diff --git a/scd/apdu.c b/scd/apdu.c index 254c74101..2df113c5e 100644 --- a/scd/apdu.c +++ b/scd/apdu.c @@ -1,3326 +1,3324 @@ /* apdu.c - ISO 7816 APDU functions and low level I/O * Copyright (C) 2003, 2004, 2008, 2009, 2010, * 2011 Free Software Foundation, Inc. * * This file is part of GnuPG. * * GnuPG is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * GnuPG is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ /* NOTE: This module is also used by other software, thus the use of the macro USE_NPTH is mandatory. For GnuPG this macro is guaranteed to be defined true. */ #include #include #include #include #include #include #include #ifdef USE_NPTH # include # include # include #endif /* If requested include the definitions for the remote APDU protocol code. */ #ifdef USE_G10CODE_RAPDU #include "rapdu.h" #endif /*USE_G10CODE_RAPDU*/ -#if defined(GNUPG_SCD_MAIN_HEADER) -# include GNUPG_SCD_MAIN_HEADER -#else /*!GNUPG_SCD_MAIN_HEADER*/ +#if defined(GNUPG_MAJOR_VERSION) # include "scdaemon.h" # include "../common/exechelp.h" -#endif /*!GNUPG_SCD_MAIN_HEADER*/ +#endif /*GNUPG_MAJOR_VERSION*/ #include "../common/host2net.h" #include "iso7816.h" #include "apdu.h" #define CCID_DRIVER_INCLUDE_USB_IDS 1 #include "ccid-driver.h" struct dev_list { struct ccid_dev_table *ccid_table; const char *portstr; int idx; int idx_max; }; #define MAX_READER 4 /* Number of readers we support concurrently. */ #if defined(_WIN32) || defined(__CYGWIN__) #define DLSTDCALL __stdcall #else #define DLSTDCALL #endif #if defined(__APPLE__) || defined(_WIN32) || defined(__CYGWIN__) typedef unsigned int pcsc_dword_t; #else typedef unsigned long pcsc_dword_t; #endif /* A structure to collect information pertaining to one reader slot. */ struct reader_table_s { int used; /* True if slot is used. */ unsigned short port; /* Port number: 0 = unused, 1 - dev/tty */ /* Function pointers initialized to the various backends. */ int (*connect_card)(int); int (*disconnect_card)(int); int (*close_reader)(int); int (*reset_reader)(int); int (*get_status_reader)(int, unsigned int *, int); int (*send_apdu_reader)(int,unsigned char *,size_t, unsigned char *, size_t *, pininfo_t *); int (*check_pinpad)(int, int, pininfo_t *); void (*dump_status_reader)(int); int (*set_progress_cb)(int, gcry_handler_progress_t, void*); int (*set_prompt_cb)(int, void (*) (void *, int), void*); int (*pinpad_verify)(int, int, int, int, int, pininfo_t *); int (*pinpad_modify)(int, int, int, int, int, pininfo_t *); struct { ccid_driver_t handle; } ccid; struct { long context; long card; pcsc_dword_t protocol; pcsc_dword_t verify_ioctl; pcsc_dword_t modify_ioctl; int pinmin; int pinmax; pcsc_dword_t current_state; } pcsc; #ifdef USE_G10CODE_RAPDU struct { rapdu_t handle; } rapdu; #endif /*USE_G10CODE_RAPDU*/ char *rdrname; /* Name of the connected reader or NULL if unknown. */ unsigned int is_t0:1; /* True if we know that we are running T=0. */ unsigned int is_spr532:1; /* True if we know that the reader is a SPR532. */ unsigned int pinpad_varlen_supported:1; /* True if we know that the reader supports variable length pinpad input. */ unsigned int require_get_status:1; unsigned char atr[33]; size_t atrlen; /* A zero length indicates that the ATR has not yet been read; i.e. the card is not ready for use. */ #ifdef USE_NPTH npth_mutex_t lock; #endif }; typedef struct reader_table_s *reader_table_t; /* A global table to keep track of active readers. */ static struct reader_table_s reader_table[MAX_READER]; #ifdef USE_NPTH static npth_mutex_t reader_table_lock; #endif /* PC/SC constants and function pointer. */ #define PCSC_SCOPE_USER 0 #define PCSC_SCOPE_TERMINAL 1 #define PCSC_SCOPE_SYSTEM 2 #define PCSC_SCOPE_GLOBAL 3 #define PCSC_PROTOCOL_T0 1 #define PCSC_PROTOCOL_T1 2 #ifdef HAVE_W32_SYSTEM # define PCSC_PROTOCOL_RAW 0x00010000 /* The active protocol. */ #else # define PCSC_PROTOCOL_RAW 4 #endif #define PCSC_SHARE_EXCLUSIVE 1 #define PCSC_SHARE_SHARED 2 #define PCSC_SHARE_DIRECT 3 #define PCSC_LEAVE_CARD 0 #define PCSC_RESET_CARD 1 #define PCSC_UNPOWER_CARD 2 #define PCSC_EJECT_CARD 3 #ifdef HAVE_W32_SYSTEM # define PCSC_UNKNOWN 0x0000 /* The driver is not aware of the status. */ # define PCSC_ABSENT 0x0001 /* Card is absent. */ # define PCSC_PRESENT 0x0002 /* Card is present. */ # define PCSC_SWALLOWED 0x0003 /* Card is present and electrical connected. */ # define PCSC_POWERED 0x0004 /* Card is powered. */ # define PCSC_NEGOTIABLE 0x0005 /* Card is awaiting PTS. */ # define PCSC_SPECIFIC 0x0006 /* Card is ready for use. */ #else # define PCSC_UNKNOWN 0x0001 # define PCSC_ABSENT 0x0002 /* Card is absent. */ # define PCSC_PRESENT 0x0004 /* Card is present. */ # define PCSC_SWALLOWED 0x0008 /* Card is present and electrical connected. */ # define PCSC_POWERED 0x0010 /* Card is powered. */ # define PCSC_NEGOTIABLE 0x0020 /* Card is awaiting PTS. */ # define PCSC_SPECIFIC 0x0040 /* Card is ready for use. */ #endif #define PCSC_STATE_UNAWARE 0x0000 /* Want status. */ #define PCSC_STATE_IGNORE 0x0001 /* Ignore this reader. */ #define PCSC_STATE_CHANGED 0x0002 /* State has changed. */ #define PCSC_STATE_UNKNOWN 0x0004 /* Reader unknown. */ #define PCSC_STATE_UNAVAILABLE 0x0008 /* Status unavailable. */ #define PCSC_STATE_EMPTY 0x0010 /* Card removed. */ #define PCSC_STATE_PRESENT 0x0020 /* Card inserted. */ #define PCSC_STATE_ATRMATCH 0x0040 /* ATR matches card. */ #define PCSC_STATE_EXCLUSIVE 0x0080 /* Exclusive Mode. */ #define PCSC_STATE_INUSE 0x0100 /* Shared mode. */ #define PCSC_STATE_MUTE 0x0200 /* Unresponsive card. */ #ifdef HAVE_W32_SYSTEM # define PCSC_STATE_UNPOWERED 0x0400 /* Card not powerred up. */ #endif /* Some PC/SC error codes. */ #define PCSC_E_CANCELLED 0x80100002 #define PCSC_E_CANT_DISPOSE 0x8010000E #define PCSC_E_INSUFFICIENT_BUFFER 0x80100008 #define PCSC_E_INVALID_ATR 0x80100015 #define PCSC_E_INVALID_HANDLE 0x80100003 #define PCSC_E_INVALID_PARAMETER 0x80100004 #define PCSC_E_INVALID_TARGET 0x80100005 #define PCSC_E_INVALID_VALUE 0x80100011 #define PCSC_E_NO_MEMORY 0x80100006 #define PCSC_E_UNKNOWN_READER 0x80100009 #define PCSC_E_TIMEOUT 0x8010000A #define PCSC_E_SHARING_VIOLATION 0x8010000B #define PCSC_E_NO_SMARTCARD 0x8010000C #define PCSC_E_UNKNOWN_CARD 0x8010000D #define PCSC_E_PROTO_MISMATCH 0x8010000F #define PCSC_E_NOT_READY 0x80100010 #define PCSC_E_SYSTEM_CANCELLED 0x80100012 #define PCSC_E_NOT_TRANSACTED 0x80100016 #define PCSC_E_READER_UNAVAILABLE 0x80100017 #define PCSC_E_NO_SERVICE 0x8010001D #define PCSC_E_SERVICE_STOPPED 0x8010001E #define PCSC_W_RESET_CARD 0x80100068 #define PCSC_W_REMOVED_CARD 0x80100069 /* Fix pcsc-lite ABI incompatibility. */ #ifndef SCARD_CTL_CODE #ifdef _WIN32 #include #define SCARD_CTL_CODE(code) CTL_CODE(FILE_DEVICE_SMARTCARD, (code), \ METHOD_BUFFERED, FILE_ANY_ACCESS) #else #define SCARD_CTL_CODE(code) (0x42000000 + (code)) #endif #endif #define CM_IOCTL_GET_FEATURE_REQUEST SCARD_CTL_CODE(3400) #define CM_IOCTL_VENDOR_IFD_EXCHANGE SCARD_CTL_CODE(1) #define FEATURE_VERIFY_PIN_DIRECT 0x06 #define FEATURE_MODIFY_PIN_DIRECT 0x07 #define FEATURE_GET_TLV_PROPERTIES 0x12 #define PCSCv2_PART10_PROPERTY_bEntryValidationCondition 2 #define PCSCv2_PART10_PROPERTY_bTimeOut2 3 #define PCSCv2_PART10_PROPERTY_bMinPINSize 6 #define PCSCv2_PART10_PROPERTY_bMaxPINSize 7 #define PCSCv2_PART10_PROPERTY_wIdVendor 11 #define PCSCv2_PART10_PROPERTY_wIdProduct 12 /* The PC/SC error is defined as a long as per specs. Due to left shifts bit 31 will get sign extended. We use this mask to fix it. */ #define PCSC_ERR_MASK(a) ((a) & 0xffffffff) struct pcsc_io_request_s { #if defined(_WIN32) || defined(__CYGWIN__) pcsc_dword_t protocol; pcsc_dword_t pci_len; #else unsigned long protocol; unsigned long pci_len; #endif }; typedef struct pcsc_io_request_s *pcsc_io_request_t; #ifdef __APPLE__ #pragma pack(1) #endif struct pcsc_readerstate_s { const char *reader; void *user_data; pcsc_dword_t current_state; pcsc_dword_t event_state; pcsc_dword_t atrlen; unsigned char atr[33]; }; #ifdef __APPLE__ #pragma pack() #endif typedef struct pcsc_readerstate_s *pcsc_readerstate_t; long (* DLSTDCALL pcsc_establish_context) (pcsc_dword_t scope, const void *reserved1, const void *reserved2, long *r_context); long (* DLSTDCALL pcsc_release_context) (long context); long (* DLSTDCALL pcsc_list_readers) (long context, const char *groups, char *readers, pcsc_dword_t*readerslen); long (* DLSTDCALL pcsc_get_status_change) (long context, pcsc_dword_t timeout, pcsc_readerstate_t readerstates, pcsc_dword_t nreaderstates); long (* DLSTDCALL pcsc_connect) (long context, const char *reader, pcsc_dword_t share_mode, pcsc_dword_t preferred_protocols, long *r_card, pcsc_dword_t *r_active_protocol); long (* DLSTDCALL pcsc_reconnect) (long card, pcsc_dword_t share_mode, pcsc_dword_t preferred_protocols, pcsc_dword_t initialization, pcsc_dword_t *r_active_protocol); long (* DLSTDCALL pcsc_disconnect) (long card, pcsc_dword_t disposition); long (* DLSTDCALL pcsc_status) (long card, char *reader, pcsc_dword_t *readerlen, pcsc_dword_t *r_state, pcsc_dword_t *r_protocol, unsigned char *atr, pcsc_dword_t *atrlen); long (* DLSTDCALL pcsc_begin_transaction) (long card); long (* DLSTDCALL pcsc_end_transaction) (long card, pcsc_dword_t disposition); long (* DLSTDCALL pcsc_transmit) (long card, const pcsc_io_request_t send_pci, const unsigned char *send_buffer, pcsc_dword_t send_len, pcsc_io_request_t recv_pci, unsigned char *recv_buffer, pcsc_dword_t *recv_len); long (* DLSTDCALL pcsc_set_timeout) (long context, pcsc_dword_t timeout); long (* DLSTDCALL pcsc_control) (long card, pcsc_dword_t control_code, const void *send_buffer, pcsc_dword_t send_len, void *recv_buffer, pcsc_dword_t recv_len, pcsc_dword_t *bytes_returned); /* Prototypes. */ static int pcsc_vendor_specific_init (int slot); static int pcsc_get_status (int slot, unsigned int *status, int on_wire); static int reset_pcsc_reader (int slot); static int apdu_get_status_internal (int slot, int hang, unsigned int *status, int on_wire); static int check_pcsc_pinpad (int slot, int command, pininfo_t *pininfo); static int pcsc_pinpad_verify (int slot, int class, int ins, int p0, int p1, pininfo_t *pininfo); static int pcsc_pinpad_modify (int slot, int class, int ins, int p0, int p1, pininfo_t *pininfo); /* Helper */ static int lock_slot (int slot) { #ifdef USE_NPTH int err; err = npth_mutex_lock (&reader_table[slot].lock); if (err) { log_error ("failed to acquire apdu lock: %s\n", strerror (err)); return SW_HOST_LOCKING_FAILED; } #endif /*USE_NPTH*/ return 0; } static int trylock_slot (int slot) { #ifdef USE_NPTH int err; err = npth_mutex_trylock (&reader_table[slot].lock); if (err == EBUSY) return SW_HOST_BUSY; else if (err) { log_error ("failed to acquire apdu lock: %s\n", strerror (err)); return SW_HOST_LOCKING_FAILED; } #endif /*USE_NPTH*/ return 0; } static void unlock_slot (int slot) { #ifdef USE_NPTH int err; err = npth_mutex_unlock (&reader_table[slot].lock); if (err) log_error ("failed to release apdu lock: %s\n", strerror (errno)); #endif /*USE_NPTH*/ } /* Find an unused reader slot for PORTSTR and put it into the reader table. Return -1 on error or the index into the reader table. Acquire slot's lock on successful return. Caller needs to unlock it. */ static int new_reader_slot (void) { int i, reader = -1; for (i=0; i < MAX_READER; i++) if (!reader_table[i].used) { reader = i; reader_table[reader].used = 1; break; } if (reader == -1) { log_error ("new_reader_slot: out of slots\n"); return -1; } if (lock_slot (reader)) { reader_table[reader].used = 0; return -1; } reader_table[reader].connect_card = NULL; reader_table[reader].disconnect_card = NULL; reader_table[reader].close_reader = NULL; reader_table[reader].reset_reader = NULL; reader_table[reader].get_status_reader = NULL; reader_table[reader].send_apdu_reader = NULL; reader_table[reader].check_pinpad = check_pcsc_pinpad; reader_table[reader].dump_status_reader = NULL; reader_table[reader].set_progress_cb = NULL; reader_table[reader].set_prompt_cb = NULL; reader_table[reader].pinpad_verify = pcsc_pinpad_verify; reader_table[reader].pinpad_modify = pcsc_pinpad_modify; reader_table[reader].is_t0 = 1; reader_table[reader].is_spr532 = 0; reader_table[reader].pinpad_varlen_supported = 0; reader_table[reader].require_get_status = 1; reader_table[reader].pcsc.verify_ioctl = 0; reader_table[reader].pcsc.modify_ioctl = 0; reader_table[reader].pcsc.pinmin = -1; reader_table[reader].pcsc.pinmax = -1; reader_table[reader].pcsc.current_state = PCSC_STATE_UNAWARE; return reader; } static void dump_reader_status (int slot) { if (!opt.verbose) return; if (reader_table[slot].dump_status_reader) reader_table[slot].dump_status_reader (slot); if (reader_table[slot].atrlen) { log_info ("slot %d: ATR=", slot); log_printhex (reader_table[slot].atr, reader_table[slot].atrlen, ""); } } static const char * host_sw_string (long err) { switch (err) { case 0: return "okay"; case SW_HOST_OUT_OF_CORE: return "out of core"; case SW_HOST_INV_VALUE: return "invalid value"; case SW_HOST_NO_DRIVER: return "no driver"; case SW_HOST_NOT_SUPPORTED: return "not supported"; case SW_HOST_LOCKING_FAILED: return "locking failed"; case SW_HOST_BUSY: return "busy"; case SW_HOST_NO_CARD: return "no card"; case SW_HOST_CARD_INACTIVE: return "card inactive"; case SW_HOST_CARD_IO_ERROR: return "card I/O error"; case SW_HOST_GENERAL_ERROR: return "general error"; case SW_HOST_NO_READER: return "no reader"; case SW_HOST_ABORTED: return "aborted"; case SW_HOST_NO_PINPAD: return "no pinpad"; case SW_HOST_ALREADY_CONNECTED: return "already connected"; case SW_HOST_CANCELLED: return "cancelled"; default: return "unknown host status error"; } } const char * apdu_strerror (int rc) { switch (rc) { case SW_EOF_REACHED : return "eof reached"; case SW_EEPROM_FAILURE : return "eeprom failure"; case SW_WRONG_LENGTH : return "wrong length"; case SW_CHV_WRONG : return "CHV wrong"; case SW_CHV_BLOCKED : return "CHV blocked"; case SW_REF_DATA_INV : return "referenced data invalidated"; case SW_USE_CONDITIONS : return "use conditions not satisfied"; case SW_BAD_PARAMETER : return "bad parameter"; case SW_NOT_SUPPORTED : return "not supported"; case SW_FILE_NOT_FOUND : return "file not found"; case SW_RECORD_NOT_FOUND:return "record not found"; case SW_REF_NOT_FOUND : return "reference not found"; case SW_NOT_ENOUGH_MEMORY: return "not enough memory space in the file"; case SW_INCONSISTENT_LC: return "Lc inconsistent with TLV structure."; case SW_INCORRECT_P0_P1: return "incorrect parameters P0,P1"; case SW_BAD_LC : return "Lc inconsistent with P0,P1"; case SW_BAD_P0_P1 : return "bad P0,P1"; case SW_INS_NOT_SUP : return "instruction not supported"; case SW_CLA_NOT_SUP : return "class not supported"; case SW_SUCCESS : return "success"; default: if ((rc & ~0x00ff) == SW_MORE_DATA) return "more data available"; if ( (rc & 0x10000) ) return host_sw_string (rc); return "unknown status error"; } } /* PC/SC Interface */ static const char * pcsc_error_string (long err) { const char *s; if (!err) return "okay"; if ((err & 0x80100000) != 0x80100000) return "invalid PC/SC error code"; err &= 0xffff; switch (err) { case 0x0002: s = "cancelled"; break; case 0x000e: s = "can't dispose"; break; case 0x0008: s = "insufficient buffer"; break; case 0x0015: s = "invalid ATR"; break; case 0x0003: s = "invalid handle"; break; case 0x0004: s = "invalid parameter"; break; case 0x0005: s = "invalid target"; break; case 0x0011: s = "invalid value"; break; case 0x0006: s = "no memory"; break; case 0x0013: s = "comm error"; break; case 0x0001: s = "internal error"; break; case 0x0014: s = "unknown error"; break; case 0x0007: s = "waited too long"; break; case 0x0009: s = "unknown reader"; break; case 0x000a: s = "timeout"; break; case 0x000b: s = "sharing violation"; break; case 0x000c: s = "no smartcard"; break; case 0x000d: s = "unknown card"; break; case 0x000f: s = "proto mismatch"; break; case 0x0010: s = "not ready"; break; case 0x0012: s = "system cancelled"; break; case 0x0016: s = "not transacted"; break; case 0x0017: s = "reader unavailable"; break; case 0x0065: s = "unsupported card"; break; case 0x0066: s = "unresponsive card"; break; case 0x0067: s = "unpowered card"; break; case 0x0068: s = "reset card"; break; case 0x0069: s = "removed card"; break; case 0x006a: s = "inserted card"; break; case 0x001f: s = "unsupported feature"; break; case 0x0019: s = "PCI too small"; break; case 0x001a: s = "reader unsupported"; break; case 0x001b: s = "duplicate reader"; break; case 0x001c: s = "card unsupported"; break; case 0x001d: s = "no service"; break; case 0x001e: s = "service stopped"; break; default: s = "unknown PC/SC error code"; break; } return s; } /* Map PC/SC error codes to our special host status words. */ static int pcsc_error_to_sw (long ec) { int rc; switch ( PCSC_ERR_MASK (ec) ) { case 0: rc = 0; break; case PCSC_E_CANCELLED: rc = SW_HOST_CANCELLED; break; case PCSC_E_NO_MEMORY: rc = SW_HOST_OUT_OF_CORE; break; case PCSC_E_TIMEOUT: rc = SW_HOST_CARD_IO_ERROR; break; case PCSC_E_NO_SERVICE: case PCSC_E_SERVICE_STOPPED: case PCSC_E_UNKNOWN_READER: rc = SW_HOST_NO_READER; break; case PCSC_E_SHARING_VIOLATION: rc = SW_HOST_LOCKING_FAILED; break; case PCSC_E_NO_SMARTCARD: rc = SW_HOST_NO_CARD; break; case PCSC_W_REMOVED_CARD: rc = SW_HOST_NO_CARD; break; case PCSC_E_INVALID_TARGET: case PCSC_E_INVALID_VALUE: case PCSC_E_INVALID_HANDLE: case PCSC_E_INVALID_PARAMETER: case PCSC_E_INSUFFICIENT_BUFFER: rc = SW_HOST_INV_VALUE; break; default: rc = SW_HOST_GENERAL_ERROR; break; } return rc; } static void dump_pcsc_reader_status (int slot) { if (reader_table[slot].pcsc.card) { log_info ("reader slot %d: active protocol:", slot); if ((reader_table[slot].pcsc.protocol & PCSC_PROTOCOL_T0)) log_printf (" T0"); else if ((reader_table[slot].pcsc.protocol & PCSC_PROTOCOL_T1)) log_printf (" T1"); else if ((reader_table[slot].pcsc.protocol & PCSC_PROTOCOL_RAW)) log_printf (" raw"); log_printf ("\n"); } else log_info ("reader slot %d: not connected\n", slot); } static int pcsc_get_status (int slot, unsigned int *status, int on_wire) { long err; struct pcsc_readerstate_s rdrstates[1]; (void)on_wire; memset (rdrstates, 0, sizeof *rdrstates); rdrstates[0].reader = reader_table[slot].rdrname; rdrstates[0].current_state = reader_table[slot].pcsc.current_state; err = pcsc_get_status_change (reader_table[slot].pcsc.context, 0, rdrstates, 1); if (err == PCSC_E_TIMEOUT) err = 0; /* Timeout is no error here. */ if (err) { log_error ("pcsc_get_status_change failed: %s (0x%lx)\n", pcsc_error_string (err), err); return pcsc_error_to_sw (err); } if ((rdrstates[0].event_state & PCSC_STATE_CHANGED)) reader_table[slot].pcsc.current_state = (rdrstates[0].event_state & ~PCSC_STATE_CHANGED); if (DBG_CARD_IO) log_debug ("pcsc_get_status_change: %s%s%s%s%s%s%s%s%s%s\n", (rdrstates[0].event_state & PCSC_STATE_IGNORE)? " ignore":"", (rdrstates[0].event_state & PCSC_STATE_CHANGED)? " changed":"", (rdrstates[0].event_state & PCSC_STATE_UNKNOWN)? " unknown":"", (rdrstates[0].event_state & PCSC_STATE_UNAVAILABLE)?" unavail":"", (rdrstates[0].event_state & PCSC_STATE_EMPTY)? " empty":"", (rdrstates[0].event_state & PCSC_STATE_PRESENT)? " present":"", (rdrstates[0].event_state & PCSC_STATE_ATRMATCH)? " atr":"", (rdrstates[0].event_state & PCSC_STATE_EXCLUSIVE)? " excl":"", (rdrstates[0].event_state & PCSC_STATE_INUSE)? " inuse":"", (rdrstates[0].event_state & PCSC_STATE_MUTE)? " mute":"" ); *status = 0; if ( (reader_table[slot].pcsc.current_state & PCSC_STATE_PRESENT) ) { *status |= APDU_CARD_PRESENT; if ( !(reader_table[slot].pcsc.current_state & PCSC_STATE_MUTE) ) *status |= APDU_CARD_ACTIVE; } #ifndef HAVE_W32_SYSTEM /* We indicate a useful card if it is not in use by another application. This is because we only use exclusive access mode. */ if ( (*status & (APDU_CARD_PRESENT|APDU_CARD_ACTIVE)) == (APDU_CARD_PRESENT|APDU_CARD_ACTIVE) && !(reader_table[slot].pcsc.current_state & PCSC_STATE_INUSE) ) *status |= APDU_CARD_USABLE; #else /* Some winscard drivers may set EXCLUSIVE and INUSE at the same time when we are the only user (SCM SCR335) under Windows. */ if ((*status & (APDU_CARD_PRESENT|APDU_CARD_ACTIVE)) == (APDU_CARD_PRESENT|APDU_CARD_ACTIVE)) *status |= APDU_CARD_USABLE; #endif if (!on_wire && (rdrstates[0].event_state & PCSC_STATE_CHANGED)) /* Event like sleep/resume occurs, which requires RESET. */ return SW_HOST_NO_READER; else return 0; } /* Send the APDU of length APDULEN to SLOT and return a maximum of *BUFLEN data in BUFFER, the actual returned size will be stored at BUFLEN. Returns: A status word. */ static int pcsc_send_apdu (int slot, unsigned char *apdu, size_t apdulen, unsigned char *buffer, size_t *buflen, pininfo_t *pininfo) { long err; struct pcsc_io_request_s send_pci; pcsc_dword_t recv_len; (void)pininfo; if (!reader_table[slot].atrlen && (err = reset_pcsc_reader (slot))) return err; if (DBG_CARD_IO) log_printhex (apdu, apdulen, " PCSC_data:"); if ((reader_table[slot].pcsc.protocol & PCSC_PROTOCOL_T1)) send_pci.protocol = PCSC_PROTOCOL_T1; else send_pci.protocol = PCSC_PROTOCOL_T0; send_pci.pci_len = sizeof send_pci; recv_len = *buflen; err = pcsc_transmit (reader_table[slot].pcsc.card, &send_pci, apdu, apdulen, NULL, buffer, &recv_len); *buflen = recv_len; if (err) log_error ("pcsc_transmit failed: %s (0x%lx)\n", pcsc_error_string (err), err); /* Handle fatal errors which require shutdown of reader. */ if (err == PCSC_E_NOT_TRANSACTED || err == PCSC_W_RESET_CARD || err == PCSC_W_REMOVED_CARD) { reader_table[slot].pcsc.current_state = PCSC_STATE_UNAWARE; scd_kick_the_loop (); } return pcsc_error_to_sw (err); } /* Do some control with the value of IOCTL_CODE to the card inserted to SLOT. Input buffer is specified by CNTLBUF of length LEN. Output buffer is specified by BUFFER of length *BUFLEN, and the actual output size will be stored at BUFLEN. Returns: A status word. This routine is used for PIN pad input support. */ static int control_pcsc (int slot, pcsc_dword_t ioctl_code, const unsigned char *cntlbuf, size_t len, unsigned char *buffer, pcsc_dword_t *buflen) { long err; err = pcsc_control (reader_table[slot].pcsc.card, ioctl_code, cntlbuf, len, buffer, buflen? *buflen:0, buflen); if (err) { log_error ("pcsc_control failed: %s (0x%lx)\n", pcsc_error_string (err), err); return pcsc_error_to_sw (err); } return 0; } static int close_pcsc_reader (int slot) { pcsc_release_context (reader_table[slot].pcsc.context); return 0; } /* Connect a PC/SC card. */ static int connect_pcsc_card (int slot) { long err; assert (slot >= 0 && slot < MAX_READER); if (reader_table[slot].pcsc.card) return SW_HOST_ALREADY_CONNECTED; reader_table[slot].atrlen = 0; reader_table[slot].is_t0 = 0; err = pcsc_connect (reader_table[slot].pcsc.context, reader_table[slot].rdrname, PCSC_SHARE_EXCLUSIVE, PCSC_PROTOCOL_T0|PCSC_PROTOCOL_T1, &reader_table[slot].pcsc.card, &reader_table[slot].pcsc.protocol); if (err) { reader_table[slot].pcsc.card = 0; if (err != PCSC_E_NO_SMARTCARD) log_error ("pcsc_connect failed: %s (0x%lx)\n", pcsc_error_string (err), err); } else { char reader[250]; pcsc_dword_t readerlen, atrlen; pcsc_dword_t card_state, card_protocol; pcsc_vendor_specific_init (slot); atrlen = DIM (reader_table[0].atr); readerlen = sizeof reader -1 ; err = pcsc_status (reader_table[slot].pcsc.card, reader, &readerlen, &card_state, &card_protocol, reader_table[slot].atr, &atrlen); if (err) log_error ("pcsc_status failed: %s (0x%lx) %lu\n", pcsc_error_string (err), err, (long unsigned int)readerlen); else { if (atrlen > DIM (reader_table[0].atr)) log_bug ("ATR returned by pcsc_status is too large\n"); reader_table[slot].atrlen = atrlen; reader_table[slot].is_t0 = !!