diff --git a/src/models/keycache.cpp b/src/models/keycache.cpp index 112ea3f06..fdd1e4ecb 100644 --- a/src/models/keycache.cpp +++ b/src/models/keycache.cpp @@ -1,1738 +1,1738 @@ /* -*- mode: c++; c-basic-offset:4 -*- models/keycache.cpp This file is part of Kleopatra, the KDE keymanager SPDX-FileCopyrightText: 2007, 2008 Klarälvdalens Datakonsult AB SPDX-FileCopyrightText: 2018 Intevation GmbH SPDX-FileCopyrightText: 2020, 2021 g10 Code GmbH SPDX-FileContributor: Ingo Klöcker SPDX-License-Identifier: GPL-2.0-or-later */ #include "keycache.h" #include "keycache_p.h" #include "kleo/dn.h" #include "kleo/enum.h" #include "kleo/keygroup.h" #include "kleo/keygroupconfig.h" #include "kleo/predicates.h" #include "kleo/stl_util.h" #include "utils/algorithm.h" #include "utils/compat.h" #include "utils/filesystemwatcher.h" #include "utils/qtstlhelpers.h" #include #include #include #include #include #include #include #include #include #include #include #include //#include #include #include #include #include #include #include #include #include "kleo/debug.h" #include "libkleo_debug.h" #include using namespace std::chrono_literals; using namespace Kleo; using namespace GpgME; using namespace KMime::Types; static const unsigned int hours2ms = 1000 * 60 * 60; // // // KeyCache // // namespace { make_comparator_str(ByEMail, .first.c_str()); } class Kleo::KeyCacheAutoRefreshSuspension { KeyCacheAutoRefreshSuspension() { qCDebug(LIBKLEO_LOG) << __func__; auto cache = KeyCache::mutableInstance(); cache->enableFileSystemWatcher(false); m_refreshInterval = cache->refreshInterval(); cache->setRefreshInterval(0); cache->cancelKeyListing(); m_cache = cache; } public: ~KeyCacheAutoRefreshSuspension() { qCDebug(LIBKLEO_LOG) << __func__; if (auto cache = m_cache.lock()) { cache->enableFileSystemWatcher(true); cache->setRefreshInterval(m_refreshInterval); } } static std::shared_ptr instance() { static std::weak_ptr self; if (auto s = self.lock()) { return s; } else { s = std::shared_ptr{new KeyCacheAutoRefreshSuspension{}}; self = s; return s; } } private: std::weak_ptr m_cache; int m_refreshInterval = 0; }; class KeyCache::Private { friend class ::Kleo::KeyCache; KeyCache *const q; public: explicit Private(KeyCache *qq) : q(qq) , m_refreshInterval(1) , m_initalized(false) , m_pgpOnly(true) , m_remarks_enabled(false) { connect(&m_autoKeyListingTimer, &QTimer::timeout, q, [this]() { q->startKeyListing(); }); updateAutoKeyListingTimer(); } ~Private() { if (m_refreshJob) { m_refreshJob->cancel(); } } template class Op> class Comp> std::vector::const_iterator find(const std::vector &keys, const char *key) const { ensureCachePopulated(); const auto it = std::lower_bound(keys.begin(), keys.end(), key, Comp()); if (it == keys.end() || Comp()(*it, key)) { return it; } else { return keys.end(); } } template class Op> class Comp> std::vector::const_iterator find(const std::vector &keys, const char *key) const { ensureCachePopulated(); const auto it = std::lower_bound(keys.begin(), keys.end(), key, Comp()); if (it == keys.end() || Comp()(*it, key)) { return it; } else { return keys.end(); } } std::vector::const_iterator find_fpr(const char *fpr) const { return find<_detail::ByFingerprint>(by.fpr, fpr); } std::pair>::const_iterator, std::vector>::const_iterator> find_email(const char *email) const { ensureCachePopulated(); return std::equal_range(by.email.begin(), by.email.end(), email, ByEMail()); } std::vector find_mailbox(const QString &email, bool sign) const; std::vector::const_iterator find_keygrip(const char *keygrip) const { return find<_detail::ByKeyGrip>(by.keygrip, keygrip); } std::vector::const_iterator find_subkeyid(const char *subkeyid) const { return find<_detail::ByKeyID>(by.subkeyid, subkeyid); } std::vector::const_iterator find_keyid(const char *keyid) const { return find<_detail::ByKeyID>(by.keyid, keyid); } std::vector::const_iterator find_shortkeyid(const char *shortkeyid) const { return find<_detail::ByShortKeyID>(by.shortkeyid, shortkeyid); } std::pair::const_iterator, std::vector::const_iterator> find_subjects(const char *chain_id) const { ensureCachePopulated(); return std::equal_range(by.chainid.begin(), by.chainid.end(), chain_id, _detail::ByChainID()); } void refreshJobDone(const KeyListResult &result); void setRefreshInterval(int interval) { m_refreshInterval = interval; updateAutoKeyListingTimer(); } int refreshInterval() const { return m_refreshInterval; } void updateAutoKeyListingTimer() { setAutoKeyListingInterval(hours2ms * m_refreshInterval); } void setAutoKeyListingInterval(int ms) { m_autoKeyListingTimer.stop(); m_autoKeyListingTimer.setInterval(ms); if (ms != 0) { m_autoKeyListingTimer.start(); } } void ensureCachePopulated() const; void readGroupsFromGpgConf() { // According to Werner Koch groups are more of a hack to solve // a valid usecase (e.g. several keys defined for an internal mailing list) // that won't make it in the proper keylist interface. And using gpgconf // was the suggested way to support groups. auto conf = QGpgME::cryptoConfig(); if (!conf) { return; } auto entry = getCryptoConfigEntry(conf, "gpg", "group"); if (!entry) { return; } // collect the key fingerprints for all groups read from the configuration QMap fingerprints; const auto stringValueList = entry->stringValueList(); for (const QString &value : stringValueList) { const