diff --git a/agent/cache.c b/agent/cache.c index f58eaeaaa..248368277 100644 --- a/agent/cache.c +++ b/agent/cache.c @@ -1,480 +1,493 @@ /* cache.c - keep a cache of passphrases * Copyright (C) 2002, 2010 Free Software Foundation, Inc. * * This file is part of GnuPG. * * GnuPG is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * GnuPG is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #include #include #include #include #include #include #include #include "agent.h" /* The size of the encryption key in bytes. */ #define ENCRYPTION_KEYSIZE (128/8) /* A mutex used to protect the encryption. This is required because we use one context to do all encryption and decryption. */ static npth_mutex_t encryption_lock; /* The encryption context. This is the only place where the encryption key for all cached entries is available. It would be nice to keep this (or just the key) in some hardware device, for example a TPM. Libgcrypt could be extended to provide such a service. With the current scheme it is easy to retrieve the cached entries if access to Libgcrypt's memory is available. The encryption merely avoids grepping for clear texts in the memory. Nevertheless the encryption provides the necessary infrastructure to make it more secure. */ static gcry_cipher_hd_t encryption_handle; struct secret_data_s { int totallen; /* This includes the padding and space for AESWRAP. */ char data[1]; /* A string. */ }; typedef struct cache_item_s *ITEM; struct cache_item_s { ITEM next; time_t created; time_t accessed; int ttl; /* max. lifetime given in seconds, -1 one means infinite */ struct secret_data_s *pw; cache_mode_t cache_mode; char key[1]; }; /* The cache himself. */ static ITEM thecache; /* NULL or the last cache key stored by agent_store_cache_hit. */ static char *last_stored_cache_key; /* This function must be called once to initialize this module. It has to be done before a second thread is spawned. */ void initialize_module_cache (void) { int err; err = npth_mutex_init (&encryption_lock, NULL); if (err) log_fatal ("error initializing cache module: %s\n", strerror (err)); } void deinitialize_module_cache (void) { gcry_cipher_close (encryption_handle); encryption_handle = NULL; } /* We do the encryption init on the fly. We can't do it in the module init code because that is run before we listen for connections and in case we are started on demand by gpg etc. it will only wait for a few seconds to decide whether the agent may now accept connections. Thus we should get into listen state as soon as possible. */ static gpg_error_t init_encryption (void) { gpg_error_t err; void *key; int res; if (encryption_handle) return 0; /* Shortcut - Already initialized. */ res = npth_mutex_lock (&encryption_lock); if (res) log_fatal ("failed to acquire cache encryption mutex: %s\n", strerror (res)); err = gcry_cipher_open (&encryption_handle, GCRY_CIPHER_AES128, GCRY_CIPHER_MODE_AESWRAP, GCRY_CIPHER_SECURE); if (!err) { key = gcry_random_bytes (ENCRYPTION_KEYSIZE, GCRY_STRONG_RANDOM); if (!key) err = gpg_error_from_syserror (); else { err = gcry_cipher_setkey (encryption_handle, key, ENCRYPTION_KEYSIZE); xfree (key); } if (err) { gcry_cipher_close (encryption_handle); encryption_handle = NULL; } } if (err) log_error ("error initializing cache encryption context: %s\n", gpg_strerror (err)); res = npth_mutex_unlock (&encryption_lock); if (res) log_fatal ("failed to release cache encryption mutex: %s\n", strerror (res)); return err? gpg_error (GPG_ERR_NOT_INITIALIZED) : 0; } static void release_data (struct secret_data_s *data) { xfree (data); } static gpg_error_t new_data (const