(card_protocol & PCSC_PROTOCOL_T0); } } dump_reader_status (slot); return pcsc_error_to_sw (err); } static int disconnect_pcsc_card (int slot) { long err; assert (slot >= 0 && slot < MAX_READER); if (!reader_table[slot].pcsc.card) return 0; err = pcsc_disconnect (reader_table[slot].pcsc.card, PCSC_LEAVE_CARD); if (err) { log_error ("pcsc_disconnect failed: %s (0x%lx)\n", pcsc_error_string (err), err); return SW_HOST_CARD_IO_ERROR; } reader_table[slot].pcsc.card = 0; return 0; } /* Send an PC/SC reset command and return a status word on error or 0 on success. */ static int reset_pcsc_reader (int slot) { int sw; sw = disconnect_pcsc_card (slot); if (!sw) sw = connect_pcsc_card (slot); return sw; } /* Examine reader specific parameters and initialize. This is mostly for pinpad input. Called at opening the connection to the reader. */ static int pcsc_vendor_specific_init (int slot) { unsigned char buf[256]; pcsc_dword_t len; int sw; int vendor = 0; int product = 0; pcsc_dword_t get_tlv_ioctl = (pcsc_dword_t)-1; unsigned char *p; len = sizeof (buf); sw = control_pcsc (slot, CM_IOCTL_GET_FEATURE_REQUEST, NULL, 0, buf, &len); if (sw) { log_error ("pcsc_vendor_specific_init: GET_FEATURE_REQUEST failed: %d\n", sw); return SW_NOT_SUPPORTED; } else { p = buf; while (p < buf + len) { unsigned char code = *p++; int l = *p++; unsigned int v = 0; if (l == 1) v = p[0]; else if (l == 2) v = buf16_to_uint (p); else if (l == 4) v = buf32_to_uint (p); if (code == FEATURE_VERIFY_PIN_DIRECT) reader_table[slot].pcsc.verify_ioctl = v; else if (code == FEATURE_MODIFY_PIN_DIRECT) reader_table[slot].pcsc.modify_ioctl = v; else if (code == FEATURE_GET_TLV_PROPERTIES) get_tlv_ioctl = v; if (DBG_CARD_IO) log_debug ("feature: code=%02X, len=%d, v=%02X\n", code, l, v); p += l; } } if (get_tlv_ioctl == (pcsc_dword_t)-1) { /* * For system which doesn't support GET_TLV_PROPERTIES, * we put some heuristics here. */ if (reader_table[slot].rdrname) { if (strstr (reader_table[slot].rdrname, "SPRx32")) { reader_table[slot].is_spr532 = 1; reader_table[slot].pinpad_varlen_supported = 1; } else if (strstr (reader_table[slot].rdrname, "ST-2xxx")) { reader_table[slot].pcsc.pinmax = 15; reader_table[slot].pinpad_varlen_supported = 1; } else if (strstr (reader_table[slot].rdrname, "cyberJack") || strstr (reader_table[slot].rdrname, "DIGIPASS") || strstr (reader_table[slot].rdrname, "Gnuk") || strstr (reader_table[slot].rdrname, "KAAN") || strstr (reader_table[slot].rdrname, "Trustica")) reader_table[slot].pinpad_varlen_supported = 1; } return 0; } len = sizeof (buf); sw = control_pcsc (slot, get_tlv_ioctl, NULL, 0, buf, &len); if (sw) { log_error ("pcsc_vendor_specific_init: GET_TLV_IOCTL failed: %d\n", sw); return SW_NOT_SUPPORTED; } p = buf; while (p < buf + len) { unsigned char tag = *p++; int l = *p++; unsigned int v = 0; /* Umm... here is little endian, while the encoding above is big. */ if (l == 1) v = p[0]; else if (l == 2) v = (((unsigned int)p[1] << 8) | p[0]); else if (l == 4) v = (((unsigned int)p[3] << 24) | (p[2] << 16) | (p[1] << 8) | p[0]); if (tag == PCSCv2_PART10_PROPERTY_bMinPINSize) reader_table[slot].pcsc.pinmin = v; else if (tag == PCSCv2_PART10_PROPERTY_bMaxPINSize) reader_table[slot].pcsc.pinmax = v; else if (tag == PCSCv2_PART10_PROPERTY_wIdVendor) vendor = v; else if (tag == PCSCv2_PART10_PROPERTY_wIdProduct) product = v; if (DBG_CARD_IO) log_debug ("TLV properties: tag=%02X, len=%d, v=%08X\n", tag, l, v); p += l; } if (vendor == VENDOR_VEGA && product == VEGA_ALPHA) { /* * Please read the comment of ccid_vendor_specific_init in * ccid-driver.c. */ const unsigned char cmd[] = { '\xb5', '\x01', '\x00', '\x03', '\x00' }; sw = control_pcsc (slot, CM_IOCTL_VENDOR_IFD_EXCHANGE, cmd, sizeof (cmd), NULL, 0); if (sw) return SW_NOT_SUPPORTED; } else if (vendor == VENDOR_SCM && product == SCM_SPR532) /* SCM SPR532 */ { reader_table[slot].is_spr532 = 1; reader_table[slot].pinpad_varlen_supported = 1; } else if (vendor == 0x046a) { /* Cherry ST-2xxx (product == 0x003e) supports TPDU level * exchange. Other products which only support short APDU level * exchange only work with shorter keys like RSA 1024. */ reader_table[slot].pcsc.pinmax = 15; reader_table[slot].pinpad_varlen_supported = 1; } else if (vendor == 0x0c4b /* Tested with Reiner cyberJack GO */ || vendor == 0x1a44 /* Tested with Vasco DIGIPASS 920 */ || vendor == 0x234b /* Tested with FSIJ Gnuk Token */ || vendor == 0x0d46 /* Tested with KAAN Advanced??? */ || (vendor == 0x1fc9 && product == 0x81e6) /* Tested with Trustica Cryptoucan */) reader_table[slot].pinpad_varlen_supported = 1; return 0; } /* Open the PC/SC reader without using the wrapper. Returns -1 on error or a slot number for the reader. */ static int open_pcsc_reader (const char *portstr) { long err; int slot; char *list = NULL; char *rdrname = NULL; pcsc_dword_t nreader; char *p; slot = new_reader_slot (); if (slot == -1) return -1; /* Fixme: Allocating a context for each slot is not required. One global context should be sufficient. */ err = pcsc_establish_context (PCSC_SCOPE_SYSTEM, NULL, NULL, &reader_table[slot].pcsc.context); if (err) { log_error ("pcsc_establish_context failed: %s (0x%lx)\n", pcsc_error_string (err), err); reader_table[slot].used = 0; unlock_slot (slot); return -1; } err = pcsc_list_readers (reader_table[slot].pcsc.context, NULL, NULL, &nreader); if (!err) { list = xtrymalloc (nreader+1); /* Better add 1 for safety reasons. */ if (!list) { log_error ("error allocating memory for reader list\n"); pcsc_release_context (reader_table[slot].pcsc.context); reader_table[slot].used = 0; unlock_slot (slot); return -1 /*SW_HOST_OUT_OF_CORE*/; } err = pcsc_list_readers (reader_table[slot].pcsc.context, NULL, list, &nreader); } if (err) { log_error ("pcsc_list_readers failed: %s (0x%lx)\n", pcsc_error_string (err), err); pcsc_release_context (reader_table[slot].pcsc.context); reader_table[slot].used = 0; xfree (list); unlock_slot (slot); return -1; } p = list; while (nreader) { if (!*p && !p[1]) break; log_info ("detected reader '%s'\n", p); if (nreader < (strlen (p)+1)) { log_error ("invalid response from pcsc_list_readers\n"); break; } if (!rdrname && portstr && !strncmp (p, portstr, strlen (portstr))) rdrname = p; nreader -= strlen (p)+1; p += strlen (p) + 1; } if (!rdrname) rdrname = list; reader_table[slot].rdrname = xtrystrdup (rdrname); if (!reader_table[slot].rdrname) { log_error ("error allocating memory for reader name\n"); pcsc_release_context (reader_table[slot].pcsc.context); reader_table[slot].used = 0; unlock_slot (slot); return -1; } xfree (list); list = NULL; reader_table[slot].pcsc.card = 0; reader_table[slot].atrlen = 0; reader_table[slot].connect_card = connect_pcsc_card; reader_table[slot].disconnect_card = disconnect_pcsc_card; reader_table[slot].close_reader = close_pcsc_reader; reader_table[slot].reset_reader = reset_pcsc_reader; reader_table[slot].get_status_reader = pcsc_get_status; reader_table[slot].send_apdu_reader = pcsc_send_apdu; reader_table[slot].dump_status_reader = dump_pcsc_reader_status; dump_reader_status (slot); unlock_slot (slot); return slot; } /* Check whether the reader supports the ISO command code COMMAND on the pinpad. Return 0 on success. */ static int check_pcsc_pinpad (int slot, int command, pininfo_t *pininfo) { int r; if (reader_table[slot].pcsc.pinmin >= 0) pininfo->minlen = reader_table[slot].pcsc.pinmin; if (reader_table[slot].pcsc.pinmax >= 0) pininfo->maxlen = reader_table[slot].pcsc.pinmax; if (!pininfo->minlen) pininfo->minlen = 1; if (!pininfo->maxlen) pininfo->maxlen = 15; if ((command == ISO7816_VERIFY && reader_table[slot].pcsc.verify_ioctl != 0) || (command == ISO7816_CHANGE_REFERENCE_DATA && reader_table[slot].pcsc.modify_ioctl != 0)) r = 0; /* Success */ else r = SW_NOT_SUPPORTED; if (DBG_CARD_IO) log_debug ("check_pcsc_pinpad: command=%02X, r=%d\n", (unsigned int)command, r); if (reader_table[slot].pinpad_varlen_supported) pininfo->fixedlen = 0; return r; } #define PIN_VERIFY_STRUCTURE_SIZE 24 static int pcsc_pinpad_verify (int slot, int class, int ins, int p0, int p1, pininfo_t *pininfo) { int sw; unsigned char *pin_verify; int len = PIN_VERIFY_STRUCTURE_SIZE + pininfo->fixedlen; /* * The result buffer is only expected to have two-byte result on * return. However, some implementation uses this buffer for lower * layer too and it assumes that there is enough space for lower * layer communication. Such an implementation fails for TPDU * readers with "insufficient buffer", as it needs header and * trailer. Six is the number for header + result + trailer (TPDU). */ unsigned char result[6]; pcsc_dword_t resultlen = 6; int no_lc; if (!reader_table[slot].atrlen && (sw = reset_pcsc_reader (slot))) return sw; if (pininfo->fixedlen < 0 || pininfo->fixedlen >= 16) return SW_NOT_SUPPORTED; pin_verify = xtrymalloc (len); if (!pin_verify) return SW_HOST_OUT_OF_CORE; no_lc = (!pininfo->fixedlen && reader_table[slot].is_spr532); pin_verify[0] = 0x00; /* bTimeOut */ pin_verify[1] = 0x00; /* bTimeOut2 */ pin_verify[2] = 0x82; /* bmFormatString: Byte, pos=0, left, ASCII. */ pin_verify[3] = pininfo->fixedlen; /* bmPINBlockString */ pin_verify[4] = 0x00; /* bmPINLengthFormat */ pin_verify[5] = pininfo->maxlen; /* wPINMaxExtraDigit */ pin_verify[6] = pininfo->minlen; /* wPINMaxExtraDigit */ pin_verify[7] = 0x02; /* bEntryValidationCondition: Validation key pressed */ if (pininfo->minlen && pininfo->maxlen && pininfo->minlen == pininfo->maxlen) pin_verify[7] |= 0x01; /* Max size reached. */ pin_verify[8] = 0x01; /* bNumberMessage: One message */ pin_verify[9] = 0x09; /* wLangId: 0x0409: US English */ pin_verify[10] = 0x04; /* wLangId: 0x0409: US English */ pin_verify[11] = 0x00; /* bMsgIndex */ pin_verify[12] = 0x00; /* bTeoPrologue[0] */ pin_verify[13] = 0x00; /* bTeoPrologue[1] */ pin_verify[14] = pininfo->fixedlen + 0x05 - no_lc; /* bTeoPrologue[2] */ pin_verify[15] = pininfo->fixedlen + 0x05 - no_lc; /* ulDataLength */ pin_verify[16] = 0x00; /* ulDataLength */ pin_verify[17] = 0x00; /* ulDataLength */ pin_verify[18] = 0x00; /* ulDataLength */ pin_verify[19] = class; /* abData[0] */ pin_verify[20] = ins; /* abData[1] */ pin_verify[21] = p0; /* abData[2] */ pin_verify[22] = p1; /* abData[3] */ pin_verify[23] = pininfo->fixedlen; /* abData[4] */ if (pininfo->fixedlen) memset (&pin_verify[24], 0xff, pininfo->fixedlen); else if (no_lc) len--; if (DBG_CARD_IO) log_debug ("send secure: c=%02X i=%02X p1=%02X p2=%02X len=%d pinmax=%d\n", class, ins, p0, p1, len, pininfo->maxlen); sw = control_pcsc (slot, reader_table[slot].pcsc.verify_ioctl, pin_verify, len, result, &resultlen); xfree (pin_verify); if (sw || resultlen < 2) { log_error ("control_pcsc failed: %d\n", sw); return sw? sw: SW_HOST_INCOMPLETE_CARD_RESPONSE; } sw = (result[resultlen-2] << 8) | result[resultlen-1]; if (DBG_CARD_IO) log_debug (" response: sw=%04X datalen=%d\n", sw, (unsigned int)resultlen); return sw; } #define PIN_MODIFY_STRUCTURE_SIZE 29 static int pcsc_pinpad_modify (int slot, int class, int ins, int p0, int p1, pininfo_t *pininfo) { int sw; unsigned char *pin_modify; int len = PIN_MODIFY_STRUCTURE_SIZE + 2 * pininfo->fixedlen; unsigned char result[6]; /* See the comment at pinpad_verify. */ pcsc_dword_t resultlen = 6; int no_lc; if (!reader_table[slot].atrlen && (sw = reset_pcsc_reader (slot))) return sw; if (pininfo->fixedlen < 0 || pininfo->fixedlen >= 16) return SW_NOT_SUPPORTED; pin_modify = xtrymalloc (len); if (!pin_modify) return SW_HOST_OUT_OF_CORE; no_lc = (!pininfo->fixedlen && reader_table[slot].is_spr532); pin_modify[0] = 0x00; /* bTimeOut */ pin_modify[1] = 0x00; /* bTimeOut2 */ pin_modify[2] = 0x82; /* bmFormatString: Byte, pos=0, left, ASCII. */ pin_modify[3] = pininfo->fixedlen; /* bmPINBlockString */ pin_modify[4] = 0x00; /* bmPINLengthFormat */ pin_modify[5] = 0x00; /* bInsertionOffsetOld */ pin_modify[6] = pininfo->fixedlen; /* bInsertionOffsetNew */ pin_modify[7] = pininfo->maxlen; /* wPINMaxExtraDigit */ pin_modify[8] = pininfo->minlen; /* wPINMaxExtraDigit */ pin_modify[9] = (p0 == 0 ? 0x03 : 0x01); /* bConfirmPIN * 0x00: new PIN once * 0x01: new PIN twice (confirmation) * 0x02: old PIN and new PIN once * 0x03: old PIN and new PIN twice (confirmation) */ pin_modify[10] = 0x02; /* bEntryValidationCondition: Validation key pressed */ if (pininfo->minlen && pininfo->maxlen && pininfo->minlen == pininfo->maxlen) pin_modify[10] |= 0x01; /* Max size reached. */ pin_modify[11] = 0x03; /* bNumberMessage: Three messages */ pin_modify[12] = 0x09; /* wLangId: 0x0409: US English */ pin_modify[13] = 0x04; /* wLangId: 0x0409: US English */ pin_modify[14] = 0x00; /* bMsgIndex1 */ pin_modify[15] = 0x01; /* bMsgIndex2 */ pin_modify[16] = 0x02; /* bMsgIndex3 */ pin_modify[17] = 0x00; /* bTeoPrologue[0] */ pin_modify[18] = 0x00; /* bTeoPrologue[1] */ pin_modify[19] = 2 * pininfo->fixedlen + 0x05 - no_lc; /* bTeoPrologue[2] */ pin_modify[20] = 2 * pininfo->fixedlen + 0x05 - no_lc; /* ulDataLength */ pin_modify[21] = 0x00; /* ulDataLength */ pin_modify[22] = 0x00; /* ulDataLength */ pin_modify[23] = 0x00; /* ulDataLength */ pin_modify[24] = class; /* abData[0] */ pin_modify[25] = ins; /* abData[1] */ pin_modify[26] = p0; /* abData[2] */ pin_modify[27] = p1; /* abData[3] */ pin_modify[28] = 2 * pininfo->fixedlen; /* abData[4] */ if (pininfo->fixedlen) memset (&pin_modify[29], 0xff, 2 * pininfo->fixedlen); else if (no_lc) len--; if (DBG_CARD_IO) log_debug ("send secure: c=%02X i=%02X p1=%02X p2=%02X len=%d pinmax=%d\n", class, ins, p0, p1, len, (int)pininfo->maxlen); sw = control_pcsc (slot, reader_table[slot].pcsc.modify_ioctl, pin_modify, len, result, &resultlen); xfree (pin_modify); if (sw || resultlen < 2) { log_error ("control_pcsc failed: %d\n", sw); return sw? sw : SW_HOST_INCOMPLETE_CARD_RESPONSE; } sw = (result[resultlen-2] << 8) | result[resultlen-1]; if (DBG_CARD_IO) log_debug (" response: sw=%04X datalen=%d\n", sw, (unsigned int)resultlen); return sw; } #ifdef HAVE_LIBUSB /* Internal CCID driver interface. */ static void dump_ccid_reader_status (int slot) { log_info ("reader slot %d: using ccid driver\n", slot); } static int close_ccid_reader (int slot) { ccid_close_reader (reader_table[slot].ccid.handle); return 0; } static int reset_ccid_reader (int slot) { int err; reader_table_t slotp = reader_table + slot; unsigned char atr[33]; size_t atrlen; err = ccid_get_atr (slotp->ccid.handle, atr, sizeof atr, &atrlen); if (err) return err; /* If the reset was successful, update the ATR. */ assert (sizeof slotp->atr >= sizeof atr); slotp->atrlen = atrlen; memcpy (slotp->atr, atr, atrlen); dump_reader_status (slot); return 0; } static int set_progress_cb_ccid_reader (int slot, gcry_handler_progress_t cb, void *cb_arg) { reader_table_t slotp = reader_table + slot; return ccid_set_progress_cb (slotp->ccid.handle, cb, cb_arg); } static int set_prompt_cb_ccid_reader (int slot, void (*cb) (void *, int ), void *cb_arg) { reader_table_t slotp = reader_table + slot; return ccid_set_prompt_cb (slotp->ccid.handle, cb, cb_arg); } static int get_status_ccid (int slot, unsigned int *status, int on_wire) { int rc; int bits; rc = ccid_slot_status (reader_table[slot].ccid.handle, &bits, on_wire); if (rc) return rc; if (bits == 0) *status = (APDU_CARD_USABLE|APDU_CARD_PRESENT|APDU_CARD_ACTIVE); else if (bits == 1) *status = APDU_CARD_PRESENT; else *status = 0; return 0; } /* Actually send the APDU of length APDULEN to SLOT and return a maximum of *BUFLEN data in BUFFER, the actual returned size will be set to BUFLEN. Returns: Internal CCID driver error code. */ static int send_apdu_ccid (int slot, unsigned char *apdu, size_t apdulen, unsigned char *buffer, size_t *buflen, pininfo_t *pininfo) { long err; size_t maxbuflen; /* If we don't have an ATR, we need to reset the reader first. */ if (!reader_table[slot].atrlen && (err = reset_ccid_reader (slot))) return err; if (DBG_CARD_IO) log_printhex (apdu, apdulen, " raw apdu:"); maxbuflen = *buflen; if (pininfo) err = ccid_transceive_secure (reader_table[slot].ccid.handle, apdu, apdulen, pininfo, buffer, maxbuflen, buflen); else err = ccid_transceive (reader_table[slot].ccid.handle, apdu, apdulen, buffer, maxbuflen, buflen); if (err) log_error ("ccid_transceive failed: (0x%lx)\n", err); return err; } /* Check whether the CCID reader supports the ISO command code COMMAND on the pinpad. Return 0 on success. For a description of the pin parameters, see ccid-driver.c */ static int check_ccid_pinpad (int slot, int command, pininfo_t *pininfo) { unsigned char apdu[] = { 0, 0, 0, 0x81 }; apdu[1] = command; return ccid_transceive_secure (reader_table[slot].ccid.handle, apdu, sizeof apdu, pininfo, NULL, 0, NULL); } static int ccid_pinpad_operation (int slot, int class, int ins, int p0, int p1, pininfo_t *pininfo) { unsigned char apdu[4]; int err, sw; unsigned char result[2]; size_t resultlen = 2; apdu[0] = class; apdu[1] = ins; apdu[2] = p0; apdu[3] = p1; err = ccid_transceive_secure (reader_table[slot].ccid.handle, apdu, sizeof apdu, pininfo, result, 2, &resultlen); if (err) return err; if (resultlen < 2) return SW_HOST_INCOMPLETE_CARD_RESPONSE; sw = (result[resultlen-2] << 8) | result[resultlen-1]; return sw; } /* Open the reader and try to read an ATR. */ static int open_ccid_reader (struct dev_list *dl) { int err; int slot; int require_get_status; reader_table_t slotp; slot = new_reader_slot (); if (slot == -1) return -1; slotp = reader_table + slot; err = ccid_open_reader (dl->portstr, dl->idx, dl->ccid_table, &slotp->ccid.handle, &slotp->rdrname); if (!err) { err = ccid_get_atr (slotp->ccid.handle, slotp->atr, sizeof slotp->atr, &slotp->atrlen); if (err) ccid_close_reader (slotp->ccid.handle); } if (err) { slotp->used = 0; unlock_slot (slot); return -1; } require_get_status = ccid_require_get_status (slotp->ccid.handle); reader_table[slot].close_reader = close_ccid_reader; reader_table[slot].reset_reader = reset_ccid_reader; reader_table[slot].get_status_reader = get_status_ccid; reader_table[slot].send_apdu_reader = send_apdu_ccid; reader_table[slot].check_pinpad = check_ccid_pinpad; reader_table[slot].dump_status_reader = dump_ccid_reader_status; reader_table[slot].set_progress_cb = set_progress_cb_ccid_reader; reader_table[slot].set_prompt_cb = set_prompt_cb_ccid_reader; reader_table[slot].pinpad_verify = ccid_pinpad_operation; reader_table[slot].pinpad_modify = ccid_pinpad_operation; /* Our CCID reader code does not support T=0 at all, thus reset the flag. */ reader_table[slot].is_t0 = 0; reader_table[slot].require_get_status = require_get_status; dump_reader_status (slot); unlock_slot (slot); return slot; } #endif /* HAVE_LIBUSB */ #ifdef USE_G10CODE_RAPDU /* The Remote APDU Interface. This uses the Remote APDU protocol to contact a reader. The port number is actually an index into the list of ports as returned via the protocol. */ static int rapdu_status_to_sw (int status) { int rc; switch (status) { case RAPDU_STATUS_SUCCESS: rc = 0; break; case RAPDU_STATUS_INVCMD: case RAPDU_STATUS_INVPROT: case RAPDU_STATUS_INVSEQ: case RAPDU_STATUS_INVCOOKIE: case RAPDU_STATUS_INVREADER: rc = SW_HOST_INV_VALUE; break; case RAPDU_STATUS_TIMEOUT: rc = SW_HOST_CARD_IO_ERROR; break; case RAPDU_STATUS_CARDIO: rc = SW_HOST_CARD_IO_ERROR; break; case RAPDU_STATUS_NOCARD: rc = SW_HOST_NO_CARD; break; case RAPDU_STATUS_CARDCHG: rc = SW_HOST_NO_CARD; break; case RAPDU_STATUS_BUSY: rc = SW_HOST_BUSY; break; case RAPDU_STATUS_NEEDRESET: rc = SW_HOST_CARD_INACTIVE; break; default: rc = SW_HOST_GENERAL_ERROR; break; } return rc; } static int close_rapdu_reader (int slot) { rapdu_release (reader_table[slot].rapdu.handle); return 0; } static int reset_rapdu_reader (int slot) { int err; reader_table_t slotp; rapdu_msg_t msg = NULL; slotp = reader_table + slot; err = rapdu_send_cmd (slotp->rapdu.handle, RAPDU_CMD_RESET); if (err) { log_error ("sending rapdu command RESET failed: %s\n", err < 0 ? strerror (errno): rapdu_strerror (err)); rapdu_msg_release (msg); return rapdu_status_to_sw (err); } err = rapdu_read_msg (slotp->rapdu.handle, &msg); if (err) { log_error ("receiving rapdu message failed: %s\n", err < 0 ? strerror (errno): rapdu_strerror (err)); rapdu_msg_release (msg); return rapdu_status_to_sw (err); } if (msg->cmd != RAPDU_STATUS_SUCCESS || !msg->datalen) { int sw = rapdu_status_to_sw (msg->cmd); log_error ("rapdu command RESET failed: %s\n", rapdu_strerror (msg->cmd)); rapdu_msg_release (msg); return sw; } if (msg->datalen > DIM (slotp->atr)) { log_error ("ATR returned by the RAPDU layer is too large\n"); rapdu_msg_release (msg); return SW_HOST_INV_VALUE; } slotp->atrlen = msg->datalen; memcpy (slotp->atr, msg->data, msg->datalen); rapdu_msg_release (msg); return 0; } static int my_rapdu_get_status (int slot, unsigned int *status, int on_wire) { int err; reader_table_t slotp; rapdu_msg_t msg = NULL; int oldslot; (void)on_wire; slotp = reader_table + slot; oldslot = rapdu_set_reader (slotp->rapdu.handle, slot); err = rapdu_send_cmd (slotp->rapdu.handle, RAPDU_CMD_GET_STATUS); rapdu_set_reader (slotp->rapdu.handle, oldslot); if (err) { log_error ("sending rapdu command GET_STATUS failed: %s\n", err < 0 ? strerror (errno): rapdu_strerror (err)); return rapdu_status_to_sw (err); } err = rapdu_read_msg (slotp->rapdu.handle, &msg); if (err) { log_error ("receiving rapdu message failed: %s\n", err < 0 ? strerror (errno): rapdu_strerror (err)); rapdu_msg_release (msg); return rapdu_status_to_sw (err); } if (msg->cmd != RAPDU_STATUS_SUCCESS || !msg->datalen) { int sw = rapdu_status_to_sw (msg->cmd); log_error ("rapdu command GET_STATUS failed: %s\n", rapdu_strerror (msg->cmd)); rapdu_msg_release (msg); return sw; } *status = msg->data[0]; rapdu_msg_release (msg); return 0; } /* Actually send the APDU of length APDULEN to SLOT and return a maximum of *BUFLEN data in BUFFER, the actual returned size will be set to BUFLEN. Returns: APDU error code. */ static int my_rapdu_send_apdu (int slot, unsigned char *apdu, size_t apdulen, unsigned char *buffer, size_t *buflen, pininfo_t *pininfo) { int err; reader_table_t slotp; rapdu_msg_t msg = NULL; size_t maxlen = *buflen; slotp = reader_table + slot; *buflen = 0; if (DBG_CARD_IO) log_printhex (apdu, apdulen, " APDU_data:"); if (apdulen < 4) { log_error ("rapdu_send_apdu: APDU is too short\n"); return SW_HOST_INV_VALUE; } err = rapdu_send_apdu (slotp->rapdu.handle, apdu, apdulen); if (err) { log_error ("sending rapdu command APDU failed: %s\n", err < 0 ? strerror (errno): rapdu_strerror (err)); rapdu_msg_release (msg); return rapdu_status_to_sw (err); } err = rapdu_read_msg (slotp->rapdu.handle, &msg); if (err) { log_error ("receiving rapdu message failed: %s\n", err < 0 ? strerror (errno): rapdu_strerror (err)); rapdu_msg_release (msg); return rapdu_status_to_sw (err); } if (msg->cmd != RAPDU_STATUS_SUCCESS || !msg->datalen) { int sw = rapdu_status_to_sw (msg->cmd); log_error ("rapdu command APDU failed: %s\n", rapdu_strerror (msg->cmd)); rapdu_msg_release (msg); return sw; } if (msg->datalen > maxlen) { log_error ("rapdu response apdu too large\n"); rapdu_msg_release (msg); return SW_HOST_INV_VALUE; } *buflen = msg->datalen; memcpy (buffer, msg->data, msg->datalen); rapdu_msg_release (msg); return 0; } static int open_rapdu_reader (int portno, const unsigned char *cookie, size_t length, int (*readfnc) (void *opaque, void *buffer, size_t size), void *readfnc_value, int (*writefnc) (void *opaque, const void *buffer, size_t size), void *writefnc_value, void (*closefnc) (void *opaque), void *closefnc_value) { int err; int slot; reader_table_t slotp; rapdu_msg_t msg = NULL; slot = new_reader_slot (); if (slot == -1) return -1; slotp = reader_table + slot; slotp->rapdu.handle = rapdu_new (); if (!slotp->rapdu.handle) { slotp->used = 0; unlock_slot (slot); return -1; } rapdu_set_reader (slotp->rapdu.handle, portno); rapdu_set_iofunc (slotp->rapdu.handle, readfnc, readfnc_value, writefnc, writefnc_value, closefnc, closefnc_value); rapdu_set_cookie (slotp->rapdu.handle, cookie, length); /* First try to get the current ATR, but if the card is inactive issue a reset instead. */ err = rapdu_send_cmd (slotp->rapdu.handle, RAPDU_CMD_GET_ATR); if (err == RAPDU_STATUS_NEEDRESET) err = rapdu_send_cmd (slotp->rapdu.handle, RAPDU_CMD_RESET); if (err) { log_info ("sending rapdu command GET_ATR/RESET failed: %s\n", err < 0 ? strerror (errno): rapdu_strerror (err)); goto failure; } err = rapdu_read_msg (slotp->rapdu.handle, &msg); if (err) { log_info ("receiving rapdu message failed: %s\n", err < 0 ? strerror (errno): rapdu_strerror (err)); goto failure; } if (msg->cmd != RAPDU_STATUS_SUCCESS || !msg->datalen) { log_info ("rapdu command GET ATR failed: %s\n", rapdu_strerror (msg->cmd)); goto failure; } if (msg->datalen > DIM (slotp->atr)) { log_error ("ATR returned by the RAPDU layer is too large\n"); goto failure; } slotp->atrlen = msg->datalen; memcpy (slotp->atr, msg->data, msg->datalen); reader_table[slot].close_reader = close_rapdu_reader; reader_table[slot].reset_reader = reset_rapdu_reader; reader_table[slot].get_status_reader = my_rapdu_get_status; reader_table[slot].send_apdu_reader = my_rapdu_send_apdu; reader_table[slot].check_pinpad = NULL; reader_table[slot].dump_status_reader = NULL; reader_table[slot].pinpad_verify = NULL; reader_table[slot].pinpad_modify = NULL; dump_reader_status (slot); rapdu_msg_release (msg); unlock_slot (slot); return slot; failure: rapdu_msg_release (msg); rapdu_release (slotp->rapdu.handle); slotp->used = 0; unlock_slot (slot); return -1; } #endif /*USE_G10CODE_RAPDU*/ /* Driver Access */ gpg_error_t apdu_dev_list_start (const char *portstr, struct dev_list **l_p) { struct dev_list *dl = xtrymalloc (sizeof (struct dev_list)); *l_p = NULL; if (!dl) return gpg_error_from_syserror (); dl->portstr = portstr; dl->idx = 0; npth_mutex_lock (&reader_table_lock); #ifdef HAVE_LIBUSB if (opt.disable_ccid) { dl->ccid_table = NULL; dl->idx_max = 1; } else { gpg_error_t err; err = ccid_dev_scan (&dl->idx_max, &dl->ccid_table); if (err) return err; if (dl->idx_max == 0) { /* If a CCID reader specification has been given, the user does not want a fallback to other drivers. */ if (portstr && strlen (portstr) > 5 && portstr[4] == ':') { if (DBG_READER) log_debug ("leave: apdu_open_reader => slot=-1 (no ccid)\n"); xfree (dl); npth_mutex_unlock (&reader_table_lock); return gpg_error (GPG_ERR_ENODEV); } else dl->idx_max = 1; } } #else dl->ccid_table = NULL; dl->idx_max = 1; #endif /* HAVE_LIBUSB */ *l_p = dl; return 0; } void apdu_dev_list_finish (struct dev_list *dl) { #ifdef HAVE_LIBUSB if (dl->ccid_table) ccid_dev_scan_finish (dl->ccid_table, dl->idx_max); #endif xfree (dl); npth_mutex_unlock (&reader_table_lock); } /* Open the reader and return an internal slot number or -1 on error. If PORTSTR is NULL we default to a suitable port (for ctAPI: the first USB reader. For PC/SC the first listed reader). */ static int apdu_open_one_reader (const char *portstr) { static int pcsc_api_loaded; int slot; if (DBG_READER) log_debug ("enter: apdu_open_reader: portstr=%s\n", portstr); /* Lets try the PC/SC API */ if (!pcsc_api_loaded) { void *handle; handle = dlopen (opt.pcsc_driver, RTLD_LAZY); if (!handle) { log_error ("apdu_open_reader: failed to open driver '%s': %s\n", opt.pcsc_driver, dlerror ()); return -1; } pcsc_establish_context = dlsym (handle, "SCardEstablishContext"); pcsc_release_context = dlsym (handle, "SCardReleaseContext"); pcsc_list_readers = dlsym (handle, "SCardListReaders"); #if defined(_WIN32) || defined(__CYGWIN__) if (!pcsc_list_readers) pcsc_list_readers = dlsym (handle, "SCardListReadersA"); #endif pcsc_get_status_change = dlsym (handle, "SCardGetStatusChange"); #if defined(_WIN32) || defined(__CYGWIN__) if (!pcsc_get_status_change) pcsc_get_status_change = dlsym (handle, "SCardGetStatusChangeA"); #endif pcsc_connect = dlsym (handle, "SCardConnect"); #if defined(_WIN32) || defined(__CYGWIN__) if (!pcsc_connect) pcsc_connect = dlsym (handle, "SCardConnectA"); #endif pcsc_reconnect = dlsym (handle, "SCardReconnect"); #if defined(_WIN32) || defined(__CYGWIN__) if (!pcsc_reconnect) pcsc_reconnect = dlsym (handle, "SCardReconnectA"); #endif pcsc_disconnect = dlsym (handle, "SCardDisconnect"); pcsc_status = dlsym (handle, "SCardStatus"); #if defined(_WIN32) || defined(__CYGWIN__) if (!pcsc_status) pcsc_status = dlsym (handle, "SCardStatusA"); #endif pcsc_begin_transaction = dlsym (handle, "SCardBeginTransaction"); pcsc_end_transaction = dlsym (handle, "SCardEndTransaction"); pcsc_transmit = dlsym (handle, "SCardTransmit"); pcsc_set_timeout = dlsym (handle, "SCardSetTimeout"); pcsc_control = dlsym (handle, "SCardControl"); if (!pcsc_establish_context || !pcsc_release_context || !pcsc_list_readers || !pcsc_get_status_change || !pcsc_connect || !pcsc_reconnect || !pcsc_disconnect || !pcsc_status || !pcsc_begin_transaction || !pcsc_end_transaction || !pcsc_transmit || !pcsc_control /* || !pcsc_set_timeout */) { /* Note that set_timeout is currently not used and also not available under Windows. */ log_error ("apdu_open_reader: invalid PC/SC driver " "(%d%d%d%d%d%d%d%d%d%d%d%d%d)\n", !!pcsc_establish_context, !!pcsc_release_context, !!pcsc_list_readers, !!pcsc_get_status_change, !!pcsc_connect, !!pcsc_reconnect, !!pcsc_disconnect, !!pcsc_status, !!pcsc_begin_transaction, !!pcsc_end_transaction, !!pcsc_transmit, !!pcsc_set_timeout, !!pcsc_control ); dlclose (handle); return -1; } pcsc_api_loaded = 1; } slot = open_pcsc_reader (portstr); if (DBG_READER) log_debug ("leave: apdu_open_reader => slot=%d [pc/sc]\n", slot); return slot; } int apdu_open_reader (struct dev_list *dl, int app_empty) { int slot; #ifdef HAVE_LIBUSB if (dl->ccid_table) { /* CCID readers. */ int readerno; /* See whether we want to use the reader ID string or a reader number. A readerno of -1 indicates that the reader ID string is to be used. */ if (dl->portstr && strchr (dl->portstr, ':')) readerno = -1; /* We want to use the readerid. */ else if (dl->portstr) { readerno = atoi (dl->portstr); if (readerno < 0) { return -1; } } else readerno = 0; /* Default. */ if (readerno > 0) { /* Use single, the specific reader. */ if (readerno >= dl->idx_max) return -1; dl->idx = readerno; dl->portstr = NULL; slot = open_ccid_reader (dl); dl->idx = dl->idx_max; if (slot >= 0) return slot; else return -1; } while (dl->idx < dl->idx_max) { unsigned int bai = ccid_get_BAI (dl->idx, dl->ccid_table); if (DBG_READER) log_debug ("apdu_open_reader: BAI=%x\n", bai); /* Check identity by BAI against already opened HANDLEs. */ for (slot = 0; slot < MAX_READER; slot++) if (reader_table[slot].used && reader_table[slot].ccid.handle && ccid_compare_BAI (reader_table[slot].ccid.handle, bai)) break; if (slot == MAX_READER) { /* Found a new device. */ if (DBG_READER) log_debug ("apdu_open_reader: new device=%x\n", bai); slot = open_ccid_reader (dl); dl->idx++; if (slot >= 0) return slot; else { /* Skip this reader. */ log_error ("ccid open error: skip\n"); continue; } } else dl->idx++; } /* Not found. Try one for PC/SC, only when it's the initial scan. */ if (app_empty && dl->idx == dl->idx_max) { dl->idx++; slot = apdu_open_one_reader (dl->portstr); } else slot = -1; } else #endif { /* PC/SC readers. */ if (app_empty && dl->idx == 0) { dl->idx++; slot = apdu_open_one_reader (dl->portstr); } else slot = -1; } return slot; } /* Open an remote reader and return an internal slot number or -1 on error. This function is an alternative to apdu_open_reader and used with remote readers only. Note that the supplied CLOSEFNC will only be called once and the slot will not be valid afther this. If PORTSTR is NULL we default to the first available port. */ int apdu_open_remote_reader (const char *portstr, const unsigned char *cookie, size_t length, int (*readfnc) (void *opaque, void *buffer, size_t size), void *readfnc_value, int (*writefnc) (void *opaque, const void *buffer, size_t size), void *writefnc_value, void (*closefnc) (void *opaque), void *closefnc_value) { #ifdef USE_G10CODE_RAPDU return open_rapdu_reader (portstr? atoi (portstr) : 0, cookie, length, readfnc, readfnc_value, writefnc, writefnc_value, closefnc, closefnc_value); #else (void)portstr; (void)cookie; (void)length; (void)readfnc; (void)readfnc_value; (void)writefnc; (void)writefnc_value; (void)closefnc; (void)closefnc_value; #ifdef _WIN32 errno = ENOENT; #else errno = ENOSYS; #endif return -1; #endif } int apdu_close_reader (int slot) { int sw; if (DBG_READER) log_debug ("enter: apdu_close_reader: slot=%d\n", slot); if (slot < 0 || slot >= MAX_READER || !reader_table[slot].used ) { if (DBG_READER) log_debug ("leave: apdu_close_reader => SW_HOST_NO_DRIVER\n"); return SW_HOST_NO_DRIVER; } sw = apdu_disconnect (slot); if (sw) { /* * When the reader/token was removed it might come here. * It should go through to call CLOSE_READER even if we got an error. */ if (DBG_READER) log_debug ("apdu_close_reader => 0x%x (apdu_disconnect)\n", sw); } if (reader_table[slot].close_reader) { sw = reader_table[slot].close_reader (slot); reader_table[slot].used = 0; if (DBG_READER) log_debug ("leave: apdu_close_reader => 0x%x (close_reader)\n", sw); return sw; } xfree (reader_table[slot].rdrname); reader_table[slot].rdrname = NULL; reader_table[slot].used = 0; if (DBG_READER) log_debug ("leave: apdu_close_reader => SW_HOST_NOT_SUPPORTED\n"); return SW_HOST_NOT_SUPPORTED; } /* Function suitable for a cleanup function to close all reader. It should not be used if the reader will be opened again. The reason for implementing this to properly close USB devices so that they will startup the next time without error. */ void apdu_prepare_exit (void) { static int sentinel; int slot; if (!sentinel) { sentinel = 1; npth_mutex_lock (&reader_table_lock); for (slot = 0; slot < MAX_READER; slot++) if (reader_table[slot].used) { apdu_disconnect (slot); if (reader_table[slot].close_reader) reader_table[slot].close_reader (slot); xfree (reader_table[slot].rdrname); reader_table[slot].rdrname = NULL; reader_table[slot].used = 0; } npth_mutex_unlock (&reader_table_lock); sentinel = 0; } } /* Enumerate all readers and return information on whether this reader is in use. The caller should start with SLOT set to 0 and increment it with each call until an error is returned. */ int apdu_enum_reader (int slot, int *used) { if (slot < 0 || slot >= MAX_READER) return SW_HOST_NO_DRIVER; *used = reader_table[slot].used; return 0; } /* Connect a card. This is used to power up the card and make sure that an ATR is available. Depending on the reader backend it may return an error for an inactive card or if no card is available. Return -1 on error. Return 1 if reader requires get_status to watch card removal. Return 0 if it's a token (always with a card), or it supports INTERRUPT endpoint to watch card removal. */ int apdu_connect (int slot) { int sw = 0; unsigned int status = 0; if (DBG_READER) log_debug ("enter: apdu_connect: slot=%d\n", slot); if (slot < 0 || slot >= MAX_READER || !reader_table[slot].used ) { if (DBG_READER) log_debug ("leave: apdu_connect => SW_HOST_NO_DRIVER\n"); return -1; } /* Only if the access method provides a connect function we use it. If not, we expect that the card has been implicitly connected by apdu_open_reader. */ if (reader_table[slot].connect_card) { sw = lock_slot (slot); if (!sw) { sw = reader_table[slot].connect_card (slot); unlock_slot (slot); } } /* We need to call apdu_get_status_internal, so that the last-status machinery gets setup properly even if a card is inserted while scdaemon is fired up and apdu_get_status has not yet been called. Without that we would force a reset of the card with the next call to apdu_get_status. */ if (!sw) sw = apdu_get_status_internal (slot, 1, &status, 1); if (sw) ; else if (!(status & APDU_CARD_PRESENT)) sw = SW_HOST_NO_CARD; else if ((status & APDU_CARD_PRESENT) && !(status & APDU_CARD_ACTIVE)) sw = SW_HOST_CARD_INACTIVE; if (sw == SW_HOST_CARD_INACTIVE) { /* Try power it up again. */ sw = apdu_reset (slot); } if (DBG_READER) log_debug ("leave: apdu_connect => sw=0x%x\n", sw); if (sw) return -1; return reader_table[slot].require_get_status; } int apdu_disconnect (int slot) { int sw; if (DBG_READER) log_debug ("enter: apdu_disconnect: slot=%d\n", slot); if (slot < 0 || slot >= MAX_READER || !reader_table[slot].used ) { if (DBG_READER) log_debug ("leave: apdu_disconnect => SW_HOST_NO_DRIVER\n"); return SW_HOST_NO_DRIVER; } if (reader_table[slot].disconnect_card) { sw = lock_slot (slot); if (!sw) { sw = reader_table[slot].disconnect_card (slot); unlock_slot (slot); } } else sw = 0; if (DBG_READER) log_debug ("leave: apdu_disconnect => sw=0x%x\n", sw); return sw; } /* Set the progress callback of SLOT to CB and its args to CB_ARG. If CB is NULL the progress callback is removed. */ int apdu_set_progress_cb (int slot, gcry_handler_progress_t cb, void *cb_arg) { int sw; if (slot < 0 || slot >= MAX_READER || !reader_table[slot].used ) return SW_HOST_NO_DRIVER; if (reader_table[slot].set_progress_cb) { sw = lock_slot (slot); if (!sw) { sw = reader_table[slot].set_progress_cb (slot, cb, cb_arg); unlock_slot (slot); } } else sw = 0; return sw; } int apdu_set_prompt_cb (int slot, void (*cb) (void *, int), void *cb_arg) { int sw; if (slot < 0 || slot >= MAX_READER || !reader_table[slot].used ) return SW_HOST_NO_DRIVER; if (reader_table[slot].set_prompt_cb) { sw = lock_slot (slot); if (!sw) { sw = reader_table[slot].set_prompt_cb (slot, cb, cb_arg); unlock_slot (slot); } } else sw = 0; return sw; } /* Do a reset for the card in reader at SLOT. */ int apdu_reset (int slot) { int sw; if (DBG_READER) log_debug ("enter: apdu_reset: slot=%d\n", slot); if (slot < 0 || slot >= MAX_READER || !reader_table[slot].used ) { if (DBG_READER) log_debug ("leave: apdu_reset => SW_HOST_NO_DRIVER\n"); return SW_HOST_NO_DRIVER; } if ((sw = lock_slot (slot))) { if (DBG_READER) log_debug ("leave: apdu_reset => sw=0x%x (lock_slot)\n", sw); return sw; } if (reader_table[slot].reset_reader) sw = reader_table[slot].reset_reader (slot); unlock_slot (slot); if (DBG_READER) log_debug ("leave: apdu_reset => sw=0x%x\n", sw); return sw; } /* Return the ATR or NULL if none is available. On success the length of the ATR is stored at ATRLEN. The caller must free the returned value. */ unsigned char * apdu_get_atr (int slot, size_t *atrlen) { unsigned char *buf; if (DBG_READER) log_debug ("enter: apdu_get_atr: slot=%d\n", slot); if (slot < 0 || slot >= MAX_READER || !reader_table[slot].used ) { if (DBG_READER) log_debug ("leave: apdu_get_atr => NULL (bad slot)\n"); return NULL; } if (!reader_table[slot].atrlen) { if (DBG_READER) log_debug ("leave: apdu_get_atr => NULL (no ATR)\n"); return NULL; } buf = xtrymalloc (reader_table[slot].atrlen); if (!buf) { if (DBG_READER) log_debug ("leave: apdu_get_atr => NULL (out of core)\n"); return NULL; } memcpy (buf, reader_table[slot].atr, reader_table[slot].atrlen); *atrlen = reader_table[slot].atrlen; if (DBG_READER) log_debug ("leave: apdu_get_atr => atrlen=%zu\n", *atrlen); return buf; } /* Retrieve the status for SLOT. The function does only wait for the card to become available if HANG is set to true. On success the bits in STATUS will be set to APDU_CARD_USABLE (bit 0) = card present and usable APDU_CARD_PRESENT (bit 1) = card present APDU_CARD_ACTIVE (bit 2) = card active (bit 3) = card access locked [not yet implemented] For most applications, testing bit 0 is sufficient. */ static int apdu_get_status_internal (int slot, int hang, unsigned int *status, int on_wire) { int sw; unsigned int s = 0; if (slot < 0 || slot >= MAX_READER || !reader_table[slot].used ) return SW_HOST_NO_DRIVER; if ((sw = hang? lock_slot (slot) : trylock_slot (slot))) return sw; if (reader_table[slot].get_status_reader) sw = reader_table[slot].get_status_reader (slot, &s, on_wire); unlock_slot (slot); if (sw) { if (on_wire) reader_table[slot].atrlen = 0; s = 0; } if (status) *status = s; return sw; } /* See above for a description. */ int apdu_get_status (int slot, int hang, unsigned int *status) { int sw; if (DBG_READER) log_debug ("enter: apdu_get_status: slot=%d hang=%d\n", slot, hang); sw = apdu_get_status_internal (slot, hang, status, 0); if (DBG_READER) { if (status) log_debug ("leave: apdu_get_status => sw=0x%x status=%u\n", sw, *status); else log_debug ("leave: apdu_get_status => sw=0x%x\n", sw); } return sw; } /* Check whether the reader supports the ISO command code COMMAND on the pinpad. Return 0 on success. For a description of the pin parameters, see ccid-driver.c */ int apdu_check_pinpad (int slot, int command, pininfo_t *pininfo) { if (slot < 0 || slot >= MAX_READER || !reader_table[slot].used ) return SW_HOST_NO_DRIVER; if (opt.enable_pinpad_varlen) pininfo->fixedlen = 0; if (reader_table[slot].check_pinpad) { int sw; if ((sw = lock_slot (slot))) return sw; sw = reader_table[slot].check_pinpad (slot, command, pininfo); unlock_slot (slot); return sw; } else return SW_HOST_NOT_SUPPORTED; } int apdu_pinpad_verify (int slot, int class, int ins, int p0, int p1, pininfo_t *pininfo) { if (slot < 0 || slot >= MAX_READER || !reader_table[slot].used ) return SW_HOST_NO_DRIVER; if (reader_table[slot].pinpad_verify) { int sw; if ((sw = lock_slot (slot))) return sw; sw = reader_table[slot].pinpad_verify (slot, class, ins, p0, p1, pininfo); unlock_slot (slot); return sw; } else return SW_HOST_NOT_SUPPORTED; } int apdu_pinpad_modify (int slot, int class, int ins, int p0, int p1, pininfo_t *pininfo) { if (slot < 0 || slot >= MAX_READER || !reader_table[slot].used ) return SW_HOST_NO_DRIVER; if (reader_table[slot].pinpad_modify) { int sw; if ((sw = lock_slot (slot))) return sw; sw = reader_table[slot].pinpad_modify (slot, class, ins, p0, p1, pininfo); unlock_slot (slot); return sw; } else return SW_HOST_NOT_SUPPORTED; } /* Dispatcher for the actual send_apdu function. Note, that this function should be called in locked state. */ static int send_apdu (int slot, unsigned char *apdu, size_t apdulen, unsigned char *buffer, size_t *buflen, pininfo_t *pininfo) { if (slot < 0 || slot >= MAX_READER || !reader_table[slot].used ) return SW_HOST_NO_DRIVER; if (reader_table[slot].send_apdu_reader) return reader_table[slot].send_apdu_reader (slot, apdu, apdulen, buffer, buflen, pininfo); else return SW_HOST_NOT_SUPPORTED; } /* Core APDU transceiver function. Parameters are described at apdu_send_le with the exception of PININFO which indicates pinpad related operations if not NULL. If EXTENDED_MODE is not 0 command chaining or extended length will be used according to these values: n < 0 := Use command chaining with the data part limited to -n in each chunk. If -1 is used a default value is used. n == 0 := No extended mode or command chaining. n == 1 := Use extended length for input and output without a length limit. n > 1 := Use extended length with up to N bytes. */ static int send_le (int slot, int class, int ins, int p0, int p1, int lc, const char *data, int le, unsigned char **retbuf, size_t *retbuflen, pininfo_t *pininfo, int extended_mode) { #define SHORT_RESULT_BUFFER_SIZE 258 /* We allocate 8 extra bytes as a safety margin towards a driver bug. */ unsigned char short_result_buffer[SHORT_RESULT_BUFFER_SIZE+10]; unsigned char *result_buffer = NULL; size_t result_buffer_size; unsigned char *result; size_t resultlen; unsigned char short_apdu_buffer[5+256+1]; unsigned char *apdu_buffer = NULL; size_t apdu_buffer_size; unsigned char *apdu; size_t apdulen; int sw; long rc; /* We need a long here due to PC/SC. */ int did_exact_length_hack = 0; int use_chaining = 0; int use_extended_length = 0; int lc_chunk; if (slot < 0 || slot >= MAX_READER || !reader_table[slot].used ) return SW_HOST_NO_DRIVER; if (DBG_CARD_IO) log_debug ("send apdu: c=%02X i=%02X p1=%02X p2=%02X lc=%d le=%d em=%d\n", class, ins, p0, p1, lc, le, extended_mode); if (lc != -1 && (lc > 255 || lc < 0)) { /* Data does not fit into an APDU. What we do now depends on the EXTENDED_MODE parameter. */ if (!extended_mode) return SW_WRONG_LENGTH; /* No way to send such an APDU. */ else if (extended_mode > 0) use_extended_length = 1; else if (extended_mode < 0) { /* Send APDU using chaining mode. */ if (lc > 16384) return SW_WRONG_LENGTH; /* Sanity check. */ if ((class&0xf0) != 0) return SW_HOST_INV_VALUE; /* Upper 4 bits need to be 0. */ use_chaining = extended_mode == -1? 255 : -extended_mode; use_chaining &= 0xff; } else return SW_HOST_INV_VALUE; } else if (lc == -1 && extended_mode > 0) use_extended_length = 1; if (le != -1 && (le > (extended_mode > 0? 255:256) || le < 0)) { /* Expected Data does not fit into an APDU. What we do now depends on the EXTENDED_MODE parameter. Note that a check for command chaining does not make sense because we are looking at Le. */ if (!extended_mode) return SW_WRONG_LENGTH; /* No way to send such an APDU. */ else if (use_extended_length) ; /* We are already using extended length. */ else if (extended_mode > 0) use_extended_length = 1; else return SW_HOST_INV_VALUE; } if ((!data && lc != -1) || (data && lc == -1)) return SW_HOST_INV_VALUE; if (use_extended_length) { if (reader_table[slot].is_t0) return SW_HOST_NOT_SUPPORTED; /* Space for: cls/ins/p1/p2+Z+2_byte_Lc+Lc+2_byte_Le. */ apdu_buffer_size = 4 + 1 + (lc >= 0? (2+lc):0) + 2; apdu_buffer = xtrymalloc (apdu_buffer_size + 10); if (!apdu_buffer) return SW_HOST_OUT_OF_CORE; apdu = apdu_buffer; } else { apdu_buffer_size = sizeof short_apdu_buffer; apdu = short_apdu_buffer; } if (use_extended_length && (le > 256 || le < 0)) { /* Two more bytes are needed for status bytes. */ result_buffer_size = le < 0? 4096 : (le + 2); result_buffer = xtrymalloc (result_buffer_size); if (!result_buffer) { xfree (apdu_buffer); return SW_HOST_OUT_OF_CORE; } result = result_buffer; } else { result_buffer_size = SHORT_RESULT_BUFFER_SIZE; result = short_result_buffer; } #undef SHORT_RESULT_BUFFER_SIZE if ((sw = lock_slot (slot))) { xfree (apdu_buffer); xfree (result_buffer); return sw; } do { if (use_extended_length) { use_chaining = 0; apdulen = 0; apdu[apdulen++] = class; apdu[apdulen++] = ins; apdu[apdulen++] = p0; apdu[apdulen++] = p1; if (lc > 0) { apdu[apdulen++] = 0; /* Z byte: Extended length marker. */ apdu[apdulen++] = ((lc >> 8) & 0xff); apdu[apdulen++] = (lc & 0xff); memcpy (apdu+apdulen, data, lc); data += lc; apdulen += lc; } if (le != -1) { if (lc <= 0) apdu[apdulen++] = 0; /* Z byte: Extended length marker. */ apdu[apdulen++] = ((le >> 8) & 0xff); apdu[apdulen++] = (le & 0xff); } } else { apdulen = 0; apdu[apdulen] = class; if (use_chaining && lc > 255) { apdu[apdulen] |= 0x10; assert (use_chaining < 256); lc_chunk = use_chaining; lc -= use_chaining; } else { use_chaining = 0; lc_chunk = lc; } apdulen++; apdu[apdulen++] = ins; apdu[apdulen++] = p0; apdu[apdulen++] = p1; if (lc_chunk != -1) { apdu[apdulen++] = lc_chunk; memcpy (apdu+apdulen, data, lc_chunk); data += lc_chunk; apdulen += lc_chunk; /* T=0 does not allow the use of Lc together with Le; thus disable Le in this case. */ if (reader_table[slot].is_t0) le = -1; } if (le != -1 && !use_chaining) apdu[apdulen++] = le; /* Truncation is okay (0 means 256). */ } exact_length_hack: /* As a safeguard don't pass any garbage to the driver. */ assert (apdulen <= apdu_buffer_size); memset (apdu+apdulen, 0, apdu_buffer_size - apdulen); resultlen = result_buffer_size; rc = send_apdu (slot, apdu, apdulen, result, &resultlen, pininfo); if (rc || resultlen < 2) { log_info ("apdu_send_simple(%d) failed: %s\n", slot, apdu_strerror (rc)); unlock_slot (slot); xfree (apdu_buffer); xfree (result_buffer); return rc? rc : SW_HOST_INCOMPLETE_CARD_RESPONSE; } sw = (result[resultlen-2] << 8) | result[resultlen-1]; if (!use_extended_length && !did_exact_length_hack && SW_EXACT_LENGTH_P (sw)) { apdu[apdulen-1] = (sw & 0x00ff); did_exact_length_hack = 1; goto exact_length_hack; } } while (use_chaining && sw == SW_SUCCESS); if (apdu_buffer) { xfree (apdu_buffer); apdu_buffer = NULL; } /* Store away the returned data but strip the statusword. */ resultlen -= 2; if (DBG_CARD_IO) { log_debug (" response: sw=%04X datalen=%d\n", sw, (unsigned int)resultlen); if ( !retbuf && (sw == SW_SUCCESS || (sw & 0xff00) == SW_MORE_DATA)) log_printhex (result, resultlen, " dump: "); } if (sw == SW_SUCCESS || sw == SW_EOF_REACHED) { if (retbuf) { *retbuf = xtrymalloc (resultlen? resultlen : 1); if (!*retbuf) { unlock_slot (slot); xfree (result_buffer); return SW_HOST_OUT_OF_CORE; } *retbuflen = resultlen; memcpy (*retbuf, result, resultlen); } } else if ((sw & 0xff00) == SW_MORE_DATA) { unsigned char *p = NULL, *tmp; size_t bufsize = 4096; /* It is likely that we need to return much more data, so we start off with a large buffer. */ if (retbuf) { *retbuf = p = xtrymalloc (bufsize); if (!