diff --git a/autotests/keyresolvercoretest.cpp b/autotests/keyresolvercoretest.cpp index 53f1c5116..54a1469b2 100644 --- a/autotests/keyresolvercoretest.cpp +++ b/autotests/keyresolvercoretest.cpp @@ -1,184 +1,184 @@ /* autotests/keyresolvercoretest.cpp This file is part of libkleopatra's test suite. SPDX-FileCopyrightText: 2021 g10 Code GmbH SPDX-FileContributor: Ingo Klöcker SPDX-License-Identifier: GPL-2.0-or-later */ #include #include #include #include #include #include using namespace Kleo; using namespace GpgME; class KeyResolverCoreTest: public QObject { Q_OBJECT private Q_SLOTS: void init() { mGnupgHome = QTest::qExtractTestData("/fixtures/keyresolvercoretest"); qputenv("GNUPGHOME", mGnupgHome->path().toLocal8Bit()); // hold a reference to the key cache to avoid rebuilding while the test is running mKeyCache = KeyCache::instance(); } void cleanup() { // verify that nobody else holds a reference to the key cache QVERIFY(mKeyCache.use_count() == 1); mKeyCache.reset(); mGnupgHome.reset(); } void test_verify_test_keys() { { const Key openpgp = testKey("sender-mixed@example.net", OpenPGP); QVERIFY(openpgp.hasSecret() && openpgp.canEncrypt() && openpgp.canSign()); QCOMPARE(openpgp.userID(0).validity(), UserID::Ultimate); const Key smime = testKey("sender-mixed@example.net", CMS); QVERIFY(smime.hasSecret() && smime.canEncrypt() && smime.canSign()); QCOMPARE(smime.userID(0).validity(), UserID::Ultimate); } { const Key openpgp = testKey("sender-openpgp@example.net", OpenPGP); QVERIFY(openpgp.hasSecret() && openpgp.canEncrypt() && openpgp.canSign()); QCOMPARE(openpgp.userID(0).validity(), UserID::Ultimate); } { const Key openpgp = testKey("prefer-openpgp@example.net", OpenPGP); QVERIFY(openpgp.canEncrypt()); QCOMPARE(openpgp.userID(0).validity(), UserID::Full); } { const Key openpgp = testKey("prefer-smime@example.net", OpenPGP); QVERIFY(openpgp.canEncrypt()); QCOMPARE(openpgp.userID(0).validity(), UserID::Marginal); const Key smime = testKey("prefer-smime@example.net", CMS); QVERIFY(smime.canEncrypt()); QVERIFY(smime.userID(0).validity() >= UserID::Full); } } void test_openpgp_is_used_if_openpgp_only_and_smime_only_are_both_possible() { KeyResolverCore resolver(/*encrypt=*/ true, /*sign=*/ true); resolver.setSender(QStringLiteral("sender-mixed@example.net")); const bool success = resolver.resolve(); QVERIFY(success); QCOMPARE(resolver.signingKeys().value(OpenPGP).size(), 1); QCOMPARE(resolver.signingKeys().value(OpenPGP)[0].primaryFingerprint(), testKey("sender-mixed@example.net", OpenPGP).primaryFingerprint()); QCOMPARE(resolver.signingKeys().value(CMS).size(), 0); QCOMPARE(resolver.encryptionKeys().value(OpenPGP).size(), 1); QCOMPARE(resolver.encryptionKeys().value(OpenPGP).value("sender-mixed@example.net").size(), 1); QCOMPARE(resolver.encryptionKeys().value(OpenPGP).value("sender-mixed@example.net")[0].primaryFingerprint(), testKey("sender-mixed@example.net", OpenPGP).primaryFingerprint()); QCOMPARE(resolver.encryptionKeys().value(CMS).size(), 0); } void test_openpgp_is_used_if_openpgp_only_and_smime_only_are_both_possible_with_preference_for_openpgp() { KeyResolverCore resolver(/*encrypt=*/ true, /*sign=*/ true); resolver.setPreferredProtocol(OpenPGP); resolver.setSender(QStringLiteral("sender-mixed@example.net")); const bool success = resolver.resolve(); QVERIFY(success); QCOMPARE(resolver.signingKeys().value(OpenPGP).size(), 1); QCOMPARE(resolver.signingKeys().value(OpenPGP)[0].primaryFingerprint(), testKey("sender-mixed@example.net", OpenPGP).primaryFingerprint()); QCOMPARE(resolver.signingKeys().value(CMS).size(), 0); QCOMPARE(resolver.encryptionKeys().value(OpenPGP).size(), 1); QCOMPARE(resolver.encryptionKeys().value(OpenPGP).value("sender-mixed@example.net").size(), 