diff --git a/src/kleo/keyresolvercore.cpp b/src/kleo/keyresolvercore.cpp index f291017c5..0fc019921 100644 --- a/src/kleo/keyresolvercore.cpp +++ b/src/kleo/keyresolvercore.cpp @@ -1,786 +1,772 @@ /* -*- c++ -*- kleo/keyresolvercore.cpp This file is part of libkleopatra, the KDE keymanagement library SPDX-FileCopyrightText: 2004 Klarälvdalens Datakonsult AB SPDX-FileCopyrightText: 2018 Intevation GmbH SPDX-FileCopyrightText: 2021 g10 Code GmbH SPDX-FileContributor: Ingo Klöcker Based on kpgp.cpp SPDX-FileCopyrightText: 2001, 2002 the KPGP authors See file libkdenetwork/AUTHORS.kpgp for details SPDX-License-Identifier: GPL-2.0-or-later */ #include "keyresolvercore.h" #include "kleo/enum.h" #include "kleo/keygroup.h" #include "models/keycache.h" #include "utils/formatting.h" #include #include "libkleo_debug.h" using namespace Kleo; using namespace GpgME; namespace { QDebug operator<<(QDebug debug, const GpgME::Key &key) { if (key.isNull()) { debug << "Null"; } else { debug << Formatting::summaryLine(key); } return debug.maybeSpace(); } static inline bool ValidEncryptionKey(const Key &key) { if (key.isNull() || key.isRevoked() || key.isExpired() || key.isDisabled() || !key.canEncrypt()) { return false; } return true; } static inline bool ValidSigningKey(const Key &key) { if (key.isNull() || key.isRevoked() || key.isExpired() || key.isDisabled() || !key.canSign() || !key.hasSecret()) { return false; } return true; } static int keyValidity(const Key &key, const QString &address) { // returns the validity of the UID matching the address or, if no UID matches, the maximal validity of all UIDs int overallValidity = UserID::Validity::Unknown; for (const auto &uid: key.userIDs()) { if (QString::fromStdString(uid.addrSpec()).toLower() == address.toLower()) { return uid.validity(); } overallValidity = std::max(overallValidity, static_cast(uid.validity())); } return overallValidity; } static int minimumValidity(const std::vector &keys, const QString &address) { const int minValidity = std::accumulate(keys.cbegin(), keys.cend(), UserID::Ultimate + 1, [address] (int validity, const Key &key) { return std::min(validity, keyValidity(key, address)); }); return minValidity <= UserID::Ultimate ? static_cast(minValidity) : UserID::Unknown; } bool allKeysHaveProtocol(const std::vector &keys, Protocol protocol) { return std::all_of(keys.cbegin(), keys.cend(), [protocol] (const Key &key) { return key.protocol() == protocol; }); } bool anyKeyHasProtocol(const std::vector &keys, Protocol protocol) { return std::any_of(std::begin(keys), std::end(keys), [protocol] (const Key &key) { return key.protocol() == protocol; }); } } // namespace class KeyResolverCore::Private { public: Private(KeyResolverCore* qq, bool enc, bool sig, Protocol fmt) : q(qq) , mFormat(fmt) , mEncrypt(enc) , mSign(sig) , mCache(KeyCache::instance()) , mPreferredProtocol(UnknownProtocol) , mMinimumValidity(UserID::Marginal) , mCompliance(Formatting::complianceMode()) { } ~Private() = default; bool isAcceptableSigningKey(const Key &key); bool isAcceptableEncryptionKey(const Key &key, const QString &address = QString()); void setSender(const QString &address); void addRecipients(const QStringList &addresses); void setOverrideKeys(const QMap> &overrides); void resolveOverrides(); std::vector resolveRecipientWithGroup(const QString &address, Protocol