*retbuf) { unlock_slot (slot); xfree (result_buffer); return SW_HOST_OUT_OF_CORE; } assert (resultlen < bufsize); memcpy (p, result, resultlen); p += resultlen; } do { int len = (sw & 0x00ff); if (DBG_CARD_IO) log_debug ("apdu_send_simple(%d): %d more bytes available\n", slot, len); apdu_buffer_size = sizeof short_apdu_buffer; apdu = short_apdu_buffer; apdulen = 0; apdu[apdulen++] = class; apdu[apdulen++] = 0xC0; apdu[apdulen++] = 0; apdu[apdulen++] = 0; apdu[apdulen++] = len; assert (apdulen <= apdu_buffer_size); memset (apdu+apdulen, 0, apdu_buffer_size - apdulen); resultlen = result_buffer_size; rc = send_apdu (slot, apdu, apdulen, result, &resultlen, NULL); if (rc || resultlen < 2) { log_error ("apdu_send_simple(%d) for get response failed: %s\n", slot, apdu_strerror (rc)); unlock_slot (slot); xfree (result_buffer); return rc? rc : SW_HOST_INCOMPLETE_CARD_RESPONSE; } sw = (result[resultlen-2] << 8) | result[resultlen-1]; resultlen -= 2; if (DBG_CARD_IO) { log_debug (" more: sw=%04X datalen=%d\n", sw, (unsigned int)resultlen); if (!retbuf && (sw==SW_SUCCESS || (sw&0xff00)==SW_MORE_DATA)) log_printhex (result, resultlen, " dump: "); } if ((sw & 0xff00) == SW_MORE_DATA || sw == SW_SUCCESS || sw == SW_EOF_REACHED ) { if (retbuf && resultlen) { if (p - *retbuf + resultlen > bufsize) { bufsize += resultlen > 4096? resultlen: 4096; tmp = xtryrealloc (*retbuf, bufsize); if (!tmp) { unlock_slot (slot); xfree (result_buffer); return SW_HOST_OUT_OF_CORE; } p = tmp + (p - *retbuf); *retbuf = tmp; } memcpy (p, result, resultlen); p += resultlen; } } else log_info ("apdu_send_simple(%d) " "got unexpected status %04X from get response\n", slot, sw); } while ((sw & 0xff00) == SW_MORE_DATA); if (retbuf) { *retbuflen = p - *retbuf; tmp = xtryrealloc (*retbuf, *retbuflen); if (tmp) *retbuf = tmp; } } unlock_slot (slot); xfree (result_buffer); if (DBG_CARD_IO && retbuf && sw == SW_SUCCESS) log_printhex (*retbuf, *retbuflen, " dump: "); return sw; } /* Send an APDU to the card in SLOT. The APDU is created from all given parameters: CLASS, INS, P0, P1, LC, DATA, LE. A value of -1 for LC won't sent this field and the data field; in this case DATA must also be passed as NULL. If EXTENDED_MODE is not 0 command chaining or extended length will be used; see send_le for details. The return value is the status word or -1 for an invalid SLOT or other non card related error. If RETBUF is not NULL, it will receive an allocated buffer with the returned data. The length of that data will be put into *RETBUFLEN. The caller is responsible for releasing the buffer even in case of errors. */ int apdu_send_le(int slot, int extended_mode, int class, int ins, int p0, int p1, int lc, const char *data, int le, unsigned char **retbuf, size_t *retbuflen) { return send_le (slot, class, ins, p0, p1, lc, data, le, retbuf, retbuflen, NULL, extended_mode); } /* Send an APDU to the card in SLOT. The APDU is created from all given parameters: CLASS, INS, P0, P1, LC, DATA. A value of -1 for LC won't sent this field and the data field; in this case DATA must also be passed as NULL. If EXTENDED_MODE is not 0 command chaining or extended length will be used; see send_le for details. The return value is the status word or -1 for an invalid SLOT or other non card related error. If RETBUF is not NULL, it will receive an allocated buffer with the returned data. The length of that data will be put into *RETBUFLEN. The caller is responsible for releasing the buffer even in case of errors. */ int apdu_send (int slot, int extended_mode, int class, int ins, int p0, int p1, int lc, const char *data, unsigned char **retbuf, size_t *retbuflen) { return send_le (slot, class, ins, p0, p1, lc, data, 256, retbuf, retbuflen, NULL, extended_mode); } /* Send an APDU to the card in SLOT. The APDU is created from all given parameters: CLASS, INS, P0, P1, LC, DATA. A value of -1 for LC won't sent this field and the data field; in this case DATA must also be passed as NULL. If EXTENDED_MODE is not 0 command chaining or extended length will be used; see send_le for details. The return value is the status word or -1 for an invalid SLOT or other non card related error. No data will be returned. */ int apdu_send_simple (int slot, int extended_mode, int class, int ins, int p0, int p1, int lc, const char *data) { return send_le (slot, class, ins, p0, p1, lc, data, -1, NULL, NULL, NULL, extended_mode); } /* This is a more generic version of the apdu sending routine. It * takes an already formatted APDU in APDUDATA or length APDUDATALEN * and returns with an APDU including the status word. With * HANDLE_MORE set to true this function will handle the MORE DATA * status and return all APDUs concatenated with one status word at * the end. If EXTENDED_LENGTH is != 0 extended lengths are allowed * with a max. result data length of EXTENDED_LENGTH bytes. The * function does not return a regular status word but 0 on success. * If the slot is locked, the function returns immediately with an * error. * * Out of historical reasons the function returns 0 on success and * outs the status word at the end of the result to be able to get the * status word in the case of a not provided RETBUF, R_SW can be used * to store the SW. But note that R_SW qill only be set if the * function returns 0. */ int apdu_send_direct (int slot, size_t extended_length, const unsigned char *apdudata, size_t apdudatalen, int handle_more, unsigned int *r_sw, unsigned char **retbuf, size_t *retbuflen) { #define SHORT_RESULT_BUFFER_SIZE 258 unsigned char short_result_buffer[SHORT_RESULT_BUFFER_SIZE+10]; unsigned char *result_buffer = NULL; size_t result_buffer_size; unsigned char *result; size_t resultlen; unsigned char short_apdu_buffer[5+256+10]; unsigned char *apdu_buffer = NULL; unsigned char *apdu; size_t apdulen; int sw; long rc; /* we need a long here due to PC/SC. */ int class; if (slot < 0 || slot >= MAX_READER || !reader_table[slot].used ) return SW_HOST_NO_DRIVER; if (apdudatalen > 65535) return SW_HOST_INV_VALUE; if (apdudatalen > sizeof short_apdu_buffer - 5) { apdu_buffer = xtrymalloc (apdudatalen + 5); if (!apdu_buffer) return SW_HOST_OUT_OF_CORE; apdu = apdu_buffer; } else { apdu = short_apdu_buffer; } apdulen = apdudatalen; memcpy (apdu, apdudata, apdudatalen); class = apdulen? *apdu : 0; if (extended_length >= 256 && extended_length <= 65536) { result_buffer_size = extended_length; result_buffer = xtrymalloc (result_buffer_size + 10); if (!result_buffer) { xfree (apdu_buffer); return SW_HOST_OUT_OF_CORE; } result = result_buffer; } else { result_buffer_size = SHORT_RESULT_BUFFER_SIZE; result = short_result_buffer; } #undef SHORT_RESULT_BUFFER_SIZE if ((sw = trylock_slot (slot))) { xfree (apdu_buffer); xfree (result_buffer); return sw; } resultlen = result_buffer_size; rc = send_apdu (slot, apdu, apdulen, result, &resultlen, NULL); xfree (apdu_buffer); apdu_buffer = NULL; if (rc || resultlen < 2) { log_error ("apdu_send_direct(%d) failed: %s\n", slot, apdu_strerror (rc)); unlock_slot (slot); xfree (result_buffer); return rc? rc : SW_HOST_INCOMPLETE_CARD_RESPONSE; } sw = (result[resultlen-2] << 8) | result[resultlen-1]; /* Store away the returned data but strip the statusword. */ resultlen -= 2; if (DBG_CARD_IO) { log_debug (" response: sw=%04X datalen=%d\n", sw, (unsigned int)resultlen); if ( !retbuf && (sw == SW_SUCCESS || (sw & 0xff00) == SW_MORE_DATA)) log_printhex (result, resultlen, " dump: "); } if (handle_more && (sw & 0xff00) == SW_MORE_DATA) { unsigned char *p = NULL, *tmp; size_t bufsize = 4096; /* It is likely that we need to return much more data, so we start off with a large buffer. */ if (retbuf) { *retbuf = p = xtrymalloc (bufsize + 2); if (!*retbuf) { unlock_slot (slot); xfree (result_buffer); return SW_HOST_OUT_OF_CORE; } assert (resultlen < bufsize); memcpy (p, result, resultlen); p += resultlen; } do { int len = (sw & 0x00ff); if (DBG_CARD_IO) log_debug ("apdu_send_direct(%d): %d more bytes available\n", slot, len); apdu = short_apdu_buffer; apdulen = 0; apdu[apdulen++] = class; apdu[apdulen++] = 0xC0; apdu[apdulen++] = 0; apdu[apdulen++] = 0; apdu[apdulen++] = len; memset (apdu+apdulen, 0, sizeof (short_apdu_buffer) - apdulen); resultlen = result_buffer_size; rc = send_apdu (slot, apdu, apdulen, result, &resultlen, NULL); if (rc || resultlen < 2) { log_error ("apdu_send_direct(%d) for get response failed: %s\n", slot, apdu_strerror (rc)); unlock_slot (slot); xfree (result_buffer); return rc ? rc : SW_HOST_INCOMPLETE_CARD_RESPONSE; } sw = (result[resultlen-2] << 8) | result[resultlen-1]; resultlen -= 2; if (DBG_CARD_IO) { log_debug (" more: sw=%04X datalen=%d\n", sw, (unsigned int)resultlen); if (!retbuf && (sw==SW_SUCCESS || (sw&0xff00)==SW_MORE_DATA)) log_printhex (result, resultlen, " dump: "); } if ((sw & 0xff00) == SW_MORE_DATA || sw == SW_SUCCESS || sw == SW_EOF_REACHED ) { if (retbuf && resultlen) { if (p - *retbuf + resultlen > bufsize) { bufsize += resultlen > 4096? resultlen: 4096; tmp = xtryrealloc (*retbuf, bufsize + 2); if (!tmp) { unlock_slot (slot); xfree (result_buffer); return SW_HOST_OUT_OF_CORE; } p = tmp + (p - *retbuf); *retbuf = tmp; } memcpy (p, result, resultlen); p += resultlen; } } else log_info ("apdu_send_direct(%d) " "got unexpected status %04X from get response\n", slot, sw); } while ((sw & 0xff00) == SW_MORE_DATA); if (retbuf) { *retbuflen = p - *retbuf; tmp = xtryrealloc (*retbuf, *retbuflen + 2); if (tmp) *retbuf = tmp; } } else { if (retbuf) { *retbuf = xtrymalloc ((resultlen? resultlen : 1)+2); if (!*retbuf) { unlock_slot (slot); xfree (result_buffer); return SW_HOST_OUT_OF_CORE; } *retbuflen = resultlen; memcpy (*retbuf, result, resultlen); } } unlock_slot (slot); xfree (result_buffer); /* Append the status word. Note that we reserved the two extra bytes while allocating the buffer. */ if (retbuf) { (*retbuf)[(*retbuflen)++] = (sw >> 8); (*retbuf)[(*retbuflen)++] = sw; } if (r_sw) *r_sw = sw; if (DBG_CARD_IO && retbuf) log_printhex (*retbuf, *retbuflen, " dump: "); return 0; } const char * apdu_get_reader_name (int slot) { return reader_table[slot].rdrname; } gpg_error_t apdu_init (void) { #ifdef USE_NPTH gpg_error_t err; int i; if (npth_mutex_init (&reader_table_lock, NULL)) goto leave; for (i = 0; i < MAX_READER; i++) if (npth_mutex_init (&reader_table[i].lock, NULL)) goto leave; /* All done well. */ return 0; leave: err = gpg_error_from_syserror (); log_error ("apdu: error initializing mutex: %s\n", gpg_strerror (err)); return err; #endif /*USE_NPTH*/ return 0; } diff --git a/scd/ccid-driver.c b/scd/ccid-driver.c index 45faa05bd..d762490c8 100644 --- a/scd/ccid-driver.c +++ b/scd/ccid-driver.c @@ -1,3915 +1,3910 @@ /* ccid-driver.c - USB ChipCardInterfaceDevices driver * Copyright (C) 2003, 2004, 2005, 2006, 2007 * 2008, 2009, 2013 Free Software Foundation, Inc. * Written by Werner Koch. * * This file is part of GnuPG. * * GnuPG is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * GnuPG is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * ALTERNATIVELY, this file may be distributed under the terms of the * following license, in which case the provisions of this license are * required INSTEAD OF the GNU General Public License. If you wish to * allow use of your version of this file only under the terms of the * GNU General Public License, and not to allow others to use your * version of this file under the terms of the following license, * indicate your decision by deleting this paragraph and the license * below. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, and the entire permission notice in its entirety, * including the disclaimer of warranties. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote * products derived from this software without specific prior * written permission. * * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. */ /* CCID (ChipCardInterfaceDevices) is a specification for accessing smartcard via a reader connected to the USB. This is a limited driver allowing to use some CCID drivers directly without any other specila drivers. This is a fallback driver to be used when nothing else works or the system should be kept minimal for security reasons. It makes use of the libusb library to gain portable access to USB. This driver has been tested with the SCM SCR335 and SPR532 smartcard readers and requires that a reader implements APDU or TPDU level exchange and does fully automatic initialization. */ #ifdef HAVE_CONFIG_H # include #endif #if defined(HAVE_LIBUSB) || defined(TEST) #include #include #include #include #include #include #include #include #include #include #ifdef HAVE_NPTH # include #endif /*HAVE_NPTH*/ #include #include "scdaemon.h" #include "iso7816.h" #define CCID_DRIVER_INCLUDE_USB_IDS 1 #include "ccid-driver.h" #define DRVNAME "ccid-driver: " /* Max length of buffer with out CCID message header of 10-byte Sending: 547 for RSA-4096 key import APDU size = 540 (24+4+256+256) commnd + lc + le = 4 + 3 + 0 Sending: write data object of cardholder certificate APDU size = 2048 commnd + lc + le = 4 + 3 + 0 Receiving: 2048 for cardholder certificate */ #define CCID_MAX_BUF (2048+7+10) /* CCID command timeout. */ #define CCID_CMD_TIMEOUT (5*1000) /* Depending on how this source is used we either define our error - * output to go to the GnuPG based logging functions or to stderr. We - * use the former when GNUPG_MAJOR_VERSION or GNUPG_SCD_MAIN_HEADER is - * defined. */ -#if defined(GNUPG_MAJOR_VERSION) || defined(GNUPG_SCD_MAIN_HEADER) -# if defined(GNUPG_SCD_MAIN_HEADER) -# include GNUPG_SCD_MAIN_HEADER -# else /* This is the modularized GnuPG 1.9 or later. */ + * output to go to stderr or to the GnuPG based logging functions. We + * use the latter when GNUPG_MAJOR_VERSION is defined. */ +#if defined(GNUPG_MAJOR_VERSION) # include "scdaemon.h" -# endif # define DEBUGOUT(t) do { if (debug_level) \ log_debug (DRVNAME t); } while (0) # define DEBUGOUT_1(t,a) do { if (debug_level) \ log_debug (DRVNAME t,(a)); } while (0) # define DEBUGOUT_2(t,a,b) do { if (debug_level) \ log_debug (DRVNAME t,(a),(b)); } while (0) # define DEBUGOUT_3(t,a,b,c) do { if (debug_level) \ log_debug (DRVNAME t,(a),(b),(c));} while (0) # define DEBUGOUT_4(t,a,b,c,d) do { if (debug_level) \ log_debug (DRVNAME t,(a),(b),(c),(d));} while (0) # define DEBUGOUT_CONT(t) do { if (debug_level) \ log_printf (t); } while (0) # define DEBUGOUT_CONT_1(t,a) do { if (debug_level) \ log_printf (t,(a)); } while (0) # define DEBUGOUT_CONT_2(t,a,b) do { if (debug_level) \ log_printf (t,(a),(b)); } while (0) # define DEBUGOUT_CONT_3(t,a,b,c) do { if (debug_level) \ log_printf (t,(a),(b),(c)); } while (0) # define DEBUGOUT_LF() do { if (debug_level) \ log_printf ("\n"); } while (0) #else /* Other usage of this source - don't use gnupg specifics. */ # define DEBUGOUT(t) do { if (debug_level) \ fprintf (stderr, DRVNAME t); } while (0) # define DEBUGOUT_1(t,a) do { if (debug_level) \ fprintf (stderr, DRVNAME t, (a)); } while (0) # define DEBUGOUT_2(t,a,b) do { if (debug_level) \ fprintf (stderr, DRVNAME t, (a), (b)); } while (0) # define DEBUGOUT_3(t,a,b,c) do { if (debug_level) \ fprintf (stderr, DRVNAME t, (a), (b), (c)); } while (0) # define DEBUGOUT_4(t,a,b,c,d) do { if (debug_level) \ fprintf (stderr, DRVNAME t, (a), (b), (c), (d));} while(0) # define DEBUGOUT_CONT(t) do { if (debug_level) \ fprintf (stderr, t); } while (0) # define DEBUGOUT_CONT_1(t,a) do { if (debug_level) \ fprintf (stderr, t, (a)); } while (0) # define DEBUGOUT_CONT_2(t,a,b) do { if (debug_level) \ fprintf (stderr, t, (a), (b)); } while (0) # define DEBUGOUT_CONT_3(t,a,b,c) do { if (debug_level) \ fprintf (stderr, t, (a), (b), (c)); } while (0) # define DEBUGOUT_LF() do { if (debug_level) \ putc ('\n', stderr); } while (0) #endif /* This source is not used by scdaemon. */ #ifndef EAGAIN #define EAGAIN EWOULDBLOCK #endif enum { RDR_to_PC_NotifySlotChange= 0x50, RDR_to_PC_HardwareError = 0x51, PC_to_RDR_SetParameters = 0x61, PC_to_RDR_IccPowerOn = 0x62, PC_to_RDR_IccPowerOff = 0x63, PC_to_RDR_GetSlotStatus = 0x65, PC_to_RDR_Secure = 0x69, PC_to_RDR_T0APDU = 0x6a, PC_to_RDR_Escape = 0x6b, PC_to_RDR_GetParameters = 0x6c, PC_to_RDR_ResetParameters = 0x6d, PC_to_RDR_IccClock = 0x6e, PC_to_RDR_XfrBlock = 0x6f, PC_to_RDR_Mechanical = 0x71, PC_to_RDR_Abort = 0x72, PC_to_RDR_SetDataRate = 0x73, RDR_to_PC_DataBlock = 0x80, RDR_to_PC_SlotStatus = 0x81, RDR_to_PC_Parameters = 0x82, RDR_to_PC_Escape = 0x83, RDR_to_PC_DataRate = 0x84 }; /* Two macro to detect whether a CCID command has failed and to get the error code. These macros assume that we can access the mandatory first 10 bytes of a CCID message in BUF. */ #define CCID_COMMAND_FAILED(buf) ((buf)[7] & 0x40) #define CCID_ERROR_CODE(buf) (((unsigned char *)(buf))[8]) /* Store information on the driver's state. A pointer to such a structure is used as handle for most functions. */ struct ccid_driver_s { libusb_device_handle *idev; unsigned int bai; unsigned short id_vendor; unsigned short id_product; int ifc_no; int ep_bulk_out; int ep_bulk_in; int ep_intr; int seqno; unsigned char t1_ns; unsigned char t1_nr; unsigned char nonnull_nad; int max_ifsd; int max_ccid_msglen; int ifsc; unsigned char apdu_level:2; /* Reader supports short APDU level exchange. With a value of 2 short and extended level is supported.*/ unsigned int auto_voltage:1; unsigned int auto_param:1; unsigned int auto_pps:1; unsigned int auto_ifsd:1; unsigned int has_pinpad:2; unsigned int enodev_seen:1; int powered_off; time_t last_progress; /* Last time we sent progress line. */ /* The progress callback and its first arg as supplied to ccid_set_progress_cb. */ void (*progress_cb)(void *, const char *, int, int, int); void *progress_cb_arg; void (*prompt_cb)(void *, int); void *prompt_cb_arg; unsigned char intr_buf[64]; struct libusb_transfer *transfer; }; static int initialized_usb; /* Tracks whether USB has been initialized. */ static int debug_level; /* Flag to control the debug output. 0 = No debugging 1 = USB I/O info 2 = Level 1 + T=1 protocol tracing 3 = Level 2 + USB/I/O tracing of SlotStatus. */ static int ccid_usb_thread_is_alive; static unsigned int compute_edc (const unsigned char *data, size_t datalen, int use_crc); static int bulk_out (ccid_driver_t handle, unsigned char *msg, size_t msglen, int no_debug); static int bulk_in (ccid_driver_t handle, unsigned char *buffer, size_t length, size_t *nread, int expected_type, int seqno, int timeout, int no_debug); static int abort_cmd (ccid_driver_t handle, int seqno); static int send_escape_cmd (ccid_driver_t handle, const unsigned char *data, size_t datalen, unsigned char *result, size_t resultmax, size_t *resultlen); /* Convert a little endian stored 4 byte value into an unsigned integer. */ static unsigned int convert_le_u32 (const unsigned char *buf) { return buf[0] | (buf[1] << 8) | (buf[2] << 16) | ((unsigned int)buf[3] << 24); } /* Convert a little endian stored 2 byte value into an unsigned integer. */ static unsigned int convert_le_u16 (const unsigned char *buf) { return buf[0] | (buf[1] << 8); } static void set_msg_len (unsigned char *msg, unsigned int length) { msg[1] = length; msg[2] = length >> 8; msg[3] = length >> 16; msg[4] = length >> 24; } static void print_progress (ccid_driver_t handle) { time_t ct = time (NULL); /* We don't want to print progress lines too often. */ if (ct == handle->last_progress) return; if (handle->progress_cb) handle->progress_cb (handle->progress_cb_arg, "card_busy", 'w', 0, 0); handle->last_progress = ct; } /* Pint an error message for a failed CCID command including a textual error code. MSG shall be the CCID message at a minimum of 10 bytes. */ static void print_command_failed (const unsigned char *msg) { const char *t; char buffer[100]; int ec; if (!debug_level) return; ec = CCID_ERROR_CODE (msg); switch (ec) { case 0x00: t = "Command not supported"; break; case 0xE0: t = "Slot busy"; break; case 0xEF: t = "PIN cancelled"; break; case 0xF0: t = "PIN timeout"; break; case 0xF2: t = "Automatic sequence ongoing"; break; case 0xF3: t = "Deactivated Protocol"; break; case 0xF4: t = "Procedure byte conflict"; break; case 0xF5: t = "ICC class not supported"; break; case 0xF6: t = "ICC protocol not supported"; break; case 0xF7: t = "Bad checksum in ATR"; break; case 0xF8: t = "Bad TS in ATR"; break; case 0xFB: t = "An all inclusive hardware error occurred"; break; case 0xFC: t = "Overrun error while talking to the ICC"; break; case 0xFD: t = "Parity error while talking to the ICC"; break; case 0xFE: t = "CCID timed out while talking to the ICC"; break; case 0xFF: t = "Host aborted the current activity"; break; default: if (ec > 0 && ec < 128) sprintf (buffer, "Parameter error at offset %d", ec); else sprintf (buffer, "Error code %02X", ec); t = buffer; break; } DEBUGOUT_1 ("CCID command failed: %s\n", t); } static void print_pr_data (const unsigned char *data, size_t datalen, size_t off) { int any = 0; for (; off < datalen; off++) { if (!any || !(off % 16)) { if (any) DEBUGOUT_LF (); DEBUGOUT_1 (" [%04lu] ", (unsigned long) off); } DEBUGOUT_CONT_1 (" %02X", data[off]); any = 1; } if (any && (off % 16)) DEBUGOUT_LF (); } static void print_p2r_header (const char *name, const unsigned char *msg, size_t msglen) { DEBUGOUT_1 ("%s:\n", name); if (msglen < 7) return; DEBUGOUT_1 (" dwLength ..........: %u\n", convert_le_u32 (msg+1)); DEBUGOUT_1 (" bSlot .............: %u\n", msg[5]); DEBUGOUT_1 (" bSeq ..............: %u\n", msg[6]); } static void print_p2r_iccpoweron (const unsigned char *msg, size_t msglen) { print_p2r_header ("PC_to_RDR_IccPowerOn", msg, msglen); if (msglen < 10) return; DEBUGOUT_2 (" bPowerSelect ......: 0x%02x (%s)\n", msg[7], msg[7] == 0? "auto": msg[7] == 1? "5.0 V": msg[7] == 2? "3.0 V": msg[7] == 3? "1.8 V":""); print_pr_data (msg, msglen, 8); } static void print_p2r_iccpoweroff (const unsigned char *msg, size_t msglen) { print_p2r_header ("PC_to_RDR_IccPowerOff", msg, msglen); print_pr_data (msg, msglen, 7); } static void print_p2r_getslotstatus (const unsigned char *msg, size_t msglen) { print_p2r_header ("PC_to_RDR_GetSlotStatus", msg, msglen); print_pr_data (msg, msglen, 7); } static void print_p2r_xfrblock (const unsigned char *msg, size_t msglen) { unsigned int val; print_p2r_header ("PC_to_RDR_XfrBlock", msg, msglen); if (msglen < 10) return; DEBUGOUT_1 (" bBWI ..............: 0x%02x\n", msg[7]); val = convert_le_u16 (msg+8); DEBUGOUT_2 (" wLevelParameter ...: 0x%04x%s\n", val, val == 1? " (continued)": val == 2? " (continues+ends)": val == 3? " (continues+continued)": val == 16? " (DataBlock-expected)":""); print_pr_data (msg, msglen, 10); } static void print_p2r_getparameters (const unsigned char *msg, size_t msglen) { print_p2r_header ("PC_to_RDR_GetParameters", msg, msglen); print_pr_data (msg, msglen, 7); } static void print_p2r_resetparameters (const unsigned char *msg, size_t msglen) { print_p2r_header ("PC_to_RDR_ResetParameters", msg, msglen); print_pr_data (msg, msglen, 7); } static void print_p2r_setparameters (const unsigned char *msg, size_t msglen) { print_p2r_header ("PC_to_RDR_SetParameters", msg, msglen); if (msglen < 10) return; DEBUGOUT_1 (" bProtocolNum ......: 0x%02x\n", msg[7]); print_pr_data (msg, msglen, 8); } static void print_p2r_escape (const unsigned char *msg, size_t msglen) { print_p2r_header ("PC_to_RDR_Escape", msg, msglen); print_pr_data (msg, msglen, 7); } static void print_p2r_iccclock (const unsigned char *msg, size_t msglen) { print_p2r_header ("PC_to_RDR_IccClock", msg, msglen); if (msglen < 10) return; DEBUGOUT_1 (" bClockCommand .....: 0x%02x\n", msg[7]); print_pr_data (msg, msglen, 8); } static void print_p2r_to0apdu (const unsigned char *msg, size_t msglen) { print_p2r_header ("PC_to_RDR_T0APDU", msg, msglen); if (msglen < 10) return; DEBUGOUT_1 (" bmChanges .........: 0x%02x\n", msg[7]); DEBUGOUT_1 (" bClassGetResponse .: 0x%02x\n", msg[8]); DEBUGOUT_1 (" bClassEnvelope ....: 0x%02x\n", msg[9]); print_pr_data (msg, msglen, 10); } static void print_p2r_secure (const unsigned char *msg, size_t msglen) { unsigned int val; print_p2r_header ("PC_to_RDR_Secure", msg, msglen); if (msglen < 10) return; DEBUGOUT_1 (" bBMI ..............: 0x%02x\n", msg[7]); val = convert_le_u16 (msg+8); DEBUGOUT_2 (" wLevelParameter ...: 0x%04x%s\n", val, val == 1? " (continued)": val == 2? " (continues+ends)": val == 3? " (continues+continued)": val == 16? " (DataBlock-expected)":""); print_pr_data (msg, msglen, 10); } static void print_p2r_mechanical (const unsigned char *msg, size_t msglen) { print_p2r_header ("PC_to_RDR_Mechanical", msg, msglen); if (msglen < 10) return; DEBUGOUT_1 (" bFunction .........: 0x%02x\n", msg[7]); print_pr_data (msg, msglen, 8); } static void print_p2r_abort (const unsigned char *msg, size_t msglen) { print_p2r_header ("PC_to_RDR_Abort", msg, msglen); print_pr_data (msg, msglen, 7); } static void print_p2r_setdatarate (const unsigned char *msg, size_t msglen) { print_p2r_header ("PC_to_RDR_SetDataRate", msg, msglen); if (msglen < 10) return; print_pr_data (msg, msglen, 7); } static void print_p2r_unknown (const unsigned char *msg, size_t msglen) { print_p2r_header ("Unknown PC_to_RDR command", msg, msglen); if (msglen < 10) return; print_pr_data (msg, msglen, 0); } static void print_r2p_header (const char *name, const unsigned char *msg, size_t msglen) { DEBUGOUT_1 ("%s:\n", name); if (msglen < 9) return; DEBUGOUT_1 (" dwLength ..........: %u\n", convert_le_u32 (msg+1)); DEBUGOUT_1 (" bSlot .............: %u\n", msg[5]); DEBUGOUT_1 (" bSeq ..............: %u\n", msg[6]); DEBUGOUT_1 (" bStatus ...........: %u\n", msg[7]); if (msg[8]) DEBUGOUT_1 (" bError ............: %u\n", msg[8]); } static void print_r2p_datablock (const unsigned char *msg, size_t msglen) { print_r2p_header ("RDR_to_PC_DataBlock", msg, msglen); if (msglen < 10) return; if (msg[9]) DEBUGOUT_2 (" bChainParameter ...: 0x%02x%s\n", msg[9], msg[9] == 1? " (continued)": msg[9] == 2? " (continues+ends)": msg[9] == 3? " (continues+continued)": msg[9] == 16? " (XferBlock-expected)":""); print_pr_data (msg, msglen, 10); } static void print_r2p_slotstatus (const unsigned char *msg, size_t msglen) { print_r2p_header ("RDR_to_PC_SlotStatus", msg, msglen); if (msglen < 10) return; DEBUGOUT_2 (" bClockStatus ......: 0x%02x%s\n", msg[9], msg[9] == 0? " (running)": msg[9] == 1? " (stopped-L)": msg[9] == 2? " (stopped-H)": msg[9] == 3? " (stopped)":""); print_pr_data (msg, msglen, 10); } static void print_r2p_parameters (const unsigned char *msg, size_t msglen) { print_r2p_header ("RDR_to_PC_Parameters", msg, msglen); if (msglen < 10) return; DEBUGOUT_1 (" protocol ..........: T=%d\n", msg[9]); if (msglen == 17 && msg[9] == 1) { /* Protocol T=1. */ DEBUGOUT_1 (" bmFindexDindex ....: %02X\n", msg[10]); DEBUGOUT_1 (" bmTCCKST1 .........: %02X\n", msg[11]); DEBUGOUT_1 (" bGuardTimeT1 ......: %02X\n", msg[12]); DEBUGOUT_1 (" bmWaitingIntegersT1: %02X\n", msg[13]); DEBUGOUT_1 (" bClockStop ........: %02X\n", msg[14]); DEBUGOUT_1 (" bIFSC .............: %d\n", msg[15]); DEBUGOUT_1 (" bNadValue .........: %d\n", msg[16]); } else print_pr_data (msg, msglen, 10); } static void print_r2p_escape (const unsigned char *msg, size_t msglen) { print_r2p_header ("RDR_to_PC_Escape", msg, msglen); if (msglen < 10) return; DEBUGOUT_1 (" buffer[9] .........: %02X\n", msg[9]); print_pr_data (msg, msglen, 10); } static void print_r2p_datarate (const unsigned char *msg, size_t msglen) { print_r2p_header ("RDR_to_PC_DataRate", msg, msglen); if (msglen < 10) return; if (msglen >= 18) { DEBUGOUT_1 (" dwClockFrequency ..: %u\n", convert_le_u32 (msg+10)); DEBUGOUT_1 (" dwDataRate ..... ..: %u\n", convert_le_u32 (msg+14)); print_pr_data (msg, msglen, 18); } else print_pr_data (msg, msglen, 10); } static void print_r2p_unknown (const unsigned char *msg, size_t msglen) { print_r2p_header ("Unknown RDR_to_PC command", msg, msglen); if (msglen < 10) return; DEBUGOUT_1 (" bMessageType ......: %02X\n", msg[0]); DEBUGOUT_1 (" buffer[9] .........: %02X\n", msg[9]); print_pr_data (msg, msglen, 10); } /* Parse a CCID descriptor, optionally print all available features and test whether this reader is usable by this driver. Returns 0 if it is usable. Note, that this code is based on the one in lsusb.c of the usb-utils package, I wrote on 2003-09-01. -wk. */ static int parse_ccid_descriptor (ccid_driver_t handle, unsigned short bcd_device, const unsigned char *buf, size_t buflen) { unsigned int i; unsigned int us; int have_t1 = 0, have_tpdu=0; handle->nonnull_nad = 0; handle->auto_ifsd = 0; handle->max_ifsd = 32; handle->has_pinpad = 0; handle->apdu_level = 0; handle->auto_voltage = 0; handle->auto_param = 0; handle->auto_pps = 0; DEBUGOUT_3 ("idVendor: %04X idProduct: %04X bcdDevice: %04X\n", handle->id_vendor, handle->id_product, bcd_device); if (buflen < 54 || buf[0] < 54) { DEBUGOUT ("CCID device descriptor is too short\n"); return -1; } DEBUGOUT ("ChipCard Interface Descriptor:\n"); DEBUGOUT_1 (" bLength %5u\n", buf[0]); DEBUGOUT_1 (" bDescriptorType %5u\n", buf[1]); DEBUGOUT_2 (" bcdCCID %2x.