QStringList split = value.split(QLatin1Char('=')); if (split.size() != 2) { qCDebug(LIBKLEO_LOG) << "Ignoring invalid group config:" << value; continue; } const QString groupName = split[0]; const QString fingerprint = split[1]; fingerprints[groupName].push_back(fingerprint); } // add all groups read from the configuration to the list of groups for (auto it = fingerprints.cbegin(); it != fingerprints.cend(); ++it) { const QString groupName = it.key(); const std::vector groupKeys = q->findByFingerprint(toStdStrings(it.value())); KeyGroup g(groupName, groupName, groupKeys, KeyGroup::GnuPGConfig); m_groups.push_back(g); } } void readGroupsFromGroupsConfig() { Q_ASSERT(m_groupConfig); if (!m_groupConfig) { qCWarning(LIBKLEO_LOG) << __func__ << "group config not set"; return; } m_groups = m_groupConfig->readGroups(); } KeyGroup writeGroupToGroupsConfig(const KeyGroup &group) { Q_ASSERT(m_groupConfig); if (!m_groupConfig) { qCWarning(LIBKLEO_LOG) << __func__ << "group config not set"; return {}; } Q_ASSERT(!group.isNull()); Q_ASSERT(group.source() == KeyGroup::ApplicationConfig); if (group.isNull() || group.source() != KeyGroup::ApplicationConfig) { qCDebug(LIBKLEO_LOG) << __func__ << "group cannot be written to application configuration:" << group; return group; } return m_groupConfig->writeGroup(group); } bool removeGroupFromGroupsConfig(const KeyGroup &group) { Q_ASSERT(m_groupConfig); if (!m_groupConfig) { qCWarning(LIBKLEO_LOG) << __func__ << "group config not set"; return false; } Q_ASSERT(!group.isNull()); Q_ASSERT(group.source() == KeyGroup::ApplicationConfig); if (group.isNull() || group.source() != KeyGroup::ApplicationConfig) { qCDebug(LIBKLEO_LOG) << __func__ << "group cannot be removed from application configuration:" << group; return false; } return m_groupConfig->removeGroup(group); } void updateGroupCache() { // Update Group Keys // this is a quick thing as it only involves reading the config // so no need for a job. m_groups.clear(); if (m_groupsEnabled) { readGroupsFromGpgConf(); readGroupsFromGroupsConfig(); } } bool insert(const KeyGroup &group) { Q_ASSERT(!group.isNull()); Q_ASSERT(group.source() == KeyGroup::ApplicationConfig); if (group.isNull() || group.source() != KeyGroup::ApplicationConfig) { qCDebug(LIBKLEO_LOG) << "KeyCache::Private::insert - Invalid group:" << group; return false; } const auto it = std::find_if(m_groups.cbegin(), m_groups.cend(), [group](const auto &g) { return g.source() == group.source() && g.id() == group.id(); }); if (it != m_groups.cend()) { qCDebug(LIBKLEO_LOG) << "KeyCache::Private::insert - Group already present in list of groups:" << group; return false; } const KeyGroup savedGroup = writeGroupToGroupsConfig(group); if (savedGroup.isNull()) { qCDebug(LIBKLEO_LOG) << "KeyCache::Private::insert - Writing group" << group.id() << "to config file failed"; return false; } m_groups.push_back(savedGroup); Q_EMIT q->groupAdded(savedGroup); return true; } bool update(const KeyGroup &group) { Q_ASSERT(!group.isNull()); Q_ASSERT(group.source() == KeyGroup::ApplicationConfig); if (group.isNull() || group.source() != KeyGroup::ApplicationConfig) { qCDebug(LIBKLEO_LOG) << "KeyCache::Private::update - Invalid group:" << group; return false; } const auto it = std::find_if(m_groups.cbegin(), m_groups.cend(), [group](const auto &g) { return g.source() == group.source() && g.id() == group.id(); }); if (it == m_groups.cend()) { qCDebug(LIBKLEO_LOG) << "KeyCache::Private::update - Group not found in list of groups:" << group; return false; } const auto groupIndex = std::distance(m_groups.cbegin(), it); const KeyGroup savedGroup = writeGroupToGroupsConfig(group); if (savedGroup.isNull()) { qCDebug(LIBKLEO_LOG) << "KeyCache::Private::update - Writing group" << group.id() << "to config file failed"; return false; } m_groups[groupIndex] = savedGroup; Q_EMIT q->groupUpdated(savedGroup); return true; } bool remove(const KeyGroup &group) { Q_ASSERT(!group.isNull()); Q_ASSERT(group.source() == KeyGroup::ApplicationConfig); if (group.isNull() || group.source() != KeyGroup::ApplicationConfig) { qCDebug(LIBKLEO_LOG) << "KeyCache::Private::remove - Invalid group:" << group; return false; } const auto it = std::find_if(m_groups.cbegin(), m_groups.cend(), [group](const auto &g) { return g.source() == group.source() && g.id() == group.id(); }); if (it == m_groups.cend()) { qCDebug(LIBKLEO_LOG) << "KeyCache::Private::remove - Group not found in list of groups:" << group; return false; } const bool success = removeGroupFromGroupsConfig(group); if (!success) { qCDebug(LIBKLEO_LOG) << "KeyCache::Private::remove - Removing group" << group.id() << "from config file failed"; return false; } m_groups.erase(it); Q_EMIT q->groupRemoved(group); return true; } private: QPointer m_refreshJob; std::vector> m_fsWatchers; QTimer m_autoKeyListingTimer; int m_refreshInterval; struct By { std::vector fpr, keyid, shortkeyid, chainid; std::vector> email; std::vector subkeyid, keygrip; } by; bool m_initalized; bool m_pgpOnly; bool m_remarks_enabled; bool m_groupsEnabled = false; std::shared_ptr m_groupConfig; std::vector m_groups; }; std::shared_ptr KeyCache::instance() { return mutableInstance(); } std::shared_ptr KeyCache::mutableInstance() { static std::weak_ptr self; try { return std::shared_ptr(self); } catch (const std::bad_weak_ptr &) { const std::shared_ptr s(new KeyCache); self = s; return s; } } KeyCache::KeyCache() : QObject() , d(new Private(this)) { } KeyCache::~KeyCache() { } void KeyCache::setGroupsEnabled(bool enabled) { d->m_groupsEnabled = enabled; if (d->m_initalized) { d->updateGroupCache(); } } void KeyCache::setGroupConfig(const std::shared_ptr &groupConfig) { d->m_groupConfig = groupConfig; } void KeyCache::enableFileSystemWatcher(bool enable) { for (const auto &i : std::as_const(d->m_fsWatchers)) { i->setEnabled(enable); } } void KeyCache::setRefreshInterval(int hours) { d->setRefreshInterval(hours); } int KeyCache::refreshInterval() const { return d->refreshInterval(); } std::shared_ptr KeyCache::suspendAutoRefresh() { return KeyCacheAutoRefreshSuspension::instance(); } void KeyCache::reload(GpgME::Protocol /*proto*/) { if (d->m_refreshJob) { return; } d->updateAutoKeyListingTimer(); enableFileSystemWatcher(false); d->m_refreshJob = new RefreshKeysJob(this); connect(d->m_refreshJob.data(), &RefreshKeysJob::done, this, [this](const GpgME::KeyListResult &r) { d->refreshJobDone(r); }); connect(d->m_refreshJob.data(), &RefreshKeysJob::canceled, this, [this]() { d->m_refreshJob.clear(); }); d->m_refreshJob->start(); } void KeyCache::cancelKeyListing() { if (!d->m_refreshJob) { return; } d->m_refreshJob->cancel(); } void KeyCache::addFileSystemWatcher(const std::shared_ptr &watcher) { if (!watcher) { return; } d->m_fsWatchers.push_back(watcher); connect(watcher.get(), &FileSystemWatcher::directoryChanged, this, [this]() { startKeyListing(); }); connect(watcher.get(), &FileSystemWatcher::fileChanged, this, [this]() { startKeyListing(); }); watcher->setEnabled(d->m_refreshJob.isNull()); } void KeyCache::enableRemarks(bool value) { if (!d->m_remarks_enabled && value) { d->m_remarks_enabled = value; if (d->m_initalized && !d->m_refreshJob) { qCDebug(LIBKLEO_LOG) << "Reloading keycache with remarks enabled"; reload(); } else { connect(d->m_refreshJob.data(), &RefreshKeysJob::done, this, [this](const GpgME::KeyListResult &) { qCDebug(LIBKLEO_LOG) << "Reloading keycache with remarks enabled"; QTimer::singleShot(1s, this, [this]() { reload(); }); }); } } else { d->m_remarks_enabled = value; } } bool KeyCache::remarksEnabled() const { return d->m_remarks_enabled; } void KeyCache::Private::refreshJobDone(const KeyListResult &result) { m_refreshJob.clear(); q->enableFileSystemWatcher(true); m_initalized = true; updateGroupCache(); Q_EMIT q->keyListingDone(result); } const Key &KeyCache::findByFingerprint(const char *fpr) const { const std::vector::const_iterator it = d->find_fpr(fpr); if (it == d->by.fpr.end()) { static const Key null; return null; } else { return *it; } } const Key &KeyCache::findByFingerprint(const std::string &fpr) const { return findByFingerprint(fpr.c_str()); } std::vector KeyCache::findByFingerprint(const std::vector &fprs) const { std::vector keys; keys.reserve(fprs.size()); for (const auto &fpr : fprs) { const Key key = findByFingerprint(fpr.c_str()); if (key.isNull()) { qCDebug(LIBKLEO_LOG) << __func__ << "Ignoring unknown key with fingerprint:" << fpr.c_str(); continue; } keys.push_back(key); } return keys; } std::vector KeyCache::findByEMailAddress(const char *email) const { const auto pair = d->find_email(email); std::vector result; result.reserve(std::distance(pair.first, pair.second)); std::transform(pair.first, pair.second, std::back_inserter(result), [](const std::pair &pair) { return pair.second; }); return result; } std::vector KeyCache::findByEMailAddress(const std::string &email) const { return findByEMailAddress(email.c_str()); } const Key &KeyCache::findByShortKeyID(const char *id) const { const std::vector::const_iterator it = d->find_shortkeyid(id); if (it != d->by.shortkeyid.end()) { return *it; } static const Key null; return null; } const Key &KeyCache::findByShortKeyID(const std::string &id) const { return findByShortKeyID(id.c_str()); } const Key &KeyCache::findByKeyIDOrFingerprint(const char *id) const { { // try by.fpr first: const std::vector::const_iterator it = d->find_fpr(id); if (it != d->by.fpr.end()) { return *it; } } { // try by.keyid next: const std::vector::const_iterator it = d->find_keyid(id); if (it != d->by.keyid.end()) { return *it; } } static const Key null; return null; } const Key &KeyCache::findByKeyIDOrFingerprint(const std::string &id) const { return findByKeyIDOrFingerprint(id.c_str()); } std::vector KeyCache::findByKeyIDOrFingerprint(const std::vector &ids) const { std::vector keyids; std::remove_copy_if(ids.begin(), ids.end(), std::back_inserter(keyids), [](const std::string &str) { return !str.c_str() || !