diff --git a/g10/build-packet.c b/g10/build-packet.c index 4aed558a9..d07465894 100644 --- a/g10/build-packet.c +++ b/g10/build-packet.c @@ -1,2030 +1,2034 @@ /* build-packet.c - assemble packets and write them * Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, * 2006, 2010, 2011 Free Software Foundation, Inc. * * This file is part of GnuPG. * * GnuPG is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * GnuPG is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #include #include #include #include #include #include "gpg.h" #include "../common/util.h" #include "packet.h" #include "../common/status.h" #include "../common/iobuf.h" #include "../common/i18n.h" #include "options.h" #include "../common/host2net.h" static gpg_error_t do_ring_trust (iobuf_t out, PKT_ring_trust *rt); static int do_user_id( IOBUF out, int ctb, PKT_user_id *uid ); static int do_key (iobuf_t out, int ctb, PKT_public_key *pk); static int do_symkey_enc( IOBUF out, int ctb, PKT_symkey_enc *enc ); static int do_pubkey_enc( IOBUF out, int ctb, PKT_pubkey_enc *enc ); static u32 calc_plaintext( PKT_plaintext *pt ); static int do_plaintext( IOBUF out, int ctb, PKT_plaintext *pt ); static int do_encrypted( IOBUF out, int ctb, PKT_encrypted *ed ); static int do_encrypted_mdc( IOBUF out, int ctb, PKT_encrypted *ed ); static int do_encrypted_aead (iobuf_t out, int ctb, PKT_encrypted *ed); static int do_compressed( IOBUF out, int ctb, PKT_compressed *cd ); static int do_signature( IOBUF out, int ctb, PKT_signature *sig ); static int do_onepass_sig( IOBUF out, int ctb, PKT_onepass_sig *ops ); static int calc_header_length( u32 len, int new_ctb ); static int write_16(IOBUF inp, u16 a); static int write_32(IOBUF inp, u32 a); static int write_header( IOBUF out, int ctb, u32 len ); static int write_sign_packet_header( IOBUF out, int ctb, u32 len ); static int write_header2( IOBUF out, int ctb, u32 len, int hdrlen ); static int write_new_header( IOBUF out, int ctb, u32 len, int hdrlen ); /* Returns 1 if CTB is a new format ctb and 0 if CTB is an old format ctb. */ static int ctb_new_format_p (int ctb) { /* Bit 7 must always be set. */ log_assert ((ctb & (1 << 7))); /* Bit 6 indicates whether the packet is a new format packet. */ return (ctb & (1 << 6)); } /* Extract the packet type from a CTB. */ static int ctb_pkttype (int ctb) { if (ctb_new_format_p (ctb)) /* Bits 0 through 5 are the packet type. */ return (ctb & ((1 << 6) - 1)); else /* Bits 2 through 5 are the packet type. */ return (ctb & ((1 << 6) - 1)) >> 2; } /* Build a keyblock image from KEYBLOCK. Returns 0 on success and * only then stores a new iobuf object at R_IOBUF; the returned iobuf * can be access with the iobuf_get_temp_buffer and * iobuf_get_temp_length macros. */ gpg_error_t build_keyblock_image (kbnode_t keyblock, iobuf_t *r_iobuf) { gpg_error_t err; iobuf_t iobuf; kbnode_t kbctx, node; *r_iobuf = NULL; iobuf = iobuf_temp (); for (kbctx = NULL; (node = walk_kbnode (keyblock, &kbctx, 0));) { /* Make sure to use only packets valid on a keyblock. */ switch (node->pkt->pkttype) { case PKT_PUBLIC_KEY: case PKT_PUBLIC_SUBKEY: case PKT_SIGNATURE: case PKT_USER_ID: case PKT_ATTRIBUTE: case PKT_RING_TRUST: break; default: continue; } err = build_packet_and_meta (iobuf, node->pkt); if (err) { iobuf_close (iobuf); return err; } } *r_iobuf = iobuf; return 0; } /* Build a packet and write it to the stream OUT. * Returns: 0 on success or on an error code. */ int build_packet (IOBUF out, PACKET *pkt) { int rc = 0; int new_ctb = 0; int ctb, pkttype; if (DBG_PACKET) log_debug ("build_packet() type=%d\n", pkt->pkttype); log_assert (pkt->pkt.generic); switch ((pkttype = pkt->pkttype)) { case PKT_PUBLIC_KEY: if (pkt->pkt.public_key->seckey_info) pkttype = PKT_SECRET_KEY; break; case PKT_PUBLIC_SUBKEY: if (pkt->pkt.public_key->seckey_info) pkttype = PKT_SECRET_SUBKEY; break; case PKT_PLAINTEXT: new_ctb = pkt->pkt.plaintext->new_ctb; break; case PKT_ENCRYPTED: case PKT_ENCRYPTED_MDC: case PKT_ENCRYPTED_AEAD: new_ctb = pkt->pkt.encrypted->new_ctb; break; case PKT_COMPRESSED: new_ctb = pkt->pkt.compressed->new_ctb; break; case PKT_USER_ID: if (pkt->pkt.user_id->attrib_data) pkttype = PKT_ATTRIBUTE; break; default: break; } if (new_ctb || pkttype > 15) /* new format */ ctb = (0xc0 | (pkttype & 0x3f)); else ctb = (0x80 | ((pkttype & 15)<<2)); switch (pkttype) { case PKT_ATTRIBUTE: case PKT_USER_ID: rc = do_user_id (out, ctb, pkt->pkt.user_id); break; case PKT_OLD_COMMENT: case PKT_COMMENT: /* Ignore these. Theoretically, this will never be called as we * have no way to output comment packets any longer, but just in * case there is some code path that would end up outputting a * comment that was written before comments were dropped (in the * public key?) this is a no-op. */ break; case PKT_PUBLIC_SUBKEY: case PKT_PUBLIC_KEY: case PKT_SECRET_SUBKEY: case PKT_SECRET_KEY: rc = do_key (out, ctb, pkt->pkt.public_key); break; case PKT_SYMKEY_ENC: rc = do_symkey_enc (out, ctb, pkt->pkt.symkey_enc); break; case PKT_PUBKEY_ENC: rc = do_pubkey_enc (out, ctb, pkt->pkt.pubkey_enc); break; case PKT_PLAINTEXT: rc = do_plaintext (out, ctb, pkt->pkt.plaintext); break; case PKT_ENCRYPTED: rc = do_encrypted (out, ctb, pkt->pkt.encrypted); break; case PKT_ENCRYPTED_MDC: rc = do_encrypted_mdc (out, ctb, pkt->pkt.encrypted); break; case PKT_ENCRYPTED_AEAD: rc = do_encrypted_aead (out, ctb, pkt->pkt.encrypted); break; case PKT_COMPRESSED: rc = do_compressed (out, ctb, pkt->pkt.compressed); break; case PKT_SIGNATURE: rc = do_signature (out, ctb, pkt->pkt.signature); break; case PKT_ONEPASS_SIG: rc = do_onepass_sig (out, ctb, pkt->pkt.onepass_sig); break; case PKT_RING_TRUST: /* Ignore it (only written by build_packet_and_meta) */ break; case PKT_MDC: /* We write it directly, so we should never see it here. */ default: log_bug ("invalid packet type in build_packet()\n"); break; } return rc; } /* Build a packet and write it to the stream OUT. This variant also * writes the meta data using ring trust packets. Returns: 0 on * success or on error code. */ gpg_error_t build_packet_and_meta (iobuf_t out, PACKET *pkt) { gpg_error_t err; PKT_ring_trust rt = {0}; err = build_packet (out, pkt); if (err) ; else if (pkt->pkttype == PKT_SIGNATURE) { PKT_signature *sig = pkt->pkt.signature; rt.subtype = RING_TRUST_SIG; /* Note: trustval is not yet used. */ if (sig->flags.checked) { rt.sigcache = 1; if (sig->flags.valid) rt.sigcache |= 2; } err = do_ring_trust (out, &rt); } else if (pkt->pkttype == PKT_USER_ID || pkt->pkttype == PKT_ATTRIBUTE) { PKT_user_id *uid = pkt->pkt.user_id; rt.subtype = RING_TRUST_UID; rt.keyorg = uid->keyorg; rt.keyupdate = uid->keyupdate; rt.url = uid->updateurl; err = do_ring_trust (out, &rt); rt.url = NULL; } else if (pkt->pkttype == PKT_PUBLIC_KEY || pkt->pkttype == PKT_SECRET_KEY) { PKT_public_key *pk = pkt->pkt.public_key; rt.subtype = RING_TRUST_KEY; rt.keyorg = pk->keyorg; rt.keyupdate = pk->keyupdate; rt.url = pk->updateurl; err = do_ring_trust (out, &rt); rt.url = NULL; } return err; } /* * Write the mpi A to OUT. If R_NWRITTEN is not NULL the number of * bytes written is stored there. To only get the number of bytes * which would be written NULL may be passed for OUT. */ gpg_error_t gpg_mpi_write (iobuf_t out, gcry_mpi_t a, unsigned int *r_nwritten) { gpg_error_t err; unsigned int nwritten = 0; if (gcry_mpi_get_flag (a, GCRYMPI_FLAG_OPAQUE)) { unsigned int nbits; const unsigned char *p; unsigned char lenhdr[2]; /* gcry_log_debugmpi ("a", a); */ p = gcry_mpi_get_opaque (a, &nbits); /* gcry_log_debug (" [%u bit]\n", nbits); */ /* gcry_log_debughex (" ", p, (nbits+7)/8); */ lenhdr[0] = nbits >> 8; lenhdr[1] = nbits; err = out? iobuf_write (out, lenhdr, 2) : 0; if (!err) { nwritten += 2; if (p) { err = out? iobuf_write (out, p, (nbits+7)/8) : 0; if (!err) nwritten += (nbits+7)/8; } } } else { char buffer[(MAX_EXTERN_MPI_BITS+7)/8+2]; /* 2 is for the mpi length. */ size_t nbytes; nbytes = DIM(buffer); err = gcry_mpi_print (GCRYMPI_FMT_PGP, buffer, nbytes, &nbytes, a ); if (!err) { err = out? iobuf_write (out, buffer, nbytes) : 0; if (!err) nwritten += nbytes; } else if (gpg_err_code (err) == GPG_ERR_TOO_SHORT ) { log_info ("mpi too large (%u bits)\n", gcry_mpi_get_nbits (a)); /* The buffer was too small. We better tell the user about * the MPI. */ err = gpg_error (GPG_ERR_TOO_LARGE); } } if (r_nwritten) *r_nwritten = nwritten; return err; } /* * Write the mpi A to the output stream OUT as "SOS" (Strange Octet * String). If R_NWRITTEN is not NULL the number of bytes written is * stored there. To only get the number of bytes which would be * written, NULL may be passed for OUT. */ static gpg_error_t sos_write (iobuf_t out, gcry_mpi_t a, unsigned int *r_nwritten) { gpg_error_t err; unsigned int nwritten = 0; if (gcry_mpi_get_flag (a, GCRYMPI_FLAG_OPAQUE)) { unsigned int nbits; const unsigned char *p; unsigned char lenhdr[2]; /* gcry_log_debugmpi ("a", a); */ p = gcry_mpi_get_opaque (a, &nbits); /* gcry_log_debug (" [%u bit]\n", nbits); */ /* gcry_log_debughex (" ", p, (nbits+7)/8); */ if (p && *p) { nbits = ((nbits + 7) / 8) * 8; if (nbits >= 8 && !(*p & 0x80)) if (--nbits >= 7 && !(*p & 0x40)) if (--nbits >= 6 && !(*p & 0x20)) if (--nbits >= 5 && !(*p & 0x10)) if (--nbits >= 4 && !(*p & 0x08)) if (--nbits >= 3 && !(*p & 0x04)) if (--nbits >= 2 && !(*p & 0x02)) if (--nbits >= 1 && !(*p & 0x01)) --nbits; } lenhdr[0] = nbits >> 8; lenhdr[1] = nbits; err = out? iobuf_write (out, lenhdr, 2) : 0; if (!err) { nwritten += 2; if (p) { err = out? iobuf_write (out, p, (nbits+7)/8) : 0; if (!err) nwritten += (nbits+7)/8; } } } else { log_info ("non-opaque MPI (%u bits) for SOS\n", gcry_mpi_get_nbits (a)); err = gpg_error (GPG_ERR_INV_DATA); } if (r_nwritten) *r_nwritten = nwritten; return err; } /* * Write an opaque string to the output stream without length info. */ gpg_error_t gpg_mpi_write_nohdr (iobuf_t out, gcry_mpi_t a) { int rc; if (gcry_mpi_get_flag (a, GCRYMPI_FLAG_OPAQUE)) { unsigned int nbits; const void *p; p = gcry_mpi_get_opaque (a, &nbits); rc = p ? iobuf_write (out, p, (nbits+7)/8) : 0; } else rc = gpg_error (GPG_ERR_BAD_MPI); return rc; } /* Calculate the length of a packet described by PKT. */ u32 calc_packet_length( PACKET *pkt ) { u32 n = 0; int new_ctb = 0; log_assert (pkt->pkt.generic); switch (pkt->pkttype) { case PKT_PLAINTEXT: n = calc_plaintext (pkt->pkt.plaintext); new_ctb = pkt->pkt.plaintext->new_ctb; break; case PKT_ATTRIBUTE: case PKT_USER_ID: case PKT_COMMENT: case PKT_PUBLIC_KEY: case PKT_SECRET_KEY: case PKT_SYMKEY_ENC: case PKT_PUBKEY_ENC: case PKT_ENCRYPTED: case PKT_SIGNATURE: case PKT_ONEPASS_SIG: case PKT_RING_TRUST: case PKT_COMPRESSED: default: log_bug ("invalid packet type in calc_packet_length()"); break; } n += calc_header_length (n, new_ctb); return n; } static gpg_error_t write_fake_data (IOBUF out, gcry_mpi_t a) { unsigned int n; void *p; if (!a) return 0; if (!gcry_mpi_get_flag (a, GCRYMPI_FLAG_OPAQUE)) return 0; /* e.g. due to generating a key with wrong usage. */ p = gcry_mpi_get_opaque ( a, &n); if (!p) return 0; /* For example due to a read error in parse-packet.c:read_rest. */ return iobuf_write (out, p, (n+7)/8 ); } /* Write a ring trust meta packet. */ static gpg_error_t do_ring_trust (iobuf_t out, PKT_ring_trust *rt) { unsigned int namelen = 0; unsigned int pktlen = 6; if (rt->subtype == RING_TRUST_KEY || rt->subtype == RING_TRUST_UID) { if (rt->url) namelen = strlen (rt->url); pktlen += 1 + 4 + 1 + namelen; } write_header (out, (0x80 | ((PKT_RING_TRUST & 15)<<2)), pktlen); iobuf_put (out, rt->trustval); iobuf_put (out, rt->sigcache); iobuf_write (out, "gpg", 3); iobuf_put (out, rt->subtype); if (rt->subtype == RING_TRUST_KEY || rt->subtype == RING_TRUST_UID) { iobuf_put (out, rt->keyorg); write_32 (out, rt->keyupdate); iobuf_put (out, namelen); if (namelen) iobuf_write (out, rt->url, namelen); } return 0; } /* Serialize the user id (RFC 4880, Section 5.11) or the user * attribute UID (Section 5.12) and write it to OUT. * * CTB is the serialization's CTB. It specifies the header format and * the packet's type. The header length must not be set. */ static int do_user_id( IOBUF out, int ctb, PKT_user_id *uid ) { int rc; int hdrlen; log_assert (ctb_pkttype (ctb) == PKT_USER_ID || ctb_pkttype (ctb) == PKT_ATTRIBUTE); /* We need to take special care of a user ID with a length of 0: * Without forcing HDRLEN to 2 in this case an indeterminate length * packet would be written which is not allowed. Note that we are * always called with a CTB indicating an old packet header format, * so that forcing a 2 octet header works. We also check for the * maximum allowed packet size by the parser using an arbitrary * extra 10 bytes for header data. */ if (uid->attrib_data) { if (uid->attrib_len > MAX_ATTR_PACKET_LENGTH - 10) return gpg_error (GPG_ERR_TOO_LARGE); hdrlen = uid->attrib_len? 0 : 2; write_header2 (out, ctb, uid->attrib_len, hdrlen); rc = iobuf_write( out, uid->attrib_data, uid->attrib_len ); } else { if (uid->len > MAX_UID_PACKET_LENGTH - 10) return gpg_error (GPG_ERR_TOO_LARGE); hdrlen = uid->len? 0 : 2; write_header2 (out, ctb, uid->len, hdrlen); rc = iobuf_write( out, uid->name, uid->len ); } return rc; } /* Serialize the key (RFC 4880, Section 5.5) described by PK and write * it to OUT. * * This function serializes both primary keys and subkeys with or * without a secret part. * * CTB is the serialization's CTB. It specifies the header format and * the packet's type. The header length must not be set. * * PK->VERSION specifies the serialization format. A value of 0 means * to use the default version. Currently, only version 4 packets are * supported. */ static int do_key (iobuf_t out, int ctb, PKT_public_key *pk) { gpg_error_t err = 0; iobuf_t a; int i, nskey, npkey; u32 pkbytes = 0; int is_v5; log_assert (pk->version == 0 || pk->version == 4 || pk->version == 5); log_assert (ctb_pkttype (ctb) == PKT_PUBLIC_KEY || ctb_pkttype (ctb) == PKT_PUBLIC_SUBKEY || ctb_pkttype (ctb) == PKT_SECRET_KEY || ctb_pkttype (ctb) == PKT_SECRET_SUBKEY); /* The length of the body is stored in the packet's header, which * occurs before the body. Unfortunately, we don't know the length * of the packet's body until we've written all of the data! To * work around this, we first write the data into this temporary * buffer, then generate the header, and finally copy the content * of this buffer to OUT. */ a = iobuf_temp(); /* Note that the Version number, Timestamp, Algo, and the v5 Key * material count are written at the end of the function. */ is_v5 = (pk->version == 5); /* Get number of secret and public parameters. They are held in one array: the public ones followed by the secret ones. */ nskey = pubkey_get_nskey (pk->pubkey_algo); npkey = pubkey_get_npkey (pk->pubkey_algo); /* If we don't have any public parameters - which is for example the case if we don't know the algorithm used - the parameters are stored as one blob in a faked (opaque) MPI. */ if (!npkey) { write_fake_data (a, pk->pkey[0]); goto leave; } log_assert (npkey < nskey); for (i=0; i < npkey; i++ ) { if ( (pk->pubkey_algo == PUBKEY_ALGO_ECDSA && (i == 0)) || (pk->pubkey_algo == PUBKEY_ALGO_EDDSA && (i == 0)) || (pk->pubkey_algo == PUBKEY_ALGO_ECDH && (i == 0 || i == 2))) err = gpg_mpi_write_nohdr (a, pk->pkey[i]); - else if (pk->pubkey_algo == PUBKEY_ALGO_ECDH) + else if (pk->pubkey_algo == PUBKEY_ALGO_ECDSA + || pk->pubkey_algo == PUBKEY_ALGO_EDDSA + || pk->pubkey_algo == PUBKEY_ALGO_ECDH) err = sos_write (a, pk->pkey[i], NULL); else err = gpg_mpi_write (a, pk->pkey[i], NULL); if (err) goto leave; } /* Record the length of the public key part. */ pkbytes = iobuf_get_temp_length (a); if (pk->seckey_info) { /* This is a secret key packet. */ struct seckey_info *ski = pk->seckey_info; /* Build the header for protected (encrypted) secret parameters. */ if (ski->is_protected) { iobuf_put (a, ski->sha1chk? 0xfe : 0xff); /* S2k usage. */ if (is_v5) { /* For a v5 key determine the count of the following * key-protection material and write it. */ int count = 1; /* Pubkey algo octet. */ if (ski->s2k.mode >= 1000) count += 6; /* GNU specific mode descriptor. */ else count += 2; /* Mode and hash algo. */ if (ski->s2k.mode == 1 || ski->s2k.mode == 3) count += 8; /* Salt. */ if (ski->s2k.mode == 3) count++; /* S2K.COUNT */ if (ski->s2k.mode != 1001 && ski->s2k.mode != 1002) count += ski->ivlen; iobuf_put (a, count); } iobuf_put (a, ski->algo); /* Pubkey algo octet. */ if (ski->s2k.mode >= 1000) { /* These modes are not possible in OpenPGP, we use them to implement our extensions, 101 can be viewed as a private/experimental extension (this is not specified in rfc2440 but the same scheme is used for all other algorithm identifiers). */ iobuf_put (a, 101); iobuf_put (a, ski->s2k.hash_algo); iobuf_write (a, "GNU", 3 ); iobuf_put (a, ski->s2k.mode - 1000); } else { iobuf_put (a, ski->s2k.mode); iobuf_put (a, ski->s2k.hash_algo); } if (ski->s2k.mode == 1 || ski->s2k.mode == 3) iobuf_write (a, ski->s2k.salt, 8); if (ski->s2k.mode == 3) iobuf_put (a, ski->s2k.count); /* For our special modes 1001, 1002 we do not need an IV. */ if (ski->s2k.mode != 1001 && ski->s2k.mode != 1002) iobuf_write (a, ski->iv, ski->ivlen); } else /* Not protected. */ { iobuf_put (a, 0 ); /* S2K usage = not protected. */ if (is_v5) iobuf_put (a, 0); /* Zero octets of key-protection * material follows. */ } if (ski->s2k.mode == 1001) { /* GnuPG extension - don't write a secret key at all. */ if (is_v5) write_32 (a, 0); /* Zero octets of key material. */ } else if (ski->s2k.mode == 1002) { /* GnuPG extension - divert to OpenPGP smartcard. */ if (is_v5) write_32 (a, 1 + ski->ivlen); /* Length of the serial number or 0 for no serial number. */ iobuf_put (a, ski->ivlen ); /* The serial number gets stored in the IV field. */ iobuf_write (a, ski->iv, ski->ivlen); } else if (ski->is_protected) { /* The secret key is protected - write it out as it is. */ byte *p; unsigned int ndatabits; log_assert (gcry_mpi_get_flag (pk->pkey[npkey], GCRYMPI_FLAG_OPAQUE)); p = gcry_mpi_get_opaque (pk->pkey[npkey], &ndatabits); /* For v5 keys we first write the number of octets of the * following encrypted key material. */ if (is_v5) write_32 (a, p? (ndatabits+7)/8 : 0); if (p) iobuf_write (a, p, (ndatabits+7)/8 ); } else { /* Non-protected key. */ if (is_v5) { unsigned int skbytes = 0; unsigned int n; int j; for (j=i; j < nskey; j++ ) { - if (pk->pubkey_algo == PUBKEY_ALGO_EDDSA + if (pk->pubkey_algo == PUBKEY_ALGO_ECDSA + || pk->pubkey_algo == PUBKEY_ALGO_EDDSA || pk->pubkey_algo == PUBKEY_ALGO_ECDH) { if ((err = sos_write (NULL, pk->pkey[j], &n))) goto leave; } else { if ( (err = gpg_mpi_write (a, pk->pkey[i], NULL))) goto leave; } skbytes += n; } write_32 (a, skbytes); } for ( ; i < nskey; i++ ) - if (pk->pubkey_algo == PUBKEY_ALGO_EDDSA + if (pk->pubkey_algo == PUBKEY_ALGO_ECDSA + || pk->pubkey_algo == PUBKEY_ALGO_EDDSA || pk->pubkey_algo == PUBKEY_ALGO_ECDH) { if ((err = sos_write (a, pk->pkey[i], NULL))) goto leave; } else if ((err = gpg_mpi_write (a, pk->pkey[i], NULL))) goto leave; write_16 (a, ski->csum ); } } leave: if (!err) { /* Build the header of the packet - which we must do after * writing all the other stuff, so that we know the length of * the packet */ u32 len = iobuf_get_temp_length (a); len += 1; /* version number */ len += 4; /* timestamp */ len += 1; /* algo */ if (is_v5) len += 4; /* public key material count */ write_header2 (out, ctb, len, 0); /* And finally write it out to the real stream. */ iobuf_put (out, pk->version? pk->version : 4); /* version number */ write_32 (out, pk->timestamp ); iobuf_put (out, pk->pubkey_algo); /* algo */ if (is_v5) write_32 (out, pkbytes); /* public key material count */ err = iobuf_write_temp (out, a); /* pub and sec key material */ } iobuf_close (a); /* Close the temporary buffer */ return err; } /* Serialize the symmetric-key encrypted session key packet (RFC 4880, * 5.3) described by ENC and write it to OUT. * * CTB is the serialization's CTB. It specifies the header format and * the packet's type. The header length must not be set. */ static int do_symkey_enc( IOBUF out, int ctb, PKT_symkey_enc *enc ) { int rc = 0; IOBUF a = iobuf_temp(); log_assert (ctb_pkttype (ctb) == PKT_SYMKEY_ENC); log_assert (enc->version == 4 || enc->version == 5); switch (enc->s2k.mode) { case 0: /* Simple S2K. */ case 1: /* Salted S2K. */ case 3: /* Iterated and salted S2K. */ break; /* Reasonable values. */ default: log_bug ("do_symkey_enc: s2k=%d\n", enc->s2k.mode); } iobuf_put (a, enc->version); iobuf_put (a, enc->cipher_algo); if (enc->version == 5) iobuf_put (a, enc->aead_algo); iobuf_put (a, enc->s2k.mode); iobuf_put (a, enc->s2k.hash_algo); if (enc->s2k.mode == 1 || enc->s2k.mode == 3) { iobuf_write (a, enc->s2k.salt, 8); if (enc->s2k.mode == 3) iobuf_put (a, enc->s2k.count); } if (enc->seskeylen) iobuf_write (a, enc->seskey, enc->seskeylen); write_header (out, ctb, iobuf_get_temp_length(a)); rc = iobuf_write_temp (out, a); iobuf_close (a); return rc; } /* Serialize the public-key encrypted session key packet (RFC 4880, 5.1) described by ENC and write it to OUT. CTB is the serialization's CTB. It specifies the header format and the packet's type. The header length must not be set. */ static int do_pubkey_enc( IOBUF out, int ctb, PKT_pubkey_enc *enc ) { int rc = 0; int n, i; IOBUF a = iobuf_temp(); log_assert (ctb_pkttype (ctb) == PKT_PUBKEY_ENC); iobuf_put (a, 3); /* Version. */ if ( enc->throw_keyid ) { write_32(a, 0 ); /* Don't tell Eve who can decrypt the message. */ write_32(a, 0 ); } else { write_32(a, enc->keyid[0] ); write_32(a, enc->keyid[1] ); } iobuf_put(a,enc->pubkey_algo ); n = pubkey_get_nenc( enc->pubkey_algo ); if ( !n ) write_fake_data( a, enc->data[0] ); for (i=0; i < n && !rc ; i++ ) { if (enc->pubkey_algo == PUBKEY_ALGO_ECDH && i == 1) rc = gpg_mpi_write_nohdr (a, enc->data[i]); else if (enc->pubkey_algo == PUBKEY_ALGO_ECDH) rc = sos_write (a, enc->data[i], NULL); else rc = gpg_mpi_write (a, enc->data[i], NULL); } if (!rc) { write_header (out, ctb, iobuf_get_temp_length(a) ); rc = iobuf_write_temp (out, a); } iobuf_close(a); return rc; } /* Calculate the length of the serialized plaintext packet PT (RFC 4480, Section 5.9). */ static u32 calc_plaintext( PKT_plaintext *pt ) { /* Truncate namelen to the maximum 255 characters. Note this means that a function that calls build_packet with an illegal literal packet will get it back legalized. */ if(pt->namelen>255) pt->namelen=255; return pt->len? (1 + 1 + pt->namelen + 4 + pt->len) : 0; } /* Serialize the plaintext packet (RFC 4880, 5.9) described by PT and write it to OUT. The body of the message is stored in PT->BUF. The amount of data to write is PT->LEN. (PT->BUF should be configured to return EOF after this much data has been read.) If PT->LEN is 0 and CTB indicates that this is a new format packet, then partial block mode is assumed to have been enabled on OUT. On success, partial block mode is disabled. If PT->BUF is NULL, the caller must write out the data. In this case, if PT->LEN was 0, then partial body length mode was enabled and the caller must disable it by calling iobuf_set_partial_body_length_mode (out, 0). */ static int do_plaintext( IOBUF out, int ctb, PKT_plaintext *pt ) { int rc = 0; size_t nbytes; log_assert (ctb_pkttype (ctb) == PKT_PLAINTEXT); write_header(out, ctb, calc_plaintext( pt ) ); log_assert (pt->mode == 'b' || pt->mode == 't' || pt->mode == 'u' || pt->mode == 'm' || pt->mode == 'l' || pt->mode == '1'); iobuf_put(out, pt->mode ); iobuf_put(out, pt->namelen ); iobuf_write (out, pt->name, pt->namelen); rc = write_32(out, pt->timestamp ); if (rc) return rc; if (pt->buf) { nbytes = iobuf_copy (out, pt->buf); if(ctb_new_format_p (ctb) && !pt->len) /* Turn off partial body length mode. */ iobuf_set_partial_body_length_mode (out, 0); if( pt->len && nbytes != pt->len ) log_error("do_plaintext(): wrote %lu bytes but expected %lu bytes\n", (ulong)nbytes, (ulong)pt->len ); } return rc; } /* Serialize the symmetrically encrypted data packet (RFC 4880, Section 5.7) described by ED and write it to OUT. Note: this only writes the packets header! The call must then follow up and write the initial random data and the body to OUT. (If you use the encryption iobuf filter (cipher_filter), then this is done automatically.) */ static int do_encrypted( IOBUF out, int ctb, PKT_encrypted *ed ) { int rc = 0; u32 n; log_assert (! ed->mdc_method); log_assert (ctb_pkttype (ctb) == PKT_ENCRYPTED); n = ed->len ? (ed->len + ed->extralen) : 0; write_header(out, ctb, n ); /* This is all. The caller has to write the real data */ return rc; } /* Serialize the symmetrically encrypted integrity protected data packet (RFC 4880, Section 5.13) described by ED and write it to OUT. Note: this only writes the packet's header! The caller must then follow up and write the initial random data, the body and the MDC packet to OUT. (If you use the encryption iobuf filter (cipher_filter), then this is done automatically.) */ static int do_encrypted_mdc( IOBUF out, int ctb, PKT_encrypted *ed ) { int rc = 0; u32 n; log_assert (ed->mdc_method); log_assert (ctb_pkttype (ctb) == PKT_ENCRYPTED_MDC); /* Take version number and the following MDC packet in account. */ n = ed->len ? (ed->len + ed->extralen + 1 + 22) : 0; write_header(out, ctb, n ); iobuf_put(out, 1 ); /* version */ /* This is all. The caller has to write the real data */ return rc; } /* Serialize the symmetrically AEAD encrypted data packet * (rfc4880bis-03, Section 5.16) described by ED and write it to OUT. * * Note: this only writes only packet's header. The caller must then * follow up and write the actual encrypted data. This should be done * by pushing the the cipher_filter_aead. */ static int do_encrypted_aead (iobuf_t out, int ctb, PKT_encrypted *ed) { u32 n; log_assert (ctb_pkttype (ctb) == PKT_ENCRYPTED_AEAD); n = ed->len ? (ed->len + ed->extralen + 4) : 0; write_header (out, ctb, n ); iobuf_writebyte (out, 1); /* Version. */ iobuf_writebyte (out, ed->cipher_algo); iobuf_writebyte (out, ed->aead_algo); iobuf_writebyte (out, ed->chunkbyte); /* This is all. The caller has to write the encrypted data */ return 0; } /* Serialize the compressed packet (RFC 4880, Section 5.6) described by CD and write it to OUT. Note: this only writes the packet's header! The caller must then follow up and write the body to OUT. */ static int do_compressed( IOBUF out, int ctb, PKT_compressed *cd ) { int rc = 0; log_assert (ctb_pkttype (ctb) == PKT_COMPRESSED); /* We must use the old convention and don't use blockmode for the sake of PGP 2 compatibility. However if the new_ctb flag was set, CTB is already formatted as new style and write_header2 does create a partial length encoding using new the new style. */ write_header2(out, ctb, 0, 0); iobuf_put(out, cd->algorithm ); /* This is all. The caller has to write the real data */ return rc; } /**************** * Delete all subpackets of type REQTYPE and return a bool whether a packet * was deleted. */ int delete_sig_subpkt (subpktarea_t *area, sigsubpkttype_t reqtype ) { int buflen; sigsubpkttype_t type; byte *buffer, *bufstart; size_t n; size_t unused = 0; int okay = 0; if( !area ) return 0; buflen = area->len; buffer = area->data; for(;;) { if( !buflen ) { okay = 1; break; } bufstart = buffer; n = *buffer++; buflen--; if( n == 255 ) { if( buflen < 4 ) break; n = buf32_to_size_t (buffer); buffer += 4; buflen -= 4; } else if( n >= 192 ) { if( buflen < 2 ) break; n = (( n - 192 ) << 8) + *buffer + 192; buffer++; buflen--; } if( buflen < n ) break; type = *buffer & 0x7f; if( type == reqtype ) { buffer++; buflen--; n--; if( n > buflen ) break; buffer += n; /* point to next subpkt */ buflen -= n; memmove (bufstart, buffer, buflen); /* shift */ unused += buffer - bufstart; buffer = bufstart; } else { buffer += n; buflen -=n; } } if (!okay) log_error ("delete_subpkt: buffer shorter than subpacket\n"); log_assert (unused <= area->len); area->len -= unused; return !!unused; } /**************** * Create or update a signature subpacket for SIG of TYPE. This * functions knows where to put the data (hashed or unhashed). The * function may move data from the unhashed part to the hashed one. * Note: All pointers into sig->[un]hashed (e.g. returned by * parse_sig_subpkt) are not valid after a call to this function. The * data to put into the subpaket should be in a buffer with a length * of buflen. */ void build_sig_subpkt (PKT_signature *sig, sigsubpkttype_t type, const byte *buffer, size_t buflen ) { byte *p; int critical, hashed; subpktarea_t *oldarea, *newarea; size_t nlen, n, n0; critical = (type & SIGSUBPKT_FLAG_CRITICAL); type &= ~SIGSUBPKT_FLAG_CRITICAL; /* Sanity check buffer sizes */ if(parse_one_sig_subpkt(buffer,buflen,type)<0) BUG(); switch(type) { case SIGSUBPKT_NOTATION: case SIGSUBPKT_POLICY: case SIGSUBPKT_REV_KEY: case SIGSUBPKT_SIGNATURE: /* we do allow multiple subpackets */ break; default: /* we don't allow multiple subpackets */ delete_sig_subpkt(sig->hashed,type); delete_sig_subpkt(sig->unhashed,type); break; } /* Any special magic that needs to be done for this type so the packet doesn't need to be reparsed? */ switch(type) { case SIGSUBPKT_NOTATION: sig->flags.notation=1; break; case SIGSUBPKT_POLICY: sig->flags.policy_url=1; break; case SIGSUBPKT_PREF_KS: sig->flags.pref_ks=1; break; case SIGSUBPKT_EXPORTABLE: if(buffer[0]) sig->flags.exportable=1; else sig->flags.exportable=0; break; case SIGSUBPKT_REVOCABLE: if(buffer[0]) sig->flags.revocable=1; else sig->flags.revocable=0; break; case SIGSUBPKT_TRUST: sig->trust_depth=buffer[0]; sig->trust_value=buffer[1]; break; case SIGSUBPKT_REGEXP: sig->trust_regexp=buffer; break; /* This should never happen since we don't currently allow creating such a subpacket, but just in case... */ case SIGSUBPKT_SIG_EXPIRE: if(buf32_to_u32(buffer)+sig->timestamp<=make_timestamp()) sig->flags.expired=1; else sig->flags.expired=0; break; default: break; } if( (buflen+1) >= 8384 ) nlen = 5; /* write 5 byte length header */ else if( (buflen+1) >= 192 ) nlen = 2; /* write 2 byte length header */ else nlen = 1; /* just a 1 byte length header */ switch( type ) { /* The issuer being unhashed is a historical oddity. It should work equally as well hashed. Of course, if even an unhashed issuer is tampered with, it makes it awfully hard to verify the sig... */ case SIGSUBPKT_ISSUER: case SIGSUBPKT_SIGNATURE: hashed = 0; break; default: hashed = 1; break; } if( critical ) type |= SIGSUBPKT_FLAG_CRITICAL; oldarea = hashed? sig->hashed : sig->unhashed; /* Calculate new size of the area and allocate */ n0 = oldarea? oldarea->len : 0; n = n0 + nlen + 1 + buflen; /* length, type, buffer */ if (oldarea && n <= oldarea->size) { /* fits into the unused space */ newarea = oldarea; /*log_debug ("updating area for type %d\n", type );*/ } else if (oldarea) { newarea = xrealloc (oldarea, sizeof (*newarea) + n - 1); newarea->size = n; /*log_debug ("reallocating area for type %d\n", type );*/ } else { newarea = xmalloc (sizeof (*newarea) + n - 1); newarea->size = n; /*log_debug ("allocating area for type %d\n", type );*/ } newarea->len = n; p = newarea->data + n0; if (nlen == 5) { *p++ = 255; *p++ = (buflen+1) >> 24; *p++ = (buflen+1) >> 16; *p++ = (buflen+1) >> 8; *p++ = (buflen+1); *p++ = type; memcpy (p, buffer, buflen); } else if (nlen == 2) { *p++ = (buflen+1-192) / 256 + 192; *p++ = (buflen+1-192) % 256; *p++ = type; memcpy (p, buffer, buflen); } else { *p++ = buflen+1; *p++ = type; memcpy (p, buffer, buflen); } if (hashed) sig->hashed = newarea; else sig->unhashed = newarea; } /* * Put all the required stuff from SIG into subpackets of sig. * PKSK is the signing key. * Hmmm, should we delete those subpackets which are in a wrong area? */ void build_sig_subpkt_from_sig (PKT_signature *sig, PKT_public_key *pksk) { u32 u; byte buf[1+MAX_FINGERPRINT_LEN]; size_t fprlen; /* For v4 keys we need to write the ISSUER subpacket. We do not * want that for a future v5 format. */ if (pksk->version < 5) { u = sig->keyid[0]; buf[0] = (u >> 24) & 0xff; buf[1] = (u >> 16) & 0xff; buf[2] = (u >> 8) & 0xff; buf[3] = u & 0xff; u = sig->keyid[1]; buf[4] = (u >> 24) & 0xff; buf[5] = (u >> 16) & 0xff; buf[6] = (u >> 8) & 0xff; buf[7] = u & 0xff; build_sig_subpkt (sig, SIGSUBPKT_ISSUER, buf, 8); } /* Write the new ISSUER_FPR subpacket. */ fingerprint_from_pk (pksk, buf+1, &fprlen); if (fprlen == 20 || fprlen == 32) { buf[0] = pksk->version; build_sig_subpkt (sig, SIGSUBPKT_ISSUER_FPR, buf, fprlen + 1); } /* Write the timestamp. */ u = sig->timestamp; buf[0] = (u >> 24) & 0xff; buf[1] = (u >> 16) & 0xff; buf[2] = (u >> 8) & 0xff; buf[3] = u & 0xff; build_sig_subpkt( sig, SIGSUBPKT_SIG_CREATED, buf, 4 ); if(sig->expiredate) { if(sig->expiredate>sig->timestamp) u=sig->expiredate-sig->timestamp; else u=1; /* A 1-second expiration time is the shortest one OpenPGP has */ buf[0] = (u >> 24) & 0xff; buf[1] = (u >> 16) & 0xff; buf[2] = (u >> 8) & 0xff; buf[3] = u & 0xff; /* Mark this CRITICAL, so if any implementation doesn't understand sigs that can expire, it'll just disregard this sig altogether. */ build_sig_subpkt( sig, SIGSUBPKT_SIG_EXPIRE | SIGSUBPKT_FLAG_CRITICAL, buf, 4 ); } } void build_attribute_subpkt(PKT_user_id *uid,byte type, const void *buf,u32 buflen, const void *header,u32 headerlen) { byte *attrib; int idx; if(1+headerlen+buflen>8383) idx=5; else if(1+headerlen+buflen>191) idx=2; else idx=1; /* realloc uid->attrib_data to the right size */ uid->attrib_data=xrealloc(uid->attrib_data, uid->attrib_len+idx+1+headerlen+buflen); attrib=&uid->attrib_data[uid->attrib_len]; if(idx==5) { attrib[0]=255; attrib[1]=(1+headerlen+buflen) >> 24; attrib[2]=(1+headerlen+buflen) >> 16; attrib[3]=(1+headerlen+buflen) >> 8; attrib[4]=1+headerlen+buflen; } else if(idx==2) { attrib[0]=(1+headerlen+buflen-192) / 256 + 192; attrib[1]=(1+headerlen+buflen-192) % 256; } else attrib[0]=1+headerlen+buflen; /* Good luck finding a JPEG this small! */ attrib[idx++]=type; /* Tack on our data at the end */ if(headerlen>0) memcpy(&attrib[idx],header,headerlen); memcpy(&attrib[idx+headerlen],buf,buflen); uid->attrib_len+=idx+headerlen+buflen; } /* Returns a human-readable string corresponding to the notation. This ignores notation->value. The caller must free the result. */ static char * notation_value_to_human_readable_string (struct notation *notation) { if(notation->bdat) /* Binary data. */ { size_t len = notation->blen; int i; char preview[20]; for (i = 0; i < len && i < sizeof (preview) - 1; i ++) if (isprint (notation->bdat[i])) preview[i] = notation->bdat[i]; else preview[i] = '?'; preview[i] = 0; return xasprintf (_("[ not human readable (%zu bytes: %s%s) ]"), len, preview, i < len ? "..." : ""); } else /* The value is human-readable. */ return xstrdup (notation->value); } /* Turn the notation described by the string STRING into a notation. STRING has the form: - -name - Delete the notation. - name@domain.name=value - Normal notation - !name@domain.name=value - Notation with critical bit set. The caller must free the result using free_notation(). */ struct notation * string_to_notation(const char *string,int is_utf8) { const char *s; int saw_at=0; struct notation *notation; notation=xmalloc_clear(sizeof(*notation)); if(*string=='-') { notation->flags.ignore=1; string++; } if(*string=='!') { notation->flags.critical=1; string++; } /* If and when the IETF assigns some official name tags, we'll have to add them here. */ for( s=string ; *s != '='; s++ ) { if( *s=='@') saw_at++; /* -notationname is legal without an = sign */ if(!*s && notation->flags.ignore) break; if( !*s || !isascii (*s) || (!isgraph(*s) && !isspace(*s)) ) { log_error(_("a notation name must have only printable characters" " or spaces, and end with an '='\n") ); goto fail; } } notation->name=xmalloc((s-string)+1); memcpy(notation->name,string,s-string); notation->name[s-string]='\0'; if(!saw_at && !opt.expert) { log_error(_("a user notation name must contain the '@' character\n")); goto fail; } if (saw_at > 1) { log_error(_("a notation name must not contain more than" " one '@' character\n")); goto fail; } if(*s) { const char *i=s+1; int highbit=0; /* we only support printable text - therefore we enforce the use of only printable characters (an empty value is valid) */ for(s++; *s ; s++ ) { if ( !isascii (*s) ) highbit=1; else if (iscntrl(*s)) { log_error(_("a notation value must not use any" " control characters\n")); goto fail; } } if(!highbit || is_utf8) notation->value=xstrdup(i); else notation->value=native_to_utf8(i); } return notation; fail: free_notation(notation); return NULL; } /* Like string_to_notation, but store opaque data rather than human readable data. */ struct notation * blob_to_notation(const char *name, const char *data, size_t len) { const char *s; int saw_at=0; struct notation *notation; notation=xmalloc_clear(sizeof(*notation)); if(*name=='-') { notation->flags.ignore=1; name++; } if(*name=='!') { notation->flags.critical=1; name++; } /* If and when the IETF assigns some official name tags, we'll have to add them here. */ for( s=name ; *s; s++ ) { if( *s=='@') saw_at++; /* -notationname is legal without an = sign */ if(!*s && notation->flags.ignore) break; if (*s == '=') { log_error(_("a notation name may not contain an '=' character\n")); goto fail; } if (!isascii (*s) || (!isgraph(*s) && !isspace(*s))) { log_error(_("a notation name must have only printable characters" " or spaces\n") ); goto fail; } } notation->name=xstrdup (name); if(!saw_at && !opt.expert) { log_error(_("a user notation name must contain the '@' character\n")); goto fail; } if (saw_at > 1) { log_error(_("a notation name must not contain more than" " one '@' character\n")); goto fail; } notation->bdat = xmalloc (len); memcpy (notation->bdat, data, len); notation->blen = len; notation->value = notation_value_to_human_readable_string (notation); return notation; fail: free_notation(notation); return NULL; } struct notation * sig_to_notation(PKT_signature *sig) { const byte *p; size_t len; int seq = 0; int crit; notation_t list = NULL; /* See RFC 4880, 5.2.3.16 for the format of notation data. In short, a notation has: - 4 bytes of flags - 2 byte name length (n1) - 2 byte value length (n2) - n1 bytes of name data - n2 bytes of value data */ while((p=enum_sig_subpkt (sig, 1, SIGSUBPKT_NOTATION, &len, &seq, &crit))) { int n1,n2; struct notation *n=NULL; if(len<8) { log_info(_("WARNING: invalid notation data found\n")); continue; } /* name length. */ n1=(p[4]<<8)|p[5]; /* value length. */ n2=(p[6]<<8)|p[7]; if(8+n1+n2!=len) { log_info(_("WARNING: invalid notation data found\n")); continue; } n=xmalloc_clear(sizeof(*n)); n->name=xmalloc(n1+1); memcpy(n->name,&p[8],n1); n->name[n1]='\0'; if(p[0]&0x80) /* The value is human-readable. */ { n->value=xmalloc(n2+1); memcpy(n->value,&p[8+n1],n2); n->value[n2]='\0'; n->flags.human = 1; } else /* Binary data. */ { n->bdat=xmalloc(n2); n->blen=n2; memcpy(n->bdat,&p[8+n1],n2); n->value = notation_value_to_human_readable_string (n); } n->flags.critical=crit; n->next=list; list=n; } return list; } /* Release the resources associated with the *list* of notations. To release a single notation, make sure that notation->next is NULL. */ void free_notation(struct notation *notation) { while(notation) { struct notation *n=notation; xfree(n->name); xfree(n->value); xfree(n->altvalue); xfree(n->bdat); notation=n->next; xfree(n); } } /* Serialize the signature packet (RFC 4880, Section 5.2) described by SIG and write it to OUT. */ static int do_signature( IOBUF out, int ctb, PKT_signature *sig ) { int rc = 0; int n, i; IOBUF a = iobuf_temp(); log_assert (ctb_pkttype (ctb) == PKT_SIGNATURE); if ( !sig->version || sig->version == 3) { iobuf_put( a, 3 ); /* Version 3 packets don't support subpackets. */ log_assert (! sig->hashed); log_assert (! sig->unhashed); } else iobuf_put( a, sig->version ); if ( sig->version < 4 ) iobuf_put (a, 5 ); /* Constant used by pre-v4 signatures. */ iobuf_put (a, sig->sig_class ); if ( sig->version < 4 ) { write_32(a, sig->timestamp ); write_32(a, sig->keyid[0] ); write_32(a, sig->keyid[1] ); } iobuf_put(a, sig->pubkey_algo ); iobuf_put(a, sig->digest_algo ); if ( sig->version >= 4 ) { size_t nn; /* Timestamp and keyid must have been packed into the subpackets prior to the call of this function, because these subpackets are hashed. */ nn = sig->hashed? sig->hashed->len : 0; write_16(a, nn); if (nn) iobuf_write( a, sig->hashed->data, nn ); nn = sig->unhashed? sig->unhashed->len : 0; write_16(a, nn); if (nn) iobuf_write( a, sig->unhashed->data, nn ); } iobuf_put(a, sig->digest_start[0] ); iobuf_put(a, sig->digest_start[1] ); n = pubkey_get_nsig( sig->pubkey_algo ); if ( !n ) write_fake_data( a, sig->data[0] ); if (sig->pubkey_algo == PUBKEY_ALGO_EDDSA) for (i=0; i < n && !rc ; i++ ) rc = sos_write (a, sig->data[i], NULL); else for (i=0; i < n && !rc ; i++ ) rc = gpg_mpi_write (a, sig->data[i], NULL); if (!rc) { if ( is_RSA(sig->pubkey_algo) && sig->version < 4 ) write_sign_packet_header(out, ctb, iobuf_get_temp_length(a) ); else write_header(out, ctb, iobuf_get_temp_length(a) ); rc = iobuf_write_temp( out, a ); } iobuf_close(a); return rc; } /* Serialize the one-pass signature packet (RFC 4880, Section 5.4) described by OPS and write it to OUT. */ static int do_onepass_sig( IOBUF out, int ctb, PKT_onepass_sig *ops ) { log_assert (ctb_pkttype (ctb) == PKT_ONEPASS_SIG); write_header(out, ctb, 4 + 8 + 1); iobuf_put (out, 3); /* Version. */ iobuf_put(out, ops->sig_class ); iobuf_put(out, ops->digest_algo ); iobuf_put(out, ops->pubkey_algo ); write_32(out, ops->keyid[0] ); write_32(out, ops->keyid[1] ); iobuf_put(out, ops->last ); return 0; } /* Write a 16-bit quantity to OUT in big endian order. */ static int write_16(IOBUF out, u16 a) { iobuf_put(out, a>>8); if( iobuf_put(out,a) ) return -1; return 0; } /* Write a 32-bit quantity to OUT in big endian order. */ static int write_32(IOBUF out, u32 a) { iobuf_put(out, a>> 24); iobuf_put(out, a>> 16); iobuf_put(out, a>> 8); return iobuf_put(out, a); } /**************** * calculate the length of a header. * * LEN is the length of the packet's body. NEW_CTB is whether we are * using a new or old format packet. * * This function does not handle indeterminate lengths or partial body * lengths. (If you pass LEN as 0, then this function assumes you * really mean an empty body.) */ static int calc_header_length( u32 len, int new_ctb ) { if( new_ctb ) { if( len < 192 ) return 2; if( len < 8384 ) return 3; else return 6; } if( len < 256 ) return 2; if( len < 65536 ) return 3; return 5; } /**************** * Write the CTB and the packet length */ static int write_header( IOBUF out, int ctb, u32 len ) { return write_header2( out, ctb, len, 0 ); } static int write_sign_packet_header (IOBUF out, int ctb, u32 len) { (void)ctb; /* Work around a bug in the pgp read function for signature packets, which are not correctly coded and silently assume at some point 2 byte length headers.*/ iobuf_put (out, 0x89 ); iobuf_put (out, len >> 8 ); return iobuf_put (out, len) == -1 ? -1:0; } /**************** * Write a packet header to OUT. * * CTB is the ctb. It determines whether a new or old format packet * header should be written. The length field is adjusted, but the * CTB is otherwise written out as is. * * LEN is the length of the packet's body. * * If HDRLEN is set, then we don't necessarily use the most efficient * encoding to store LEN, but the specified length. (If this is not * possible, this is a bug.) In this case, LEN=0 means a 0 length * packet. Note: setting HDRLEN is only supported for old format * packets! * * If HDRLEN is not set, then the shortest encoding is used. In this * case, LEN=0 means the body has an indeterminate length and a * partial body length header (if a new format packet) or an * indeterminate length header (if an old format packet) is written * out. Further, if using partial body lengths, this enables partial * body length mode on OUT. */ static int write_header2( IOBUF out, int ctb, u32 len, int hdrlen ) { if (ctb_new_format_p (ctb)) return write_new_header( out, ctb, len, hdrlen ); /* An old format packet. Refer to RFC 4880, Section 4.2.1 to understand how lengths are encoded in this case. */ /* The length encoding is stored in the two least significant bits. Make sure they are cleared. */ log_assert ((ctb & 3) == 0); log_assert (hdrlen == 0 || hdrlen == 2 || hdrlen == 3 || hdrlen == 5); if (hdrlen) /* Header length is given. */ { if( hdrlen == 2 && len < 256 ) /* 00 => 1 byte length. */ ; else if( hdrlen == 3 && len < 65536 ) /* 01 => 2 byte length. If len < 256, this is not the most compact encoding, but it is a correct encoding. */ ctb |= 1; else if (hdrlen == 5) /* 10 => 4 byte length. If len < 65536, this is not the most compact encoding, but it is a correct encoding. */ ctb |= 2; else log_bug ("Can't encode length=%d in a %d byte header!