know the length of the packet */ write_header2 (out, ctb, iobuf_get_temp_length(a), 0); /* And finally write it out to the real stream. */ err = iobuf_write_temp (out, a); } iobuf_close (a); /* Close the temporary buffer */ return err; } /* Serialize the symmetric-key encrypted session key packet (RFC 4880, 5.3) described by ENC and write it to OUT. CTB is the serialization's CTB. It specifies the header format and the packet's type. The header length must not be set. */ static int do_symkey_enc( IOBUF out, int ctb, PKT_symkey_enc *enc ) { int rc = 0; IOBUF a = iobuf_temp(); log_assert (ctb_pkttype (ctb) == PKT_SYMKEY_ENC); /* The only acceptable version. */ log_assert( enc->version == 4 ); /* RFC 4880, Section 3.7. */ switch( enc->s2k.mode ) { /* Simple S2K. */ case 0: /* Salted S2K. */ case 1: /* Iterated and salted S2K. */ case 3: /* Reasonable values. */ break; default: log_bug("do_symkey_enc: s2k=%d\n", enc->s2k.mode ); } iobuf_put( a, enc->version ); iobuf_put( a, enc->cipher_algo ); iobuf_put( a, enc->s2k.mode ); iobuf_put( a, enc->s2k.hash_algo ); if( enc->s2k.mode == 1 || enc->s2k.mode == 3 ) { iobuf_write(a, enc->s2k.salt, 8 ); if( enc->s2k.mode == 3 ) iobuf_put(a, enc->s2k.count); } if( enc->seskeylen ) iobuf_write(a, enc->seskey, enc->seskeylen ); write_header(out, ctb, iobuf_get_temp_length(a) ); rc = iobuf_write_temp( out, a ); iobuf_close(a); return rc; } /* Serialize the public-key encrypted session key packet (RFC 4880, 5.1) described by ENC and write it to OUT. CTB is the serialization's CTB. It specifies the header format and the packet's type. The header length must not be set. */ static int do_pubkey_enc( IOBUF out, int ctb, PKT_pubkey_enc *enc ) { int rc = 0; int n, i; IOBUF a = iobuf_temp(); log_assert (ctb_pkttype (ctb) == PKT_PUBKEY_ENC); iobuf_put (a, 3); /* Version. */ if ( enc->throw_keyid ) { write_32(a, 0 ); /* Don't tell Eve who can decrypt the message. */ write_32(a, 0 ); } else { write_32(a, enc->keyid[0] ); write_32(a, enc->keyid[1] ); } iobuf_put(a,enc->pubkey_algo ); n = pubkey_get_nenc( enc->pubkey_algo ); if ( !n ) write_fake_data( a, enc->data[0] ); for (i=0; i < n && !rc ; i++ ) { if (enc->pubkey_algo == PUBKEY_ALGO_ECDH && i == 1) rc = gpg_mpi_write_nohdr (a, enc->data[i]); else rc = gpg_mpi_write (a, enc->data[i]); } if (!rc) { write_header (out, ctb, iobuf_get_temp_length(a) ); rc = iobuf_write_temp (out, a); } iobuf_close(a); return rc; } /* Calculate the length of the serialized plaintext packet PT (RFC 4480, Section 5.9). */ static u32 calc_plaintext( PKT_plaintext *pt ) { /* Truncate namelen to the maximum 255 characters. Note this means that a function that calls build_packet with an illegal literal packet will get it back legalized. */ if(pt->namelen>255) pt->namelen=255; return pt->len? (1 + 1 + pt->namelen + 4 + pt->len) : 0; } /* Serialize the plaintext packet (RFC 4880, 5.9) described by PT and write it to OUT. The body of the message is stored in PT->BUF. The amount of data to write is PT->LEN. (PT->BUF should be configured to return EOF after this much data has been read.) If PT->LEN is 0 and CTB indicates that this is a new format packet, then partial block mode is assumed to have been enabled on OUT. On success, partial block mode is disabled. If PT->BUF is NULL, the the caller must write out the data. In this case, if PT->LEN was 0, then partial body length mode was enabled and the caller must disable it by calling iobuf_set_partial_body_length_mode (out, 0). */ static int do_plaintext( IOBUF out, int ctb, PKT_plaintext *pt ) { int rc = 0; size_t nbytes; log_assert (ctb_pkttype (ctb) == PKT_PLAINTEXT); write_header(out, ctb, calc_plaintext( pt ) ); log_assert (pt->mode == 'b' || pt->mode == 't' || pt->mode == 'u' || pt->mode == 'l' || pt->mode == '1'); iobuf_put(out, pt->mode ); iobuf_put(out, pt->namelen ); iobuf_write (out, pt->name, pt->namelen); rc = write_32(out, pt->timestamp ); if (rc) return rc; if (pt->buf) { nbytes = iobuf_copy (out, pt->buf); if(ctb_new_format_p (ctb) && !pt->len) /* Turn off partial body length mode. */ iobuf_set_partial_body_length_mode (out, 0); if( pt->len && nbytes != pt->len ) log_error("do_plaintext(): wrote %lu bytes but expected %lu bytes\n", (ulong)nbytes, (ulong)pt->len ); } return rc; } /* Serialize the symmetrically encrypted data packet (RFC 4880, Section 5.7) described by ED and write it to OUT. Note: this only writes the packets header! The call must then follow up and write the initial random data and the body to OUT. (If you use the encryption iobuf filter (cipher_filter), then this is done automatically.) */ static int do_encrypted( IOBUF out, int ctb, PKT_encrypted *ed ) { int rc = 0; u32 n; log_assert (! ed->mdc_method); log_assert (ctb_pkttype (ctb) == PKT_ENCRYPTED); n = ed->len ? (ed->len + ed->extralen) : 0; write_header(out, ctb, n ); /* This is all. The caller has to write the real data */ return rc; } /* Serialize the symmetrically encrypted integrity protected data packet (RFC 4880, Section 5.13) described by ED and write it to OUT. Note: this only writes the packet's header! The caller must then follow up and write the initial random data, the body and the MDC packet to OUT. (If you use the encryption iobuf filter (cipher_filter), then this is done automatically.) */ static int do_encrypted_mdc( IOBUF out, int ctb, PKT_encrypted *ed ) { int rc = 0; u32 n; log_assert (ed->mdc_method); log_assert (ctb_pkttype (ctb) == PKT_ENCRYPTED_MDC); /* Take version number and the following MDC packet in account. */ n = ed->len ? (ed->len + ed->extralen + 1 + 22) : 0; write_header(out, ctb, n ); iobuf_put(out, 1 ); /* version */ /* This is all. The caller has to write the real data */ return rc; } /* Serialize the compressed packet (RFC 4880, Section 5.6) described by CD and write it to OUT. Note: this only writes the packet's header! The caller must then follow up and write the body to OUT. */ static int do_compressed( IOBUF out, int ctb, PKT_compressed *cd ) { int rc = 0; log_assert (ctb_pkttype (ctb) == PKT_COMPRESSED); /* We must use the old convention and don't use blockmode for the sake of PGP 2 compatibility. However if the new_ctb flag was set, CTB is already formatted as new style and write_header2 does create a partial length encoding using new the new style. */ write_header2(out, ctb, 0, 0); iobuf_put(out, cd->algorithm ); /* This is all. The caller has to write the real data */ return rc; } /**************** * Delete all subpackets of type REQTYPE and return a bool whether a packet * was deleted. */ int delete_sig_subpkt (subpktarea_t *area, sigsubpkttype_t reqtype ) { int buflen; sigsubpkttype_t type; byte *buffer, *bufstart; size_t n; size_t unused = 0; int okay = 0; if( !area ) return 0; buflen = area->len; buffer = area->data; for(;;) { if( !buflen ) { okay = 1; break; } bufstart = buffer; n = *buffer++; buflen--; if( n == 255 ) { if( buflen < 4 ) break; n = buf32_to_size_t (buffer); buffer += 4; buflen -= 4; } else if( n >= 192 ) { if( buflen < 2 ) break; n = (( n - 192 ) << 8) + *buffer + 192; buffer++; buflen--; } if( buflen < n ) break; type = *buffer & 0x7f; if( type == reqtype ) { buffer++; buflen--; n--; if( n > buflen ) break; buffer += n; /* point to next subpkt */ buflen -= n; memmove (bufstart, buffer, buflen); /* shift */ unused += buffer - bufstart; buffer = bufstart; } else { buffer += n; buflen -=n; } } if (!okay) log_error ("delete_subpkt: buffer shorter than subpacket\n"); log_assert (unused <= area->len); area->len -= unused; return !!unused; } /**************** * Create or update a signature subpacket for SIG of TYPE. This * functions knows where to put the data (hashed or unhashed). The * function may move data from the unhashed part to the hashed one. * Note: All pointers into sig->[un]hashed (e.g. returned by * parse_sig_subpkt) are not valid after a call to this function. The * data to put into the subpaket should be in a buffer with a length * of buflen. */ void build_sig_subpkt (PKT_signature *sig, sigsubpkttype_t type, const byte *buffer, size_t buflen ) { byte *p; int critical, hashed; subpktarea_t *oldarea, *newarea; size_t nlen, n, n0; critical = (type & SIGSUBPKT_FLAG_CRITICAL); type &= ~SIGSUBPKT_FLAG_CRITICAL; /* Sanity check buffer sizes */ if(parse_one_sig_subpkt(buffer,buflen,type)<0) BUG(); switch(type) { case SIGSUBPKT_NOTATION: case SIGSUBPKT_POLICY: case SIGSUBPKT_REV_KEY: case SIGSUBPKT_SIGNATURE: /* we do allow multiple subpackets */ break; default: /* we don't allow multiple subpackets */ delete_sig_subpkt(sig->hashed,type); delete_sig_subpkt(sig->unhashed,type); break; } /* Any special magic that needs to be done for this type so the packet doesn't need to be reparsed? */ switch(type) { case SIGSUBPKT_NOTATION: sig->flags.notation=1; break; case SIGSUBPKT_POLICY: sig->flags.policy_url=1; break; case SIGSUBPKT_PREF_KS: sig->flags.pref_ks=1; break; case SIGSUBPKT_EXPORTABLE: if(buffer[0]) sig->flags.exportable=1; else sig->flags.exportable=0; break; case SIGSUBPKT_REVOCABLE: if(buffer[0]) sig->flags.revocable=1; else sig->flags.revocable=0; break; case SIGSUBPKT_TRUST: sig->trust_depth=buffer[0]; sig->trust_value=buffer[1]; break; case SIGSUBPKT_REGEXP: sig->trust_regexp=buffer; break; /* This should never happen since we don't currently allow creating such a subpacket, but just in case... */ case SIGSUBPKT_SIG_EXPIRE: if(buf32_to_u32(buffer)+sig->timestamp<=make_timestamp()) sig->flags.expired=1; else sig->flags.expired=0; break; default: break; } if( (buflen+1) >= 8384 ) nlen = 5; /* write 5 byte length header */ else if( (buflen+1) >= 192 ) nlen = 2; /* write 2 byte length header */ else nlen = 1; /* just a 1 byte length header */ switch( type ) { /* The issuer being unhashed is a historical oddity. It should work equally as well hashed. Of course, if even an unhashed issuer is tampered with, it makes it awfully hard to verify the sig... */ case SIGSUBPKT_ISSUER: case SIGSUBPKT_SIGNATURE: hashed = 0; break; default: hashed = 1; break; } if( critical ) type |= SIGSUBPKT_FLAG_CRITICAL; oldarea = hashed? sig->hashed : sig->unhashed; /* Calculate new size of the area and allocate */ n0 = oldarea? oldarea->len : 0; n = n0 + nlen + 1 + buflen; /* length, type, buffer */ if (oldarea && n <= oldarea->size) { /* fits into the unused space */ newarea = oldarea; /*log_debug ("updating area for type %d\n", type );*/ } else if (oldarea) { newarea = xrealloc (oldarea, sizeof (*newarea) + n - 1); newarea->size = n; /*log_debug ("reallocating area for type %d\n", type );*/ } else { newarea = xmalloc (sizeof (*newarea) + n - 1); newarea->size = n; /*log_debug ("allocating area for type %d\n", type );*/ } newarea->len = n; p = newarea->data + n0; if (nlen == 5) { *p++ = 255; *p++ = (buflen+1) >> 24; *p++ = (buflen+1) >> 16; *p++ = (buflen+1) >> 8; *p++ = (buflen+1); *p++ = type; memcpy (p, buffer, buflen); } else if (nlen == 2) { *p++ = (buflen+1-192) / 256 + 192; *p++ = (buflen+1-192) % 256; *p++ = type; memcpy (p, buffer, buflen); } else { *p++ = buflen+1; *p++ = type; memcpy (p, buffer, buflen); } if (hashed) sig->hashed = newarea; else sig->unhashed = newarea; } /**************** * Put all the required stuff from SIG into subpackets of sig. * Hmmm, should we delete those subpackets which are in a wrong area? */ void build_sig_subpkt_from_sig( PKT_signature *sig ) { u32 u; byte buf[8]; u = sig->keyid[0]; buf[0] = (u >> 24) & 0xff; buf[1] = (u >> 16) & 0xff; buf[2] = (u >> 8) & 0xff; buf[3] = u & 0xff; u = sig->keyid[1]; buf[4] = (u >> 24) & 0xff; buf[5] = (u >> 16) & 0xff; buf[6] = (u >> 8) & 0xff; buf[7] = u & 0xff; build_sig_subpkt( sig, SIGSUBPKT_ISSUER, buf, 8 ); u = sig->timestamp; buf[0] = (u >> 24) & 0xff; buf[1] = (u >> 16) & 0xff; buf[2] = (u >> 8) & 0xff; buf[3] = u & 0xff; build_sig_subpkt( sig, SIGSUBPKT_SIG_CREATED, buf, 4 ); if(sig->expiredate) { if(sig->expiredate>sig->timestamp) u=sig->expiredate-sig->timestamp; else u=1; /* A 1-second expiration time is the shortest one OpenPGP has */ buf[0] = (u >> 24) & 0xff; buf[1] = (u >> 16) & 0xff; buf[2] = (u >> 8) & 0xff; buf[3] = u & 0xff; /* Mark this CRITICAL, so if any implementation doesn't understand sigs that can expire, it'll just disregard this sig altogether. */ build_sig_subpkt( sig, SIGSUBPKT_SIG_EXPIRE | SIGSUBPKT_FLAG_CRITICAL, buf, 4 ); } } void build_attribute_subpkt(PKT_user_id *uid,byte type, const void *buf,u32 buflen, const void *header,u32 headerlen) { byte *attrib; int idx; if(1+headerlen+buflen>8383) idx=5; else if(1+headerlen+buflen>191) idx=2; else idx=1; /* realloc uid->attrib_data to the right size */ uid->attrib_data=xrealloc(uid->attrib_data, uid->attrib_len+idx+1+headerlen+buflen); attrib=&uid->attrib_data[uid->attrib_len]; if(idx==5) { attrib[0]=255; attrib[1]=(1+headerlen+buflen) >> 24; attrib[2]=(1+headerlen+buflen) >> 16; attrib[3]=(1+headerlen+buflen) >> 8; attrib[4]=1+headerlen+buflen; } else if(idx==2) { attrib[0]=(1+headerlen+buflen-192) / 256 + 192; attrib[1]=(1+headerlen+buflen-192) % 256; } else attrib[0]=1+headerlen+buflen; /* Good luck finding a JPEG this small! */ attrib[idx++]=type; /* Tack on our data at the end */ if(headerlen>0) memcpy(&attrib[idx],header,headerlen); memcpy(&attrib[idx+headerlen],buf,buflen); uid->attrib_len+=idx+headerlen+buflen; } /* Returns a human-readable string corresponding to the notation. This ignores notation->value. The caller must free the result. */ static char * notation_value_to_human_readable_string (struct notation *notation) { if(notation->bdat) /* Binary data. */ { size_t len = notation->blen; int i; char preview[20]; for (i = 0; i < len && i < sizeof (preview) - 1; i ++) if (isprint (notation->bdat[i])) preview[i] = notation->bdat[i]; else preview[i] = '?'; preview[i] = 0; return xasprintf (_("[ not human readable (%zu bytes: %s%s) ]"), len, preview, i < len ? "..." : ""); } else /* The value is human-readable. */ return xstrdup (notation->value); } /* Turn the notation described by the string STRING into a notation. STRING has the form: - -name - Delete the notation. - name@domain.name=value - Normal notation - !name@domain.name=value - Notation with critical bit set. The caller must free the result using free_notation(). */ struct notation * string_to_notation(const char *string,int is_utf8) { const char *s; int saw_at=0; struct notation *notation; notation=xmalloc_clear(sizeof(*notation)); if(*string=='-') { notation->flags.ignore=1; string++; } if(*string=='!') { notation->flags.critical=1; string++; } /* If and when the IETF assigns some official name tags, we'll have to add them here. */ for( s=string ; *s != '='; s++ ) { if( *s=='@') saw_at++; /* -notationname is legal without an = sign */ if(!