%02x", buf[3], buf[2]); if (buf[3] != 1 || buf[2] != 0) DEBUGOUT_CONT(" (Warning: Only accurate for version 1.0)"); DEBUGOUT_LF (); DEBUGOUT_1 (" nMaxSlotIndex %5u\n", buf[4]); DEBUGOUT_2 (" bVoltageSupport %5u %s\n", buf[5], (buf[5] == 1? "5.0V" : buf[5] == 2? "3.0V" : buf[5] == 3? "1.8V":"?")); us = convert_le_u32 (buf+6); DEBUGOUT_1 (" dwProtocols %5u ", us); if ((us & 1)) DEBUGOUT_CONT (" T=0"); if ((us & 2)) { DEBUGOUT_CONT (" T=1"); have_t1 = 1; } if ((us & ~3)) DEBUGOUT_CONT (" (Invalid values detected)"); DEBUGOUT_LF (); us = convert_le_u32(buf+10); DEBUGOUT_1 (" dwDefaultClock %5u\n", us); us = convert_le_u32(buf+14); DEBUGOUT_1 (" dwMaxiumumClock %5u\n", us); DEBUGOUT_1 (" bNumClockSupported %5u\n", buf[18]); us = convert_le_u32(buf+19); DEBUGOUT_1 (" dwDataRate %7u bps\n", us); us = convert_le_u32(buf+23); DEBUGOUT_1 (" dwMaxDataRate %7u bps\n", us); DEBUGOUT_1 (" bNumDataRatesSupp. %5u\n", buf[27]); us = convert_le_u32(buf+28); DEBUGOUT_1 (" dwMaxIFSD %5u\n", us); handle->max_ifsd = us; us = convert_le_u32(buf+32); DEBUGOUT_1 (" dwSyncProtocols %08X ", us); if ((us&1)) DEBUGOUT_CONT ( " 2-wire"); if ((us&2)) DEBUGOUT_CONT ( " 3-wire"); if ((us&4)) DEBUGOUT_CONT ( " I2C"); DEBUGOUT_LF (); us = convert_le_u32(buf+36); DEBUGOUT_1 (" dwMechanical %08X ", us); if ((us & 1)) DEBUGOUT_CONT (" accept"); if ((us & 2)) DEBUGOUT_CONT (" eject"); if ((us & 4)) DEBUGOUT_CONT (" capture"); if ((us & 8)) DEBUGOUT_CONT (" lock"); DEBUGOUT_LF (); us = convert_le_u32(buf+40); DEBUGOUT_1 (" dwFeatures %08X\n", us); if ((us & 0x0002)) { DEBUGOUT (" Auto configuration based on ATR (assumes auto voltage)\n"); handle->auto_voltage = 1; } if ((us & 0x0004)) DEBUGOUT (" Auto activation on insert\n"); if ((us & 0x0008)) { DEBUGOUT (" Auto voltage selection\n"); handle->auto_voltage = 1; } if ((us & 0x0010)) DEBUGOUT (" Auto clock change\n"); if ((us & 0x0020)) DEBUGOUT (" Auto baud rate change\n"); if ((us & 0x0040)) { DEBUGOUT (" Auto parameter negotiation made by CCID\n"); handle->auto_param = 1; } else if ((us & 0x0080)) { DEBUGOUT (" Auto PPS made by CCID\n"); handle->auto_pps = 1; } if ((us & (0x0040 | 0x0080)) == (0x0040 | 0x0080)) DEBUGOUT (" WARNING: conflicting negotiation features\n"); if ((us & 0x0100)) DEBUGOUT (" CCID can set ICC in clock stop mode\n"); if ((us & 0x0200)) { DEBUGOUT (" NAD value other than 0x00 accepted\n"); handle->nonnull_nad = 1; } if ((us & 0x0400)) { DEBUGOUT (" Auto IFSD exchange\n"); handle->auto_ifsd = 1; } if ((us & 0x00010000)) { DEBUGOUT (" TPDU level exchange\n"); have_tpdu = 1; } else if ((us & 0x00020000)) { DEBUGOUT (" Short APDU level exchange\n"); handle->apdu_level = 1; } else if ((us & 0x00040000)) { DEBUGOUT (" Short and extended APDU level exchange\n"); handle->apdu_level = 2; } else if ((us & 0x00070000)) DEBUGOUT (" WARNING: conflicting exchange levels\n"); us = convert_le_u32(buf+44); DEBUGOUT_1 (" dwMaxCCIDMsgLen %5u\n", us); handle->max_ccid_msglen = us; DEBUGOUT ( " bClassGetResponse "); if (buf[48] == 0xff) DEBUGOUT_CONT ("echo\n"); else DEBUGOUT_CONT_1 (" %02X\n", buf[48]); DEBUGOUT ( " bClassEnvelope "); if (buf[49] == 0xff) DEBUGOUT_CONT ("echo\n"); else DEBUGOUT_CONT_1 (" %02X\n", buf[48]); DEBUGOUT ( " wlcdLayout "); if (!buf[50] && !buf[51]) DEBUGOUT_CONT ("none\n"); else DEBUGOUT_CONT_2 ("%u cols %u lines\n", buf[50], buf[51]); DEBUGOUT_1 (" bPINSupport %5u ", buf[52]); if ((buf[52] & 1)) { DEBUGOUT_CONT ( " verification"); handle->has_pinpad |= 1; } if ((buf[52] & 2)) { DEBUGOUT_CONT ( " modification"); handle->has_pinpad |= 2; } DEBUGOUT_LF (); DEBUGOUT_1 (" bMaxCCIDBusySlots %5u\n", buf[53]); if (buf[0] > 54) { DEBUGOUT (" junk "); for (i=54; i < buf[0]-54; i++) DEBUGOUT_CONT_1 (" %02X", buf[i]); DEBUGOUT_LF (); } if (!have_t1 || !(have_tpdu || handle->apdu_level)) { DEBUGOUT ("this drivers requires that the reader supports T=1, " "TPDU or APDU level exchange - this is not available\n"); return -1; } /* SCM drivers get stuck in their internal USB stack if they try to send a frame of n*wMaxPacketSize back to us. Given that wMaxPacketSize is 64 for these readers we set the IFSD to a value lower than that: 64 - 10 CCID header - 4 T1frame - 2 reserved = 48 Product Ids: 0xe001 - SCR 331 0x5111 - SCR 331-DI 0x5115 - SCR 335 0xe003 - SPR 532 The 0x5117 - SCR 3320 USB ID-000 reader seems to be very slow but enabling this workaround boosts the performance to a more or less acceptable level (tested by David). */ if (handle->id_vendor == VENDOR_SCM && handle->max_ifsd > 48 && ( (handle->id_product == SCM_SCR331 && bcd_device < 0x0516) ||(handle->id_product == SCM_SCR331DI && bcd_device < 0x0620) ||(handle->id_product == SCM_SCR335 && bcd_device < 0x0514) ||(handle->id_product == SCM_SPR532 && bcd_device < 0x0504) ||(handle->id_product == SCM_SCR3320 && bcd_device < 0x0522) )) { DEBUGOUT ("enabling workaround for buggy SCM readers\n"); handle->max_ifsd = 48; } if (handle->id_vendor == VENDOR_GEMPC) { DEBUGOUT ("enabling product quirk: disable non-null NAD\n"); handle->nonnull_nad = 0; } return 0; } static char * get_escaped_usb_string (libusb_device_handle *idev, int idx, const char *prefix, const char *suffix) { int rc; unsigned char buf[280]; unsigned char *s; unsigned int langid; size_t i, n, len; char *result; if (!idx) return NULL; /* Fixme: The next line is for the current Valgrid without support for USB IOCTLs. */ memset (buf, 0, sizeof buf); /* First get the list of supported languages and use the first one. If we do don't find it we try to use English. Note that this is all in a 2 bute Unicode encoding using little endian. */ #ifdef USE_NPTH npth_unprotect (); #endif rc = libusb_control_transfer (idev, LIBUSB_ENDPOINT_IN, LIBUSB_REQUEST_GET_DESCRIPTOR, (LIBUSB_DT_STRING << 8), 0, buf, sizeof buf, 1000 /* ms timeout */); #ifdef USE_NPTH npth_protect (); #endif if (rc < 4) langid = 0x0409; /* English. */ else langid = (buf[3] << 8) | buf[2]; #ifdef USE_NPTH npth_unprotect (); #endif rc = libusb_control_transfer (idev, LIBUSB_ENDPOINT_IN, LIBUSB_REQUEST_GET_DESCRIPTOR, (LIBUSB_DT_STRING << 8) + idx, langid, buf, sizeof buf, 1000 /* ms timeout */); #ifdef USE_NPTH npth_protect (); #endif if (rc < 2 || buf[1] != LIBUSB_DT_STRING) return NULL; /* Error or not a string. */ len = buf[0]; if (len > rc) return NULL; /* Larger than our buffer. */ for (s=buf+2, i=2, n=0; i+1 < len; i += 2, s += 2) { if (s[1]) n++; /* High byte set. */ else if (*s <= 0x20 || *s >= 0x7f || *s == '%' || *s == ':') n += 3 ; else n++; } result = malloc (strlen (prefix) + n + strlen (suffix) + 1); if (!result) return NULL; strcpy (result, prefix); n = strlen (prefix); for (s=buf+2, i=2; i+1 < len; i += 2, s += 2) { if (s[1]) result[n++] = '\xff'; /* High byte set. */ else if (*s <= 0x20 || *s >= 0x7f || *s == '%' || *s == ':') { sprintf (result+n, "%%%02X", *s); n += 3; } else result[n++] = *s; } strcpy (result+n, suffix); return result; } /* This function creates an reader id to be used to find the same physical reader after a reset. It returns an allocated and possibly percent escaped string or NULL if not enough memory is available. */ static char * make_reader_id (libusb_device_handle *idev, unsigned int vendor, unsigned int product, unsigned char serialno_index) { char *rid; char prefix[20]; sprintf (prefix, "%04X:%04X:", (vendor & 0xffff), (product & 0xffff)); rid = get_escaped_usb_string (idev, serialno_index, prefix, ":0"); if (!rid) { rid = malloc (strlen (prefix) + 3 + 1); if (!rid) return NULL; strcpy (rid, prefix); strcat (rid, "X:0"); } return rid; } /* Helper to find the endpoint from an interface descriptor. */ static int find_endpoint (const struct libusb_interface_descriptor *ifcdesc, int mode) { int no; int want_bulk_in = 0; if (mode == 1) want_bulk_in = 0x80; for (no=0; no < ifcdesc->bNumEndpoints; no++) { const struct libusb_endpoint_descriptor *ep = ifcdesc->endpoint + no; if (ep->bDescriptorType != LIBUSB_DT_ENDPOINT) ; else if (mode == 2 && ((ep->bmAttributes & LIBUSB_TRANSFER_TYPE_MASK) == LIBUSB_TRANSFER_TYPE_INTERRUPT) && (ep->bEndpointAddress & 0x80)) return ep->bEndpointAddress; else if ((mode == 0 || mode == 1) && ((ep->bmAttributes & LIBUSB_TRANSFER_TYPE_MASK) == LIBUSB_TRANSFER_TYPE_BULK) && (ep->bEndpointAddress & 0x80) == want_bulk_in) return ep->bEndpointAddress; } return -1; } /* Helper for scan_devices. This function returns true if a requested device has been found or the caller should stop scanning for other reasons. */ static void scan_usb_device (int *count, char **rid_list, struct libusb_device *dev) { int ifc_no; int set_no; const struct libusb_interface_descriptor *ifcdesc; char *rid; libusb_device_handle *idev = NULL; int err; struct libusb_config_descriptor *config; struct libusb_device_descriptor desc; char *p; err = libusb_get_device_descriptor (dev, &desc); if (err) return; err = libusb_get_active_config_descriptor (dev, &config); if (err) return; for (ifc_no=0; ifc_no < config->bNumInterfaces; ifc_no++) for (set_no=0; set_no < config->interface[ifc_no].num_altsetting; set_no++) { ifcdesc = (config->interface[ifc_no].altsetting + set_no); /* The second condition is for older SCM SPR 532 who did not know about the assigned CCID class. The third condition does the same for a Cherry SmartTerminal ST-2000. Instead of trying to interpret the strings we simply check the product ID. */ if (ifcdesc && ifcdesc->extra && ((ifcdesc->bInterfaceClass == 11 && ifcdesc->bInterfaceSubClass == 0 && ifcdesc->bInterfaceProtocol == 0) || (ifcdesc->bInterfaceClass == 255 && desc.idVendor == VENDOR_SCM && desc.idProduct == SCM_SPR532) || (ifcdesc->bInterfaceClass == 255 && desc.idVendor == VENDOR_CHERRY && desc.idProduct == CHERRY_ST2000))) { ++*count; err = libusb_open (dev, &idev); if (err) { DEBUGOUT_1 ("usb_open failed: %s\n", libusb_error_name (err)); continue; /* with next setting. */ } rid = make_reader_id (idev, desc.idVendor, desc.idProduct, desc.iSerialNumber); if (!rid) { libusb_free_config_descriptor (config); return; } /* We are collecting infos about all available CCID readers. Store them and continue. */ DEBUGOUT_2 ("found CCID reader %d (ID=%s)\n", *count, rid); p = malloc ((*rid_list? strlen (*rid_list):0) + 1 + strlen (rid) + 1); if (p) { *p = 0; if (*rid_list) { strcat (p, *rid_list); free (*rid_list); } strcat (p, rid); strcat (p, "\n"); *rid_list = p; } else /* Out of memory. */ { libusb_free_config_descriptor (config); free (rid); return; } free (rid); libusb_close (idev); idev = NULL; } } libusb_free_config_descriptor (config); } /* Scan all CCID devices. The function returns 0 if a reader has been found or when a scan returned without error. R_RID should be the address where to store the list of reader_ids we found. If on return this list is empty, no CCID device has been found; otherwise it points to an allocated linked list of reader IDs. */ static int scan_devices (char **r_rid) { char *rid_list = NULL; int count = 0; libusb_device **dev_list = NULL; libusb_device *dev; int i; ssize_t n; /* Set return values to a default. */ if (r_rid) *r_rid = NULL; n = libusb_get_device_list (NULL, &dev_list); for (i = 0; i < n; i++) { dev = dev_list[i]; scan_usb_device (&count, &rid_list, dev); } libusb_free_device_list (dev_list, 1); *r_rid = rid_list; return 0; } /* Set the level of debugging to LEVEL and return the old level. -1 just returns the old level. A level of 0 disables debugging, 1 enables debugging, 2 enables additional tracing of the T=1 protocol, 3 additionally enables debugging for GetSlotStatus, other values are not yet defined. Note that libusb may provide its own debugging feature which is enabled by setting the envvar USB_DEBUG. */ int ccid_set_debug_level (int level) { int old = debug_level; if (level != -1) debug_level = level; return old; } char * ccid_get_reader_list (void) { char *reader_list; if (!initialized_usb) { int rc; if ((rc = libusb_init (NULL))) { DEBUGOUT_1 ("usb_init failed: %s.\n", libusb_error_name (rc)); return NULL; } initialized_usb = 1; } if (scan_devices (&reader_list)) return NULL; /* Error. */ return reader_list; } /* Vendor specific custom initialization. */ static int ccid_vendor_specific_init (ccid_driver_t handle) { if (handle->id_vendor == VENDOR_VEGA && handle->id_product == VEGA_ALPHA) { int r; /* * Vega alpha has a feature to show retry counter on the pinpad * display. But it assumes that the card returns the value of * retry counter by VERIFY with empty data (return code of * 63Cx). Unfortunately, existing OpenPGP cards don't support * VERIFY command with empty data. This vendor specific command * sequence is to disable the feature. */ const unsigned char cmd[] = { '\xb5', '\x01', '\x00', '\x03', '\x00' }; r = send_escape_cmd (handle, cmd, sizeof (cmd), NULL, 0, NULL); if (r != 0 && r != CCID_DRIVER_ERR_CARD_INACTIVE && r != CCID_DRIVER_ERR_NO_CARD) return r; } return 0; } #define MAX_DEVICE 4 /* See MAX_READER in apdu.c. */ struct ccid_dev_table { int n; /* Index to ccid_usb_dev_list */ int interface_number; int setting_number; unsigned char *ifcdesc_extra; int ep_bulk_out; int ep_bulk_in; int ep_intr; size_t ifcdesc_extra_len; }; static libusb_device **ccid_usb_dev_list; static struct ccid_dev_table ccid_dev_table[MAX_DEVICE]; gpg_error_t ccid_dev_scan (int *idx_max_p, struct ccid_dev_table **t_p) { ssize_t n; libusb_device *dev; int i; int ifc_no; int set_no; int idx = 0; int err = 0; *idx_max_p = 0; *t_p = NULL; if (!initialized_usb) { int rc; if ((rc = libusb_init (NULL))) { DEBUGOUT_1 ("usb_init failed: %s.\n", libusb_error_name (rc)); return gpg_error (GPG_ERR_ENODEV); } initialized_usb = 1; } n = libusb_get_device_list (NULL, &ccid_usb_dev_list); for (i = 0; i < n; i++) { struct libusb_config_descriptor *config; struct libusb_device_descriptor desc; dev = ccid_usb_dev_list[i]; if (libusb_get_device_descriptor (dev, &desc)) continue; if (libusb_get_active_config_descriptor (dev, &config)) continue; for (ifc_no=0; ifc_no < config->bNumInterfaces; ifc_no++) for (set_no=0; set_no < config->interface[ifc_no].num_altsetting; set_no++) { const struct libusb_interface_descriptor *ifcdesc; ifcdesc = &config->interface[ifc_no].altsetting[set_no]; /* The second condition is for older SCM SPR 532 who did not know about the assigned CCID class. The third condition does the same for a Cherry SmartTerminal ST-2000. Instead of trying to interpret the strings we simply check the product ID. */ if (ifcdesc && ifcdesc->extra && ((ifcdesc->bInterfaceClass == 11 && ifcdesc->bInterfaceSubClass == 0 && ifcdesc->bInterfaceProtocol == 0) || (ifcdesc->bInterfaceClass == 255 && desc.idVendor == VENDOR_SCM && desc.idProduct == SCM_SPR532) || (ifcdesc->bInterfaceClass == 255 && desc.idVendor == VENDOR_CHERRY && desc.idProduct == CHERRY_ST2000))) { /* Found a reader. */ unsigned char *ifcdesc_extra; ifcdesc_extra = malloc (ifcdesc->extra_length); if (!ifcdesc_extra) { err = gpg_error_from_syserror (); libusb_free_config_descriptor (config); goto scan_finish; } memcpy (ifcdesc_extra, ifcdesc->extra, ifcdesc->extra_length); ccid_dev_table[idx].n = i; ccid_dev_table[idx].interface_number = ifc_no; ccid_dev_table[idx].setting_number = set_no; ccid_dev_table[idx].ifcdesc_extra = ifcdesc_extra; ccid_dev_table[idx].ifcdesc_extra_len = ifcdesc->extra_length; ccid_dev_table[idx].ep_bulk_out = find_endpoint (ifcdesc, 0); ccid_dev_table[idx].ep_bulk_in = find_endpoint (ifcdesc, 1); ccid_dev_table[idx].ep_intr = find_endpoint (ifcdesc, 2); idx++; if (idx >= MAX_DEVICE) { libusb_free_config_descriptor (config); err = 0; goto scan_finish; } } } libusb_free_config_descriptor (config); } scan_finish: if (err) { for (i = 0; i < idx; i++) { free (ccid_dev_table[idx].ifcdesc_extra); ccid_dev_table[idx].n = 0; ccid_dev_table[idx].interface_number = 0; ccid_dev_table[idx].setting_number = 0; ccid_dev_table[idx].ifcdesc_extra = NULL; ccid_dev_table[idx].ifcdesc_extra_len = 0; ccid_dev_table[idx].ep_bulk_out = 0; ccid_dev_table[idx].ep_bulk_in = 0; ccid_dev_table[idx].ep_intr = 0; } libusb_free_device_list (ccid_usb_dev_list, 1); ccid_usb_dev_list = NULL; } else { *idx_max_p = idx; if (idx) *t_p = ccid_dev_table; else *t_p = NULL; } return err; } void ccid_dev_scan_finish (struct ccid_dev_table *tbl, int max) { int i; for (i = 0; i < max; i++) { free (tbl[i].ifcdesc_extra); tbl[i].n = 0; tbl[i].interface_number = 0; tbl[i].setting_number = 0; tbl[i].ifcdesc_extra = NULL; tbl[i].ifcdesc_extra_len = 0; tbl[i].ep_bulk_out = 0; tbl[i].ep_bulk_in = 0; tbl[i].ep_intr = 0; } libusb_free_device_list (ccid_usb_dev_list, 1); ccid_usb_dev_list = NULL; } unsigned int ccid_get_BAI (int idx, struct ccid_dev_table *tbl) { int n; int bus, addr, intf; unsigned int bai; libusb_device *dev; n = tbl[idx].n; dev = ccid_usb_dev_list[n]; bus = libusb_get_bus_number (dev); addr = libusb_get_device_address (dev); intf = tbl[idx].interface_number; bai = (bus << 16) | (addr << 8) | intf; return bai; } int ccid_compare_BAI (ccid_driver_t handle, unsigned int bai) { return handle->bai == bai; } static void intr_cb (struct libusb_transfer *transfer) { ccid_driver_t handle = transfer->user_data; DEBUGOUT_1 ("CCID: interrupt callback %d\n", transfer->status); if (transfer->status == LIBUSB_TRANSFER_TIMED_OUT) { int err; submit_again: /* Submit the URB again to keep watching the INTERRUPT transfer. */ err = libusb_submit_transfer (transfer); if (err == LIBUSB_ERROR_NO_DEVICE) goto device_removed; DEBUGOUT_1 ("CCID submit transfer again %d\n", err); } else if (transfer->status == LIBUSB_TRANSFER_COMPLETED) { if (transfer->actual_length == 2 && transfer->buffer[0] == 0x50 && (transfer->buffer[1] & 1) == 0) { DEBUGOUT ("CCID: card removed\n"); handle->powered_off = 1; #if defined(GNUPG_MAJOR_VERSION) scd_kick_the_loop (); #endif } else { /* Event other than card removal. */ goto submit_again; } } else if (transfer->status == LIBUSB_TRANSFER_CANCELLED) handle->powered_off = 1; else { device_removed: DEBUGOUT ("CCID: device removed\n"); handle->powered_off = 1; #if defined(GNUPG_MAJOR_VERSION) scd_kick_the_loop (); #endif } } static void ccid_setup_intr (ccid_driver_t handle) { struct libusb_transfer *transfer; int err; transfer = libusb_alloc_transfer (0); handle->transfer = transfer; libusb_fill_interrupt_transfer (transfer, handle->idev, handle->ep_intr, handle->intr_buf, sizeof (handle->intr_buf), intr_cb, handle, 0); err = libusb_submit_transfer (transfer); DEBUGOUT_2 ("CCID submit transfer (%x): %d", handle->ep_intr, err); } static void * ccid_usb_thread (void *arg) { libusb_context *ctx = arg; while (ccid_usb_thread_is_alive) { #ifdef USE_NPTH npth_unprotect (); #endif libusb_handle_events_completed (ctx, NULL); #ifdef USE_NPTH npth_protect (); #endif } return NULL; } static int ccid_open_usb_reader (const char *spec_reader_name, int idx, struct ccid_dev_table *ccid_table, ccid_driver_t *handle, char **rdrname_p) { libusb_device *dev; libusb_device_handle *idev = NULL; char *rid = NULL; int rc = 0; int ifc_no, set_no; struct libusb_device_descriptor desc; int n; int bus, addr; unsigned int bai; n = ccid_table[idx].n; ifc_no = ccid_table[idx].interface_number; set_no = ccid_table[idx].setting_number; dev = ccid_usb_dev_list[n]; bus = libusb_get_bus_number (dev); addr = libusb_get_device_address (dev); bai = (bus << 16) | (addr << 8) | ifc_no; rc = libusb_open (dev, &idev); if (rc) { DEBUGOUT_1 ("usb_open failed: %s\n", libusb_error_name (rc)); free (*handle); *handle = NULL; return rc; } if (ccid_usb_thread_is_alive++ == 0) { npth_t thread; npth_attr_t tattr; int err; err = npth_attr_init (&tattr); if (err) { DEBUGOUT_1 ("npth_attr_init failed: %s\n", strerror (err)); free (*handle); *handle = NULL; return err; } npth_attr_setdetachstate (&tattr, NPTH_CREATE_DETACHED); err = npth_create (&thread, &tattr, ccid_usb_thread, NULL); if (err) { DEBUGOUT_1 ("npth_create failed: %s\n", strerror (err)); free (*handle); *handle = NULL; return err; } npth_attr_destroy (&tattr); } rc = libusb_get_device_descriptor (dev, &desc); if (rc) { DEBUGOUT ("get_device_descripor failed\n"); goto leave; } rid = make_reader_id (idev, desc.idVendor, desc.idProduct, desc.iSerialNumber); /* Check to see if reader name matches the spec. */ if (spec_reader_name && strncmp (rid, spec_reader_name, strlen (spec_reader_name))) { DEBUGOUT ("device not matched\n"); rc = CCID_DRIVER_ERR_NO_READER; goto leave; } (*handle)->id_vendor = desc.idVendor; (*handle)->id_product = desc.idProduct; (*handle)->idev = idev; (*handle)->bai = bai; (*handle)->ifc_no = ifc_no; (*handle)->ep_bulk_out = ccid_table[idx].ep_bulk_out; (*handle)->ep_bulk_in = ccid_table[idx].ep_bulk_in; (*handle)->ep_intr = ccid_table[idx].ep_intr; DEBUGOUT_2 ("using CCID reader %d (ID=%s)\n", idx, rid); if (parse_ccid_descriptor (*handle, desc.bcdDevice, ccid_table[idx].ifcdesc_extra, ccid_table[idx].ifcdesc_extra_len)) { DEBUGOUT ("device not supported\n"); rc = CCID_DRIVER_ERR_NO_READER; goto leave; } rc = libusb_claim_interface (idev, ifc_no); if (rc) { DEBUGOUT_1 ("usb_claim_interface failed: %d\n", rc); rc = CCID_DRIVER_ERR_CARD_IO_ERROR; goto leave; } /* Submit SET_INTERFACE control transfer which can reset the device. */ rc = libusb_set_interface_alt_setting (idev, ifc_no, set_no); if (rc) { DEBUGOUT_1 ("usb_set_interface_alt_setting failed: %d\n", rc); rc = CCID_DRIVER_ERR_CARD_IO_ERROR; goto leave; } rc = ccid_vendor_specific_init (*handle); leave: if (rc) { --ccid_usb_thread_is_alive; free (rid); libusb_close (idev); free (*handle); *handle = NULL; } else { if (rdrname_p) *rdrname_p = rid; else free (rid); } return rc; } /* Open the reader with the internal number READERNO and return a pointer to be used as handle in HANDLE. Returns 0 on success. */ int ccid_open_reader (const char *spec_reader_name, int idx, struct ccid_dev_table *ccid_table, ccid_driver_t *handle, char **rdrname_p) { *handle = calloc (1, sizeof **handle); if (!