protocol); void resolveEncryptionGroups(); std::vector resolveSenderWithGroup(const QString &address, Protocol protocol); void resolveSigningGroups(); void resolveSign(Protocol proto); void setSigningKeys(const QStringList &fingerprints); std::vector resolveRecipient(const QString &address, Protocol protocol); void resolveEnc(Protocol proto); void mergeEncryptionKeys(); - QStringList unresolvedRecipients(GpgME::Protocol protocol) const; Result resolve(); KeyResolverCore *const q; QString mSender; QStringList mRecipients; QMap> mSigKeys; QMap>> mEncKeys; QMap> mOverrides; Protocol mFormat; QStringList mFatalErrors; bool mEncrypt; bool mSign; // The cache is needed as a member variable to avoid rebuilding // it between calls if we are the only user. std::shared_ptr mCache; bool mAllowMixed = true; Protocol mPreferredProtocol; int mMinimumValidity; QString mCompliance; }; bool KeyResolverCore::Private::isAcceptableSigningKey(const Key &key) { if (!ValidSigningKey(key)) { return false; } if (mCompliance == QLatin1String("de-vs")) { if (!Formatting::isKeyDeVs(key)) { qCDebug(LIBKLEO_LOG) << "Rejected sig key" << key.primaryFingerprint() << "because it is not de-vs compliant."; return false; } } return true; } bool KeyResolverCore::Private::isAcceptableEncryptionKey(const Key &key, const QString &address) { if (!ValidEncryptionKey(key)) { return false; } if (mCompliance == QLatin1String("de-vs")) { if (!Formatting::isKeyDeVs(key)) { qCDebug(LIBKLEO_LOG) << "Rejected enc key" << key.primaryFingerprint() << "because it is not de-vs compliant."; return false; } } if (address.isEmpty()) { return true; } for (const auto &uid: key.userIDs()) { if (uid.addrSpec() == address.toStdString()) { if (uid.validity() >= mMinimumValidity) { return true; } } } return false; } void KeyResolverCore::Private::setSender(const QString &address) { const auto normalized = UserID::addrSpecFromString (address.toUtf8().constData()); if (normalized.empty()) { // should not happen bug in the caller, non localized // error for bug reporting. mFatalErrors << QStringLiteral("The sender address '%1' could not be extracted").arg(address); return; } const auto normStr = QString::fromUtf8(normalized.c_str()); if (mSign) { mSender = normStr; } addRecipients({address}); } void KeyResolverCore::Private::addRecipients(const QStringList &addresses) { if (!mEncrypt) { return; } // Internally we work with normalized addresses. Normalization // matches the gnupg one. for (const auto &addr: addresses) { // PGP Uids are defined to be UTF-8 (RFC 4880 §5.11) const auto normalized = UserID::addrSpecFromString (addr.toUtf8().constData()); if (normalized.empty()) { // should not happen bug in the caller, non localized // error for bug reporting. mFatalErrors << QStringLiteral("The mail address for '%1' could not be extracted").arg(addr); continue; } const QString normStr = QString::fromUtf8(normalized.c_str()); mRecipients << normStr; // Initially add empty lists of keys for both protocols mEncKeys[normStr] = {{CMS, {}}, {OpenPGP, {}}}; } } void KeyResolverCore::Private::setOverrideKeys(const QMap> &overrides) { for (auto protocolIt = overrides.cbegin(); protocolIt != overrides.cend(); ++protocolIt) { const Protocol &protocol = protocolIt.key(); const auto &addressFingerprintMap = protocolIt.value(); for (auto addressIt = addressFingerprintMap.cbegin(); addressIt != addressFingerprintMap.cend(); ++addressIt) { const QString &address = addressIt.key(); const QStringList &fingerprints = addressIt.value(); const QString normalizedAddress = QString::fromUtf8(UserID::addrSpecFromString(address.toUtf8().constData()).c_str()); mOverrides[normalizedAddress][protocol] = fingerprints; } } } namespace { std::vector resolveOverride(const QString &address, Protocol protocol, const QStringList &fingerprints) { std::vector keys; for (const auto &fprOrId: fingerprints) { const Key key = KeyCache::instance()->findByKeyIDOrFingerprint(fprOrId.toUtf8().constData()); if (key.isNull()) { // FIXME: Report to caller qCDebug (LIBKLEO_LOG) << "Failed to find override key for:" << address << "fpr:" << fprOrId; continue; } if (protocol != UnknownProtocol && key.protocol() != protocol) { qCDebug(LIBKLEO_LOG) << "Ignoring key" << Formatting::summaryLine(key) << "given as" << Formatting::displayName(protocol) << "override for" << address; continue; } qCDebug(LIBKLEO_LOG) << "Using key" << Formatting::summaryLine(key) << "as" << Formatting::displayName(protocol) << "override for" << address; keys.push_back(key); } return keys; } } void KeyResolverCore::Private::resolveOverrides() { if (!mEncrypt) { // No encryption we are done. return; } for (auto addressIt = mOverrides.cbegin(); addressIt != mOverrides.cend(); ++addressIt) { const QString &address = addressIt.key(); const auto &protocolFingerprintsMap = addressIt.value(); if (!mRecipients.contains(address)) { qCDebug(LIBKLEO_LOG) << "Overrides provided for an address that is " "neither sender nor recipient. Address:" << address; continue; } const QStringList commonOverride = protocolFingerprintsMap.value(UnknownProtocol); if (!commonOverride.empty()) { mEncKeys[address][UnknownProtocol] = resolveOverride(address, UnknownProtocol, commonOverride); if (protocolFingerprintsMap.contains(OpenPGP)) { qCDebug(LIBKLEO_LOG) << "Ignoring OpenPGP-specific override for" << address << "in favor of common override"; } if (protocolFingerprintsMap.contains(CMS)) { qCDebug(LIBKLEO_LOG) << "Ignoring S/MIME-specific override for" << address << "in favor of common override"; } } else { if (mFormat != CMS) { mEncKeys[address][OpenPGP] = resolveOverride(address, OpenPGP, protocolFingerprintsMap.value(OpenPGP)); } if (mFormat != OpenPGP) { mEncKeys[address][CMS] = resolveOverride(address, CMS, protocolFingerprintsMap.value(CMS)); } } } } std::vector KeyResolverCore::Private::resolveSenderWithGroup(const QString &address, Protocol protocol) { // prefer single-protocol groups over mixed-protocol groups auto group = mCache->findGroup(address, protocol, KeyUsage::Sign); if (group.isNull()) { group = mCache->findGroup(address, UnknownProtocol, KeyUsage::Sign); } if (group.isNull()) { return {}; } // take the first key matching the protocol const auto &keys = group.keys(); const auto it = std::find_if(std::begin(keys), std::end(keys), [protocol] (const auto &key) { return key.protocol() == protocol; }); if (it == std::end(keys)) { qCDebug(LIBKLEO_LOG) << "group" << group.name() << "has no" << Formatting::displayName(protocol) << "signing key"; return {}; } const auto key = *it; if (!isAcceptableSigningKey(key)) { qCDebug(LIBKLEO_LOG) << "group" << group.name() << "has unacceptable signing key" << key; return {}; } return {key}; } void