*s && notation->flags.ignore) break; if( !*s || !isascii (*s) || (!isgraph(*s) && !isspace(*s)) ) { log_error(_("a notation name must have only printable characters" " or spaces, and end with an '='\n") ); goto fail; } } notation->name=xmalloc((s-string)+1); strncpy(notation->name,string,s-string); notation->name[s-string]='\0'; if(!saw_at && !opt.expert) { log_error(_("a user notation name must contain the '@' character\n")); goto fail; } if (saw_at > 1) { log_error(_("a notation name must not contain more than" " one '@' character\n")); goto fail; } if(*s) { const char *i=s+1; int highbit=0; /* we only support printable text - therefore we enforce the use of only printable characters (an empty value is valid) */ for(s++; *s ; s++ ) { if ( !isascii (*s) ) highbit=1; else if (iscntrl(*s)) { log_error(_("a notation value must not use any" " control characters\n")); goto fail; } } if(!highbit || is_utf8) notation->value=xstrdup(i); else notation->value=native_to_utf8(i); } return notation; fail: free_notation(notation); return NULL; } /* Like string_to_notation, but store opaque data rather than human readable data. */ struct notation * blob_to_notation(const char *name, const char *data, size_t len) { const char *s; int saw_at=0; struct notation *notation; notation=xmalloc_clear(sizeof(*notation)); if(*name=='-') { notation->flags.ignore=1; name++; } if(*name=='!') { notation->flags.critical=1; name++; } /* If and when the IETF assigns some official name tags, we'll have to add them here. */ for( s=name ; *s; s++ ) { if( *s=='@') saw_at++; /* -notationname is legal without an = sign */ if(!*s && notation->flags.ignore) break; if (*s == '=') { log_error(_("a notation name may not contain an '=' character\n")); goto fail; } if (!isascii (*s) || (!isgraph(*s) && !isspace(*s))) { log_error(_("a notation name must have only printable characters" " or spaces\n") ); goto fail; } } notation->name=xstrdup (name); if(!saw_at && !opt.expert) { log_error(_("a user notation name must contain the '@' character\n")); goto fail; } if (saw_at > 1) { log_error(_("a notation name must not contain more than" " one '@' character\n")); goto fail; } notation->bdat = xmalloc (len); memcpy (notation->bdat, data, len); notation->blen = len; notation->value = notation_value_to_human_readable_string (notation); return notation; fail: free_notation(notation); return NULL; } struct notation * sig_to_notation(PKT_signature *sig) { const byte *p; size_t len; int seq = 0; int crit; notation_t list = NULL; /* See RFC 4880, 5.2.3.16 for the format of notation data. In short, a notation has: - 4 bytes of flags - 2 byte name length (n1) - 2 byte value length (n2) - n1 bytes of name data - n2 bytes of value data */ while((p=enum_sig_subpkt(sig->hashed,SIGSUBPKT_NOTATION,&len,&seq,&crit))) { int n1,n2; struct notation *n=NULL; if(len<8) { log_info(_("WARNING: invalid notation data found\n")); continue; } /* name length. */ n1=(p[4]<<8)|p[5]; /* value length. */ n2=(p[6]<<8)|p[7]; if(8+n1+n2!=len) { log_info(_("WARNING: invalid notation data found\n")); continue; } n=xmalloc_clear(sizeof(*n)); n->name=xmalloc(n1+1); memcpy(n->name,&p[8],n1); n->name[n1]='\0'; if(p[0]&0x80) /* The value is human-readable. */ { n->value=xmalloc(n2+1); memcpy(n->value,&p[8+n1],n2); n->value[n2]='\0'; n->flags.human = 1; } else /* Binary data. */ { n->bdat=xmalloc(n2); n->blen=n2; memcpy(n->bdat,&p[8+n1],n2); n->value = notation_value_to_human_readable_string (n); } n->flags.critical=crit; n->next=list; list=n; } return list; } /* Release the resources associated with the *list* of notations. To