*str.c_str(); }); // this is just case-insensitive string search: std::sort(keyids.begin(), keyids.end(), _detail::ByFingerprint()); std::vector result; result.reserve(keyids.size()); // dups shouldn't happen d->ensureCachePopulated(); kdtools::set_intersection(d->by.fpr.begin(), d->by.fpr.end(), keyids.begin(), keyids.end(), std::back_inserter(result), _detail::ByFingerprint()); if (result.size() < keyids.size()) { // note that By{Fingerprint,KeyID,ShortKeyID} define the same // order for _strings_ kdtools::set_intersection(d->by.keyid.begin(), d->by.keyid.end(), keyids.begin(), keyids.end(), std::back_inserter(result), _detail::ByKeyID()); } // duplicates shouldn't happen, but make sure nonetheless: std::sort(result.begin(), result.end(), _detail::ByFingerprint()); result.erase(std::unique(result.begin(), result.end(), _detail::ByFingerprint()), result.end()); // we skip looking into short key ids here, as it's highly // unlikely they're used for this purpose. We might need to revise // this decision, but only after testing. return result; } const Subkey &KeyCache::findSubkeyByKeyGrip(const char *grip, Protocol protocol) const { static const Subkey null; d->ensureCachePopulated(); const auto range = std::equal_range(d->by.keygrip.begin(), d->by.keygrip.end(), grip, _detail::ByKeyGrip()); if (range.first == d->by.keygrip.end()) { return null; - } else if (protocol == UnknownProtocol) { + } else if (protocol == UnknownProtocol && range.first != range.second) { return *range.first; } else { for (auto it = range.first; it != range.second; ++it) { if (it->parent().protocol() == protocol) { return *it; } } } return null; } const Subkey &KeyCache::findSubkeyByKeyGrip(const std::string &grip, Protocol protocol) const { return findSubkeyByKeyGrip(grip.c_str(), protocol); } std::vector KeyCache::findSubkeysByKeyID(const std::vector &ids) const { std::vector sorted; sorted.reserve(ids.size()); std::remove_copy_if(ids.begin(), ids.end(), std::back_inserter(sorted), [](const std::string &str) { return !str.c_str() || !*str.c_str(); }); std::sort(sorted.begin(), sorted.end(), _detail::ByKeyID()); std::vector result; d->ensureCachePopulated(); kdtools::set_intersection(d->by.subkeyid.begin(), d->by.subkeyid.end(), sorted.begin(), sorted.end(), std::back_inserter(result), _detail::ByKeyID()); return result; } std::vector KeyCache::findRecipients(const DecryptionResult &res) const { std::vector keyids; const auto recipients = res.recipients(); for (const DecryptionResult::Recipient &r : recipients) { if (const char *kid = r.keyID()) { keyids.push_back(kid); } } const std::vector subkeys = findSubkeysByKeyID(keyids); std::vector result; result.reserve(subkeys.size()); std::transform(subkeys.begin(), subkeys.end(), std::back_inserter(result), std::mem_fn(&Subkey::parent)); std::sort(result.begin(), result.end(), _detail::ByFingerprint()); result.erase(std::unique(result.begin(), result.end(), _detail::ByFingerprint()), result.end()); return result; } std::vector KeyCache::findSigners(const VerificationResult &res) const { std::vector fprs; const auto signatures = res.signatures(); for (const Signature &s : signatures) { if (const char *fpr = s.fingerprint()) { fprs.push_back(fpr); } } return findByKeyIDOrFingerprint(fprs); } std::vector KeyCache::findSigningKeysByMailbox(const QString &mb) const { return d->find_mailbox(mb, true); } std::vector KeyCache::findEncryptionKeysByMailbox(const QString &mb) const { return d->find_mailbox(mb, false); } namespace { #define DO(op, meth, meth2) \ if (op key.meth()) { \ } else { \ qDebug("rejecting for signing: %s: %s", #meth2, key.primaryFingerprint()); \ return false; \ } #define ACCEPT(meth) DO(!!, meth, !meth) #define REJECT(meth) DO(!, meth, meth) struct ready_for_signing : std::unary_function { bool operator()(const Key &key) const { #if 1 ACCEPT(hasSecret); ACCEPT(canReallySign); REJECT(isRevoked); REJECT(isExpired); REJECT(isDisabled); REJECT(isInvalid); return true; #else return key.hasSecret() && key.canReallySign() && !key.isRevoked() && !key.isExpired() && !key.isDisabled() && !key.isInvalid(); #endif #undef DO } }; struct ready_for_encryption : std::unary_function { #define DO(op, meth, meth2) \ if (op key.meth()) { \ } else { \ qDebug("rejecting for encrypting: %s: %s", #meth2, key.primaryFingerprint()); \ return false; \ } bool operator()(const Key &key) const { #if 1 ACCEPT(canEncrypt); REJECT(isRevoked); REJECT(isExpired); REJECT(isDisabled); REJECT(isInvalid); return true; #else return key.canEncrypt() && !key.isRevoked() && !key.isExpired() && !key.isDisabled() && !key.isInvalid(); #endif } #undef DO #undef ACCEPT #undef REJECT }; } std::vector KeyCache::Private::find_mailbox(const QString &email, bool sign) const { if (email.isEmpty()) { return std::vector(); } const auto pair = find_email(email.toUtf8().constData()); std::vector result; result.reserve(std::distance(pair.first, pair.second)); if (sign) { kdtools::copy_2nd_if(pair.first, pair.second, std::back_inserter(result), ready_for_signing()); } else { kdtools::copy_2nd_if(pair.first, pair.second, std::back_inserter(result), ready_for_encryption()); } return result; } std::vector KeyCache::findSubjects(const GpgME::Key &key, Options options) const { return findSubjects(std::vector(1, key), options); } std::vector KeyCache::findSubjects(const std::vector &keys, Options options) const { return findSubjects(keys.begin(), keys.end(), options); } std::vector KeyCache::findSubjects(std::vector::const_iterator first, std::vector::const_iterator last, Options options) const { if (first == last) { return std::vector(); } std::vector result; while (first != last) { const auto pair = d->find_subjects(first->primaryFingerprint()); result.insert(result.end(), pair.first, pair.second); ++first; } std::sort(result.begin(), result.end(), _detail::ByFingerprint()); result.erase(std::unique(result.begin(), result.end(), _detail::ByFingerprint()), result.end()); if (options & RecursiveSearch) { const std::vector furtherSubjects = findSubjects(result, options); std::vector combined; combined.reserve(result.size() + furtherSubjects.size()); std::merge(result.begin(), result.end(), furtherSubjects.begin(), furtherSubjects.end(), std::back_inserter(combined), _detail::ByFingerprint()); combined.erase(std::unique(combined.begin(), combined.end(), _detail::ByFingerprint()), combined.end()); result.swap(combined); } return result; } std::vector KeyCache::findIssuers(const Key &key, Options options) const { std::vector result; if (key.isNull()) { return result; } if (options & IncludeSubject) { result.push_back(key); } if (key.isRoot()) { return result; } const Key &issuer = findByFingerprint(key.chainID()); if (issuer.isNull()) { return result; } result.push_back(issuer); if (!