diff --git a/g10/encrypt.c b/g10/encrypt.c index aba161ddd..a96a77974 100644 --- a/g10/encrypt.c +++ b/g10/encrypt.c @@ -1,1057 +1,1055 @@ /* encrypt.c - Main encryption driver * Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, * 2006, 2009 Free Software Foundation, Inc. * Copyright (C) 2016, 2022 g10 Code GmbH * * This file is part of GnuPG. * * GnuPG is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * GnuPG is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #include #include #include #include #include #include "gpg.h" #include "options.h" #include "packet.h" #include "../common/status.h" #include "../common/iobuf.h" #include "keydb.h" #include "../common/util.h" #include "main.h" #include "filter.h" #include "trustdb.h" #include "../common/i18n.h" #include "../common/status.h" #include "pkglue.h" #include "../common/compliance.h" static int encrypt_simple( const char *filename, int mode, int use_seskey ); static int write_pubkey_enc_from_list (ctrl_t ctrl, PK_LIST pk_list, DEK *dek, iobuf_t out); /**************** * Encrypt FILENAME with only the symmetric cipher. Take input from * stdin if FILENAME is NULL. */ int encrypt_symmetric (const char *filename) { return encrypt_simple( filename, 1, 0 ); } /**************** * Encrypt FILENAME as a literal data packet only. Take input from * stdin if FILENAME is NULL. */ int encrypt_store (const char *filename) { return encrypt_simple( filename, 0, 0 ); } /* Create an setup DEK structure and print approriate warnings. The * FALLBACK_TO_3DES flag is used to handle the two different ways we * use this code. PK_LIST gives the list of public keys. Always * returns a DEK. The actual session needs to be added later. */ static DEK * create_dek_with_warnings (int fallback_to_3des, pk_list_t pk_list) { DEK *dek; dek = xmalloc_secure_clear (sizeof *dek); if (!opt.def_cipher_algo) { /* Try to get it from the prefs. */ dek->algo = select_algo_from_prefs (pk_list, PREFTYPE_SYM, -1, NULL); if (dek->algo == -1 && fallback_to_3des) { /* The only way select_algo_from_prefs can fail here is when * mixing v3 and v4 keys, as v4 keys have an implicit * preference entry for 3DES, and the pk_list cannot be * empty. In this case, use 3DES anyway as it's the safest * choice - perhaps the v3 key is being used in an OpenPGP * implementation and we know that the implementation behind * any v4 key can handle 3DES. */ dek->algo = CIPHER_ALGO_3DES; } else if (dek->algo == -1) { /* Because 3DES is implicitly in the prefs, this can only * happen if we do not have any public keys in the list. */ dek->algo = DEFAULT_CIPHER_ALGO; } /* In case 3DES has been selected, print a warning if any key * does not have a preference for AES. This should help to * indentify why encrypting to several recipients falls back to * 3DES. */ if (opt.verbose && dek->algo == CIPHER_ALGO_3DES) warn_missing_aes_from_pklist (pk_list); } else { if (!opt.expert && (select_algo_from_prefs (pk_list, PREFTYPE_SYM, opt.def_cipher_algo, NULL) != opt.def_cipher_algo)) { log_info(_("WARNING: forcing symmetric cipher %s (%d)" " violates recipient preferences\n"), openpgp_cipher_algo_name (opt.def_cipher_algo), opt.def_cipher_algo); } dek->algo = opt.def_cipher_algo; } return dek; } /* *SESKEY contains the unencrypted session key ((*SESKEY)->KEY) and the algorithm that will be used to encrypt the contents of the SED packet ((*SESKEY)->ALGO). If *SESKEY is NULL, then a random session key that is appropriate for DEK->ALGO is generated and stored there. Encrypt that session key using DEK and store the result in ENCKEY, which must be large enough to hold (*SESKEY)->KEYLEN + 1 bytes. */ void encrypt_seskey (DEK *dek, DEK **seskey, byte *enckey) { gcry_cipher_hd_t hd; byte buf[33]; log_assert ( dek->keylen <= 32 ); if (!*seskey) { *seskey=xmalloc_clear(sizeof(DEK)); (*seskey)->algo=dek->algo; make_session_key(*seskey); /*log_hexdump( "thekey", c->key, c->keylen );*/ } /* The encrypted session key is prefixed with a one-octet algorithm id. */ buf[0] = (*seskey)->algo; memcpy( buf + 1, (*seskey)->key, (*seskey)->keylen ); /* We only pass already checked values to the following function, thus we consider any failure as fatal. */ if (openpgp_cipher_open (&hd, dek->algo, GCRY_CIPHER_MODE_CFB, 1)) BUG (); if (gcry_cipher_setkey (hd, dek->key, dek->keylen)) BUG (); gcry_cipher_setiv (hd, NULL, 0); gcry_cipher_encrypt (hd, buf, (*seskey)->keylen + 1, NULL, 0); gcry_cipher_close (hd); memcpy( enckey, buf, (*seskey)->keylen + 1 ); wipememory( buf, sizeof buf ); /* burn key */ } /* Shall we use the MDC? Yes - unless rfc-2440 compatibility is * requested. Must return 1 or 0. */ int use_mdc (pk_list_t pk_list,int algo) { (void)pk_list; (void)algo; /* RFC-2440 don't has MDC - this is the only way to create a legacy * non-MDC encryption packet. */ if (RFC2440) return 0; return 1; /* In all other cases we use the MDC */ } /* We don't want to use use_seskey yet because older gnupg versions can't handle it, and there isn't really any point unless we're making a message that can be decrypted by a public key or passphrase. */ static int encrypt_simple (const char *filename, int mode, int use_seskey) { iobuf_t inp, out; PACKET pkt; PKT_plaintext *pt = NULL; STRING2KEY *s2k = NULL; byte enckey[33]; int rc = 0; int seskeylen = 0; u32 filesize; cipher_filter_context_t cfx; armor_filter_context_t *afx = NULL; compress_filter_context_t zfx; text_filter_context_t tfx; progress_filter_context_t *pfx; int do_compress = !!default_compress_algo(); if (!gnupg_rng_is_compliant (opt.compliance)) { rc = gpg_error (GPG_ERR_FORBIDDEN); log_error (_("%s is not compliant with %s mode\n"), "RNG", gnupg_compliance_option_string (opt.compliance)); write_status_error ("random-compliance", rc); return rc; } pfx = new_progress_context (); memset( &cfx, 0, sizeof cfx); memset( &zfx, 0, sizeof zfx); memset( &tfx, 0, sizeof tfx); init_packet(&pkt); /* Prepare iobufs. */ inp = iobuf_open(filename); if (inp) iobuf_ioctl (inp, IOBUF_IOCTL_NO_CACHE, 1, NULL); if (inp && is_secured_file (iobuf_get_fd (inp))) { iobuf_close (inp); inp = NULL; gpg_err_set_errno (EPERM); } if (!inp) { rc = gpg_error_from_syserror (); log_error(_("can't open '%s': %s\n"), filename? filename: "[stdin]", strerror(errno) ); release_progress_context (pfx); return rc; } handle_progress (pfx, inp, filename); if (opt.textmode) iobuf_push_filter( inp, text_filter, &tfx ); cfx.dek = NULL; if ( mode ) { rc = setup_symkey (&s2k, &cfx.dek); if (rc) { iobuf_close (inp); if (gpg_err_code (rc) == GPG_ERR_CIPHER_ALGO || gpg_err_code (rc) == GPG_ERR_DIGEST_ALGO) ; /* Error has already been printed. */ else log_error (_("error creating passphrase: %s\n"), gpg_strerror (rc)); release_progress_context (pfx); return rc; } if (use_seskey && s2k->mode != 1 && s2k->mode != 3) { use_seskey = 0; log_info (_("can't use a symmetric ESK packet " "due to the S2K mode\n")); } if ( use_seskey ) { DEK *dek = NULL; /* Dummy. */ seskeylen = openpgp_cipher_get_algo_keylen (default_cipher_algo ()); encrypt_seskey( cfx.dek, &dek, enckey ); xfree( cfx.dek ); cfx.dek = dek; } if (opt.verbose) log_info(_("using cipher %s\n"), openpgp_cipher_algo_name (cfx.dek->algo)); cfx.dek->use_mdc=use_mdc(NULL,cfx.dek->algo); } if (do_compress && cfx.dek && cfx.dek->use_mdc && is_file_compressed(filename, &rc)) { if (opt.verbose) log_info(_("'%s' already compressed\n"), filename); do_compress = 0; } if ( rc || (rc = open_outfile (-1, filename, opt.armor? 1:0, 0, &out ))) { iobuf_cancel (inp); xfree (cfx.dek); xfree (s2k); release_progress_context (pfx); return rc; } if ( opt.armor ) { afx = new_armor_context (); push_armor_filter (afx, out); } if ( s2k ) { PKT_symkey_enc *enc = xmalloc_clear( sizeof *enc + seskeylen + 1 ); enc->version = 4; enc->cipher_algo = cfx.dek->algo; enc->s2k = *s2k; if ( use_seskey && seskeylen ) { enc->seskeylen = seskeylen + 1; /* algo id */ memcpy (enc->seskey, enckey, seskeylen + 1 ); } pkt.pkttype = PKT_SYMKEY_ENC; pkt.pkt.symkey_enc = enc; if ((rc = build_packet( out, &pkt ))) log_error("build symkey packet failed: %s\n", gpg_strerror (rc) ); xfree (enc); } if (!opt.no_literal) pt = setup_plaintext_name (filename, inp); /* Note that PGP 5 has problems decrypting symmetrically encrypted data if the file length is in the inner packet. It works when only partial length headers are use. In the past, we always used partial body length here, but since PGP 2, PGP 6, and PGP 7 need the file length, and nobody should be using PGP 5 nowadays anyway, this is now set to the file length. Note also that this only applies to the RFC-1991 style symmetric messages, and not the RFC-2440 style. PGP 6 and 7 work with either partial length or fixed length with the new style messages. */ if ( !iobuf_is_pipe_filename (filename) && *filename && !opt.textmode ) { off_t tmpsize; int overflow; if ( !(tmpsize = iobuf_get_filelength(inp, &overflow)) && !overflow && opt.verbose) log_info(_("WARNING: '%s' is an empty file\n"), filename ); /* We can't encode the length of very large files because OpenPGP uses only 32 bit for file sizes. So if the size of a file is larger than 2^32 minus some bytes for packet headers, we switch to partial length encoding. */ if ( tmpsize < (IOBUF_FILELENGTH_LIMIT - 65536) ) filesize = tmpsize; else filesize = 0; } else filesize = opt.set_filesize ? opt.set_filesize : 0; /* stdin */ if (!opt.no_literal) { /* Note that PT has been initialized above in !no_literal mode. */ pt->timestamp = make_timestamp(); pt->mode = opt.mimemode? 'm' : opt.textmode? 't' : 'b'; pt->len = filesize; pt->new_ctb = !pt->len; pt->buf = inp; pkt.pkttype = PKT_PLAINTEXT; pkt.pkt.plaintext = pt; cfx.datalen = filesize && !do_compress ? calc_packet_length( &pkt ) : 0; } else { cfx.datalen = filesize && !do_compress ? filesize : 0; pkt.pkttype = 0; pkt.pkt.generic = NULL; } /* Register the cipher filter. */ if (mode) iobuf_push_filter ( out, cipher_filter_cfb, &cfx ); /* Register the compress filter. */ if ( do_compress ) { if (cfx.dek && cfx.dek->use_mdc) zfx.new_ctb = 1; push_compress_filter (out, &zfx, default_compress_algo()); } /* Do the work. */ if (!opt.no_literal) { if ( (rc = build_packet( out, &pkt )) ) log_error("build_packet failed: %s\n", gpg_strerror (rc) ); } else { /* User requested not to create a literal packet, so we copy the plain data. */ byte copy_buffer[4096]; int bytes_copied; while ((bytes_copied = iobuf_read(inp, copy_buffer, 4096)) != -1) if ( (rc=iobuf_write(out, copy_buffer, bytes_copied)) ) { log_error ("copying input to output failed: %s\n", gpg_strerror (rc) ); break; } wipememory (copy_buffer, 4096); /* burn buffer */ } /* Finish the stuff. */ iobuf_close (inp); if (rc) iobuf_cancel(out); else { iobuf_close (out); /* fixme: check returncode */ if (mode) write_status ( STATUS_END_ENCRYPTION ); } if (pt) pt->buf = NULL; free_packet (&pkt, NULL); xfree (cfx.dek); xfree (s2k); release_armor_context (afx); release_progress_context (pfx); return rc; } gpg_error_t setup_symkey (STRING2KEY **symkey_s2k, DEK **symkey_dek) { int canceled; int defcipher; int s2kdigest; defcipher = default_cipher_algo (); if (!gnupg_cipher_is_allowed (opt.compliance, 1, defcipher, GCRY_CIPHER_MODE_CFB)) { log_error (_("cipher algorithm '%s' may not be used in %s mode\n"), openpgp_cipher_algo_name (defcipher), gnupg_compliance_option_string (opt.compliance)); return gpg_error (GPG_ERR_CIPHER_ALGO); } s2kdigest = S2K_DIGEST_ALGO; if (!gnupg_digest_is_allowed (opt.compliance, 1, s2kdigest)) { log_error (_("digest algorithm '%s' may not be used in %s mode\n"), gcry_md_algo_name (s2kdigest), gnupg_compliance_option_string (opt.compliance)); return gpg_error (GPG_ERR_DIGEST_ALGO); } *symkey_s2k = xmalloc_clear (sizeof **symkey_s2k); (*symkey_s2k)->mode = opt.s2k_mode; (*symkey_s2k)->hash_algo = s2kdigest; *symkey_dek = passphrase_to_dek (defcipher, *symkey_s2k, 1, 0, NULL, 0, &canceled); if (!*symkey_dek || !(*symkey_dek)->keylen) { xfree(*symkey_dek); xfree(*symkey_s2k); return gpg_error (canceled?GPG_ERR_CANCELED:GPG_ERR_INV_PASSPHRASE); } return 0; } static int write_symkey_enc (STRING2KEY *symkey_s2k, DEK *symkey_dek, DEK *dek, iobuf_t out) { int rc, seskeylen = openpgp_cipher_get_algo_keylen (dek->algo); PKT_symkey_enc *enc; byte enckey[33]; PACKET pkt; enc=xmalloc_clear(sizeof(PKT_symkey_enc)+seskeylen+1); encrypt_seskey(symkey_dek,&dek,enckey); enc->version = 4; enc->cipher_algo = opt.s2k_cipher_algo; enc->s2k = *symkey_s2k; enc->seskeylen = seskeylen + 1; /* algo id */ memcpy( enc->seskey, enckey, seskeylen + 1 ); pkt.pkttype = PKT_SYMKEY_ENC; pkt.pkt.symkey_enc = enc; if ((rc=build_packet(out,&pkt))) log_error("build symkey_enc packet failed: %s\n",gpg_strerror (rc)); xfree(enc); return rc; } /* Check whether all encryption keys are compliant with the current * mode and issue respective status lines. DEK has the info about the * session key and PK_LIST the list of public keys. */ static gpg_error_t check_encryption_compliance (DEK *dek, pk_list_t pk_list) { gpg_error_t err = 0; pk_list_t pkr; int compliant; if (! gnupg_cipher_is_allowed (opt.compliance, 1, dek->algo, GCRY_CIPHER_MODE_CFB)) { log_error (_("cipher algorithm '%s' may not be used in %s mode\n"), openpgp_cipher_algo_name (dek->algo), gnupg_compliance_option_string (opt.compliance)); err = gpg_error (GPG_ERR_CIPHER_ALGO); goto leave; } if (!gnupg_rng_is_compliant (opt.compliance)) { err = gpg_error (GPG_ERR_FORBIDDEN); log_error (_("%s is not compliant with %s mode\n"), "RNG", gnupg_compliance_option_string (opt.compliance)); write_status_error ("random-compliance", err); goto leave; } compliant = gnupg_cipher_is_compliant (CO_DE_VS, dek->algo, GCRY_CIPHER_MODE_CFB); for (pkr = pk_list; pkr; pkr = pkr->next) { PKT_public_key *pk = pkr->pk; unsigned int nbits = nbits_from_pk (pk); if (!gnupg_pk_is_compliant (opt.compliance, pk->pubkey_algo, 0, pk->pkey, nbits, NULL)) log_info (_("WARNING: key %s is not suitable for encryption" " in %s mode\n"), keystr_from_pk (pk), gnupg_compliance_option_string (opt.compliance)); if (compliant && !gnupg_pk_is_compliant (CO_DE_VS, pk->pubkey_algo, 0, pk->pkey, nbits, NULL)) compliant = 0; /* Not compliant - reset flag. */ } /* If we are compliant print the status for de-vs compliance. */ if (compliant) write_status_strings (STATUS_ENCRYPTION_COMPLIANCE_MODE, gnupg_status_compliance_flag (CO_DE_VS), NULL); /* Check whether we should fail the operation. */ if (opt.flags.require_compliance && opt.compliance == CO_DE_VS && !compliant) { - log_error (_("operation forced to fail due to" - " unfulfilled compliance rules\n")); + compliance_failure (); err = gpg_error (GPG_ERR_FORBIDDEN); - g10_errors_seen = 1; goto leave; } leave: return err; } /* * Encrypt the file with the given userids (or ask if none is * supplied). Either FILENAME or FILEFD must be given, but not both. * The caller may provide a checked list of public keys in * PROVIDED_PKS; if not the function builds a list of keys on its own. * * Note that FILEFD is currently only used by cmd_encrypt in the * not yet finished server.c. */ int encrypt_crypt (ctrl_t ctrl, int filefd, const char *filename, strlist_t remusr, int use_symkey, pk_list_t provided_keys, int outputfd) { iobuf_t inp = NULL; iobuf_t out = NULL; PACKET pkt; PKT_plaintext *pt = NULL; DEK *symkey_dek = NULL; STRING2KEY *symkey_s2k = NULL; int rc = 0, rc2 = 0; u32 filesize; cipher_filter_context_t cfx; armor_filter_context_t *afx = NULL; compress_filter_context_t zfx; text_filter_context_t tfx; progress_filter_context_t *pfx; PK_LIST pk_list; int do_compress; if (filefd != -1 && filename) return gpg_error (GPG_ERR_INV_ARG); /* Both given. */ do_compress = !!opt.compress_algo; pfx = new_progress_context (); memset( &cfx, 0, sizeof cfx); memset( &zfx, 0, sizeof zfx); memset( &tfx, 0, sizeof tfx); init_packet(&pkt); if (use_symkey && (rc=setup_symkey(&symkey_s2k,&symkey_dek))) { release_progress_context (pfx); return rc; } if (provided_keys) pk_list = provided_keys; else { if ((rc = build_pk_list (ctrl, remusr, &pk_list))) { release_progress_context (pfx); return rc; } } /* Prepare iobufs. */ #ifdef HAVE_W32_SYSTEM if (filefd == -1) inp = iobuf_open (filename); else { inp = NULL; gpg_err_set_errno (ENOSYS); } #else if (filefd == GNUPG_INVALID_FD) inp = iobuf_open (filename); else inp = iobuf_fdopen_nc (FD2INT(filefd), "rb"); #endif if (inp) iobuf_ioctl (inp, IOBUF_IOCTL_NO_CACHE, 1, NULL); if (inp && is_secured_file (iobuf_get_fd (inp))) { iobuf_close (inp); inp = NULL; gpg_err_set_errno (EPERM); } if (!inp) { char xname[64]; rc = gpg_error_from_syserror (); if (filefd != -1) snprintf (xname, sizeof xname, "[fd %d]", filefd); else if (!filename) strcpy (xname, "[stdin]"); else *xname = 0; log_error (_("can't open '%s': %s\n"), *xname? xname : filename, gpg_strerror (rc) ); goto leave; } if (opt.verbose) log_info (_("reading from '%s'\n"), iobuf_get_fname_nonnull (inp)); handle_progress (pfx, inp, filename); if (opt.textmode) iobuf_push_filter (inp, text_filter, &tfx); rc = open_outfile (outputfd, filename, opt.armor? 