release a single notation, make sure that notation->next is NULL. */ void free_notation(struct notation *notation) { while(notation) { struct notation *n=notation; xfree(n->name); xfree(n->value); xfree(n->altvalue); xfree(n->bdat); notation=n->next; xfree(n); } } /* Serialize the signature packet (RFC 4880, Section 5.2) described by SIG and write it to OUT. */ static int do_signature( IOBUF out, int ctb, PKT_signature *sig ) { int rc = 0; int n, i; IOBUF a = iobuf_temp(); log_assert (ctb_pkttype (ctb) == PKT_SIGNATURE); if ( !sig->version || sig->version == 3) { iobuf_put( a, 3 ); /* Version 3 packets don't support subpackets. */ log_assert (! sig->hashed); log_assert (! sig->unhashed); } else iobuf_put( a, sig->version ); if ( sig->version < 4 ) iobuf_put (a, 5 ); /* Constant */ iobuf_put (a, sig->sig_class ); if ( sig->version < 4 ) { write_32(a, sig->timestamp ); write_32(a, sig->keyid[0] ); write_32(a, sig->keyid[1] ); } iobuf_put(a, sig->pubkey_algo ); iobuf_put(a, sig->digest_algo ); if ( sig->version >= 4 ) { size_t nn; /* Timestamp and keyid must have been packed into the subpackets prior to the call of this function, because these subpackets are hashed. */ nn = sig->hashed? sig->hashed->len : 0; write_16(a, nn); if (nn) iobuf_write( a, sig->hashed->data, nn ); nn = sig->unhashed? sig->unhashed->len : 0; write_16(a, nn); if (nn) iobuf_write( a, sig->unhashed->data, nn ); } iobuf_put(a, sig->digest_start[0] ); iobuf_put(a, sig->digest_start[1] ); n = pubkey_get_nsig( sig->pubkey_algo ); if ( !n ) write_fake_data( a, sig->data[0] ); for (i=0; i < n && !rc ; i++ ) rc = gpg_mpi_write (a, sig->data[i] ); if (!rc) { if ( is_RSA(sig->pubkey_algo) && sig->version < 4 ) write_sign_packet_header(out, ctb, iobuf_get_temp_length(a) ); else write_header(out, ctb, iobuf_get_temp_length(a) ); rc = iobuf_write_temp( out, a ); } iobuf_close(a); return rc; } /* Serialize the one-pass signature packet (RFC 4880, Section 5.4) described by OPS and write it to OUT. */ static int do_onepass_sig( IOBUF out, int ctb, PKT_onepass_sig *ops ) { log_assert (ctb_pkttype (ctb) == PKT_ONEPASS_SIG); write_header(out, ctb, 4 + 8 + 1); iobuf_put (out, 3); /* Version. */ iobuf_put(out, ops->sig_class ); iobuf_put(out, ops->digest_algo ); iobuf_put(out, ops->pubkey_algo ); write_32(out, ops->keyid[0] ); write_32(out, ops->keyid[1] ); iobuf_put(out, ops->last ); return 0; } /* Write a 16-bit quantity to OUT in big endian order. */ static int write_16(IOBUF out, u16 a) { iobuf_put(out, a>>8); if( iobuf_put(out,a) ) return -1; return 0; } /* Write a 32-bit quantity to OUT in big endian order. */ static int write_32(IOBUF out, u32 a) { iobuf_put(out, a>> 24); iobuf_put(out, a>> 16); iobuf_put(out, a>> 8); return iobuf_put(out, a); } /**************** * calculate the length of a header. * * LEN is the length of the packet's body. NEW_CTB is whether we are * using a new or old format packet. * * This function does not handle indeterminate lengths or partial body * lengths. (If you pass LEN as 0, then this function assumes you * really mean an empty body.) */ static int calc_header_length( u32 len, int new_ctb ) { if( new_ctb ) { if( len < 192 ) return 2; if( len < 8384 ) return 3; else return 6; } if( len < 256 ) return 2; if( len < 65536 ) return 3; return 5; } /**************** * Write the CTB and the packet length */ static int write_header( IOBUF out, int ctb, u32 len ) { return write_header2( out, ctb, len, 0 ); } static int write_sign_packet_header (IOBUF out, int ctb, u32 len) { (void)ctb; /* Work around a bug in the pgp read function for signature packets, which are not correctly coded and silently assume at some point 2 byte length headers.