1); QCOMPARE(resolver.encryptionKeys().value(OpenPGP).value("sender-mixed@example.net")[0].primaryFingerprint(), testKey("sender-mixed@example.net", OpenPGP).primaryFingerprint()); QCOMPARE(resolver.encryptionKeys().value(CMS).size(), 0); } void test_smime_is_used_if_openpgp_only_and_smime_only_are_both_possible_with_preference_for_smime() { KeyResolverCore resolver(/*encrypt=*/ true, /*sign=*/ true); resolver.setPreferredProtocol(CMS); resolver.setSender(QStringLiteral("sender-mixed@example.net")); const bool success = resolver.resolve(); QVERIFY(success); QCOMPARE(resolver.signingKeys().value(OpenPGP).size(), 0); QCOMPARE(resolver.signingKeys().value(CMS).size(), 1); QCOMPARE(resolver.signingKeys().value(CMS)[0].primaryFingerprint(), testKey("sender-mixed@example.net", CMS).primaryFingerprint()); QCOMPARE(resolver.encryptionKeys().value(OpenPGP).size(), 0); QCOMPARE(resolver.encryptionKeys().value(CMS).size(), 1); QCOMPARE(resolver.encryptionKeys().value(CMS).value("sender-mixed@example.net").size(), 1); QCOMPARE(resolver.encryptionKeys().value(CMS).value("sender-mixed@example.net")[0].primaryFingerprint(), testKey("sender-mixed@example.net", CMS).primaryFingerprint()); } - void test_override_sender_openpgp() + void test_overrides_openpgp() { const QString override = testKey("prefer-openpgp@example.net", OpenPGP).primaryFingerprint(); KeyResolverCore resolver(/*encrypt=*/ true, /*sign=*/ true); resolver.setSender(QStringLiteral("sender-mixed@example.net")); - resolver.setOverrideKeys({{OpenPGP, {{QStringLiteral("sender-mixed@example.net"), {override}}}}}); + resolver.setOverrideKeys({{OpenPGP, {{QStringLiteral("Needs to be normalized "), {override}}}}}); const bool success = resolver.resolve(); QVERIFY(success); QCOMPARE(resolver.encryptionKeys().value(OpenPGP).size(), 1); QCOMPARE(resolver.encryptionKeys().value(OpenPGP).value("sender-mixed@example.net").size(), 1); QCOMPARE(resolver.encryptionKeys().value(OpenPGP).value("sender-mixed@example.net")[0].primaryFingerprint(), override); } - void test_override_sender_smime() + void test_overrides_smime() { const QString override = testKey("prefer-smime@example.net", CMS).primaryFingerprint(); KeyResolverCore resolver(/*encrypt=*/ true, /*sign=*/ true); resolver.setPreferredProtocol(CMS); resolver.setSender(QStringLiteral("sender-mixed@example.net")); - resolver.setOverrideKeys({{CMS, {{QStringLiteral("sender-mixed@example.net"), {override}}}}}); + resolver.setOverrideKeys({{CMS, {{QStringLiteral("Needs to be normalized "), {override}}}}}); const bool success = resolver.resolve(); QVERIFY(success); QCOMPARE(resolver.encryptionKeys().value(CMS).size(), 1); QCOMPARE(resolver.encryptionKeys().value(CMS).value("sender-mixed@example.net").size(), 1); QCOMPARE(resolver.encryptionKeys().value(CMS).value("sender-mixed@example.net")[0].primaryFingerprint(), override); } private: Key testKey(const char *email, Protocol protocol = UnknownProtocol) { const std::vector keys = KeyCache::instance()->findByEMailAddress(email); for (const auto &key: keys) { if (protocol == UnknownProtocol || key.protocol() == protocol) { return key; } } return Key(); } private: QSharedPointer mGnupgHome; std::shared_ptr mKeyCache; }; QTEST_MAIN(KeyResolverCoreTest) #include "keyresolvercoretest.moc" diff --git a/src/kleo/keyresolvercore.cpp b/src/kleo/keyresolvercore.cpp index 1ecb08412..e923a1283 100644 --- a/src/kleo/keyresolvercore.cpp +++ b/src/kleo/keyresolvercore.cpp @@ -1,483 +1,483 @@ /* -*- c++ -*- kleo/keyresolvercore.cpp This file is part of libkleopatra, the KDE keymanagement library SPDX-FileCopyrightText: 2004 Klarälvdalens Datakonsult AB SPDX-FileCopyrightText: 2018 Intevation GmbH SPDX-FileCopyrightText: 2021 g10 Code GmbH SPDX-FileContributor: Ingo Klöcker Based on kpgp.cpp SPDX-FileCopyrightText: 2001, 2002 the KPGP authors See file libkdenetwork/AUTHORS.kpgp for details SPDX-License-Identifier: GPL-2.0-or-later */ #include "keyresolvercore.h" #include "models/keycache.h" #include "utils/formatting.h" #include #include "libkleo_debug.h" using namespace Kleo; using namespace GpgME; namespace { static inline bool ValidEncryptionKey(const Key &key) { if (key.isNull() || key.isRevoked() || key.isExpired() || key.isDisabled() || !key.canEncrypt()) { return false; } return true; } static inline bool ValidSigningKey(const Key &key) { if (key.isNull() || key.isRevoked() || key.isExpired() || key.isDisabled() || !key.canSign() || !key.hasSecret()) { return false; } return true; } } // namespace class KeyResolverCore::Private { public: Private(KeyResolverCore* qq, bool enc, bool sig, Protocol fmt) : q(qq) , mFormat(fmt) , mEncrypt(enc) , mSign(sig) , mCache(KeyCache::instance()) , mPreferredProtocol(UnknownProtocol) , mMinimumValidity(UserID::Marginal) , mCompliance(Formatting::complianceMode()) { } ~Private() = default; bool isAcceptableSigningKey(const Key &key); bool isAcceptableEncryptionKey(const Key &key, const QString &address = QString()); void setSender(const QString &address); void addRecipients(const QStringList &addresses); void setOverrideKeys(const QMap> &overrides); void resolveOverrides(); void resolveSign(Protocol proto); void setSigningKeys(const QStringList &fingerprints); std::vector resolveRecipient(const QString &address, Protocol protocol); void resolveEnc(Protocol proto); QStringList unresolvedRecipients(GpgME::Protocol protocol) const; bool resolve(); KeyResolverCore *const q; QString mSender; QStringList mRecipients; QMap> mSigKeys; QMap>> mEncKeys; QMap> mOverrides; Protocol mFormat; QStringList mFatalErrors; bool mEncrypt; bool mSign; // The cache is needed as a member variable to avoid rebuilding // it between calls if we are the only user. std::shared_ptr mCache; Protocol mPreferredProtocol; int mMinimumValidity; QString mCompliance; }; bool KeyResolverCore::Private::isAcceptableSigningKey(const Key &key) { if (!ValidSigningKey(key)) { return false; } if (mCompliance == QLatin1String("de-vs")) { if (!Formatting::isKeyDeVs(key)) { qCDebug(LIBKLEO_LOG) << "Rejected sig key" << key.primaryFingerprint() << "because it is not de-vs compliant."; return false; } } return true; } bool KeyResolverCore::Private::isAcceptableEncryptionKey(const Key &key, const QString &address) { if (!ValidEncryptionKey(key)) { return false; } if (mCompliance == QLatin1String("de-vs")) { if (!Formatting::isKeyDeVs(key)) { qCDebug(LIBKLEO_LOG) << "Rejected enc key" << key.primaryFingerprint() << "because it is not de-vs compliant."; return false; } } if (address.isEmpty()) { return true; } for (const auto &uid: key.userIDs()) { if (uid.addrSpec() == address.toStdString()) { if (uid.validity() >= mMinimumValidity) { return true; } } } return false; } void KeyResolverCore::Private::setSender(const QString &address) { const auto normalized = UserID::addrSpecFromString (address.toUtf8().constData()); if (normalized.empty()) { // should not happen bug in the caller, non localized // error for bug reporting. mFatalErrors << QStringLiteral("The sender address '%1' could not be extracted").arg(address); return; } const auto normStr = QString::fromUtf8(normalized.c_str()); if (mSign) { mSender = normStr; } addRecipients({address}); } void KeyResolverCore::Private::addRecipients(const QStringList &addresses) { if (!mEncrypt) { return; } // Internally we work with normalized addresses. Normalization // matches the gnupg one. for (const auto &addr :addresses) { // PGP Uids are defined to be UTF-8 (RFC 4880 §5.11) const auto normalized = UserID::addrSpecFromString (addr.toUtf8().constData()); if (normalized.empty()) { // should not happen bug in the caller, non localized // error for bug reporting. mFatalErrors << QStringLiteral("The mail address for '%1' could not be extracted").arg(addr); continue; } const