\n", len, hdrlen); } else { if( !len ) /* 11 => Indeterminate length. */ ctb |= 3; else if( len < 256 ) /* 00 => 1 byte length. */ ; else if( len < 65536 ) /* 01 => 2 byte length. */ ctb |= 1; else /* 10 => 4 byte length. */ ctb |= 2; } if( iobuf_put(out, ctb ) ) return -1; if( len || hdrlen ) { if( ctb & 2 ) { if(iobuf_put(out, len >> 24 )) return -1; if(iobuf_put(out, len >> 16 )) return -1; } if( ctb & 3 ) if(iobuf_put(out, len >> 8 )) return -1; if( iobuf_put(out, len ) ) return -1; } return 0; } /* Write a new format header to OUT. CTB is the ctb. LEN is the length of the packet's body. If LEN is 0, then enables partial body length mode (i.e., the body is of an indeterminant length) on OUT. Note: this function cannot be used to generate a header for a zero length packet. HDRLEN is the length of the packet's header. If HDRLEN is 0, the shortest encoding is chosen based on the length of the packet's body. Currently, values other than 0 are not supported. Returns 0 on success. */ static int write_new_header( IOBUF out, int ctb, u32 len, int hdrlen ) { if( hdrlen ) log_bug("can't cope with hdrlen yet\n"); if( iobuf_put(out, ctb ) ) return -1; if( !len ) { iobuf_set_partial_body_length_mode(out, 512 ); } else { if( len < 192 ) { if( iobuf_put(out, len ) ) return -1; } else if( len < 8384 ) { len -= 192; if( iobuf_put( out, (len / 256) + 192) ) return -1; if( iobuf_put( out, (len % 256) ) ) return -1; } else { if( iobuf_put( out, 0xff ) ) return -1; if( iobuf_put( out, (len >> 24)&0xff ) ) return -1; if( iobuf_put( out, (len >> 16)&0xff ) ) return -1; if( iobuf_put( out, (len >> 8)&0xff ) ) return -1; if( iobuf_put( out, len & 0xff ) ) return -1; } } return 0; } diff --git a/g10/export.c b/g10/export.c index a021013ac..ba3521f2f 100644 --- a/g10/export.c +++ b/g10/export.c @@ -1,2542 +1,2543 @@ /* export.c - Export keys in the OpenPGP defined format. * Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, * 2005, 2010 Free Software Foundation, Inc. * Copyright (C) 1998-2016 Werner Koch * * This file is part of GnuPG. * * GnuPG is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * GnuPG is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #include #include #include #include #include #include "gpg.h" #include "options.h" #include "packet.h" #include "../common/status.h" #include "keydb.h" #include "../common/util.h" #include "main.h" #include "../common/i18n.h" #include "../common/membuf.h" #include "../common/host2net.h" #include "../common/zb32.h" #include "../common/recsel.h" #include "../common/mbox-util.h" #include "../common/init.h" #include "trustdb.h" #include "call-agent.h" #include "key-clean.h" /* An object to keep track of subkeys. */ struct subkey_list_s { struct subkey_list_s *next; u32 kid[2]; }; typedef struct subkey_list_s *subkey_list_t; /* An object to track statistics for export operations. */ struct export_stats_s { ulong count; /* Number of processed keys. */ ulong secret_count; /* Number of secret keys seen. */ ulong exported; /* Number of actual exported keys. */ }; /* A global variable to store the selector created from * --export-filter keep-uid=EXPR. * --export-filter drop-subkey=EXPR. * * FIXME: We should put this into the CTRL object but that requires a * lot more changes right now. */ static recsel_expr_t export_keep_uid; static recsel_expr_t export_drop_subkey; /* An object used for a linked list to implement the * push_export_filter/pop_export_filters functions. */ struct export_filter_attic_s { struct export_filter_attic_s *next; recsel_expr_t export_keep_uid; recsel_expr_t export_drop_subkey; }; static struct export_filter_attic_s *export_filter_attic; /* Local prototypes. */ static int do_export (ctrl_t ctrl, strlist_t users, int secret, unsigned int options, export_stats_t stats); static int do_export_stream (ctrl_t ctrl, iobuf_t out, strlist_t users, int secret, kbnode_t *keyblock_out, unsigned int options, export_stats_t stats, int *any); static gpg_error_t print_pka_or_dane_records /**/ (iobuf_t out, kbnode_t keyblock, PKT_public_key *pk, const void *data, size_t datalen, int print_pka, int print_dane); static void cleanup_export_globals (void) { recsel_release (export_keep_uid); export_keep_uid = NULL; recsel_release (export_drop_subkey); export_drop_subkey = NULL; } /* Option parser for export options. See parse_options for details. */ int parse_export_options(char *str,unsigned int *options,int noisy) { struct parse_options export_opts[]= { {"export-local-sigs",EXPORT_LOCAL_SIGS,NULL, N_("export signatures that are marked as local-only")}, {"export-attributes",EXPORT_ATTRIBUTES,NULL, N_("export attribute user IDs (generally photo IDs)")}, {"export-sensitive-revkeys",EXPORT_SENSITIVE_REVKEYS,NULL, N_("export revocation keys marked as \"sensitive\"")}, {"export-clean",EXPORT_CLEAN,NULL, N_("remove unusable parts from key during export")}, {"export-minimal",EXPORT_MINIMAL|EXPORT_CLEAN,NULL, N_("remove as much as possible from key during export")}, {"export-drop-uids", EXPORT_DROP_UIDS, NULL, N_("Do not export user id or attribute packets")}, {"export-pka", EXPORT_PKA_FORMAT, NULL, NULL }, {"export-dane", EXPORT_DANE_FORMAT, NULL, NULL }, {"backup", EXPORT_BACKUP, NULL, N_("use the GnuPG key backup format")}, {"export-backup", EXPORT_BACKUP, NULL, NULL }, /* Aliases for backward compatibility */ {"include-local-sigs",EXPORT_LOCAL_SIGS,NULL,NULL}, {"include-attributes",EXPORT_ATTRIBUTES,NULL,NULL}, {"include-sensitive-revkeys",EXPORT_SENSITIVE_REVKEYS,NULL,NULL}, /* dummy */ {"export-unusable-sigs",0,NULL,NULL}, {"export-clean-sigs",0,NULL,NULL}, {"export-clean-uids",0,NULL,NULL}, {NULL,0,NULL,NULL} /* add tags for include revoked and disabled? */ }; int rc; rc = parse_options (str, options, export_opts, noisy); if (!rc) return 0; /* Alter other options we want or don't want for restore. */ if ((*options & EXPORT_BACKUP)) { *options |= (EXPORT_LOCAL_SIGS | EXPORT_ATTRIBUTES | EXPORT_SENSITIVE_REVKEYS); *options &= ~(EXPORT_CLEAN | EXPORT_MINIMAL | EXPORT_PKA_FORMAT | EXPORT_DANE_FORMAT); } /* Dropping uids also means to drop attributes. */ if ((*options & EXPORT_DROP_UIDS)) *options &= ~(EXPORT_ATTRIBUTES); return rc; } /* Parse and set an export filter from string. STRING has the format * "NAME=EXPR" with NAME being the name of the filter. Spaces before * and after NAME are not allowed. If this function is called several * times all expressions for the same NAME are concatenated. * Supported filter names are: * * - keep-uid :: If the expression evaluates to true for a certain * user ID packet, that packet and all it dependencies * will be exported. The expression may use these * variables: * * - uid :: The entire user ID. * - mbox :: The mail box part of the user ID. * - primary :: Evaluate to true for the primary user ID. * * - drop-subkey :: If the expression evaluates to true for a subkey * packet that subkey and all it dependencies will be * remove from the keyblock. The expression may use these * variables: * * - secret :: 1 for a secret subkey, else 0. * - key_algo :: Public key algorithm id */ gpg_error_t parse_and_set_export_filter (const char *string) { gpg_error_t err; /* Auto register the cleanup function. */ register_mem_cleanup_func (cleanup_export_globals); if (!strncmp (string, "keep-uid=", 9)) err = recsel_parse_expr (&export_keep_uid, string+9); else if (!strncmp (string, "drop-subkey=", 12)) err = recsel_parse_expr (&export_drop_subkey, string+12); else err = gpg_error (GPG_ERR_INV_NAME); return err; } /* Push the current export filters onto a stack so that new export * filters can be defined which will be active until the next * pop_export_filters or another push_export_filters. */ void push_export_filters (void) { struct export_filter_attic_s *item; item = xcalloc (1, sizeof *item); item->export_keep_uid = export_keep_uid; export_keep_uid = NULL; item->export_drop_subkey = export_drop_subkey; export_drop_subkey = NULL; item->next = export_filter_attic; export_filter_attic = item; } /* Revert the last push_export_filters. */ void pop_export_filters (void) { struct export_filter_attic_s *item; item = export_filter_attic; if (!item) BUG (); /* No corresponding push. */ export_filter_attic = item->next; cleanup_export_globals (); export_keep_uid = item->export_keep_uid; export_drop_subkey = item->export_drop_subkey; } /* Create a new export stats object initialized to zero. On error returns NULL and sets ERRNO. */ export_stats_t export_new_stats (void) { export_stats_t stats; return xtrycalloc (1, sizeof *stats); } /* Release an export stats object. */ void export_release_stats (export_stats_t stats) { xfree (stats); } /* Print export statistics using the status interface. */ void export_print_stats (export_stats_t stats) { if (!stats) return; if (is_status_enabled ()) { char buf[15*20]; snprintf (buf, sizeof buf, "%lu %lu %lu", stats->count, stats->secret_count, stats->exported ); write_status_text (STATUS_EXPORT_RES, buf); } } /* * Export public keys (to stdout or to --output FILE). * * Depending on opt.armor the output is armored. OPTIONS are defined * in main.h. If USERS is NULL, all keys will be exported. STATS is * either an export stats object for update or NULL. * * This function is the core of "gpg --export". */ int export_pubkeys (ctrl_t ctrl, strlist_t users, unsigned int options, export_stats_t stats) { return do_export (ctrl, users, 0, options, stats); } /* * Export secret keys (to stdout or to --output FILE). * * Depending on opt.armor the output is armored. OPTIONS are defined * in main.h. If USERS is NULL, all secret keys will be exported. * STATS is either an export stats object for update or NULL. * * This function is the core of "gpg --export-secret-keys". */ int export_seckeys (ctrl_t ctrl, strlist_t users, unsigned int options, export_stats_t stats) { return do_export (ctrl, users, 1, options, stats); } /* * Export secret sub keys (to stdout or to --output FILE). * * This is the same as export_seckeys but replaces the primary key by * a stub key. Depending on opt.armor the output is armored. OPTIONS * are defined in main.h. If USERS is NULL, all secret subkeys will * be exported. STATS is either an export stats object for update or * NULL. * * This function is the core of "gpg --export-secret-subkeys". */ int export_secsubkeys (ctrl_t ctrl, strlist_t users, unsigned int options, export_stats_t stats) { return do_export (ctrl, users, 2, options, stats); } /* * Export a single key into a memory buffer. STATS is either an * export stats object for update or NULL. If PREFIX is not NULL * PREFIXLEN bytes from PREFIX are prepended to the R_DATA. */ gpg_error_t export_pubkey_buffer (ctrl_t ctrl, const char *keyspec, unsigned int options, const void *prefix, size_t prefixlen, export_stats_t stats, kbnode_t *r_keyblock, void **r_data, size_t *r_datalen) { gpg_error_t err; iobuf_t iobuf; int any; strlist_t helplist; *r_keyblock = NULL; *r_data = NULL; *r_datalen = 0; helplist = NULL; if (!add_to_strlist_try (&helplist, keyspec)) return gpg_error_from_syserror (); iobuf = iobuf_temp (); if (prefix && prefixlen) iobuf_write (iobuf, prefix, prefixlen); err = do_export_stream (ctrl, iobuf, helplist, 0, r_keyblock, options, stats, &any); if (!err && !any) err = gpg_error (GPG_ERR_NOT_FOUND); if (!err) { const void *src; size_t datalen; iobuf_flush_temp (iobuf); src = iobuf_get_temp_buffer (iobuf); datalen = iobuf_get_temp_length (iobuf); if (!datalen) err = gpg_error (GPG_ERR_NO_PUBKEY); else if (!(*r_data = xtrymalloc (datalen))) err = gpg_error_from_syserror (); else { memcpy (*r_data, src, datalen); *r_datalen = datalen; } } iobuf_close (iobuf); free_strlist (helplist); if (err && *r_keyblock) { release_kbnode (*r_keyblock); *r_keyblock = NULL; } return err; } /* Export the keys identified by the list of strings in USERS. If Secret is false public keys will be exported. With secret true secret keys will be exported; in this case 1 means the entire secret keyblock and 2 only the subkeys. OPTIONS are the export options to apply. */ static int do_export (ctrl_t ctrl, strlist_t users, int secret, unsigned int options, export_stats_t stats) { IOBUF out = NULL; int any, rc; armor_filter_context_t *afx = NULL; compress_filter_context_t zfx; memset( &zfx, 0, sizeof zfx); rc = open_outfile (-1, NULL, 0, !!secret, &out ); if (rc) return rc; if ( opt.armor && !(options & (EXPORT_PKA_FORMAT|EXPORT_DANE_FORMAT)) ) { afx = new_armor_context (); afx->what = secret? 5 : 1; push_armor_filter (afx, out); } rc = do_export_stream (ctrl, out, users, secret, NULL, options, stats, &any); if ( rc || !any ) iobuf_cancel (out); else iobuf_close (out); release_armor_context (afx); return rc; } /* Release an entire subkey list. */ static void release_subkey_list (subkey_list_t list) { while (list) { subkey_list_t tmp = list->next;; xfree (list); list = tmp; } } /* Returns true if NODE is a subkey and contained in LIST. */ static int subkey_in_list_p (subkey_list_t list, KBNODE node) { if (node->pkt->pkttype == PKT_PUBLIC_SUBKEY || node->pkt->pkttype == PKT_SECRET_SUBKEY ) { u32 kid[2]; keyid_from_pk (node->pkt->pkt.public_key, kid); for (; list; list = list->next) if (list->kid[0] == kid[0] && list->kid[1] == kid[1]) return 1; } return 0; } /* Allocate a new subkey list item from NODE. */ static subkey_list_t new_subkey_list_item (KBNODE node) { subkey_list_t list = xcalloc (1, sizeof *list); if (node->pkt->pkttype == PKT_PUBLIC_SUBKEY || node->pkt->pkttype == PKT_SECRET_SUBKEY) keyid_from_pk (node->pkt->pkt.public_key, list->kid); return list; } /* Helper function to check whether the subkey at NODE actually matches the description at DESC. The function returns true if the key under question has been specified by an exact specification (keyID or fingerprint) and does match the one at NODE. It is assumed that the packet at NODE is either a public or secret subkey. */ int exact_subkey_match_p (KEYDB_SEARCH_DESC *desc, kbnode_t node) { u32 kid[2]; byte fpr[MAX_FINGERPRINT_LEN]; size_t fprlen; int result = 0; switch(desc->mode) { case KEYDB_SEARCH_MODE_SHORT_KID: case KEYDB_SEARCH_MODE_LONG_KID: keyid_from_pk (node->pkt->pkt.public_key, kid); break; case KEYDB_SEARCH_MODE_FPR: fingerprint_from_pk (node->pkt->pkt.public_key, fpr, &fprlen); break; default: break; } switch(desc->mode) { case KEYDB_SEARCH_MODE_SHORT_KID: if (desc->u.kid[1] == kid[1]) result = 1; break; case KEYDB_SEARCH_MODE_LONG_KID: if (desc->u.kid[0] == kid[0] && desc->u.kid[1] == kid[1]) result = 1; break; case KEYDB_SEARCH_MODE_FPR: if (fprlen == desc->fprlen && !memcmp (desc->u.fpr, fpr, desc->fprlen)) result = 1; break; default: break; } return result; } /* Return an error if the key represented by the S-expression S_KEY * and the OpenPGP key represented by PK do not use the same curve. */ static gpg_error_t match_curve_skey_pk (gcry_sexp_t s_key, PKT_public_key *pk) { gcry_sexp_t curve = NULL; gcry_sexp_t flags = NULL; char *curve_str = NULL; char *flag; const char *oidstr = NULL; gcry_mpi_t curve_as_mpi = NULL; gpg_error_t err; int is_eddsa = 0; int idx = 0; if (!(pk->pubkey_algo==PUBKEY_ALGO_ECDH || pk->pubkey_algo==PUBKEY_ALGO_ECDSA || pk->pubkey_algo==PUBKEY_ALGO_EDDSA)) return gpg_error (GPG_ERR_PUBKEY_ALGO); curve = gcry_sexp_find_token (s_key, "curve", 0); if (!curve) { log_error ("no reported curve\n"); return gpg_error (GPG_ERR_UNKNOWN_CURVE); } curve_str = gcry_sexp_nth_string (curve, 1); gcry_sexp_release (curve); curve = NULL; if (!curve_str) { log_error ("no curve name\n"); return gpg_error (GPG_ERR_UNKNOWN_CURVE); } oidstr = openpgp_curve_to_oid (curve_str, NULL, NULL); if (!oidstr) { log_error ("no OID known for curve '%s'\n", curve_str); xfree (curve_str); return gpg_error (GPG_ERR_UNKNOWN_CURVE); } xfree (curve_str); err = openpgp_oid_from_str (oidstr, &curve_as_mpi); if (err) return err; if (gcry_mpi_cmp (pk->pkey[0], curve_as_mpi)) { log_error ("curves do not match\n"); gcry_mpi_release (curve_as_mpi); return gpg_error (GPG_ERR_INV_CURVE); } gcry_mpi_release (curve_as_mpi); flags = gcry_sexp_find_token (s_key, "flags", 0); if (flags) { for (idx = 1; idx < gcry_sexp_length (flags); idx++) { flag = gcry_sexp_nth_string (flags, idx); if (flag && (strcmp ("eddsa", flag) == 0)) is_eddsa = 1; gcry_free (flag); } } if (is_eddsa != (pk->pubkey_algo == PUBKEY_ALGO_EDDSA)) { log_error ("disagreement about EdDSA\n"); err = gpg_error (GPG_ERR_INV_CURVE); } return err; } /* Return a canonicalized public key algorithms. This is used to compare different flavors of algorithms (e.g. ELG and ELG_E are considered the same). */ static enum gcry_pk_algos canon_pk_algo (enum gcry_pk_algos algo) { switch (algo) { case GCRY_PK_RSA: case GCRY_PK_RSA_E: case GCRY_PK_RSA_S: return GCRY_PK_RSA; case GCRY_PK_ELG: case GCRY_PK_ELG_E: return GCRY_PK_ELG; case GCRY_PK_ECC: case GCRY_PK_ECDSA: case GCRY_PK_ECDH: return GCRY_PK_ECC; default: return algo; } } static gpg_error_t sexp_extract_param_sos (gcry_sexp_t sexp, const char *param, gcry_mpi_t *r_sos) { gpg_error_t err; gcry_sexp_t l2 = gcry_sexp_find_token (sexp, param, 0); *r_sos = NULL; if (!l2) err = gpg_error (GPG_ERR_NO_OBJ); else { size_t buflen; void *p0 = gcry_sexp_nth_buffer (l2, 1, &buflen); if (!p0) err = gpg_error_from_syserror (); else { gcry_mpi_t sos; unsigned int nbits = buflen*8; unsigned char *p = p0; if (nbits >= 8 && !(*p & 0x80)) if (--nbits >= 7 && !(*p & 0x40)) if (--nbits >= 6 && !(*p & 0x20)) if (--nbits >= 5 && !(*p & 0x10)) if (--nbits >= 4 && !(*p & 0x08)) if (--nbits >= 3 && !(*p & 0x04)) if (--nbits >= 2 && !(*p & 0x02)) if (--nbits >= 1 && !(*p & 0x01)) --nbits; sos = gcry_mpi_set_opaque (NULL, p0, nbits); if (sos) { gcry_mpi_set_flag (sos, GCRYMPI_FLAG_USER2); *r_sos = sos; err = 0; } else err = gpg_error_from_syserror (); } gcry_sexp_release (l2); } return err; } /* Take a cleartext dump of a secret key in PK and change the * parameter array in PK to include the secret parameters. */ static gpg_error_t cleartext_secret_key_to_openpgp (gcry_sexp_t s_key, PKT_public_key *pk) { gpg_error_t err; gcry_sexp_t top_list; gcry_sexp_t key = NULL; char *key_type = NULL; enum gcry_pk_algos pk_algo; struct seckey_info *ski; int idx, sec_start; gcry_mpi_t pub_params[10] = { NULL }; /* we look for a private-key, then the first element in it tells us the type */ top_list = gcry_sexp_find_token (s_key, "private-key", 0); if (!top_list) goto bad_seckey; /* ignore all S-expression after the first sublist -- we assume that they are comments or otherwise irrelevant to OpenPGP */ if (gcry_sexp_length(top_list) < 2) goto bad_seckey; key = gcry_sexp_nth (top_list, 1); if (!key) goto bad_seckey; key_type = gcry_sexp_nth_string(key, 0); pk_algo = gcry_pk_map_name (key_type); log_assert (!pk->seckey_info); pk->seckey_info = ski = xtrycalloc (1, sizeof *ski); if (!ski) { err = gpg_error_from_syserror (); goto leave; } switch (canon_pk_algo (pk_algo)) { case GCRY_PK_RSA: if (!is_RSA (pk->pubkey_algo)) goto bad_pubkey_algo; err = gcry_sexp_extract_param (key, NULL, "ne", &pub_params[0], &pub_params[1], NULL); for (idx=0; idx < 2 && !err; idx++) if (gcry_mpi_cmp(pk->pkey[idx], pub_params[idx])) err = gpg_error (GPG_ERR_BAD_PUBKEY); if (!err) { for (idx = 2; idx < 6 && !err; idx++) { gcry_mpi_release (pk->pkey[idx]); pk->pkey[idx] = NULL; } err = gcry_sexp_extract_param (key, NULL, "dpqu", &pk->pkey[2], &pk->pkey[3], &pk->pkey[4], &pk->pkey[5], NULL); } if (!err) { for (idx = 2; idx < 6; idx++) ski->csum += checksum_mpi (pk->pkey[idx]); } break; case GCRY_PK_DSA: if (!is_DSA (pk->pubkey_algo)) goto bad_pubkey_algo; err = gcry_sexp_extract_param (key, NULL, "pqgy", &pub_params[0], &pub_params[1], &pub_params[2], &pub_params[3], NULL); for (idx=0; idx < 4 && !err; idx++) if (gcry_mpi_cmp(pk->pkey[idx], pub_params[idx])) err = gpg_error (GPG_ERR_BAD_PUBKEY); if (!err) { gcry_mpi_release (pk->pkey[4]); pk->pkey[4] = NULL; err = gcry_sexp_extract_param (key, NULL, "x", &pk->pkey[4], NULL); } if (!err) ski->csum += checksum_mpi (pk->pkey[4]); break; case GCRY_PK_ELG: if (!is_ELGAMAL (pk->pubkey_algo)) goto bad_pubkey_algo; err = gcry_sexp_extract_param (key, NULL, "pgy", &pub_params[0], &pub_params[1], &pub_params[2], NULL); for (idx=0; idx < 3 && !err; idx++) if (gcry_mpi_cmp(pk->pkey[idx], pub_params[idx])) err = gpg_error (GPG_ERR_BAD_PUBKEY); if (!err) { gcry_mpi_release (pk->pkey[3]); pk->pkey[3] = NULL; err = gcry_sexp_extract_param (key, NULL, "x", &pk->pkey[3], NULL); } if (!err) ski->csum += checksum_mpi (pk->pkey[3]); break; case GCRY_PK_ECC: err = match_curve_skey_pk (key, pk); if (err) goto leave; else err = sexp_extract_param_sos (key, "q", &pub_params[0]); if (!err && (gcry_mpi_cmp(pk->pkey[1], pub_params[0]))) err = gpg_error (GPG_ERR_BAD_PUBKEY); sec_start = 2; if (pk->pubkey_algo == PUBKEY_ALGO_ECDH) sec_start += 1; if (!err) { gcry_mpi_release (pk->pkey[sec_start]); pk->pkey[sec_start] = NULL; err = sexp_extract_param_sos (key, "d", &pk->pkey[sec_start]); } if (!err) ski->csum += checksum_mpi (pk->pkey[sec_start]); break; default: pk->seckey_info = NULL; xfree (ski); err = gpg_error (GPG_ERR_NOT_IMPLEMENTED); break; } leave: gcry_sexp_release (top_list); gcry_sexp_release (key); gcry_free (key_type); for (idx=0; idx < DIM(pub_params); idx++) gcry_mpi_release (pub_params[idx]); return err; bad_pubkey_algo: err = gpg_error (GPG_ERR_PUBKEY_ALGO); goto leave; bad_seckey: err = gpg_error (GPG_ERR_BAD_SECKEY); goto leave; } /* Use the key transfer format given in S_PGP to create the secinfo structure in PK and change the parameter array in PK to include the secret parameters. */ static gpg_error_t transfer_format_to_openpgp (gcry_sexp_t s_pgp, PKT_public_key *pk) { gpg_error_t err; gcry_sexp_t top_list; gcry_sexp_t list = NULL; char *curve = NULL; const char *value; size_t valuelen; char *string; int idx; int is_v4, is_protected; enum gcry_pk_algos pk_algo; int protect_algo = 0; char iv[16]; int ivlen = 0; int s2k_mode = 0; int s2k_algo = 0; byte s2k_salt[8]; u32 s2k_count = 0; int is_ecdh = 0; size_t npkey, nskey; gcry_mpi_t skey[10]; /* We support up to 9 parameters. */ int skeyidx = 0; struct seckey_info *ski; /* gcry_log_debugsxp ("transferkey", s_pgp); */ top_list = gcry_sexp_find_token (s_pgp, "openpgp-private-key", 0); if (!top_list) goto bad_seckey; list = gcry_sexp_find_token (top_list, "version", 0); if (!list) goto bad_seckey; value = gcry_sexp_nth_data (list, 1, &valuelen); if (!value || valuelen != 1 || !(value[0] == '3' || value[0] == '4')) goto bad_seckey; is_v4 = (value[0] == '4'); gcry_sexp_release (list); list = gcry_sexp_find_token (top_list, "protection", 0); if (!list) goto bad_seckey; value = gcry_sexp_nth_data (list, 1, &valuelen); if (!value) goto bad_seckey; if (valuelen == 4 && !memcmp (value, "sha1", 4)) is_protected = 2; else if (valuelen == 3 && !memcmp (value, "sum", 3)) is_protected = 1; else if (valuelen == 4 && !memcmp (value, "none", 4)) is_protected = 0; else goto bad_seckey; if (is_protected) { string = gcry_sexp_nth_string (list, 2); if (!string) goto bad_seckey; protect_algo = gcry_cipher_map_name (string); xfree (string); value = gcry_sexp_nth_data (list, 3, &valuelen); if (!value || !valuelen || valuelen > sizeof iv) goto bad_seckey; memcpy (iv, value, valuelen); ivlen = valuelen; string = gcry_sexp_nth_string (list, 4); if (!string) goto bad_seckey; s2k_mode = strtol (string, NULL, 10); xfree (string); string = gcry_sexp_nth_string (list, 5); if (!string) goto bad_seckey; s2k_algo = gcry_md_map_name (string); xfree (string); value = gcry_sexp_nth_data (list, 6, &valuelen); if (!value || !valuelen || valuelen > sizeof s2k_salt) goto bad_seckey; memcpy (s2k_salt, value, valuelen); string = gcry_sexp_nth_string (list, 7); if (!string) goto bad_seckey; s2k_count = strtoul (string, NULL, 10); xfree (string); } /* Parse the gcrypt PK algo and check that it is okay. */ gcry_sexp_release (list); list = gcry_sexp_find_token (top_list, "algo", 0); if (!list) goto bad_seckey; string = gcry_sexp_nth_string (list, 1); if (!string) goto bad_seckey; pk_algo = gcry_pk_map_name (string); xfree (string); string = NULL; if (gcry_pk_algo_info (pk_algo, GCRYCTL_GET_ALGO_NPKEY, NULL, &npkey) || gcry_pk_algo_info (pk_algo, GCRYCTL_GET_ALGO_NSKEY, NULL, &nskey) || !npkey || npkey >= nskey) goto bad_seckey; /* Check that the pubkey algo matches the one from the public key. */ switch (canon_pk_algo (pk_algo)) { case GCRY_PK_RSA: if (!is_RSA (pk->pubkey_algo)) pk_algo = 0; /* Does not match. */ break; case GCRY_PK_DSA: if (!is_DSA (pk->pubkey_algo)) pk_algo = 0; /* Does not match. */ break; case GCRY_PK_ELG: if (!is_ELGAMAL (pk->pubkey_algo)) pk_algo = 0; /* Does not match. */ break; case GCRY_PK_ECC: if (pk->pubkey_algo == PUBKEY_ALGO_ECDSA) ; else if (pk->pubkey_algo == PUBKEY_ALGO_ECDH) is_ecdh = 1; else if (pk->pubkey_algo == PUBKEY_ALGO_EDDSA) ; else pk_algo = 0; /* Does not match. */ /* For ECC we do not have the domain parameters thus fix our info. */ npkey = 1; nskey = 2; break; default: pk_algo = 0; /* Oops. */ break; } if (!pk_algo) { err = gpg_error (GPG_ERR_PUBKEY_ALGO); goto leave; } /* This check has to go after the ecc adjustments. */ if (nskey > PUBKEY_MAX_NSKEY) goto bad_seckey; /* Parse the key parameters. */ gcry_sexp_release (list); list = gcry_sexp_find_token (top_list, "skey", 0); if (!list) goto bad_seckey; for (idx=0;;) { int is_enc; value = gcry_sexp_nth_data (list, ++idx, &valuelen); if (!value && skeyidx >= npkey) break; /* Ready. */ /* Check for too many parameters. Note that depending on the protection mode and version number we may see less than NSKEY (but at least NPKEY+1) parameters. */ if (idx >= 2*nskey) goto bad_seckey; if (skeyidx >= DIM (skey)-1) goto bad_seckey; if (!value || valuelen != 1 || !