*/ iobuf_put (out, 0x89 ); iobuf_put (out, len >> 8 ); return iobuf_put (out, len) == -1 ? -1:0; } /**************** * Write a packet header to OUT. * * CTB is the ctb. It determines whether a new or old format packet * header should be written. The length field is adjusted, but the * CTB is otherwise written out as is. * * LEN is the length of the packet's body. * * If HDRLEN is set, then we don't necessarily use the most efficient * encoding to store LEN, but the specified length. (If this is not * possible, this is a bug.) In this case, LEN=0 means a 0 length * packet. Note: setting HDRLEN is only supported for old format * packets! * * If HDRLEN is not set, then the shortest encoding is used. In this * case, LEN=0 means the body has an indeterminate length and a * partial body length header (if a new format packet) or an * indeterminate length header (if an old format packet) is written * out. Further, if using partial body lengths, this enables partial * body length mode on OUT. */ static int write_header2( IOBUF out, int ctb, u32 len, int hdrlen ) { if (ctb_new_format_p (ctb)) return write_new_header( out, ctb, len, hdrlen ); /* An old format packet. Refer to RFC 4880, Section 4.2.1 to understand how lengths are encoded in this case. */ /* The length encoding is stored in the two least significant bits. Make sure they are cleared. */ log_assert ((ctb & 3) == 0); log_assert (hdrlen == 0 || hdrlen == 2 || hdrlen == 3 || hdrlen == 5); if (hdrlen) /* Header length is given. */ { if( hdrlen == 2 && len < 256 ) /* 00 => 1 byte length. */ ; else if( hdrlen == 3 && len < 65536 ) /* 01 => 2 byte length. If len < 256, this is not the most compact encoding, but it is a correct encoding. */ ctb |= 1; else if (hdrlen == 5) /* 10 => 4 byte length. If len < 65536, this is not the most compact encoding, but it is a correct encoding. */ ctb |= 2; else log_bug ("Can't encode length=%d in a %d byte header!\n", len, hdrlen); } else { if( !len ) /* 11 => Indeterminate length. */ ctb |= 3; else if( len < 256 ) /* 00 => 1 byte length. */ ; else if( len < 65536 ) /* 01 => 2 byte length. */ ctb |= 1; else /* 10 => 4 byte length. */ ctb |= 2; } if( iobuf_put(out, ctb ) ) return -1; if( len || hdrlen ) { if( ctb & 2 ) { if(iobuf_put(out, len >> 24 )) return -1; if(iobuf_put(out, len >> 16 )) return -1; } if( ctb & 3 ) if(iobuf_put(out, len >> 8 )) return -1; if( iobuf_put(out, len ) ) return -1; } return 0; } /* Write a new format header to OUT. CTB is the ctb. LEN is the length of the packet's body. If LEN is 0, then enables partial body length mode (i.e., the body is of an indeterminant length) on OUT. Note: this function cannot be used to generate a header for a zero length packet. HDRLEN is the length of the packet's header. If HDRLEN is 0, the shortest encoding is chosen based on the length of the packet's body. Currently, values other than 0 are not supported. Returns 0 on success. */ static int write_new_header( IOBUF out, int ctb, u32 len, int hdrlen ) { if( hdrlen ) log_bug("can't cope with hdrlen yet\n"); if( iobuf_put(out, ctb ) ) return -1; if( !len ) { iobuf_set_partial_body_length_mode(out, 512 ); } else { if( len < 192 ) { if( iobuf_put(out, len ) ) return -1; } else if( len < 8384 ) { len -= 192; if( iobuf_put( out, (len / 256) + 192) ) return -1; if( iobuf_put( out, (len % 256) ) ) return -1; } else { if( iobuf_put( out, 0xff ) ) return -1; if( iobuf_put( out, (len >> 24)&0xff ) ) return -1; if( iobuf_put( out, (len >> 16)&0xff ) ) return -1; if( iobuf_put( out, (len >> 8)&0xff ) ) return -1; if( iobuf_put( out, len & 0xff ) ) return -1; } } return 0; }