QString normStr = QString::fromUtf8(normalized.c_str()); mRecipients << normStr; // Initially add empty lists of keys for both protocols mEncKeys[CMS][normStr] = {}; mEncKeys[OpenPGP][normStr] = {}; } } void KeyResolverCore::Private::setOverrideKeys(const QMap> &overrides) { QMap normalizedOverrides; for (const auto fmt: overrides.keys()) { for (const auto &addr: overrides[fmt].keys()) { const auto normalized = QString::fromUtf8( UserID::addrSpecFromString (addr.toUtf8().constData()).c_str()); const auto fingerprints = overrides[fmt][addr]; - normalizedOverrides.insert(addr, fingerprints); + normalizedOverrides.insert(normalized, fingerprints); } mOverrides.insert(fmt, normalizedOverrides); } } // Apply the overrides this is also where specific formats come in void KeyResolverCore::Private::resolveOverrides() { if (!mEncrypt) { // No encryption we are done. return; } for (Protocol fmt: mOverrides.keys()) { // Iterate over the crypto message formats if (mFormat != UnknownProtocol && mFormat != fmt && fmt != UnknownProtocol) { // Skip overrides for the wrong format continue; } for (const auto &addr: mOverrides[fmt].keys()) { // For all address overrides of this format. for (const auto &fprOrId: mOverrides[fmt][addr]) { // For all the keys configured for this address. const auto key = mCache->findByKeyIDOrFingerprint(fprOrId.toUtf8().constData()); if (key.isNull()) { qCDebug (LIBKLEO_LOG) << "Failed to find override key for:" << addr << "fpr:" << fprOrId; continue; } // Now add it to the resolved keys if (!mRecipients.contains(addr)) { qCDebug(LIBKLEO_LOG) << "Override provided for an address that is " "neither sender nor recipient. Address: " << addr; continue; } Protocol resolvedFmt = fmt; if (fmt == UnknownProtocol) { // Take the format from the key. resolvedFmt = key.protocol(); } auto recpMap = mEncKeys.value(resolvedFmt); auto keys = recpMap.value(addr); keys.push_back(key); recpMap.insert(addr, keys); mEncKeys.insert(resolvedFmt, recpMap); qCDebug(LIBKLEO_LOG) << "Override" << addr << Formatting::displayName(resolvedFmt) << fprOrId; } } } } void KeyResolverCore::Private::resolveSign(Protocol proto) { if (mSigKeys.contains(proto)) { // Explicitly set return; } const auto keys = mCache->findBestByMailBox(mSender.toUtf8().constData(), proto, true, false); for (const auto &key: keys) { if (key.isNull()) { continue; } if (!isAcceptableSigningKey(key)) { qCDebug(LIBKLEO_LOG) << "Unacceptable signing key" << key.primaryFingerprint() << "for" << mSender; return; } } if (!keys.empty() && !keys[0].isNull()) { mSigKeys.insert(proto, keys); } } void KeyResolverCore::Private::setSigningKeys(const QStringList &fingerprints) { if (mSign) { for (const auto &fpr: fingerprints) { const auto key = mCache->findByKeyIDOrFingerprint(fpr.toUtf8().constData()); if (key.isNull()) { qCDebug(LIBKLEO_LOG) << "Failed to find signing key with fingerprint" << fpr; continue; } auto list = mSigKeys.value(key.protocol()); list.push_back(key); mSigKeys.insert(key.protocol(), list); } } } std::vector KeyResolverCore::Private::resolveRecipient(const QString &address, Protocol protocol) { const auto keys = mCache->findBestByMailBox(address.toUtf8().constData(), protocol, false, true); if (keys.empty() || keys[0].isNull()) { qCDebug(LIBKLEO_LOG) << "Failed to find any" << Formatting::displayName(protocol) << "key for: " << address; return {}; } if (keys.size() == 1) { if (!isAcceptableEncryptionKey(keys[0], address)) { qCDebug(LIBKLEO_LOG) << "key for:" << address << keys[0].primaryFingerprint() << "has not enough validity"; return {}; } } else { // If we have one unacceptable group key we reject the // whole group to avoid the situation where one key is // skipped or the operation fails. // // We are in Autoresolve land here. In the GUI we // will also show unacceptable group keys so that