1:0, 0, &out); if (rc) goto leave; if (opt.armor) { afx = new_armor_context (); push_armor_filter (afx, out); } /* Create a session key (a DEK). */ cfx.dek = create_dek_with_warnings (1, pk_list); /* Check compliance etc. */ rc = check_encryption_compliance (cfx.dek, pk_list); if (rc) goto leave; cfx.dek->use_mdc = use_mdc (pk_list,cfx.dek->algo); /* Only do the is-file-already-compressed check if we are using a MDC. This forces compressed files to be re-compressed if we do not have a MDC to give some protection against chosen ciphertext attacks. */ if (do_compress && cfx.dek->use_mdc && is_file_compressed(filename, &rc2)) { if (opt.verbose) log_info(_("'%s' already compressed\n"), filename); do_compress = 0; } if (rc2) { rc = rc2; goto leave; } make_session_key (cfx.dek); if (DBG_CRYPTO) log_printhex (cfx.dek->key, cfx.dek->keylen, "DEK is: "); rc = write_pubkey_enc_from_list (ctrl, pk_list, cfx.dek, out); if (rc) goto leave; /* We put the passphrase (if any) after any public keys as this seems to be the most useful on the recipient side - there is no point in prompting a user for a passphrase if they have the secret key needed to decrypt. */ if(use_symkey && (rc = write_symkey_enc(symkey_s2k,symkey_dek,cfx.dek,out))) goto leave; if (!opt.no_literal) pt = setup_plaintext_name (filename, inp); /* Get the size of the file if possible, i.e., if it is a real file. */ if (filename && *filename && !iobuf_is_pipe_filename (filename) && !opt.textmode ) { off_t tmpsize; int overflow; if ( !(tmpsize = iobuf_get_filelength(inp, &overflow)) && !overflow && opt.verbose) log_info(_("WARNING: '%s' is an empty file\n"), filename ); /* We can't encode the length of very large files because OpenPGP uses only 32 bit for file sizes. So if the size of a file is larger than 2^32 minus some bytes for packet headers, we switch to partial length encoding. */ if (tmpsize < (IOBUF_FILELENGTH_LIMIT - 65536) ) filesize = tmpsize; else filesize = 0; } else filesize = opt.set_filesize ? opt.set_filesize : 0; /* stdin */ if (!opt.no_literal) { pt->timestamp = make_timestamp(); pt->mode = opt.mimemode? 'm' : opt.textmode ? 't' : 'b'; pt->len = filesize; pt->new_ctb = !pt->len; pt->buf = inp; pkt.pkttype = PKT_PLAINTEXT; pkt.pkt.plaintext = pt; cfx.datalen = filesize && !do_compress? calc_packet_length( &pkt ) : 0; } else cfx.datalen = filesize && !do_compress ? filesize : 0; /* Register the cipher filter. */ iobuf_push_filter (out, cipher_filter_cfb, &cfx); /* Register the compress filter. */ if (do_compress) { int compr_algo = opt.compress_algo; if (compr_algo == -1) { compr_algo = select_algo_from_prefs (pk_list, PREFTYPE_ZIP, -1, NULL); if (compr_algo == -1) compr_algo = DEFAULT_COMPRESS_ALGO; /* Theoretically impossible to get here since uncompressed is implicit. */ } else if (!opt.expert && select_algo_from_prefs(pk_list, PREFTYPE_ZIP, compr_algo, NULL) != compr_algo) { log_info (_("WARNING: forcing compression algorithm %s (%d)" " violates recipient preferences\n"), compress_algo_to_string(compr_algo), compr_algo); } /* Algo 0 means no compression. */ if (compr_algo) { if (cfx.dek && cfx.dek->use_mdc) zfx.new_ctb = 1; push_compress_filter (out,&zfx,compr_algo); } } /* Do the work. */ if (!opt.no_literal) { if ((rc = build_packet( out, &pkt ))) log_error ("build_packet failed: %s\n", gpg_strerror (rc)); } else { /* User requested not to create a literal packet, so we copy the plain data. */ byte copy_buffer[4096]; int bytes_copied; while ((bytes_copied = iobuf_read (inp, copy_buffer, 4096)) != -1) { rc = iobuf_write (out, copy_buffer, bytes_copied); if (rc) { log_error ("copying input to output failed: %s\n", gpg_strerror (rc)); break; } } wipememory (copy_buffer, 4096); /* Burn the buffer. */ } /* Finish the stuff. */ leave: iobuf_close (inp); if (rc) iobuf_cancel (out); else { iobuf_close (out); /* fixme: check returncode */ write_status (STATUS_END_ENCRYPTION); } if (pt) pt->buf = NULL; free_packet (&pkt, NULL); xfree (cfx.dek); xfree (symkey_dek); xfree (symkey_s2k); if (!provided_keys) release_pk_list (pk_list); release_armor_context (afx); release_progress_context (pfx); return rc; } /* * Filter to do a complete public key encryption. */ int encrypt_filter (void *opaque, int control, iobuf_t a, byte *buf, size_t *ret_len) { size_t size = *ret_len; encrypt_filter_context_t *efx = opaque; int rc = 0; if (control == IOBUFCTRL_UNDERFLOW) /* decrypt */ { BUG(); /* not used */ } else if ( control == IOBUFCTRL_FLUSH ) /* encrypt */ { if ( !efx->header_okay ) { efx->header_okay = 1; efx->cfx.dek = create_dek_with_warnings (0, efx->pk_list); rc = check_encryption_compliance (efx->cfx.dek, efx->pk_list); if (rc) return rc; efx->cfx.dek->use_mdc = use_mdc (efx->pk_list,efx->cfx.dek->algo); make_session_key ( efx->cfx.dek ); if (DBG_CRYPTO) log_printhex (efx->cfx.dek->key, efx->cfx.dek->keylen, "DEK is: "); rc = write_pubkey_enc_from_list (efx->ctrl, efx->pk_list, efx->cfx.dek, a); if (rc) return rc; if(efx->symkey_s2k && efx->symkey_dek) { rc=write_symkey_enc(efx->symkey_s2k,efx->symkey_dek, efx->cfx.dek,a); if(rc) return rc; } iobuf_push_filter (a, cipher_filter_cfb, &efx->cfx); } rc = iobuf_write (a, buf, size); } else if (control == IOBUFCTRL_FREE) { xfree (efx->symkey_dek); xfree (efx->symkey_s2k); } else if ( control == IOBUFCTRL_DESC ) { mem2str (buf, "encrypt_filter", *ret_len); } return rc; } /* * Write a pubkey-enc packet for the public key PK to OUT. */ int write_pubkey_enc (ctrl_t ctrl, PKT_public_key *pk, int throw_keyid, DEK *dek, iobuf_t out) { PACKET pkt; PKT_pubkey_enc *enc; int rc; gcry_mpi_t frame; print_pubkey_algo_note ( pk->pubkey_algo ); enc = xmalloc_clear ( sizeof *enc ); enc->pubkey_algo = pk->pubkey_algo; keyid_from_pk( pk, enc->keyid ); enc->throw_keyid = throw_keyid; /* Okay, what's going on: We have the session key somewhere in * the structure DEK and want to encode this session key in an * integer value of n bits. pubkey_nbits gives us the number of * bits we have to use. We then encode the session key in some * way and we get it back in the big intger value FRAME. Then * we use FRAME, the public key PK->PKEY and the algorithm * number PK->PUBKEY_ALGO and pass it to pubkey_encrypt which * returns the encrypted value in the array ENC->DATA. This * array has a size which depends on the used algorithm (e.g. 2 * for Elgamal). We don't need frame anymore because we have * everything now in enc->data which is the passed to * build_packet(). */ frame = encode_session_key (pk->pubkey_algo, dek, pubkey_nbits (pk->pubkey_algo, pk->pkey)); rc = pk_encrypt (pk->pubkey_algo, enc->data, frame, pk, pk->pkey); gcry_mpi_release (frame); if (rc) log_error ("pubkey_encrypt failed: %s\n", gpg_strerror (rc) ); else { if ( opt.verbose ) { char *ustr = get_user_id_string_native (ctrl, enc->keyid); log_info (_("%s/%s encrypted for: \"%s\"\n"), openpgp_pk_algo_name (enc->pubkey_algo), openpgp_cipher_algo_name (dek->algo), ustr ); xfree (ustr); } /* And write it. */ init_packet (&pkt); pkt.pkttype = PKT_PUBKEY_ENC; pkt.pkt.pubkey_enc = enc; rc = build_packet (out, &pkt); if (rc) log_error ("build_packet(pubkey_enc) failed: %s\n", gpg_strerror (rc)); } free_pubkey_enc(enc); return rc; } /* * Write pubkey-enc packets from the list of PKs to OUT. */ static int write_pubkey_enc_from_list (ctrl_t ctrl, PK_LIST pk_list, DEK *dek, iobuf_t out) { if (opt.throw_keyids && (PGP6 || PGP7 || PGP8)) { log_info(_("option '%s' may not be used in %s mode\n"), "--throw-keyids", gnupg_compliance_option_string (opt.compliance)); compliance_failure(); } for ( ; pk_list; pk_list = pk_list->next ) { PKT_public_key *pk = pk_list->pk; int throw_keyid = (opt.throw_keyids || (pk_list->flags&1)); int rc = write_pubkey_enc (ctrl, pk, throw_keyid, dek, out); if (rc) return rc; } return 0; } void encrypt_crypt_files (ctrl_t ctrl, int nfiles, char **files, strlist_t remusr) { int rc = 0; if (opt.outfile) { log_error(_("--output doesn't work for this command\n")); return; } if (!nfiles) { char line[2048]; unsigned int lno = 0; while ( fgets(line, DIM(line), stdin) ) { lno++; if (!*line || line[strlen(line)-1] != '\n') { log_error("input line %u too long or missing LF\n", lno); return; } line[strlen(line)-1] = '\0'; print_file_status(STATUS_FILE_START, line, 2); rc = encrypt_crypt (ctrl, -1, line, remusr, 0, NULL, -1); if (rc) log_error ("encryption of '%s' failed: %s\n", print_fname_stdin(line), gpg_strerror (rc) ); write_status( STATUS_FILE_DONE ); } } else { while (nfiles--) { print_file_status(STATUS_FILE_START, *files, 2); if ( (rc = encrypt_crypt (ctrl, -1, *files, remusr, 0, NULL, -1)) ) log_error("encryption of '%s' failed: %s\n", print_fname_stdin(*files), gpg_strerror (rc) ); write_status( STATUS_FILE_DONE ); files++; } } } diff --git a/g10/mainproc.c b/g10/mainproc.c index 3c9ea15d5..63e39ffef 100644 --- a/g10/mainproc.c +++ b/g10/mainproc.c @@ -1,2917 +1,2914 @@ /* mainproc.c - handle packets * Copyright (C) 1998-2009 Free Software Foundation, Inc. * Copyright (C) 2013-2014 Werner Koch * Copyright (C) 2020 g10 Code GmbH * * This file is part of GnuPG. * * GnuPG is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * GnuPG is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #include #include #include #include #include #include "gpg.h" #include "../common/util.h" #include "packet.h" #include "../common/iobuf.h" #include "options.h" #include "keydb.h" #include "filter.h" #include "main.h" #include "../common/status.h" #include "../common/i18n.h" #include "trustdb.h" #include "keyserver-internal.h" #include "photoid.h" #include "../common/mbox-util.h" #include "call-dirmngr.h" #include "../common/compliance.h" /* Put an upper limit on nested packets. The 32 is an arbitrary value, a much lower should actually be sufficient. */ #define MAX_NESTING_DEPTH 32 /* An object to build a list of keyid related info. */ struct kidlist_item { struct kidlist_item *next; u32 kid[2]; int pubkey_algo; int reason; }; /* An object to build a list of symkey packet info. */ struct symlist_item { struct symlist_item *next; int cipher_algo; int cfb_mode; int other_error; }; /* * Object to hold the processing context. */ typedef struct mainproc_context *CTX; struct mainproc_context { ctrl_t ctrl; struct mainproc_context *anchor; /* May be useful in the future. */ PKT_public_key *last_pubkey; PKT_user_id *last_user_id; md_filter_context_t mfx; int sigs_only; /* Process only signatures and reject all other stuff. */ int encrypt_only; /* Process only encryption messages. */ /* Name of the file with the complete signature or the file with the detached signature. This is currently only used to deduce the file name of the data file if that has not been given. */ const char *sigfilename; /* A structure to describe the signed data in case of a detached signature. */ struct { /* A file descriptor of the signed data. Only used if not -1. */ int data_fd; /* A list of filenames with the data files or NULL. This is only used if DATA_FD is -1. */ strlist_t data_names; /* Flag to indicated that either one of the next previous fields is used. This is only needed for better readability. */ int used; } signed_data; DEK *dek; int last_was_session_key; kbnode_t list; /* The current list of packets. */ iobuf_t iobuf; /* Used to get the filename etc. */ int trustletter; /* Temporary usage in list_node. */ ulong symkeys; /* Number of symmetrically encrypted session keys. */ struct kidlist_item *pkenc_list; /* List of encryption packets. */ struct symlist_item *symenc_list; /* List of sym. encryption packets. */ int seen_pkt_encrypted_aead; /* PKT_ENCRYPTED_AEAD packet seen. */ int seen_pkt_encrypted_mdc; /* PKT_ENCRYPTED_MDC packet seen. */ struct { unsigned int sig_seen:1; /* Set to true if a signature packet has been seen. */ unsigned int data:1; /* Any data packet seen */ unsigned int uncompress_failed:1; } any; }; /* Counter with the number of literal data packets seen. Note that * this is also bumped at the end of an encryption. This counter is * used for a basic consistency check of a received PGP message. */ static int literals_seen; /*** Local prototypes. ***/ static int do_proc_packets (ctrl_t ctrl, CTX c, iobuf_t a); static void list_node (CTX c, kbnode_t node); static void proc_tree (CTX c, kbnode_t node); /*** Functions. ***/ /* Reset the literal data counter. This is required to setup a new * decryption or verification context. */ void reset_literals_seen(void) { literals_seen = 0; } static void release_list( CTX c ) { proc_tree (c, c->list); release_kbnode (c->list); while (c->pkenc_list) { struct kidlist_item *tmp = c->pkenc_list->next; xfree (c->pkenc_list); c->pkenc_list = tmp; } c->pkenc_list = NULL; while (c->symenc_list) { struct symlist_item *tmp = c->symenc_list->next; xfree (c->symenc_list); c->symenc_list = tmp; } c->symenc_list = NULL; c->list = NULL; c->any.data = 0; c->any.uncompress_failed = 0; c->last_was_session_key = 0; c->seen_pkt_encrypted_aead = 0; c->seen_pkt_encrypted_mdc = 0; xfree (c->dek); c->dek = NULL; } static int add_onepass_sig (CTX c, PACKET *pkt) { kbnode_t node; if (c->list) /* Add another packet. */ add_kbnode (c->list, new_kbnode (pkt)); else /* Insert the first one. */ c->list = node = new_kbnode (pkt); return 1; } static int add_gpg_control (CTX c, PACKET *pkt) { if ( pkt->pkt.gpg_control->control == CTRLPKT_CLEARSIGN_START ) { /* New clear text signature. * Process the last one and reset everything */ release_list(c); } if (c->list) /* Add another packet. */ add_kbnode (c->list, new_kbnode (pkt)); else /* Insert the first one. */ c->list = new_kbnode (pkt); return 1; } static int add_user_id (CTX c, PACKET *pkt) { if (!c->list) { log_error ("orphaned user ID\n"); return 0; } add_kbnode (c->list, new_kbnode (pkt)); return 1; } static int add_subkey (CTX c, PACKET *pkt) { if (!c->list) { log_error ("subkey w/o mainkey\n"); return 0; } add_kbnode (c->list, new_kbnode (pkt)); return 1; } static int add_ring_trust (CTX c, PACKET *pkt) { if (!c->list) { log_error ("ring trust w/o key\n"); return 0; } add_kbnode (c->list, new_kbnode (pkt)); return 1; } static int add_signature (CTX c, PACKET *pkt) { kbnode_t node; c->any.sig_seen = 1; if (pkt->pkttype == PKT_SIGNATURE && !c->list) { /* This is the first signature for the following datafile. * GPG does not