char *string, struct secret_data_s **r_data) { gpg_error_t err; struct secret_data_s *d, *d_enc; size_t length; int total; int res; *r_data = NULL; err = init_encryption (); if (err) return err; length = strlen (string) + 1; /* We pad the data to 32 bytes so that it get more complicated finding something out by watching allocation patterns. This is usually not possible but we better assume nothing about our secure storage provider. To support the AESWRAP mode we need to add 8 extra bytes as well. */ total = (length + 8) + 32 - ((length+8) % 32); d = xtrymalloc_secure (sizeof *d + total - 1); if (!d) return gpg_error_from_syserror (); memcpy (d->data, string, length); d_enc = xtrymalloc (sizeof *d_enc + total - 1); if (!d_enc) { err = gpg_error_from_syserror (); xfree (d); return err; } d_enc->totallen = total; res = npth_mutex_lock (&encryption_lock); if (res) log_fatal ("failed to acquire cache encryption mutex: %s\n", strerror (res)); err = gcry_cipher_encrypt (encryption_handle, d_enc->data, total, d->data, total - 8); xfree (d); res = npth_mutex_unlock (&encryption_lock); if (res) log_fatal ("failed to release cache encryption mutex: %s\n", strerror (res)); if (err) { xfree (d_enc); return err; } *r_data = d_enc; return 0; } /* Check whether there are items to expire. */ static void housekeeping (void) { ITEM r, rprev; time_t current = gnupg_get_time (); /* First expire the actual data */ for (r=thecache; r; r = r->next) { if (r->pw && r->ttl >= 0 && r->accessed + r->ttl < current) { if (DBG_CACHE) log_debug (" expired '%s' (%ds after last access)\n", r->key, r->ttl); release_data (r->pw); r->pw = NULL; r->accessed = current; } } /* Second, make sure that we also remove them based on the created stamp so that the user has to enter it from time to time. */ for (r=thecache; r; r = r->next) { unsigned long maxttl; switch (r->cache_mode) { case CACHE_MODE_SSH: maxttl = opt.max_cache_ttl_ssh; break; default: maxttl = opt.max_cache_ttl; break; } if (r->pw && r->created + maxttl < current) { if (DBG_CACHE) log_debug (" expired '%s' (%lus after creation)\n", r->key, opt.max_cache_ttl); release_data (r->pw); r->pw = NULL; r->accessed = current; } } /* Third, make sure that we don't have too many items in the list. Expire old and unused entries after 30 minutes */ for (rprev=NULL, r=thecache; r; ) { if (!r->pw && r->ttl >= 0 && r->accessed + 60*30 < current) { ITEM r2 = r->next; if (DBG_CACHE) log_debug (" removed '%s' (mode %d) (slot not used for 30m)\n", r->key, r->cache_mode); xfree (r); if (!rprev) thecache = r2; else rprev->next = r2; r = r2; } else { rprev = r; r = r->next; } } } void agent_flush_cache (void) { ITEM r; if (DBG_CACHE) log_debug ("agent_flush_cache\n"); for (r=thecache; r; r = r->next) { if (r->pw) { if (DBG_CACHE) log_debug (" flushing '%s'\n", r->key); release_data (r->pw); r->pw = NULL; r->accessed = 0; } } } /* Compare two cache modes. */ static int cache_mode_equal (cache_mode_t a, cache_mode_t b) { /* CACHE_MODE_ANY matches any mode other than CACHE_MODE_IGNORE. */ return ((a == CACHE_MODE_ANY && b != CACHE_MODE_IGNORE) || (b == CACHE_MODE_ANY && a != CACHE_MODE_IGNORE) || a == b); } /* Store the string DATA in the cache under KEY and mark it with a maximum lifetime of TTL seconds. If there is already data under this key, it will be replaced. Using a DATA of NULL deletes the entry. A TTL of 0 is replaced by the default TTL and a TTL of -1 set infinite timeout. CACHE_MODE is stored with the cache entry and used to select different timeouts. */ int agent_put_cache (const char *key, cache_mode_t cache_mode, const char *data, int