(value[0] == '_' || value[0] == 'e')) goto bad_seckey; is_enc = (value[0] == 'e'); value = gcry_sexp_nth_data (list, ++idx, &valuelen); if (!value || !valuelen) goto bad_seckey; if (is_enc + || pk->pubkey_algo == PUBKEY_ALGO_ECDSA || pk->pubkey_algo == PUBKEY_ALGO_EDDSA || pk->pubkey_algo == PUBKEY_ALGO_ECDH) { skey[skeyidx] = gcry_mpi_set_opaque_copy (NULL, value, valuelen*8); if (!skey[skeyidx]) goto outofmem; if (is_enc) gcry_mpi_set_flag (skey[skeyidx], GCRYMPI_FLAG_USER1); } else { if (gcry_mpi_scan (skey + skeyidx, GCRYMPI_FMT_STD, value, valuelen, NULL)) goto bad_seckey; } skeyidx++; } skey[skeyidx++] = NULL; gcry_sexp_release (list); list = NULL; /* We have no need for the CSUM value thus we don't parse it. */ /* list = gcry_sexp_find_token (top_list, "csum", 0); */ /* if (list) */ /* { */ /* string = gcry_sexp_nth_string (list, 1); */ /* if (!string) */ /* goto bad_seckey; */ /* desired_csum = strtoul (string, NULL, 10); */ /* xfree (string); */ /* } */ /* else */ /* desired_csum = 0; */ /* gcry_sexp_release (list); list = NULL; */ /* Get the curve name if any, */ list = gcry_sexp_find_token (top_list, "curve", 0); if (list) { curve = gcry_sexp_nth_string (list, 1); gcry_sexp_release (list); list = NULL; } gcry_sexp_release (top_list); top_list = NULL; /* log_debug ("XXX is_v4=%d\n", is_v4); */ /* log_debug ("XXX pubkey_algo=%d\n", pubkey_algo); */ /* log_debug ("XXX is_protected=%d\n", is_protected); */ /* log_debug ("XXX protect_algo=%d\n", protect_algo); */ /* log_printhex ("XXX iv", iv, ivlen); */ /* log_debug ("XXX ivlen=%d\n", ivlen); */ /* log_debug ("XXX s2k_mode=%d\n", s2k_mode); */ /* log_debug ("XXX s2k_algo=%d\n", s2k_algo); */ /* log_printhex ("XXX s2k_salt", s2k_salt, sizeof s2k_salt); */ /* log_debug ("XXX s2k_count=%lu\n", (unsigned long)s2k_count); */ /* for (idx=0; skey[idx]; idx++) */ /* { */ /* int is_enc = gcry_mpi_get_flag (skey[idx], GCRYMPI_FLAG_OPAQUE); */ /* log_info ("XXX skey[%d]%s:", idx, is_enc? " (enc)":""); */ /* if (is_enc) */ /* { */ /* void *p; */ /* unsigned int nbits; */ /* p = gcry_mpi_get_opaque (skey[idx], &nbits); */ /* log_printhex (NULL, p, (nbits+7)/8); */ /* } */ /* else */ /* gcry_mpi_dump (skey[idx]); */ /* log_printf ("\n"); */ /* } */ if (!is_v4 || is_protected != 2 ) { /* We only support the v4 format and a SHA-1 checksum. */ err = gpg_error (GPG_ERR_NOT_IMPLEMENTED); goto leave; } /* We need to change the received parameters for ECC algorithms. The transfer format has the curve name and the parameters separate. We put them all into the SKEY array. */ if (canon_pk_algo (pk_algo) == GCRY_PK_ECC) { const char *oidstr; /* Assert that all required parameters are available. We also check that the array does not contain more parameters than needed (this was used by some beta versions of 2.1. */ if (!curve || !skey[0] || !skey[1] || skey[2]) { err = gpg_error (GPG_ERR_INTERNAL); goto leave; } oidstr = openpgp_curve_to_oid (curve, NULL, NULL); if (!oidstr) { log_error ("no OID known for curve '%s'\n", curve); err = gpg_error (GPG_ERR_UNKNOWN_CURVE); goto leave; } /* Put the curve's OID into the MPI array. This requires that we shift Q and D. For ECDH also insert the KDF parms. */ if (is_ecdh) { skey[4] = NULL; skey[3] = skey[1]; skey[2] = gcry_mpi_copy (pk->pkey[2]); } else { skey[3] = NULL; skey[2] = skey[1]; } skey[1] = skey[0]; skey[0] = NULL; err = openpgp_oid_from_str (oidstr, skey + 0); if (err) goto leave; /* Fixup the NPKEY and NSKEY to match OpenPGP reality. */ npkey = 2 + is_ecdh; nskey = 3 + is_ecdh; /* for (idx=0; skey[idx]; idx++) */ /* { */ /* log_info ("YYY skey[%d]:", idx); */ /* if (gcry_mpi_get_flag (skey[idx], GCRYMPI_FLAG_OPAQUE)) */ /* { */ /* void *p; */ /* unsigned int nbits; */ /* p = gcry_mpi_get_opaque (skey[idx], &nbits); */ /* log_printhex (NULL, p, (nbits+7)/8); */ /* } */ /* else */ /* gcry_mpi_dump (skey[idx]); */ /* log_printf ("\n"); */ /* } */ } /* Do some sanity checks. */ if (s2k_count > 255) { /* We expect an already encoded S2K count. */ err = gpg_error (GPG_ERR_INV_DATA); goto leave; } err = openpgp_cipher_test_algo (protect_algo); if (err) goto leave; err = openpgp_md_test_algo (s2k_algo); if (err) goto leave; /* Check that the public key parameters match. Note that since Libgcrypt 1.5 gcry_mpi_cmp handles opaque MPI correctly. */ for (idx=0; idx < npkey; idx++) if (gcry_mpi_cmp (pk->pkey[idx], skey[idx])) { err = gpg_error (GPG_ERR_BAD_PUBKEY); goto leave; } /* Check that the first secret key parameter in SKEY is encrypted and that there are no more secret key parameters. The latter is guaranteed by the v4 packet format. */ if (!gcry_mpi_get_flag (skey[npkey], GCRYMPI_FLAG_USER1)) goto bad_seckey; if (npkey+1 < DIM (skey) && skey[npkey+1]) goto bad_seckey; /* Check that the secret key parameters in PK are all set to NULL. */ for (idx=npkey; idx < nskey; idx++) if (pk->pkey[idx]) goto bad_seckey; /* Now build the protection info. */ pk->seckey_info = ski = xtrycalloc (1, sizeof *ski); if (!ski) { err = gpg_error_from_syserror (); goto leave; } ski->is_protected = 1; ski->sha1chk = 1; ski->algo = protect_algo; ski->s2k.mode = s2k_mode; ski->s2k.hash_algo = s2k_algo; log_assert (sizeof ski->s2k.salt == sizeof s2k_salt); memcpy (ski->s2k.salt, s2k_salt, sizeof s2k_salt); ski->s2k.count = s2k_count; log_assert (ivlen <= sizeof ski->iv); memcpy (ski->iv, iv, ivlen); ski->ivlen = ivlen; /* Store the protected secret key parameter. */ pk->pkey[npkey] = skey[npkey]; skey[npkey] = NULL; /* That's it. */ leave: gcry_free (curve); gcry_sexp_release (list); gcry_sexp_release (top_list); for (idx=0; idx < skeyidx; idx++) gcry_mpi_release (skey[idx]); return err; bad_seckey: err = gpg_error (GPG_ERR_BAD_SECKEY); goto leave; outofmem: err = gpg_error (GPG_ERR_ENOMEM); goto leave; } /* Print an "EXPORTED" status line. PK is the primary public key. */ static void print_status_exported (PKT_public_key *pk) { char *hexfpr; if (!is_status_enabled ()) return; hexfpr = hexfingerprint (pk, NULL, 0); write_status_text (STATUS_EXPORTED, hexfpr? hexfpr : "[?]"); xfree (hexfpr); } /* * Receive a secret key from agent specified by HEXGRIP. * * Since the key data from the agent is encrypted, decrypt it using * CIPHERHD context. Then, parse the decrypted key data into transfer * format, and put secret parameters into PK. * * If CLEARTEXT is 0, store the secret key material * passphrase-protected. Otherwise, store secret key material in the * clear. * * CACHE_NONCE_ADDR is used to share nonce for multiple key retrievals. */ gpg_error_t receive_seckey_from_agent (ctrl_t ctrl, gcry_cipher_hd_t cipherhd, int cleartext, char **cache_nonce_addr, const char *hexgrip, PKT_public_key *pk) { gpg_error_t err = 0; unsigned char *wrappedkey = NULL; size_t wrappedkeylen; unsigned char *key = NULL; size_t keylen, realkeylen; gcry_sexp_t s_skey; char *prompt; if (opt.verbose) log_info ("key %s: asking agent for the secret parts\n", hexgrip); prompt = gpg_format_keydesc (ctrl, pk, FORMAT_KEYDESC_EXPORT,1); err = agent_export_key (ctrl, hexgrip, prompt, !cleartext, cache_nonce_addr, &wrappedkey, &wrappedkeylen, pk->keyid, pk->main_keyid, pk->pubkey_algo); xfree (prompt); if (err) goto unwraperror; if (wrappedkeylen < 24) { err = gpg_error (GPG_ERR_INV_LENGTH); goto unwraperror; } keylen = wrappedkeylen - 8; key = xtrymalloc_secure (keylen); if (!key) { err = gpg_error_from_syserror (); goto unwraperror; } err = gcry_cipher_decrypt (cipherhd, key, keylen, wrappedkey, wrappedkeylen); if (err) goto unwraperror; realkeylen = gcry_sexp_canon_len (key, keylen, NULL, &err); if (!realkeylen) goto unwraperror; /* Invalid csexp. */ err = gcry_sexp_sscan (&s_skey, NULL, key, realkeylen); if (!err) { if (cleartext) err = cleartext_secret_key_to_openpgp (s_skey, pk); else err = transfer_format_to_openpgp (s_skey, pk); gcry_sexp_release (s_skey); } unwraperror: xfree (key); xfree (wrappedkey); if (err) { log_error ("key %s: error receiving key from agent:" " %s%s\n", hexgrip, gpg_strerror (err), gpg_err_code (err) == GPG_ERR_FULLY_CANCELED? "":_(" - skipped")); } return err; } /* Write KEYBLOCK either to stdout or to the file set with the * --output option. This is a simplified version of do_export_stream * which supports only a few export options. */ gpg_error_t write_keyblock_to_output (kbnode_t keyblock, int with_armor, unsigned int options) { gpg_error_t err; const char *fname; iobuf_t out; kbnode_t node; armor_filter_context_t *afx = NULL; iobuf_t out_help = NULL; PKT_public_key *pk = NULL; fname = opt.outfile? opt.outfile : "-"; if (is_secured_filename (fname) ) return gpg_error (GPG_ERR_EPERM); out = iobuf_create (fname, 0); if (!out) { err = gpg_error_from_syserror (); log_error(_("can't create '%s': %s\n"), fname, gpg_strerror (err)); return err; } if (opt.verbose) log_info (_("writing to '%s'\n"), iobuf_get_fname_nonnull (out)); if ((options & (EXPORT_PKA_FORMAT|EXPORT_DANE_FORMAT))) { with_armor = 0; out_help = iobuf_temp (); } if (with_armor) { afx = new_armor_context (); afx->what = 1; push_armor_filter (afx, out); } for (node = keyblock; node; node = node->next) { if (is_deleted_kbnode (node)) continue; if (node->pkt->pkttype == PKT_RING_TRUST) continue; /* Skip - they should not be here anyway. */ if (!pk && (node->pkt->pkttype == PKT_PUBLIC_KEY || node->pkt->pkttype == PKT_SECRET_KEY)) pk = node->pkt->pkt.public_key; if ((options & EXPORT_BACKUP)) err = build_packet_and_meta (out_help? out_help : out, node->pkt); else err = build_packet (out_help? out_help : out, node->pkt); if (err) { log_error ("build_packet(%d) failed: %s\n", node->pkt->pkttype, gpg_strerror (err) ); goto leave; } } err = 0; if (out_help && pk) { const void *data; size_t datalen; iobuf_flush_temp (out_help); data = iobuf_get_temp_buffer (out_help); datalen = iobuf_get_temp_length (out_help); err = print_pka_or_dane_records (out, keyblock, pk, data, datalen, (options & EXPORT_PKA_FORMAT), (options & EXPORT_DANE_FORMAT)); } leave: if (err) iobuf_cancel (out); else iobuf_close (out); iobuf_cancel (out_help); release_armor_context (afx); return err; } /* * Apply the keep-uid filter to the keyblock. The deleted nodes are * marked and thus the caller should call commit_kbnode afterwards. * KEYBLOCK must not have any blocks marked as deleted. */ static void apply_keep_uid_filter (ctrl_t ctrl, kbnode_t keyblock, recsel_expr_t selector) { kbnode_t node; struct impex_filter_parm_s parm; parm.ctrl = ctrl; for (node = keyblock->next; node; node = node->next ) { if (node->pkt->pkttype == PKT_USER_ID) { parm.node = node; if (!recsel_select (selector, impex_filter_getval, &parm)) { /* log_debug ("keep-uid: deleting '%s'\n", */ /* node->pkt->pkt.user_id->name); */ /* The UID packet and all following packets up to the * next UID or a subkey. */ delete_kbnode (node); for (; node->next && node->next->pkt->pkttype != PKT_USER_ID && node->next->pkt->pkttype != PKT_PUBLIC_SUBKEY && node->next->pkt->pkttype != PKT_SECRET_SUBKEY ; node = node->next) delete_kbnode (node->next); } /* else */ /* log_debug ("keep-uid: keeping '%s'\n", */ /* node->pkt->pkt.user_id->name); */ } } } /* * Apply the drop-subkey filter to the keyblock. The deleted nodes are * marked and thus the caller should call commit_kbnode afterwards. * KEYBLOCK must not have any blocks marked as deleted. */ static void apply_drop_subkey_filter (ctrl_t ctrl, kbnode_t keyblock, recsel_expr_t selector) { kbnode_t node; struct impex_filter_parm_s parm; parm.ctrl = ctrl; for (node = keyblock->next; node; node = node->next ) { if (node->pkt->pkttype == PKT_PUBLIC_SUBKEY || node->pkt->pkttype == PKT_SECRET_SUBKEY) { parm.node = node; if (recsel_select (selector, impex_filter_getval, &parm)) { /*log_debug ("drop-subkey: deleting a key\n");*/ /* The subkey packet and all following packets up to the * next subkey. */ delete_kbnode (node); for (; node->next && node->next->pkt->pkttype != PKT_PUBLIC_SUBKEY && node->next->pkt->pkttype != PKT_SECRET_SUBKEY ; node = node->next) delete_kbnode (node->next); } } } } /* Print DANE or PKA records for all user IDs in KEYBLOCK to OUT. The * data for the record is taken from (DATA,DATELEN). PK is the public * key packet with the primary key. */ static gpg_error_t print_pka_or_dane_records (iobuf_t out, kbnode_t keyblock, PKT_public_key *pk, const void *data, size_t datalen, int print_pka, int print_dane) { gpg_error_t err = 0; kbnode_t kbctx, node; PKT_user_id *uid; char *mbox = NULL; char hashbuf[32]; char *hash = NULL; char *domain; const char *s; unsigned int len; estream_t fp = NULL; char *hexdata = NULL; char *hexfpr; hexfpr = hexfingerprint (pk, NULL, 0); if (!hexfpr) { err = gpg_error_from_syserror (); goto leave; } hexdata = bin2hex (data, datalen, NULL); if (!hexdata) { err = gpg_error_from_syserror (); goto leave; } ascii_strlwr (hexdata); fp = es_fopenmem (0, "rw,samethread"); if (!fp) { err = gpg_error_from_syserror (); goto leave; } for (kbctx = NULL; (node = walk_kbnode (keyblock, &kbctx, 0));) { if (node->pkt->pkttype != PKT_USER_ID) continue; uid = node->pkt->pkt.user_id; if (uid->flags.expired || uid->flags.revoked) continue; xfree (mbox); mbox = mailbox_from_userid (uid->name, 0); if (!mbox) continue; domain = strchr (mbox, '@'); *domain++ = 0; if (print_pka) { es_fprintf (fp, "$ORIGIN _pka.%s.\n; %s\n; ", domain, hexfpr); print_utf8_buffer (fp, uid->name, uid->len); es_putc ('\n', fp); gcry_md_hash_buffer (GCRY_MD_SHA1, hashbuf, mbox, strlen (mbox)); xfree (hash); hash = zb32_encode (hashbuf, 8*20); if (!hash) { err = gpg_error_from_syserror (); goto leave; } len = strlen (hexfpr)/2; es_fprintf (fp, "%s TYPE37 \\# %u 0006 0000 00 %02X %s\n\n", hash, 6 + len, len, hexfpr); } if (print_dane && hexdata) { es_fprintf (fp, "$ORIGIN _openpgpkey.%s.\n; %s\n; ", domain, hexfpr); print_utf8_buffer (fp, uid->name, uid->len); es_putc ('\n', fp); gcry_md_hash_buffer (GCRY_MD_SHA256, hashbuf, mbox, strlen (mbox)); xfree (hash); hash = bin2hex (hashbuf, 28, NULL); if (!hash) { err = gpg_error_from_syserror (); goto leave; } ascii_strlwr (hash); len = strlen (hexdata)/2; es_fprintf (fp, "%s TYPE61 \\# %u (\n", hash, len); for (s = hexdata; ;) { es_fprintf (fp, "\t%.64s\n", s); if (strlen (s) < 64) break; s += 64; } es_fputs ("\t)\n\n", fp); } } /* Make sure it is a string and write it. */ es_fputc (0, fp); { void *vp; if (es_fclose_snatch (fp, &vp, NULL)) { err = gpg_error_from_syserror (); goto leave; } fp = NULL; iobuf_writestr (out, vp); es_free (vp); } err = 0; leave: xfree (hash); xfree (mbox); es_fclose (fp); xfree (hexdata); xfree (hexfpr); return err; } /* Helper for do_export_stream which writes one keyblock to OUT. */ static gpg_error_t do_export_one_keyblock (ctrl_t ctrl, kbnode_t keyblock, u32 *keyid, iobuf_t out, int secret, unsigned int options, export_stats_t stats, int *any, KEYDB_SEARCH_DESC *desc, size_t ndesc, size_t descindex, gcry_cipher_hd_t cipherhd) { gpg_error_t err = gpg_error (GPG_ERR_NOT_FOUND); char *cache_nonce = NULL; subkey_list_t subkey_list = NULL; /* Track already processed subkeys. */ int skip_until_subkey = 0; int cleartext = 0; char *hexgrip = NULL; char *serialno = NULL; PKT_public_key *pk; u32 subkidbuf[2], *subkid; kbnode_t kbctx, node; /* NB: walk_kbnode skips packets marked as deleted. */ for (kbctx=NULL; (node = walk_kbnode (keyblock, &kbctx, 0)); ) { if (skip_until_subkey) { if (node->pkt->pkttype == PKT_PUBLIC_SUBKEY) skip_until_subkey = 0; else continue; } /* We used to use comment packets, but not any longer. In * case we still have comments on a key, strip them here * before we call build_packet(). */ if (node->pkt->pkttype == PKT_COMMENT) continue; /* Skip ring trust packets - they should not be here anyway. */ if (node->pkt->pkttype == PKT_RING_TRUST) continue; /* If exact is set, then we only export what was requested * (plus the primary key, if the user didn't specifically * request it). */ if (desc[descindex].exact && node->pkt->pkttype == PKT_PUBLIC_SUBKEY) { if (!exact_subkey_match_p (desc+descindex, node)) { /* Before skipping this subkey, check whether any * other description wants an exact match on a * subkey and include that subkey into the output * too. Need to add this subkey to a list so that * it won't get processed a second time. * * So the first step here is to check that list and * skip in any case if the key is in that list. * * We need this whole mess because the import * function of GnuPG < 2.1 is not able to merge * secret keys and thus it is useless to output them * as two separate keys and have import merge them. */ if (subkey_in_list_p (subkey_list, node)) skip_until_subkey = 1; /* Already processed this one. */ else { size_t j; for (j=0; j < ndesc; j++) if (j != descindex && desc[j].exact && exact_subkey_match_p (desc+j, node)) break; if (!(j < ndesc)) skip_until_subkey = 1; /* No other one matching. */ } } if (skip_until_subkey) continue; /* Mark this one as processed. */ { subkey_list_t tmp = new_subkey_list_item (node); tmp->next = subkey_list; subkey_list = tmp; } } if (node->pkt->pkttype == PKT_SIGNATURE) { /* Do not export packets which are marked as not * exportable. */ if (!(options & EXPORT_LOCAL_SIGS) && !node->pkt->pkt.signature->flags.exportable) continue; /* not exportable */ /* Do not export packets with a "sensitive" revocation key * unless the user wants us to. Note that we do export * these when issuing the actual revocation (see revoke.c). */ if (!(options & EXPORT_SENSITIVE_REVKEYS) && node->pkt->pkt.signature->revkey) { int i; for (i = 0; i < node->pkt->pkt.signature->numrevkeys; i++) if ((node->pkt->pkt.signature->revkey[i].class & 0x40)) break; if (i < node->pkt->pkt.signature->numrevkeys) continue; } } /* Don't export user ids (and attributes)? This is not RFC-4880 * compliant but we allow it anyway. */ if ((options & EXPORT_DROP_UIDS) && node->pkt->pkttype == PKT_USER_ID) { /* Skip until we get to something that is not a user id (or * attrib) or a signature on it. */ while (kbctx->next && kbctx->next->pkt->pkttype == PKT_SIGNATURE) kbctx = kbctx->next; continue; } /* Don't export attribs? */ if (!(options & EXPORT_ATTRIBUTES) && node->pkt->pkttype == PKT_USER_ID && node->pkt->pkt.user_id->attrib_data) { /* Skip until we get to something that is not an attrib or a * signature on an attrib. */ while (kbctx->next && kbctx->next->pkt->pkttype == PKT_SIGNATURE) kbctx = kbctx->next; continue; } if (secret && (node->pkt->pkttype == PKT_PUBLIC_KEY || node->pkt->pkttype == PKT_PUBLIC_SUBKEY)) { pk = node->pkt->pkt.public_key; if (node->pkt->pkttype == PKT_PUBLIC_KEY) subkid = NULL; else { keyid_from_pk (pk, subkidbuf); subkid = subkidbuf; } if (pk->seckey_info) { log_error ("key %s: oops: seckey_info already set" " - skipped\n", keystr_with_sub (keyid, subkid)); skip_until_subkey = 1; continue; } xfree (hexgrip); err = hexkeygrip_from_pk (pk, &hexgrip); if (err) { log_error ("key %s: error computing keygrip: %s" " - skipped\n", keystr_with_sub (keyid, subkid), gpg_strerror (err)); skip_until_subkey = 1; err = 0; continue; } xfree (serialno); serialno = NULL; if (secret == 2 && node->pkt->pkttype == PKT_PUBLIC_KEY) { /* We are asked not to export the secret parts of the * primary key. Make up an error code to create the * stub. */ err = GPG_ERR_NOT_FOUND; } else err = agent_get_keyinfo (ctrl, hexgrip, &serialno, &cleartext); if ((!err && serialno) && secret == 2 && node->pkt->pkttype == PKT_PUBLIC_KEY) { /* It does not make sense to export a key with its * primary key on card using a non-key stub. Thus we * skip those keys when used with --export-secret-subkeys. */ log_info (_("key %s: key material on-card - skipped\n"), keystr_with_sub (keyid, subkid)); skip_until_subkey = 1; } else if (gpg_err_code (err) == GPG_ERR_NOT_FOUND || (!err && serialno)) { /* Create a key stub. */ struct seckey_info *ski; const char *s; pk->seckey_info = ski = xtrycalloc (1, sizeof *ski); if (!ski) { err = gpg_error_from_syserror (); goto leave; } ski->is_protected = 1; if (err) ski->s2k.mode = 1001; /* GNU dummy (no secret key). */ else { ski->s2k.mode = 1002; /* GNU-divert-to-card. */ for (s=serialno; sizeof (ski->ivlen) && *s && s[1]; ski->ivlen++, s += 2) ski->iv[ski->ivlen] = xtoi_2 (s); } if ((options & EXPORT_BACKUP)) err = build_packet_and_meta (out, node->pkt); else err = build_packet (out, node->pkt); if (!err && node->pkt->pkttype == PKT_PUBLIC_KEY) { stats->exported++; print_status_exported (node->pkt->pkt.public_key); } } else if (!err) { err = receive_seckey_from_agent (ctrl, cipherhd, cleartext, &cache_nonce, hexgrip, pk); if (err) { if (gpg_err_code (err) == GPG_ERR_FULLY_CANCELED) goto leave; skip_until_subkey = 1; err = 0; } else { if ((options & EXPORT_BACKUP)) err = build_packet_and_meta (out, node->pkt); else err = build_packet (out, node->pkt); if (node->pkt->pkttype == PKT_PUBLIC_KEY) { stats->exported++; print_status_exported (node->pkt->pkt.public_key); } } } else { log_error ("key %s: error getting keyinfo from agent: %s" " - skipped\n", keystr_with_sub (keyid, subkid), gpg_strerror (err)); skip_until_subkey = 1; err = 0; } xfree (pk->seckey_info); pk->seckey_info = NULL; { int i; for (i = pubkey_get_npkey (pk->pubkey_algo); i < pubkey_get_nskey (pk->pubkey_algo); i++) { gcry_mpi_release (pk->pkey[i]); pk->pkey[i] = NULL; } } } else /* Not secret or common packets. */ { if ((options & EXPORT_BACKUP)) err = build_packet_and_meta (out, node->pkt); else err = build_packet (out, node->pkt); if (!err && node->pkt->pkttype == PKT_PUBLIC_KEY) { stats->exported++; print_status_exported (node->pkt->pkt.public_key); } } if (err) { log_error ("build_packet(%d) failed: %s\n", node->pkt->pkttype, gpg_strerror (err)); goto leave; } if (!skip_until_subkey) *any = 1; } leave: release_subkey_list (subkey_list); xfree (serialno); xfree (hexgrip); xfree (cache_nonce); return err; } /* Export the keys identified by the list of strings in USERS to the stream OUT. If SECRET is false public keys will be exported. With secret true secret keys will be exported; in this case 1 means the entire secret keyblock and 2 only the subkeys. OPTIONS are the export options to apply. If KEYBLOCK_OUT is not NULL, AND the exit code is zero, a pointer to the first keyblock found and exported will be stored at this address; no other keyblocks are exported in this case. The caller must free the returned keyblock. If any key has been exported true is stored at ANY. */ static int do_export_stream (ctrl_t ctrl, iobuf_t out, strlist_t users, int secret, kbnode_t *keyblock_out, unsigned int options, export_stats_t stats, int *any) { gpg_error_t err = 0; PACKET pkt; kbnode_t keyblock = NULL; kbnode_t node; size_t ndesc, descindex; KEYDB_SEARCH_DESC *desc = NULL; KEYDB_HANDLE kdbhd; strlist_t sl; gcry_cipher_hd_t cipherhd = NULL; struct export_stats_s dummystats; iobuf_t out_help = NULL; if (!stats) stats = &dummystats; *any = 0; init_packet (&pkt); kdbhd = keydb_new (ctrl); if (!kdbhd) return gpg_error_from_syserror (); /* For the PKA and DANE format open a helper iobuf and for DANE * enforce some options. */ if ((options & (EXPORT_PKA_FORMAT | EXPORT_DANE_FORMAT))) { out_help = iobuf_temp (); if ((options & EXPORT_DANE_FORMAT)) options |= EXPORT_MINIMAL | EXPORT_CLEAN; } if (!users) { ndesc = 1; desc = xcalloc (ndesc, sizeof *desc); desc[0].mode = KEYDB_SEARCH_MODE_FIRST; } else { for (ndesc=0, sl=users; sl; sl = sl->next, ndesc++) ; desc = xmalloc ( ndesc * sizeof *desc); for (ndesc=0, sl=users; sl; sl = sl->next) { if (!