write such packets; instead it always uses * onepass-sig packets. The drawback of PGP's method * of prepending the signature to the data is * that it is not possible to make a signature from data read * from stdin. (GPG is able to read PGP stuff anyway.) */ node = new_kbnode (pkt); c->list = node; return 1; } else if (!c->list) return 0; /* oops (invalid packet sequence)*/ else if (!c->list->pkt) BUG(); /* so nicht */ /* Add a new signature node item at the end. */ node = new_kbnode (pkt); add_kbnode (c->list, node); return 1; } static gpg_error_t symkey_decrypt_seskey (DEK *dek, byte *seskey, size_t slen) { gpg_error_t err; gcry_cipher_hd_t hd; enum gcry_cipher_modes ciphermode; unsigned int noncelen, keylen; if (dek->use_aead) { err = openpgp_aead_algo_info (dek->use_aead, &ciphermode, &noncelen); if (err) return err; } else { ciphermode = GCRY_CIPHER_MODE_CFB; noncelen = 0; } /* Check that the session key has a size of 16 to 32 bytes. */ if ((dek->use_aead && (slen < (noncelen + 16 + 16) || slen > (noncelen + 32 + 16))) || (!dek->use_aead && (slen < 17 || slen > 33))) { log_error ( _("weird size for an encrypted session key (%d)\n"), (int)slen); return gpg_error (GPG_ERR_BAD_KEY); } err = openpgp_cipher_open (&hd, dek->algo, ciphermode, 1); if (!err) err = gcry_cipher_setkey (hd, dek->key, dek->keylen); if (!err) err = gcry_cipher_setiv (hd, noncelen? seskey : NULL, noncelen); if (err) goto leave; if (dek->use_aead) { byte ad[4]; ad[0] = (0xc0 | PKT_SYMKEY_ENC); ad[1] = 5; ad[2] = dek->algo; ad[3] = dek->use_aead; err = gcry_cipher_authenticate (hd, ad, 4); if (err) goto leave; gcry_cipher_final (hd); keylen = slen - noncelen - 16; err = gcry_cipher_decrypt (hd, seskey+noncelen, keylen, NULL, 0); if (err) goto leave; err = gcry_cipher_checktag (hd, seskey+noncelen+keylen, 16); if (err) goto leave; /* Now we replace the dek components with the real session key to * decrypt the contents of the sequencing packet. */ if (keylen > DIM(dek->key)) { err = gpg_error (GPG_ERR_TOO_LARGE); goto leave; } dek->keylen = keylen; memcpy (dek->key, seskey + noncelen, dek->keylen); } else { gcry_cipher_decrypt (hd, seskey, slen, NULL, 0); /* Here we can only test whether the algo given in decrypted * session key is a valid OpenPGP algo. With 11 defined * symmetric algorithms we will miss 4.3% of wrong passphrases * here. The actual checking is done later during bulk * decryption; we can't bring this check forward easily. We * need to use the GPG_ERR_CHECKSUM so that we won't run into * the gnupg < 2.2 bug compatible case which would terminate the * process on GPG_ERR_CIPHER_ALGO. Note that with AEAD (above) * we will have a reliable test here. */ if (openpgp_cipher_test_algo (seskey[0]) || openpgp_cipher_get_algo_keylen (seskey[0]) != slen - 1) { err = gpg_error (GPG_ERR_CHECKSUM); goto leave; } /* Now we replace the dek components with the real session key to * decrypt the contents of the sequencing packet. */ keylen = slen-1; if (keylen > DIM(dek->key)) { err = gpg_error (GPG_ERR_TOO_LARGE); goto leave; } dek->algo = seskey[0]; dek->keylen = slen-1; memcpy (dek->key, seskey + 1, dek->keylen); } /*log_hexdump( "thekey", dek->key, dek->keylen );*/ leave: gcry_cipher_close (hd); return 0; } static void proc_symkey_enc (CTX c, PACKET *pkt) { gpg_error_t err; PKT_symkey_enc *enc; enc = pkt->pkt.symkey_enc; if (!enc) log_error ("invalid symkey encrypted packet\n"); else if(!c->dek) { int algo = enc->cipher_algo; const char *s = openpgp_cipher_algo_name (algo); const char *a = (enc->aead_algo ? openpgp_aead_algo_name (enc->aead_algo) /**/ : "CFB"); if (!openpgp_cipher_test_algo (algo)) { if (!opt.quiet) { /* Note: TMPSTR is only used to avoid i18n changes. */ char *tmpstr = xstrconcat (s, ".", a, NULL); if (enc->seskeylen) log_info (_("%s encrypted session key\n"), tmpstr); else log_info (_("%s encrypted data\n"), tmpstr); xfree (tmpstr); } } else { log_error (_("encrypted with unknown algorithm %d\n"), algo); s = NULL; /* Force a goto leave. */ } if (openpgp_md_test_algo (enc->s2k.hash_algo)) { log_error(_("passphrase generated with unknown digest" " algorithm %d\n"),enc->s2k.hash_algo); s = NULL; } c->last_was_session_key = 2; if (!s || opt.list_only) goto leave; if (opt.override_session_key) { c->dek = xmalloc_clear (sizeof *c->dek); if (get_override_session_key (c->dek, opt.override_session_key)) { xfree (c->dek); c->dek = NULL; } } else { c->dek = passphrase_to_dek (algo, &enc->s2k, 0, 0, NULL, GETPASSWORD_FLAG_SYMDECRYPT, NULL); if (c->dek) { c->dek->symmetric = 1; c->dek->use_aead = enc->aead_algo; /* FIXME: This doesn't work perfectly if a symmetric key comes before a public key in the message - if the user doesn't know the passphrase, then there is a chance that the "decrypted" algorithm will happen to be a valid one, which will make the returned dek appear valid, so we won't try any public keys that come later. */ if (enc->seskeylen) { err = symkey_decrypt_seskey (c->dek, enc->seskey, enc->seskeylen); if (err) { log_info ("decryption of the symmetrically encrypted" " session key failed: %s\n", gpg_strerror (err)); if (gpg_err_code (err) != GPG_ERR_BAD_KEY && gpg_err_code (err) != GPG_ERR_CHECKSUM) log_fatal ("process terminated to be bug compatible\n"); else write_status_text (STATUS_ERROR, "symkey_decrypt.maybe_error" " 11_BAD_PASSPHRASE"); if (c->dek->s2k_cacheid[0]) { if (opt.debug) log_debug ("cleared passphrase cached with ID:" " %s\n", c->dek->s2k_cacheid); passphrase_clear_cache (c->dek->s2k_cacheid); } xfree (c->dek); c->dek = NULL; } } else c->dek->algo_info_printed = 1; } } } leave: /* Record infos from the packet. */ { struct symlist_item *symitem; symitem = xcalloc (1, sizeof *symitem); if (enc) { symitem->cipher_algo = enc->cipher_algo; symitem->cfb_mode = !enc->aead_algo; } else symitem->other_error = 1; symitem->next = c->symenc_list; c->symenc_list = symitem; } c->symkeys++; free_packet (pkt, NULL); } static void proc_pubkey_enc (ctrl_t ctrl, CTX c, PACKET *pkt) { PKT_pubkey_enc *enc; int result = 0; /* Check whether the secret key is available and store in this case. */ c->last_was_session_key = 1; enc = pkt->pkt.pubkey_enc; /*printf("enc: encrypted by a pubkey with keyid %08lX\n", enc->keyid[1] );*/ /* Hmmm: why do I have this algo check here - anyway there is * function to check it. */ if (opt.verbose) log_info (_("public key is %s\n"), keystr (enc->keyid)); if (is_status_enabled()) { char buf[50]; /* FIXME: For ECC support we need to map the OpenPGP algo number to the Libgcrypt defined one. This is due a chicken-egg problem: We need to have code in Libgcrypt for a new algorithm so to implement a proposed new algorithm before the IANA will finally assign an OpenPGP identifier. */ snprintf (buf, sizeof buf, "%08lX%08lX %d 0", (ulong)enc->keyid[0], (ulong)enc->keyid[1], enc->pubkey_algo); write_status_text (STATUS_ENC_TO, buf); } if (!opt.list_only && opt.override_session_key) { /* It does not make much sense to store the session key in * secure memory because it has already been passed on the * command line and the GCHQ knows about it. */ c->dek = xmalloc_clear (sizeof *c->dek); result = get_override_session_key (c->dek, opt.override_session_key); if (result) { xfree (c->dek); c->dek = NULL; } } else if (enc->pubkey_algo == PUBKEY_ALGO_ELGAMAL_E || enc->pubkey_algo == PUBKEY_ALGO_ECDH || enc->pubkey_algo == PUBKEY_ALGO_RSA || enc->pubkey_algo == PUBKEY_ALGO_RSA_E || enc->pubkey_algo == PUBKEY_ALGO_ELGAMAL) { /* Note that we also allow type 20 Elgamal keys for decryption. There are still a couple of those keys in active use as a subkey. */ /* FIXME: Store this all in a list and process it later so that we can prioritize what key to use. This gives a better user experience if wildcard keyids are used. */ if (!c->dek && ((!enc->keyid[0] && !enc->keyid[1]) || opt.try_all_secrets || have_secret_key_with_kid (enc->keyid))) { if(opt.list_only) result = GPG_ERR_MISSING_ACTION; /* fixme: Use better error code. */ else { c->dek = xmalloc_secure_clear (sizeof *c->dek); if ((result = get_session_key (ctrl, enc, c->dek))) { /* Error: Delete the DEK. */ xfree (c->dek); c->dek = NULL; } } } else result = GPG_ERR_NO_SECKEY; } else result = GPG_ERR_PUBKEY_ALGO; if (1) { /* Store it for later display. */ struct kidlist_item *x = xmalloc (sizeof *x); x->kid[0] = enc->keyid[0]; x->kid[1] = enc->keyid[1]; x->pubkey_algo = enc->pubkey_algo; x->reason = result; x->next = c->pkenc_list; c->pkenc_list = x; if (!result && opt.verbose > 1) log_info (_("public key encrypted data: good DEK\n")); } free_packet(pkt, NULL); } /* * Print the list of public key encrypted packets which we could * not decrypt. */ static void print_pkenc_list (ctrl_t ctrl, struct kidlist_item *list, int failed) { for (; list; list = list->next) { PKT_public_key *pk; const char *algstr; if (failed && !list->reason) continue; if (!failed && list->reason) continue; algstr = openpgp_pk_algo_name (list->pubkey_algo); pk = xmalloc_clear (sizeof *pk); if (!algstr) algstr = "[?]"; pk->pubkey_algo = list->pubkey_algo; if (!get_pubkey (ctrl, pk, list->kid)) { char *p; log_info (_("encrypted with %u-bit %s key, ID %s, created %s\n"), nbits_from_pk (pk), algstr, keystr_from_pk(pk), strtimestamp (pk->timestamp)); p = get_user_id_native (ctrl, list->kid); log_printf (_(" \"%s\"\n"), p); xfree (p); } else log_info (_("encrypted with %s key, ID %s\n"), algstr, keystr(list->kid)); free_public_key (pk); if (gpg_err_code (list->reason) == GPG_ERR_NO_SECKEY) { if (is_status_enabled()) { char buf[20]; snprintf (buf, sizeof buf, "%08lX%08lX", (ulong)list->kid[0], (ulong)list->kid[1]); write_status_text (STATUS_NO_SECKEY, buf); } } else if (gpg_err_code (list->reason) == GPG_ERR_MISSING_ACTION) { /* Not tested for secret key due to --list-only mode. */ } else if (list->reason) { log_info (_("public key decryption failed: %s\n"), gpg_strerror (list->reason)); if (gpg_err_source (list->reason) == GPG_ERR_SOURCE_SCD && gpg_err_code (list->reason) == GPG_ERR_INV_ID) print_further_info ("a reason might be a card with replaced keys"); write_status_error ("pkdecrypt_failed", list->reason); } } } static void proc_encrypted (CTX c, PACKET *pkt) { int result = 0; int early_plaintext = literals_seen; unsigned int compliance_de_vs = 0; if (pkt->pkttype == PKT_ENCRYPTED_AEAD) c->seen_pkt_encrypted_aead = 1; if (pkt->pkttype == PKT_ENCRYPTED_MDC) c->seen_pkt_encrypted_mdc = 1; if (early_plaintext) { log_info (_("WARNING: multiple plaintexts seen\n")); write_status_errcode ("decryption.early_plaintext", GPG_ERR_BAD_DATA); /* We fail only later so that we can print some more info first. */ } if (!opt.quiet) { if (c->symkeys>1) log_info (_("encrypted with %lu passphrases\n"), c->symkeys); else if (c->symkeys == 1) log_info (_("encrypted with 1 passphrase\n")); print_pkenc_list (c->ctrl, c->pkenc_list, 1 ); print_pkenc_list (c->ctrl, c->pkenc_list, 0 ); } /* FIXME: Figure out the session key by looking at all pkenc packets. */ write_status (STATUS_BEGIN_DECRYPTION); /*log_debug("dat: %sencrypted data\n", c->dek?"":"conventional ");*/ if (opt.list_only) result = -1; else if (!c->dek && !c->last_was_session_key) { int algo; STRING2KEY s2kbuf; STRING2KEY *s2k = NULL; int canceled; if (opt.override_session_key) { c->dek = xmalloc_clear (sizeof *c->dek); result = get_override_session_key (c->dek, opt.override_session_key); if (result) { xfree (c->dek); c->dek = NULL; } } else { /* Assume this is old style conventional encrypted data. */ algo = opt.def_cipher_algo; if (algo) log_info (_("assuming %s encrypted data\n"), openpgp_cipher_algo_name (algo)); else if (openpgp_cipher_test_algo (CIPHER_ALGO_IDEA)) { algo = opt.def_cipher_algo; if (!algo) algo = opt.s2k_cipher_algo; log_info (_("IDEA cipher unavailable, " "optimistically attempting to use %s instead\n"), openpgp_cipher_algo_name (algo)); } else { algo = CIPHER_ALGO_IDEA; if (!opt.s2k_digest_algo) { /* If no digest is given we assume SHA-1. */ s2kbuf.mode = 0; s2kbuf.hash_algo = DIGEST_ALGO_SHA1; s2k = &s2kbuf; } log_info (_("assuming %s encrypted data\n"), "IDEA"); } c->dek = passphrase_to_dek (algo, s2k, 0, 0, NULL, GETPASSWORD_FLAG_SYMDECRYPT, &canceled); if (c->dek) c->dek->algo_info_printed = 1; else if (canceled) result = gpg_error (GPG_ERR_CANCELED); else result = gpg_error (GPG_ERR_INV_PASSPHRASE); } } else if (!c->dek) result = GPG_ERR_NO_SECKEY; /* Compute compliance with CO_DE_VS. */ if (!result && is_status_enabled () /* Overriding session key voids compliance. */ && !opt.override_session_key /* Check symmetric cipher. */ && gnupg_gcrypt_is_compliant (CO_DE_VS) && gnupg_cipher_is_compliant (CO_DE_VS, c->dek->algo, GCRY_CIPHER_MODE_CFB)) { struct kidlist_item *i; struct symlist_item *si; int compliant = 1; PKT_public_key *pk = xmalloc (sizeof *pk); if ( !(c->pkenc_list || c->symkeys) ) log_debug ("%s: where else did the session key come from?\n", __func__); /* Check that all seen symmetric key packets use compliant * algos. This is so that no non-compliant encrypted session * key can be sneaked in. */ for (si = c->symenc_list; si && compliant; si = si->next) { if (!si->cfb_mode || !gnupg_cipher_is_compliant (CO_DE_VS, si->cipher_algo, GCRY_CIPHER_MODE_CFB)) compliant = 0; } /* Check that every public key used to encrypt the session key * is compliant. */ for (i = c->pkenc_list; i && compliant; i = i->next) { memset (pk, 0, sizeof *pk); pk->pubkey_algo = i->pubkey_algo; if (get_pubkey (c->ctrl, pk, i->kid) != 0 || ! gnupg_pk_is_compliant (CO_DE_VS, pk->pubkey_algo, 0, pk->pkey, nbits_from_pk (pk), NULL)) compliant = 0; release_public_key_parts (pk); } xfree (pk); if (compliant) compliance_de_vs |= 1; } if (!result) { int compl_error; result = decrypt_data (c->ctrl, c, pkt->pkt.encrypted, c->dek, &compl_error); if (!result && !compl_error) compliance_de_vs |= 2; } /* Trigger the deferred error. */ if (!result && early_plaintext) result = gpg_error (GPG_ERR_BAD_DATA); if (result == -1) ; else if (!result && !opt.ignore_mdc_error && !pkt->pkt.encrypted->mdc_method && !pkt->pkt.encrypted->aead_algo) { /* The message has been decrypted but does not carry an MDC. * The option --ignore-mdc-error has also not been used. To * avoid attacks changing an MDC message to a non-MDC message, * we fail here. */ log_error (_("WARNING: message was not integrity protected\n")); if (!pkt->pkt.encrypted->mdc_method && (openpgp_cipher_get_algo_blklen (c->dek->algo) == 8 || c->dek->algo == CIPHER_ALGO_TWOFISH)) { /* Before 2.2.8 we did not fail hard for a missing MDC if * one of the old ciphers where used. Although these cases * are rare in practice we print a hint on how to decrypt * such messages. */ log_string (GPGRT_LOG_INFO, _("Hint: If this message was created before the year 2003 it is\n" "likely that this message is legitimate. This is because back\n" "then integrity protection was not widely used.\n")); log_info (_("Use the option '%s' to decrypt anyway.\n"), "--ignore-mdc-error"); write_status_errcode ("nomdc_with_legacy_cipher", GPG_ERR_DECRYPT_FAILED); } log_info (_("decryption forced to fail!\n")); write_status (STATUS_DECRYPTION_FAILED); } else if (!result || (gpg_err_code (result) == GPG_ERR_BAD_SIGNATURE && !pkt->pkt.encrypted->aead_algo && opt.ignore_mdc_error)) { /* All is fine or for an MDC message the MDC failed but the * --ignore-mdc-error option is active. For compatibility * reasons we issue GOODMDC also for AEAD messages. */ write_status (STATUS_DECRYPTION_OKAY); if (opt.verbose > 1) log_info(_("decryption okay\n")); if (pkt->pkt.encrypted->aead_algo) { write_status (STATUS_GOODMDC); compliance_de_vs |= 4; } else if (pkt->pkt.encrypted->mdc_method && !result) { write_status (STATUS_GOODMDC); compliance_de_vs |= 4; } else log_info (_("WARNING: message was not integrity protected\n")); } else if (gpg_err_code (result) == GPG_ERR_BAD_SIGNATURE || gpg_err_code (result) == GPG_ERR_TRUNCATED) { glo_ctrl.lasterr = result; log_error (_("WARNING: encrypted message has been manipulated!