Page Menu
Home
GnuPG
Search
Configure Global Search
Log In
Files
F20320800
pubkey.c
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Size
22 KB
Subscribers
None
pubkey.c
View Options
/* pubkey.c - pubkey dispatcher
* Copyright (C) 1998, 1999, 2000, 2002, 2003, 2005,
* 2007, 2008, 2011 Free Software Foundation, Inc.
* Copyright (C) 2013 g10 Code GmbH
*
* This file is part of Libgcrypt.
*
* Libgcrypt is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser general Public License as
* published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* Libgcrypt is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include
<config.h>
#include
<stdio.h>
#include
<stdlib.h>
#include
<string.h>
#include
<errno.h>
#include
"g10lib.h"
#include
"mpi.h"
#include
"cipher.h"
#include
"context.h"
#include
"pubkey-internal.h"
/* This is the list of the public-key algorithms included in
Libgcrypt. */
static
gcry_pk_spec_t
*
pubkey_list
[]
=
{
#if USE_ECC
&
_gcry_pubkey_spec_ecc
,
#endif
#if USE_RSA
&
_gcry_pubkey_spec_rsa
,
#endif
#if USE_DSA
&
_gcry_pubkey_spec_dsa
,
#endif
#if USE_ELGAMAL
&
_gcry_pubkey_spec_elg
,
#endif
NULL
};
static
int
map_algo
(
int
algo
)
{
switch
(
algo
)
{
case
GCRY_PK_RSA_E
:
return
GCRY_PK_RSA
;
case
GCRY_PK_RSA_S
:
return
GCRY_PK_RSA
;
case
GCRY_PK_ELG_E
:
return
GCRY_PK_ELG
;
case
GCRY_PK_ECDSA
:
return
GCRY_PK_ECC
;
case
GCRY_PK_ECDH
:
return
GCRY_PK_ECC
;
default
:
return
algo
;
}
}
/* Return the spec structure for the public key algorithm ALGO. For
an unknown algorithm NULL is returned. */
static
gcry_pk_spec_t
*
spec_from_algo
(
int
algo
)
{
int
idx
;
gcry_pk_spec_t
*
spec
;
algo
=
map_algo
(
algo
);
for
(
idx
=
0
;
(
spec
=
pubkey_list
[
idx
]);
idx
++
)
if
(
algo
==
spec
->
algo
)
return
spec
;
return
NULL
;
}
/* Return the spec structure for the public key algorithm with NAME.
For an unknown name NULL is returned. */
static
gcry_pk_spec_t
*
spec_from_name
(
const
char
*
name
)
{
gcry_pk_spec_t
*
spec
;
int
idx
;
const
char
**
aliases
;
for
(
idx
=
0
;
(
spec
=
pubkey_list
[
idx
]);
idx
++
)
{
if
(
!
stricmp
(
name
,
spec
->
name
))
return
spec
;
for
(
aliases
=
spec
->
aliases
;
*
aliases
;
aliases
++
)
if
(
!
stricmp
(
name
,
*
aliases
))
return
spec
;
}
return
NULL
;
}
/* Given the s-expression SEXP with the first element be either
* "private-key" or "public-key" return the spec structure for it. We
* look through the list to find a list beginning with "private-key"
* or "public-key" - the first one found is used. If WANT_PRIVATE is
* set the function will only succeed if a private key has been given.
* On success the spec is stored at R_SPEC. On error NULL is stored
* at R_SPEC and an error code returned. If R_PARMS is not NULL and
* the function returns success, the parameter list below
* "private-key" or "public-key" is stored there and the caller must
* call gcry_sexp_release on it.
*/
static
gcry_err_code_t
spec_from_sexp
(
gcry_sexp_t
sexp
,
int
want_private
,
gcry_pk_spec_t
**
r_spec
,
gcry_sexp_t
*
r_parms
)
{
gcry_sexp_t
list
,
l2
;
char
*
name
;
gcry_pk_spec_t
*
spec
;
*
r_spec
=
NULL
;
if
(
r_parms
)
*
r_parms
=
NULL
;
/* Check that the first element is valid. If we are looking for a
public key but a private key was supplied, we allow the use of
the private key anyway. The rationale for this is that the
private key is a superset of the public key. */
list
=
sexp_find_token
(
sexp
,
want_private
?