(err=classify_user_id (sl->d, desc+ndesc, 1))) ndesc++; else log_error (_("key \"%s\" not found: %s\n"), sl->d, gpg_strerror (err)); } keydb_disable_caching (kdbhd); /* We are looping the search. */ /* It would be nice to see which of the given users did actually match one in the keyring. To implement this we need to have a found flag for each entry in desc. To set this flag we must check all those entries after a match to mark all matched one - currently we stop at the first match. To do this we need an extra flag to enable this feature. */ } #ifdef ENABLE_SELINUX_HACKS if (secret) { log_error (_("exporting secret keys not allowed\n")); err = gpg_error (GPG_ERR_NOT_SUPPORTED); goto leave; } #endif /* For secret key export we need to setup a decryption context. */ if (secret) { void *kek = NULL; size_t keklen; err = agent_keywrap_key (ctrl, 1, &kek, &keklen); if (err) { log_error ("error getting the KEK: %s\n", gpg_strerror (err)); goto leave; } /* Prepare a cipher context. */ err = gcry_cipher_open (&cipherhd, GCRY_CIPHER_AES128, GCRY_CIPHER_MODE_AESWRAP, 0); if (!err) err = gcry_cipher_setkey (cipherhd, kek, keklen); if (err) { log_error ("error setting up an encryption context: %s\n", gpg_strerror (err)); goto leave; } xfree (kek); kek = NULL; } for (;;) { u32 keyid[2]; PKT_public_key *pk; err = keydb_search (kdbhd, desc, ndesc, &descindex); if (!users) desc[0].mode = KEYDB_SEARCH_MODE_NEXT; if (err) break; /* Read the keyblock. */ release_kbnode (keyblock); keyblock = NULL; err = keydb_get_keyblock (kdbhd, &keyblock); if (err) { log_error (_("error reading keyblock: %s\n"), gpg_strerror (err)); goto leave; } node = find_kbnode (keyblock, PKT_PUBLIC_KEY); if (!node) { log_error ("public key packet not found in keyblock - skipped\n"); continue; } stats->count++; setup_main_keyids (keyblock); /* gpg_format_keydesc needs it. */ pk = node->pkt->pkt.public_key; keyid_from_pk (pk, keyid); /* If a secret key export is required we need to check whether we have a secret key at all and if so create the seckey_info structure. */ if (secret) { if (agent_probe_any_secret_key (ctrl, keyblock)) continue; /* No secret key (neither primary nor subkey). */ /* No v3 keys with GNU mode 1001. */ if (secret == 2 && pk->version == 3) { log_info (_("key %s: PGP 2.x style key - skipped\n"), keystr (keyid)); continue; } /* The agent does not yet allow export of v3 packets. It is actually questionable whether we should allow them at all. */ if (pk->version == 3) { log_info ("key %s: PGP 2.x style key (v3) export " "not yet supported - skipped\n", keystr (keyid)); continue; } stats->secret_count++; } /* Always do the cleaning on the public key part if requested. * A designated revocation is never stripped, even with * export-minimal set. */ if ((options & EXPORT_CLEAN)) { merge_keys_and_selfsig (ctrl, keyblock); clean_all_uids (ctrl, keyblock, opt.verbose, (options&EXPORT_MINIMAL), NULL, NULL); clean_all_subkeys (ctrl, keyblock, opt.verbose, (options&EXPORT_MINIMAL)? KEY_CLEAN_ALL /**/ : KEY_CLEAN_AUTHENCR, NULL, NULL); commit_kbnode (&keyblock); } if (export_keep_uid) { commit_kbnode (&keyblock); apply_keep_uid_filter (ctrl, keyblock, export_keep_uid); commit_kbnode (&keyblock); } if (export_drop_subkey) { commit_kbnode (&keyblock); apply_drop_subkey_filter (ctrl, keyblock, export_drop_subkey); commit_kbnode (&keyblock); } /* And write it. */ err = do_export_one_keyblock (ctrl, keyblock, keyid, out_help? out_help : out, secret, options, stats, any, desc, ndesc, descindex, cipherhd); if (err) break; if (keyblock_out) { *keyblock_out = keyblock; break; } if (out_help) { /* We want to write PKA or DANE records. OUT_HELP has the * keyblock and we print a record for each uid to OUT. */ const void *data; size_t datalen; iobuf_flush_temp (out_help); data = iobuf_get_temp_buffer (out_help); datalen = iobuf_get_temp_length (out_help); err = print_pka_or_dane_records (out, keyblock, pk, data, datalen, (options & EXPORT_PKA_FORMAT), (options & EXPORT_DANE_FORMAT)); if (err) goto leave; iobuf_close (out_help); out_help = iobuf_temp (); } } if (gpg_err_code (err) == GPG_ERR_NOT_FOUND) err = 0; leave: iobuf_cancel (out_help); gcry_cipher_close (cipherhd); xfree(desc); keydb_release (kdbhd); if (err || !keyblock_out) release_kbnode( keyblock ); if( !*any ) log_info(_("WARNING: nothing exported\n")); return err; } static gpg_error_t key_to_sshblob (membuf_t *mb, const char *identifier, ...) { va_list arg_ptr; gpg_error_t err = 0; unsigned char nbuf[4]; unsigned char *buf; size_t buflen; gcry_mpi_t a; ulongtobuf (nbuf, (ulong)strlen (identifier)); put_membuf (mb, nbuf, 4); put_membuf_str (mb, identifier); if (!strncmp (identifier, "ecdsa-sha2-", 11)) { ulongtobuf (nbuf, (ulong)strlen (identifier+11)); put_membuf (mb, nbuf, 4); put_membuf_str (mb, identifier+11); } va_start (arg_ptr, identifier); while ((a = va_arg (arg_ptr, gcry_mpi_t))) { err = gcry_mpi_aprint (GCRYMPI_FMT_SSH, &buf, &buflen, a); if (err) break; if (!strcmp (identifier, "ssh-ed25519") && buflen > 5 && buf[4] == 0x40) { /* We need to strip our 0x40 prefix. */ put_membuf (mb, "\x00\x00\x00\x20", 4); put_membuf (mb, buf+5, buflen-5); } else put_membuf (mb, buf, buflen); gcry_free (buf); } va_end (arg_ptr); return err; } static gpg_error_t export_one_ssh_key (estream_t fp, PKT_public_key *pk) { gpg_error_t err; const char *identifier = NULL; membuf_t mb; struct b64state b64_state; void *blob; size_t bloblen; init_membuf (&mb, 4096); switch (pk->pubkey_algo) { case PUBKEY_ALGO_DSA: identifier = "ssh-dss"; err = key_to_sshblob (&mb, identifier, pk->pkey[0], pk->pkey[1], pk->pkey[2], pk->pkey[3], NULL); break; case PUBKEY_ALGO_RSA: case PUBKEY_ALGO_RSA_S: identifier = "ssh-rsa"; err = key_to_sshblob (&mb, identifier, pk->pkey[1], pk->pkey[0], NULL); break; case PUBKEY_ALGO_ECDSA: { char *curveoid; const char *curve; curveoid = openpgp_oid_to_str (pk->pkey[0]); if (!curveoid) err = gpg_error_from_syserror (); else if (!(curve = openpgp_oid_to_curve (curveoid, 0))) err = gpg_error (GPG_ERR_UNKNOWN_CURVE); else { if (!strcmp (curve, "nistp256")) identifier = "ecdsa-sha2-nistp256"; else if (!strcmp (curve, "nistp384")) identifier = "ecdsa-sha2-nistp384"; else if (!strcmp (curve, "nistp521")) identifier = "ecdsa-sha2-nistp521"; if (!identifier) err = gpg_error (GPG_ERR_UNKNOWN_CURVE); else err = key_to_sshblob (&mb, identifier, pk->pkey[1], NULL); } xfree (curveoid); } break; case PUBKEY_ALGO_EDDSA: if (!openpgp_oid_is_ed25519 (pk->pkey[0])) err = gpg_error (GPG_ERR_UNKNOWN_CURVE); else { identifier = "ssh-ed25519"; err = key_to_sshblob (&mb, identifier, pk->pkey[1], NULL); } break; case PUBKEY_ALGO_ELGAMAL_E: case PUBKEY_ALGO_ELGAMAL: err = gpg_error (GPG_ERR_UNUSABLE_PUBKEY); break; default: err = GPG_ERR_PUBKEY_ALGO; break; } if (err) goto leave; err = b64enc_start_es (&b64_state, fp, ""); if (err) goto leave; blob = get_membuf (&mb, &bloblen); if (blob) { es_fprintf (fp, "%s ", identifier); err = b64enc_write (&b64_state, blob, bloblen); es_fprintf (fp, " openpgp:0x%08lX\n", (ulong)keyid_from_pk (pk, NULL)); xfree (blob); } b64enc_finish (&b64_state); leave: xfree (get_membuf (&mb, NULL)); return err; } /* Export the key identified by USERID in the SSH public key format. The function exports the latest subkey with Authentication capability unless the '!' suffix is used to export a specific key. */ gpg_error_t export_ssh_key (ctrl_t ctrl, const char *userid) { gpg_error_t err; kbnode_t keyblock = NULL; KEYDB_SEARCH_DESC desc; u32 latest_date; u32 curtime = make_timestamp (); kbnode_t latest_key, node; PKT_public_key *pk; estream_t fp = NULL; const char *fname = "-"; /* We need to know whether the key has been specified using the exact syntax ('!' suffix). Thus we need to run a classify_user_id on our own. */ err = classify_user_id (userid, &desc, 1); /* Get the public key. */ if (!err) { getkey_ctx_t getkeyctx; err = get_pubkey_byname (ctrl, GET_PUBKEY_NO_AKL, &getkeyctx, NULL, userid, &keyblock, NULL, 0 /* Only usable keys or given exact. */); if (!err) { err = getkey_next (ctrl, getkeyctx, NULL, NULL); if (!err) err = gpg_error (GPG_ERR_AMBIGUOUS_NAME); else if (gpg_err_code (err) == GPG_ERR_NO_PUBKEY) err = 0; } getkey_end (ctrl, getkeyctx); } if (err) { log_error (_("key \"%s\" not found: %s\n"), userid, gpg_strerror (err)); return err; } /* The finish_lookup code in getkey.c does not handle auth keys, thus we have to duplicate the code here to find the latest subkey. However, if the key has been found using an exact match ('!' notation) we use that key without any further checks and even allow the use of the primary key. */ latest_date = 0; latest_key = NULL; for (node = keyblock; node; node = node->next) { if ((node->pkt->pkttype == PKT_PUBLIC_SUBKEY || node->pkt->pkttype == PKT_PUBLIC_KEY) && node->pkt->pkt.public_key->flags.exact) { latest_key = node; break; } } if (!latest_key) { for (node = keyblock; node; node = node->next) { if (node->pkt->pkttype != PKT_PUBLIC_SUBKEY) continue; pk = node->pkt->pkt.public_key; if (DBG_LOOKUP) log_debug ("\tchecking subkey %08lX\n", (ulong) keyid_from_pk (pk, NULL)); if (!(pk->pubkey_usage & PUBKEY_USAGE_AUTH)) { if (DBG_LOOKUP) log_debug ("\tsubkey not usable for authentication\n"); continue; } if (!pk->flags.valid) { if (DBG_LOOKUP) log_debug ("\tsubkey not valid\n"); continue; } if (pk->flags.revoked) { if (DBG_LOOKUP) log_debug ("\tsubkey has been revoked\n"); continue; } if (pk->has_expired) { if (DBG_LOOKUP) log_debug ("\tsubkey has expired\n"); continue; } if (pk->timestamp > curtime && !opt.ignore_valid_from) { if (DBG_LOOKUP) log_debug ("\tsubkey not yet valid\n"); continue; } if (DBG_LOOKUP) log_debug ("\tsubkey might be fine\n"); /* In case a key has a timestamp of 0 set, we make sure that it is used. A better change would be to compare ">=" but that might also change the selected keys and is as such a more intrusive change. */ if (pk->timestamp > latest_date || (!pk->timestamp && !latest_date)) { latest_date = pk->timestamp; latest_key = node; } } /* If no subkey was suitable check the primary key. */ if (!latest_key && (node = keyblock) && node->pkt->pkttype == PKT_PUBLIC_KEY) { pk = node->pkt->pkt.public_key; if (DBG_LOOKUP) log_debug ("\tchecking primary key %08lX\n", (ulong) keyid_from_pk (pk, NULL)); if (!(pk->pubkey_usage & PUBKEY_USAGE_AUTH)) { if (DBG_LOOKUP) log_debug ("\tprimary key not usable for authentication\n"); } else if (!pk->flags.valid) { if (DBG_LOOKUP) log_debug ("\tprimary key not valid\n"); } else if (pk->flags.revoked) { if (DBG_LOOKUP) log_debug ("\tprimary key has been revoked\n"); } else if (pk->has_expired) { if (DBG_LOOKUP) log_debug ("\tprimary key has expired\n"); } else if (pk->timestamp > curtime && !opt.ignore_valid_from) { if (DBG_LOOKUP) log_debug ("\tprimary key not yet valid\n"); } else { if (DBG_LOOKUP) log_debug ("\tprimary key is fine\n"); latest_date = pk->timestamp; latest_key = node; } } } if (!latest_key) { err = gpg_error (GPG_ERR_UNUSABLE_PUBKEY); log_error (_("key \"%s\" not found: %s\n"), userid, gpg_strerror (err)); goto leave; } pk = latest_key->pkt->pkt.public_key; if (DBG_LOOKUP) log_debug ("\tusing key %08lX\n", (ulong) keyid_from_pk (pk, NULL)); if (opt.outfile && *opt.outfile && strcmp (opt.outfile, "-")) fp = es_fopen ((fname = opt.outfile), "w"); else fp = es_stdout; if (!fp) { err = gpg_error_from_syserror (); log_error (_("error creating '%s': %s\n"), fname, gpg_strerror (err)); goto leave; } err = export_one_ssh_key (fp, pk); if (err) goto leave; if (es_ferror (fp)) err = gpg_error_from_syserror (); else { if (es_fclose (fp)) err = gpg_error_from_syserror (); fp = NULL; } if (err) log_error (_("error writing '%s': %s\n"), fname, gpg_strerror (err)); leave: es_fclose (fp); release_kbnode (keyblock); return err; } diff --git a/g10/parse-packet.c b/g10/parse-packet.c index 003143768..14116f062 100644 --- a/g10/parse-packet.c +++ b/g10/parse-packet.c @@ -1,3745 +1,3747 @@ /* parse-packet.c - read packets * Copyright (C) 1998-2007, 2009-2010 Free Software Foundation, Inc. * Copyright (C) 2014, 2018 Werner Koch * Copyright (C) 2015 g10 Code GmbH * * This file is part of GnuPG. * * GnuPG is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * GnuPG is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * SPDX-License-Identifier: GPL-3.0+ */ #include #include #include #include #include "gpg.h" #include "../common/util.h" #include "packet.h" #include "../common/iobuf.h" #include "filter.h" #include "photoid.h" #include "options.h" #include "main.h" #include "../common/i18n.h" #include "../common/host2net.h" #include "../common/mbox-util.h" static int mpi_print_mode; static int list_mode; static estream_t listfp; /* A linked list of known notation names. Note that the FLAG is used * to store the length of the name to speed up the check. */ static strlist_t known_notations_list; static int parse (parse_packet_ctx_t ctx, PACKET *pkt, int onlykeypkts, off_t * retpos, int *skip, IOBUF out, int do_skip #if DEBUG_PARSE_PACKET , const char *dbg_w, const char *dbg_f, int dbg_l #endif ); static int copy_packet (IOBUF inp, IOBUF out, int pkttype, unsigned long pktlen, int partial); static void skip_packet (IOBUF inp, int pkttype, unsigned long pktlen, int partial); static void *read_rest (IOBUF inp, size_t pktlen); static int parse_marker (IOBUF inp, int pkttype, unsigned long pktlen); static int parse_symkeyenc (IOBUF inp, int pkttype, unsigned long pktlen, PACKET * packet); static int parse_pubkeyenc (IOBUF inp, int pkttype, unsigned long pktlen, PACKET * packet); static int parse_onepass_sig (IOBUF inp, int pkttype, unsigned long pktlen, PKT_onepass_sig * ops); static int parse_key (IOBUF inp, int pkttype, unsigned long pktlen, byte * hdr, int hdrlen, PACKET * packet); static int parse_user_id (IOBUF inp, int pkttype, unsigned long pktlen, PACKET * packet); static int parse_attribute (IOBUF inp, int pkttype, unsigned long pktlen, PACKET * packet); static int parse_comment (IOBUF inp, int pkttype, unsigned long pktlen, PACKET * packet); static gpg_error_t parse_ring_trust (parse_packet_ctx_t ctx, unsigned long pktlen); static int parse_plaintext (IOBUF inp, int pkttype, unsigned long pktlen, PACKET * packet, int new_ctb, int partial); static int parse_compressed (IOBUF inp, int pkttype, unsigned long pktlen, PACKET * packet, int new_ctb); static int parse_encrypted (IOBUF inp, int pkttype, unsigned long pktlen, PACKET * packet, int new_ctb, int partial); static gpg_error_t parse_encrypted_aead (IOBUF inp, int pkttype, unsigned long pktlen, PACKET *packet, int partial); static int parse_mdc (IOBUF inp, int pkttype, unsigned long pktlen, PACKET * packet, int new_ctb); static int parse_gpg_control (IOBUF inp, int pkttype, unsigned long pktlen, PACKET * packet, int partial); /* Read a 16-bit value in MSB order (big endian) from an iobuf. */ static unsigned short read_16 (IOBUF inp) { unsigned short a; a = (unsigned short)iobuf_get_noeof (inp) << 8; a |= iobuf_get_noeof (inp); return a; } /* Read a 32-bit value in MSB order (big endian) from an iobuf. */ static unsigned long read_32 (IOBUF inp) { unsigned long a; a = (unsigned long)iobuf_get_noeof (inp) << 24; a |= iobuf_get_noeof (inp) << 16; a |= iobuf_get_noeof (inp) << 8; a |= iobuf_get_noeof (inp); return a; } /* Read an external representation of an MPI and return the MPI. The external format is a 16-bit unsigned value stored in network byte order giving the number of bits for the following integer. The integer is stored MSB first and is left padded with zero bits to align on a byte boundary. The caller must set *RET_NREAD to the maximum number of bytes to read from the pipeline INP. This function sets *RET_NREAD to be the number of bytes actually read from the pipeline. If SECURE is true, the integer is stored in secure memory (allocated using gcry_xmalloc_secure). */ static gcry_mpi_t mpi_read (iobuf_t inp, unsigned int *ret_nread, int secure) { int c, c1, c2, i; unsigned int nmax = *ret_nread; unsigned int nbits, nbytes; size_t nread = 0; gcry_mpi_t a = NULL; byte *buf = NULL; byte *p; if (!nmax) goto overflow; if ((c = c1 = iobuf_get (inp)) == -1) goto leave; if (++nread == nmax) goto overflow; nbits = c << 8; if ((c = c2 = iobuf_get (inp)) == -1) goto leave; ++nread; nbits |= c; if (nbits > MAX_EXTERN_MPI_BITS) { log_error ("mpi too large (%u bits)\n", nbits); goto leave; } nbytes = (nbits + 7) / 8; buf = secure ? gcry_xmalloc_secure (nbytes + 2) : gcry_xmalloc (nbytes + 2); p = buf; p[0] = c1; p[1] = c2; for (i = 0; i < nbytes; i++) { if (nread == nmax) goto overflow; c = iobuf_get (inp); if (c == -1) goto leave; p[i + 2] = c; nread ++; } if (gcry_mpi_scan (&a, GCRYMPI_FMT_PGP, buf, nread, &nread)) a = NULL; *ret_nread = nread; gcry_free(buf); return a; overflow: log_error ("mpi larger than indicated length (%u bits)\n", 8*nmax); leave: *ret_nread = nread; gcry_free(buf); return a; } static gcry_mpi_t sos_read (iobuf_t inp, unsigned int *ret_nread, int secure) { int c, c1, c2, i; unsigned int nmax = *ret_nread; unsigned int nbits, nbytes; size_t nread = 0; gcry_mpi_t a = NULL; byte *buf = NULL; byte *p; if (!nmax) goto overflow; if ((c = c1 = iobuf_get (inp)) == -1) goto leave; if (++nread == nmax) goto overflow; nbits = c << 8; if ((c = c2 = iobuf_get (inp)) == -1) goto leave; ++nread; nbits |= c; if (nbits > MAX_EXTERN_MPI_BITS) { log_error ("mpi too large (%u bits)\n", nbits); goto leave; } nbytes = (nbits + 7) / 8; buf = secure ? gcry_xmalloc_secure (nbytes) : gcry_xmalloc (nbytes); p = buf; for (i = 0; i < nbytes; i++) { if (nread == nmax) goto overflow; c = iobuf_get (inp); if (c == -1) goto leave; p[i] = c; nread ++; } a = gcry_mpi_set_opaque (NULL, buf, nbits); gcry_mpi_set_flag (a, GCRYMPI_FLAG_USER2); *ret_nread = nread; return a; overflow: log_error ("mpi larger than indicated length (%u bits)\n", 8*nmax); leave: *ret_nread = nread; gcry_free(buf); return a; } /* Register STRING as a known critical notation name. */ void register_known_notation (const char *string) { strlist_t sl; if (!known_notations_list) { sl = add_to_strlist (&known_notations_list, "preferred-email-encoding@pgp.com"); sl->flags = 32; sl = add_to_strlist (&known_notations_list, "pka-address@gnupg.org"); sl->flags = 21; } if (!string) return; /* Only initialized the default known notations. */ /* In --set-notation we use an exclamation mark to indicate a * critical notation. As a convenience skip this here. */ if (*string == '!') string++; if (!*string || strlist_find (known_notations_list, string)) return; /* Empty string or already registered. */ sl = add_to_strlist (&known_notations_list, string); sl->flags = strlen (string); } int set_packet_list_mode (int mode) { int old = list_mode; list_mode = mode; /* We use stdout only if invoked by the --list-packets command but switch to stderr in all other cases. This breaks the previous behaviour but that seems to be more of a bug than intentional. I don't believe that any application makes use of this long standing annoying way of printing to stdout except when doing a --list-packets. If this assumption fails, it will be easy to add an option for the listing stream. Note that we initialize it only once; mainly because there is code which switches opt.list_mode back to 1 and we want to have all output to the same stream. The MPI_PRINT_MODE will be enabled if the corresponding debug flag is set or if we are in --list-packets and --verbose is given. Using stderr is not actually very clean because it bypasses the logging code but it is a special thing anyway. I am not sure whether using log_stream() would be better. Perhaps we should enable the list mode only with a special option. */ if (!listfp) { if (opt.list_packets) { listfp = es_stdout; if (opt.verbose) mpi_print_mode = 1; } else listfp = es_stderr; if (DBG_MPI) mpi_print_mode = 1; } return old; } /* If OPT.VERBOSE is set, print a warning that the algorithm ALGO is not suitable for signing and encryption. */ static void unknown_pubkey_warning (int algo) { static byte unknown_pubkey_algos[256]; /* First check whether the algorithm is usable but not suitable for encryption/signing. */ if (pubkey_get_npkey (algo)) { if (opt.verbose && !glo_ctrl.silence_parse_warnings) { if (!pubkey_get_nsig (algo)) log_info ("public key algorithm %s not suitable for %s\n", openpgp_pk_algo_name (algo), "signing"); if (!pubkey_get_nenc (algo)) log_info ("public key algorithm %s not suitable for %s\n", openpgp_pk_algo_name (algo), "encryption"); } } else { algo &= 0xff; if (!unknown_pubkey_algos[algo]) { if (opt.verbose && !glo_ctrl.silence_parse_warnings) log_info (_("can't handle public key algorithm %d\n"), algo); unknown_pubkey_algos[algo] = 1; } } } #if DEBUG_PARSE_PACKET int dbg_parse_packet (parse_packet_ctx_t ctx, PACKET *pkt, const char *dbg_f, int dbg_l) { int skip, rc; do { rc = parse (ctx, pkt, 0, NULL, &skip, NULL, 0, "parse", dbg_f, dbg_l); } while (skip && ! rc); return rc; } #else /*!DEBUG_PARSE_PACKET*/ int parse_packet (parse_packet_ctx_t ctx, PACKET *pkt) { int skip, rc; do { rc = parse (ctx, pkt, 0, NULL, &skip, NULL, 0); } while (skip && ! rc); return rc; } #endif /*!DEBUG_PARSE_PACKET*/ /* * Like parse packet, but only return secret or public (sub)key * packets. */ #if DEBUG_PARSE_PACKET int dbg_search_packet (parse_packet_ctx_t ctx, PACKET *pkt, off_t * retpos, int with_uid, const char *dbg_f, int dbg_l) { int skip, rc; do { rc = parse (ctx, pkt, with_uid ? 2 : 1, retpos, &skip, NULL, 0, "search", dbg_f, dbg_l); } while (skip && ! rc); return rc; } #else /*!DEBUG_PARSE_PACKET*/ int search_packet (parse_packet_ctx_t ctx, PACKET *pkt, off_t * retpos, int with_uid) { int skip, rc; do { rc = parse (ctx, pkt, with_uid ? 2 : 1, retpos, &skip, NULL, 0); } while (skip && ! rc); return rc; } #endif /*!DEBUG_PARSE_PACKET*/ /* * Copy all packets from INP to OUT, thereby removing unused spaces. */ #if DEBUG_PARSE_PACKET int dbg_copy_all_packets (iobuf_t inp, iobuf_t out, const char *dbg_f, int dbg_l) { PACKET pkt; struct parse_packet_ctx_s parsectx; int skip, rc = 0; if (! out) log_bug ("copy_all_packets: OUT may not be NULL.\n"); init_parse_packet (&parsectx, inp); do { init_packet (&pkt); } while (! (rc = parse (&parsectx, &pkt, 0, NULL, &skip, out, 0, "copy", dbg_f, dbg_l))); deinit_parse_packet (&parsectx); return rc; } #else /*!DEBUG_PARSE_PACKET*/ int copy_all_packets (iobuf_t inp, iobuf_t out) { PACKET pkt; struct parse_packet_ctx_s parsectx; int skip, rc = 0; if (! out) log_bug ("copy_all_packets: OUT may not be NULL.\n"); init_parse_packet (&parsectx, inp); do { init_packet (&pkt); } while (!(rc = parse (&parsectx, &pkt, 0, NULL, &skip, out, 0))); deinit_parse_packet (&parsectx); return rc; } #endif /*!DEBUG_PARSE_PACKET*/ /* * Copy some packets from INP to OUT, thereby removing unused spaces. * Stop at offset STOPoff (i.e. don't copy packets at this or later * offsets) */ #if DEBUG_PARSE_PACKET int dbg_copy_some_packets (iobuf_t inp, iobuf_t out, off_t stopoff, const char *dbg_f, int dbg_l) { int rc = 0; PACKET pkt; int skip; struct parse_packet_ctx_s parsectx; init_parse_packet (&parsectx, inp); do { if (iobuf_tell (inp) >= stopoff) { deinit_parse_packet (&parsectx); return 0; } init_packet (&pkt); } while (!(rc = parse (&parsectx, &pkt, 0, NULL, &skip, out, 0, "some", dbg_f, dbg_l))); deinit_parse_packet (&parsectx); return rc; } #else /*!DEBUG_PARSE_PACKET*/ int copy_some_packets (iobuf_t inp, iobuf_t out, off_t stopoff) { int rc = 0; PACKET pkt; struct parse_packet_ctx_s parsectx; int skip; init_parse_packet (&parsectx, inp); do { if (iobuf_tell (inp) >= stopoff) { deinit_parse_packet (&parsectx); return 0; } init_packet (&pkt); } while (!(rc = parse (&parsectx, &pkt, 0, NULL, &skip, out, 0))); deinit_parse_packet (&parsectx); return rc; } #endif /*!DEBUG_PARSE_PACKET*/ /* * Skip over N packets */ #if DEBUG_PARSE_PACKET int dbg_skip_some_packets (iobuf_t inp, unsigned n, const char *dbg_f, int dbg_l) { int rc = 0; int skip; PACKET pkt; struct parse_packet_ctx_s parsectx; init_parse_packet (&parsectx, inp); for (; n && !rc; n--) { init_packet (&pkt); rc = parse (&parsectx, &pkt, 0, NULL, &skip, NULL, 1, "skip", dbg_f, dbg_l); } deinit_parse_packet (&parsectx); return rc; } #else /*!DEBUG_PARSE_PACKET*/ int skip_some_packets (iobuf_t inp, unsigned int n) { int rc = 0; int skip; PACKET pkt; struct parse_packet_ctx_s parsectx; init_parse_packet (&parsectx, inp); for (; n && !rc; n--) { init_packet (&pkt); rc = parse (&parsectx, &pkt, 0, NULL, &skip, NULL, 1); } deinit_parse_packet (&parsectx); return rc; } #endif /*!DEBUG_PARSE_PACKET*/ /* Parse a packet and save it in *PKT. If OUT is not NULL and the packet is valid (its type is not 0), then the header, the initial length field and the packet's contents are written to OUT. In this case, the packet is not saved in *PKT. ONLYKEYPKTS is a simple packet filter. If ONLYKEYPKTS is set to 1, then only public subkey packets, public key packets, private subkey packets and private key packets are parsed. The rest are skipped (i.e., the header and the contents are read from the pipeline and discarded). If ONLYKEYPKTS is set to 2, then in addition to the above 4 types of packets, user id packets are also accepted. DO_SKIP is a more coarse grained filter. Unless ONLYKEYPKTS is set to 2 and the packet is a user id packet, all packets are skipped. Finally, if a packet is invalid (it's type is 0), it is skipped. If a packet is skipped and SKIP is not NULL, then *SKIP is set to 1. Note: ONLYKEYPKTS and DO_SKIP are only respected if OUT is NULL, i.e., the packets are not simply being copied. If RETPOS is not NULL, then the position of CTX->INP (as returned by iobuf_tell) is saved there before any data is read from CTX->INP. */ static int parse (parse_packet_ctx_t ctx, PACKET *pkt, int onlykeypkts, off_t * retpos, int *skip, IOBUF out, int do_skip #if DEBUG_PARSE_PACKET , const char *dbg_w, const char *dbg_f, int dbg_l #endif ) { int rc = 0; iobuf_t inp; int c, ctb, pkttype, lenbytes; unsigned long pktlen; byte hdr[8]; int hdrlen; int new_ctb = 0, partial = 0; int with_uid = (onlykeypkts == 2); off_t pos; *skip = 0; inp = ctx->inp; again: log_assert (!pkt->pkt.generic); if (retpos || list_mode) { pos = iobuf_tell (inp); if (retpos) *retpos = pos; } else pos = 0; /* (silence compiler warning) */ /* The first byte of a packet is the so-called tag. The highest bit must be set. */ if ((ctb = iobuf_get (inp)) == -1) { rc = -1; goto leave; } hdrlen = 0; hdr[hdrlen++] = ctb; if (!