KeyResolverCore::Private::resolveSigningGroups() { auto &protocolKeysMap = mSigKeys; if (!protocolKeysMap[UnknownProtocol].empty()) { // already resolved by common override return; } if (mFormat == OpenPGP) { if (!protocolKeysMap[OpenPGP].empty()) { // already resolved by override return; } protocolKeysMap[OpenPGP] = resolveSenderWithGroup(mSender, OpenPGP); } else if (mFormat == CMS) { if (!protocolKeysMap[CMS].empty()) { // already resolved by override return; } protocolKeysMap[CMS] = resolveSenderWithGroup(mSender, CMS); } else { protocolKeysMap[OpenPGP] = resolveSenderWithGroup(mSender, OpenPGP); protocolKeysMap[CMS] = resolveSenderWithGroup(mSender, CMS); } } void KeyResolverCore::Private::resolveSign(Protocol proto) { if (!mSigKeys[proto].empty()) { // Explicitly set return; } const auto key = mCache->findBestByMailBox(mSender.toUtf8().constData(), proto, KeyUsage::Sign); if (key.isNull()) { qCDebug(LIBKLEO_LOG) << "Failed to find" << Formatting::displayName(proto) << "signing key for" << mSender; return; } if (!isAcceptableSigningKey(key)) { qCDebug(LIBKLEO_LOG) << "Unacceptable signing key" << key.primaryFingerprint() << "for" << mSender; return; } mSigKeys.insert(proto, {key}); } void KeyResolverCore::Private::setSigningKeys(const QStringList &fingerprints) { if (mSign) { for (const auto &fpr: fingerprints) { const auto key = mCache->findByKeyIDOrFingerprint(fpr.toUtf8().constData()); if (key.isNull()) { qCDebug(LIBKLEO_LOG) << "Failed to find signing key with fingerprint" << fpr; continue; } mSigKeys[key.protocol()].push_back(key); } } } std::vector KeyResolverCore::Private::resolveRecipientWithGroup(const QString &address, Protocol protocol) { const auto group = mCache->findGroup(address, protocol, KeyUsage::Encrypt); if (group.isNull()) { return {}; } // If we have one unacceptable group key we reject the // whole group to avoid the situation where one key is // skipped or the operation fails. // // We are in Autoresolve land here. In the GUI we // will also show unacceptable group keys so that the // user can see which key is not acceptable. const auto &keys = group.keys(); const bool allKeysAreAcceptable = std::all_of(std::begin(keys), std::end(keys), [this] (const auto &key) { return isAcceptableEncryptionKey(key); }); if (!allKeysAreAcceptable) { qCDebug(LIBKLEO_LOG) << "group" << group.name() << "has at least one unacceptable key"; return {}; } for (const auto &k: keys) { qCDebug(LIBKLEO_LOG) << "Resolved encrypt to" << address << "with key" << k.primaryFingerprint(); } std::vector result; std::copy(std::begin(keys), std::end(keys), std::back_inserter(result)); return result; } void KeyResolverCore::Private::resolveEncryptionGroups() { for (auto it = mEncKeys.begin(); it != mEncKeys.end(); ++it) { const QString &address = it.key(); auto &protocolKeysMap = it.value(); if (!protocolKeysMap[UnknownProtocol].empty()) { // already resolved by common override continue; } if (mFormat == OpenPGP) { if (!protocolKeysMap[OpenPGP].empty()) { // already resolved by override continue; } protocolKeysMap[OpenPGP] = resolveRecipientWithGroup(address, OpenPGP); } else if (mFormat == CMS) { if (!protocolKeysMap[CMS].empty()) { // already resolved by override continue; } protocolKeysMap[CMS] = resolveRecipientWithGroup(address, CMS); } else { // prefer single-protocol groups over mixed-protocol groups