*handle) { DEBUGOUT ("out of memory\n"); return CCID_DRIVER_ERR_OUT_OF_CORE; } return ccid_open_usb_reader (spec_reader_name, idx, ccid_table, handle, rdrname_p); } int ccid_require_get_status (ccid_driver_t handle) { /* When a card reader supports interrupt transfer to check the status of card, it is possible to submit only an interrupt transfer, and no check is required by application layer. USB can detect removal of a card and can detect removal of a reader. */ if (handle->ep_intr >= 0) return 0; /* Libusb actually detects the removal of USB device in use. However, there is no good API to handle the removal (yet), cleanly and with good portability. There is libusb_set_pollfd_notifiers function, but it doesn't offer libusb_device_handle* data to its callback. So, when it watches multiple devices, there is no way to know which device is removed. Once, we will have a good programming interface of libusb, we can list tokens (with no interrupt transfer support, but always with card inserted) here to return 0, so that scdaemon can submit minimum packet on wire. */ return 1; } static int send_power_off (ccid_driver_t handle) { int rc; unsigned char msg[100]; size_t msglen; unsigned char seqno; msg[0] = PC_to_RDR_IccPowerOff; msg[5] = 0; /* slot */ msg[6] = seqno = handle->seqno++; msg[7] = 0; /* RFU */ msg[8] = 0; /* RFU */ msg[9] = 0; /* RFU */ set_msg_len (msg, 0); msglen = 10; rc = bulk_out (handle, msg, msglen, 0); if (!rc) bulk_in (handle, msg, sizeof msg, &msglen, RDR_to_PC_SlotStatus, seqno, 2000, 0); return rc; } static void do_close_reader (ccid_driver_t handle) { int rc; if (!handle->powered_off) send_power_off (handle); if (handle->transfer) { if (!handle->powered_off) { DEBUGOUT ("libusb_cancel_transfer\n"); rc = libusb_cancel_transfer (handle->transfer); if (rc != LIBUSB_ERROR_NOT_FOUND) while (!handle->powered_off) { DEBUGOUT ("libusb_handle_events_completed\n"); #ifdef USE_NPTH npth_unprotect (); #endif libusb_handle_events_completed (NULL, &handle->powered_off); #ifdef USE_NPTH npth_protect (); #endif } } libusb_free_transfer (handle->transfer); handle->transfer = NULL; } libusb_release_interface (handle->idev, handle->ifc_no); --ccid_usb_thread_is_alive; libusb_close (handle->idev); handle->idev = NULL; } int ccid_set_progress_cb (ccid_driver_t handle, void (*cb)(void *, const char *, int, int, int), void *cb_arg) { if (!handle) return CCID_DRIVER_ERR_INV_VALUE; handle->progress_cb = cb; handle->progress_cb_arg = cb_arg; return 0; } int ccid_set_prompt_cb (ccid_driver_t handle, void (*cb)(void *, int), void *cb_arg) { if (!handle) return CCID_DRIVER_ERR_INV_VALUE; handle->prompt_cb = cb; handle->prompt_cb_arg = cb_arg; return 0; } /* Close the reader HANDLE. */ int ccid_close_reader (ccid_driver_t handle) { if (!handle) return 0; do_close_reader (handle); free (handle); return 0; } /* Return False if a card is present and powered. */ int ccid_check_card_presence (ccid_driver_t handle) { (void)handle; /* Not yet implemented. */ return -1; } /* Write a MSG of length MSGLEN to the designated bulk out endpoint. Returns 0 on success. */ static int bulk_out (ccid_driver_t handle, unsigned char *msg, size_t msglen, int no_debug) { int rc; int transferred; /* No need to continue and clutter the log with USB write error messages after we got the first ENODEV. */ if (handle->enodev_seen) return CCID_DRIVER_ERR_NO_READER; if (debug_level && (!no_debug || debug_level >= 3)) { switch (msglen? msg[0]:0) { case PC_to_RDR_IccPowerOn: print_p2r_iccpoweron (msg, msglen); break; case PC_to_RDR_IccPowerOff: print_p2r_iccpoweroff (msg, msglen); break; case PC_to_RDR_GetSlotStatus: print_p2r_getslotstatus (msg, msglen); break; case PC_to_RDR_XfrBlock: print_p2r_xfrblock (msg, msglen); break; case PC_to_RDR_GetParameters: print_p2r_getparameters (msg, msglen); break; case PC_to_RDR_ResetParameters: print_p2r_resetparameters (msg, msglen); break; case PC_to_RDR_SetParameters: print_p2r_setparameters (msg, msglen); break; case PC_to_RDR_Escape: print_p2r_escape (msg, msglen); break; case PC_to_RDR_IccClock: print_p2r_iccclock (msg, msglen); break; case PC_to_RDR_T0APDU: print_p2r_to0apdu (msg, msglen); break; case PC_to_RDR_Secure: print_p2r_secure (msg, msglen); break; case PC_to_RDR_Mechanical: print_p2r_mechanical (msg, msglen); break; case PC_to_RDR_Abort: print_p2r_abort (msg, msglen); break; case PC_to_RDR_SetDataRate: print_p2r_setdatarate (msg, msglen); break; default: print_p2r_unknown (msg, msglen); break; } } #ifdef USE_NPTH npth_unprotect (); #endif rc = libusb_bulk_transfer (handle->idev, handle->ep_bulk_out, msg, msglen, &transferred, 5000 /* ms timeout */); #ifdef USE_NPTH npth_protect (); #endif if (rc == 0 && transferred == msglen) return 0; if (rc) { DEBUGOUT_1 ("usb_bulk_write error: %s\n", libusb_error_name (rc)); if (rc == LIBUSB_ERROR_NO_DEVICE) { handle->enodev_seen = 1; return CCID_DRIVER_ERR_NO_READER; } } return 0; } /* Read a maximum of LENGTH bytes from the bulk in endpoint into BUFFER and return the actual read number if bytes in NREAD. SEQNO is the sequence number used to send the request and EXPECTED_TYPE the type of message we expect. Does checks on the ccid header. TIMEOUT is the timeout value in ms. NO_DEBUG may be set to avoid debug messages in case of no error; this can be overridden with a glibal debug level of at least 3. Returns 0 on success. */ static int bulk_in (ccid_driver_t handle, unsigned char *buffer, size_t length, size_t *nread, int expected_type, int seqno, int timeout, int no_debug) { int rc; int msglen; int notified = 0; /* Fixme: The next line for the current Valgrind without support for USB IOCTLs. */ memset (buffer, 0, length); retry: #ifdef USE_NPTH npth_unprotect (); #endif rc = libusb_bulk_transfer (handle->idev, handle->ep_bulk_in, buffer, length, &msglen, timeout); #ifdef USE_NPTH npth_protect (); #endif if (rc) { DEBUGOUT_1 ("usb_bulk_read error: %s\n", libusb_error_name (rc)); if (rc == LIBUSB_ERROR_NO_DEVICE) { handle->enodev_seen = 1; return CCID_DRIVER_ERR_NO_READER; } return CCID_DRIVER_ERR_CARD_IO_ERROR; } if (msglen < 0) return CCID_DRIVER_ERR_INV_VALUE; /* Faulty libusb. */ *nread = msglen; if (msglen < 10) { DEBUGOUT_1 ("bulk-in msg too short (%u)\n", (unsigned int)msglen); abort_cmd (handle, seqno); return CCID_DRIVER_ERR_INV_VALUE; } if (buffer[5] != 0) { DEBUGOUT_1 ("unexpected bulk-in slot (%d)\n", buffer[5]); return CCID_DRIVER_ERR_INV_VALUE; } if (buffer[6] != seqno) { DEBUGOUT_2 ("bulk-in seqno does not match (%d/%d)\n", seqno, buffer[6]); /* Retry until we are synced again. */ goto retry; } /* We need to handle the time extension request before we check that we got the expected message type. This is in particular required for the Cherry keyboard which sends a time extension request for each key hit. */ if (!(buffer[7] & 0x03) && (buffer[7] & 0xC0) == 0x80) { /* Card present and active, time extension requested. */ DEBUGOUT_2 ("time extension requested (%02X,%02X)\n", buffer[7], buffer[8]); /* Gnuk enhancement to prompt user input by ack button */ if (buffer[8] == 0xff && !notified) { notified = 1; handle->prompt_cb (handle->prompt_cb_arg, 1); } goto retry; } if (notified) handle->prompt_cb (handle->prompt_cb_arg, 0); if (buffer[0] != expected_type && buffer[0] != RDR_to_PC_SlotStatus) { DEBUGOUT_1 ("unexpected bulk-in msg type (%02x)\n", buffer[0]); abort_cmd (handle, seqno); return CCID_DRIVER_ERR_INV_VALUE; } if (debug_level && (!no_debug || debug_level >= 3)) { switch (buffer[0]) { case RDR_to_PC_DataBlock: print_r2p_datablock (buffer, msglen); break; case RDR_to_PC_SlotStatus: print_r2p_slotstatus (buffer, msglen); break; case RDR_to_PC_Parameters: print_r2p_parameters (buffer, msglen); break; case RDR_to_PC_Escape: print_r2p_escape (buffer, msglen); break; case RDR_to_PC_DataRate: print_r2p_datarate (buffer, msglen); break; default: print_r2p_unknown (buffer, msglen); break; } } if (CCID_COMMAND_FAILED (buffer)) print_command_failed (buffer); /* Check whether a card is at all available. Note: If you add new error codes here, check whether they need to be ignored in send_escape_cmd. */ switch ((buffer[7] & 0x03)) { case 0: /* no error */ break; case 1: rc = CCID_DRIVER_ERR_CARD_INACTIVE; break; case 2: rc = CCID_DRIVER_ERR_NO_CARD; break; case 3: /* RFU */ break; } if (rc) { /* * Communication failure by device side. * Possibly, it was forcibly suspended and resumed. * * Only detect this kind of failure when interrupt transfer is * not supported. For card reader with interrupt transfer * support removal is detected by intr_cb. */ if (handle->ep_intr < 0) { DEBUGOUT ("CCID: card inactive/removed\n"); handle->powered_off = 1; #if defined(GNUPG_MAJOR_VERSION) scd_kick_the_loop (); #endif } } return rc; } /* Send an abort sequence and wait until everything settled. */ static int abort_cmd (ccid_driver_t handle, int seqno) { int rc; unsigned char dummybuf[8]; unsigned char msg[100]; int msglen; seqno &= 0xff; DEBUGOUT_1 ("sending abort sequence for seqno %d\n", seqno); /* Send the abort command to the control pipe. Note that we don't need to keep track of sent abort commands because there should never be another thread using the same slot concurrently. */ #ifdef USE_NPTH npth_unprotect (); #endif rc = libusb_control_transfer (handle->idev, 0x21,/* bmRequestType: host-to-device, class specific, to interface. */ 1, /* ABORT */ (seqno << 8 | 0 /* slot */), handle->ifc_no, dummybuf, 0, 1000 /* ms timeout */); #ifdef USE_NPTH npth_protect (); #endif if (rc) { DEBUGOUT_1 ("usb_control_msg error: %s\n", libusb_error_name (rc)); return CCID_DRIVER_ERR_CARD_IO_ERROR; } /* Now send the abort command to the bulk out pipe using the same SEQNO and SLOT. Do this in a loop to so that all seqno are tried. */ seqno--; /* Adjust for next increment. */ do { int transferred; seqno++; msg[0] = PC_to_RDR_Abort; msg[5] = 0; /* slot */ msg[6] = seqno; msg[7] = 0; /* RFU */ msg[8] = 0; /* RFU */ msg[9] = 0; /* RFU */ msglen = 10; set_msg_len (msg, 0); #ifdef USE_NPTH npth_unprotect (); #endif rc = libusb_bulk_transfer (handle->idev, handle->ep_bulk_out, msg, msglen, &transferred, 5000 /* ms timeout */); #ifdef USE_NPTH npth_protect (); #endif if (rc == 0 && transferred == msglen) rc = 0; else if (rc) DEBUGOUT_1 ("usb_bulk_write error in abort_cmd: %s\n", libusb_error_name (rc)); if (rc) return rc; #ifdef USE_NPTH npth_unprotect (); #endif rc = libusb_bulk_transfer (handle->idev, handle->ep_bulk_in, msg, sizeof msg, &msglen, 5000 /*ms timeout*/); #ifdef USE_NPTH npth_protect (); #endif if (rc) { DEBUGOUT_1 ("usb_bulk_read error in abort_cmd: %s\n", libusb_error_name (rc)); return CCID_DRIVER_ERR_CARD_IO_ERROR; } if (msglen < 10) { DEBUGOUT_1 ("bulk-in msg in abort_cmd too short (%u)\n", (unsigned int)msglen); return CCID_DRIVER_ERR_INV_VALUE; } if (msg[5] != 0) { DEBUGOUT_1 ("unexpected bulk-in slot (%d) in abort_cmd\n", msg[5]); return CCID_DRIVER_ERR_INV_VALUE; } DEBUGOUT_3 ("status: %02X error: %02X octet[9]: %02X\n", msg[7], msg[8], msg[9]); if (CCID_COMMAND_FAILED (msg)) print_command_failed (msg); } while (msg[0] != RDR_to_PC_SlotStatus && msg[5] != 0 && msg[6] != seqno); handle->seqno = ((seqno + 1) & 0xff); DEBUGOUT ("sending abort sequence succeeded\n"); return 0; } /* Note that this function won't return the error codes NO_CARD or CARD_INACTIVE. IF RESULT is not NULL, the result from the operation will get returned in RESULT and its length in RESULTLEN. If the response is larger than RESULTMAX, an error is returned and the required buffer length returned in RESULTLEN. */ static int send_escape_cmd (ccid_driver_t handle, const unsigned char *data, size_t datalen, unsigned char *result, size_t resultmax, size_t *resultlen) { int rc; unsigned char msg[100]; size_t msglen; unsigned char seqno; if (resultlen) *resultlen = 0; if (datalen > sizeof msg - 10) return CCID_DRIVER_ERR_INV_VALUE; /* Escape data too large. */ msg[0] = PC_to_RDR_Escape; msg[5] = 0; /* slot */ msg[6] = seqno = handle->seqno++; msg[7] = 0; /* RFU */ msg[8] = 0; /* RFU */ msg[9] = 0; /* RFU */ memcpy (msg+10, data, datalen); msglen = 10 + datalen; set_msg_len (msg, datalen); rc = bulk_out (handle, msg, msglen, 0); if (rc) return rc; rc = bulk_in (handle, msg, sizeof msg, &msglen, RDR_to_PC_Escape, seqno, 5000, 0); if (result) switch (rc) { /* We need to ignore certain errorcode here. */ case 0: case CCID_DRIVER_ERR_CARD_INACTIVE: case CCID_DRIVER_ERR_NO_CARD: { if (msglen > resultmax) rc = CCID_DRIVER_ERR_INV_VALUE; /* Response too large. */ else { memcpy (result, msg, msglen); if (resultlen) *resultlen = msglen; rc = 0; } } break; default: break; } return rc; } int ccid_transceive_escape (ccid_driver_t handle, const unsigned char *data, size_t datalen, unsigned char *resp, size_t maxresplen, size_t *nresp) { return send_escape_cmd (handle, data, datalen, resp, maxresplen, nresp); } /* experimental */ int ccid_poll (ccid_driver_t handle) { int rc; unsigned char msg[10]; int msglen; int i, j; rc = libusb_interrupt_transfer (handle->idev, handle->ep_intr, msg, sizeof msg, &msglen, 0 /* ms timeout */ ); if (rc == LIBUSB_ERROR_TIMEOUT) return 0; if (rc) { DEBUGOUT_1 ("usb_intr_read error: %s\n", libusb_error_name (rc)); return CCID_DRIVER_ERR_CARD_IO_ERROR; } if (msglen < 1) { DEBUGOUT ("intr-in msg too short\n"); return CCID_DRIVER_ERR_INV_VALUE; } if (msg[0] == RDR_to_PC_NotifySlotChange) { DEBUGOUT ("notify slot change:"); for (i=1; i < msglen; i++) for (j=0; j < 4; j++) DEBUGOUT_CONT_3 (" %d:%c%c", (i-1)*4+j, (msg[i] & (1<<(j*2)))? 'p':'-', (msg[i] & (2<<(j*2)))? '*':' '); DEBUGOUT_LF (); } else if (msg[0] == RDR_to_PC_HardwareError) { DEBUGOUT ("hardware error occurred\n"); } else { DEBUGOUT_1 ("unknown intr-in msg of type %02X\n", msg[0]); } return 0; } /* Note that this function won't return the error codes NO_CARD or CARD_INACTIVE */ int ccid_slot_status (ccid_driver_t handle, int *statusbits, int on_wire) { int rc; unsigned char msg[100]; size_t msglen; unsigned char seqno; int retries = 0; if (handle->powered_off) return CCID_DRIVER_ERR_NO_READER; /* If the card (with its lower-level driver) doesn't require GET_STATUS on wire (because it supports INTERRUPT transfer for status change, or it's a token which has a card always inserted), no need to send on wire. */ if (!on_wire && !ccid_require_get_status (handle)) { /* Setup interrupt transfer at the initial call of slot_status with ON_WIRE == 0 */ if (handle->transfer == NULL && handle->ep_intr >= 0) ccid_setup_intr (handle); *statusbits = 0; return 0; } retry: msg[0] = PC_to_RDR_GetSlotStatus; msg[5] = 0; /* slot */ msg[6] = seqno = handle->seqno++; msg[7] = 0; /* RFU */ msg[8] = 0; /* RFU */ msg[9] = 0; /* RFU */ set_msg_len (msg, 0); rc = bulk_out (handle, msg, 10, 1); if (rc) return rc; /* Note that we set the NO_DEBUG flag here, so that the logs won't get cluttered up by a ticker function checking for the slot status and debugging enabled. */ rc = bulk_in (handle, msg, sizeof msg, &msglen, RDR_to_PC_SlotStatus, seqno, retries? 1000 : 200, 1); if (rc == CCID_DRIVER_ERR_CARD_IO_ERROR && retries < 3) { if (!retries) { DEBUGOUT ("USB: CALLING USB_CLEAR_HALT\n"); #ifdef USE_NPTH npth_unprotect (); #endif libusb_clear_halt (handle->idev, handle->ep_bulk_in); libusb_clear_halt (handle->idev, handle->ep_bulk_out); #ifdef USE_NPTH npth_protect (); #endif } else DEBUGOUT ("USB: RETRYING bulk_in AGAIN\n"); retries++; goto retry; } if (rc && rc != CCID_DRIVER_ERR_NO_CARD && rc != CCID_DRIVER_ERR_CARD_INACTIVE) return rc; *statusbits = (msg[7] & 3); return 0; } /* Parse ATR string (of ATRLEN) and update parameters at PARAM. Calling this routine, it should prepare default values at PARAM beforehand. This routine assumes that card is accessed by T=1 protocol. It doesn't analyze historical bytes at all. Returns < 0 value on error: -1 for parse error or integrity check error -2 for card doesn't support T=1 protocol -3 for parameters are nod explicitly defined by ATR -4 for this driver doesn't support CRC Returns >= 0 on success: 0 for card is negotiable mode 1 for card is specific mode (and not negotiable) */ static int update_param_by_atr (unsigned char *param, unsigned char *atr, size_t atrlen) { int i = -1; int t, y, chk; int historical_bytes_num, negotiable = 1; #define NEXTBYTE() do { i++; if (atrlen <= i) return -1; } while (0) NEXTBYTE (); if (atr[i] == 0x3F) param[1] |= 0x02; /* Convention is inverse. */ NEXTBYTE (); y = (atr[i] >> 4); historical_bytes_num = atr[i] & 0x0f; NEXTBYTE (); if ((y & 1)) { param[0] = atr[i]; /* TA1 - Fi & Di */ NEXTBYTE (); } if ((y & 2)) NEXTBYTE (); /* TB1 - ignore */ if ((y & 4)) { param[2] = atr[i]; /* TC1 - Guard Time */ NEXTBYTE (); } if ((y & 8)) { y = (atr[i] >> 4); /* TD1 */ t = atr[i] & 0x0f; NEXTBYTE (); if ((y & 1)) { /* TA2 - PPS mode */ if ((atr[i] & 0x0f) != 1) return -2; /* Wrong card protocol (!= 1). */ if ((atr[i] & 0x10) != 0x10) return -3; /* Transmission parameters are implicitly defined. */ negotiable = 0; /* TA2 means specific mode. */ NEXTBYTE (); } if ((y & 2)) NEXTBYTE (); /* TB2 - ignore */ if ((y & 4)) NEXTBYTE (); /* TC2 - ignore */ if ((y & 8)) { y = (atr[i] >> 4); /* TD2 */ t = atr[i] & 0x0f; NEXTBYTE (); } else y = 0; while (y) { if ((y & 1)) { /* TAx */ if (t == 1) param[5] = atr[i]; /* IFSC */ else if (t == 15) /* XXX: check voltage? */ param[4] = (atr[i] >> 6); /* ClockStop */ NEXTBYTE (); } if ((y & 2)) { if (t == 1) param[3] = atr[i]; /* TBx - BWI & CWI */ NEXTBYTE (); } if ((y & 4)) { if (t == 1) param[1] |= (atr[i] & 0x01); /* TCx - LRC/CRC */ NEXTBYTE (); if (param[1] & 0x01) return -4; /* CRC not supported yet. */ } if ((y & 8)) { y = (atr[i] >> 4); /* TDx */ t = atr[i] & 0x0f; NEXTBYTE (); } else y = 0; } } i += historical_bytes_num - 1; NEXTBYTE (); if (atrlen != i+1) return -1; #undef NEXTBYTE chk = 0; do { chk ^= atr[i]; i--; } while (i > 0); if (chk != 0) return -1; return negotiable; } /* Return the ATR of the card. This is not a cached value and thus an actual reset is done. */ int ccid_get_atr (ccid_driver_t handle, unsigned char *atr, size_t maxatrlen, size_t *atrlen) { int rc; int statusbits; unsigned char msg[100]; unsigned char *tpdu; size_t msglen, tpdulen; unsigned char seqno; int use_crc = 0; unsigned int edc; int tried_iso = 0; int got_param; unsigned char param[7] = { /* For Protocol T=1 */ 0x11, /* bmFindexDindex */ 0x10, /* bmTCCKST1 */ 0x00, /* bGuardTimeT1 */ 0x4d, /* bmWaitingIntegersT1 */ 0x00, /* bClockStop */ 0x20, /* bIFSC */ 0x00 /* bNadValue */ }; /* First check whether a card is available. */ rc = ccid_slot_status (handle, &statusbits, 1); if (rc) return rc; if (statusbits == 2) return CCID_DRIVER_ERR_NO_CARD; /* * In the first invocation of ccid_slot_status, card reader may * return CCID_DRIVER_ERR_CARD_INACTIVE and handle->powered_off may * become 1. Because inactive card is no problem (we are turning it * ON here), clear the flag. */ handle->powered_off = 0; /* For an inactive and also for an active card, issue the PowerOn command to get the ATR. */ again: msg[0] = PC_to_RDR_IccPowerOn; msg[5] = 0; /* slot */ msg[6] = seqno = handle->seqno++; /* power select (0=auto, 1=5V, 2=3V, 3=1.8V) */ msg[7] = handle->auto_voltage ? 0 : 1; msg[8] = 0; /* RFU */ msg[9] = 0; /* RFU */ set_msg_len (msg, 0); msglen = 10; rc = bulk_out (handle, msg, msglen, 0); if (rc) return rc; rc = bulk_in (handle, msg, sizeof msg, &msglen, RDR_to_PC_DataBlock, seqno, 5000, 0); if (rc) return rc; if (!tried_iso && CCID_COMMAND_FAILED (msg) && CCID_ERROR_CODE (msg) == 0xbb && ((handle->id_vendor == VENDOR_CHERRY && handle->id_product == 0x0005) || (handle->id_vendor == VENDOR_GEMPC && handle->id_product == 0x4433) )) { tried_iso = 1; /* Try switching to ISO mode. */ if (!send_escape_cmd (handle, (const unsigned char*)"\xF1\x01", 2, NULL, 0, NULL)) goto again; } else if (statusbits == 0 && CCID_COMMAND_FAILED (msg)) { /* Card was active already, and something went wrong with PC_to_RDR_IccPowerOn command. It may be baud-rate mismatch between the card and the reader. To recover from this state, send PC_to_RDR_IccPowerOff command to reset the card and try again. */ rc = send_power_off (handle); if (rc) return rc; statusbits = 1; goto again; } else if (CCID_COMMAND_FAILED (msg)) return CCID_DRIVER_ERR_CARD_IO_ERROR; handle->powered_off = 0; if (atr) { size_t n = msglen - 10; if (n > maxatrlen) n = maxatrlen; memcpy (atr, msg+10, n); *atrlen = n; } param[6] = handle->nonnull_nad? ((1 << 4) | 0): 0; rc = update_param_by_atr (param, msg+10, msglen - 10); if (rc < 0) { DEBUGOUT_1 ("update_param_by_atr failed: %d\n", rc); return CCID_DRIVER_ERR_CARD_IO_ERROR; } got_param = 0; if (handle->auto_param) { msg[0] = PC_to_RDR_GetParameters; msg[5] = 0; /* slot */ msg[6] = seqno = handle->seqno++; msg[7] = 0; /* RFU */ msg[8] = 0; /* RFU */ msg[9] = 0; /* RFU */ set_msg_len (msg, 0); msglen = 10; rc = bulk_out (handle, msg, msglen, 0); if (!rc) rc = bulk_in (handle, msg, sizeof msg, &msglen, RDR_to_PC_Parameters, seqno, 2000, 0); if (rc) DEBUGOUT ("GetParameters failed\n"); else if (msglen == 17 && msg[9] == 1) got_param = 1; } else if (handle->auto_pps) ; else if (rc == 1) /* It's negotiable, send PPS. */ { msg[0] = PC_to_RDR_XfrBlock; msg[5] = 0; /* slot */ msg[6] = seqno = handle->seqno++; msg[7] = 0; msg[8] = 0; msg[9] = 0; msg[10] = 0xff; /* PPSS */ msg[11] = 0x11; /* PPS0: PPS1, Protocol T=1 */ msg[12] = param[0]; /* PPS1: Fi / Di */ msg[13] = 0xff ^ 0x11 ^ param[0]; /* PCK */ set_msg_len (msg, 4); msglen = 10 + 4; rc = bulk_out (handle, msg, msglen, 0); if (rc) return rc; rc = bulk_in (handle, msg, sizeof msg, &msglen, RDR_to_PC_DataBlock, seqno, 5000, 0); if (rc) return rc; if (msglen != 10 + 4) { DEBUGOUT_1 ("Setting PPS failed: %zu\n", msglen); return CCID_DRIVER_ERR_CARD_IO_ERROR; } if (msg[10] != 0xff || msg[11] != 0x11 || msg[12] != param[0]) { DEBUGOUT_1 ("Setting PPS failed: 0x%02x\n", param[0]); return CCID_DRIVER_ERR_CARD_IO_ERROR; } } /* Setup parameters to select T=1. */ msg[0] = PC_to_RDR_SetParameters; msg[5] = 0; /* slot */ msg[6] = seqno = handle->seqno++; msg[7] = 1; /* Select T=1. */ msg[8] = 0; /* RFU */ msg[9] = 0; /* RFU */ if (!got_param) memcpy (&msg[10], param, 7); set_msg_len (msg, 7); msglen = 10 + 7; rc = bulk_out (handle, msg, msglen, 0); if (rc) return rc; rc = bulk_in (handle, msg, sizeof msg, &msglen, RDR_to_PC_Parameters, seqno, 5000, 0); if (rc) DEBUGOUT ("SetParameters failed (ignored)\n"); if (!rc && msglen > 15 && msg[15] >= 16 && msg[15] <= 254 ) handle->ifsc = msg[15]; else handle->ifsc = 128; /* Something went wrong, assume 128 bytes. */ if (handle->nonnull_nad && msglen > 16 && msg[16] == 0) { DEBUGOUT ("Use Null-NAD, clearing handle->nonnull_nad.\n"); handle->nonnull_nad = 0; } handle->t1_ns = 0; handle->t1_nr = 0; /* Send an S-Block with our maximum IFSD to the CCID. */ if (!handle->apdu_level && !handle->auto_ifsd) { tpdu = msg+10; /* NAD: DAD=1, SAD=0 */ tpdu[0] = handle->nonnull_nad? ((1 << 4) | 0): 0; tpdu[1] = (0xc0 | 0 | 1); /* S-block request: change IFSD */ tpdu[2] = 1; tpdu[3] = handle->max_ifsd? handle->max_ifsd : 32; tpdulen = 4; edc = compute_edc (tpdu, tpdulen, use_crc); if (use_crc) tpdu[tpdulen++] = (edc >> 8); tpdu[tpdulen++] = edc; msg[0] = PC_to_RDR_XfrBlock; msg[5] = 0; /* slot */ msg[6] = seqno = handle->seqno++; msg[7] = 0; msg[8] = 0; /* RFU */ msg[9] = 0; /* RFU */ set_msg_len (msg, tpdulen); msglen = 10 + tpdulen; if (debug_level > 1) DEBUGOUT_3 ("T=1: put %c-block seq=%d%s\n", ((msg[11] & 0xc0) == 0x80)? 'R' : (msg[11] & 0x80)? 'S' : 'I', ((msg[11] & 0x80)? !!(msg[11]& 0x10) : !!(msg[11] & 0x40)), (!