(options & RecursiveSearch)) { return result; } while (true) { const Key &issuer = findByFingerprint(result.back().chainID()); if (issuer.isNull()) { break; } const bool chainAlreadyContainsIssuer = Kleo::contains_if(result, [issuer](const auto &key) { return _detail::ByFingerprint()(issuer, key); }); // we also add the issuer if the chain already contains it, so that // the user can spot the recursion result.push_back(issuer); if (issuer.isRoot() || chainAlreadyContainsIssuer) { break; } } return result; } static std::string email(const UserID &uid) { // Prefer the gnupg normalized one const std::string addr = uid.addrSpec(); if (!addr.empty()) { return addr; } const std::string email = uid.email(); if (email.empty()) { return DN(uid.id())[QStringLiteral("EMAIL")].trimmed().toUtf8().constData(); } if (email[0] == '<' && email[email.size() - 1] == '>') { return email.substr(1, email.size() - 2); } else { return email; } } static std::vector emails(const Key &key) { std::vector emails; const auto userIDs = key.userIDs(); for (const UserID &uid : userIDs) { const std::string e = email(uid); if (!e.empty()) { emails.push_back(e); } } std::sort(emails.begin(), emails.end(), ByEMail()); emails.erase(std::unique(emails.begin(), emails.end(), ByEMail()), emails.end()); return emails; } void KeyCache::remove(const Key &key) { if (key.isNull()) { return; } const char *fpr = key.primaryFingerprint(); if (!fpr) { return; } Q_EMIT aboutToRemove(key); { const auto range = std::equal_range(d->by.fpr.begin(), d->by.fpr.end(), fpr, _detail::ByFingerprint()); d->by.fpr.erase(range.first, range.second); } if (const char *keyid = key.keyID()) { const auto range = std::equal_range(d->by.keyid.begin(), d->by.keyid.end(), keyid, _detail::ByKeyID()); const auto it = std::remove_if(range.first, range.second, [fpr](const GpgME::Key &key) { return _detail::ByFingerprint()(fpr, key); }); d->by.keyid.erase(it, range.second); } if (const char *shortkeyid = key.shortKeyID()) { const auto range = std::equal_range(d->by.shortkeyid.begin(), d->by.shortkeyid.end(), shortkeyid, _detail::ByShortKeyID()); const auto it = std::remove_if(range.first, range.second, [fpr](const GpgME::Key &key) { return _detail::ByFingerprint()(fpr, key); }); d->by.shortkeyid.erase(it, range.second); } if (const char *chainid = key.chainID()) { const auto range = std::equal_range(d->by.chainid.begin(), d->by.chainid.end(), chainid, _detail::ByChainID()); const auto range2 = std::equal_range(range.first, range.second, fpr, _detail::ByFingerprint()); d->by.chainid.erase(range2.first, range2.second); } const auto emailsKey{emails(key)}; for (const std::string &email : emailsKey) { const auto range = std::equal_range(d->by.email.begin(), d->by.email.end(), email, ByEMail()); const auto it = std::remove_if(range.first, range.second, [fpr](const std::pair &pair) { return qstricmp(fpr, pair.second.primaryFingerprint()) == 0; }); d->by.email.erase(it, range.second); } const auto keySubKeys{key.subkeys()}; for (const Subkey &subkey : keySubKeys) { if (const char *keyid = subkey.keyID()) { const auto range = std::equal_range(d->by.subkeyid.begin(), d->by.subkeyid.end(), keyid, _detail::ByKeyID()); const auto it = std::remove_if(range.first, range.second, [fpr](const Subkey &subkey) { return !qstricmp(fpr, subkey.parent().primaryFingerprint()); }); d->by.subkeyid.erase(it, range.second); } if (const char *keygrip = subkey.keyGrip()) { const auto range = std::equal_range(d->by.keygrip.begin(), d->by.keygrip.end(), keygrip, _detail::ByKeyGrip()); const auto it = std::remove_if(range.first, range.second, [fpr](const Subkey &subkey) { return !qstricmp(fpr, subkey.parent().primaryFingerprint()); }); d->by.keygrip.erase(it, range.second); } } } void KeyCache::remove(const std::vector &keys) { for (const Key &key : keys) { remove(key); } } const std::vector &KeyCache::keys() const { d->ensureCachePopulated(); return d->by.fpr; } std::vector KeyCache::secretKeys() const { std::vector keys = this->keys(); keys.erase(std::remove_if(keys.begin(), keys.end(), [](const Key &key) { return !key.hasSecret(); }), keys.end()); return keys; } KeyGroup KeyCache::group(const QString &id) const { KeyGroup result{}; const auto it = std::find_if(std::cbegin(d->m_groups), std::cend(d->m_groups), [id](const auto &g) { return g.id() == id; }); if (it != std::cend(d->m_groups)) { result = *it; } return result; } std::vector KeyCache::groups() const { d->ensureCachePopulated(); return d->m_groups; } std::vector KeyCache::configurableGroups() const { std::vector