\n")); write_status (STATUS_BADMDC); write_status (STATUS_DECRYPTION_FAILED); } else { if (gpg_err_code (result) == GPG_ERR_BAD_KEY || gpg_err_code (result) == GPG_ERR_CHECKSUM || gpg_err_code (result) == GPG_ERR_CIPHER_ALGO) { if (c->symkeys) write_status_text (STATUS_ERROR, "symkey_decrypt.maybe_error" " 11_BAD_PASSPHRASE"); if (*c->dek->s2k_cacheid != '\0') { if (opt.debug) log_debug ("cleared passphrase cached with ID: %s\n", c->dek->s2k_cacheid); passphrase_clear_cache (c->dek->s2k_cacheid); } } glo_ctrl.lasterr = result; write_status (STATUS_DECRYPTION_FAILED); log_error (_("decryption failed: %s\n"), gpg_strerror (result)); /* Hmmm: does this work when we have encrypted using multiple * ways to specify the session key (symmmetric and PK). */ } /* If we concluded that the decryption was compliant, issue a * compliance status before the end of the decryption status. */ if (compliance_de_vs == (4|2|1)) { write_status_strings (STATUS_DECRYPTION_COMPLIANCE_MODE, gnupg_status_compliance_flag (CO_DE_VS), NULL); } xfree (c->dek); c->dek = NULL; free_packet (pkt, NULL); c->last_was_session_key = 0; write_status (STATUS_END_DECRYPTION); /* Bump the counter even if we have not seen a literal data packet * inside an encryption container. This acts as a sentinel in case * a misplace extra literal data packets follows after this * encrypted packet. */ literals_seen++; /* The --require-compliance option allows to simplify decryption in * de-vs compliance mode by just looking at the exit status. */ if (opt.flags.require_compliance && opt.compliance == CO_DE_VS && compliance_de_vs != (4|2|1)) { - log_error (_("operation forced to fail due to" - " unfulfilled compliance rules\n")); - g10_errors_seen = 1; + compliance_failure (); } } static int have_seen_pkt_encrypted_aead_or_mdc( CTX c ) { CTX cc; for (cc = c; cc; cc = cc->anchor) { if (cc->seen_pkt_encrypted_aead) return 1; if (cc->seen_pkt_encrypted_mdc) return 1; } return 0; } static void proc_plaintext( CTX c, PACKET *pkt ) { PKT_plaintext *pt = pkt->pkt.plaintext; int any, clearsig, rc; kbnode_t n; /* This is a literal data packet. Bumb a counter for later checks. */ literals_seen++; if (pt->namelen == 8 && !memcmp( pt->name, "_CONSOLE", 8)) log_info (_("Note: sender requested \"for-your-eyes-only\"\n")); else if (opt.verbose) { /* We don't use print_utf8_buffer because that would require a * string change which we don't want in 2.2. It is also not * clear whether the filename is always utf-8 encoded. */ char *tmp = make_printable_string (pt->name, pt->namelen, 0); log_info (_("original file name='%.*s'\n"), (int)strlen (tmp), tmp); xfree (tmp); } free_md_filter_context (&c->mfx); if (gcry_md_open (&c->mfx.md, 0, 0)) BUG (); /* fixme: we may need to push the textfilter if we have sigclass 1 * and no armoring - Not yet tested * Hmmm, why don't we need it at all if we have sigclass 1 * Should we assume that plaintext in mode 't' has always sigclass 1?? * See: Russ Allbery's mail 1999-02-09 */ any = clearsig = 0; for (n=c->list; n; n = n->next ) { if (n->pkt->pkttype == PKT_ONEPASS_SIG) { /* The onepass signature case. */ if (n->pkt->pkt.onepass_sig->digest_algo) { if (!opt.skip_verify) gcry_md_enable (c->mfx.md, n->pkt->pkt.onepass_sig->digest_algo); any = 1; } } else if (n->pkt->pkttype == PKT_GPG_CONTROL && n->pkt->pkt.gpg_control->control == CTRLPKT_CLEARSIGN_START) { /* The clearsigned message case. */ size_t datalen = n->pkt->pkt.gpg_control->datalen; const byte *data = n->pkt->pkt.gpg_control->data; /* Check that we have at least the sigclass and one hash. */ if (datalen < 2) log_fatal ("invalid control packet CTRLPKT_CLEARSIGN_START\n"); /* Note that we don't set the clearsig flag for not-dash-escaped * documents. */ clearsig = (*data == 0x01); for (data++, datalen--; datalen; datalen--, data++) if (!opt.skip_verify) gcry_md_enable (c->mfx.md, *data); any = 1; break; /* Stop here as one-pass signature packets are not expected. */ } else if (n->pkt->pkttype == PKT_SIGNATURE) { /* The SIG+LITERAL case that PGP used to use. */ if (!opt.skip_verify) gcry_md_enable (c->mfx.md, n->pkt->pkt.signature->digest_algo); any = 1; } } if (!any && !opt.skip_verify && !have_seen_pkt_encrypted_aead_or_mdc(c)) { /* This is for the old GPG LITERAL+SIG case. It's not legal according to 2440, so hopefully it won't come up that often. There is no good way to specify what algorithms to use in that case, so these there are the historical answer. */ gcry_md_enable (c->mfx.md, DIGEST_ALGO_RMD160); gcry_md_enable (c->mfx.md, DIGEST_ALGO_SHA1); } if (DBG_HASHING) { gcry_md_debug (c->mfx.md, "verify"); if (c->mfx.md2) gcry_md_debug (c->mfx.md2, "verify2"); } rc=0; if (literals_seen > 1) { log_info (_("WARNING: multiple plaintexts seen\n")); if (!opt.flags.allow_multiple_messages) { write_status_text (STATUS_ERROR, "proc_pkt.plaintext 89_BAD_DATA"); log_inc_errorcount (); rc = gpg_error (GPG_ERR_UNEXPECTED); } } if (!rc) { /* It we are in --verify mode, we do not want to output the * signed text. However, if --output is also used we do what * has been requested and write out the signed data. */ rc = handle_plaintext (pt, &c->mfx, (opt.outfp || opt.outfile)? 0 : c->sigs_only, clearsig); if (gpg_err_code (rc) == GPG_ERR_EACCES && !c->sigs_only) { /* Can't write output but we hash it anyway to check the signature. */ rc = handle_plaintext( pt, &c->mfx, 1, clearsig ); } } if (rc) log_error ("handle plaintext failed: %s\n", gpg_strerror (rc)); free_packet (pkt, NULL); c->last_was_session_key = 0; /* We add a marker control packet instead of the plaintext packet. * This is so that we can later detect invalid packet sequences. */ n = new_kbnode (create_gpg_control (CTRLPKT_PLAINTEXT_MARK, NULL, 0)); if (c->list) add_kbnode (c->list, n); else c->list = n; } static int proc_compressed_cb (iobuf_t a, void *info) { if ( ((CTX)info)->signed_data.used && ((CTX)info)->signed_data.data_fd != -1) return proc_signature_packets_by_fd (((CTX)info)->ctrl, info, a, ((CTX)info)->signed_data.data_fd); else return proc_signature_packets (((CTX)info)->ctrl, info, a, ((CTX)info)->signed_data.data_names, ((CTX)info)->sigfilename ); } static int proc_encrypt_cb (iobuf_t a, void *info ) { CTX c = info; return proc_encryption_packets (c->ctrl, info, a ); } static int proc_compressed (CTX c, PACKET *pkt) { PKT_compressed *zd = pkt->pkt.compressed; int rc; /*printf("zip: compressed data packet\n");*/ if (c->sigs_only) rc = handle_compressed (c->ctrl, c, zd, proc_compressed_cb, c); else if( c->encrypt_only ) rc = handle_compressed (c->ctrl, c, zd, proc_encrypt_cb, c); else rc = handle_compressed (c->ctrl, c, zd, NULL, NULL); if (gpg_err_code (rc) == GPG_ERR_BAD_DATA) { if (!c->any.uncompress_failed) { CTX cc; for (cc=c; cc; cc = cc->anchor) cc->any.uncompress_failed = 1; log_error ("uncompressing failed: %s\n", gpg_strerror (rc)); } } else if (rc) log_error ("uncompressing failed: %s\n", gpg_strerror (rc)); free_packet (pkt, NULL); c->last_was_session_key = 0; return rc; } /* * Check the signature. If R_PK is not NULL a copy of the public key * used to verify the signature will be stored there, or NULL if not * found. If FORCED_PK is not NULL, this public key is used to verify * _data signatures_ and no key lookup is done. Returns: 0 = valid * signature or an error code */ static int do_check_sig (CTX c, kbnode_t node, PKT_public_key *forced_pk, int *is_selfsig, int *is_expkey, int *is_revkey, PKT_public_key **r_pk) { PKT_signature *sig; gcry_md_hd_t md = NULL; gcry_md_hd_t md2 = NULL; gcry_md_hd_t md_good = NULL; int algo, rc; if (r_pk) *r_pk = NULL; log_assert (node->pkt->pkttype == PKT_SIGNATURE); if (is_selfsig) *is_selfsig = 0; sig = node->pkt->pkt.signature; algo = sig->digest_algo; rc = openpgp_md_test_algo (algo); if (rc) return rc; if (sig->sig_class == 0x00) { if (c->mfx.md) { if (gcry_md_copy (&md, c->mfx.md )) BUG (); } else /* detached signature */ { /* check_signature() will enable the md. */ if (gcry_md_open (&md, 0, 0 )) BUG (); } } else if (sig->sig_class == 0x01) { /* How do we know that we have to hash the (already hashed) text in canonical mode ??? (calculating both modes???) */ if (c->mfx.md) { if (gcry_md_copy (&md, c->mfx.md )) BUG (); if (c->mfx.md2 && gcry_md_copy (&md2, c->mfx.md2)) BUG (); } else /* detached signature */ { log_debug ("Do we really need this here?"); /* check_signature() will enable the md*/ if (gcry_md_open (&md, 0, 0 )) BUG (); if (gcry_md_open (&md2, 0, 0 )) BUG (); } } else if ((sig->sig_class&~3) == 0x10 || sig->sig_class == 0x18 || sig->sig_class == 0x1f || sig->sig_class == 0x20 || sig->sig_class == 0x28 || sig->sig_class == 0x30) { if (c->list->pkt->pkttype == PKT_PUBLIC_KEY || c->list->pkt->pkttype == PKT_PUBLIC_SUBKEY) { return check_key_signature (c->ctrl, c->list, node, is_selfsig); } else if (sig->sig_class == 0x20) { log_error (_("standalone revocation - " "use \"gpg --import\" to apply\n")); return GPG_ERR_NOT_PROCESSED; } else { log_error ("invalid root packet for sigclass %02x\n", sig->sig_class); return GPG_ERR_SIG_CLASS; } } else return GPG_ERR_SIG_CLASS; /* We only get here if we are checking the signature of a binary (0x00) or text document (0x01). */ rc = check_signature2 (c->ctrl, sig, md, forced_pk, NULL, is_expkey, is_revkey, r_pk); if (! rc) md_good = md; else if (gpg_err_code (rc) == GPG_ERR_BAD_SIGNATURE && md2) { PKT_public_key *pk2; rc = check_signature2 (c->ctrl, sig, md2, forced_pk, NULL, is_expkey, is_revkey, r_pk? &pk2 : NULL); if (!rc) { md_good = md2; if (r_pk) { free_public_key (*r_pk); *r_pk = pk2; } } } if (md_good) { unsigned char *buffer = gcry_md_read (md_good, sig->digest_algo); sig->digest_len = gcry_md_get_algo_dlen (map_md_openpgp_to_gcry (algo)); memcpy (sig->digest, buffer, sig->digest_len); } gcry_md_close (md); gcry_md_close (md2); return rc; } static void print_userid (PACKET *pkt) { if (!pkt) BUG(); if (pkt->pkttype != PKT_USER_ID) { es_printf ("ERROR: unexpected packet type %d", pkt->pkttype ); return; } if (opt.with_colons) { if (pkt->pkt.user_id->attrib_data) es_printf("%u %lu", pkt->pkt.user_id->numattribs, pkt->pkt.user_id->attrib_len); else es_write_sanitized (es_stdout, pkt->pkt.user_id->name, pkt->pkt.user_id->len, ":", NULL); } else print_utf8_buffer (es_stdout, pkt->pkt.user_id->name, pkt->pkt.user_id->len ); } /* * List the keyblock in a user friendly way */ static void list_node (CTX c, kbnode_t node) { if (!node) ; else if (node->pkt->pkttype == PKT_PUBLIC_KEY || node->pkt->pkttype == PKT_PUBLIC_SUBKEY) { PKT_public_key *pk = node->pkt->pkt.public_key; if (opt.with_colons) { u32 keyid[2]; keyid_from_pk( pk, keyid ); if (pk->flags.primary) c->trustletter = (opt.fast_list_mode ? 0 : get_validity_info (c->ctrl, node->pkt->pkttype == PKT_PUBLIC_KEY ? node : NULL, pk, NULL)); es_printf ("%s:", pk->flags.primary? "pub":"sub" ); if (c->trustletter) es_putc (c->trustletter, es_stdout); es_printf (":%u:%d:%08lX%08lX:%s:%s::", nbits_from_pk( pk ), pk->pubkey_algo, (ulong)keyid[0],(ulong)keyid[1], colon_datestr_from_pk( pk ), colon_strtime (pk->expiredate) ); if (pk->flags.primary && !opt.fast_list_mode) es_putc (get_ownertrust_info (c->ctrl, pk, 1), es_stdout); es_putc (':', es_stdout); es_putc ('\n', es_stdout); } else { print_key_line (c->ctrl, es_stdout, pk, 0); } if (opt.keyid_format == KF_NONE && !opt.with_colons) ; /* Already printed. */ else if ((pk->flags.primary && opt.fingerprint) || opt.fingerprint > 1) print_fingerprint (c->ctrl, NULL, pk, 0); if (pk->flags.primary) { int kl = opt.keyid_format == KF_NONE? 0 : keystrlen (); /* Now list all userids with their signatures. */ for (node = node->next; node; node = node->next) { if (node->pkt->pkttype == PKT_SIGNATURE) { list_node (c, node ); } else if (node->pkt->pkttype == PKT_USER_ID) { if (opt.with_colons) es_printf ("%s:::::::::", node->pkt->pkt.user_id->attrib_data?"uat":"uid"); else es_printf ("uid%*s", kl + (opt.legacy_list_mode? 9:11), "" ); print_userid (node->pkt); if (opt.with_colons) es_putc (':', es_stdout); es_putc ('\n', es_stdout); } else if (node->pkt->pkttype == PKT_PUBLIC_SUBKEY) { list_node(c, node ); } } } } else if (node->pkt->pkttype == PKT_SECRET_KEY || node->pkt->pkttype == PKT_SECRET_SUBKEY) { log_debug ("FIXME: No way to print secret key packets here\n"); /* fixme: We may use a function to turn a secret key packet into a public key one and use that here. */ } else if (node->pkt->pkttype == PKT_SIGNATURE) { PKT_signature *sig = node->pkt->pkt.signature; int is_selfsig = 0; int rc2 = 0; size_t n; char *p; int sigrc = ' '; if (!opt.verbose) return; if (sig->sig_class == 0x20 || sig->sig_class == 0x30) es_fputs ("rev", es_stdout); else es_fputs ("sig", es_stdout); if (opt.check_sigs) { fflush (stdout); rc2 = do_check_sig (c, node, NULL, &is_selfsig, NULL, NULL, NULL); switch (gpg_err_code (rc2)) { case 0: sigrc = '!'; break; case GPG_ERR_BAD_SIGNATURE: sigrc = '-'; break; case GPG_ERR_NO_PUBKEY: case GPG_ERR_UNUSABLE_PUBKEY: sigrc = '?'; break; default: sigrc = '%'; break; } } else /* Check whether this is a self signature. */ { u32 keyid[2]; if (c->list->pkt->pkttype == PKT_PUBLIC_KEY || c->list->pkt->pkttype == PKT_SECRET_KEY ) { keyid_from_pk (c->list->pkt->pkt.public_key, keyid); if (keyid[0] == sig->keyid[0] && keyid[1] == sig->keyid[1]) is_selfsig = 1; } } if (opt.with_colons) { es_putc (':', es_stdout); if (sigrc != ' ') es_putc (sigrc, es_stdout); es_printf ("::%d:%08lX%08lX:%s:%s:", sig->pubkey_algo, (ulong)sig->keyid[0], (ulong)sig->keyid[1], colon_datestr_from_sig (sig), colon_expirestr_from_sig (sig)); if (sig->trust_depth || sig->trust_value) es_printf ("%d %d",sig->trust_depth,sig->trust_value); es_putc (':', es_stdout); if (sig->trust_regexp) es_write_sanitized (es_stdout, sig->trust_regexp, strlen (sig->trust_regexp), ":", NULL); es_putc (':', es_stdout); } else es_printf ("%c %s %s ", sigrc, keystr (sig->keyid), datestr_from_sig(sig)); if (sigrc == '%') es_printf ("[%s] ", gpg_strerror (rc2) ); else if (sigrc == '?') ; else if (is_selfsig) { if (opt.with_colons) es_putc (':', es_stdout); es_fputs (sig->sig_class == 0x18? "[keybind]":"[selfsig]", es_stdout); if (opt.with_colons) es_putc (':', es_stdout); } else if (!opt.fast_list_mode) { p = get_user_id (c->ctrl, sig->keyid, &n, NULL); es_write_sanitized (es_stdout, p, n, opt.with_colons?":":NULL, NULL ); xfree (p); } if (opt.with_colons) es_printf (":%02x%c:", sig->sig_class, sig->flags.exportable?'x':'l'); es_putc ('\n', es_stdout); } else log_error ("invalid node with packet of type %d\n", node->pkt->pkttype); } int proc_packets (ctrl_t ctrl, void *anchor, iobuf_t a ) { int rc; CTX c = xmalloc_clear (sizeof *c); c->ctrl = ctrl; c->anchor = anchor; rc = do_proc_packets (ctrl, c, a); xfree (c); return rc; } int proc_signature_packets (ctrl_t ctrl, void *anchor, iobuf_t a, strlist_t signedfiles, const char *sigfilename ) { CTX c = xmalloc_clear (sizeof *c); int rc; c->ctrl = ctrl; c->anchor = anchor; c->sigs_only = 1; c->signed_data.data_fd = -1; c->signed_data.data_names = signedfiles; c->signed_data.used = !!signedfiles; c->sigfilename = sigfilename; rc = do_proc_packets (ctrl, c, a); /* If we have not encountered any signature we print an error messages, send a NODATA status back and return an error code. Using log_error is required because verify_files does not check error codes for each file but we want to