ttl) { gpg_error_t err = 0; ITEM r; if (DBG_CACHE) log_debug ("agent_put_cache '%s' (mode %d) requested ttl=%d\n", key, cache_mode, ttl); housekeeping (); if (!ttl) { switch(cache_mode) { case CACHE_MODE_SSH: ttl = opt.def_cache_ttl_ssh; break; default: ttl = opt.def_cache_ttl; break; } } if ((!ttl && data) || cache_mode == CACHE_MODE_IGNORE) return 0; for (r=thecache; r; r = r->next) { if (((cache_mode != CACHE_MODE_USER && cache_mode != CACHE_MODE_NONCE) || cache_mode_equal (r->cache_mode, cache_mode)) && !strcmp (r->key, key)) break; } if (r) /* Replace. */ { if (r->pw) { release_data (r->pw); r->pw = NULL; } if (data) { r->created = r->accessed = gnupg_get_time (); r->ttl = ttl; r->cache_mode = cache_mode; err = new_data (data, &r->pw); if (err) log_error ("error replacing cache item: %s\n", gpg_strerror (err)); } } else if (data) /* Insert. */ { r = xtrycalloc (1, sizeof *r + strlen (key)); if (!r) err = gpg_error_from_syserror (); else { strcpy (r->key, key); r->created = r->accessed = gnupg_get_time (); r->ttl = ttl; r->cache_mode = cache_mode; err = new_data (data, &r->pw); if (err) xfree (r); else { r->next = thecache; thecache = r; } } if (err) log_error ("error inserting cache item: %s\n", gpg_strerror (err)); } return err; } /* Try to find an item in the cache. Note that we currently don't make use of CACHE_MODE except for CACHE_MODE_NONCE and CACHE_MODE_USER. */ char * agent_get_cache (const char *key, cache_mode_t cache_mode) { gpg_error_t err; ITEM r; char *value = NULL; int res; int last_stored = 0; if (cache_mode == CACHE_MODE_IGNORE) return NULL; if (!key) { key = last_stored_cache_key; if (!key) return NULL; last_stored = 1; } if (DBG_CACHE) log_debug ("agent_get_cache '%s' (mode %d)%s ...\n", key, cache_mode, last_stored? " (stored cache key)":""); housekeeping (); for (r=thecache; r; r = r->next) { if (r->pw && ((cache_mode != CACHE_MODE_USER && cache_mode != CACHE_MODE_NONCE) || cache_mode_equal (r->cache_mode, cache_mode)) && !strcmp (r->key, key)) { /* Note: To avoid races KEY may not be accessed anymore below. */ r->accessed = gnupg_get_time (); if (DBG_CACHE) log_debug ("... hit\n"); if (r->pw->totallen < 32) err = gpg_error (GPG_ERR_INV_LENGTH); else if ((err = init_encryption ())) ; else if (!(value = xtrymalloc_secure (r->pw->totallen - 8))) err = gpg_error_from_syserror (); else { res = npth_mutex_lock (&encryption_lock); if (res) log_fatal ("failed to acquire cache encryption mutex: %s\n", strerror (res)); err = gcry_cipher_decrypt (encryption_handle, value, r->pw->totallen - 8, r->pw->data, r->pw->totallen); res = npth_mutex_unlock (&encryption_lock); if (res) log_fatal ("failed to release cache encryption mutex: %s\n", strerror (res)); } if (err) { xfree (value); value = NULL; log_error ("retrieving cache entry '%s' failed: %s\n", key, gpg_strerror (err)); } return value; } } if (DBG_CACHE) log_debug ("... miss\n"); return NULL; } /* Store the key for the last successful cache hit. That value is used by agent_get_cache if the requested KEY is given as NULL. NULL may be used to remove that key. */ void agent_store_cache_hit (const char *key) { - xfree (last_stored_cache_key); - last_stored_cache_key = key? xtrystrdup (key) : NULL; + char *new; + char *old; + + /* To make sure the update is atomic under the non-preemptive thread + * model, we must make sure not to surrender control to a different + * thread. Therefore, we avoid calling the allocator during the + * update. */ + new = key ? xtrystrdup (key) : NULL; + + /* Atomic update. */ + old = last_stored_cache_key; + last_stored_cache_key = new; + /* Done. */ + + xfree (old); }