groups; groups.reserve(d->m_groups.size()); std::copy_if(d->m_groups.cbegin(), d->m_groups.cend(), std::back_inserter(groups), [](const KeyGroup &group) { return group.source() == KeyGroup::ApplicationConfig; }); return groups; } namespace { bool compareById(const KeyGroup &lhs, const KeyGroup &rhs) { return lhs.id() < rhs.id(); } std::vector sortedById(std::vector groups) { std::sort(groups.begin(), groups.end(), &compareById); return groups; } } void KeyCache::saveConfigurableGroups(const std::vector &groups) { const std::vector oldGroups = sortedById(configurableGroups()); const std::vector newGroups = sortedById(groups); { std::vector removedGroups; std::set_difference(oldGroups.begin(), oldGroups.end(), newGroups.begin(), newGroups.end(), std::back_inserter(removedGroups), &compareById); for (const auto &group : std::as_const(removedGroups)) { qCDebug(LIBKLEO_LOG) << "Removing group" << group; d->remove(group); } } { std::vector updatedGroups; std::set_intersection(newGroups.begin(), newGroups.end(), oldGroups.begin(), oldGroups.end(), std::back_inserter(updatedGroups), &compareById); for (const auto &group : std::as_const(updatedGroups)) { qCDebug(LIBKLEO_LOG) << "Updating group" << group; d->update(group); } } { std::vector addedGroups; std::set_difference(newGroups.begin(), newGroups.end(), oldGroups.begin(), oldGroups.end(), std::back_inserter(addedGroups), &compareById); for (const auto &group : std::as_const(addedGroups)) { qCDebug(LIBKLEO_LOG) << "Adding group" << group; d->insert(group); } } Q_EMIT keysMayHaveChanged(); } bool KeyCache::insert(const KeyGroup &group) { if (!d->insert(group)) { return false; } Q_EMIT keysMayHaveChanged(); return true; } bool KeyCache::update(const KeyGroup &group) { if (!d->update(group)) { return false; } Q_EMIT keysMayHaveChanged(); return true; } bool KeyCache::remove(const KeyGroup &group) { if (!d->remove(group)) { return false; } Q_EMIT keysMayHaveChanged(); return true; } void KeyCache::refresh(const std::vector &keys) { // make this better... clear(); insert(keys); } void KeyCache::insert(const Key &key) { insert(std::vector(1, key)); } namespace { template class Op> class T1, template class Op> class T2> struct lexicographically { using result_type = bool; template bool operator()(const U &lhs, const V &rhs) const { return T1()(lhs, rhs) // || (T1()(lhs, rhs) && T2()(lhs, rhs)); } }; } void KeyCache::insert(const std::vector &keys) { // 1. remove those with empty fingerprints: std::vector sorted; sorted.reserve(keys.size()); std::remove_copy_if(keys.begin(), keys.end(), std::back_inserter(sorted), [](const Key &key) { auto fp = key.primaryFingerprint(); return !fp || !*fp; }); Q_FOREACH (const Key &key, sorted) { remove(key); // this is sub-optimal, but makes implementation from here on much easier } // 2. sort by fingerprint: std::sort(sorted.begin(), sorted.end(), _detail::ByFingerprint()); // 2a. insert into fpr index: std::vector by_fpr; by_fpr.reserve(sorted.size() + d->by.fpr.size()); std::merge(sorted.begin(), sorted.end(), d->by.fpr.begin(), d->by.fpr.end(), std::back_inserter(by_fpr), _detail::ByFingerprint()); // 3. build email index: std::vector> pairs; pairs.reserve(sorted.size()); for (const Key &key : std::as_const(sorted)) { const std::vector emails = ::emails(key); for (const std::string &e : emails) { pairs.push_back(std::make_pair(e, key)); } } std::sort(pairs.begin(), pairs.end(), ByEMail()); // 3a. insert into email index: std::vector> by_email; by_email.reserve(pairs.size() + d->by.email.size()); std::merge(pairs.begin(), pairs.end(), d->by.email.begin(), d->by.email.end(), std::back_inserter(by_email), ByEMail()); // 3.5: stable-sort by chain-id (effectively lexicographically) std::stable_sort(sorted.begin(), sorted.end(), _detail::ByChainID()); // 3.5a: insert into chain-id index: std::vector nonroot; nonroot.reserve(sorted.size()); std::vector by_chainid; by_chainid.reserve(sorted.size() + d->by.chainid.size()); std::copy_if(sorted.cbegin(), sorted.cend(), std::back_inserter(nonroot), [](const Key &key) { return !key.isRoot(); }); std::merge(nonroot.cbegin(), nonroot.cend(), d->by.chainid.cbegin(), d->by.chainid.cend(), std::back_inserter(by_chainid), lexicographically<_detail::ByChainID, _detail::ByFingerprint>()); // 4. sort by key id: std::sort(sorted.begin(), sorted.end(), _detail::ByKeyID()); // 4a. insert into keyid index: std::vector by_keyid; by_keyid.reserve(sorted.size() + d->by.keyid.size()); std::merge(sorted.begin(), sorted.end(), d->by.keyid.begin(), d->by.keyid.end(), std::back_inserter(by_keyid), _detail::ByKeyID()); // 5. sort by short key id: std::sort(sorted.begin(), sorted.end(), _detail::ByShortKeyID()); // 5a. insert into short keyid index: std::vector by_shortkeyid; by_shortkeyid.reserve(sorted.size() + d->by.shortkeyid.size()); std::merge(sorted.begin(), sorted.end(), d->by.shortkeyid.begin(), d->by.shortkeyid.end(), std::back_inserter(by_shortkeyid), _detail::ByShortKeyID()); // 6. build subkey ID index: std::vector subkeys; subkeys.reserve(sorted.size()); for (const Key &key : std::as_const(sorted)) { const auto keySubkeys{key.subkeys()}; for (const Subkey &subkey : keySubkeys) { subkeys.push_back(subkey); } } // 6a sort by key id: std::sort(subkeys.begin(), subkeys.end(), _detail::ByKeyID()); // 6b. insert into subkey ID index: std::vector