terminate the process with an error. */ if (!rc && !c->any.sig_seen) { write_status_text (STATUS_NODATA, "4"); log_error (_("no signature found\n")); rc = GPG_ERR_NO_DATA; } /* Propagate the signature seen flag upward. Do this only on success so that we won't issue the nodata status several times. */ if (!rc && c->anchor && c->any.sig_seen) c->anchor->any.sig_seen = 1; xfree (c); return rc; } int proc_signature_packets_by_fd (ctrl_t ctrl, void *anchor, iobuf_t a, int signed_data_fd ) { int rc; CTX c; c = xtrycalloc (1, sizeof *c); if (!c) return gpg_error_from_syserror (); c->ctrl = ctrl; c->anchor = anchor; c->sigs_only = 1; c->signed_data.data_fd = signed_data_fd; c->signed_data.data_names = NULL; c->signed_data.used = (signed_data_fd != -1); rc = do_proc_packets (ctrl, c, a); /* If we have not encountered any signature we print an error messages, send a NODATA status back and return an error code. Using log_error is required because verify_files does not check error codes for each file but we want to terminate the process with an error. */ if (!rc && !c->any.sig_seen) { write_status_text (STATUS_NODATA, "4"); log_error (_("no signature found\n")); rc = gpg_error (GPG_ERR_NO_DATA); } /* Propagate the signature seen flag upward. Do this only on success so that we won't issue the nodata status several times. */ if (!rc && c->anchor && c->any.sig_seen) c->anchor->any.sig_seen = 1; xfree ( c ); return rc; } int proc_encryption_packets (ctrl_t ctrl, void *anchor, iobuf_t a ) { CTX c = xmalloc_clear (sizeof *c); int rc; c->ctrl = ctrl; c->anchor = anchor; c->encrypt_only = 1; rc = do_proc_packets (ctrl, c, a); xfree (c); return rc; } static int check_nesting (CTX c) { int level; for (level=0; c; c = c->anchor) level++; if (level > MAX_NESTING_DEPTH) { log_error ("input data with too deeply nested packets\n"); write_status_text (STATUS_UNEXPECTED, "1"); return GPG_ERR_BAD_DATA; } return 0; } static int do_proc_packets (ctrl_t ctrl, CTX c, iobuf_t a) { PACKET *pkt; struct parse_packet_ctx_s parsectx; int rc = 0; int any_data = 0; int newpkt; rc = check_nesting (c); if (rc) return rc; pkt = xmalloc( sizeof *pkt ); c->iobuf = a; init_packet(pkt); init_parse_packet (&parsectx, a); while ((rc=parse_packet (&parsectx, pkt)) != -1) { any_data = 1; if (rc) { free_packet (pkt, &parsectx); /* Stop processing when an invalid packet has been encountered * but don't do so when we are doing a --list-packets. */ if (gpg_err_code (rc) == GPG_ERR_INV_PACKET && opt.list_packets == 0) break; continue; } newpkt = -1; if (opt.list_packets) { switch (pkt->pkttype) { case PKT_PUBKEY_ENC: proc_pubkey_enc (ctrl, c, pkt); break; case PKT_SYMKEY_ENC: proc_symkey_enc (c, pkt); break; case PKT_ENCRYPTED: case PKT_ENCRYPTED_MDC: case PKT_ENCRYPTED_AEAD:proc_encrypted (c, pkt); break; case PKT_COMPRESSED: rc = proc_compressed (c, pkt); break; default: newpkt = 0; break; } } else if (c->sigs_only) { switch (pkt->pkttype) { case PKT_PUBLIC_KEY: case PKT_SECRET_KEY: case PKT_USER_ID: case PKT_SYMKEY_ENC: case PKT_PUBKEY_ENC: case PKT_ENCRYPTED: case PKT_ENCRYPTED_MDC: case PKT_ENCRYPTED_AEAD: write_status_text( STATUS_UNEXPECTED, "0" ); rc = GPG_ERR_UNEXPECTED; goto leave; case PKT_SIGNATURE: newpkt = add_signature (c, pkt); break; case PKT_PLAINTEXT: proc_plaintext (c, pkt); break; case PKT_COMPRESSED: rc = proc_compressed (c, pkt); break; case PKT_ONEPASS_SIG: newpkt = add_onepass_sig (c, pkt); break; case PKT_GPG_CONTROL: newpkt = add_gpg_control (c, pkt); break; default: newpkt = 0; break; } } else if (c->encrypt_only) { switch (pkt->pkttype) { case PKT_PUBLIC_KEY: case PKT_SECRET_KEY: case PKT_USER_ID: write_status_text (STATUS_UNEXPECTED, "0"); rc = GPG_ERR_UNEXPECTED; goto leave; case PKT_SIGNATURE: newpkt = add_signature (c, pkt); break; case PKT_SYMKEY_ENC: proc_symkey_enc (c, pkt); break; case PKT_PUBKEY_ENC: proc_pubkey_enc (ctrl, c, pkt); break; case PKT_ENCRYPTED: case PKT_ENCRYPTED_MDC: case PKT_ENCRYPTED_AEAD: proc_encrypted (c, pkt); break; case PKT_PLAINTEXT: proc_plaintext (c, pkt); break; case PKT_COMPRESSED: rc = proc_compressed (c, pkt); break; case PKT_ONEPASS_SIG: newpkt = add_onepass_sig (c, pkt); break; case PKT_GPG_CONTROL: newpkt = add_gpg_control (c, pkt); break; default: newpkt = 0; break; } } else { switch (pkt->pkttype) { case PKT_PUBLIC_KEY: case PKT_SECRET_KEY: release_list (c); c->list = new_kbnode (pkt); newpkt = 1; break; case PKT_PUBLIC_SUBKEY: case PKT_SECRET_SUBKEY: newpkt = add_subkey (c, pkt); break; case PKT_USER_ID: newpkt = add_user_id (c, pkt); break; case PKT_SIGNATURE: newpkt = add_signature (c, pkt); break; case PKT_PUBKEY_ENC: proc_pubkey_enc (ctrl, c, pkt); break; case PKT_SYMKEY_ENC: proc_symkey_enc (c, pkt); break; case PKT_ENCRYPTED: case PKT_ENCRYPTED_MDC: case PKT_ENCRYPTED_AEAD: proc_encrypted (c, pkt); break; case PKT_PLAINTEXT: proc_plaintext (c, pkt); break; case PKT_COMPRESSED: rc = proc_compressed (c, pkt); break; case PKT_ONEPASS_SIG: newpkt = add_onepass_sig (c, pkt); break; case PKT_GPG_CONTROL: newpkt = add_gpg_control(c, pkt); break; case PKT_RING_TRUST: newpkt = add_ring_trust (c, pkt); break; default: newpkt = 0; break; } } if (rc) goto leave; /* This is a very ugly construct and frankly, I don't remember why * I used it. Adding the MDC check here is a hack. * The right solution is to initiate another context for encrypted * packet and not to reuse the current one ... It works right * when there is a compression packet between which adds just * an extra layer. * Hmmm: Rewrite this whole module here?? */ if (pkt->pkttype != PKT_SIGNATURE && pkt->pkttype != PKT_MDC) c->any.data = (pkt->pkttype == PKT_PLAINTEXT); if (newpkt == -1) ; else if (newpkt) { pkt = xmalloc (sizeof *pkt); init_packet (pkt); } else free_packet (pkt, &parsectx); } if (rc == GPG_ERR_INV_PACKET) write_status_text (STATUS_NODATA, "3"); if (any_data) rc = 0; else if (rc == -1) write_status_text (STATUS_NODATA, "2"); leave: release_list (c); xfree(c->dek); free_packet (pkt, &parsectx); deinit_parse_packet (&parsectx); xfree (pkt); free_md_filter_context (&c->mfx); return rc; } /* Helper for pka_uri_from_sig to parse the to-be-verified address out of the notation data. */ static pka_info_t * get_pka_address (PKT_signature *sig) { pka_info_t *pka = NULL; struct notation *nd,*notation; notation=sig_to_notation(sig); for(nd=notation;nd;nd=nd->next) { if(strcmp(nd->name,"pka-address@gnupg.org")!=0) continue; /* Not the notation we want. */ /* For now we only use the first valid PKA notation. In future we might want to keep additional PKA notations in a linked list. */ if (is_valid_mailbox (nd->value)) { pka = xmalloc (sizeof *pka + strlen(nd->value)); pka->valid = 0; pka->checked = 0; pka->uri = NULL; strcpy (pka->email, nd->value); break; } } free_notation(notation); return pka; } /* Return the URI from a DNS PKA record. If this record has already be retrieved for the signature we merely return it; if not we go out and try to get that DNS record. */ static const char * pka_uri_from_sig (CTX c, PKT_signature *sig) { if (!sig->flags.pka_tried) { log_assert (!sig->pka_info); sig->flags.pka_tried = 1; sig->pka_info = get_pka_address (sig); if (sig->pka_info) { char *url; unsigned char *fpr; size_t fprlen; if (!gpg_dirmngr_get_pka (c->ctrl, sig->pka_info->email, &fpr, &fprlen, &url)) { if (fpr && fprlen == sizeof sig->pka_info->fpr) { memcpy (sig->pka_info->fpr, fpr, fprlen); if (url) { sig->pka_info->valid = 1; if (!*url) xfree (url); else sig->pka_info->uri = url; url = NULL; } } xfree (fpr); xfree (url); } } } return sig->pka_info? sig->pka_info->uri : NULL; } /* Return true if the AKL has the WKD method specified. */ static int akl_has_wkd_method (void) { struct akl *akl; for (akl = opt.auto_key_locate; akl; akl = akl->next) if (akl->type == AKL_WKD) return 1; return 0; } /* Return the ISSUER fingerprint buffer and its lenbgth at R_LEN. * Returns NULL if not available. The returned buffer is valid as * long as SIG is not modified. */ const byte * issuer_fpr_raw (PKT_signature *sig, size_t *r_len) { const byte *p; size_t n; p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_ISSUER_FPR, &n); if (p && n == 21 && p[0] == 4) { *r_len = n - 1; return p+1; } *r_len = 0; return NULL; } /* Return the ISSUER fingerprint string in human readable format if * available. Caller must release the string. */ /* FIXME: Move to another file. */ char * issuer_fpr_string (PKT_signature *sig) { const byte *p; size_t n; p = issuer_fpr_raw (sig, &n); return p? bin2hex (p, n, NULL) : NULL; } static void print_good_bad_signature (int statno, const char *keyid_str, kbnode_t un, PKT_signature *sig, int rc) { char *p; write_status_text_and_buffer (statno, keyid_str, un? un->pkt->pkt.user_id->name:"[?]", un? un->pkt->pkt.user_id->len:3, -1); if (un) p = utf8_to_native (un->pkt->pkt.user_id->name, un->pkt->pkt.user_id->len, 0); else p = xstrdup ("[?]"); if (rc) log_info (_("BAD signature from \"%s\""), p); else if (sig->flags.expired) log_info (_("Expired signature from \"%s\""), p); else log_info (_("Good signature from \"%s\""), p); xfree (p); } static int check_sig_and_print (CTX c, kbnode_t node) { PKT_signature *sig = node->pkt->pkt.signature; const char *astr; int rc; int is_expkey = 0; int is_revkey = 0; char *issuer_fpr = NULL; PKT_public_key *pk = NULL; /* The public key for the signature or NULL. */ kbnode_t included_keyblock = NULL; if (opt.skip_verify) { log_info(_("signature verification suppressed\n")); return 0; } /* Check that the message composition is valid. * * Per RFC-2440bis (-15) allowed: * * S{1,n} -- detached signature. * S{1,n} P -- old style PGP2 signature * O{1,n} P S{1,n} -- standard OpenPGP signature. * C P S{1,n} -- cleartext signature. * * * O = One-Pass Signature packet. * S = Signature packet. * P = OpenPGP Message packet (Encrypted | Compressed | Literal) * (Note that the current rfc2440bis draft also allows * for a signed message but that does not work as it * introduces ambiguities.) * We keep track of these packages using the marker packet * CTRLPKT_PLAINTEXT_MARK. * C = Marker packet for cleartext signatures. * * We reject all other messages. * * Actually we are calling this too often, i.e. for verification of * each message but better have some duplicate work than to silently * introduce a bug here. */ { kbnode_t n; int n_onepass, n_sig; /* log_debug ("checking signature packet composition\n"); */ /* dump_kbnode (c->list); */ n = c->list; log_assert (n); if ( n->pkt->pkttype == PKT_SIGNATURE ) { /* This is either "S{1,n}" case (detached signature) or "S{1,n} P" (old style PGP2 signature). */ for (n = n->next; n; n = n->next) if (n->pkt->pkttype != PKT_SIGNATURE) break; if (!n) ; /* Okay, this is a detached signature. */ else if (n->pkt->pkttype == PKT_GPG_CONTROL && (n->pkt->pkt.gpg_control->control == CTRLPKT_PLAINTEXT_MARK) ) { if (n->next) goto ambiguous; /* We only allow one P packet. */ } else goto ambiguous; } else if (n->pkt->pkttype == PKT_ONEPASS_SIG) { /* This is the "O{1,n} P S{1,n}" case (standard signature). */ for (n_onepass=1, n = n->next; n && n->pkt->pkttype == PKT_ONEPASS_SIG; n = n->next) n_onepass++; if (!n || !(n->pkt->pkttype == PKT_GPG_CONTROL && (n->pkt->pkt.gpg_control->control == CTRLPKT_PLAINTEXT_MARK))) goto ambiguous; for (n_sig=0, n = n->next; n && n->pkt->pkttype == PKT_SIGNATURE; n = n->next) n_sig++; if (!n_sig) goto ambiguous; /* If we wanted to disallow multiple sig verification, we'd do something like this: if (n && !opt.allow_multisig_verification) goto ambiguous; However, now that we have --allow-multiple-messages, this can stay allowable as we can't get here unless multiple messages (i.e. multiple literals) are allowed. */ if (n_onepass != n_sig) { log_info ("number of one-pass packets does not match " "number of signature packets\n"); goto ambiguous; } } else if (n->pkt->pkttype == PKT_GPG_CONTROL && n->pkt->pkt.gpg_control->control == CTRLPKT_CLEARSIGN_START ) { /* This is the "C P S{1,n}" case (clear text signature). */ n = n->next; if (!n || !(n->pkt->pkttype == PKT_GPG_CONTROL && (n->pkt->pkt.gpg_control->control == CTRLPKT_PLAINTEXT_MARK))) goto ambiguous; for (n_sig=0, n = n->next; n && n->pkt->pkttype == PKT_SIGNATURE; n = n->next) n_sig++; if (n || !n_sig) goto ambiguous; } else { ambiguous: log_error(_("can't handle this ambiguous signature data\n")); return 0; } } if (sig->signers_uid) write_status_buffer (STATUS_NEWSIG, sig->signers_uid, strlen (sig->signers_uid), 0); else write_status_text (STATUS_NEWSIG, NULL); astr = openpgp_pk_algo_name ( sig->pubkey_algo ); issuer_fpr = issuer_fpr_string (sig); if (issuer_fpr) { log_info (_("Signature made %s\n"), asctimestamp(sig->timestamp)); log_info (_(" using %s key %s\n"), astr? astr: "?", issuer_fpr); } else if (!keystrlen () || keystrlen () > 8) { log_info (_("Signature made %s\n"), asctimestamp(sig->timestamp)); log_info (_(" using %s key %s\n"), astr? astr: "?", keystr(sig->keyid)); } else /* Legacy format. */ log_info (_("Signature made %s using %s key ID %s\n"), asctimestamp(sig->timestamp), astr? astr: "?", keystr(sig->keyid)); /* In verbose mode print the signers UID. */ if (sig->signers_uid) log_info (_(" issuer \"%s\"\n"), sig->signers_uid); rc = do_check_sig (c, node, NULL, NULL, &is_expkey, &is_revkey, &pk); /* If the key is not found but the signature includes a key block we * use that key block for verification and on success import it. */ if (gpg_err_code (rc) == GPG_ERR_NO_PUBKEY && sig->flags.key_block && opt.flags.auto_key_import) { PKT_public_key *included_pk; const byte *kblock; size_t kblock_len; included_pk = xcalloc (1, sizeof *included_pk); kblock = parse_sig_subpkt (sig->hashed, SIGSUBPKT_KEY_BLOCK, &kblock_len); if (kblock && kblock_len > 1 && !get_pubkey_from_buffer (c->ctrl, included_pk, kblock+1, kblock_len-1, sig->keyid, &included_keyblock)) { rc = do_check_sig (c, node, included_pk, NULL, &is_expkey, &is_revkey, &pk); if (!rc) { /* The keyblock has been verified, we now import it. */ rc = import_included_key_block (c->ctrl, included_keyblock); } } free_public_key (included_pk); } /* If the key isn't found, check for a preferred keyserver. Note * that this is only done if honor-keyserver-url has been set. We * test for this in the loop so that we can show info about the * preferred keyservers. */ if (gpg_err_code (rc) == GPG_ERR_NO_PUBKEY && sig->flags.pref_ks) { const byte *p; int seq = 0; size_t n; int any_pref_ks = 0; while ((p=enum_sig_subpkt (sig->hashed,SIGSUBPKT_PREF_KS,&n,&seq,NULL))) { /* According to my favorite copy editor, in English grammar, you say "at" if the key is located on a web page, but "from" if it is located on a keyserver. I'm not going to even try to make two strings here :) */ log_info(_("Key available at: ") ); print_utf8_buffer (log_get_stream(), p, n); log_printf ("\n"); any_pref_ks = 1; if ((opt.keyserver_options.options&KEYSERVER_AUTO_KEY_RETRIEVE) && (opt.keyserver_options.options&KEYSERVER_HONOR_KEYSERVER_URL)) { struct keyserver_spec *spec; spec = parse_preferred_keyserver (sig); if (spec) { int res; if (DBG_LOOKUP) log_debug ("trying auto-key-retrieve method %s\n", "Pref-KS"); free_public_key (pk); pk = NULL; glo_ctrl.in_auto_key_retrieve++; res = keyserver_import_keyid (c->ctrl, sig->keyid,spec, KEYSERVER_IMPORT_FLAG_QUICK); glo_ctrl.in_auto_key_retrieve--; if (!res) rc = do_check_sig (c, node, NULL, NULL, &is_expkey, &is_revkey, &pk); else if (DBG_LOOKUP) log_debug ("lookup via %s failed: %s\n", "Pref-KS", gpg_strerror (res)); free_keyserver_spec (spec); if (!rc) break; } } } if (any_pref_ks && (opt.keyserver_options.options&KEYSERVER_AUTO_KEY_RETRIEVE) && !