"private-key"
:
"public-key"
,
0
);
if
(
!
list
&&
!
want_private
)
list
=
sexp_find_token
(
sexp
,
"private-key"
,
0
);
if
(
!
list
)
return
GPG_ERR_INV_OBJ
;
/* Does not contain a key object. */
l2
=
sexp_cadr
(
list
);
sexp_release
(
list
);
list
=
l2
;
name
=
sexp_nth_string
(
list
,
0
);
if
(
!
name
)
{
sexp_release
(
list
);
return
GPG_ERR_INV_OBJ
;
/* Invalid structure of object. */
}
spec
=
spec_from_name
(
name
);
xfree
(
name
);
if
(
!
spec
)
{
sexp_release
(
list
);
return
GPG_ERR_PUBKEY_ALGO
;
/* Unknown algorithm. */
}
*
r_spec
=
spec
;
if
(
r_parms
)
*
r_parms
=
list
;
else
sexp_release
(
list
);
return
0
;
}
/* Disable the use of the algorithm ALGO. This is not thread safe and
should thus be called early. */
static
void
disable_pubkey_algo
(
int
algo
)
{
gcry_pk_spec_t
*
spec
=
spec_from_algo
(
algo
);
if
(
spec
)
spec
->
flags
.
disabled
=
1
;
}
/*
* Map a string to the pubkey algo
*/
int
_gcry_pk_map_name
(
const
char
*
string
)
{
gcry_pk_spec_t
*
spec
;
if
(
!
string
)
return
0
;
spec
=
spec_from_name
(
string
);
if
(
!
spec
)
return
0
;
if
(
spec
->
flags
.
disabled
)
return
0
;
return
spec
->
algo
;
}
/* Map the public key algorithm whose ID is contained in ALGORITHM to
a string representation of the algorithm name. For unknown
algorithm IDs this functions returns "?". */
const
char
*
_gcry_pk_algo_name
(
int
algo
)
{
gcry_pk_spec_t
*
spec
;
spec
=
spec_from_algo
(
algo
);
if
(
spec
)
return
spec
->
name
;
return
"?"
;
}
/****************
* A USE of 0 means: don't care.
*/
static
gcry_err_code_t
check_pubkey_algo
(
int
algo
,
unsigned
use
)
{
gcry_err_code_t
err
=
0
;
gcry_pk_spec_t
*
spec
;
spec
=
spec_from_algo
(
algo
);
if
(
spec
)
{
if
(((
use
&
GCRY_PK_USAGE_SIGN
)
&&
(
!
(
spec
->
use
&
GCRY_PK_USAGE_SIGN
)))
||
((
use
&
GCRY_PK_USAGE_ENCR
)
&&
(
!
(
spec
->
use
&
GCRY_PK_USAGE_ENCR
))))
err
=
GPG_ERR_WRONG_PUBKEY_ALGO
;
}
else
err
=
GPG_ERR_PUBKEY_ALGO
;
return
err
;
}
/****************
* Return the number of public key material numbers
*/
static
int
pubkey_get_npkey
(
int
algo
)
{
gcry_pk_spec_t
*
spec
=
spec_from_algo
(
algo
);
return
spec
?
strlen
(
spec
->
elements_pkey
)
:
0
;
}
/****************
* Return the number of secret key material numbers
*/
static
int
pubkey_get_nskey
(
int
algo
)
{
gcry_pk_spec_t
*
spec
=
spec_from_algo
(
algo
);
return
spec
?
strlen
(
spec
->
elements_skey
)
:
0
;
}
/****************
* Return the number of signature material numbers
*/
static
int
pubkey_get_nsig
(
int
algo
)
{
gcry_pk_spec_t
*
spec
=
spec_from_algo
(
algo
);
return
spec
?
strlen
(
spec
->
elements_sig
)
:
0
;
}
/****************
* Return the number of encryption material numbers
*/
static
int
pubkey_get_nenc
(
int
algo
)
{
gcry_pk_spec_t
*
spec
=
spec_from_algo
(
algo
);
return
spec
?
strlen
(
spec
->
elements_enc
)
:
0
;
}
/*
Do a PK encrypt operation
Caller has to provide a public key as the SEXP pkey and data as a
SEXP with just one MPI in it. Alternatively S_DATA might be a
complex S-Expression, similar to the one used for signature
verification. This provides a flag which allows to handle PKCS#1
block type 2 padding. The function returns a sexp which may be
passed to to pk_decrypt.