const auto openPGPGroupKeys = resolveRecipientWithGroup(address, OpenPGP); const auto smimeGroupKeys = resolveRecipientWithGroup(address, CMS); if (!openPGPGroupKeys.empty() && !smimeGroupKeys.empty()) { protocolKeysMap[OpenPGP] = openPGPGroupKeys; protocolKeysMap[CMS] = smimeGroupKeys; } else if (openPGPGroupKeys.empty() && smimeGroupKeys.empty()) { // no single-protocol groups found; // if mixed protocols are allowed, then look for any group with encryption keys if (mAllowMixed) { protocolKeysMap[UnknownProtocol] = resolveRecipientWithGroup(address, UnknownProtocol); } } else { // there is a single-protocol group only for one protocol; use this group for all protocols protocolKeysMap[UnknownProtocol] = !openPGPGroupKeys.empty() ? openPGPGroupKeys : smimeGroupKeys; } } } } std::vector KeyResolverCore::Private::resolveRecipient(const QString &address, Protocol protocol) { const auto key = mCache->findBestByMailBox(address.toUtf8().constData(), protocol, KeyUsage::Encrypt); if (key.isNull()) { qCDebug(LIBKLEO_LOG) << "Failed to find any" << Formatting::displayName(protocol) << "key for:" << address; return {}; } if (!isAcceptableEncryptionKey(key, address)) { qCDebug(LIBKLEO_LOG) << "key for:" << address << key.primaryFingerprint() << "has not enough validity"; return {}; } qCDebug(LIBKLEO_LOG) << "Resolved encrypt to" << address << "with key" << key.primaryFingerprint(); return {key}; } // Try to find matching keys in the provided protocol for the unresolved addresses void KeyResolverCore::Private::resolveEnc(Protocol proto) { for (auto it = mEncKeys.begin(); it != mEncKeys.end(); ++it) { const QString &address = it.key(); auto &protocolKeysMap = it.value(); if (!protocolKeysMap[proto].empty()) { // already resolved for current protocol (by override or group) continue; } const std::vector &commonOverrideOrGroup = protocolKeysMap[UnknownProtocol]; if (!commonOverrideOrGroup.empty()) { // there is a common override or group; use it for current protocol if possible if (allKeysHaveProtocol(commonOverrideOrGroup, proto)) { protocolKeysMap[proto] = commonOverrideOrGroup; continue; } else { qCDebug(LIBKLEO_LOG) << "Common override/group for" << address << "is unusable for" << Formatting::displayName(proto); continue; } } protocolKeysMap[proto] = resolveRecipient(address, proto); } } auto getBestEncryptionKeys(const QMap>> &encryptionKeys, Protocol preferredProtocol) { QMap> result; for (auto it = encryptionKeys.begin(); it != encryptionKeys.end(); ++it) { const QString &address = it.key(); auto &protocolKeysMap = it.value(); const std::vector &overrideKeys = protocolKeysMap[UnknownProtocol]; if (!overrideKeys.empty()) { result.insert(address, overrideKeys); continue; } const std::vector &keysOpenPGP = protocolKeysMap[OpenPGP]; const std::vector &keysCMS = protocolKeysMap[CMS]; if (keysOpenPGP.empty() && keysCMS.empty()) { result.insert(address, {}); } else if (!keysOpenPGP.empty() && keysCMS.empty()) { result.insert(address, keysOpenPGP); } else if (keysOpenPGP.empty() && !keysCMS.empty()) { result.insert(address, keysCMS); } else { // check whether OpenPGP keys or S/MIME keys have higher validity const int validityPGP = minimumValidity(keysOpenPGP, address); const int validityCMS = minimumValidity(keysCMS, address); if ((validityCMS > validityPGP) || (validityCMS == validityPGP && preferredProtocol == CMS)) { result.insert(address, keysCMS); } else { result.insert(address, keysOpenPGP); } } } return result; } -QStringList KeyResolverCore::Private::unresolvedRecipients(GpgME::Protocol protocol) const -{ - QStringList result; - result.reserve(mEncKeys.size()); - for (auto it = mEncKeys.begin(); it != mEncKeys.end(); ++it) { - const auto &protocolKeysMap = it.value(); - if (protocolKeysMap.value(protocol).empty()) { - result.push_back(it.key()); - } - } - return result; -} - namespace { bool hasUnresolvedRecipients(const QMap>> &encryptionKeys, Protocol protocol) { return std::any_of(std::cbegin(encryptionKeys), std::cend(encryptionKeys), [protocol] (const auto &protocolKeysMap) { return protocolKeysMap.value(protocol).empty(); }); } bool anyCommonOverrideHasKeyOfType(const QMap>> &encryptionKeys, Protocol protocol) { return std::any_of(std::cbegin(encryptionKeys), std::cend(encryptionKeys), [protocol] (const auto &protocolKeysMap) { return anyKeyHasProtocol(protocolKeysMap.value(UnknownProtocol), protocol); }); } auto keysForProtocol(const QMap>> &encryptionKeys, Protocol protocol) { QMap> keys; for (auto it = std::begin(encryptionKeys), end = std::end(encryptionKeys); it != end; ++it) { const QString &address = it.key(); const auto &protocolKeysMap = it.value(); keys.insert(address, protocolKeysMap.value(protocol)); } return keys; } template auto concatenate(std::vector v1, const std::vector &v2) { v1.reserve(v1.size() + v2.size()); v1.insert(std::end(v1), std::begin(v2), std::end(v2)); return v1; } } KeyResolverCore::Result KeyResolverCore::Private::resolve() { qCDebug(LIBKLEO_LOG) << "Starting "; if (!mSign && !mEncrypt) { // nothing to do return {AllResolved, {}, {}}; } // First resolve through overrides resolveOverrides(); // check protocols needed for overrides const bool commonOverridesNeedOpenPGP = anyCommonOverrideHasKeyOfType(mEncKeys, OpenPGP); const bool commonOverridesNeedCMS = anyCommonOverrideHasKeyOfType(mEncKeys, CMS); if ((mFormat == OpenPGP && commonOverridesNeedCMS) || (mFormat == CMS && commonOverridesNeedOpenPGP) || (!mAllowMixed && commonOverridesNeedOpenPGP && commonOverridesNeedCMS)) { // invalid protocol requirements -> clear intermediate result and abort resolution mEncKeys.clear(); return {Error, {}, {}}; } // Next look for matching groups of keys if (mSign) { resolveSigningGroups(); } if (mEncrypt) { resolveEncryptionGroups(); } // Then look for signing / encryption keys if (mFormat == OpenPGP || mFormat == UnknownProtocol) { resolveSign(OpenPGP); resolveEnc(OpenPGP); } const bool pgpOnly = (!mEncrypt || !hasUnresolvedRecipients(mEncKeys, OpenPGP)) && (!mSign || mSigKeys.contains(OpenPGP)); if (mFormat == OpenPGP) { return { SolutionFlags((pgpOnly ? AllResolved : SomeUnresolved) | OpenPGPOnly), {OpenPGP, mSigKeys.value(OpenPGP), keysForProtocol(mEncKeys, OpenPGP)}, {} }; } if (mFormat == CMS || mFormat == UnknownProtocol) { resolveSign(CMS); resolveEnc(CMS); } const bool cmsOnly = (!mEncrypt || !hasUnresolvedRecipients(mEncKeys, CMS)) && (!mSign || mSigKeys.contains(CMS)); if (mFormat == CMS) { return { SolutionFlags((cmsOnly ? AllResolved : SomeUnresolved) | CMSOnly), {CMS, mSigKeys.value(CMS), keysForProtocol(mEncKeys, CMS)}, {} }; } // check if single-protocol solution has been found if (cmsOnly && (!pgpOnly || mPreferredProtocol == CMS)) { if (!mAllowMixed) { return { SolutionFlags(AllResolved | CMSOnly), {CMS, mSigKeys.value(CMS), keysForProtocol(mEncKeys, CMS)}, {OpenPGP, mSigKeys.value(OpenPGP), keysForProtocol(mEncKeys, OpenPGP)} }; } else { return { SolutionFlags(AllResolved | CMSOnly), {CMS, mSigKeys.value(CMS), keysForProtocol(mEncKeys, CMS)}, {} }; } } if (pgpOnly) { if (!mAllowMixed) { return { SolutionFlags(AllResolved | OpenPGPOnly), {OpenPGP, mSigKeys.value(OpenPGP), keysForProtocol(mEncKeys, OpenPGP)}, {CMS, mSigKeys.value(CMS), keysForProtocol(mEncKeys, CMS)} }; } else { return { SolutionFlags(AllResolved | OpenPGPOnly), {OpenPGP, mSigKeys.value(OpenPGP), keysForProtocol(mEncKeys, OpenPGP)}, {} }; } } if (!mAllowMixed) { // return incomplete single-protocol solution if (mPreferredProtocol == CMS) { return { SolutionFlags(SomeUnresolved | CMSOnly), {CMS, mSigKeys.value(CMS), keysForProtocol(mEncKeys, CMS)}, {OpenPGP, mSigKeys.value(OpenPGP), keysForProtocol(mEncKeys, OpenPGP)} }; } else { return { SolutionFlags(SomeUnresolved | OpenPGPOnly), {OpenPGP, mSigKeys.value(OpenPGP), keysForProtocol(mEncKeys, OpenPGP)}, {CMS, mSigKeys.value(CMS), keysForProtocol(mEncKeys, CMS)} }; } } const auto bestEncryptionKeys = getBestEncryptionKeys(mEncKeys, mPreferredProtocol); const bool allAddressesAreResolved = std::all_of(std::begin(bestEncryptionKeys), std::end(bestEncryptionKeys), [] (const auto &keys) { return !keys.empty(); }); if (allAddressesAreResolved) { return { SolutionFlags(AllResolved | MixedProtocols), {UnknownProtocol, concatenate(mSigKeys.value(OpenPGP), mSigKeys.value(CMS)), bestEncryptionKeys}, {} }; } const bool allKeysAreOpenPGP = std::all_of(std::begin(bestEncryptionKeys), std::end(bestEncryptionKeys), [] (const auto &keys) { return allKeysHaveProtocol(keys, OpenPGP); }); if (allKeysAreOpenPGP) { return { SolutionFlags(SomeUnresolved | OpenPGPOnly), {OpenPGP, mSigKeys.value(OpenPGP), bestEncryptionKeys}, {} }; } const bool allKeysAreCMS = std::all_of(std::begin(bestEncryptionKeys), std::end(bestEncryptionKeys), [] (const auto &keys) { return allKeysHaveProtocol(keys, CMS); }); if (allKeysAreCMS) { return { SolutionFlags(SomeUnresolved | CMSOnly), {CMS, mSigKeys.value(CMS), bestEncryptionKeys}, {} }; } return { SolutionFlags(SomeUnresolved | MixedProtocols), {UnknownProtocol, concatenate(mSigKeys.value(OpenPGP), mSigKeys.value(CMS)), bestEncryptionKeys}, {} }; } KeyResolverCore::KeyResolverCore(bool encrypt, bool sign, Protocol fmt) : d(new Private(this, encrypt, sign, fmt)) { } KeyResolverCore::~KeyResolverCore() = default; void KeyResolverCore::setSender(const QString &address) { d->setSender(address); } QString KeyResolverCore::normalizedSender() const { return d->mSender; } void KeyResolverCore::setRecipients(const QStringList &addresses) { d->addRecipients(addresses); } void KeyResolverCore::setSigningKeys(const QStringList &fingerprints) { d->setSigningKeys(fingerprints); } void KeyResolverCore::setOverrideKeys(const QMap> &overrides) { d->setOverrideKeys(overrides); } void KeyResolverCore::setAllowMixedProtocols(bool allowMixed) { d->mAllowMixed = allowMixed; } void KeyResolverCore::setPreferredProtocol(Protocol proto) { d->mPreferredProtocol = proto; } void KeyResolverCore::setMinimumValidity(int validity) { d->mMinimumValidity = validity; } KeyResolverCore::Result KeyResolverCore::resolve() { return d->resolve(); }