(opt.keyserver_options.options&KEYSERVER_HONOR_KEYSERVER_URL)) log_info (_("Note: Use '%s' to make use of this info\n"), "--keyserver-option honor-keyserver-url"); } /* If the above methods didn't work, our next try is to retrieve the * key from the WKD. This requires that WKD is in the AKL and the * Signer's UID is in the signature. */ if (gpg_err_code (rc) == GPG_ERR_NO_PUBKEY && (opt.keyserver_options.options & KEYSERVER_AUTO_KEY_RETRIEVE) && !opt.flags.disable_signer_uid && akl_has_wkd_method () && sig->signers_uid) { int res; if (DBG_LOOKUP) log_debug ("trying auto-key-retrieve method %s\n", "WKD"); free_public_key (pk); pk = NULL; glo_ctrl.in_auto_key_retrieve++; res = keyserver_import_wkd (c->ctrl, sig->signers_uid, KEYSERVER_IMPORT_FLAG_QUICK, NULL, NULL); glo_ctrl.in_auto_key_retrieve--; /* Fixme: If the fingerprint is embedded in the signature, * compare it to the fingerprint of the returned key. */ if (!res) rc = do_check_sig (c, node, NULL, NULL, &is_expkey, &is_revkey, &pk); else if (DBG_LOOKUP) log_debug ("lookup via %s failed: %s\n", "WKD", gpg_strerror (res)); } /* If the avove methods didn't work, our next try is to use the URI * from a DNS PKA record. This is a legacy method which will * eventually be removed. */ if (gpg_err_code (rc) == GPG_ERR_NO_PUBKEY && (opt.keyserver_options.options & KEYSERVER_AUTO_KEY_RETRIEVE) && (opt.keyserver_options.options & KEYSERVER_HONOR_PKA_RECORD)) { const char *uri = pka_uri_from_sig (c, sig); if (uri) { /* FIXME: We might want to locate the key using the fingerprint instead of the keyid. */ int res; struct keyserver_spec *spec; spec = parse_keyserver_uri (uri, 1); if (spec) { if (DBG_LOOKUP) log_debug ("trying auto-key-retrieve method %s\n", "PKA"); free_public_key (pk); pk = NULL; glo_ctrl.in_auto_key_retrieve++; res = keyserver_import_keyid (c->ctrl, sig->keyid, spec, 1); glo_ctrl.in_auto_key_retrieve--; free_keyserver_spec (spec); if (!res) rc = do_check_sig (c, node, NULL, NULL, &is_expkey, &is_revkey, &pk); else if (DBG_LOOKUP) log_debug ("lookup via %s failed: %s\n", "PKA", gpg_strerror (res)); } } } /* If the above methods didn't work, our next try is to locate * the key via its fingerprint from a keyserver. This requires * that the signers fingerprint is encoded in the signature. */ if (gpg_err_code (rc) == GPG_ERR_NO_PUBKEY && (opt.keyserver_options.options&KEYSERVER_AUTO_KEY_RETRIEVE) && keyserver_any_configured (c->ctrl)) { int res; const byte *p; size_t n; p = issuer_fpr_raw (sig, &n); if (p) { /* v4 packet with a SHA-1 fingerprint. */ if (DBG_LOOKUP) log_debug ("trying auto-key-retrieve method %s\n", "KS"); free_public_key (pk); pk = NULL; glo_ctrl.in_auto_key_retrieve++; res = keyserver_import_fprint (c->ctrl, p, n, opt.keyserver, KEYSERVER_IMPORT_FLAG_QUICK); glo_ctrl.in_auto_key_retrieve--; if (!res) rc = do_check_sig (c, node, NULL, NULL, &is_expkey, &is_revkey, &pk); else if (DBG_LOOKUP) log_debug ("lookup via %s failed: %s\n", "KS", gpg_strerror (res)); } } if (!rc || gpg_err_code (rc) == GPG_ERR_BAD_SIGNATURE) { kbnode_t un, keyblock; int count = 0; int statno; char keyid_str[50]; PKT_public_key *mainpk = NULL; if (rc) statno = STATUS_BADSIG; else if (sig->flags.expired) statno = STATUS_EXPSIG; else if (is_expkey) statno = STATUS_EXPKEYSIG; else if(is_revkey) statno = STATUS_REVKEYSIG; else statno = STATUS_GOODSIG; /* FIXME: We should have the public key in PK and thus the * keyblock has already been fetched. Thus we could use the * fingerprint or PK itself to lookup the entire keyblock. That * would best be done with a cache. */ if (included_keyblock) { keyblock = included_keyblock; included_keyblock = NULL; } else keyblock = get_pubkeyblock_for_sig (c->ctrl, sig); snprintf (keyid_str, sizeof keyid_str, "%08lX%08lX [uncertain] ", (ulong)sig->keyid[0], (ulong)sig->keyid[1]); /* Find and print the primary user ID along with the "Good|Expired|Bad signature" line. */ for (un=keyblock; un; un = un->next) { int valid; if (un->pkt->pkttype==PKT_PUBLIC_KEY) { mainpk = un->pkt->pkt.public_key; continue; } if (un->pkt->pkttype != PKT_USER_ID) continue; if (!un->pkt->pkt.user_id->created) continue; if (un->pkt->pkt.user_id->flags.revoked) continue; if (un->pkt->pkt.user_id->flags.expired) continue; if (!un->pkt->pkt.user_id->flags.primary) continue; /* We want the textual primary user ID here */ if (un->pkt->pkt.user_id->attrib_data) continue; log_assert (mainpk); /* Since this is just informational, don't actually ask the user to update any trust information. (Note: we register the signature later.) Because print_good_bad_signature does not print a LF we need to compute the validity before calling that function. */ if ((opt.verify_options & VERIFY_SHOW_UID_VALIDITY)) valid = get_validity (c->ctrl, keyblock, mainpk, un->pkt->pkt.user_id, NULL, 0); else valid = 0; /* Not used. */ keyid_str[17] = 0; /* cut off the "[uncertain]" part */ print_good_bad_signature (statno, keyid_str, un, sig, rc); if ((opt.verify_options & VERIFY_SHOW_UID_VALIDITY)) log_printf (" [%s]\n",trust_value_to_string(valid)); else log_printf ("\n"); count++; } log_assert (mainpk); /* In case we did not found a valid textual userid above we print the first user id packet or a "[?]" instead along with the "Good|Expired|Bad signature" line. */ if (!count) { /* Try for an invalid textual userid */ for (un=keyblock; un; un = un->next) { if (un->pkt->pkttype == PKT_USER_ID && !un->pkt->pkt.user_id->attrib_data) break; } /* Try for any userid at all */ if (!un) { for (un=keyblock; un; un = un->next) { if (un->pkt->pkttype == PKT_USER_ID) break; } } if (opt.trust_model==TM_ALWAYS || !un) keyid_str[17] = 0; /* cut off the "[uncertain]" part */ print_good_bad_signature (statno, keyid_str, un, sig, rc); if (opt.trust_model != TM_ALWAYS && un) log_printf (" %s",_("[uncertain]") ); log_printf ("\n"); } /* If we have a good signature and already printed * the primary user ID, print all the other user IDs */ if (count && !rc && !(opt.verify_options & VERIFY_SHOW_PRIMARY_UID_ONLY)) { char *p; for( un=keyblock; un; un = un->next) { if (un->pkt->pkttype != PKT_USER_ID) continue; if ((un->pkt->pkt.user_id->flags.revoked || un->pkt->pkt.user_id->flags.expired) && !(opt.verify_options & VERIFY_SHOW_UNUSABLE_UIDS)) continue; /* Skip textual primary user ids which we printed above. */ if (un->pkt->pkt.user_id->flags.primary && !un->pkt->pkt.user_id->attrib_data ) continue; /* If this user id has attribute data, print that. */ if (un->pkt->pkt.user_id->attrib_data) { dump_attribs (un->pkt->pkt.user_id, mainpk); if (opt.verify_options&VERIFY_SHOW_PHOTOS) show_photos (c->ctrl, un->pkt->pkt.user_id->attribs, un->pkt->pkt.user_id->numattribs, mainpk ,un->pkt->pkt.user_id); } p = utf8_to_native (un->pkt->pkt.user_id->name, un->pkt->pkt.user_id->len, 0); log_info (_(" aka \"%s\""), p); xfree (p); if ((opt.verify_options & VERIFY_SHOW_UID_VALIDITY)) { const char *valid; if (un->pkt->pkt.user_id->flags.revoked) valid = _("revoked"); else if (un->pkt->pkt.user_id->flags.expired) valid = _("expired"); else /* Since this is just informational, don't actually ask the user to update any trust information. */ valid = (trust_value_to_string (get_validity (c->ctrl, keyblock, mainpk, un->pkt->pkt.user_id, NULL, 0))); log_printf (" [%s]\n",valid); } else log_printf ("\n"); } } /* For good signatures print notation data. */ if (!rc) { if ((opt.verify_options & VERIFY_SHOW_POLICY_URLS)) show_policy_url (sig, 0, 1); else show_policy_url (sig, 0, 2); if ((opt.verify_options & VERIFY_SHOW_KEYSERVER_URLS)) show_keyserver_url (sig, 0, 1); else show_keyserver_url (sig, 0, 2); if ((opt.verify_options & VERIFY_SHOW_NOTATIONS)) show_notation (sig, 0, 1, (((opt.verify_options&VERIFY_SHOW_STD_NOTATIONS)?1:0) + ((opt.verify_options&VERIFY_SHOW_USER_NOTATIONS)?2:0))); else show_notation (sig, 0, 2, 0); } /* For good signatures print the VALIDSIG status line. */ if (!rc && is_status_enabled () && pk) { char pkhex[MAX_FINGERPRINT_LEN*2+1]; char mainpkhex[MAX_FINGERPRINT_LEN*2+1]; hexfingerprint (pk, pkhex, sizeof pkhex); hexfingerprint (mainpk, mainpkhex, sizeof mainpkhex); /* TODO: Replace the reserved '0' in the field below with bits for status flags (policy url, notation, etc.). */ write_status_printf (STATUS_VALIDSIG, "%s %s %lu %lu %d 0 %d %d %02X %s", pkhex, strtimestamp (sig->timestamp), (ulong)sig->timestamp, (ulong)sig->expiredate, sig->version, sig->pubkey_algo, sig->digest_algo, sig->sig_class, mainpkhex); } /* Print compliance warning for Good signatures. */ if (!rc && pk && !opt.quiet && !gnupg_pk_is_compliant (opt.compliance, pk->pubkey_algo, 0, pk->pkey, nbits_from_pk (pk), NULL)) { log_info (_("WARNING: This key is not suitable for signing" " in %s mode\n"), gnupg_compliance_option_string (opt.compliance)); } /* For good signatures compute and print the trust information. Note that in the Tofu trust model this may ask the user on how to resolve a conflict. */ if (!rc) { if ((opt.verify_options & VERIFY_PKA_LOOKUPS)) pka_uri_from_sig (c, sig); /* Make sure PKA info is available. */ rc = check_signatures_trust (c->ctrl, sig); } /* Print extra information about the signature. */ if (sig->flags.expired) { log_info (_("Signature expired %s\n"), asctimestamp(sig->expiredate)); rc = GPG_ERR_GENERAL; /* Need a better error here? */ } else if (sig->expiredate) log_info (_("Signature expires %s\n"), asctimestamp(sig->expiredate)); if (opt.verbose) { char pkstrbuf[PUBKEY_STRING_SIZE]; if (pk) pubkey_string (pk, pkstrbuf, sizeof pkstrbuf); else *pkstrbuf = 0; log_info (_("%s signature, digest algorithm %s%s%s\n"), sig->sig_class==0x00?_("binary"): sig->sig_class==0x01?_("textmode"):_("unknown"), gcry_md_algo_name (sig->digest_algo), *pkstrbuf?_(", key algorithm "):"", pkstrbuf); } /* Print final warnings. */ if (!rc && !c->signed_data.used) { /* Signature is basically good but we test whether the deprecated command gpg --verify FILE.sig was used instead of gpg --verify FILE.sig FILE to verify a detached signature. If we figure out that a data file with a matching name exists, we print a warning. The problem is that the first form would also verify a standard signature. This behavior could be used to create a made up .sig file for a tarball by creating a standard signature from a valid detached signature packet (for example from a signed git tag). Then replace the sig file on the FTP server along with a changed tarball. Using the first form the verify command would correctly verify the signature but don't even consider the tarball. */ kbnode_t n; char *dfile; dfile = get_matching_datafile (c->sigfilename); if (dfile) { for (n = c->list; n; n = n->next) if (n->pkt->pkttype != PKT_SIGNATURE) break; if (n) { /* Not only signature packets in the tree thus this is not a detached signature. */ log_info (_("WARNING: not a detached signature; " "file '%s' was NOT verified!\n"), dfile); } xfree (dfile); } } /* Compute compliance with CO_DE_VS. */ if (pk && is_status_enabled () && gnupg_gcrypt_is_compliant (CO_DE_VS) && gnupg_pk_is_compliant (CO_DE_VS, pk->pubkey_algo, 0, pk->pkey, nbits_from_pk (pk), NULL) && gnupg_digest_is_compliant (CO_DE_VS, sig->digest_algo)) write_status_strings (STATUS_VERIFICATION_COMPLIANCE_MODE, gnupg_status_compliance_flag (CO_DE_VS), NULL); else if (opt.flags.require_compliance && opt.compliance == CO_DE_VS) { - log_error (_("operation forced to fail due to" - " unfulfilled compliance rules\n")); + compliance_failure (); if (!rc) rc = gpg_error (GPG_ERR_FORBIDDEN); } free_public_key (pk); pk = NULL; release_kbnode( keyblock ); if (rc) g10_errors_seen = 1; if (opt.batch && rc) g10_exit (1); } else { write_status_printf (STATUS_ERRSIG, "%08lX%08lX %d %d %02x %lu %d %s", (ulong)sig->keyid[0], (ulong)sig->keyid[1], sig->pubkey_algo, sig->digest_algo, sig->sig_class, (ulong)sig->timestamp, gpg_err_code (rc), issuer_fpr? issuer_fpr:"-"); if (gpg_err_code (rc) == GPG_ERR_NO_PUBKEY) { write_status_printf (STATUS_NO_PUBKEY, "%08lX%08lX", (ulong)sig->keyid[0], (ulong)sig->keyid[1]); } if (gpg_err_code (rc) != GPG_ERR_NOT_PROCESSED) log_error (_("Can't check signature: %s\n"), gpg_strerror (rc)); } free_public_key (pk); release_kbnode (included_keyblock); xfree (issuer_fpr); return rc; } /* * Process the tree which starts at node */ static void proc_tree (CTX c, kbnode_t node) { kbnode_t n1; int rc; if (opt.list_packets || opt.list_only) return; /* We must skip our special plaintext marker packets here because they may be the root packet. These packets are only used in additional checks and skipping them here doesn't matter. */ while (node && node->pkt->pkttype == PKT_GPG_CONTROL && node->pkt->pkt.gpg_control->control == CTRLPKT_PLAINTEXT_MARK) { node = node->next; } if (!node) return; c->trustletter = ' '; if (node->pkt->pkttype == PKT_PUBLIC_KEY || node->pkt->pkttype == PKT_PUBLIC_SUBKEY) { merge_keys_and_selfsig (c->ctrl, node); list_node (c, node); } else if (node->pkt->pkttype == PKT_SECRET_KEY) { merge_keys_and_selfsig (c->ctrl, node); list_node (c, node); } else if (node->pkt->pkttype == PKT_ONEPASS_SIG) { /* Check all signatures. */ if (!c->any.data) { int use_textmode = 0; free_md_filter_context (&c->mfx); /* Prepare to create all requested message digests. */ rc = gcry_md_open (&c->mfx.md, 0, 0); if (rc) goto hash_err; /* Fixme: why looking for the signature packet and not the one-pass packet? */ for (n1 = node; (n1 = find_next_kbnode (n1, PKT_SIGNATURE));) gcry_md_enable (c->mfx.md, n1->pkt->pkt.signature->digest_algo); if (n1 && n1->pkt->pkt.onepass_sig->sig_class == 0x01) use_textmode = 1; /* Ask for file and hash it. */ if (c->sigs_only) { if (c->signed_data.used && c->signed_data.data_fd != -1) rc = hash_datafile_by_fd (c->mfx.md, NULL, c->signed_data.data_fd, use_textmode); else rc = hash_datafiles (c->mfx.md, NULL, c->signed_data.data_names, c->sigfilename, use_textmode); } else { rc = ask_for_detached_datafile (c->mfx.md, c->mfx.md2, iobuf_get_real_fname (c->iobuf), use_textmode); } hash_err: if (rc) { log_error ("can't hash datafile: %s\n", gpg_strerror (rc)); return; } } else if (c->signed_data.used) { log_error (_("not a detached signature\n")); return; } for (n1 = node; (n1 = find_next_kbnode (n1, PKT_SIGNATURE));) check_sig_and_print (c, n1); } else if (node->pkt->pkttype == PKT_GPG_CONTROL && node->pkt->pkt.gpg_control->control == CTRLPKT_CLEARSIGN_START) { /* Clear text signed message. */ if (!c->any.data) { log_error ("cleartext signature without data\n"); return; } else if (c->signed_data.used) { log_error (_("not a detached signature\n")); return; } for (n1 = node; (n1 = find_next_kbnode (n1, PKT_SIGNATURE));) check_sig_and_print (c, n1); } else if (node->pkt->pkttype == PKT_SIGNATURE) { PKT_signature *sig = node->pkt->pkt.signature; int multiple_ok = 1; n1 = find_next_kbnode (node, PKT_SIGNATURE); if (n1) { byte class = sig->sig_class; byte hash = sig->digest_algo; for (; n1; (n1 = find_next_kbnode(n1, PKT_SIGNATURE))) { /* We can't currently handle multiple signatures of * different classes (we'd pretty much have to run a * different hash context for each), but if they are all * the same and it is detached signature, we make an * exception. Note that the old code also disallowed * multiple signatures if the digest algorithms are * different. We softened this restriction only for * detached signatures, to be on the safe side. */ if (n1->pkt->pkt.signature->sig_class != class || (c->any.data && n1->pkt->pkt.signature->digest_algo != hash)) { multiple_ok = 0; log_info (_("WARNING: multiple signatures detected. " "Only the first will be checked.