Returns: 0 or an errorcode.
s_data = See comment for _gcry_pk_util_data_to_mpi
s_pkey = <key-as-defined-in-sexp_to_key>
r_ciph = (enc-val
(<algo>
(<param_name1> <mpi>)
...
(<param_namen> <mpi>)
))
*/
gcry_err_code_t
_gcry_pk_encrypt
(
gcry_sexp_t
*
r_ciph
,
gcry_sexp_t
s_data
,
gcry_sexp_t
s_pkey
)
{
gcry_err_code_t
rc
;
gcry_pk_spec_t
*
spec
;
gcry_sexp_t
keyparms
;
*
r_ciph
=
NULL
;
rc
=
spec_from_sexp
(
s_pkey
,
0
,
&
spec
,
&
keyparms
);
if
(
rc
)
goto
leave
;
if
(
spec
->
encrypt
)
rc
=
spec
->
encrypt
(
r_ciph
,
s_data
,
keyparms
);
else
rc
=
GPG_ERR_NOT_IMPLEMENTED
;
leave
:
sexp_release
(
keyparms
);
return
rc
;
}
/*
Do a PK decrypt operation
Caller has to provide a secret key as the SEXP skey and data in a
format as created by gcry_pk_encrypt. For historic reasons the
function returns simply an MPI as an S-expression part; this is
deprecated and the new method should be used which returns a real
S-expressionl this is selected by adding at least an empty flags
list to S_DATA.
Returns: 0 or an errorcode.
s_data = (enc-val
[(flags [raw, pkcs1, oaep])]
(<algo>
(<param_name1> <mpi>)
...
(<param_namen> <mpi>)
))
s_skey = <key-as-defined-in-sexp_to_key>
r_plain= Either an incomplete S-expression without the parentheses
or if the flags list is used (even if empty) a real S-expression:
(value PLAIN). In raw mode (or no flags given) the returned value
is to be interpreted as a signed MPI, thus it may have an extra
leading zero octet even if not included in the original data.
With pkcs1 or oaep decoding enabled the returned value is a
verbatim octet string.
*/
gcry_err_code_t
_gcry_pk_decrypt
(
gcry_sexp_t
*
r_plain
,
gcry_sexp_t
s_data
,
gcry_sexp_t
s_skey
)
{
gcry_err_code_t
rc
;
gcry_pk_spec_t
*
spec
;
gcry_sexp_t
keyparms
;
*
r_plain
=
NULL
;
rc
=
spec_from_sexp
(
s_skey
,
1
,
&
spec
,
&
keyparms
);
if
(
rc
)
goto
leave
;
if
(
spec
->
decrypt
)
rc
=
spec
->
decrypt
(
r_plain
,
s_data
,
keyparms
);
else
rc
=
GPG_ERR_NOT_IMPLEMENTED
;
leave
:
sexp_release
(
keyparms
);
return
rc
;
}
/*
Create a signature.
Caller has to provide a secret key as the SEXP skey and data
expressed as a SEXP list hash with only one element which should
instantly be available as a MPI. Alternatively the structure given
below may be used for S_HASH, it provides the abiliy to pass flags
to the operation; the flags defined by now are "pkcs1" which does
PKCS#1 block type 1 style padding and "pss" for PSS encoding.
Returns: 0 or an errorcode.
In case of 0 the function returns a new SEXP with the
signature value; the structure of this signature depends on the
other arguments but is always suitable to be passed to
gcry_pk_verify
s_hash = See comment for _gcry-pk_util_data_to_mpi
s_skey = <key-as-defined-in-sexp_to_key>
r_sig = (sig-val
(<algo>
(<param_name1> <mpi>)
...
(<param_namen> <mpi>))
[(hash algo)])
Note that (hash algo) in R_SIG is not used.