(msg[11] & 0x80) && (msg[11] & 0x20)? " [more]":"")); rc = bulk_out (handle, msg, msglen, 0); if (rc) return rc; rc = bulk_in (handle, msg, sizeof msg, &msglen, RDR_to_PC_DataBlock, seqno, 5000, 0); if (rc) return rc; tpdu = msg + 10; tpdulen = msglen - 10; if (tpdulen < 4) return CCID_DRIVER_ERR_ABORTED; if (debug_level > 1) DEBUGOUT_4 ("T=1: got %c-block seq=%d err=%d%s\n", ((msg[11] & 0xc0) == 0x80)? 'R' : (msg[11] & 0x80)? 'S' : 'I', ((msg[11] & 0x80)? !!(msg[11]& 0x10) : !!(msg[11] & 0x40)), ((msg[11] & 0xc0) == 0x80)? (msg[11] & 0x0f) : 0, (!(msg[11] & 0x80) && (msg[11] & 0x20)? " [more]":"")); if ((tpdu[1] & 0xe0) != 0xe0 || tpdu[2] != 1) { DEBUGOUT ("invalid response for S-block (Change-IFSD)\n"); return -1; } DEBUGOUT_1 ("IFSD has been set to %d\n", tpdu[3]); } return 0; } static unsigned int compute_edc (const unsigned char *data, size_t datalen, int use_crc) { if (use_crc) { return 0x42; /* Not yet implemented. */ } else { unsigned char crc = 0; for (; datalen; datalen--) crc ^= *data++; return crc; } } /* Return true if APDU is an extended length one. */ static int is_exlen_apdu (const unsigned char *apdu, size_t apdulen) { if (apdulen < 7 || apdu[4]) return 0; /* Too short or no Z byte. */ return 1; } /* Helper for ccid_transceive used for APDU level exchanges. */ static int ccid_transceive_apdu_level (ccid_driver_t handle, const unsigned char *apdu_buf, size_t apdu_len, unsigned char *resp, size_t maxresplen, size_t *nresp) { int rc; unsigned char msg[CCID_MAX_BUF]; const unsigned char *apdu_p; size_t apdu_part_len; size_t msglen; unsigned char seqno; int bwi = 4; unsigned char chain = 0; if (apdu_len == 0 || apdu_len > sizeof (msg) - 10) return CCID_DRIVER_ERR_INV_VALUE; /* Invalid length. */ apdu_p = apdu_buf; while (1) { apdu_part_len = apdu_len; if (apdu_part_len > handle->max_ccid_msglen - 10) { apdu_part_len = handle->max_ccid_msglen - 10; chain |= 0x01; } msg[0] = PC_to_RDR_XfrBlock; msg[5] = 0; /* slot */ msg[6] = seqno = handle->seqno++; msg[7] = bwi; msg[8] = chain; msg[9] = 0; memcpy (msg+10, apdu_p, apdu_part_len); set_msg_len (msg, apdu_part_len); msglen = 10 + apdu_part_len; rc = bulk_out (handle, msg, msglen, 0); if (rc) return rc; apdu_p += apdu_part_len; apdu_len -= apdu_part_len; rc = bulk_in (handle, msg, sizeof msg, &msglen, RDR_to_PC_DataBlock, seqno, CCID_CMD_TIMEOUT, 0); if (rc) return rc; if (!(chain & 0x01)) break; chain = 0x02; } apdu_len = 0; while (1) { apdu_part_len = msglen - 10; if (resp && apdu_len + apdu_part_len <= maxresplen) memcpy (resp + apdu_len, msg+10, apdu_part_len); apdu_len += apdu_part_len; if (!(msg[9] & 0x01)) break; msg[0] = PC_to_RDR_XfrBlock; msg[5] = 0; /* slot */ msg[6] = seqno = handle->seqno++; msg[7] = bwi; msg[8] = 0x10; /* Request next data block */ msg[9] = 0; set_msg_len (msg, 0); msglen = 10; rc = bulk_out (handle, msg, msglen, 0); if (rc) return rc; rc = bulk_in (handle, msg, sizeof msg, &msglen, RDR_to_PC_DataBlock, seqno, CCID_CMD_TIMEOUT, 0); if (rc) return rc; } if (resp) { if (apdu_len > maxresplen) { DEBUGOUT_2 ("provided buffer too short for received data " "(%u/%u)\n", (unsigned int)apdu_len, (unsigned int)maxresplen); return CCID_DRIVER_ERR_INV_VALUE; } *nresp = apdu_len; } return 0; } /* Protocol T=1 overview Block Structure: Prologue Field: 1 byte Node Address (NAD) 1 byte Protocol Control Byte (PCB) 1 byte Length (LEN) Information Field: 0-254 byte APDU or Control Information (INF) Epilogue Field: 1 byte Error Detection Code (EDC) NAD: bit 7 unused bit 4..6 Destination Node Address (DAD) bit 3 unused bit 2..0 Source Node Address (SAD) If node addresses are not used, SAD and DAD should be set to 0 on the first block sent to the card. If they are used they should have different values (0 for one is okay); that first block sets up the addresses of the nodes. PCB: Information Block (I-Block): bit 7 0 bit 6 Sequence number (yep, that is modulo 2) bit 5 Chaining flag bit 4..0 reserved Received-Ready Block (R-Block): bit 7 1 bit 6 0 bit 5 0 bit 4 Sequence number bit 3..0 0 = no error 1 = EDC or parity error 2 = other error other values are reserved Supervisory Block (S-Block): bit 7 1 bit 6 1 bit 5 clear=request,set=response bit 4..0 0 = resynchronization request 1 = information field size request 2 = abort request 3 = extension of BWT request 4 = VPP error other values are reserved */ int ccid_transceive (ccid_driver_t handle, const unsigned char *apdu_buf, size_t apdu_buflen, unsigned char *resp, size_t maxresplen, size_t *nresp) { int rc; /* The size of the buffer used to be 10+259. For the via_escape hack we need one extra byte, thus 11+259. */ unsigned char send_buffer[11+259], recv_buffer[11+259]; const unsigned char *apdu; size_t apdulen; unsigned char *msg, *tpdu, *p; size_t msglen, tpdulen, last_tpdulen, n; unsigned char seqno; unsigned int edc; int use_crc = 0; int hdrlen, pcboff; size_t dummy_nresp; int via_escape = 0; int next_chunk = 1; int sending = 1; int retries = 0; int resyncing = 0; int nad_byte; int wait_more = 0; if (!nresp) nresp = &dummy_nresp; *nresp = 0; /* Smarter readers allow sending APDUs directly; divert here. */ if (handle->apdu_level) { /* We employ a hack for Omnikey readers which are able to send TPDUs using an escape sequence. There is no documentation but the Windows driver does it this way. Tested using a CM6121. This method works also for the Cherry XX44 keyboards; however there are problems with the ccid_transceive_secure which leads to a loss of sync on the CCID level. If Cherry wants to make their keyboard work again, they should hand over some docs. */ if ((handle->id_vendor == VENDOR_OMNIKEY) && handle->apdu_level < 2 && is_exlen_apdu (apdu_buf, apdu_buflen)) via_escape = 1; else return ccid_transceive_apdu_level (handle, apdu_buf, apdu_buflen, resp, maxresplen, nresp); } /* The other readers we support require sending TPDUs. */ tpdulen = 0; /* Avoid compiler warning about no initialization. */ msg = send_buffer; hdrlen = via_escape? 11 : 10; /* NAD: DAD=1, SAD=0 */ nad_byte = handle->nonnull_nad? ((1 << 4) | 0): 0; if (via_escape) nad_byte = 0; last_tpdulen = 0; /* Avoid gcc warning (controlled by RESYNCING). */ for (;;) { if (next_chunk) { next_chunk = 0; apdu = apdu_buf; apdulen = apdu_buflen; assert (apdulen); /* Construct an I-Block. */ tpdu = msg + hdrlen; tpdu[0] = nad_byte; tpdu[1] = ((handle->t1_ns & 1) << 6); /* I-block */ if (apdulen > handle->ifsc ) { apdulen = handle->ifsc; apdu_buf += handle->ifsc; apdu_buflen -= handle->ifsc; tpdu[1] |= (1 << 5); /* Set more bit. */ } tpdu[2] = apdulen; memcpy (tpdu+3, apdu, apdulen); tpdulen = 3 + apdulen; edc = compute_edc (tpdu, tpdulen, use_crc); if (use_crc) tpdu[tpdulen++] = (edc >> 8); tpdu[tpdulen++] = edc; } if (via_escape) { msg[0] = PC_to_RDR_Escape; msg[5] = 0; /* slot */ msg[6] = seqno = handle->seqno++; msg[7] = 0; /* RFU */ msg[8] = 0; /* RFU */ msg[9] = 0; /* RFU */ msg[10] = 0x1a; /* Omnikey command to send a TPDU. */ set_msg_len (msg, 1 + tpdulen); } else { msg[0] = PC_to_RDR_XfrBlock; msg[5] = 0; /* slot */ msg[6] = seqno = handle->seqno++; msg[7] = (wait_more ? wait_more : 1); /* bBWI */ msg[8] = 0; /* RFU */ msg[9] = 0; /* RFU */ set_msg_len (msg, tpdulen); } msglen = hdrlen + tpdulen; if (!resyncing) last_tpdulen = tpdulen; pcboff = hdrlen+1; if (debug_level > 1) DEBUGOUT_3 ("T=1: put %c-block seq=%d%s\n", ((msg[pcboff] & 0xc0) == 0x80)? 'R' : (msg[pcboff] & 0x80)? 'S' : 'I', ((msg[pcboff] & 0x80)? !!(msg[pcboff]& 0x10) : !!(msg[pcboff] & 0x40)), (!(msg[pcboff] & 0x80) && (msg[pcboff] & 0x20)? " [more]":"")); rc = bulk_out (handle, msg, msglen, 0); if (rc) return rc; msg = recv_buffer; rc = bulk_in (handle, msg, sizeof recv_buffer, &msglen, via_escape? RDR_to_PC_Escape : RDR_to_PC_DataBlock, seqno, (wait_more ? wait_more : 1) * CCID_CMD_TIMEOUT, 0); if (rc) return rc; tpdu = msg + hdrlen; tpdulen = msglen - hdrlen; resyncing = 0; if (tpdulen < 4) { #ifdef USE_NPTH npth_unprotect (); #endif libusb_clear_halt (handle->idev, handle->ep_bulk_in); #ifdef USE_NPTH npth_protect (); #endif return CCID_DRIVER_ERR_ABORTED; } if (debug_level > 1) DEBUGOUT_4 ("T=1: got %c-block seq=%d err=%d%s\n", ((msg[pcboff] & 0xc0) == 0x80)? 'R' : (msg[pcboff] & 0x80)? 'S' : 'I', ((msg[pcboff] & 0x80)? !!(msg[pcboff]& 0x10) : !!(msg[pcboff] & 0x40)), ((msg[pcboff] & 0xc0) == 0x80)? (msg[pcboff] & 0x0f) : 0, (!(msg[pcboff] & 0x80) && (msg[pcboff] & 0x20)? " [more]":"")); wait_more = 0; if (!(tpdu[1] & 0x80)) { /* This is an I-block. */ retries = 0; if (sending) { /* last block sent was successful. */ handle->t1_ns ^= 1; sending = 0; } if (!!(tpdu[1] & 0x40) != handle->t1_nr) { /* Response does not match our sequence number. */ msg = send_buffer; tpdu = msg + hdrlen; tpdu[0] = nad_byte; tpdu[1] = (0x80 | (handle->t1_nr & 1) << 4 | 2); /* R-block */ tpdu[2] = 0; tpdulen = 3; edc = compute_edc (tpdu, tpdulen, use_crc); if (use_crc) tpdu[tpdulen++] = (edc >> 8); tpdu[tpdulen++] = edc; continue; } handle->t1_nr ^= 1; p = tpdu + 3; /* Skip the prologue field. */ n = tpdulen - 3 - 1; /* Strip the epilogue field. */ /* fixme: verify the checksum. */ if (resp) { if (n > maxresplen) { DEBUGOUT_2 ("provided buffer too short for received data " "(%u/%u)\n", (unsigned int)n, (unsigned int)maxresplen); return CCID_DRIVER_ERR_INV_VALUE; } memcpy (resp, p, n); resp += n; *nresp += n; maxresplen -= n; } if (!(tpdu[1] & 0x20)) return 0; /* No chaining requested - ready. */ msg = send_buffer; tpdu = msg + hdrlen; tpdu[0] = nad_byte; tpdu[1] = (0x80 | (handle->t1_nr & 1) << 4); /* R-block */ tpdu[2] = 0; tpdulen = 3; edc = compute_edc (tpdu, tpdulen, use_crc); if (use_crc) tpdu[tpdulen++] = (edc >> 8); tpdu[tpdulen++] = edc; } else if ((tpdu[1] & 0xc0) == 0x80) { /* This is a R-block. */ if ( (tpdu[1] & 0x0f)) { retries++; if (via_escape && retries == 1 && (msg[pcboff] & 0x0f)) { /* Error probably due to switching to TPDU. Send a resync request. We use the recv_buffer so that we don't corrupt the send_buffer. */ msg = recv_buffer; tpdu = msg + hdrlen; tpdu[0] = nad_byte; tpdu[1] = 0xc0; /* S-block resync request. */ tpdu[2] = 0; tpdulen = 3; edc = compute_edc (tpdu, tpdulen, use_crc); if (use_crc) tpdu[tpdulen++] = (edc >> 8); tpdu[tpdulen++] = edc; resyncing = 1; DEBUGOUT ("T=1: requesting resync\n"); } else if (retries > 3) { DEBUGOUT ("T=1: 3 failed retries\n"); return CCID_DRIVER_ERR_CARD_IO_ERROR; } else { /* Error: repeat last block */ msg = send_buffer; tpdulen = last_tpdulen; } } else if (sending && !!(tpdu[1] & 0x10) == handle->t1_ns) { /* Response does not match our sequence number. */ DEBUGOUT ("R-block with wrong seqno received on more bit\n"); return CCID_DRIVER_ERR_CARD_IO_ERROR; } else if (sending) { /* Send next chunk. */ retries = 0; msg = send_buffer; next_chunk = 1; handle->t1_ns ^= 1; } else { DEBUGOUT ("unexpected ACK R-block received\n"); return CCID_DRIVER_ERR_CARD_IO_ERROR; } } else { /* This is a S-block. */ retries = 0; DEBUGOUT_2 ("T=1: S-block %s received cmd=%d\n", (tpdu[1] & 0x20)? "response": "request", (tpdu[1] & 0x1f)); if ( !(tpdu[1] & 0x20) && (tpdu[1] & 0x1f) == 1 && tpdu[2] == 1) { /* Information field size request. */ unsigned char ifsc = tpdu[3]; if (ifsc < 16 || ifsc > 254) return CCID_DRIVER_ERR_CARD_IO_ERROR; msg = send_buffer; tpdu = msg + hdrlen; tpdu[0] = nad_byte; tpdu[1] = (0xc0 | 0x20 | 1); /* S-block response */ tpdu[2] = 1; tpdu[3] = ifsc; tpdulen = 4; edc = compute_edc (tpdu, tpdulen, use_crc); if (use_crc) tpdu[tpdulen++] = (edc >> 8); tpdu[tpdulen++] = edc; DEBUGOUT_1 ("T=1: requesting an ifsc=%d\n", ifsc); } else if ( !(tpdu[1] & 0x20) && (tpdu[1] & 0x1f) == 3 && tpdu[2]) { /* Wait time extension request. */ unsigned char bwi = tpdu[3]; wait_more = bwi; msg = send_buffer; tpdu = msg + hdrlen; tpdu[0] = nad_byte; tpdu[1] = (0xc0 | 0x20 | 3); /* S-block response */ tpdu[2] = 1; tpdu[3] = bwi; tpdulen = 4; edc = compute_edc (tpdu, tpdulen, use_crc); if (use_crc) tpdu[tpdulen++] = (edc >> 8); tpdu[tpdulen++] = edc; DEBUGOUT_1 ("T=1: waittime extension of bwi=%d\n", bwi); print_progress (handle); } else if ( (tpdu[1] & 0x20) && (tpdu[1] & 0x1f) == 0 && !tpdu[2]) { DEBUGOUT ("T=1: resync ack from reader\n"); /* Repeat previous block. */ msg = send_buffer; tpdulen = last_tpdulen; } else return CCID_DRIVER_ERR_CARD_IO_ERROR; } } /* end T=1 protocol loop. */ return 0; } /* Send the CCID Secure command to the reader. APDU_BUF should contain the APDU template. PIN_MODE defines how the pin gets formatted: 1 := The PIN is ASCII encoded and of variable length. The length of the PIN entered will be put into Lc by the reader. The APDU should me made up of 4 bytes without Lc. PINLEN_MIN and PINLEN_MAX define the limits for the pin length. 0 may be used t enable reasonable defaults. When called with RESP and NRESP set to NULL, the function will merely check whether the reader supports the secure command for the given APDU and PIN_MODE. */ int ccid_transceive_secure (ccid_driver_t handle, const unsigned char *apdu_buf, size_t apdu_buflen, pininfo_t *pininfo, unsigned char *resp, size_t maxresplen, size_t *nresp) { int rc; unsigned char send_buffer[10+259], recv_buffer[10+259]; unsigned char *msg, *tpdu, *p; size_t msglen, tpdulen, n; unsigned char seqno; size_t dummy_nresp; int testmode; int cherry_mode = 0; int add_zero = 0; int enable_varlen = 0; testmode = !resp && !nresp; if (!nresp) nresp = &dummy_nresp; *nresp = 0; if (apdu_buflen >= 4 && apdu_buf[1] == 0x20 && (handle->has_pinpad & 1)) ; else if (apdu_buflen >= 4 && apdu_buf[1] == 0x24 && (handle->has_pinpad & 2)) ; else return CCID_DRIVER_ERR_NO_PINPAD; if (!pininfo->minlen) pininfo->minlen = 1; if (!pininfo->maxlen) pininfo->maxlen = 15; /* Note that the 25 is the maximum value the SPR532 allows. */ if (pininfo->minlen < 1 || pininfo->minlen > 25 || pininfo->maxlen < 1 || pininfo->maxlen > 25 || pininfo->minlen > pininfo->maxlen) return CCID_DRIVER_ERR_INV_VALUE; /* We have only tested a few readers so better don't risk anything and do not allow the use with other readers. */ switch (handle->id_vendor) { case VENDOR_SCM: /* Tested with SPR 532. */ case VENDOR_KAAN: /* Tested with KAAN Advanced (1.02). */ case VENDOR_FSIJ: /* Tested with Gnuk (0.21). */ pininfo->maxlen = 25; enable_varlen = 1; break; case VENDOR_REINER:/* Tested with cyberJack go */ case VENDOR_VASCO: /* Tested with DIGIPASS 920 */ enable_varlen = 1; break; case VENDOR_CHERRY: pininfo->maxlen = 15; enable_varlen = 1; /* The CHERRY XX44 keyboard echos an asterisk for each entered character on the keyboard channel. We use a special variant of PC_to_RDR_Secure which directs these characters to the smart card's bulk-in channel. We also need to append a zero Lc byte to the APDU. It seems that it will be replaced with the actual length instead of being appended before the APDU is send to the card. */ add_zero = 1; if (handle->id_product != CHERRY_ST2000) cherry_mode = 1; break; case VENDOR_NXP: if (handle->id_product == CRYPTOUCAN){ pininfo->maxlen = 25; enable_varlen = 1; } break; default: if ((handle->id_vendor == VENDOR_GEMPC && handle->id_product == GEMPC_PINPAD) || (handle->id_vendor == VENDOR_VEGA && handle->id_product == VEGA_ALPHA)) { enable_varlen = 0; pininfo->minlen = 4; pininfo->maxlen = 8; break; } return CCID_DRIVER_ERR_NOT_SUPPORTED; } if (enable_varlen) pininfo->fixedlen = 0; if (testmode) return 0; /* Success */ if (pininfo->fixedlen < 0 || pininfo->fixedlen >= 16) return CCID_DRIVER_ERR_NOT_SUPPORTED; msg = send_buffer; if (handle->id_vendor == VENDOR_SCM) { DEBUGOUT ("sending escape sequence to switch to a case 1 APDU\n"); rc = send_escape_cmd (handle, (const unsigned char*)"\x80\x02\x00", 3, NULL, 0, NULL); if (rc) return rc; } msg[0] = cherry_mode? 0x89 : PC_to_RDR_Secure; msg[5] = 0; /* slot */ msg[6] = seqno = handle->seqno++; msg[7] = 0; /* bBWI */ msg[8] = 0; /* RFU */ msg[9] = 0; /* RFU */ msg[10] = apdu_buf[1] == 0x20 ? 0 : 1; /* Perform PIN verification or PIN modification. */ msg[11] = 0; /* Timeout in seconds. */ msg[12] = 0x82; /* bmFormatString: Byte, pos=0, left, ASCII. */ if (handle->id_vendor == VENDOR_SCM) { /* For the SPR532 the next 2 bytes need to be zero. We do this for all SCM products. Kudos to Martin Paljak for this hint. */ msg[13] = msg[14] = 0; } else { msg[13] = pininfo->fixedlen; /* bmPINBlockString: 0 bits of pin length to insert. PIN block size by fixedlen. */ msg[14] = 0x00; /* bmPINLengthFormat: Units are bytes, position is 0. */ } msglen = 15; if (apdu_buf[1] == 0x24) { msg[msglen++] = 0; /* bInsertionOffsetOld */ msg[msglen++] = pininfo->fixedlen; /* bInsertionOffsetNew */ } /* The following is a little endian word. */ msg[msglen++] = pininfo->maxlen; /* wPINMaxExtraDigit-Maximum. */ msg[msglen++] = pininfo->minlen; /* wPINMaxExtraDigit-Minimum. */ if (apdu_buf[1] == 0x24) msg[msglen++] = apdu_buf[2] == 0 ? 0x03 : 0x01; /* bConfirmPIN * 0x00: new PIN once * 0x01: new PIN twice (confirmation) * 0x02: old PIN and new PIN once * 0x03: old PIN and new PIN twice (confirmation) */ msg[msglen] = 0x02; /* bEntryValidationCondition: Validation key pressed */ if (pininfo->minlen && pininfo->maxlen && pininfo->minlen == pininfo->maxlen) msg[msglen] |= 0x01; /* Max size reached. */ msglen++; if (apdu_buf[1] == 0x20) msg[msglen++] = 0x01; /* bNumberMessage. */ else msg[msglen++] = 0x03; /* bNumberMessage. */ msg[msglen++] = 0x09; /* wLangId-Low: English FIXME: use the first entry. */ msg[msglen++] = 0x04; /* wLangId-High. */ if (apdu_buf[1] == 0x20) msg[msglen++] = 0; /* bMsgIndex. */ else { msg[msglen++] = 0; /* bMsgIndex1. */ msg[msglen++] = 1; /* bMsgIndex2. */ msg[msglen++] = 2; /* bMsgIndex3. */ } /* Calculate Lc. */ n = pininfo->fixedlen; if (apdu_buf[1] == 0x24) n += pininfo->fixedlen; /* bTeoProlog follows: */ msg[msglen++] = handle->nonnull_nad? ((1 << 4) | 0): 0; msg[msglen++] = ((handle->t1_ns & 1) << 6); /* I-block */ if (n) msg[msglen++] = n + 5; /* apdulen should be filled for fixed length. */ else msg[msglen++] = 0; /* The apdulen will be filled in by the reader. */ /* APDU follows: */ msg[msglen++] = apdu_buf[0]; /* CLA */ msg[msglen++] = apdu_buf[1]; /* INS */ msg[msglen++] = apdu_buf[2]; /* P1 */ msg[msglen++] = apdu_buf[3]; /* P2 */ if (add_zero) msg[msglen++] = 0; else if (pininfo->fixedlen != 0) { msg[msglen++] = n; memset (&msg[msglen], 0xff, n); msglen += n; } /* An EDC is not required. */ set_msg_len (msg, msglen - 10); rc = bulk_out (handle, msg, msglen, 0); if (rc) return rc; msg = recv_buffer; rc = bulk_in (handle, msg, sizeof recv_buffer, &msglen, RDR_to_PC_DataBlock, seqno, 30000, 0); if (rc) return rc; tpdu = msg + 10; tpdulen = msglen - 10; if (handle->apdu_level) { if (resp) { if (tpdulen > maxresplen) { DEBUGOUT_2 ("provided buffer too short for received data " "(%u/%u)\n", (unsigned int)tpdulen, (unsigned int)maxresplen); return CCID_DRIVER_ERR_INV_VALUE; } memcpy (resp, tpdu, tpdulen); *nresp = tpdulen; } return 0; } if (tpdulen < 4) { #ifdef USE_NPTH npth_unprotect (); #endif libusb_clear_halt (handle->idev, handle->ep_bulk_in); #ifdef USE_NPTH npth_protect (); #endif return CCID_DRIVER_ERR_ABORTED; } if (debug_level > 1) DEBUGOUT_4 ("T=1: got %c-block seq=%d err=%d%s\n", ((msg[11] & 0xc0) == 0x80)? 'R' : (msg[11] & 0x80)? 'S' : 'I', ((msg[11] & 0x80)? !!(msg[11]& 0x10) : !!(msg[11] & 0x40)), ((msg[11] & 0xc0) == 0x80)? (msg[11] & 0x0f) : 0, (!(msg[11] & 0x80) && (msg[11] & 0x20)? " [more]":"")); if (!(tpdu[1] & 0x80)) { /* This is an I-block. */ /* Last block sent was successful. */ handle->t1_ns ^= 1; if (!!(tpdu[1] & 0x40) != handle->t1_nr) { /* Response does not match our sequence number. */ DEBUGOUT ("I-block with wrong seqno received\n"); return CCID_DRIVER_ERR_CARD_IO_ERROR; } handle->t1_nr ^= 1; p = tpdu + 3; /* Skip the prologue field. */ n = tpdulen - 3 - 1; /* Strip the epilogue field. */ /* fixme: verify the checksum. */ if (resp) { if (n > maxresplen) { DEBUGOUT_2 ("provided buffer too short for received data " "(%u/%u)\n", (unsigned int)n, (unsigned int)maxresplen); return CCID_DRIVER_ERR_INV_VALUE; } memcpy (resp, p, n); *nresp += n; } if (!(tpdu[1] & 0x20)) return 0; /* No chaining requested - ready. */ DEBUGOUT ("chaining requested but not supported for Secure operation\n"); return CCID_DRIVER_ERR_CARD_IO_ERROR; } else if ((tpdu[1] & 0xc0) == 0x80) { /* This is a R-block. */ if ( (tpdu[1] & 0x0f)) { /* Error: repeat last block */ DEBUGOUT ("No retries supported for Secure operation\n"); return CCID_DRIVER_ERR_CARD_IO_ERROR; } else if (!!(tpdu[1] & 0x10) == handle->t1_ns) { /* Response does not match our sequence number. */ DEBUGOUT ("R-block with wrong seqno received on more bit\n"); return CCID_DRIVER_ERR_CARD_IO_ERROR; } else { /* Send next chunk. */ DEBUGOUT ("chaining not supported on Secure operation\n"); return CCID_DRIVER_ERR_CARD_IO_ERROR; } } else { /* This is a S-block. */ DEBUGOUT_2 ("T=1: S-block %s received cmd=%d for Secure operation\n", (tpdu[1] & 0x20)? "response": "request", (tpdu[1] & 0x1f)); return CCID_DRIVER_ERR_CARD_IO_ERROR; } return 0; } #ifdef TEST static void print_error (int err) { const char *p; char buf[50]; switch (err) { case 0: p = "success"; case CCID_DRIVER_ERR_OUT_OF_CORE: p = "out of core"; break; case CCID_DRIVER_ERR_INV_VALUE: p = "invalid value"; break; case CCID_DRIVER_ERR_NO_DRIVER: p = "no driver"; break; case CCID_DRIVER_ERR_NOT_SUPPORTED: p = "not supported"; break; case CCID_DRIVER_ERR_LOCKING_FAILED: p = "locking failed"; break; case CCID_DRIVER_ERR_BUSY: p = "busy"; break; case CCID_DRIVER_ERR_NO_CARD: p = "no card"; break; case CCID_DRIVER_ERR_CARD_INACTIVE: p = "card inactive"; break; case CCID_DRIVER_ERR_CARD_IO_ERROR: p = "card I/O error"; break; case CCID_DRIVER_ERR_GENERAL_ERROR: p = "general error"; break; case CCID_DRIVER_ERR_NO_READER: p = "no reader"; break; case CCID_DRIVER_ERR_ABORTED: p = "aborted"; break; default: sprintf (buf, "0x%05x", err); p = buf; break; } fprintf (stderr, "operation failed: %s\n", p); } static void print_data (const unsigned char *data, size_t length) { if (length >= 2) { fprintf (stderr, "operation status: %02X%02X\n", data[length-2], data[length-1]); length -= 2; } if (length) { fputs (" returned data:", stderr); for (; length; length--, data++) fprintf (stderr, " %02X", *data); putc ('\n', stderr); } } static void print_result (int rc, const unsigned char *data, size_t length) { if (rc) print_error (rc); else if (data) print_data (data, length); } int main (int argc, char **argv) { gpg_error_t err; ccid_driver_t ccid; int slotstat; unsigned char result[512]; size_t resultlen; int no_pinpad = 0; int verify_123456 = 0; int did_verify = 0; int no_poll = 0; int idx_max; struct ccid_dev_table *ccid_table; if (argc) { argc--; argv++; } while (argc) { if ( !strcmp (*argv, "--list")) { char *p; p = ccid_get_reader_list (); if (!p) return 1; fputs (p, stderr); free (p); return 0; } else if ( !strcmp (*argv, "--debug")) { ccid_set_debug_level (ccid_set_debug_level (-1)+1); argc--; argv++; } else if ( !strcmp (*argv, "--no-poll")) { no_poll = 1; argc--; argv++; } else if ( !strcmp (*argv, "--no-pinpad")) { no_pinpad = 1; argc--; argv++; } else if ( !strcmp (*argv, "--verify-123456")) { verify_123456 = 1; argc--; argv++; } else break; } err = ccid_dev_scan (&idx_max, &ccid_table); if (err) return 1; if (idx_max == 0) return 1; err = ccid_open_reader (argc? *argv:NULL, 0, ccid_table, &ccid, NULL); if (err) return 1; ccid_dev_scan_finish (ccid_table, idx_max); if (!no_poll) ccid_poll (ccid); fputs ("getting ATR ...\n", stderr); err = ccid_get_atr (ccid, NULL, 0, NULL); if (err) { print_error (err); return 1; } if (!no_poll) ccid_poll (ccid); fputs ("getting slot status ...\n", stderr); err = ccid_slot_status (ccid, &slotstat, 1); if (err) { print_error (err); return 1; } if (!no_poll) ccid_poll (ccid); fputs ("selecting application OpenPGP ....\n", stderr); { static unsigned char apdu[] = { 0, 0xA4, 4, 0, 6, 0xD2, 0x76, 0x00, 0x01, 0x24, 0x01}; err = ccid_transceive (ccid, apdu, sizeof apdu, result, sizeof result, &resultlen); print_result (err, result, resultlen); } if (!no_poll) ccid_poll (ccid); fputs ("getting OpenPGP DO 0x65 ....\n", stderr); { static unsigned char apdu[] = { 0, 0xCA, 0, 0x65, 254 }; err = ccid_transceive (ccid, apdu, sizeof apdu, result, sizeof result, &resultlen); print_result (err, result, resultlen); } if (!no_pinpad) { } if (!no_pinpad) { static unsigned char apdu[] = { 0, 0x20, 0, 0x81 }; pininfo_t pininfo = { 0, 0, 0 }; if (ccid_transceive_secure (ccid, apdu, sizeof apdu, &pininfo, NULL, 0, NULL)) fputs ("can't verify using a PIN-Pad reader\n", stderr); else { fputs ("verifying CHV1 using the PINPad ....