(ctb & 0x80)) { log_error ("%s: invalid packet (ctb=%02x)\n", iobuf_where (inp), ctb); rc = gpg_error (GPG_ERR_INV_PACKET); goto leave; } /* Immediately following the header is the length. There are two formats: the old format and the new format. If bit 6 (where the least significant bit is bit 0) is set in the tag, then we are dealing with a new format packet. Otherwise, it is an old format packet. */ pktlen = 0; new_ctb = !!(ctb & 0x40); if (new_ctb) { /* Get the packet's type. This is encoded in the 6 least significant bits of the tag. */ pkttype = ctb & 0x3f; /* Extract the packet's length. New format packets have 4 ways to encode the packet length. The value of the first byte determines the encoding and partially determines the length. See section 4.2.2 of RFC 4880 for details. */ if ((c = iobuf_get (inp)) == -1) { log_error ("%s: 1st length byte missing\n", iobuf_where (inp)); rc = gpg_error (GPG_ERR_INV_PACKET); goto leave; } hdr[hdrlen++] = c; if (c < 192) pktlen = c; else if (c < 224) { pktlen = (c - 192) * 256; if ((c = iobuf_get (inp)) == -1) { log_error ("%s: 2nd length byte missing\n", iobuf_where (inp)); rc = gpg_error (GPG_ERR_INV_PACKET); goto leave; } hdr[hdrlen++] = c; pktlen += c + 192; } else if (c == 255) { int i; char value[4]; for (i = 0; i < 4; i ++) { if ((c = iobuf_get (inp)) == -1) { log_error ("%s: 4 byte length invalid\n", iobuf_where (inp)); rc = gpg_error (GPG_ERR_INV_PACKET); goto leave; } value[i] = hdr[hdrlen++] = c; } pktlen = buf32_to_ulong (value); } else /* Partial body length. */ { switch (pkttype) { case PKT_PLAINTEXT: case PKT_ENCRYPTED: case PKT_ENCRYPTED_MDC: case PKT_ENCRYPTED_AEAD: case PKT_COMPRESSED: iobuf_set_partial_body_length_mode (inp, c & 0xff); pktlen = 0; /* To indicate partial length. */ partial = 1; break; default: log_error ("%s: partial length invalid for" " packet type %d\n", iobuf_where (inp), pkttype); rc = gpg_error (GPG_ERR_INV_PACKET); goto leave; } } } else /* This is an old format packet. */ { /* Extract the packet's type. This is encoded in bits 2-5. */ pkttype = (ctb >> 2) & 0xf; /* The type of length encoding is encoded in bits 0-1 of the tag. */ lenbytes = ((ctb & 3) == 3) ? 0 : (1 << (ctb & 3)); if (!lenbytes) { pktlen = 0; /* Don't know the value. */ /* This isn't really partial, but we can treat it the same in a "read until the end" sort of way. */ partial = 1; if (pkttype != PKT_ENCRYPTED && pkttype != PKT_PLAINTEXT && pkttype != PKT_COMPRESSED) { log_error ("%s: indeterminate length for invalid" " packet type %d\n", iobuf_where (inp), pkttype); rc = gpg_error (GPG_ERR_INV_PACKET); goto leave; } } else { for (; lenbytes; lenbytes--) { pktlen <<= 8; c = iobuf_get (inp); if (c == -1) { log_error ("%s: length invalid\n", iobuf_where (inp)); rc = gpg_error (GPG_ERR_INV_PACKET); goto leave; } pktlen |= hdr[hdrlen++] = c; } } } /* Sometimes the decompressing layer enters an error state in which it simply outputs 0xff for every byte read. If we have a stream of 0xff bytes, then it will be detected as a new format packet with type 63 and a 4-byte encoded length that is 4G-1. Since packets with type 63 are private and we use them as a control packet, which won't be 4 GB, we reject such packets as invalid. */ if (pkttype == 63 && pktlen == 0xFFFFFFFF) { /* With some probability this is caused by a problem in the * the uncompressing layer - in some error cases it just loops * and spits out 0xff bytes. */ log_error ("%s: garbled packet detected\n", iobuf_where (inp)); g10_exit (2); } if (out && pkttype) { /* This type of copying won't work if the packet uses a partial body length. (In other words, this only works if HDR is actually the length.) Currently, no callers require this functionality so we just log this as an error. */ if (partial) { log_error ("parse: Can't copy partial packet. Aborting.\n"); rc = gpg_error (GPG_ERR_INV_PACKET); goto leave; } rc = iobuf_write (out, hdr, hdrlen); if (!rc) rc = copy_packet (inp, out, pkttype, pktlen, partial); goto leave; } if (with_uid && pkttype == PKT_USER_ID) /* If ONLYKEYPKTS is set to 2, then we never skip user id packets, even if DO_SKIP is set. */ ; else if (do_skip /* type==0 is not allowed. This is an invalid packet. */ || !pkttype /* When ONLYKEYPKTS is set, we don't skip keys. */ || (onlykeypkts && pkttype != PKT_PUBLIC_SUBKEY && pkttype != PKT_PUBLIC_KEY && pkttype != PKT_SECRET_SUBKEY && pkttype != PKT_SECRET_KEY)) { iobuf_skip_rest (inp, pktlen, partial); *skip = 1; rc = 0; goto leave; } if (DBG_PACKET) { #if DEBUG_PARSE_PACKET log_debug ("parse_packet(iob=%d): type=%d length=%lu%s (%s.%s.%d)\n", iobuf_id (inp), pkttype, pktlen, new_ctb ? " (new_ctb)" : "", dbg_w, dbg_f, dbg_l); #else log_debug ("parse_packet(iob=%d): type=%d length=%lu%s\n", iobuf_id (inp), pkttype, pktlen, new_ctb ? " (new_ctb)" : ""); #endif } if (list_mode) es_fprintf (listfp, "# off=%lu ctb=%02x tag=%d hlen=%d plen=%lu%s%s\n", (unsigned long)pos, ctb, pkttype, hdrlen, pktlen, partial? (new_ctb ? " partial" : " indeterminate") :"", new_ctb? " new-ctb":""); /* Count it. */ ctx->n_parsed_packets++; pkt->pkttype = pkttype; rc = GPG_ERR_UNKNOWN_PACKET; /* default error */ switch (pkttype) { case PKT_PUBLIC_KEY: case PKT_PUBLIC_SUBKEY: case PKT_SECRET_KEY: case PKT_SECRET_SUBKEY: pkt->pkt.public_key = xmalloc_clear (sizeof *pkt->pkt.public_key); rc = parse_key (inp, pkttype, pktlen, hdr, hdrlen, pkt); break; case PKT_SYMKEY_ENC: rc = parse_symkeyenc (inp, pkttype, pktlen, pkt); break; case PKT_PUBKEY_ENC: rc = parse_pubkeyenc (inp, pkttype, pktlen, pkt); break; case PKT_SIGNATURE: pkt->pkt.signature = xmalloc_clear (sizeof *pkt->pkt.signature); rc = parse_signature (inp, pkttype, pktlen, pkt->pkt.signature); break; case PKT_ONEPASS_SIG: pkt->pkt.onepass_sig = xmalloc_clear (sizeof *pkt->pkt.onepass_sig); rc = parse_onepass_sig (inp, pkttype, pktlen, pkt->pkt.onepass_sig); break; case PKT_USER_ID: rc = parse_user_id (inp, pkttype, pktlen, pkt); break; case PKT_ATTRIBUTE: pkt->pkttype = pkttype = PKT_USER_ID; /* we store it in the userID */ rc = parse_attribute (inp, pkttype, pktlen, pkt); break; case PKT_OLD_COMMENT: case PKT_COMMENT: rc = parse_comment (inp, pkttype, pktlen, pkt); break; case PKT_RING_TRUST: { rc = parse_ring_trust (ctx, pktlen); if (!rc) goto again; /* Directly read the next packet. */ } break; case PKT_PLAINTEXT: rc = parse_plaintext (inp, pkttype, pktlen, pkt, new_ctb, partial); break; case PKT_COMPRESSED: rc = parse_compressed (inp, pkttype, pktlen, pkt, new_ctb); break; case PKT_ENCRYPTED: case PKT_ENCRYPTED_MDC: rc = parse_encrypted (inp, pkttype, pktlen, pkt, new_ctb, partial); break; case PKT_MDC: rc = parse_mdc (inp, pkttype, pktlen, pkt, new_ctb); break; case PKT_ENCRYPTED_AEAD: rc = parse_encrypted_aead (inp, pkttype, pktlen, pkt, partial); break; case PKT_GPG_CONTROL: rc = parse_gpg_control (inp, pkttype, pktlen, pkt, partial); break; case PKT_MARKER: rc = parse_marker (inp, pkttype, pktlen); break; default: /* Unknown packet. Skip it. */ skip_packet (inp, pkttype, pktlen, partial); break; } /* Store a shallow copy of certain packets in the context. */ free_packet (NULL, ctx); if (!rc && (pkttype == PKT_PUBLIC_KEY || pkttype == PKT_SECRET_KEY || pkttype == PKT_USER_ID || pkttype == PKT_ATTRIBUTE || pkttype == PKT_SIGNATURE)) { ctx->last_pkt = *pkt; } leave: /* FIXME: We leak in case of an error (see the xmalloc's above). */ if (!rc && iobuf_error (inp)) rc = GPG_ERR_INV_KEYRING; /* FIXME: We use only the error code for now to avoid problems with callers which have not been checked to always use gpg_err_code() when comparing error codes. */ return rc == -1? -1 : gpg_err_code (rc); } static void dump_hex_line (int c, int *i) { if (*i && !(*i % 8)) { if (*i && !(*i % 24)) es_fprintf (listfp, "\n%4d:", *i); else es_putc (' ', listfp); } if (c == -1) es_fprintf (listfp, " EOF"); else es_fprintf (listfp, " %02x", c); ++*i; } /* Copy the contents of a packet from the pipeline IN to the pipeline OUT. The header and length have already been read from INP and the decoded values are given as PKGTYPE and PKTLEN. If the packet is a partial body length packet (RFC 4880, Section 4.2.2.4), then iobuf_set_partial_block_modeiobuf_set_partial_block_mode should already have been called on INP and PARTIAL should be set. If PARTIAL is set or PKTLEN is 0 and PKTTYPE is PKT_COMPRESSED, copy until the first EOF is encountered on INP. Returns 0 on success and an error code if an error occurs. */ static int copy_packet (IOBUF inp, IOBUF out, int pkttype, unsigned long pktlen, int partial) { int rc; int n; char buf[100]; if (partial) { while ((n = iobuf_read (inp, buf, sizeof (buf))) != -1) if ((rc = iobuf_write (out, buf, n))) return rc; /* write error */ } else if (!pktlen && pkttype == PKT_COMPRESSED) { log_debug ("copy_packet: compressed!\n"); /* compressed packet, copy till EOF */ while ((n = iobuf_read (inp, buf, sizeof (buf))) != -1) if ((rc = iobuf_write (out, buf, n))) return rc; /* write error */ } else { for (; pktlen; pktlen -= n) { n = pktlen > sizeof (buf) ? sizeof (buf) : pktlen; n = iobuf_read (inp, buf, n); if (n == -1) return gpg_error (GPG_ERR_EOF); if ((rc = iobuf_write (out, buf, n))) return rc; /* write error */ } } return 0; } /* Skip an unknown packet. PKTTYPE is the packet's type, PKTLEN is the length of the packet's content and PARTIAL is whether partial body length encoding in used (in this case PKTLEN is ignored). */ static void skip_packet (IOBUF inp, int pkttype, unsigned long pktlen, int partial) { if (list_mode) { es_fprintf (listfp, ":unknown packet: type %2d, length %lu\n", pkttype, pktlen); if (pkttype) { int c, i = 0; es_fputs ("dump:", listfp); if (partial) { while ((c = iobuf_get (inp)) != -1) dump_hex_line (c, &i); } else { for (; pktlen; pktlen--) { dump_hex_line ((c = iobuf_get (inp)), &i); if (c == -1) break; } } es_putc ('\n', listfp); return; } } iobuf_skip_rest (inp, pktlen, partial); } /* Read PKTLEN bytes from INP and return them in a newly allocated * buffer. In case of an error (including reading fewer than PKTLEN * bytes from INP before EOF is returned), NULL is returned and an * error message is logged. */ static void * read_rest (IOBUF inp, size_t pktlen) { int c; byte *buf, *p; buf = xtrymalloc (pktlen); if (!buf) { gpg_error_t err = gpg_error_from_syserror (); log_error ("error reading rest of packet: %s\n", gpg_strerror (err)); return NULL; } for (p = buf; pktlen; pktlen--) { c = iobuf_get (inp); if (c == -1) { log_error ("premature eof while reading rest of packet\n"); xfree (buf); return NULL; } *p++ = c; } return buf; } /* Read a special size+body from INP. On success store an opaque MPI with it at R_DATA. On error return an error code and store NULL at R_DATA. Even in the error case store the number of read bytes at R_NREAD. The caller shall pass the remaining size of the packet in PKTLEN. */ static gpg_error_t read_size_body (iobuf_t inp, int pktlen, size_t *r_nread, gcry_mpi_t *r_data) { char buffer[256]; char *tmpbuf; int i, c, nbytes; *r_nread = 0; *r_data = NULL; if (!pktlen) return gpg_error (GPG_ERR_INV_PACKET); c = iobuf_readbyte (inp); if (c < 0) return gpg_error (GPG_ERR_INV_PACKET); pktlen--; ++*r_nread; nbytes = c; if (nbytes < 2 || nbytes > 254) return gpg_error (GPG_ERR_INV_PACKET); if (nbytes > pktlen) return gpg_error (GPG_ERR_INV_PACKET); buffer[0] = nbytes; for (i = 0; i < nbytes; i++) { c = iobuf_get (inp); if (c < 0) return gpg_error (GPG_ERR_INV_PACKET); ++*r_nread; buffer[1+i] = c; } tmpbuf = xtrymalloc (1 + nbytes); if (!tmpbuf) return gpg_error_from_syserror (); memcpy (tmpbuf, buffer, 1 + nbytes); *r_data = gcry_mpi_set_opaque (NULL, tmpbuf, 8 * (1 + nbytes)); if (!*r_data) { xfree (tmpbuf); return gpg_error_from_syserror (); } return 0; } /* Parse a marker packet. */ static int parse_marker (IOBUF inp, int pkttype, unsigned long pktlen) { (void) pkttype; if (pktlen != 3) goto fail; if (iobuf_get (inp) != 'P') { pktlen--; goto fail; } if (iobuf_get (inp) != 'G') { pktlen--; goto fail; } if (iobuf_get (inp) != 'P') { pktlen--; goto fail; } if (list_mode) es_fputs (":marker packet: PGP\n", listfp); return 0; fail: log_error ("invalid marker packet\n"); if (list_mode) es_fputs (":marker packet: [invalid]\n", listfp); iobuf_skip_rest (inp, pktlen, 0); return GPG_ERR_INV_PACKET; } static int parse_symkeyenc (IOBUF inp, int pkttype, unsigned long pktlen, PACKET * packet) { PKT_symkey_enc *k; int rc = 0; int i, version, s2kmode, cipher_algo, aead_algo, hash_algo, seskeylen, minlen; if (pktlen < 4) goto too_short; version = iobuf_get_noeof (inp); pktlen--; if (version == 4) ; else if (version == 5) ; else { log_error ("packet(%d) with unknown version %d\n", pkttype, version); if (list_mode) es_fprintf (listfp, ":symkey enc packet: [unknown version]\n"); rc = gpg_error (GPG_ERR_INV_PACKET); goto leave; } if (pktlen > 200) { /* (we encode the seskeylen in a byte) */ log_error ("packet(%d) too large\n", pkttype); if (list_mode) es_fprintf (listfp, ":symkey enc packet: [too large]\n"); rc = gpg_error (GPG_ERR_INV_PACKET); goto leave; } cipher_algo = iobuf_get_noeof (inp); pktlen--; if (version == 5) { aead_algo = iobuf_get_noeof (inp); pktlen--; } else aead_algo = 0; if (pktlen < 2) goto too_short; s2kmode = iobuf_get_noeof (inp); pktlen--; hash_algo = iobuf_get_noeof (inp); pktlen--; switch (s2kmode) { case 0: /* Simple S2K. */ minlen = 0; break; case 1: /* Salted S2K. */ minlen = 8; break; case 3: /* Iterated+salted S2K. */ minlen = 9; break; default: log_error ("unknown S2K mode %d\n", s2kmode); if (list_mode) es_fprintf (listfp, ":symkey enc packet: [unknown S2K mode]\n"); goto leave; } if (minlen > pktlen) { log_error ("packet with S2K %d too short\n", s2kmode); if (list_mode) es_fprintf (listfp, ":symkey enc packet: [too short]\n"); rc = gpg_error (GPG_ERR_INV_PACKET); goto leave; } seskeylen = pktlen - minlen; k = packet->pkt.symkey_enc = xmalloc_clear (sizeof *packet->pkt.symkey_enc + seskeylen - 1); k->version = version; k->cipher_algo = cipher_algo; k->aead_algo = aead_algo; k->s2k.mode = s2kmode; k->s2k.hash_algo = hash_algo; if (s2kmode == 1 || s2kmode == 3) { for (i = 0; i < 8 && pktlen; i++, pktlen--) k->s2k.salt[i] = iobuf_get_noeof (inp); } if (s2kmode == 3) { k->s2k.count = iobuf_get_noeof (inp); pktlen--; } k->seskeylen = seskeylen; if (k->seskeylen) { for (i = 0; i < seskeylen && pktlen; i++, pktlen--) k->seskey[i] = iobuf_get_noeof (inp); /* What we're watching out for here is a session key decryptor with no salt. The RFC says that using salt for this is a MUST. */ if (s2kmode != 1 && s2kmode != 3) log_info (_("WARNING: potentially insecure symmetrically" " encrypted session key\n")); } log_assert (!pktlen); if (list_mode) { es_fprintf (listfp, ":symkey enc packet: version %d, cipher %d, aead %d," " s2k %d, hash %d", version, cipher_algo, aead_algo, s2kmode, hash_algo); if (seskeylen) { /* To compute the size of the session key we need to know * the size of the AEAD nonce which we may not know. Thus * we show only the size of the entire encrypted session * key. */ if (aead_algo) es_fprintf (listfp, ", encrypted seskey %d bytes", seskeylen); else es_fprintf (listfp, ", seskey %d bits", (seskeylen - 1) * 8); } es_fprintf (listfp, "\n"); if (s2kmode == 1 || s2kmode == 3) { es_fprintf (listfp, "\tsalt "); es_write_hexstring (listfp, k->s2k.salt, 8, 0, NULL); if (s2kmode == 3) es_fprintf (listfp, ", count %lu (%lu)", S2K_DECODE_COUNT ((ulong) k->s2k.count), (ulong) k->s2k.count); es_fprintf (listfp, "\n"); } } leave: iobuf_skip_rest (inp, pktlen, 0); return rc; too_short: log_error ("packet(%d) too short\n", pkttype); if (list_mode) es_fprintf (listfp, ":symkey enc packet: [too short]\n"); rc = gpg_error (GPG_ERR_INV_PACKET); goto leave; } static int parse_pubkeyenc (IOBUF inp, int pkttype, unsigned long pktlen, PACKET * packet) { int rc = 0; int i, ndata; PKT_pubkey_enc *k; k = packet->pkt.pubkey_enc = xmalloc_clear (sizeof *packet->pkt.pubkey_enc); if (pktlen < 12) { log_error ("packet(%d) too short\n", pkttype); if (list_mode) es_fputs (":pubkey enc packet: [too short]\n", listfp); rc = gpg_error (GPG_ERR_INV_PACKET); goto leave; } k->version = iobuf_get_noeof (inp); pktlen--; if (k->version != 2 && k->version != 3) { log_error ("packet(%d) with unknown version %d\n", pkttype, k->version); if (list_mode) es_fputs (":pubkey enc packet: [unknown version]\n", listfp); rc = gpg_error (GPG_ERR_INV_PACKET); goto leave; } k->keyid[0] = read_32 (inp); pktlen -= 4; k->keyid[1] = read_32 (inp); pktlen -= 4; k->pubkey_algo = iobuf_get_noeof (inp); pktlen--; k->throw_keyid = 0; /* Only used as flag for build_packet. */ if (list_mode) es_fprintf (listfp, ":pubkey enc packet: version %d, algo %d, keyid %08lX%08lX\n", k->version, k->pubkey_algo, (ulong) k->keyid[0], (ulong) k->keyid[1]); ndata = pubkey_get_nenc (k->pubkey_algo); if (!ndata) { if (list_mode) es_fprintf (listfp, "\tunsupported algorithm %d\n", k->pubkey_algo); unknown_pubkey_warning (k->pubkey_algo); k->data[0] = NULL; /* No need to store the encrypted data. */ } else { for (i = 0; i < ndata; i++) { if (k->pubkey_algo == PUBKEY_ALGO_ECDH) { if (i == 1) { size_t n; rc = read_size_body (inp, pktlen, &n, k->data+i); pktlen -= n; } else { int n = pktlen; k->data[i] = sos_read (inp, &n, 0); pktlen -= n; if (!k->data[i]) rc = gpg_error (GPG_ERR_INV_PACKET); } } else { int n = pktlen; k->data[i] = mpi_read (inp, &n, 0); pktlen -= n; if (!k->data[i]) rc = gpg_error (GPG_ERR_INV_PACKET); } if (rc) goto leave; if (list_mode) { es_fprintf (listfp, "\tdata: "); mpi_print (listfp, k->data[i], mpi_print_mode); es_putc ('\n', listfp); } } } leave: iobuf_skip_rest (inp, pktlen, 0); return rc; } /* Dump a subpacket to LISTFP. BUFFER contains the subpacket in * question and points to the type field in the subpacket header (not * the start of the header). TYPE is the subpacket's type with the * critical bit cleared. CRITICAL is the value of the CRITICAL bit. * BUFLEN is the length of the buffer and LENGTH is the length of the * subpacket according to the subpacket's header. DIGEST_ALGO is the * digest algo of the signature. */ static void dump_sig_subpkt (int hashed, int type, int critical, const byte * buffer, size_t buflen, size_t length, int digest_algo) { const char *p = NULL; int i; int nprinted; /* The CERT has warning out with explains how to use GNUPG to detect * the ARRs - we print our old message here when it is a faked ARR * and add an additional notice. */ if (type == SIGSUBPKT_ARR && !hashed) { es_fprintf (listfp, "\tsubpkt %d len %u (additional recipient request)\n" "WARNING: PGP versions > 5.0 and < 6.5.8 will automagically " "encrypt to this key and thereby reveal the plaintext to " "the owner of this ARR key. Detailed info follows:\n", type, (unsigned) length); } buffer++; length--; nprinted = es_fprintf (listfp, "\t%s%ssubpkt %d len %u (", /*) */ critical ? "critical " : "", hashed ? "hashed " : "", type, (unsigned) length); if (nprinted < 1) nprinted = 1; /*(we use (nprinted-1) later.)*/ if (length > buflen) { es_fprintf (listfp, "too short: buffer is only %u)\n", (unsigned) buflen); return; } switch (type) { case SIGSUBPKT_SIG_CREATED: if (length >= 4) es_fprintf (listfp, "sig created %s", strtimestamp (buf32_to_u32 (buffer))); break; case SIGSUBPKT_SIG_EXPIRE: if (length >= 4) { if (buf32_to_u32 (buffer)) es_fprintf (listfp, "sig expires after %s", strtimevalue (buf32_to_u32 (buffer))); else es_fprintf (listfp, "sig does not expire"); } break; case SIGSUBPKT_EXPORTABLE: if (length) es_fprintf (listfp, "%sexportable", *buffer ? "" : "not "); break; case SIGSUBPKT_TRUST: if (length != 2) p = "[invalid trust subpacket]"; else es_fprintf (listfp, "trust signature of depth %d, value %d", buffer[0], buffer[1]); break; case SIGSUBPKT_REGEXP: if (!length) p = "[invalid regexp subpacket]"; else { es_fprintf (listfp, "regular expression: \""); es_write_sanitized (listfp, buffer, length, "\"", NULL); p = "\""; } break; case SIGSUBPKT_REVOCABLE: if (length) es_fprintf (listfp, "%srevocable", *buffer ? "" : "not "); break; case SIGSUBPKT_KEY_EXPIRE: if (length >= 4) { if (buf32_to_u32 (buffer)) es_fprintf (listfp, "key expires after %s", strtimevalue (buf32_to_u32 (buffer))); else es_fprintf (listfp, "key does not expire"); } break; case SIGSUBPKT_PREF_SYM: es_fputs ("pref-sym-algos:", listfp); for (i = 0; i < length; i++) es_fprintf (listfp, " %d", buffer[i]); break; case SIGSUBPKT_PREF_AEAD: es_fputs ("pref-aead-algos:", listfp); for (i = 0; i < length; i++) es_fprintf (listfp, " %d", buffer[i]); break; case SIGSUBPKT_REV_KEY: es_fputs ("revocation key: ", listfp); if (length < 22) p = "[too short]"; else { es_fprintf (listfp, "c=%02x a=%d f=", buffer[0], buffer[1]); for (i = 2; i < length; i++) es_fprintf (listfp, "%02X", buffer[i]); } break; case SIGSUBPKT_ISSUER: if (length >= 8) es_fprintf (listfp, "issuer key ID %08lX%08lX", (ulong) buf32_to_u32 (buffer), (ulong) buf32_to_u32 (buffer + 4)); break; case SIGSUBPKT_ISSUER_FPR: if (length >= 21) { char *tmp; es_fprintf (listfp, "issuer fpr v%d ", buffer[0]); tmp = bin2hex (buffer+1, length-1, NULL); if (tmp) { es_fputs (tmp, listfp); xfree (tmp); } } break; case SIGSUBPKT_NOTATION: { es_fputs ("notation: ", listfp); if (length < 8) p = "[too short]"; else { const byte *s = buffer; size_t n1, n2; n1 = (s[4] << 8) | s[5]; n2 = (s[6] << 8) | s[7]; s += 8; if (8 + n1 + n2 != length) p = "[error]"; else { es_write_sanitized (listfp, s, n1, ")", NULL); es_putc ('=', listfp); if (*buffer & 0x80) es_write_sanitized (listfp, s + n1, n2, ")", NULL); else p = "[not human readable]"; } } } break; case SIGSUBPKT_PREF_HASH: es_fputs ("pref-hash-algos:", listfp); for (i = 0; i < length; i++) es_fprintf (listfp, " %d", buffer[i]); break; case SIGSUBPKT_PREF_COMPR: es_fputs ("pref-zip-algos:", listfp); for (i = 0; i < length; i++) es_fprintf (listfp, " %d", buffer[i]); break; case SIGSUBPKT_KS_FLAGS: es_fputs ("keyserver preferences:", listfp); for (i = 0; i < length; i++) es_fprintf (listfp, " %02X", buffer[i]); break; case SIGSUBPKT_PREF_KS: es_fputs ("preferred keyserver: ", listfp); es_write_sanitized (listfp, buffer, length, ")", NULL); break; case SIGSUBPKT_PRIMARY_UID: p = "primary user ID"; break; case SIGSUBPKT_POLICY: es_fputs ("policy: ", listfp); es_write_sanitized (listfp, buffer, length, ")", NULL); break; case SIGSUBPKT_KEY_FLAGS: es_fputs ("key flags:", listfp); for (i = 0; i < length; i++) es_fprintf (listfp, " %02X", buffer[i]); break; case SIGSUBPKT_SIGNERS_UID: p = "signer's user ID"; break; case SIGSUBPKT_REVOC_REASON: if (length) { es_fprintf (listfp, "revocation reason 0x%02x (", *buffer); es_write_sanitized (listfp, buffer + 1, length - 1, ")", NULL); p = ")"; } break; case SIGSUBPKT_ARR: es_fputs ("Big Brother's key (ignored): ", listfp); if (length < 22) p = "[too short]"; else { es_fprintf (listfp, "c=%02x a=%d f=", buffer[0], buffer[1]); if (length > 2) es_write_hexstring (listfp, buffer+2, length-2, 0, NULL); } break; case SIGSUBPKT_FEATURES: es_fputs ("features:", listfp); for (i = 0; i < length; i++) es_fprintf (listfp, " %02x", buffer[i]); break; case SIGSUBPKT_SIGNATURE: es_fputs ("signature: ", listfp); if (length < 17) p = "[too short]"; else es_fprintf (listfp, "v%d, class 0x%02X, algo %d, digest algo %d", buffer[0], buffer[0] == 3 ? buffer[2] : buffer[1], buffer[0] == 3 ? buffer[15] : buffer[2], buffer[0] == 3 ? buffer[16] : buffer[3]); break; case SIGSUBPKT_ATTST_SIGS: { unsigned int hlen; es_fputs ("attst-sigs: ", listfp); hlen = gcry_md_get_algo_dlen (map_md_openpgp_to_gcry (digest_algo)); if (!hlen) p = "[unknown digest algo]"; else if ((length % hlen)) p = "[invalid length]"; else { es_fprintf (listfp, "%u", (unsigned int)length/hlen); while (length) { es_fprintf (listfp, "\n\t%*s", nprinted-1, ""); es_write_hexstring (listfp, buffer, hlen, 0, NULL); buffer += hlen; length -= hlen; } } } break; case SIGSUBPKT_KEY_BLOCK: es_fputs ("key-block: ", listfp); if (length && buffer[0]) p = "[unknown reserved octet]"; else if (length < 50) /* 50 is an arbitrary min. length. */ p = "[invalid subpacket]"; else { /* estream_t fp; */ /* fp = es_fopen ("a.key-block", "wb"); */ /* log_assert (fp); */ /* es_fwrite ( buffer+1, length-1, 1, fp); */ /* es_fclose (fp); */ es_fprintf (listfp, "[%u octets]", (unsigned int)length-1); } break; default: if (type >= 100 && type <= 110) p = "experimental / private subpacket"; else p = "?"; break; } es_fprintf (listfp, "%s)\n", p ? p : ""); } /* * Returns: >= 0 use this offset into buffer * -1 explicitly reject returning this type * -2 subpacket too short */ int parse_one_sig_subpkt (const byte * buffer, size_t n, int type) { switch (type) { case SIGSUBPKT_REV_KEY: if (n < 22) break; return 0; case SIGSUBPKT_SIG_CREATED: case SIGSUBPKT_SIG_EXPIRE: case SIGSUBPKT_KEY_EXPIRE: if (n < 4) break; return 0; case SIGSUBPKT_KEY_FLAGS: case SIGSUBPKT_KS_FLAGS: case SIGSUBPKT_PREF_SYM: case SIGSUBPKT_PREF_AEAD: case SIGSUBPKT_PREF_HASH: case SIGSUBPKT_PREF_COMPR: case SIGSUBPKT_POLICY: case SIGSUBPKT_PREF_KS: case SIGSUBPKT_FEATURES: case SIGSUBPKT_REGEXP: case SIGSUBPKT_ATTST_SIGS: return 0; case SIGSUBPKT_SIGNATURE: case SIGSUBPKT_EXPORTABLE: case SIGSUBPKT_REVOCABLE: case SIGSUBPKT_REVOC_REASON: if (!n) break; return 0; case SIGSUBPKT_ISSUER: /* issuer key ID */ if (n < 8) break; return 0; case SIGSUBPKT_ISSUER_FPR: /* issuer key fingerprint */ if (n < 21) break; return 0; case SIGSUBPKT_NOTATION: /* minimum length needed, and the subpacket must be well-formed where the name length and value length all fit inside the packet. */ if (n < 8 || 8 + ((buffer[4] << 8) | buffer[5]) + ((buffer[6] << 8) | buffer[7]) != n) break; return 0; case SIGSUBPKT_PRIMARY_UID: if (n != 1) break; return 0; case SIGSUBPKT_TRUST: if (n != 2) break; return 0; case SIGSUBPKT_KEY_BLOCK: if (n && buffer[0]) return -1; /* Unknown version - ignore. */ if (n < 50) break; /* Definitely too short to carry a key block. */ return 0; default: return 0; } return -2; } /* Return true if we understand the critical notation. */ static int can_handle_critical_notation (const byte *name, size_t len) { strlist_t sl; register_known_notation (NULL); /* Make sure it is initialized. */ for (sl = known_notations_list; sl; sl = sl->next) if (sl->flags == len && !memcmp (sl->d, name, len)) return 1; /* Known */ if (opt.verbose && !glo_ctrl.silence_parse_warnings) { log_info(_("Unknown critical signature notation: ") ); print_utf8_buffer (log_get_stream(), name, len); log_printf ("\n"); } return 0; /* Unknown. */ } static int can_handle_critical (const byte * buffer, size_t n, int type) { switch (type) { case SIGSUBPKT_NOTATION: if (n >= 8) { size_t notation_len = ((buffer[4] << 8) | buffer[5]); if (n - 8 >= notation_len) return can_handle_critical_notation (buffer + 8, notation_len); } return 0; case SIGSUBPKT_SIGNATURE: case SIGSUBPKT_SIG_CREATED: case SIGSUBPKT_SIG_EXPIRE: case SIGSUBPKT_KEY_EXPIRE: case SIGSUBPKT_EXPORTABLE: case SIGSUBPKT_REVOCABLE: case SIGSUBPKT_REV_KEY: case SIGSUBPKT_ISSUER: /* issuer key ID */ case SIGSUBPKT_ISSUER_FPR: /* issuer fingerprint */ case SIGSUBPKT_PREF_SYM: case SIGSUBPKT_PREF_AEAD: case SIGSUBPKT_PREF_HASH: case SIGSUBPKT_PREF_COMPR: case SIGSUBPKT_KEY_FLAGS: case SIGSUBPKT_PRIMARY_UID: case SIGSUBPKT_FEATURES: case SIGSUBPKT_TRUST: case SIGSUBPKT_REGEXP: case SIGSUBPKT_ATTST_SIGS: /* Is it enough to show the policy or keyserver? */ case SIGSUBPKT_POLICY: case SIGSUBPKT_PREF_KS: case SIGSUBPKT_REVOC_REASON: /* At least we know about it. */ return 1; case SIGSUBPKT_KEY_BLOCK: if (n && !buffer[0]) return 1; else return 0; default: return 0; } } const byte * enum_sig_subpkt (PKT_signature *sig, int want_hashed, sigsubpkttype_t reqtype, size_t *ret_n, int *start, int *critical) { const byte *buffer; int buflen; int type; int critical_dummy; int offset; size_t n; const subpktarea_t *pktbuf = want_hashed? sig->hashed : sig->unhashed; int seq = 0; int reqseq = start ? *start : 0; if (!critical) critical = &critical_dummy; if (!pktbuf || reqseq == -1) { static char dummy[] = "x"; /* Return a value different from NULL to indicate that * there is no critical bit we do not understand. */ return reqtype == SIGSUBPKT_TEST_CRITICAL ? dummy : NULL; } buffer = pktbuf->data; buflen = pktbuf->len; while (buflen) { n = *buffer++; buflen--; if (n == 255) /* 4 byte length header. */ { if (buflen < 4) goto too_short; n = buf32_to_size_t (buffer); buffer += 4; buflen -= 4; } else if (n >= 192) /* 4 byte special encoded length header. */ { if (buflen < 2) goto too_short; n = ((n - 192) << 8) + *buffer + 192; buffer++; buflen--; } if (buflen < n) goto too_short; if (!buflen) goto no_type_byte; type = *buffer; if (type & 0x80) { type &= 0x7f; *critical = 1; } else *critical = 0; if (!(++seq > reqseq)) ; else if (reqtype == SIGSUBPKT_TEST_CRITICAL) { if (*critical) { if (n - 1 > buflen + 1) goto too_short; if (!can_handle_critical (buffer + 1, n - 1, type)) { if (opt.verbose && !glo_ctrl.silence_parse_warnings) log_info (_("subpacket of type %d has " "critical bit set\n"), type); if (start) *start = seq; return NULL; /* This is an error. */ } } } else if (reqtype < 0) /* List packets. */ dump_sig_subpkt (reqtype == SIGSUBPKT_LIST_HASHED, type, *critical, buffer, buflen, n, sig->digest_algo); else if (type == reqtype) /* Found. */ { buffer++; n--; if (n > buflen) goto too_short; if (ret_n) *ret_n = n; offset = parse_one_sig_subpkt (buffer, n, type); switch (offset) { case -2: log_error ("subpacket of type %d too short\n", type); return NULL; case -1: return NULL; default: break; } if (start) *start = seq; return buffer + offset; } buffer += n; buflen -= n; } if (reqtype == SIGSUBPKT_TEST_CRITICAL) /* Returning NULL means we found a subpacket with the critical bit set that we don't grok. We've iterated over all the subpackets and haven't found such a packet so we need to return a non-NULL value. */ return buffer; /* Critical bit we don't understand. */ if (start) *start = -1; return NULL; /* End of packets; not found. */ too_short: if (opt.verbose && !glo_ctrl.silence_parse_warnings) log_printhex (pktbuf->data, pktbuf->len > 16? 16 : pktbuf->len, "buffer shorter than subpacket (%zu/%d/%zu); dump:", pktbuf->len, buflen, n); if (start) *start = -1; return NULL; no_type_byte: if (opt.verbose && !glo_ctrl.silence_parse_warnings) log_info ("type octet missing in subpacket\n"); if (start) *start = -1; return NULL; } const byte * parse_sig_subpkt (PKT_signature *sig, int want_hashed, sigsubpkttype_t reqtype, size_t *ret_n) { return enum_sig_subpkt (sig, want_hashed, reqtype, ret_n, NULL, NULL); } const byte * parse_sig_subpkt2 (PKT_signature *sig, sigsubpkttype_t reqtype) { const byte *p; p = parse_sig_subpkt (sig, 1, reqtype, NULL); if (!p) p = parse_sig_subpkt (sig, 0, reqtype, NULL); return p; } /* Find all revocation keys. Look in hashed area only. */ void parse_revkeys (PKT_signature * sig) { const byte *revkey; int seq = 0; size_t len; if (sig->sig_class != 0x1F) return; while ((revkey = enum_sig_subpkt (sig, 1, SIGSUBPKT_REV_KEY, &len, &seq, NULL))) { /* Consider only valid packets. They must have a length of * either 2+20 or 2+32 octets and bit 7 of the class octet must * be set. */ if ((len == 22 || len == 34) && (revkey[0] & 0x80)) { sig->revkey = xrealloc (sig->revkey, sizeof (struct revocation_key) * (sig->numrevkeys + 1)); sig->revkey[sig->numrevkeys].class = revkey[0]; sig->revkey[sig->numrevkeys].algid = revkey[1]; len -= 2; sig->revkey[sig->numrevkeys].fprlen = len; memcpy (sig->revkey[sig->numrevkeys].fpr, revkey+2, len); memset (sig->revkey[sig->numrevkeys].fpr+len, 0, sizeof (sig->revkey[sig->numrevkeys].fpr) - len); sig->numrevkeys++; } } } int parse_signature (IOBUF inp, int pkttype, unsigned long pktlen, PKT_signature * sig) { int md5_len = 0; unsigned n; int is_v4or5 = 0; int rc = 0; int i, ndata; if (pktlen < 16) { log_error ("packet(%d) too short\n", pkttype); if (list_mode) es_fputs (":signature packet: [too short]\n", listfp); goto leave; } sig->version = iobuf_get_noeof (inp); pktlen--; if (sig->version == 4 || sig->version == 5) is_v4or5 = 1; else if (sig->version != 2 && sig->version != 3) { log_error ("packet(%d) with unknown version %d\n", pkttype, sig->version); if (list_mode) es_fputs (":signature packet: [unknown version]\n", listfp); rc = gpg_error (GPG_ERR_INV_PACKET); goto leave; } if (!is_v4or5) { if (pktlen == 0) goto underflow; md5_len = iobuf_get_noeof (inp); pktlen--; } if (pktlen == 0) goto underflow; sig->sig_class = iobuf_get_noeof (inp); pktlen--; if (!is_v4or5) { if (pktlen < 12) goto underflow; sig->timestamp = read_32 (inp); pktlen -= 4; sig->keyid[0] = read_32 (inp); pktlen -= 4; sig->keyid[1] = read_32 (inp); pktlen -= 4; } if (pktlen < 2) goto underflow; sig->pubkey_algo = iobuf_get_noeof (inp); pktlen--; sig->digest_algo = iobuf_get_noeof (inp); pktlen--; sig->flags.exportable = 1; sig->flags.revocable = 1; if (is_v4or5) /* Read subpackets. */ { if (pktlen < 2) goto underflow; n = read_16 (inp); pktlen -= 2; /* Length of hashed data. */ if (pktlen < n) goto underflow; if (n > 10000) { log_error ("signature packet: hashed data too long\n"); if (list_mode) es_fputs (":signature packet: [hashed data too long]\n", listfp); rc = GPG_ERR_INV_PACKET; goto leave; } if (n) { sig->hashed = xmalloc (sizeof (*sig->hashed) + n - 1); sig->hashed->size = n; sig->hashed->len = n; if (iobuf_read (inp, sig->hashed->data, n) != n) { log_error ("premature eof while reading " "hashed signature data\n"); if (list_mode) es_fputs (":signature packet: [premature eof]\n", listfp); rc = -1; goto leave; } pktlen -= n; } if (pktlen < 2) goto underflow; n = read_16 (inp); pktlen -= 2; /* Length of unhashed data. */ if (pktlen < n) goto underflow; if (n > 10000) { log_error ("signature packet: unhashed data too long\n"); if (list_mode) es_fputs (":signature packet: [unhashed data too long]\n", listfp); rc = GPG_ERR_INV_PACKET; goto leave; } if (n) { sig->unhashed = xmalloc (sizeof (*sig->unhashed) + n - 1); sig->unhashed->size = n; sig->unhashed->len = n; if (iobuf_read (inp, sig->unhashed->data, n) != n) { log_error ("premature eof while reading " "unhashed signature data\n"); if (list_mode) es_fputs (":signature packet: [premature eof]\n", listfp); rc = -1; goto leave; } pktlen -= n; } } if (pktlen < 2) goto underflow; sig->digest_start[0] = iobuf_get_noeof (inp); pktlen--; sig->digest_start[1] = iobuf_get_noeof (inp); pktlen--; if (is_v4or5 && sig->pubkey_algo) /* Extract required information. */ { const byte *p; size_t len; /* Set sig->flags.unknown_critical if there is a critical bit * set for packets which we do not understand. */ if (!parse_sig_subpkt (sig, 1, SIGSUBPKT_TEST_CRITICAL, NULL) || !parse_sig_subpkt (sig, 0, SIGSUBPKT_TEST_CRITICAL, NULL)) sig->flags.unknown_critical = 1; p = parse_sig_subpkt (sig, 1, SIGSUBPKT_SIG_CREATED, NULL); if (p) sig->timestamp = buf32_to_u32 (p); else if (!(sig->pubkey_algo >= 100 && sig->pubkey_algo <= 110) && opt.verbose && !glo_ctrl.silence_parse_warnings) log_info ("signature packet without timestamp\n"); /* Set the key id. We first try the issuer fingerprint and if * it is a v4 signature the fallback to the issuer. Note that * only the issuer packet is also searched in the unhashed area. */ p = parse_sig_subpkt (sig, 1, SIGSUBPKT_ISSUER_FPR, &len); if (p && len == 21 && p[0] == 4) { sig->keyid[0] = buf32_to_u32 (p + 1 + 12); sig->keyid[1] = buf32_to_u32 (p + 1 + 16); } else if (p && len == 33 && p[0] == 5) { sig->keyid[0] = buf32_to_u32 (p + 1 ); sig->keyid[1] = buf32_to_u32 (p + 1 + 4); } else if ((p = parse_sig_subpkt2 (sig, SIGSUBPKT_ISSUER))) { sig->keyid[0] = buf32_to_u32 (p); sig->keyid[1] = buf32_to_u32 (p + 4); } else if (!(sig->pubkey_algo >= 100 && sig->pubkey_algo <= 110) && opt.verbose && !glo_ctrl.silence_parse_warnings) log_info ("signature packet without keyid\n"); p = parse_sig_subpkt (sig, 1, SIGSUBPKT_SIG_EXPIRE, NULL); if (p && buf32_to_u32 (p)) sig->expiredate = sig->timestamp + buf32_to_u32 (p); if (sig->expiredate && sig->expiredate <= make_timestamp ()) sig->flags.expired = 1; p = parse_sig_subpkt (sig, 1, SIGSUBPKT_POLICY, NULL); if (p) sig->flags.policy_url = 1; p = parse_sig_subpkt (sig, 1, SIGSUBPKT_PREF_KS, NULL); if (p) sig->flags.pref_ks = 1; p = parse_sig_subpkt (sig, 1, SIGSUBPKT_SIGNERS_UID, &len); if (p && len) { char *mbox; sig->signers_uid = try_make_printable_string (p, len, 0); if (!sig->signers_uid) { rc = gpg_error_from_syserror (); goto leave; } mbox = mailbox_from_userid (sig->signers_uid, 0); if (mbox) { xfree (sig->signers_uid); sig->signers_uid = mbox; } } p = parse_sig_subpkt (sig, 1, SIGSUBPKT_KEY_BLOCK, NULL); if (p) sig->flags.key_block = 1; p = parse_sig_subpkt (sig, 1, SIGSUBPKT_NOTATION, NULL); if (p) sig->flags.notation = 1; p = parse_sig_subpkt (sig, 1, SIGSUBPKT_REVOCABLE, NULL); if (p && *p == 0) sig->flags.revocable = 0; p = parse_sig_subpkt (sig, 1, SIGSUBPKT_TRUST, &len); if (p && len == 2) { sig->trust_depth = p[0]; sig->trust_value = p[1]; /* Only look for a regexp if there is also a trust subpacket. */ sig->trust_regexp = parse_sig_subpkt (sig, 1, SIGSUBPKT_REGEXP, &len); /* If the regular expression is of 0 length, there is no regular expression. */ if (len == 0) sig->trust_regexp = NULL; } /* We accept the exportable subpacket from either the hashed or unhashed areas as older versions of gpg put it in the unhashed area. In theory, anyway, we should never see this packet off of a local keyring. */ p = parse_sig_subpkt2 (sig, SIGSUBPKT_EXPORTABLE); if (p && *p == 0) sig->flags.exportable = 0; /* Find all revocation keys. */ if (sig->sig_class == 0x1F) parse_revkeys (sig); } if (list_mode) { es_fprintf (listfp, ":signature packet: algo %d, keyid %08lX%08lX\n" "\tversion %d, created %lu, md5len %d, sigclass 0x%02x\n" "\tdigest algo %d, begin of digest %02x %02x\n", sig->pubkey_algo, (ulong) sig->keyid[0], (ulong) sig->keyid[1], sig->version, (ulong) sig->timestamp, md5_len, sig->sig_class, sig->digest_algo, sig->digest_start[0], sig->digest_start[1]); if (is_v4or5) { parse_sig_subpkt (sig, 1, SIGSUBPKT_LIST_HASHED, NULL); parse_sig_subpkt (sig, 0, SIGSUBPKT_LIST_UNHASHED, NULL); } } ndata = pubkey_get_nsig (sig->pubkey_algo); if (!ndata) { if (list_mode) es_fprintf (listfp, "\tunknown algorithm %d\n", sig->pubkey_algo); unknown_pubkey_warning (sig->pubkey_algo); /* We store the plain material in data[0], so that we are able * to write it back with build_packet(). */ if (pktlen > (5 * MAX_EXTERN_MPI_BITS / 8)) { /* We include a limit to avoid too trivial DoS attacks by having gpg allocate too much memory. */ log_error ("signature packet: too much data\n"); rc = GPG_ERR_INV_PACKET; } else { sig->data[0] = gcry_mpi_set_opaque (NULL, read_rest (inp, pktlen), pktlen * 8); pktlen = 0; } } else { for (i = 0; i < ndata; i++) { n = pktlen; if (sig->pubkey_algo == PUBKEY_ALGO_EDDSA) sig->data[i] = sos_read (inp, &n, 0); else sig->data[i] = mpi_read (inp, &n, 0); pktlen -= n; if (list_mode) { es_fprintf (listfp, "\tdata: "); mpi_print (listfp, sig->data[i], mpi_print_mode); es_putc ('\n', listfp); } if (!sig->data[i]) rc = GPG_ERR_INV_PACKET; } } leave: iobuf_skip_rest (inp, pktlen, 0); return rc; underflow: log_error ("packet(%d) too short\n", pkttype); if (list_mode) es_fputs (":signature packet: [too short]\n", listfp); iobuf_skip_rest (inp, pktlen, 0); return GPG_ERR_INV_PACKET; } static int parse_onepass_sig (IOBUF inp, int pkttype, unsigned long pktlen, PKT_onepass_sig * ops) { int version; int rc = 0; if (pktlen < 13) { log_error ("packet(%d) too short\n", pkttype); if (list_mode) es_fputs (":onepass_sig packet: [too short]\n", listfp); rc = gpg_error (GPG_ERR_INV_PACKET); goto leave; } version = iobuf_get_noeof (inp); pktlen--; if (version != 3) { log_error ("onepass_sig with unknown version %d\n", version); if (list_mode) es_fputs (":onepass_sig packet: [unknown version]\n", listfp); rc = gpg_error (GPG_ERR_INV_PACKET); goto leave; } ops->sig_class = iobuf_get_noeof (inp); pktlen--; ops->digest_algo = iobuf_get_noeof (inp); pktlen--; ops->pubkey_algo = iobuf_get_noeof (inp); pktlen--; ops->keyid[0] = read_32 (inp); pktlen -= 4; ops->keyid[1] = read_32 (inp); pktlen -= 4; ops->last = iobuf_get_noeof (inp); pktlen--; if (list_mode) es_fprintf (listfp, ":onepass_sig packet: keyid %08lX%08lX\n" "\tversion %d, sigclass 0x%02x, digest %d, pubkey %d, " "last=%d\n", (ulong) ops->keyid[0], (ulong) ops->keyid[1], version, ops->sig_class, ops->digest_algo, ops->pubkey_algo, ops->last); leave: iobuf_skip_rest (inp, pktlen, 0); return rc; } static int parse_key (IOBUF inp, int pkttype, unsigned long pktlen, byte * hdr, int hdrlen, PACKET * pkt) { gpg_error_t err = 0; int i, version, algorithm; unsigned long timestamp, expiredate, max_expiredate; int npkey, nskey; u32 keyid[2]; PKT_public_key *pk; int is_v5; unsigned int pkbytes; /* For v5 keys: Number of bytes in the public * key material. For v4 keys: 0. */ (void) hdr; pk = pkt->pkt.public_key; /* PK has been cleared. */ version = iobuf_get_noeof (inp); pktlen--; if (pkttype == PKT_PUBLIC_SUBKEY && version == '#') { /* Early versions of G10 used the old PGP comments packets; * luckily all those comments are started by a hash. */ if (list_mode) { es_fprintf (listfp, ":rfc1991 comment packet: \""); for (; pktlen; pktlen--) { int c; c = iobuf_get (inp); if (c == -1) break; /* Ooops: shorter than indicated. */ if (c >= ' ' && c <= 'z') es_putc (c, listfp); else es_fprintf (listfp, "\\x%02x", c); } es_fprintf (listfp, "\"\n"); } iobuf_skip_rest (inp, pktlen, 0); return 0; } else if (version == 4) is_v5 = 0; else if (version == 5) is_v5 = 1; else if (version == 2 || version == 3) { /* Not anymore supported since 2.1. Use an older gpg version * (i.e. gpg 1.4) to parse v3 packets. */ if (opt.verbose > 1 && !glo_ctrl.silence_parse_warnings) log_info ("packet(%d) with obsolete version %d\n", pkttype, version); if (list_mode) es_fprintf (listfp, ":key packet: [obsolete version %d]\n", version); pk->version = version; err = gpg_error (GPG_ERR_LEGACY_KEY); goto leave; } else { log_error ("packet(%d) with unknown version %d\n", pkttype, version); if (list_mode) es_fputs (":key packet: [unknown version]\n", listfp); err = gpg_error (GPG_ERR_INV_PACKET); goto leave; } if (pktlen < (is_v5? 15:11)) { log_error ("packet(%d) too short\n", pkttype); if (list_mode) es_fputs (":key packet: [too short]\n", listfp); err = gpg_error (GPG_ERR_INV_PACKET); goto leave; } else if (pktlen > MAX_KEY_PACKET_LENGTH) { log_error ("packet(%d) too large\n", pkttype); if (list_mode) es_fputs (":key packet: [too large]\n", listfp); err = gpg_error (GPG_ERR_INV_PACKET); goto leave; } timestamp = read_32 (inp); pktlen -= 4; expiredate = 0; /* have to get it from the selfsignature */ max_expiredate = 0; algorithm = iobuf_get_noeof (inp); pktlen--; if (is_v5) { pkbytes = read_32 (inp); pktlen -= 4; } else pkbytes = 0; if (list_mode) { es_fprintf (listfp, ":%s key packet:\n" "\tversion %d, algo %d, created %lu, expires %lu", pkttype == PKT_PUBLIC_KEY ? "public" : pkttype == PKT_SECRET_KEY ? "secret" : pkttype == PKT_PUBLIC_SUBKEY ? "public sub" : pkttype == PKT_SECRET_SUBKEY ? "secret sub" : "??", version, algorithm, timestamp, expiredate); if (is_v5) es_fprintf (listfp, ", pkbytes %u\n", pkbytes); else es_fprintf (listfp, "\n"); } pk->timestamp = timestamp; pk->expiredate = expiredate; pk->max_expiredate = max_expiredate; pk->hdrbytes = hdrlen; pk->version = version; pk->flags.primary = (pkttype == PKT_PUBLIC_KEY || pkttype == PKT_SECRET_KEY); pk->pubkey_algo = algorithm; nskey = pubkey_get_nskey (algorithm); npkey = pubkey_get_npkey (algorithm); if (!npkey) { if (list_mode) es_fprintf (listfp, "\tunknown algorithm %d\n", algorithm); unknown_pubkey_warning (algorithm); } if (!npkey) { /* Unknown algorithm - put data into an opaque MPI. */ pk->pkey[0] = gcry_mpi_set_opaque (NULL, read_rest (inp, pktlen), pktlen * 8); pktlen = 0; goto leave; } else { for (i = 0; i < npkey; i++) { if ( (algorithm == PUBKEY_ALGO_ECDSA && (i == 0)) || (algorithm == PUBKEY_ALGO_EDDSA && (i == 0)) || (algorithm == PUBKEY_ALGO_ECDH && (i == 0 || i == 2))) { /* Read the OID (i==0) or the KDF params (i==2). */ size_t n; err = read_size_body (inp, pktlen, &n, pk->pkey+i); pktlen -= n; } else { unsigned int n = pktlen; - if (algorithm == PUBKEY_ALGO_EDDSA + if (algorithm == PUBKEY_ALGO_ECDSA + || algorithm == PUBKEY_ALGO_EDDSA || algorithm == PUBKEY_ALGO_ECDH) pk->pkey[i] = sos_read (inp, &n, 0); else pk->pkey[i] = mpi_read (inp, &n, 0); pktlen -= n; if (!pk->pkey[i]) err = gpg_error (GPG_ERR_INV_PACKET); } if (err) goto leave; if (list_mode) { es_fprintf (listfp, "\tpkey[%d]: ", i); mpi_print (listfp, pk->pkey[i], mpi_print_mode); if ((algorithm == PUBKEY_ALGO_ECDSA || algorithm == PUBKEY_ALGO_EDDSA || algorithm == PUBKEY_ALGO_ECDH) && i==0) { char *curve = openpgp_oid_to_str (pk->pkey[0]); const char *name = openpgp_oid_to_curve (curve, 0); es_fprintf (listfp, " %s (%s)", name?name:"", curve); xfree (curve); } es_putc ('\n', listfp); } } } if (list_mode) keyid_from_pk (pk, keyid); if (pkttype == PKT_SECRET_KEY || pkttype == PKT_SECRET_SUBKEY) { struct seckey_info *ski; byte temp[16]; size_t snlen = 0; unsigned int skbytes; if (pktlen < 1) { err = gpg_error (GPG_ERR_INV_PACKET); goto leave; } pk->seckey_info = ski = xtrycalloc (1, sizeof *ski); if (!pk->seckey_info) { err = gpg_error_from_syserror (); goto leave; } ski->algo = iobuf_get_noeof (inp); pktlen--; if (is_v5) { unsigned int protcount = 0; /* Read the one octet count of the following key-protection * material. Only required in case of unknown values. */ if (!pktlen) { err = gpg_error (GPG_ERR_INV_PACKET); goto leave; } protcount = iobuf_get_noeof (inp); pktlen--; if (list_mode) es_fprintf (listfp, "\tprotbytes: %u\n", protcount); } if (ski->algo) { ski->is_protected = 1; ski->s2k.count = 0; if (ski->algo == 254 || ski->algo == 255) { if (pktlen < 3) { err = gpg_error (GPG_ERR_INV_PACKET); goto leave; } ski->sha1chk = (ski->algo == 254); ski->algo = iobuf_get_noeof (inp); pktlen--; /* Note that a ski->algo > 110 is illegal, but I'm not * erroring out here as otherwise there would be no way * to delete such a key. */ ski->s2k.mode = iobuf_get_noeof (inp); pktlen--; ski->s2k.hash_algo = iobuf_get_noeof (inp); pktlen--; /* Check for the special GNU extension. */ if (ski->s2k.mode == 101) { for (i = 0; i < 4 && pktlen; i++, pktlen--) temp[i] = iobuf_get_noeof (inp); if (i < 4 || memcmp (temp, "GNU", 3)) { if (list_mode) es_fprintf (listfp, "\tunknown