*/
gcry_err_code_t
_gcry_pk_sign
(
gcry_sexp_t
*
r_sig
,
gcry_sexp_t
s_hash
,
gcry_sexp_t
s_skey
)
{
gcry_err_code_t
rc
;
gcry_pk_spec_t
*
spec
;
gcry_sexp_t
keyparms
;
*
r_sig
=
NULL
;
rc
=
spec_from_sexp
(
s_skey
,
1
,
&
spec
,
&
keyparms
);
if
(
rc
)
goto
leave
;
if
(
spec
->
sign
)
rc
=
spec
->
sign
(
r_sig
,
s_hash
,
keyparms
);
else
rc
=
GPG_ERR_NOT_IMPLEMENTED
;
leave
:
sexp_release
(
keyparms
);
return
rc
;
}
/*
Verify a signature.
Caller has to supply the public key pkey, the signature sig and his
hashvalue data. Public key has to be a standard public key given
as an S-Exp, sig is a S-Exp as returned from gcry_pk_sign and data
must be an S-Exp like the one in sign too. */
gcry_err_code_t
_gcry_pk_verify
(
gcry_sexp_t
s_sig
,
gcry_sexp_t
s_hash
,
gcry_sexp_t
s_pkey
)
{
gcry_err_code_t
rc
;
gcry_pk_spec_t
*
spec
;
gcry_sexp_t
keyparms
;
rc
=
spec_from_sexp
(
s_pkey
,
0
,
&
spec
,
&
keyparms
);
if
(
rc
)
goto
leave
;
if
(
spec
->
verify
)
rc
=
spec
->
verify
(
s_sig
,
s_hash
,
keyparms
);
else
rc
=
GPG_ERR_NOT_IMPLEMENTED
;
leave
:
sexp_release
(
keyparms
);
return
rc
;
}
/*
Test a key.
This may be used either for a public or a secret key to see whether
the internal structure is okay.
Returns: 0 or an errorcode.
NOTE: We currently support only secret key checking. */
gcry_err_code_t
_gcry_pk_testkey
(
gcry_sexp_t
s_key
)
{
gcry_err_code_t
rc
;
gcry_pk_spec_t
*
spec
;
gcry_sexp_t
keyparms
;
rc
=
spec_from_sexp
(
s_key
,
1
,
&
spec
,
&
keyparms
);
if
(
rc
)
goto
leave
;
if
(
spec
->
check_secret_key
)
rc
=
spec
->
check_secret_key
(
keyparms
);
else
rc
=
GPG_ERR_NOT_IMPLEMENTED
;
leave
:
sexp_release
(
keyparms
);
return
rc
;
}
/*
Create a public key pair and return it in r_key.
How the key is created depends on s_parms:
(genkey
(algo
(parameter_name_1 ....)
....
(parameter_name_n ....)
))
The key is returned in a format depending on the
algorithm. Both, private and secret keys are returned
and optionally some additional informatin.
For elgamal we return this structure:
(key-data
(public-key
(elg
(p <mpi>)
(g <mpi>)
(y <mpi>)
)
)
(private-key
(elg
(p <mpi>)
(g <mpi>)
(y <mpi>)
(x <mpi>)
)
)
(misc-key-info
(pm1-factors n1 n2 ... nn)
))
*/
gcry_err_code_t
_gcry_pk_genkey
(
gcry_sexp_t
*
r_key
,
gcry_sexp_t
s_parms
)
{
gcry_pk_spec_t
*
spec
=
NULL
;
gcry_sexp_t
list
=
NULL
;
gcry_sexp_t
l2
=
NULL
;
char
*
name
=
NULL
;
gcry_err_code_t
rc
;
*
r_key
=
NULL
;
list
=
sexp_find_token
(
s_parms
,
"genkey"
,
0
);
if
(
!
list
)
{
rc
=
GPG_ERR_INV_OBJ
;
/* Does not contain genkey data. */
goto
leave
;
}
l2
=
sexp_cadr
(
list
);
sexp_release
(
list
);
list
=
l2
;
l2
=
NULL
;
if
(
!
list
)
{
rc
=
GPG_ERR_NO_OBJ
;
/* No cdr for the genkey. */
goto
leave
;
}
name
=
_gcry_sexp_nth_string
(
list
,
0
);
if
(
!
name
)
{
rc
=
GPG_ERR_INV_OBJ
;
/* Algo string missing. */
goto
leave
;
}
spec
=
spec_from_name
(
name
);
xfree
(
name
);
name
=
NULL
;
if
(
!
spec
)
{
rc
=
GPG_ERR_PUBKEY_ALGO
;
/* Unknown algorithm. */
goto
leave
;
}
if
(
spec
->
generate
)
rc
=
spec
->
generate
(
list
,
r_key
);
else
rc
=
GPG_ERR_NOT_IMPLEMENTED
;
leave
:
sexp_release
(
list
);
xfree
(
name
);
sexp_release
(
l2
);
return
rc
;
}
/*
Get the number of nbits from the public key.