the // user can see which key is not acceptable. bool unacceptable = false; for (const auto &key: keys) { if (!isAcceptableEncryptionKey(key)) { qCDebug(LIBKLEO_LOG) << "group key for:" << address << keys[0].primaryFingerprint() << "has not enough validity"; unacceptable = true; break; } } if (unacceptable) { return {}; } } for (const auto &k: keys) { qCDebug(LIBKLEO_LOG) << "Resolved encrypt to" << address << "with key" << k.primaryFingerprint(); } return keys; } // Try to find matching keys in the provided protocol for the unresolved addresses void KeyResolverCore::Private::resolveEnc(Protocol proto) { auto encMap = mEncKeys.value(proto); for (auto it = encMap.begin(); it != encMap.end(); ++it) { if (!it.value().empty()) { continue; } it.value() = resolveRecipient(it.key(), proto); } mEncKeys.insert(proto, encMap); } QStringList KeyResolverCore::Private::unresolvedRecipients(GpgME::Protocol protocol) const { QStringList result; const auto encMap = mEncKeys.value(protocol); result.reserve(encMap.size()); for (auto it = encMap.cbegin(); it != encMap.cend(); ++it) { if (it.value().empty()) { result.push_back(it.key()); } } return result; } bool KeyResolverCore::Private::resolve() { qCDebug(LIBKLEO_LOG) << "Starting "; if (!mSign && !mEncrypt) { // nothing to do return true; } // First resolve through overrides resolveOverrides(); // Then look for signing / encryption keys if (mFormat != CMS) { resolveSign(OpenPGP); resolveEnc(OpenPGP); } const QStringList unresolvedPGP = unresolvedRecipients(OpenPGP); bool pgpOnly = unresolvedPGP.empty() && (!mSign || mSigKeys.contains(OpenPGP)); if (mFormat != OpenPGP) { resolveSign(CMS); resolveEnc(CMS); } const QStringList unresolvedCMS = unresolvedRecipients(CMS); bool cmsOnly = unresolvedCMS.empty() && (!mSign || mSigKeys.contains(CMS)); // Check if we need the user to select different keys. bool needsUser = false; if (!pgpOnly && !cmsOnly) { for (const auto &unresolved: unresolvedPGP) { if (unresolvedCMS.contains(unresolved)) { // We have at least one unresolvable key. needsUser = true; break; } } if (mSign) { // So every recipient could be resolved through // a combination of PGP and S/MIME do we also // have signing keys for both? needsUser |= !(mSigKeys.contains(OpenPGP) && mSigKeys.contains(CMS)); } } if (!needsUser) { if (pgpOnly && cmsOnly) { if (mPreferredProtocol == CMS) { mSigKeys.remove(OpenPGP); mEncKeys.remove(OpenPGP); } else { mSigKeys.remove(CMS); mEncKeys.remove(CMS); } } else if (pgpOnly) { mSigKeys.remove(CMS); mEncKeys.remove(CMS); } else if (cmsOnly) { mSigKeys.remove(OpenPGP); mEncKeys.remove(OpenPGP); } qCDebug(LIBKLEO_LOG) << "Automatic key resolution done."; return true; } return false; } KeyResolverCore::KeyResolverCore(bool encrypt, bool sign, Protocol fmt) : d(new Private(this, encrypt, sign, fmt)) { } KeyResolverCore::~KeyResolverCore() = default; void KeyResolverCore::setSender(const QString &address) { d->setSender(address); } QString KeyResolverCore::normalizedSender() const { return d->mSender; } void KeyResolverCore::setRecipients(const QStringList &addresses) { d->addRecipients(addresses); } void KeyResolverCore::setSigningKeys(const QStringList &fingerprints) { d->setSigningKeys(fingerprints); } void KeyResolverCore::setOverrideKeys(const QMap> &overrides) { d->setOverrideKeys(overrides); } void KeyResolverCore::setPreferredProtocol(Protocol proto) { d->mPreferredProtocol = proto; } void KeyResolverCore::setMinimumValidity(int validity) { d->mMinimumValidity = validity; } bool KeyResolverCore::resolve() { return d->resolve(); } QMap > KeyResolverCore::signingKeys() const { return d->mSigKeys; } QMap > > KeyResolverCore::encryptionKeys() const { return d->mEncKeys; } QStringList KeyResolverCore::unresolvedRecipients(GpgME::Protocol protocol) const { return d->unresolvedRecipients(protocol); }