S2K %d\n", ski->s2k.mode); err = gpg_error (GPG_ERR_INV_PACKET); goto leave; } /* Here we know that it is a GNU extension. What * follows is the GNU protection mode: All values * have special meanings and they are mapped to MODE * with a base of 1000. */ ski->s2k.mode = 1000 + temp[3]; } /* Read the salt. */ if (ski->s2k.mode == 3 || ski->s2k.mode == 1) { for (i = 0; i < 8 && pktlen; i++, pktlen--) temp[i] = iobuf_get_noeof (inp); if (i < 8) { err = gpg_error (GPG_ERR_INV_PACKET); goto leave; } memcpy (ski->s2k.salt, temp, 8); } /* Check the mode. */ switch (ski->s2k.mode) { case 0: if (list_mode) es_fprintf (listfp, "\tsimple S2K"); break; case 1: if (list_mode) es_fprintf (listfp, "\tsalted S2K"); break; case 3: if (list_mode) es_fprintf (listfp, "\titer+salt S2K"); break; case 1001: if (list_mode) es_fprintf (listfp, "\tgnu-dummy S2K"); break; case 1002: if (list_mode) es_fprintf (listfp, "\tgnu-divert-to-card S2K"); break; default: if (list_mode) es_fprintf (listfp, "\tunknown %sS2K %d\n", ski->s2k.mode < 1000 ? "" : "GNU ", ski->s2k.mode); err = gpg_error (GPG_ERR_INV_PACKET); goto leave; } /* Print some info. */ if (list_mode) { es_fprintf (listfp, ", algo: %d,%s hash: %d", ski->algo, ski->sha1chk ? " SHA1 protection," : " simple checksum,", ski->s2k.hash_algo); if (ski->s2k.mode == 1 || ski->s2k.mode == 3) { es_fprintf (listfp, ", salt: "); es_write_hexstring (listfp, ski->s2k.salt, 8, 0, NULL); } es_putc ('\n', listfp); } /* Read remaining protection parameters. */ if (ski->s2k.mode == 3) { if (pktlen < 1) { err = gpg_error (GPG_ERR_INV_PACKET); goto leave; } ski->s2k.count = iobuf_get_noeof (inp); pktlen--; if (list_mode) es_fprintf (listfp, "\tprotect count: %lu (%lu)\n", (ulong)S2K_DECODE_COUNT ((ulong)ski->s2k.count), (ulong) ski->s2k.count); } else if (ski->s2k.mode == 1002) { /* Read the serial number. */ if (pktlen < 1) { err = gpg_error (GPG_ERR_INV_PACKET); goto leave; } snlen = iobuf_get (inp); pktlen--; if (pktlen < snlen || snlen == (size_t)(-1)) { err = gpg_error (GPG_ERR_INV_PACKET); goto leave; } } } else /* Old version; no S2K, so we set mode to 0, hash MD5. */ { /* Note that a ski->algo > 110 is illegal, but I'm not erroring on it here as otherwise there would be no way to delete such a key. */ ski->s2k.mode = 0; ski->s2k.hash_algo = DIGEST_ALGO_MD5; if (list_mode) es_fprintf (listfp, "\tprotect algo: %d (hash algo: %d)\n", ski->algo, ski->s2k.hash_algo); } /* It is really ugly that we don't know the size * of the IV here in cases we are not aware of the algorithm. * so a * ski->ivlen = cipher_get_blocksize (ski->algo); * won't work. The only solution I see is to hardwire it. * NOTE: if you change the ivlen above 16, don't forget to * enlarge temp. * FIXME: For v5 keys we can deduce this info! */ ski->ivlen = openpgp_cipher_blocklen (ski->algo); log_assert (ski->ivlen <= sizeof (temp)); if (ski->s2k.mode == 1001) ski->ivlen = 0; else if (ski->s2k.mode == 1002) ski->ivlen = snlen < 16 ? snlen : 16; if (pktlen < ski->ivlen) { err = gpg_error (GPG_ERR_INV_PACKET); goto leave; } for (i = 0; i < ski->ivlen; i++, pktlen--) temp[i] = iobuf_get_noeof (inp); if (list_mode) { es_fprintf (listfp, ski->s2k.mode == 1002 ? "\tserial-number: " : "\tprotect IV: "); for (i = 0; i < ski->ivlen; i++) es_fprintf (listfp, " %02x", temp[i]); es_putc ('\n', listfp); } memcpy (ski->iv, temp, ski->ivlen); } /* Skip count of secret key material. */ if (is_v5) { if (pktlen < 4) { err = gpg_error (GPG_ERR_INV_PACKET); goto leave; } skbytes = read_32 (inp); pktlen -= 4; if (list_mode) es_fprintf (listfp, "\tskbytes: %u\n", skbytes); } /* It does not make sense to read it into secure memory. * If the user is so careless, not to protect his secret key, * we can assume, that he operates an open system :=(. * So we put the key into secure memory when we unprotect it. */ if (ski->s2k.mode == 1001 || ski->s2k.mode == 1002) { /* Better set some dummy stuff here. */ pk->pkey[npkey] = gcry_mpi_set_opaque (NULL, xstrdup ("dummydata"), 10 * 8); pktlen = 0; } else if (ski->is_protected) { if (pktlen < 2) /* At least two bytes for the length. */ { err = gpg_error (GPG_ERR_INV_PACKET); goto leave; } /* Ugly: The length is encrypted too, so we read all stuff * up to the end of the packet into the first SKEY * element. * FIXME: We can do better for v5 keys. */ pk->pkey[npkey] = gcry_mpi_set_opaque (NULL, read_rest (inp, pktlen), pktlen * 8); /* Mark that MPI as protected - we need this information for * importing a key. The OPAQUE flag can't be used because * we also store public EdDSA values in opaque MPIs. */ if (pk->pkey[npkey]) gcry_mpi_set_flag (pk->pkey[npkey], GCRYMPI_FLAG_USER1); pktlen = 0; if (list_mode) es_fprintf (listfp, "\tskey[%d]: [v4 protected]\n", npkey); } else { /* Not encrypted. */ for (i = npkey; i < nskey; i++) { unsigned int n; if (pktlen < 2) /* At least two bytes for the length. */ { err = gpg_error (GPG_ERR_INV_PACKET); goto leave; } n = pktlen; - if (algorithm == PUBKEY_ALGO_EDDSA + if (algorithm == PUBKEY_ALGO_ECDSA + || algorithm == PUBKEY_ALGO_EDDSA || algorithm == PUBKEY_ALGO_ECDH) pk->pkey[i] = sos_read (inp, &n, 0); else pk->pkey[i] = mpi_read (inp, &n, 0); pktlen -= n; if (list_mode) { es_fprintf (listfp, "\tskey[%d]: ", i); mpi_print (listfp, pk->pkey[i], mpi_print_mode); es_putc ('\n', listfp); } if (!pk->pkey[i]) err = gpg_error (GPG_ERR_INV_PACKET); } if (err) goto leave; if (pktlen < 2) { err = gpg_error (GPG_ERR_INV_PACKET); goto leave; } ski->csum = read_16 (inp); pktlen -= 2; if (list_mode) es_fprintf (listfp, "\tchecksum: %04hx\n", ski->csum); } } /* Note that KEYID below has been initialized above in list_mode. */ if (list_mode) es_fprintf (listfp, "\tkeyid: %08lX%08lX\n", (ulong) keyid[0], (ulong) keyid[1]); leave: iobuf_skip_rest (inp, pktlen, 0); return err; } /* Attribute subpackets have the same format as v4 signature subpackets. This is not part of OpenPGP, but is done in several versions of PGP nevertheless. */ int parse_attribute_subpkts (PKT_user_id * uid) { size_t n; int count = 0; struct user_attribute *attribs = NULL; const byte *buffer = uid->attrib_data; int buflen = uid->attrib_len; byte type; xfree (uid->attribs); while (buflen) { n = *buffer++; buflen--; if (n == 255) /* 4 byte length header. */ { if (buflen < 4) goto too_short; n = buf32_to_size_t (buffer); buffer += 4; buflen -= 4; } else if (n >= 192) /* 2 byte special encoded length header. */ { if (buflen < 2) goto too_short; n = ((n - 192) << 8) + *buffer + 192; buffer++; buflen--; } if (buflen < n) goto too_short; if (!n) { /* Too short to encode the subpacket type. */ if (opt.verbose) log_info ("attribute subpacket too short\n"); break; } attribs = xrealloc (attribs, (count + 1) * sizeof (struct user_attribute)); memset (&attribs[count], 0, sizeof (struct user_attribute)); type = *buffer; buffer++; buflen--; n--; attribs[count].type = type; attribs[count].data = buffer; attribs[count].len = n; buffer += n; buflen -= n; count++; } uid->attribs = attribs; uid->numattribs = count; return count; too_short: if (opt.verbose && !glo_ctrl.silence_parse_warnings) log_info ("buffer shorter than attribute subpacket\n"); uid->attribs = attribs; uid->numattribs = count; return count; } static int parse_user_id (IOBUF inp, int pkttype, unsigned long pktlen, PACKET * packet) { byte *p; /* Cap the size of a user ID at 2k: a value absurdly large enough that there is no sane user ID string (which is printable text as of RFC2440bis) that won't fit in it, but yet small enough to avoid allocation problems. A large pktlen may not be allocatable, and a very large pktlen could actually cause our allocation to wrap around in xmalloc to a small number. */ if (pktlen > MAX_UID_PACKET_LENGTH) { log_error ("packet(%d) too large\n", pkttype); if (list_mode) es_fprintf (listfp, ":user ID packet: [too large]\n"); iobuf_skip_rest (inp, pktlen, 0); return GPG_ERR_INV_PACKET; } packet->pkt.user_id = xmalloc_clear (sizeof *packet->pkt.user_id + pktlen); packet->pkt.user_id->len = pktlen; packet->pkt.user_id->ref = 1; p = packet->pkt.user_id->name; for (; pktlen; pktlen--, p++) *p = iobuf_get_noeof (inp); *p = 0; if (list_mode) { int n = packet->pkt.user_id->len; es_fprintf (listfp, ":user ID packet: \""); /* fixme: Hey why don't we replace this with es_write_sanitized?? */ for (p = packet->pkt.user_id->name; n; p++, n--) { if (*p >= ' ' && *p <= 'z') es_putc (*p, listfp); else es_fprintf (listfp, "\\x%02x", *p); } es_fprintf (listfp, "\"\n"); } return 0; } void make_attribute_uidname (PKT_user_id * uid, size_t max_namelen) { log_assert (max_namelen > 70); if (uid->numattribs <= 0) sprintf (uid->name, "[bad attribute packet of size %lu]", uid->attrib_len); else if (uid->numattribs > 1) sprintf (uid->name, "[%d attributes of size %lu]", uid->numattribs, uid->attrib_len); else { /* Only one attribute, so list it as the "user id" */ if (uid->attribs->type == ATTRIB_IMAGE) { u32 len; byte type; if (parse_image_header (uid->attribs, &type, &len)) sprintf (uid->name, "[%.20s image of size %lu]", image_type_to_string (type, 1), (ulong) len); else sprintf (uid->name, "[invalid image]"); } else sprintf (uid->name, "[unknown attribute of size %lu]", (ulong) uid->attribs->len); } uid->len = strlen (uid->name); } static int parse_attribute (IOBUF inp, int pkttype, unsigned long pktlen, PACKET * packet) { byte *p; (void) pkttype; /* We better cap the size of an attribute packet to make DoS not too easy. 16MB should be more then enough for one attribute packet (ie. a photo). */ if (pktlen > MAX_ATTR_PACKET_LENGTH) { log_error ("packet(%d) too large\n", pkttype); if (list_mode) es_fprintf (listfp, ":attribute packet: [too large]\n"); iobuf_skip_rest (inp, pktlen, 0); return GPG_ERR_INV_PACKET; } #define EXTRA_UID_NAME_SPACE 71 packet->pkt.user_id = xmalloc_clear (sizeof *packet->pkt.user_id + EXTRA_UID_NAME_SPACE); packet->pkt.user_id->ref = 1; packet->pkt.user_id->attrib_data = xmalloc (pktlen? pktlen:1); packet->pkt.user_id->attrib_len = pktlen; p = packet->pkt.user_id->attrib_data; for (; pktlen; pktlen--, p++) *p = iobuf_get_noeof (inp); /* Now parse out the individual attribute subpackets. This is somewhat pointless since there is only one currently defined attribute type (jpeg), but it is correct by the spec. */ parse_attribute_subpkts (packet->pkt.user_id); make_attribute_uidname (packet->pkt.user_id, EXTRA_UID_NAME_SPACE); if (list_mode) { es_fprintf (listfp, ":attribute packet: %s\n", packet->pkt.user_id->name); } return 0; } static int parse_comment (IOBUF inp, int pkttype, unsigned long pktlen, PACKET * packet) { byte *p; /* Cap comment packet at a reasonable value to avoid an integer overflow in the malloc below. Comment packets are actually not anymore define my OpenPGP and we even stopped to use our private comment packet. */ if (pktlen > MAX_COMMENT_PACKET_LENGTH) { log_error ("packet(%d) too large\n", pkttype); if (list_mode) es_fprintf (listfp, ":%scomment packet: [too large]\n", pkttype == PKT_OLD_COMMENT ? "OpenPGP draft " : ""); iobuf_skip_rest (inp, pktlen, 0); return GPG_ERR_INV_PACKET; } packet->pkt.comment = xmalloc (sizeof *packet->pkt.comment + pktlen - 1); packet->pkt.comment->len = pktlen; p = packet->pkt.comment->data; for (; pktlen; pktlen--, p++) *p = iobuf_get_noeof (inp); if (list_mode) { int n = packet->pkt.comment->len; es_fprintf (listfp, ":%scomment packet: \"", pkttype == PKT_OLD_COMMENT ? "OpenPGP draft " : ""); for (p = packet->pkt.comment->data; n; p++, n--) { if (*p >= ' ' && *p <= 'z') es_putc (*p, listfp); else es_fprintf (listfp, "\\x%02x", *p); } es_fprintf (listfp, "\"\n"); } return 0; } /* Parse a ring trust packet RFC4880 (5.10). * * This parser is special in that the packet is not stored as a packet * but its content is merged into the previous packet. */ static gpg_error_t parse_ring_trust (parse_packet_ctx_t ctx, unsigned long pktlen) { gpg_error_t err; iobuf_t inp = ctx->inp; PKT_ring_trust rt = {0}; int c; int not_gpg = 0; if (!pktlen) { if (list_mode) es_fprintf (listfp, ":trust packet: empty\n"); err = 0; goto leave; } c = iobuf_get_noeof (inp); pktlen--; rt.trustval = c; if (pktlen) { if (!c) { c = iobuf_get_noeof (inp); /* We require that bit 7 of the sigcache is 0 (easier * eof handling). */ if (!(c & 0x80)) rt.sigcache = c; } else iobuf_get_noeof (inp); /* Dummy read. */ pktlen--; } /* Next is the optional subtype. */ if (pktlen > 3) { char tmp[4]; tmp[0] = iobuf_get_noeof (inp); tmp[1] = iobuf_get_noeof (inp); tmp[2] = iobuf_get_noeof (inp); tmp[3] = iobuf_get_noeof (inp); pktlen -= 4; if (!memcmp (tmp, "gpg", 3)) rt.subtype = tmp[3]; else not_gpg = 1; } /* If it is a key or uid subtype read the remaining data. */ if ((rt.subtype == RING_TRUST_KEY || rt.subtype == RING_TRUST_UID) && pktlen >= 6 ) { int i; unsigned int namelen; rt.keyorg = iobuf_get_noeof (inp); pktlen--; rt.keyupdate = read_32 (inp); pktlen -= 4; namelen = iobuf_get_noeof (inp); pktlen--; if (namelen && pktlen) { rt.url = xtrymalloc (namelen + 1); if (!rt.url) { err = gpg_error_from_syserror (); goto leave; } for (i = 0; pktlen && i < namelen; pktlen--, i++) rt.url[i] = iobuf_get_noeof (inp); rt.url[i] = 0; } } if (list_mode) { if (rt.subtype == RING_TRUST_SIG) es_fprintf (listfp, ":trust packet: sig flag=%02x sigcache=%02x\n", rt.trustval, rt.sigcache); else if (rt.subtype == RING_TRUST_UID || rt.subtype == RING_TRUST_KEY) { unsigned char *p; es_fprintf (listfp, ":trust packet: %s upd=%lu src=%d%s", (rt.subtype == RING_TRUST_UID? "uid" : "key"), (unsigned long)rt.keyupdate, rt.keyorg, (rt.url? " url=":"")); if (rt.url) { for (p = rt.url; *p; p++) { if (*p >= ' ' && *p <= 'z') es_putc (*p, listfp); else es_fprintf (listfp, "\\x%02x", *p); } } es_putc ('\n', listfp); } else if (not_gpg) es_fprintf (listfp, ":trust packet: not created by gpg\n"); else es_fprintf (listfp, ":trust packet: subtype=%02x\n", rt.subtype); } /* Now transfer the data to the respective packet. Do not do this * if SKIP_META is set. */ if (!ctx->last_pkt.pkt.generic || ctx->skip_meta) ; else if (rt.subtype == RING_TRUST_SIG && ctx->last_pkt.pkttype == PKT_SIGNATURE) { PKT_signature *sig = ctx->last_pkt.pkt.signature; if ((rt.sigcache & 1)) { sig->flags.checked = 1; sig->flags.valid = !!(rt.sigcache & 2); } } else if (rt.subtype == RING_TRUST_UID && (ctx->last_pkt.pkttype == PKT_USER_ID || ctx->last_pkt.pkttype == PKT_ATTRIBUTE)) { PKT_user_id *uid = ctx->last_pkt.pkt.user_id; uid->keyorg = rt.keyorg; uid->keyupdate = rt.keyupdate; uid->updateurl = rt.url; rt.url = NULL; } else if (rt.subtype == RING_TRUST_KEY && (ctx->last_pkt.pkttype == PKT_PUBLIC_KEY || ctx->last_pkt.pkttype == PKT_SECRET_KEY)) { PKT_public_key *pk = ctx->last_pkt.pkt.public_key; pk->keyorg = rt.keyorg; pk->keyupdate = rt.keyupdate; pk->updateurl = rt.url; rt.url = NULL; } err = 0; leave: xfree (rt.url); free_packet (NULL, ctx); /* This sets ctx->last_pkt to NULL. */ iobuf_skip_rest (inp, pktlen, 0); return err; } static int parse_plaintext (IOBUF inp, int pkttype, unsigned long pktlen, PACKET * pkt, int new_ctb, int partial) { int rc = 0; int mode, namelen; PKT_plaintext *pt; byte *p; int c, i; if (!partial && pktlen < 6) { log_error ("packet(%d) too short (%lu)\n", pkttype, (ulong) pktlen); if (list_mode) es_fputs (":literal data packet: [too short]\n", listfp); rc = gpg_error (GPG_ERR_INV_PACKET); goto leave; } mode = iobuf_get_noeof (inp); if (pktlen) pktlen--; namelen = iobuf_get_noeof (inp); if (pktlen) pktlen--; /* Note that namelen will never exceed 255 bytes. */ pt = pkt->pkt.plaintext = xmalloc (sizeof *pkt->pkt.plaintext + namelen - 1); pt->new_ctb = new_ctb; pt->mode = mode; pt->namelen = namelen; pt->is_partial = partial; if (pktlen) { for (i = 0; pktlen > 4 && i < namelen; pktlen--, i++) pt->name[i] = iobuf_get_noeof (inp); } else { for (i = 0; i < namelen; i++) if ((c = iobuf_get (inp)) == -1) break; else pt->name[i] = c; } /* Fill up NAME so that a check with valgrind won't complain about * reading from uninitialized memory. This case may be triggred by * corrupted packets. */ for (; i < namelen; i++) pt->name[i] = 0; pt->timestamp = read_32 (inp); if (pktlen) pktlen -= 4; pt->len = pktlen; pt->buf = inp; if (list_mode) { es_fprintf (listfp, ":literal data packet:\n" "\tmode %c (%X), created %lu, name=\"", mode >= ' ' && mode < 'z' ? mode : '?', mode, (ulong) pt->timestamp); for (p = pt->name, i = 0; i < namelen; p++, i++) { if (*p >= ' ' && *p <= 'z') es_putc (*p, listfp); else es_fprintf (listfp, "\\x%02x", *p); } es_fprintf (listfp, "\",\n\traw data: "); if (partial) es_fprintf (listfp, "unknown length\n"); else es_fprintf (listfp, "%lu bytes\n", (ulong) pt->len); } leave: return rc; } static int parse_compressed (IOBUF inp, int pkttype, unsigned long pktlen, PACKET * pkt, int new_ctb) { PKT_compressed *zd; /* PKTLEN is here 0, but data follows (this should be the last object in a file or the compress algorithm should know the length). */ (void) pkttype; (void) pktlen; zd = pkt->pkt.compressed = xmalloc (sizeof *pkt->pkt.compressed); zd->algorithm = iobuf_get_noeof (inp); zd->len = 0; /* not used */ zd->new_ctb = new_ctb; zd->buf = inp; if (list_mode) es_fprintf (listfp, ":compressed packet: algo=%d\n", zd->algorithm); return 0; } static int parse_encrypted (IOBUF inp, int pkttype, unsigned long pktlen, PACKET * pkt, int new_ctb, int partial) { int rc = 0; PKT_encrypted *ed; unsigned long orig_pktlen = pktlen; ed = pkt->pkt.encrypted = xmalloc (sizeof *pkt->pkt.encrypted); /* ed->len is set below. */ ed->extralen = 0; /* Unknown here; only used in build_packet. */ ed->buf = NULL; ed->new_ctb = new_ctb; ed->is_partial = partial; ed->aead_algo = 0; ed->cipher_algo = 0; /* Only used with AEAD. */ ed->chunkbyte = 0; /* Only used with AEAD. */ if (pkttype == PKT_ENCRYPTED_MDC) { /* Fixme: add some pktlen sanity checks. */ int version; version = iobuf_get_noeof (inp); if (orig_pktlen) pktlen--; if (version != 1) { log_error ("encrypted_mdc packet with unknown version %d\n", version); if (list_mode) es_fputs (":encrypted data packet: [unknown version]\n", listfp); /*skip_rest(inp, pktlen); should we really do this? */ rc = gpg_error (GPG_ERR_INV_PACKET); goto leave; } ed->mdc_method = DIGEST_ALGO_SHA1; } else ed->mdc_method = 0; /* A basic sanity check. We need at least an 8 byte IV plus the 2 detection bytes. Note that we don't known the algorithm and thus we may only check against the minimum blocksize. */ if (orig_pktlen && pktlen < 10) { /* Actually this is blocksize+2. */ log_error ("packet(%d) too short\n", pkttype); if (list_mode) es_fputs (":encrypted data packet: [too short]\n", listfp); rc = GPG_ERR_INV_PACKET; iobuf_skip_rest (inp, pktlen, partial); goto leave; } /* Store the remaining length of the encrypted data (i.e. without the MDC version number but with the IV etc.). This value is required during decryption. */ ed->len = pktlen; if (list_mode) { if (orig_pktlen) es_fprintf (listfp, ":encrypted data packet:\n\tlength: %lu\n", orig_pktlen); else es_fprintf (listfp, ":encrypted data packet:\n\tlength: unknown\n"); if (ed->mdc_method) es_fprintf (listfp, "\tmdc_method: %d\n", ed->mdc_method); } ed->buf = inp; leave: return rc; } /* Note, that this code is not anymore used in real life because the MDC checking is now done right after the decryption in decrypt_data. */ static int parse_mdc (IOBUF inp, int pkttype, unsigned long pktlen, PACKET * pkt, int new_ctb) { int rc = 0; PKT_mdc *mdc; byte *p; (void) pkttype; mdc = pkt->pkt.mdc = xmalloc (sizeof *pkt->pkt.mdc); if (list_mode) es_fprintf (listfp, ":mdc packet: length=%lu\n", pktlen); if (!new_ctb || pktlen != 20) { log_error ("mdc_packet with invalid encoding\n"); rc = gpg_error (GPG_ERR_INV_PACKET); goto leave; } p = mdc->hash; for (; pktlen; pktlen--, p++) *p = iobuf_get_noeof (inp); leave: return rc; } static gpg_error_t parse_encrypted_aead (iobuf_t inp, int pkttype, unsigned long pktlen, PACKET *pkt, int partial) { int rc = 0; PKT_encrypted *ed; unsigned long orig_pktlen = pktlen; int version; ed = pkt->pkt.encrypted = xtrymalloc (sizeof *pkt->pkt.encrypted); if (!ed) return gpg_error_from_syserror (); ed->len = 0; ed->extralen = 0; /* (only used in build_packet.) */ ed->buf = NULL; ed->new_ctb = 1; /* (packet number requires a new CTB anyway.) */ ed->is_partial = partial; ed->mdc_method = 0; /* A basic sanity check. We need one version byte, one algo byte, * one aead algo byte, one chunkbyte, at least 15 byte IV. */ if (orig_pktlen && pktlen < 19) { log_error ("packet(%d) too short\n", pkttype); if (list_mode) es_fputs (":aead encrypted packet: [too short]\n", listfp); rc = gpg_error (GPG_ERR_INV_PACKET); iobuf_skip_rest (inp, pktlen, partial); goto leave; } version = iobuf_get_noeof (inp); if (orig_pktlen) pktlen--; if (version != 1) { log_error ("aead encrypted packet with unknown version %d\n", version); if (list_mode) es_fputs (":aead encrypted packet: [unknown version]\n", listfp); /*skip_rest(inp, pktlen); should we really do this? */ rc = gpg_error (GPG_ERR_INV_PACKET); goto leave; } ed->cipher_algo = iobuf_get_noeof (inp); if (orig_pktlen) pktlen--; ed->aead_algo = iobuf_get_noeof (inp); if (orig_pktlen) pktlen--; ed->chunkbyte = iobuf_get_noeof (inp); if (orig_pktlen) pktlen--; /* Store the remaining length of the encrypted data. We read the * rest during decryption. */ ed->len = pktlen; if (list_mode) { es_fprintf (listfp, ":aead encrypted packet: cipher=%u aead=%u cb=%u\n", ed->cipher_algo, ed->aead_algo, ed->chunkbyte); if (orig_pktlen) es_fprintf (listfp, "\tlength: %lu\n", orig_pktlen); else es_fprintf (listfp, "\tlength: unknown\n"); } ed->buf = inp; leave: return rc; } /* * This packet is internally generated by us (in armor.c) to transfer * some information to the lower layer. To make sure that this packet * is really a GPG faked one and not one coming from outside, we * first check that there is a unique tag in it. * * The format of such a control packet is: * n byte session marker * 1 byte control type CTRLPKT_xxxxx * m byte control data */ static int parse_gpg_control (IOBUF inp, int pkttype, unsigned long pktlen, PACKET * packet, int partial) { byte *p; const byte *sesmark; size_t sesmarklen; int i; (void) pkttype; if (list_mode) es_fprintf (listfp, ":packet 63: length %lu ", pktlen); sesmark = get_session_marker (&sesmarklen); if (pktlen < sesmarklen + 1) /* 1 is for the control bytes */ goto skipit; for (i = 0; i < sesmarklen; i++, pktlen--) { if (sesmark[i] != iobuf_get_noeof (inp)) goto skipit; } if (pktlen > 4096) goto skipit; /* Definitely too large. We skip it to avoid an overflow in the malloc. */ if (list_mode) es_fputs ("- gpg control packet", listfp); packet->pkt.gpg_control = xmalloc (sizeof *packet->pkt.gpg_control + pktlen - 1); packet->pkt.gpg_control->control = iobuf_get_noeof (inp); pktlen--; packet->pkt.gpg_control->datalen = pktlen; p = packet->pkt.gpg_control->data; for (; pktlen; pktlen--, p++) *p = iobuf_get_noeof (inp); return 0; skipit: if (list_mode) { int c; i = 0; es_fprintf (listfp, "- private (rest length %lu)\n", pktlen); if (partial) { while ((c = iobuf_get (inp)) != -1) dump_hex_line (c, &i); } else { for (; pktlen; pktlen--) { dump_hex_line ((c = iobuf_get (inp)), &i); if (c == -1) break; } } es_putc ('\n', listfp); } iobuf_skip_rest (inp, pktlen, 0); return gpg_error (GPG_ERR_INV_PACKET); } /* Create a GPG control packet to be used internally as a placeholder. */ PACKET * create_gpg_control (ctrlpkttype_t type, const byte * data, size_t datalen) { PACKET *packet; byte *p; if (!data) datalen = 0; packet = xmalloc (sizeof *packet); init_packet (packet); packet->pkttype = PKT_GPG_CONTROL; packet->pkt.gpg_control = xmalloc (sizeof *packet->pkt.gpg_control + datalen); packet->pkt.gpg_control->control = type; packet->pkt.gpg_control->datalen = datalen; p = packet->pkt.gpg_control->data; for (; datalen; datalen--, p++) *p = *data++; return packet; }