\n", stderr); err = ccid_transceive_secure (ccid, apdu, sizeof apdu, &pininfo, result, sizeof result, &resultlen); print_result (err, result, resultlen); did_verify = 1; } } if (verify_123456 && !did_verify) { fputs ("verifying that CHV1 is 123456....\n", stderr); { static unsigned char apdu[] = {0, 0x20, 0, 0x81, 6, '1','2','3','4','5','6'}; err = ccid_transceive (ccid, apdu, sizeof apdu, result, sizeof result, &resultlen); print_result (err, result, resultlen); } } if (!err) { fputs ("getting OpenPGP DO 0x5E ....\n", stderr); { static unsigned char apdu[] = { 0, 0xCA, 0, 0x5E, 254 }; err = ccid_transceive (ccid, apdu, sizeof apdu, result, sizeof result, &resultlen); print_result (err, result, resultlen); } } ccid_close_reader (ccid); return 0; } /* * Local Variables: * compile-command: "gcc -DTEST -DGPGRT_ENABLE_ES_MACROS -DHAVE_NPTH -DUSE_NPTH -Wall -I/usr/include/libusb-1.0 -I/usr/local/include -lusb-1.0 -g ccid-driver.c -lnpth -lgpg-error" * End: */ #endif /*TEST*/ #endif /*HAVE_LIBUSB*/ diff --git a/scd/iso7816.c b/scd/iso7816.c index b09354f16..954aa3d4a 100644 --- a/scd/iso7816.c +++ b/scd/iso7816.c @@ -1,965 +1,963 @@ /* iso7816.c - ISO 7816 commands * Copyright (C) 2003, 2004, 2008, 2009 Free Software Foundation, Inc. * * This file is part of GnuPG. * * GnuPG is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * GnuPG is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #include #include #include #include #include -#if defined(GNUPG_SCD_MAIN_HEADER) -# include GNUPG_SCD_MAIN_HEADER -#else +#if defined(GNUPG_MAJOR_VERSION) # include "scdaemon.h" -#endif /*!GNUPG_SCD_MAIN_HEADER*/ +#endif /*GNUPG_MAJOR_VERSION*/ #include "iso7816.h" #include "apdu.h" #define CMD_SELECT_FILE 0xA4 #define CMD_VERIFY ISO7816_VERIFY #define CMD_CHANGE_REFERENCE_DATA ISO7816_CHANGE_REFERENCE_DATA #define CMD_RESET_RETRY_COUNTER ISO7816_RESET_RETRY_COUNTER #define CMD_GET_DATA 0xCA #define CMD_PUT_DATA 0xDA #define CMD_MSE 0x22 #define CMD_PSO 0x2A #define CMD_GENERAL_AUTHENTICATE 0x87 #define CMD_INTERNAL_AUTHENTICATE 0x88 #define CMD_GENERATE_KEYPAIR 0x47 #define CMD_GET_CHALLENGE 0x84 #define CMD_READ_BINARY 0xB0 #define CMD_READ_RECORD 0xB2 static gpg_error_t map_sw (int sw) { gpg_err_code_t ec; switch (sw) { case SW_EEPROM_FAILURE: ec = GPG_ERR_HARDWARE; break; case SW_TERM_STATE: ec = GPG_ERR_OBJ_TERM_STATE; break; case SW_WRONG_LENGTH: ec = GPG_ERR_INV_VALUE; break; case SW_ACK_TIMEOUT: ec = GPG_ERR_TIMEOUT; break; case SW_SM_NOT_SUP: ec = GPG_ERR_NOT_SUPPORTED; break; case SW_CC_NOT_SUP: ec = GPG_ERR_NOT_SUPPORTED; break; case SW_CHV_WRONG: ec = GPG_ERR_BAD_PIN; break; case SW_CHV_BLOCKED: ec = GPG_ERR_PIN_BLOCKED; break; case SW_USE_CONDITIONS: ec = GPG_ERR_USE_CONDITIONS; break; case SW_NOT_SUPPORTED: ec = GPG_ERR_NOT_SUPPORTED; break; case SW_BAD_PARAMETER: ec = GPG_ERR_INV_VALUE; break; case SW_FILE_NOT_FOUND: ec = GPG_ERR_ENOENT; break; case SW_RECORD_NOT_FOUND:ec= GPG_ERR_NOT_FOUND; break; case SW_REF_NOT_FOUND: ec = GPG_ERR_NO_OBJ; break; case SW_BAD_P0_P1: ec = GPG_ERR_INV_VALUE; break; case SW_EXACT_LENGTH: ec = GPG_ERR_INV_VALUE; break; case SW_INS_NOT_SUP: ec = GPG_ERR_CARD; break; case SW_CLA_NOT_SUP: ec = GPG_ERR_CARD; break; case SW_SUCCESS: ec = 0; break; case SW_HOST_OUT_OF_CORE: ec = GPG_ERR_ENOMEM; break; case SW_HOST_INV_VALUE: ec = GPG_ERR_INV_VALUE; break; case SW_HOST_INCOMPLETE_CARD_RESPONSE: ec = GPG_ERR_CARD; break; case SW_HOST_NOT_SUPPORTED: ec = GPG_ERR_NOT_SUPPORTED; break; case SW_HOST_LOCKING_FAILED: ec = GPG_ERR_BUG; break; case SW_HOST_BUSY: ec = GPG_ERR_EBUSY; break; case SW_HOST_NO_CARD: ec = GPG_ERR_CARD_NOT_PRESENT; break; case SW_HOST_CARD_INACTIVE: ec = GPG_ERR_CARD_RESET; break; case SW_HOST_CARD_IO_ERROR: ec = GPG_ERR_EIO; break; case SW_HOST_GENERAL_ERROR: ec = GPG_ERR_GENERAL; break; case SW_HOST_NO_READER: ec = GPG_ERR_ENODEV; break; case SW_HOST_ABORTED: ec = GPG_ERR_INV_RESPONSE; break; case SW_HOST_NO_PINPAD: ec = GPG_ERR_NOT_SUPPORTED; break; case SW_HOST_CANCELLED: ec = GPG_ERR_CANCELED; break; default: if ((sw & 0x010000)) ec = GPG_ERR_GENERAL; /* Should not happen. */ else if ((sw & 0xff00) == SW_MORE_DATA) ec = 0; /* This should actually never been seen here. */ else ec = GPG_ERR_CARD; } return gpg_error (ec); } /* Map a status word from the APDU layer to a gpg-error code. */ gpg_error_t iso7816_map_sw (int sw) { /* All APDU functions should return 0x9000 on success but for historical reasons of the implementation some return 0 to indicate success. We allow for that here. */ return sw? map_sw (sw) : 0; } /* This function is specialized version of the SELECT FILE command. SLOT is the card and reader as created for example by apdu_open_reader (), AID is a buffer of size AIDLEN holding the requested application ID. The function can't be used to enumerate AIDs and won't return the AID on success. The return value is 0 for okay or a GPG error code. Note that ISO error codes are internally mapped. Bit 0 of FLAGS should be set if the card does not understand P2=0xC0. */ gpg_error_t iso7816_select_application (int slot, const char *aid, size_t aidlen, unsigned int flags) { int sw; sw = apdu_send_simple (slot, 0, 0x00, CMD_SELECT_FILE, 4, (flags&1)? 0 :0x0c, aidlen, aid); return map_sw (sw); } /* This is the same as iso7816_select_application but may return data * at RESULT,RESULTLEN). */ gpg_error_t iso7816_select_application_ext (int slot, const char *aid, size_t aidlen, unsigned int flags, unsigned char **result, size_t *resultlen) { int sw; sw = apdu_send (slot, 0, 0x00, CMD_SELECT_FILE, 4, (flags&1)? 0:0x0c, aidlen, aid, result, resultlen); return map_sw (sw); } gpg_error_t iso7816_select_file (int slot, int tag, int is_dir) { int sw, p0, p1; unsigned char tagbuf[2]; tagbuf[0] = (tag >> 8) & 0xff; tagbuf[1] = tag & 0xff; p0 = (tag == 0x3F00)? 0: is_dir? 1:2; p1 = 0x0c; /* No FC return. */ sw = apdu_send_simple (slot, 0, 0x00, CMD_SELECT_FILE, p0, p1, 2, (char*)tagbuf ); return map_sw (sw); } /* Do a select file command with a direct path. */ gpg_error_t iso7816_select_path (int slot, const unsigned short *path, size_t pathlen) { int sw, p0, p1; unsigned char buffer[100]; int buflen; if (pathlen/2 >= sizeof buffer) return gpg_error (GPG_ERR_TOO_LARGE); for (buflen = 0; pathlen; pathlen--, path++) { buffer[buflen++] = (*path >> 8); buffer[buflen++] = *path; } p0 = 0x08; p1 = 0x0c; /* No FC return. */ sw = apdu_send_simple (slot, 0, 0x00, CMD_SELECT_FILE, p0, p1, buflen, (char*)buffer ); return map_sw (sw); } /* This is a private command currently only working for TCOS cards. */ gpg_error_t iso7816_list_directory (int slot, int list_dirs, unsigned char **result, size_t *resultlen) { int sw; if (!result || !resultlen) return gpg_error (GPG_ERR_INV_VALUE); *result = NULL; *resultlen = 0; sw = apdu_send (slot, 0, 0x80, 0xAA, list_dirs? 1:2, 0, -1, NULL, result, resultlen); if (sw != SW_SUCCESS) { /* Make sure that pending buffers are released. */ xfree (*result); *result = NULL; *resultlen = 0; } return map_sw (sw); } /* Wrapper around apdu_send. RESULT can be NULL if no result is * expected. In addition to an gpg-error return code the actual * status word is stored at R_SW unless that is NULL. */ gpg_error_t iso7816_send_apdu (int slot, int extended_mode, int class, int ins, int p0, int p1, int lc, const void *data, unsigned int *r_sw, unsigned char **result, size_t *resultlen) { int sw; if (result) { *result = NULL; *resultlen = 0; } sw = apdu_send (slot, extended_mode, class, ins, p0, p1, lc, data, result, resultlen); if (sw != SW_SUCCESS && result) { /* Make sure that pending buffers are released. */ xfree (*result); *result = NULL; *resultlen = 0; } if (r_sw) *r_sw = sw; return map_sw (sw); } /* This function sends an already formatted APDU to the card. With HANDLE_MORE set to true a MORE DATA status will be handled internally. The return value is a gpg error code (i.e. a mapped status word). This is basically the same as apdu_send_direct but it maps the status word and does not return it in the result buffer. However, it R_SW is not NULL the status word is stored R_SW for closer inspection. */ gpg_error_t iso7816_apdu_direct (int slot, const void *apdudata, size_t apdudatalen, int handle_more, unsigned int *r_sw, unsigned char **result, size_t *resultlen) { int sw, sw2; if (result) { *result = NULL; *resultlen = 0; } sw = apdu_send_direct (slot, 0, apdudata, apdudatalen, handle_more, &sw2, result, resultlen); if (!sw) { if (!result) sw = sw2; else if (*resultlen < 2) sw = SW_HOST_GENERAL_ERROR; else { sw = ((*result)[*resultlen-2] << 8) | (*result)[*resultlen-1]; (*resultlen)--; (*resultlen)--; } } if (sw != SW_SUCCESS && result) { /* Make sure that pending buffers are released. */ xfree (*result); *result = NULL; *resultlen = 0; } if (r_sw) *r_sw = sw; return map_sw (sw); } /* Check whether the reader supports the ISO command code COMMAND on the pinpad. Returns 0 on success. */ gpg_error_t iso7816_check_pinpad (int slot, int command, pininfo_t *pininfo) { int sw; sw = apdu_check_pinpad (slot, command, pininfo); return iso7816_map_sw (sw); } /* Perform a VERIFY command on SLOT using the card holder verification vector CHVNO. With PININFO non-NULL the pinpad of the reader will be used. Returns 0 on success. */ gpg_error_t iso7816_verify_kp (int slot, int chvno, pininfo_t *pininfo) { int sw; sw = apdu_pinpad_verify (slot, 0x00, CMD_VERIFY, 0, chvno, pininfo); return map_sw (sw); } /* Perform a VERIFY command on SLOT using the card holder verification vector CHVNO with a CHV of length CHVLEN. Returns 0 on success. */ gpg_error_t iso7816_verify (int slot, int chvno, const char *chv, size_t chvlen) { int sw; sw = apdu_send_simple (slot, 0, 0x00, CMD_VERIFY, 0, chvno, chvlen, chv); return map_sw (sw); } /* Perform a CHANGE_REFERENCE_DATA command on SLOT for the card holder verification vector CHVNO. With PININFO non-NULL the pinpad of the reader will be used. If IS_EXCHANGE is 0, a "change reference data" is done, otherwise an "exchange reference data". */ gpg_error_t iso7816_change_reference_data_kp (int slot, int chvno, int is_exchange, pininfo_t *pininfo) { int sw; sw = apdu_pinpad_modify (slot, 0x00, CMD_CHANGE_REFERENCE_DATA, is_exchange ? 1 : 0, chvno, pininfo); return map_sw (sw); } /* Perform a CHANGE_REFERENCE_DATA command on SLOT for the card holder verification vector CHVNO. If the OLDCHV is NULL (and OLDCHVLEN 0), a "change reference data" is done, otherwise an "exchange reference data". The new reference data is expected in NEWCHV of length NEWCHVLEN. */ gpg_error_t iso7816_change_reference_data (int slot, int chvno, const char *oldchv, size_t oldchvlen, const char *newchv, size_t newchvlen) { int sw; char *buf; if ((!oldchv && oldchvlen) || (oldchv && !oldchvlen) || !newchv || !newchvlen ) return gpg_error (GPG_ERR_INV_VALUE); buf = xtrymalloc (oldchvlen + newchvlen); if (!buf) return gpg_error (gpg_err_code_from_errno (errno)); if (oldchvlen) memcpy (buf, oldchv, oldchvlen); memcpy (buf+oldchvlen, newchv, newchvlen); sw = apdu_send_simple (slot, 0, 0x00, CMD_CHANGE_REFERENCE_DATA, oldchvlen? 0 : 1, chvno, oldchvlen+newchvlen, buf); wipememory (buf, oldchvlen+newchvlen); xfree (buf); return map_sw (sw); } gpg_error_t iso7816_reset_retry_counter_with_rc (int slot, int chvno, const char *data, size_t datalen) { int sw; if (!data || !datalen ) return gpg_error (GPG_ERR_INV_VALUE); sw = apdu_send_simple (slot, 0, 0x00, CMD_RESET_RETRY_COUNTER, 0, chvno, datalen, data); return map_sw (sw); } gpg_error_t iso7816_reset_retry_counter (int slot, int chvno, const char *newchv, size_t newchvlen) { int sw; sw = apdu_send_simple (slot, 0, 0x00, CMD_RESET_RETRY_COUNTER, 2, chvno, newchvlen, newchv); return map_sw (sw); } /* Perform a GET DATA command requesting TAG and storing the result in a newly allocated buffer at the address passed by RESULT. Return the length of this data at the address of RESULTLEN. */ gpg_error_t iso7816_get_data (int slot, int extended_mode, int tag, unsigned char **result, size_t *resultlen) { int sw; int le; if (!result || !resultlen) return gpg_error (GPG_ERR_INV_VALUE); *result = NULL; *resultlen = 0; if (extended_mode > 0 && extended_mode < 256) le = 65534; /* Not 65535 in case it is used as some special flag. */ else if (extended_mode > 0) le = extended_mode; else le = 256; sw = apdu_send_le (slot, extended_mode, 0x00, CMD_GET_DATA, ((tag >> 8) & 0xff), (tag & 0xff), -1, NULL, le, result, resultlen); if (sw != SW_SUCCESS) { /* Make sure that pending buffers are released. */ xfree (*result); *result = NULL; *resultlen = 0; return map_sw (sw); } return 0; } /* Perform a GET DATA command requesting TAG and storing the result in * a newly allocated buffer at the address passed by RESULT. Return * the length of this data at the address of RESULTLEN. This variant * is needed for long (3 octet) tags. */ gpg_error_t iso7816_get_data_odd (int slot, int extended_mode, unsigned int tag, unsigned char **result, size_t *resultlen) { int sw; int le; int datalen; unsigned char data[5]; if (!result || !resultlen) return gpg_error (GPG_ERR_INV_VALUE); *result = NULL; *resultlen = 0; if (extended_mode > 0 && extended_mode < 256) le = 65534; /* Not 65535 in case it is used as some special flag. */ else if (extended_mode > 0) le = extended_mode; else le = 256; data[0] = 0x5c; if (tag <= 0xff) { data[1] = 1; data[2] = tag; datalen = 3; } else if (tag <= 0xffff) { data[1] = 2; data[2] = (tag >> 8); data[3] = tag; datalen = 4; } else { data[1] = 3; data[2] = (tag >> 16); data[3] = (tag >> 8); data[4] = tag; datalen = 5; } sw = apdu_send_le (slot, extended_mode, 0x00, CMD_GET_DATA + 1, 0x3f, 0xff, datalen, data, le, result, resultlen); if (sw != SW_SUCCESS) { /* Make sure that pending buffers are released. */ xfree (*result); *result = NULL; *resultlen = 0; return map_sw (sw); } return 0; } /* Perform a PUT DATA command on card in SLOT. Write DATA of length DATALEN to TAG. EXTENDED_MODE controls whether extended length headers or command chaining is used instead of single length bytes. */ gpg_error_t iso7816_put_data (int slot, int extended_mode, int tag, const void *data, size_t datalen) { int sw; sw = apdu_send_simple (slot, extended_mode, 0x00, CMD_PUT_DATA, ((tag >> 8) & 0xff), (tag & 0xff), datalen, (const char*)data); return map_sw (sw); } /* Same as iso7816_put_data but uses an odd instruction byte. */ gpg_error_t iso7816_put_data_odd (int slot, int extended_mode, int tag, const void *data, size_t datalen) { int sw; sw = apdu_send_simple (slot, extended_mode, 0x00, CMD_PUT_DATA+1, ((tag >> 8) & 0xff), (tag & 0xff), datalen, (const char*)data); return map_sw (sw); } /* Manage Security Environment. This is a weird operation and there is no easy abstraction for it. Furthermore, some card seem to have a different interpretation of 7816-8 and thus we resort to let the caller decide what to do. */ gpg_error_t iso7816_manage_security_env (int slot, int p1, int p2, const unsigned char *data, size_t datalen) { int sw; if (p1 < 0 || p1 > 255 || p2 < 0 || p2 > 255 ) return gpg_error (GPG_ERR_INV_VALUE); sw = apdu_send_simple (slot, 0, 0x00, CMD_MSE, p1, p2, data? datalen : -1, (const char*)data); return map_sw (sw); } /* Perform the security operation COMPUTE DIGITAL SIGANTURE. On success 0 is returned and the data is available in a newly allocated buffer stored at RESULT with its length stored at RESULTLEN. For LE see do_generate_keypair. */ gpg_error_t iso7816_compute_ds (int slot, int extended_mode, const unsigned char *data, size_t datalen, int le, unsigned char **result, size_t *resultlen) { int sw; if (!data || !datalen || !result || !resultlen) return gpg_error (GPG_ERR_INV_VALUE); *result = NULL; *resultlen = 0; if (!extended_mode) le = 256; /* Ignore provided Le and use what apdu_send uses. */ else if (le >= 0 && le < 256) le = 256; sw = apdu_send_le (slot, extended_mode, 0x00, CMD_PSO, 0x9E, 0x9A, datalen, (const char*)data, le, result, resultlen); if (sw != SW_SUCCESS) { /* Make sure that pending buffers are released. */ xfree (*result); *result = NULL; *resultlen = 0; return map_sw (sw); } return 0; } /* Perform the security operation DECIPHER. PADIND is the padding indicator to be used. It should be 0 if no padding is required, a value of -1 suppresses the padding byte. On success 0 is returned and the plaintext is available in a newly allocated buffer stored at RESULT with its length stored at RESULTLEN. For LE see do_generate_keypair. */ gpg_error_t iso7816_decipher (int slot, int extended_mode, const unsigned char *data, size_t datalen, int le, int padind, unsigned char **result, size_t *resultlen) { int sw; unsigned char *buf; if (!data || !datalen || !result || !resultlen) return gpg_error (GPG_ERR_INV_VALUE); *result = NULL; *resultlen = 0; if (!extended_mode) le = 256; /* Ignore provided Le and use what apdu_send uses. */ else if (le >= 0 && le < 256) le = 256; if (padind >= 0) { /* We need to prepend the padding indicator. */ buf = xtrymalloc (datalen + 1); if (!buf) return gpg_error (gpg_err_code_from_errno (errno)); *buf = padind; /* Padding indicator. */ memcpy (buf+1, data, datalen); sw = apdu_send_le (slot, extended_mode, 0x00, CMD_PSO, 0x80, 0x86, datalen+1, (char*)buf, le, result, resultlen); xfree (buf); } else { sw = apdu_send_le (slot, extended_mode, 0x00, CMD_PSO, 0x80, 0x86, datalen, (const char *)data, le, result, resultlen); } if (sw != SW_SUCCESS) { /* Make sure that pending buffers are released. */ xfree (*result); *result = NULL; *resultlen = 0; return map_sw (sw); } return 0; } /* For LE see do_generate_keypair. */ gpg_error_t iso7816_internal_authenticate (int slot, int extended_mode, const unsigned char *data, size_t datalen, int le, unsigned char **result, size_t *resultlen) { int sw; if (!data || !datalen || !result || !resultlen) return gpg_error (GPG_ERR_INV_VALUE); *result = NULL; *resultlen = 0; if (!extended_mode) le = 256; /* Ignore provided Le and use what apdu_send uses. */ else if (le >= 0 && le < 256) le = 256; sw = apdu_send_le (slot, extended_mode, 0x00, CMD_INTERNAL_AUTHENTICATE, 0, 0, datalen, (const char*)data, le, result, resultlen); if (sw != SW_SUCCESS) { /* Make sure that pending buffers are released. */ xfree (*result); *result = NULL; *resultlen = 0; return map_sw (sw); } return 0; } /* For LE see do_generate_keypair. */ gpg_error_t iso7816_general_authenticate (int slot, int extended_mode, int algoref, int keyref, const unsigned char *data, size_t datalen, int le, unsigned char **result, size_t *resultlen) { int sw; if (!data || !datalen || !result || !resultlen) return gpg_error (GPG_ERR_INV_VALUE); *result = NULL; *resultlen = 0; if (!extended_mode) le = 256; /* Ignore provided Le and use what apdu_send uses. */ else if (le >= 0 && le < 256) le = 256; sw = apdu_send_le (slot, extended_mode, 0x00, CMD_GENERAL_AUTHENTICATE, algoref, keyref, datalen, (const char*)data, le, result, resultlen); if (sw != SW_SUCCESS) { /* Make sure that pending buffers are released. */ xfree (*result); *result = NULL; *resultlen = 0; return map_sw (sw); } return 0; } /* LE is the expected return length. This is usually 0 except if extended length mode is used and more than 256 byte will be returned. In that case a value of -1 uses a large default (e.g. 4096 bytes), a value larger 256 used that value. */ static gpg_error_t do_generate_keypair (int slot, int extended_mode, int p1, int p2, const char *data, size_t datalen, int le, unsigned char **result, size_t *resultlen) { int sw; if (!data || !datalen || !result || !resultlen) return gpg_error (GPG_ERR_INV_VALUE); *result = NULL; *resultlen = 0; sw = apdu_send_le (slot, extended_mode, 0x00, CMD_GENERATE_KEYPAIR, p1, p2, datalen, data, le >= 0 && le < 256? 256:le, result, resultlen); if (sw != SW_SUCCESS) { /* Make sure that pending buffers are released. */ xfree (*result); *result = NULL; *resultlen = 0; return map_sw (sw); } return 0; } gpg_error_t iso7816_generate_keypair (int slot, int extended_mode, int p1, int p2, const char *data, size_t datalen, int le, unsigned char **result, size_t *resultlen) { return do_generate_keypair (slot, extended_mode, p1, p2, data, datalen, le, result, resultlen); } gpg_error_t iso7816_read_public_key (int slot, int extended_mode, const char *data, size_t datalen, int le, unsigned char **result, size_t *resultlen) { return do_generate_keypair (slot, extended_mode, 0x81, 0, data, datalen, le, result, resultlen); } gpg_error_t iso7816_get_challenge (int slot, int length, unsigned char *buffer) { int sw; unsigned char *result; size_t resultlen, n; if (!buffer || length < 1) return gpg_error (GPG_ERR_INV_VALUE); do { result = NULL; n = length > 254? 254 : length; sw = apdu_send_le (slot, 0, 0x00, CMD_GET_CHALLENGE, 0, 0, -1, NULL, n, &result, &resultlen); if (sw != SW_SUCCESS) { /* Make sure that pending buffers are released. */ xfree (result); return map_sw (sw); } if (resultlen > n) resultlen = n; memcpy (buffer, result, resultlen); buffer += resultlen; length -= resultlen; xfree (result); } while (length > 0); return 0; } /* Perform a READ BINARY command requesting a maximum of NMAX bytes from OFFSET. With NMAX = 0 the entire file is read. The result is stored in a newly allocated buffer at the address passed by RESULT. Returns the length of this data at the address of RESULTLEN. */ gpg_error_t iso7816_read_binary (int slot, size_t offset, size_t nmax, unsigned char **result, size_t *resultlen) { int sw; unsigned char *buffer; size_t bufferlen; int read_all = !nmax; size_t n; if (!result || !resultlen) return gpg_error (GPG_ERR_INV_VALUE); *result = NULL; *resultlen = 0; /* We can only encode 15 bits in p0,p1 to indicate an offset. Thus we check for this limit. */ if (offset > 32767) return gpg_error (GPG_ERR_INV_VALUE); do { buffer = NULL; bufferlen = 0; n = read_all? 0 : nmax; sw = apdu_send_le (slot, 0, 0x00, CMD_READ_BINARY, ((offset>>8) & 0xff), (offset & 0xff) , -1, NULL, n, &buffer, &bufferlen); if ( SW_EXACT_LENGTH_P(sw) ) { n = (sw & 0x00ff); sw = apdu_send_le (slot, 0, 0x00, CMD_READ_BINARY, ((offset>>8) & 0xff), (offset & 0xff) , -1, NULL, n, &buffer, &bufferlen); } if (*result && sw == SW_BAD_P0_P1) { /* Bad Parameter means that the offset is outside of the EF. When reading all data we take this as an indication for EOF. */ break; } if (sw != SW_SUCCESS && sw != SW_EOF_REACHED) { /* Make sure that pending buffers are released. */ xfree (buffer); xfree (*result); *result = NULL; *resultlen = 0; return map_sw (sw); } if (*result) /* Need to extend the buffer. */ { unsigned char *p = xtryrealloc (*result, *resultlen + bufferlen); if (!p) { gpg_error_t err = gpg_error_from_syserror (); xfree (buffer); xfree (*result); *result = NULL; *resultlen = 0; return err; } *result = p; memcpy (*result + *resultlen, buffer, bufferlen); *resultlen += bufferlen; xfree (buffer); buffer = NULL; } else /* Transfer the buffer into our result. */ { *result = buffer; *resultlen = bufferlen; } offset += bufferlen; if (offset > 32767) break; /* We simply truncate the result for too large files. */ if (nmax > bufferlen) nmax -= bufferlen; else nmax = 0; } while ((read_all && sw != SW_EOF_REACHED) || (!read_all && nmax)); return 0; } /* Perform a READ RECORD command. RECNO gives the record number to read with 0 indicating the current record. RECCOUNT must be 1 (not all cards support reading of more than one record). SHORT_EF should be 0 to read the current EF or contain a short EF. The result is stored in a newly allocated buffer at the address passed by RESULT. Returns the length of this data at the address of RESULTLEN. */ gpg_error_t iso7816_read_record (int slot, int recno, int reccount, int short_ef, unsigned char **result, size_t *resultlen) { int sw; unsigned char *buffer; size_t bufferlen; if (!result || !resultlen) return gpg_error (GPG_ERR_INV_VALUE); *result = NULL; *resultlen = 0; /* We can only encode 15 bits in p0,p1 to indicate an offset. Thus we check for this limit. */ if (recno < 0 || recno > 255 || reccount != 1 || short_ef < 0 || short_ef > 254 ) return gpg_error (GPG_ERR_INV_VALUE); buffer = NULL; bufferlen = 0; sw = apdu_send_le (slot, 0, 0x00, CMD_READ_RECORD, recno, short_ef? short_ef : 0x04, -1, NULL, 0, &buffer, &bufferlen); if (sw != SW_SUCCESS && sw != SW_EOF_REACHED) { /* Make sure that pending buffers are released. */ xfree (buffer); xfree (*result); *result = NULL; *resultlen = 0; return map_sw (sw); } *result = buffer; *resultlen = bufferlen; return 0; }