by_subkeyid; by_subkeyid.reserve(subkeys.size() + d->by.subkeyid.size()); std::merge(subkeys.begin(), subkeys.end(), d->by.subkeyid.begin(), d->by.subkeyid.end(), std::back_inserter(by_subkeyid), _detail::ByKeyID()); // 6c. sort by key grip std::sort(subkeys.begin(), subkeys.end(), _detail::ByKeyGrip()); // 6d. insert into subkey keygrip index: std::vector by_keygrip; by_keygrip.reserve(subkeys.size() + d->by.keygrip.size()); std::merge(subkeys.begin(), subkeys.end(), d->by.keygrip.begin(), d->by.keygrip.end(), std::back_inserter(by_keygrip), _detail::ByKeyGrip()); // now commit (well, we already removed keys...) by_fpr.swap(d->by.fpr); by_keyid.swap(d->by.keyid); by_shortkeyid.swap(d->by.shortkeyid); by_email.swap(d->by.email); by_subkeyid.swap(d->by.subkeyid); by_keygrip.swap(d->by.keygrip); by_chainid.swap(d->by.chainid); for (const Key &key : std::as_const(sorted)) { d->m_pgpOnly &= key.protocol() == GpgME::OpenPGP; Q_EMIT added(key); } Q_EMIT keysMayHaveChanged(); } void KeyCache::clear() { d->by = Private::By(); } // // // RefreshKeysJob // // class KeyCache::RefreshKeysJob::Private { RefreshKeysJob *const q; public: Private(KeyCache *cache, RefreshKeysJob *qq); void doStart(); Error startKeyListing(GpgME::Protocol protocol); void listAllKeysJobDone(const KeyListResult &res, const std::vector &nextKeys) { std::vector keys; keys.reserve(m_keys.size() + nextKeys.size()); if (m_keys.empty()) { keys = nextKeys; } else { std::merge(m_keys.begin(), m_keys.end(), nextKeys.begin(), nextKeys.end(), std::back_inserter(keys), _detail::ByFingerprint()); } m_keys.swap(keys); jobDone(res); } void emitDone(const KeyListResult &result); void updateKeyCache(); QPointer m_cache; QVector m_jobsPending; std::vector m_keys; KeyListResult m_mergedResult; bool m_canceled; private: void jobDone(const KeyListResult &res); }; KeyCache::RefreshKeysJob::Private::Private(KeyCache *cache, RefreshKeysJob *qq) : q(qq) , m_cache(cache) , m_canceled(false) { Q_ASSERT(m_cache); } void KeyCache::RefreshKeysJob::Private::jobDone(const KeyListResult &result) { if (m_canceled) { q->deleteLater(); return; } QObject *const sender = q->sender(); if (sender) { sender->disconnect(q); } Q_ASSERT(m_jobsPending.size() > 0); m_jobsPending.removeOne(qobject_cast(sender)); m_mergedResult.mergeWith(result); if (m_jobsPending.size() > 0) { return; } updateKeyCache(); emitDone(m_mergedResult); } void KeyCache::RefreshKeysJob::Private::emitDone(const KeyListResult &res) { q->deleteLater(); Q_EMIT q->done(res); } KeyCache::RefreshKeysJob::RefreshKeysJob(KeyCache *cache, QObject *parent) : QObject(parent) , d(new Private(cache, this)) { } KeyCache::RefreshKeysJob::~RefreshKeysJob() { delete d; } void KeyCache::RefreshKeysJob::start() { QTimer::singleShot(0, this, [this]() { d->doStart(); }); } void KeyCache::RefreshKeysJob::cancel() { d->m_canceled = true; std::for_each(d->m_jobsPending.begin(), d->m_jobsPending.end(), std::mem_fn(&QGpgME::ListAllKeysJob::slotCancel)); Q_EMIT canceled(); } void KeyCache::RefreshKeysJob::Private::doStart() { if (m_canceled) { q->deleteLater(); return; } Q_ASSERT(m_jobsPending.size() == 0); m_mergedResult.mergeWith(KeyListResult(startKeyListing(GpgME::OpenPGP))); m_mergedResult.mergeWith(KeyListResult(startKeyListing(GpgME::CMS))); if (m_jobsPending.size() != 0) { return; } const bool hasError = m_mergedResult.error() || m_mergedResult.error().isCanceled(); emitDone(hasError ? m_mergedResult : KeyListResult(Error(GPG_ERR_UNSUPPORTED_OPERATION))); } void KeyCache::RefreshKeysJob::Private::updateKeyCache() { if (!m_cache || m_canceled) { q->deleteLater(); return; } std::vector cachedKeys = m_cache->initialized() ? m_cache->keys() : std::vector(); std::sort(cachedKeys.begin(), cachedKeys.end(), _detail::ByFingerprint()); std::vector keysToRemove; std::set_difference(cachedKeys.begin(), cachedKeys.end(), m_keys.begin(), m_keys.end(), std::back_inserter(keysToRemove), _detail::ByFingerprint()); m_cache->remove(keysToRemove); m_cache->refresh(m_keys); } Error KeyCache::RefreshKeysJob::Private::startKeyListing(GpgME::Protocol proto) { const auto *const protocol = (proto == GpgME::OpenPGP) ? QGpgME::openpgp() : QGpgME::smime(); if (!protocol) { return Error(); } QGpgME::ListAllKeysJob *const job = protocol->listAllKeysJob(/*includeSigs*/ false, /*validate*/ true); if (!job) { return Error(); } #if 0 aheinecke: 2017.01.12: For unknown reasons the new style connect fails at runtime over library borders into QGpgME from the GpgME repo when cross compiled for Windows and default arguments are used in the Signal. This was tested with gcc 4.9 (Mingw 3.0.2) and we could not find an explanation for this. So until this is fixed or we understand the problem we need to use the old style connect for QGpgME signals. The new style connect of the canceled signal right below works fine. connect(job, &QGpgME::ListAllKeysJob::result, q, [this](const GpgME::KeyListResult &res, const std::vector &keys) { listAllKeysJobDone(res, keys); }); #endif connect(job, SIGNAL(result(GpgME::KeyListResult, std::vector)), q, SLOT(listAllKeysJobDone(GpgME::KeyListResult, std::vector))); connect(q, &RefreshKeysJob::canceled, job, &QGpgME::Job::slotCancel); // Only do this for initialized keycaches to avoid huge waits for // signature notations during initial keylisting. if (proto == GpgME::OpenPGP && m_cache->remarksEnabled() && m_cache->initialized()) { auto ctx = QGpgME::Job::context(job); if (ctx) { ctx->addKeyListMode(KeyListMode::Signatures | KeyListMode::SignatureNotations); } } const Error error = job->start(true); if (!error && !error.isCanceled()) { m_jobsPending.push_back(job); } return error; } bool KeyCache::initialized() const { return d->m_initalized; } void KeyCache::Private::ensureCachePopulated() const { if (!m_initalized) { q->startKeyListing(); QEventLoop loop; loop.connect(q, &KeyCache::keyListingDone, &loop, &QEventLoop::quit); qCDebug(LIBKLEO_LOG) << "Waiting for keycache."; loop.exec(); qCDebug(LIBKLEO_LOG) << "Keycache available."; } } bool KeyCache::pgpOnly() const { return d->m_pgpOnly; } static bool keyIsOk(const Key &k) { return !k.isExpired() && !k.isRevoked() && !k.isInvalid() && !k.isDisabled(); } static bool uidIsOk(const UserID &uid) { return keyIsOk(uid.parent()) && !uid.isRevoked() && !uid.isInvalid(); } static bool subkeyIsOk(const Subkey &s) { return !s.isRevoked() && !s.isInvalid() && !s.isDisabled(); } namespace { time_t creationTimeOfNewestSuitableSubKey(const Key &key, KeyUsage usage) { time_t creationTime = 0; for (const Subkey &s : key.subkeys()) { if (!subkeyIsOk(s)) { continue; } if (usage == KeyUsage::Sign && !s.canSign()) { continue; } if (usage == KeyUsage::Encrypt && !s.canEncrypt()) { continue; } if (s.creationTime() > creationTime) { creationTime = s.creationTime(); } } return creationTime; } struct BestMatch { Key key; UserID uid; time_t creationTime = 0; }; } GpgME::Key KeyCache::findBestByMailBox(const char *addr, GpgME::Protocol proto, KeyUsage usage) const { d->ensureCachePopulated(); if (!addr) { return {}; } // support lookup of email addresses enclosed in angle brackets QByteArray address(addr); if (address[0] == '<' && address[address.size() - 1] == '>') { address = address.mid(1, address.size() - 2); } address = address.toLower(); BestMatch best; for (const Key &k : findByEMailAddress(address.constData())) { if (proto != Protocol::UnknownProtocol && k.protocol() != proto) { continue; } if (usage == KeyUsage::Encrypt && !k.canEncrypt()) { continue; } if (usage == KeyUsage::Sign && (!k.canSign() || !k.hasSecret())) { continue; } const time_t creationTime = creationTimeOfNewestSuitableSubKey(k, usage); if (creationTime == 0) { // key does not have a suitable (and usable) subkey continue; } for (const UserID &u : k.userIDs()) { if (QByteArray::fromStdString(u.addrSpec()).toLower() != address) { // user ID does not match the given email address continue; } if (best.uid.isNull()) { // we have found our first candidate best = {k, u, creationTime}; } else if (!uidIsOk(best.uid) && uidIsOk(u)) { // validity of the new key is better best = {k, u, creationTime}; } else if (!k.isExpired() && best.uid.validity() < u.validity()) { // validity of the new key is better best = {k, u, creationTime}; } else if (best.key.isExpired() && !k.isExpired()) { // validity of the new key is better best = {k, u, creationTime}; } else if (best.uid.validity() == u.validity() && uidIsOk(u) && best.creationTime < creationTime) { // both keys/user IDs have same validity, but the new key is newer best = {k, u, creationTime}; } } } return best.key; } namespace { template bool allKeysAllowUsage(const T &keys, KeyUsage usage) { switch (usage) { case KeyUsage::AnyUsage: return true; case KeyUsage::Sign: return std::all_of(std::begin(keys), std::end(keys), std::mem_fn(&Key::canSign)); case KeyUsage::Encrypt: return std::all_of(std::begin(keys), std::end(keys), std::mem_fn(&Key::canEncrypt)); case KeyUsage::Certify: return std::all_of(std::begin(keys), std::end(keys), std::mem_fn(&Key::canCertify)); case KeyUsage::Authenticate: return std::all_of(std::begin(keys), std::end(keys), std::mem_fn(&Key::canAuthenticate)); } qCDebug(LIBKLEO_LOG) << __func__ << "called with invalid usage" << int(usage); return false; } template bool allKeysHaveProtocol(const T &keys, Protocol protocol) { return std::all_of(std::begin(keys), std::end(keys), [protocol](const auto &key) { return key.protocol() == protocol; }); } } KeyGroup KeyCache::findGroup(const QString &name, Protocol protocol, KeyUsage usage) const { d->ensureCachePopulated(); Q_ASSERT(usage == KeyUsage::Sign || usage == KeyUsage::Encrypt); for (const auto &group : std::as_const(d->m_groups)) { if (group.name() == name) { const KeyGroup::Keys &keys = group.keys(); if (allKeysAllowUsage(keys, usage) && (protocol == UnknownProtocol || allKeysHaveProtocol(keys, protocol))) { return group; } } } return {}; } std::vector KeyCache::getGroupKeys(const QString &groupName) const { std::vector result; for (const KeyGroup &g : std::as_const(d->m_groups)) { if (g.name() == groupName) { const KeyGroup::Keys &keys = g.keys(); std::copy(keys.cbegin(), keys.cend(), std::back_inserter(result)); } } _detail::sort_by_fpr(result); _detail::remove_duplicates_by_fpr(result); return result; } void KeyCache::setKeys(const std::vector &keys) { // disable regular key listing and cancel running key listing setRefreshInterval(0); cancelKeyListing(); clear(); insert(keys); d->m_initalized = true; Q_EMIT keyListingDone(KeyListResult()); } void KeyCache::setGroups(const std::vector &groups) { Q_ASSERT(d->m_initalized && "Call setKeys() before setting groups"); d->m_groups = groups; Q_EMIT keysMayHaveChanged(); } #include "moc_keycache.cpp" #include "moc_keycache_p.cpp"