\n")); break; } } } if (sig->sig_class != 0x00 && sig->sig_class != 0x01) { log_info(_("standalone signature of class 0x%02x\n"), sig->sig_class); } else if (!c->any.data) { /* Detached signature */ free_md_filter_context (&c->mfx); rc = gcry_md_open (&c->mfx.md, sig->digest_algo, 0); if (rc) goto detached_hash_err; if (multiple_ok) { /* If we have and want to handle multiple signatures we * need to enable all hash algorithms for the context. */ for (n1 = node; (n1 = find_next_kbnode (n1, PKT_SIGNATURE)); ) if (!openpgp_md_test_algo (n1->pkt->pkt.signature->digest_algo)) gcry_md_enable (c->mfx.md, map_md_openpgp_to_gcry (n1->pkt->pkt.signature->digest_algo)); } if (RFC2440 || RFC4880) ; /* Strict RFC mode. */ else if (sig->digest_algo == DIGEST_ALGO_SHA1 && sig->pubkey_algo == PUBKEY_ALGO_DSA && sig->sig_class == 0x01) { /* Enable a workaround for a pgp5 bug when the detached * signature has been created in textmode. Note that we * do not implement this for multiple signatures with * different hash algorithms. */ rc = gcry_md_open (&c->mfx.md2, sig->digest_algo, 0); if (rc) goto detached_hash_err; } /* Here we used to have another hack to work around a pgp * 2 bug: It worked by not using the textmode for detached * signatures; this would let the first signature check * (on md) fail but the second one (on md2), which adds an * extra CR would then have produced the "correct" hash. * This is very, very ugly hack but it may haved help in * some cases (and break others). * c->mfx.md2? 0 :(sig->sig_class == 0x01) */ if (DBG_HASHING) { gcry_md_debug (c->mfx.md, "verify"); if (c->mfx.md2) gcry_md_debug (c->mfx.md2, "verify2"); } if (c->sigs_only) { if (c->signed_data.used && c->signed_data.data_fd != -1) rc = hash_datafile_by_fd (c->mfx.md, c->mfx.md2, c->signed_data.data_fd, (sig->sig_class == 0x01)); else rc = hash_datafiles (c->mfx.md, c->mfx.md2, c->signed_data.data_names, c->sigfilename, (sig->sig_class == 0x01)); } else { rc = ask_for_detached_datafile (c->mfx.md, c->mfx.md2, iobuf_get_real_fname(c->iobuf), (sig->sig_class == 0x01)); } detached_hash_err: if (rc) { log_error ("can't hash datafile: %s\n", gpg_strerror (rc)); return; } } else if (c->signed_data.used) { log_error (_("not a detached signature\n")); return; } else if (!opt.quiet) log_info (_("old style (PGP 2.x) signature\n")); if (multiple_ok) { for (n1 = node; n1; (n1 = find_next_kbnode(n1, PKT_SIGNATURE))) check_sig_and_print (c, n1); } else check_sig_and_print (c, node); } else { dump_kbnode (c->list); log_error ("invalid root packet detected in proc_tree()\n"); dump_kbnode (node); } } diff --git a/g10/misc.c b/g10/misc.c index 1d30bbc6d..0b19e1a2b 100644 --- a/g10/misc.c +++ b/g10/misc.c @@ -1,1901 +1,1905 @@ /* misc.c - miscellaneous functions * Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, * 2008, 2009, 2010 Free Software Foundation, Inc. * Copyright (C) 2014 Werner Koch * * This file is part of GnuPG. * * GnuPG is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * GnuPG is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #include #include #include #include #include #include #if defined(__linux__) && defined(__alpha__) && __GLIBC__ < 2 #include #include #endif #ifdef HAVE_SETRLIMIT #include #include #include #endif #ifdef ENABLE_SELINUX_HACKS #include #endif #ifdef HAVE_W32_SYSTEM #include #include #ifdef HAVE_WINSOCK2_H # define WIN32_LEAN_AND_MEAN 1 # include #endif #include #include #ifndef CSIDL_APPDATA #define CSIDL_APPDATA 0x001a #endif #ifndef CSIDL_LOCAL_APPDATA #define CSIDL_LOCAL_APPDATA 0x001c #endif #ifndef CSIDL_FLAG_CREATE #define CSIDL_FLAG_CREATE 0x8000 #endif #endif /*HAVE_W32_SYSTEM*/ #include "gpg.h" #ifdef HAVE_W32_SYSTEM # include "../common/status.h" #endif /*HAVE_W32_SYSTEM*/ #include "../common/util.h" #include "main.h" #include "photoid.h" #include "options.h" #include "call-agent.h" #include "../common/i18n.h" #include "../common/zb32.h" /* FIXME: Libgcrypt 1.9 will support EAX. Until we name this a * requirement we hardwire the enum used for EAX. */ #define MY_GCRY_CIPHER_MODE_EAX 14 #ifdef ENABLE_SELINUX_HACKS /* A object and a global variable to keep track of files marked as secured. */ struct secured_file_item { struct secured_file_item *next; ino_t ino; dev_t dev; }; static struct secured_file_item *secured_files; #endif /*ENABLE_SELINUX_HACKS*/ /* For the sake of SELinux we want to restrict access through gpg to certain files we keep under our own control. This function registers such a file and is_secured_file may then be used to check whether a file has ben registered as secured. */ void register_secured_file (const char *fname) { #ifdef ENABLE_SELINUX_HACKS struct stat buf; struct secured_file_item *sf; /* Note that we stop immediately if something goes wrong here. */ if (gnupg_stat (fname, &buf)) log_fatal (_("fstat of '%s' failed in %s: %s\n"), fname, "register_secured_file", strerror (errno)); /* log_debug ("registering '%s' i=%lu.%lu\n", fname, */ /* (unsigned long)buf.st_dev, (unsigned long)buf.st_ino); */ for (sf=secured_files; sf; sf = sf->next) { if (sf->ino == buf.st_ino && sf->dev == buf.st_dev) return; /* Already registered. */ } sf = xmalloc (sizeof *sf); sf->ino = buf.st_ino; sf->dev = buf.st_dev; sf->next = secured_files; secured_files = sf; #else /*!ENABLE_SELINUX_HACKS*/ (void)fname; #endif /*!ENABLE_SELINUX_HACKS*/ } /* Remove a file registered as secure. */ void unregister_secured_file (const char *fname) { #ifdef ENABLE_SELINUX_HACKS struct stat buf; struct secured_file_item *sf, *sfprev; if (gnupg_stat (fname, &buf)) { log_error (_("fstat of '%s' failed in %s: %s\n"), fname, "unregister_secured_file", strerror (errno)); return; } /* log_debug ("unregistering '%s' i=%lu.%lu\n", fname, */ /* (unsigned long)buf.st_dev, (unsigned long)buf.st_ino); */ for (sfprev=NULL,sf=secured_files; sf; sfprev=sf, sf = sf->next) { if (sf->ino == buf.st_ino && sf->dev == buf.st_dev) { if (sfprev) sfprev->next = sf->next; else secured_files = sf->next; xfree (sf); return; } } #else /*!ENABLE_SELINUX_HACKS*/ (void)fname; #endif /*!ENABLE_SELINUX_HACKS*/ } /* Return true if FD is corresponds to a secured file. Using -1 for FS is allowed and will return false. */ int is_secured_file (int fd) { #ifdef ENABLE_SELINUX_HACKS struct stat buf; struct secured_file_item *sf; if (fd == -1) return 0; /* No file descriptor so it can't be secured either. */ /* Note that we print out a error here and claim that a file is secure if something went wrong. */ if (fstat (fd, &buf)) { log_error (_("fstat(%d) failed in %s: %s\n"), fd, "is_secured_file", strerror (errno)); return 1; } /* log_debug ("is_secured_file (%d) i=%lu.%lu\n", fd, */ /* (unsigned long)buf.st_dev, (unsigned long)buf.st_ino); */ for (sf=secured_files; sf; sf = sf->next) { if (sf->ino == buf.st_ino && sf->dev == buf.st_dev) return 1; /* Yes. */ } #else /*!ENABLE_SELINUX_HACKS*/ (void)fd; #endif /*!ENABLE_SELINUX_HACKS*/ return 0; /* No. */ } /* Return true if FNAME is corresponds to a secured file. Using NULL, "" or "-" for FS is allowed and will return false. This function is used before creating a file, thus it won't fail if the file does not exist. */ int is_secured_filename (const char *fname) { #ifdef ENABLE_SELINUX_HACKS struct stat buf; struct secured_file_item *sf; if (iobuf_is_pipe_filename (fname) || !*fname) return 0; /* Note that we print out a error here and claim that a file is secure if something went wrong. */ if (gnupg_stat (fname, &buf)) { if (errno == ENOENT || errno == EPERM || errno == EACCES) return 0; log_error (_("fstat of '%s' failed in %s: %s\n"), fname, "is_secured_filename", strerror (errno)); return 1; } /* log_debug ("is_secured_filename (%s) i=%lu.%lu\n", fname, */ /* (unsigned long)buf.st_dev, (unsigned long)buf.st_ino); */ for (sf=secured_files; sf; sf = sf->next) { if (sf->ino == buf.st_ino && sf->dev == buf.st_dev) return 1; /* Yes. */ } #else /*!ENABLE_SELINUX_HACKS*/ (void)fname; #endif /*!ENABLE_SELINUX_HACKS*/ return 0; /* No. */ } u16 checksum_u16( unsigned n ) { u16 a; a = (n >> 8) & 0xff; a += n & 0xff; return a; } u16 checksum( byte *p, unsigned n ) { u16 a; for(a=0; n; n-- ) a += *p++; return a; } u16 checksum_mpi (gcry_mpi_t a) { u16 csum; byte *buffer; size_t nbytes; if ( gcry_mpi_print (GCRYMPI_FMT_PGP, NULL, 0, &nbytes, a) ) BUG (); /* Fixme: For numbers not in secure memory we should use a stack * based buffer and only allocate a larger one if mpi_print returns * an error. */ buffer = (gcry_is_secure(a)? gcry_xmalloc_secure (nbytes) : gcry_xmalloc (nbytes)); if ( gcry_mpi_print (GCRYMPI_FMT_PGP, buffer, nbytes, NULL, a) ) BUG (); csum = checksum (buffer, nbytes); xfree (buffer); return csum; } void print_pubkey_algo_note (pubkey_algo_t algo) { if(algo >= 100 && algo <= 110) { static int warn=0; if(!warn) { warn=1; es_fflush (es_stdout); log_info (_("WARNING: using experimental public key algorithm %s\n"), openpgp_pk_algo_name (algo)); } } else if (algo == PUBKEY_ALGO_ELGAMAL) { es_fflush (es_stdout); log_info (_("WARNING: Elgamal sign+encrypt keys are deprecated\n")); } } void print_cipher_algo_note (cipher_algo_t algo) { if(algo >= 100 && algo <= 110) { static int warn=0; if(!warn) { warn=1; es_fflush (es_stdout); log_info (_("WARNING: using experimental cipher algorithm %s\n"), openpgp_cipher_algo_name (algo)); } } } void print_digest_algo_note (digest_algo_t algo) { if(algo >= 100 && algo <= 110) { static int warn=0; const enum gcry_md_algos galgo = map_md_openpgp_to_gcry (algo); if(!warn) { warn=1; es_fflush (es_stdout); log_info (_("WARNING: using experimental digest algorithm %s\n"), gcry_md_algo_name (galgo)); } } else if (is_weak_digest (algo)) { const enum gcry_md_algos galgo = map_md_openpgp_to_gcry (algo); es_fflush (es_stdout); log_info (_("WARNING: digest algorithm %s is deprecated\n"), gcry_md_algo_name (galgo)); } } void print_digest_rejected_note (enum gcry_md_algos algo) { struct weakhash* weak; int show = 1; if (opt.quiet) return; for (weak = opt.weak_digests; weak; weak = weak->next) if (weak->algo == algo) { if (weak->rejection_shown) show = 0; else weak->rejection_shown = 1; break; } if (show) { es_fflush (es_stdout); log_info (_("Note: signatures using the %s algorithm are rejected\n"), gcry_md_algo_name(algo)); } } void print_sha1_keysig_rejected_note (void) { static int shown; if (shown || opt.quiet) return; shown = 1; es_fflush (es_stdout); log_info (_("Note: third-party key signatures using" " the %s algorithm are rejected\n"), gcry_md_algo_name (GCRY_MD_SHA1)); print_further_info ("use option \"%s\" to override", "--allow-weak-key-signatures"); } /* Print a message * "(reported error: %s)\n * in verbose mode to further explain an error. If the error code has * the value IGNORE_EC no message is printed. A message is also not * printed if ERR is 0. */ void print_reported_error (gpg_error_t err, gpg_err_code_t ignore_ec) { if (!opt.verbose) return; if (!gpg_err_code (err)) ; else if (gpg_err_code (err) == ignore_ec) ; else if (gpg_err_source (err) == GPG_ERR_SOURCE_DEFAULT) log_info (_("(reported error: %s)\n"), gpg_strerror (err)); else log_info (_("(reported error: %s <%s>)\n"), gpg_strerror (err), gpg_strsource (err)); } /* Print a message * "(further info: %s)\n * in verbose mode to further explain an error. That message is * intended to help debug a problem and should not be translated. */ void print_further_info (const char *format, ...) { va_list arg_ptr; if (!opt.verbose) return; log_info (_("(further info: ")); va_start (arg_ptr, format); log_logv (GPGRT_LOG_CONT, format, arg_ptr); va_end (arg_ptr); log_printf (")\n"); } /* Map OpenPGP algo numbers to those used by Libgcrypt. We need to do this for algorithms we implemented in Libgcrypt after they become part of OpenPGP. */ enum gcry_cipher_algos map_cipher_openpgp_to_gcry (cipher_algo_t algo) { switch (algo) { case CIPHER_ALGO_NONE: return GCRY_CIPHER_NONE; #ifdef GPG_USE_IDEA case CIPHER_ALGO_IDEA: return GCRY_CIPHER_IDEA; #else case CIPHER_ALGO_IDEA: return 0; #endif case CIPHER_ALGO_3DES: return GCRY_CIPHER_3DES; #ifdef GPG_USE_CAST5 case CIPHER_ALGO_CAST5: return GCRY_CIPHER_CAST5; #else case CIPHER_ALGO_CAST5: return 0; #endif #ifdef GPG_USE_BLOWFISH case CIPHER_ALGO_BLOWFISH: return GCRY_CIPHER_BLOWFISH; #else case CIPHER_ALGO_BLOWFISH: return 0; #endif #ifdef GPG_USE_AES128 case CIPHER_ALGO_AES: return GCRY_CIPHER_AES; #else case CIPHER_ALGO_AES: return 0; #endif #ifdef GPG_USE_AES192 case CIPHER_ALGO_AES192: return GCRY_CIPHER_AES192; #else case CIPHER_ALGO_AES192: return 0; #endif #ifdef GPG_USE_AES256 case CIPHER_ALGO_AES256: return GCRY_CIPHER_AES256; #else case CIPHER_ALGO_AES256: return 0; #endif #ifdef GPG_USE_TWOFISH case CIPHER_ALGO_TWOFISH: return GCRY_CIPHER_TWOFISH; #else case CIPHER_ALGO_TWOFISH: return 0; #endif #ifdef GPG_USE_CAMELLIA128 case CIPHER_ALGO_CAMELLIA128: return GCRY_CIPHER_CAMELLIA128; #else case CIPHER_ALGO_CAMELLIA128: return 0; #endif #ifdef GPG_USE_CAMELLIA192 case CIPHER_ALGO_CAMELLIA192: return GCRY_CIPHER_CAMELLIA192; #else case CIPHER_ALGO_CAMELLIA192: return 0; #endif #ifdef GPG_USE_CAMELLIA256 case CIPHER_ALGO_CAMELLIA256: return GCRY_CIPHER_CAMELLIA256; #else case CIPHER_ALGO_CAMELLIA256: return 0; #endif default: return 0; } } /* The inverse function of above. */ static cipher_algo_t map_cipher_gcry_to_openpgp (enum gcry_cipher_algos algo) { switch (algo) { case GCRY_CIPHER_NONE: return CIPHER_ALGO_NONE; case GCRY_CIPHER_IDEA: return CIPHER_ALGO_IDEA; case GCRY_CIPHER_3DES: return CIPHER_ALGO_3DES; case GCRY_CIPHER_CAST5: return CIPHER_ALGO_CAST5; case GCRY_CIPHER_BLOWFISH: return CIPHER_ALGO_BLOWFISH; case GCRY_CIPHER_AES: return CIPHER_ALGO_AES; case GCRY_CIPHER_AES192: return CIPHER_ALGO_AES192; case GCRY_CIPHER_AES256: return CIPHER_ALGO_AES256; case GCRY_CIPHER_TWOFISH: return CIPHER_ALGO_TWOFISH; case GCRY_CIPHER_CAMELLIA128: return CIPHER_ALGO_CAMELLIA128; case GCRY_CIPHER_CAMELLIA192: return CIPHER_ALGO_CAMELLIA192; case GCRY_CIPHER_CAMELLIA256: return CIPHER_ALGO_CAMELLIA256; default: return 0; } } /* Map Gcrypt public key algorithm numbers to those used by OpenPGP. FIXME: This mapping is used at only two places - we should get rid of it. */ pubkey_algo_t map_pk_gcry_to_openpgp (enum gcry_pk_algos algo) { switch (algo) { case GCRY_PK_EDDSA: return PUBKEY_ALGO_EDDSA; case GCRY_PK_ECDSA: return PUBKEY_ALGO_ECDSA; case GCRY_PK_ECDH: return PUBKEY_ALGO_ECDH; default: return algo < 110 ? (pubkey_algo_t)algo : 0; } } /* Return the block length of an OpenPGP cipher algorithm. */ int openpgp_cipher_blocklen (cipher_algo_t algo) { /* We use the numbers from OpenPGP to be sure that we get the right block length. This is so that the packet parsing code works even for unknown algorithms (for which we assume 8 due to tradition). NOTE: If you change the returned blocklen above 16, check the callers because they may use a fixed size buffer of that size. */ switch (algo) { case CIPHER_ALGO_AES: case CIPHER_ALGO_AES192: case CIPHER_ALGO_AES256: case CIPHER_ALGO_TWOFISH: case CIPHER_ALGO_CAMELLIA128: case CIPHER_ALGO_CAMELLIA192: case CIPHER_ALGO_CAMELLIA256: return 16; default: return 8; } } /**************** * Wrapper around the libgcrypt function with additional checks on * the OpenPGP contraints for the algo ID. */ int openpgp_cipher_test_algo (cipher_algo_t algo) { enum gcry_cipher_algos ga; ga = map_cipher_openpgp_to_gcry (algo); if (!ga) return gpg_error (GPG_ERR_CIPHER_ALGO); return gcry_cipher_test_algo (ga); } /* Map the OpenPGP cipher algorithm whose ID is contained in ALGORITHM to a string representation of the algorithm name. For unknown algorithm IDs this function returns "?". */ const char * openpgp_cipher_algo_name (cipher_algo_t algo) { switch (algo) { case CIPHER_ALGO_IDEA: return "IDEA"; case CIPHER_ALGO_3DES: return "3DES"; case CIPHER_ALGO_CAST5: return "CAST5"; case CIPHER_ALGO_BLOWFISH: return "BLOWFISH"; case CIPHER_ALGO_AES: return "AES"; case CIPHER_ALGO_AES192: return "AES192"; case CIPHER_ALGO_AES256: return "AES256"; case CIPHER_ALGO_TWOFISH: return "TWOFISH"; case CIPHER_ALGO_CAMELLIA128: return "CAMELLIA128"; case CIPHER_ALGO_CAMELLIA192: return "CAMELLIA192"; case CIPHER_ALGO_CAMELLIA256: return "CAMELLIA256"; case CIPHER_ALGO_NONE: default: return "?"; } } /* Same as openpgp_cipher_algo_name but returns a string in the form * "ALGO.MODE" if AEAD is not 0. Note that in this version we do not * print "ALGO.CFB" as we do in 2.3 to avoid confusing users. */ const char * openpgp_cipher_algo_mode_name (cipher_algo_t algo, aead_algo_t aead) { if (aead == AEAD_ALGO_NONE) return openpgp_cipher_algo_name (algo); return map_static_strings ("openpgp_cipher_algo_mode_name", algo, aead, openpgp_cipher_algo_name (algo), ".", openpgp_aead_algo_name (aead), NULL); } /* Return 0 if ALGO is supported. Return an error if not. */ gpg_error_t openpgp_aead_test_algo (aead_algo_t algo) { /* FIXME: We currently have no easy way to test whether libgcrypt * implements a mode. The only way we can do this is to open a * cipher context with that mode and close it immediately. That is * a bit costly. So we look at the libgcrypt version and assume * nothing has been patched out. */ switch (algo) { case AEAD_ALGO_NONE: break; case AEAD_ALGO_EAX: #if GCRYPT_VERSION_NUMBER < 0x010900 break; #else return 0; #endif case AEAD_ALGO_OCB: return 0; } return gpg_error (GPG_ERR_INV_CIPHER_MODE); } /* Map the OpenPGP AEAD algorithm with ID ALGO to a string * representation of the algorithm name. For unknown algorithm IDs * this function returns "?". */ const char * openpgp_aead_algo_name (aead_algo_t algo) { switch (algo) { case AEAD_ALGO_NONE: break; case AEAD_ALGO_EAX: return "EAX"; case AEAD_ALGO_OCB: return "OCB"; } return "?"; } /* Return information for the AEAD algorithm ALGO. The corresponding * Libgcrypt ciphermode is stored at R_MODE and the required number of * octets for the nonce at R_NONCELEN. On error and error code is * returned. Note that the taglen is always 128 bits. */ gpg_error_t openpgp_aead_algo_info (aead_algo_t algo, enum gcry_cipher_modes *r_mode, unsigned int *r_noncelen) { switch (algo) { case AEAD_ALGO_OCB: *r_mode = GCRY_CIPHER_MODE_OCB; *r_noncelen = 15; break; case AEAD_ALGO_EAX: *r_mode = MY_GCRY_CIPHER_MODE_EAX; *r_noncelen = 16; break; default: log_error ("unsupported AEAD algo %d\n", algo); return gpg_error (GPG_ERR_INV_CIPHER_MODE); } return 0; } /* Return 0 if ALGO is a supported OpenPGP public key algorithm. */ int openpgp_pk_test_algo (pubkey_algo_t algo) { return openpgp_pk_test_algo2 (algo, 0); } /* Return 0 if ALGO is a supported OpenPGP public key algorithm and allows the usage USE. */ int openpgp_pk_test_algo2 (pubkey_algo_t algo, unsigned int use) { enum gcry_pk_algos ga = 0; size_t use_buf = use; switch (algo) { #ifdef GPG_USE_RSA case PUBKEY_ALGO_RSA: ga = GCRY_PK_RSA; break; case PUBKEY_ALGO_RSA_E: ga = GCRY_PK_RSA_E; break; case PUBKEY_ALGO_RSA_S: ga = GCRY_PK_RSA_S; break; #else case PUBKEY_ALGO_RSA: break; case PUBKEY_ALGO_RSA_E: break; case PUBKEY_ALGO_RSA_S: break; #endif case PUBKEY_ALGO_ELGAMAL_E: ga = GCRY_PK_ELG; break; case PUBKEY_ALGO_DSA: ga = GCRY_PK_DSA; break; #ifdef GPG_USE_ECDH case PUBKEY_ALGO_ECDH: ga = GCRY_PK_ECC; break; #else case PUBKEY_ALGO_ECDH: break; #endif #ifdef GPG_USE_ECDSA case PUBKEY_ALGO_ECDSA: ga = GCRY_PK_ECC; break; #else case PUBKEY_ALGO_ECDSA: break; #endif #ifdef GPG_USE_EDDSA case PUBKEY_ALGO_EDDSA: ga = GCRY_PK_ECC; break; #else case PUBKEY_ALGO_EDDSA: break; #endif case PUBKEY_ALGO_ELGAMAL: /* Dont't allow type 20 keys unless in rfc2440 mode. */ if (RFC2440) ga = GCRY_PK_ELG; break; default: break; } if (!ga) return gpg_error (GPG_ERR_PUBKEY_ALGO); /* Elgamal in OpenPGP used to support signing and Libgcrypt still * does. However, we removed the signing capability from gpg ages * ago. This function should reflect this so that errors are thrown * early and not only when we try to sign using Elgamal. */ if (ga == GCRY_PK_ELG && (use & (PUBKEY_USAGE_CERT | PUBKEY_USAGE_SIG))) return gpg_error (GPG_ERR_WRONG_PUBKEY_ALGO); /* Now check whether Libgcrypt has support for the algorithm. */ return gcry_pk_algo_info (ga, GCRYCTL_TEST_ALGO, NULL, &use_buf); } int openpgp_pk_algo_usage ( int algo ) { int use = 0; /* They are hardwired in gpg 1.0. */ switch ( algo ) { case PUBKEY_ALGO_RSA: use = (PUBKEY_USAGE_CERT | PUBKEY_USAGE_SIG | PUBKEY_USAGE_ENC | PUBKEY_USAGE_AUTH); break; case PUBKEY_ALGO_RSA_E: case PUBKEY_ALGO_ECDH: use = PUBKEY_USAGE_ENC; break; case PUBKEY_ALGO_RSA_S: use = PUBKEY_USAGE_CERT | PUBKEY_USAGE_SIG; break; case PUBKEY_ALGO_ELGAMAL: if (RFC2440) use = PUBKEY_USAGE_ENC; break; case PUBKEY_ALGO_ELGAMAL_E: use = PUBKEY_USAGE_ENC; break; case PUBKEY_ALGO_DSA: use = PUBKEY_USAGE_CERT | PUBKEY_USAGE_SIG | PUBKEY_USAGE_AUTH; break; case PUBKEY_ALGO_ECDSA: case PUBKEY_ALGO_EDDSA: use = PUBKEY_USAGE_CERT | PUBKEY_USAGE_SIG | PUBKEY_USAGE_AUTH; default: break; } return use; } /* Map the OpenPGP pubkey algorithm whose ID is contained in ALGO to a string representation of the algorithm name. For unknown algorithm IDs this function returns "?". */ const char * openpgp_pk_algo_name (pubkey_algo_t algo) { switch (algo) { case PUBKEY_ALGO_RSA: case PUBKEY_ALGO_RSA_E: case PUBKEY_ALGO_RSA_S: return "RSA"; case PUBKEY_ALGO_ELGAMAL: case PUBKEY_ALGO_ELGAMAL_E: return "ELG"; case PUBKEY_ALGO_DSA: return "DSA"; case PUBKEY_ALGO_ECDH: return "ECDH"; case PUBKEY_ALGO_ECDSA: return "ECDSA"; case PUBKEY_ALGO_EDDSA: return "EDDSA"; default: return "?"; } } /* Explicit mapping of OpenPGP digest algos to Libgcrypt. */ /* FIXME: We do not yes use it everywhere. */ enum gcry_md_algos map_md_openpgp_to_gcry (digest_algo_t algo) { switch (algo) { #ifdef GPG_USE_MD5 case DIGEST_ALGO_MD5: return GCRY_MD_MD5; #else case DIGEST_ALGO_MD5: return 0; #endif case DIGEST_ALGO_SHA1: return GCRY_MD_SHA1; #ifdef GPG_USE_RMD160 case DIGEST_ALGO_RMD160: return GCRY_MD_RMD160; #else case DIGEST_ALGO_RMD160: return 0; #endif #ifdef GPG_USE_SHA224 case DIGEST_ALGO_SHA224: return GCRY_MD_SHA224; #else case DIGEST_ALGO_SHA224: return 0; #endif case DIGEST_ALGO_SHA256: return GCRY_MD_SHA256; #ifdef GPG_USE_SHA384 case DIGEST_ALGO_SHA384: return GCRY_MD_SHA384; #else case DIGEST_ALGO_SHA384: return 0; #endif #ifdef GPG_USE_SHA512 case DIGEST_ALGO_SHA512: return GCRY_MD_SHA512; #else case DIGEST_ALGO_SHA512: return 0; #endif default: return 0; } } /* Return 0 if ALGO is suitable and implemented OpenPGP hash algorithm. */ int openpgp_md_test_algo (digest_algo_t algo) { enum gcry_md_algos ga; ga = map_md_openpgp_to_gcry (algo); if (!ga) return gpg_error (GPG_ERR_DIGEST_ALGO); return gcry_md_test_algo (ga); } /* Map the OpenPGP digest algorithm whose ID is contained in ALGO to a string representation of the algorithm name. For unknown algorithm IDs this function returns "?". */ const char * openpgp_md_algo_name (int algo) { switch (algo) { case DIGEST_ALGO_MD5: return "MD5"; case DIGEST_ALGO_SHA1: return "SHA1"; case DIGEST_ALGO_RMD160: return "RIPEMD160"; case DIGEST_ALGO_SHA256: return "SHA256"; case DIGEST_ALGO_SHA384: return "SHA384"; case DIGEST_ALGO_SHA512: return "SHA512"; case DIGEST_ALGO_SHA224: return "SHA224"; } return "?"; } static unsigned long get_signature_count (PKT_public_key *pk) { #ifdef ENABLE_CARD_SUPPORT struct agent_card_info_s info; (void)pk; if (!agent_scd_getattr ("SIG-COUNTER",&info)) return info.sig_counter; else return 0; #else (void)pk; return 0; #endif } /* Expand %-strings. Returns a string which must be xfreed. Returns NULL if the string cannot be expanded (too large). */ char * pct_expando(const char *string,struct expando_args *args) { const char *ch=string; int idx=0,maxlen=0,done=0; u32 pk_keyid[2]={0,0},sk_keyid[2]={0,0}; char *ret=NULL; /* The parser below would return NULL for an empty string, thus we * catch it here. Also catch NULL here. */ if (!string || !*string) return xstrdup (""); if(args->pk) keyid_from_pk(args->pk,pk_keyid); if(args->pksk) keyid_from_pk (args->pksk, sk_keyid); /* This is used so that %k works in photoid command strings in --list-secret-keys (which of course has a sk, but no pk). */ if(!args->pk && args->pksk) keyid_from_pk (args->pksk, pk_keyid); while(*ch!='\0') { if(!done) { /* 8192 is way bigger than we'll need here */ if(maxlen>=8192) goto fail; maxlen+=1024; ret=xrealloc(ret,maxlen); } done=0; if(*ch=='%') { switch(*(ch+1)) { case 's': /* short key id */ if(idx+8namehash) { char *tmp = zb32_encode (args->namehash, 8*20); if (tmp) { if (idx + strlen (tmp) < maxlen) { strcpy (ret+idx, tmp); idx += strlen (tmp); } xfree (tmp); done = 1; } } break; case 'c': /* signature count from card, if any. */ if(idx+10pksk)); idx+=strlen(&ret[idx]); done=1; } break; case 'f': /* Fingerprint of key being signed */ case 'p': /* Fingerprint of the primary key making the signature. */ case 'g': /* Fingerprint of the key making the signature. */ { byte array[MAX_FINGERPRINT_LEN]; size_t len; int i; if ((*(ch+1))=='f' && args->pk) fingerprint_from_pk (args->pk, array, &len); else if ((*(ch+1))=='p' && args->pksk) { if(args->pksk->flags.primary) fingerprint_from_pk (args->pksk, array, &len); else if (args->pksk->main_keyid[0] || args->pksk->main_keyid[1]) { /* Not the primary key: Find the fingerprint of the primary key. */ PKT_public_key *pk= xmalloc_clear(sizeof(PKT_public_key)); if (!get_pubkey_fast (pk,args->pksk->main_keyid)) fingerprint_from_pk (pk, array, &len); else memset (array, 0, (len=MAX_FINGERPRINT_LEN)); free_public_key (pk); } else /* Oops: info about the primary key missing. */ memset(array,0,(len=MAX_FINGERPRINT_LEN)); } else if((*(ch+1))=='g' && args->pksk) fingerprint_from_pk (args->pksk, array, &len); else memset(array,0,(len=MAX_FINGERPRINT_LEN)); if(idx+(len*2)validity_info && idx+1validity_info; ret[idx]='\0'; done=1; } break; /* The text string types */ case 't': case 'T': case 'V': { const char *str=NULL; switch(*(ch+1)) { case 't': /* e.g. "jpg" */ str=image_type_to_string(args->imagetype,0); break; case 'T': /* e.g. "image/jpeg" */ str=image_type_to_string(args->imagetype,2); break; case 'V': /* e.g. "full", "expired", etc. */ str=args->validity_string; break; } if(str && idx+strlen(str)='A' && file[0]<='Z') || (file[0]>='a' && file[0]<='z')) && file[1]==':') #else || file[0]=='/' #endif ) return access(file,mode); else { /* At least as large as, but most often larger than we need. */ char *buffer=xmalloc(strlen(envpath)+1+strlen(file)+1); char *split,*item,*path=xstrdup(envpath); split=path; while((item=strsep(&split,PATHSEP_S))) { strcpy(buffer,item); strcat(buffer,"/"); strcat(buffer,file); ret=access(buffer,mode); if(ret==0) break; } xfree(path); xfree(buffer); } return ret; } /* Return the number of public key parameters as used by OpenPGP. */ int pubkey_get_npkey (pubkey_algo_t algo) { switch (algo) { case PUBKEY_ALGO_RSA: case PUBKEY_ALGO_RSA_E: case PUBKEY_ALGO_RSA_S: return 2; case PUBKEY_ALGO_ELGAMAL_E: return 3; case PUBKEY_ALGO_DSA: return 4; case PUBKEY_ALGO_ECDH: return 3; case PUBKEY_ALGO_ECDSA: return 2; case PUBKEY_ALGO_ELGAMAL: return 3; case PUBKEY_ALGO_EDDSA: return 2; default: return 0; } } /* Return the number of secret key parameters as used by OpenPGP. */ int pubkey_get_nskey (pubkey_algo_t algo) { switch (algo) { case PUBKEY_ALGO_RSA: case PUBKEY_ALGO_RSA_E: case PUBKEY_ALGO_RSA_S: return 6; case PUBKEY_ALGO_ELGAMAL_E: return 4; case PUBKEY_ALGO_DSA: return 5; case PUBKEY_ALGO_ECDH: return 4; case PUBKEY_ALGO_ECDSA: return 3; case PUBKEY_ALGO_ELGAMAL: return 4; case PUBKEY_ALGO_EDDSA: return 3; default: return 0; } } /* Temporary helper. */ int pubkey_get_nsig (pubkey_algo_t algo) { switch (algo) { case PUBKEY_ALGO_RSA: case PUBKEY_ALGO_RSA_E: case PUBKEY_ALGO_RSA_S: return 1; case PUBKEY_ALGO_ELGAMAL_E: return 0; case PUBKEY_ALGO_DSA: return 2; case PUBKEY_ALGO_ECDH: return 0; case PUBKEY_ALGO_ECDSA: return 2; case PUBKEY_ALGO_ELGAMAL: return 2; case PUBKEY_ALGO_EDDSA: return 2; default: return 0; } } /* Temporary helper. */ int pubkey_get_nenc (pubkey_algo_t algo) { switch (algo) { case PUBKEY_ALGO_RSA: case PUBKEY_ALGO_RSA_E: case PUBKEY_ALGO_RSA_S: return 1; case PUBKEY_ALGO_ELGAMAL_E: return 2; case PUBKEY_ALGO_DSA: return 0; case PUBKEY_ALGO_ECDH: return 2; case PUBKEY_ALGO_ECDSA: return 0; case PUBKEY_ALGO_ELGAMAL: return 2; case PUBKEY_ALGO_EDDSA: return 0; default: return 0; } } /* Temporary helper. */ unsigned int pubkey_nbits( int algo, gcry_mpi_t *key ) { int rc, nbits; gcry_sexp_t sexp; if (algo == PUBKEY_ALGO_DSA && key[0] && key[1] && key[2] && key[3]) { rc = gcry_sexp_build (&sexp, NULL, "(public-key(dsa(p%m)(q%m)(g%m)(y%m)))", key[0], key[1], key[2], key[3] ); } else if ((algo == PUBKEY_ALGO_ELGAMAL || algo == PUBKEY_ALGO_ELGAMAL_E) && key[0] && key[1] && key[2]) { rc = gcry_sexp_build (&sexp, NULL, "(public-key(elg(p%m)(g%m)(y%m)))", key[0], key[1], key[2] ); } else if (is_RSA (algo) && key[0] && key[1]) { rc = gcry_sexp_build (&sexp, NULL, "(public-key(rsa(n%m)(e%m)))", key[0], key[1] ); } else if ((algo == PUBKEY_ALGO_ECDSA || algo == PUBKEY_ALGO_ECDH || algo == PUBKEY_ALGO_EDDSA) && key[0] && key[1]) { char *curve = openpgp_oid_to_str (key[0]); if (!curve) rc = gpg_error_from_syserror (); else { rc = gcry_sexp_build (&sexp, NULL, "(public-key(ecc(curve%s)(q%m)))", curve, key[1]); xfree (curve); } } else return 0; if (rc) BUG (); nbits = gcry_pk_get_nbits (sexp); gcry_sexp_release (sexp); return nbits; } int mpi_print (estream_t fp, gcry_mpi_t a, int mode) { int n = 0; size_t nwritten; if (!a) return es_fprintf (fp, "[MPI_NULL]"); if (!mode) { unsigned int n1; n1 = gcry_mpi_get_nbits(a); n += es_fprintf (fp, "[%u bits]", n1); } else if (gcry_mpi_get_flag (a, GCRYMPI_FLAG_OPAQUE)) { unsigned int nbits; unsigned char *p = gcry_mpi_get_opaque (a, &nbits); if (!p) n += es_fprintf (fp, "[invalid opaque value]"); else { if (!es_write_hexstring (fp, p, (nbits + 7)/8, 0, &nwritten)) n += nwritten; } } else { unsigned char *buffer; size_t buflen; if (gcry_mpi_aprint (GCRYMPI_FMT_USG, &buffer, &buflen, a)) BUG (); if (!es_write_hexstring (fp, buffer, buflen, 0, &nwritten)) n += nwritten; gcry_free (buffer); } return n; } /* pkey[1] or skey[1] is Q for ECDSA, which is an uncompressed point, i.e. 04 */ unsigned int ecdsa_qbits_from_Q (unsigned int qbits) { if ((qbits%8) > 3) { log_error (_("ECDSA public key is expected to be in SEC encoding " "multiple of 8 bits\n")); return 0; } qbits -= qbits%8; qbits /= 2; return qbits; } /* Ignore signatures and certifications made over certain digest * algorithms by default, MD5 is considered weak. This allows users * to deprecate support for other algorithms as well. */ void additional_weak_digest (const char* digestname) { struct weakhash *weak = NULL; const enum gcry_md_algos algo = string_to_digest_algo(digestname); if (algo == GCRY_MD_NONE) { log_error (_("unknown weak digest '%s'\n"), digestname); return; } /* Check to ensure it's not already present. */ for (weak = opt.weak_digests; weak; weak = weak->next) if (algo == weak->algo) return; /* Add it to the head of the list. */ weak = xmalloc(sizeof(*weak)); weak->algo = algo; weak->rejection_shown = 0; weak->next = opt.weak_digests; opt.weak_digests = weak; } /* Return true if ALGO is in the list of weak digests. */ int is_weak_digest (digest_algo_t algo) { const enum gcry_md_algos galgo = map_md_openpgp_to_gcry (algo); const struct weakhash *weak; for (weak = opt.weak_digests; weak; weak = weak->next) if (weak->algo == galgo) return 1; return 0; }