Hmmm: Should we have really this function or is it better to have a
more general function to retrieve different properties of the key? */
unsigned
int
_gcry_pk_get_nbits
(
gcry_sexp_t
key
)
{
gcry_pk_spec_t
*
spec
;
gcry_sexp_t
parms
;
unsigned
int
nbits
;
/* Parsing KEY might be considered too much overhead. For example
for RSA we would only need to look at P and stop parsing right
away. However, with ECC things are more complicate in that only
a curve name might be specified. Thus we need to tear the sexp
apart. */
if
(
spec_from_sexp
(
key
,
0
,
&
spec
,
&
parms
))
return
0
;
/* Error - 0 is a suitable indication for that. */
nbits
=
spec
->
get_nbits
(
parms
);
sexp_release
(
parms
);
return
nbits
;
}
/* Return the so called KEYGRIP which is the SHA-1 hash of the public
key parameters expressed in a way depending on the algorithm.
ARRAY must either be 20 bytes long or NULL; in the latter case a
newly allocated array of that size is returned, otherwise ARRAY or
NULL is returned to indicate an error which is most likely an
unknown algorithm. The function accepts public or secret keys. */
unsigned
char
*
_gcry_pk_get_keygrip
(
gcry_sexp_t
key
,
unsigned
char
*
array
)
{
gcry_sexp_t
list
=
NULL
;
gcry_sexp_t
l2
=
NULL
;
gcry_pk_spec_t
*
spec
=
NULL
;
const
char
*
s
;
char
*
name
=
NULL
;
int
idx
;
const
char
*
elems
;
gcry_md_hd_t
md
=
NULL
;
int
okay
=
0
;
/* Check that the first element is valid. */
list
=
sexp_find_token
(
key
,
"public-key"
,
0
);
if
(
!
list
)
list
=
sexp_find_token
(
key
,
"private-key"
,
0
);
if
(
!
list
)
list
=
sexp_find_token
(
key
,
"protected-private-key"
,
0
);
if
(
!
list
)
list
=
sexp_find_token
(
key
,
"shadowed-private-key"
,
0
);
if
(
!
list
)
return
NULL
;
/* No public- or private-key object. */
l2
=
sexp_cadr
(
list
);
sexp_release
(
list
);
list
=
l2
;
l2
=
NULL
;
name
=
_gcry_sexp_nth_string
(
list
,
0
);
if
(
!
name
)
goto
fail
;
/* Invalid structure of object. */
spec
=
spec_from_name
(
name
);
if
(
!
spec
)
goto
fail
;
/* Unknown algorithm. */
elems
=
spec
->
elements_grip
;
if
(
!
elems
)
goto
fail
;
/* No grip parameter. */
if
(
_gcry_md_open
(
&
md
,
GCRY_MD_SHA1
,
0
))
goto
fail
;
if
(
spec
->
comp_keygrip
)
{
/* Module specific method to compute a keygrip. */
if
(
spec
->
comp_keygrip
(
md
,
list
))
goto
fail
;
}
else
{
/* Generic method to compute a keygrip. */
for
(
idx
=
0
,
s
=
elems
;
*
s
;
s
++
,
idx
++
)
{
const
char
*
data
;
size_t
datalen
;
char
buf
[
30
];
l2
=
sexp_find_token
(
list
,
s
,
1
);
if
(
!
l2
)
goto
fail
;
data
=
sexp_nth_data
(
l2
,
1
,
&
datalen
);
if
(
!
data
)
goto
fail
;
snprintf
(
buf
,
sizeof
buf
,
"(1:%c%u:"
,
*
s
,
(
unsigned
int
)
datalen
);
_gcry_md_write
(
md
,
buf
,
strlen
(
buf
));
_gcry_md_write
(
md
,
data
,
datalen
);
sexp_release
(
l2
);
l2
=
NULL
;
_gcry_md_write
(
md
,
")"
,
1
);
}
}
if
(
!
array
)
{
array
=
xtrymalloc
(
20
);
if
(
!
array
)
goto
fail
;
}
memcpy
(
array
,
_gcry_md_read
(
md
,
GCRY_MD_SHA1
),
20
);
okay
=
1
;
fail
:
xfree
(
name
);
sexp_release
(
l2
);
_gcry_md_close
(
md
);
sexp_release
(
list
);
return
okay
?
array
:
NULL
;
}
const
char
*
_gcry_pk_get_curve
(
gcry_sexp_t
key
,
int
iterator
,
unsigned
int
*
r_nbits
)
{
const
char
*
result
=
NULL
;
gcry_pk_spec_t
*
spec
;
gcry_sexp_t
keyparms
=
NULL
;
if
(
r_nbits
)
*
r_nbits
=
0
;
if
(
key
)
{
iterator
=
0
;
if
(
spec_from_sexp
(
key
,
0
,
&
spec
,
&
keyparms
))
return
NULL
;
}
else
{
spec
=
spec_from_name
(
"ecc"
);
if
(
!
spec
)
return
NULL
;
}
if
(
spec
->
get_curve
)
result
=
spec
->
get_curve
(
keyparms
,
iterator
,
r_nbits
);
sexp_release
(
keyparms
);
return
result
;
}
gcry_sexp_t
_gcry_pk_get_param
(
int
algo
,
const
char
*
name
)
{
gcry_sexp_t
result
=
NULL
;
gcry_pk_spec_t
*
spec
=
NULL
;
algo
=
map_algo
(
algo
);
if
(
algo
!=
GCRY_PK_ECC
)
return
NULL
;
spec
=
spec_from_name
(
"ecc"
);
if
(
spec
)
{
if
(
spec
&&
spec
->
get_curve_param
)
result
=
spec
->
get_curve_param
(
name
);
}
return
result
;
}
gcry_err_code_t
_gcry_pk_ctl
(
int
cmd
,
void
*
buffer
,
size_t
buflen
)
{
gcry_err_code_t
rc
=
0
;
switch
(
cmd
)
{
case
GCRYCTL_DISABLE_ALGO
:
/* This one expects a buffer pointing to an integer with the
algo number. */
if
((
!
buffer
)
||
(
buflen
!=
sizeof
(
int
)))
rc
=
GPG_ERR_INV_ARG
;
else
disable_pubkey_algo
(
*
((
int
*
)
buffer
));
break
;
default
:
rc
=
GPG_ERR_INV_OP
;
}
return
rc
;
}
/* Return information about the given algorithm
WHAT selects the kind of information returned:
GCRYCTL_TEST_ALGO:
Returns 0 when the specified algorithm is available for use.
Buffer must be NULL, nbytes may have the address of a variable
with the required usage of the algorithm. It may be 0 for don't
care or a combination of the GCRY_PK_USAGE_xxx flags;
GCRYCTL_GET_ALGO_USAGE:
Return the usage flags for the given algo. An invalid algo
returns 0. Disabled algos are ignored here because we
only want to know whether the algo is at all capable of
the usage.
Note: Because this function is in most cases used to return an
integer value, we can make it easier for the caller to just look at
the return value. The caller will in all cases consult the value
and thereby detecting whether a error occurred or not (i.e. while
checking the block size) */
gcry_err_code_t
_gcry_pk_algo_info
(
int
algorithm
,
int
what
,
void
*
buffer
,
size_t
*
nbytes
)
{
gcry_err_code_t
rc
=
0
;
switch
(
what
)
{
case
GCRYCTL_TEST_ALGO
:
{
int
use
=
nbytes
?
*
nbytes
:
0
;
if
(
buffer
)
rc
=
GPG_ERR_INV_ARG
;
else
if
(
check_pubkey_algo
(
algorithm
,
use
))
rc
=
GPG_ERR_PUBKEY_ALGO
;
break
;
}
case
GCRYCTL_GET_ALGO_USAGE
:
{
gcry_pk_spec_t
*
spec
;
spec
=
spec_from_algo
(
algorithm
);
*
nbytes
=
spec
?
spec
->
use
:
0
;
break
;
}
case
GCRYCTL_GET_ALGO_NPKEY
:
{
/* FIXME? */
int
npkey
=
pubkey_get_npkey
(
algorithm
);
*
nbytes
=
npkey
;
break
;
}
case
GCRYCTL_GET_ALGO_NSKEY
:
{
/* FIXME? */
int
nskey
=
pubkey_get_nskey
(
algorithm
);
*
nbytes
=
nskey
;
break
;
}
case
GCRYCTL_GET_ALGO_NSIGN
:
{
/* FIXME? */
int
nsign
=
pubkey_get_nsig
(
algorithm
);
*
nbytes
=
nsign
;
break
;
}
case
GCRYCTL_GET_ALGO_NENCR
:
{
/* FIXME? */
int
nencr
=
pubkey_get_nenc
(
algorithm
);
*
nbytes
=
nencr
;
break
;
}
default
:
rc
=
GPG_ERR_INV_OP
;
}
return
rc
;
}
/* Return an S-expression representing the context CTX. Depending on
the state of that context, the S-expression may either be a public
key, a private key or any other object used with public key
operations. On success a new S-expression is stored at R_SEXP and
0 is returned, on error NULL is store there and an error code is
returned. MODE is either 0 or one of the GCRY_PK_GET_xxx values.
As of now it only support certain ECC operations because a context
object is right now only defined for ECC. Over time this function
will be extended to cover more algorithms. Note also that the name
of the function is gcry_pubkey_xxx and not gcry_pk_xxx. The idea
is that we will eventually provide variants of the existing
gcry_pk_xxx functions which will take a context parameter. */
gcry_err_code_t
_gcry_pubkey_get_sexp
(
gcry_sexp_t
*
r_sexp
,
int
mode
,
gcry_ctx_t
ctx
)
{
mpi_ec_t
ec
;
if
(
!
r_sexp
)
return
GPG_ERR_INV_VALUE
;
*
r_sexp
=
NULL
;
switch
(
mode
)
{
case
0
:
case
GCRY_PK_GET_PUBKEY
:
case
GCRY_PK_GET_SECKEY
:
break
;
default
:
return
GPG_ERR_INV_VALUE
;
}
if
(
!
ctx
)
return
GPG_ERR_NO_CRYPT_CTX
;
ec
=
_gcry_ctx_find_pointer
(
ctx
,
CONTEXT_TYPE_EC
);
if
(
ec
)
return
_gcry_pk_ecc_get_sexp
(
r_sexp
,
mode
,
ec
);
return
GPG_ERR_WRONG_CRYPT_CTX
;
}
/* Explicitly initialize this module. */
gcry_err_code_t
_gcry_pk_init
(
void
)
{
if
(
fips_mode
())
{
/* disable algorithms that are disallowed in fips */
int
idx
;
gcry_pk_spec_t
*
spec
;
for
(
idx
=
0
;
(
spec
=
pubkey_list
[
idx
]);
idx
++
)
if
(
!
spec
->
flags
.
fips
)
spec
->
flags
.
disabled
=
1
;
}
return
0
;
}
/* Run the selftests for pubkey algorithm ALGO with optional reporting
function REPORT. */
gpg_error_t
_gcry_pk_selftest
(
int
algo
,
int
extended
,
selftest_report_func_t
report
)
{
gcry_err_code_t
ec
;
gcry_pk_spec_t
*
spec
;
algo
=
map_algo
(
algo
);
spec
=
spec_from_algo
(
algo
);
if
(
spec
&&
!
spec
->
flags
.
disabled
&&
spec
->
selftest
)
ec
=
spec
->
selftest
(
algo
,
extended
,
report
);
else
{
ec
=
GPG_ERR_PUBKEY_ALGO
;
/* Fixme: We need to change the report function to allow passing
of an encryption mode (e.g. pkcs1, ecdsa, or ecdh). */
if
(
report
)
report
(
"pubkey"
,
algo
,
"module"
,
spec
&&
!
spec
->
flags
.
disabled
?
"no selftest available"
:
spec
?
"algorithm disabled"
:
"algorithm not found"
);
}
return
gpg_error
(
ec
);
}
File Metadata
Details
Attached
Mime Type
text/x-c
Expires
Fri, Mar 14, 4:36 AM (1 d, 11 h)
Storage Engine
local-disk
Storage Format
Raw Data
Storage Handle
c1/b8/f1bf8a655ff80ddd2e56d4478e26
Attached To
rC libgcrypt
Event Timeline
Log In to Comment