Page Menu
Home
GnuPG
Search
Configure Global Search
Log In
Files
F22947782
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Size
172 KB
Subscribers
None
View Options
diff --git a/doc/dirmngr.texi b/doc/dirmngr.texi
index 7b5c7e77b..0f37cc4e3 100644
--- a/doc/dirmngr.texi
+++ b/doc/dirmngr.texi
@@ -1,1106 +1,1106 @@
@c Copyright (C) 2002 Klar"alvdalens Datakonsult AB
@c Copyright (C) 2004, 2005, 2006, 2007 g10 Code GmbH
@c This is part of the GnuPG manual.
@c For copying conditions, see the file gnupg.texi.
@include defs.inc
@node Invoking DIRMNGR
@chapter Invoking DIRMNGR
@cindex DIRMNGR command options
@cindex command options
@cindex options, DIRMNGR command
@manpage dirmngr.8
@ifset manverb
.B dirmngr
\- CRL and OCSP daemon
@end ifset
@mansect synopsis
@ifset manverb
.B dirmngr
.RI [ options ]
.I command
.RI [ args ]
@end ifset
@mansect description
Since version 2.1 of GnuPG, @command{dirmngr} takes care of accessing
the OpenPGP keyservers. As with previous versions it is also used as
a server for managing and downloading certificate revocation lists
(CRLs) for X.509 certificates, downloading X.509 certificates, and
providing access to OCSP providers. Dirmngr is invoked internally by
@command{gpg}, @command{gpgsm}, or via the @command{gpg-connect-agent}
tool.
@manpause
@noindent
@xref{Option Index},for an index to @command{DIRMNGR}'s commands and
options.
@mancont
@menu
* Dirmngr Commands:: List of all commands.
* Dirmngr Options:: List of all options.
* Dirmngr Configuration:: Configuration files.
* Dirmngr Signals:: Use of signals.
* Dirmngr Examples:: Some usage examples.
* Dirmngr Protocol:: The protocol dirmngr uses.
@end menu
@node Dirmngr Commands
@section Commands
@mansect commands
Commands are not distinguished from options except for the fact that
only one command is allowed.
@table @gnupgtabopt
@item --version
@opindex version
Print the program version and licensing information. Note that you cannot
abbreviate this command.
@item --help, -h
@opindex help
Print a usage message summarizing the most useful command-line options.
Note that you can abbreviate this command.
@item --dump-options
@opindex dump-options
Print a list of all available options and commands. Note that you cannot
abbreviate this command.
@item --server
@opindex server
Run in server mode and wait for commands on the @code{stdin}. The
default mode is to create a socket and listen for commands there.
This is only used for testing.
@item --daemon
@opindex daemon
Run in background daemon mode and listen for commands on a socket.
Note that this also changes the default home directory and enables the
internal certificate validation code. This mode is deprecated.
@item --list-crls
@opindex list-crls
List the contents of the CRL cache on @code{stdout}. This is probably
only useful for debugging purposes.
@item --load-crl @var{file}
@opindex load-crl
This command requires a filename as additional argument, and it will
make Dirmngr try to import the CRL in @var{file} into it's cache.
Note, that this is only possible if Dirmngr is able to retrieve the
CA's certificate directly by its own means. In general it is better
to use @code{gpgsm}'s @code{--call-dirmngr loadcrl filename} command
so that @code{gpgsm} can help dirmngr.
@item --fetch-crl @var{url}
@opindex fetch-crl
This command requires an URL as additional argument, and it will make
dirmngr try to retrieve and import the CRL from that @var{url} into
it's cache. This is mainly useful for debugging purposes. The
@command{dirmngr-client} provides the same feature for a running dirmngr.
@item --shutdown
@opindex shutdown
This commands shuts down an running instance of Dirmngr. This command
has currently no effect.
@item --flush
@opindex flush
This command removes all CRLs from Dirmngr's cache. Client requests
will thus trigger reading of fresh CRLs.
@end table
@mansect options
@node Dirmngr Options
@section Option Summary
@table @gnupgtabopt
@item --options @var{file}
@opindex options
Reads configuration from @var{file} instead of from the default
per-user configuration file. The default configuration file is named
@file{dirmngr.conf} and expected in the home directory.
@item --homedir @var{dir}
@opindex options
Set the name of the home directory to @var{dir}. This option is only
effective when used on the command line. The default depends on the
running mode:
@table @asis
@item With @code{--daemon} given on the commandline
the directory named @file{@value{SYSCONFDIR}} is used for configuration files
and @file{@value{LOCALCACHEDIR}} for cached CRLs.
@item Without @code{--daemon} given on the commandline
the directory named @file{.gnupg} directly below the home directory
of the user unless the environment variable @code{GNUPGHOME} has been set
in which case its value will be used. All kind of data is stored below
this directory.
@end table
@item -v
@item --verbose
@opindex v
@opindex verbose
Outputs additional information while running.
You can increase the verbosity by giving several
verbose commands to @sc{dirmngr}, such as @option{-vv}.
@item --log-file @var{file}
@opindex log-file
Append all logging output to @var{file}. This is very helpful in
seeing what the agent actually does. Use @file{socket://} to log to
socket.
@item --debug-level @var{level}
@opindex debug-level
Select the debug level for investigating problems. @var{level} may be a
numeric value or by a keyword:
@table @code
@item none
No debugging at all. A value of less than 1 may be used instead of
the keyword.
@item basic
Some basic debug messages. A value between 1 and 2 may be used
instead of the keyword.
@item advanced
More verbose debug messages. A value between 3 and 5 may be used
instead of the keyword.
@item expert
Even more detailed messages. A value between 6 and 8 may be used
instead of the keyword.
@item guru
All of the debug messages you can get. A value greater than 8 may be
used instead of the keyword. The creation of hash tracing files is
only enabled if the keyword is used.
@end table
How these messages are mapped to the actual debugging flags is not
specified and may change with newer releases of this program. They are
however carefully selected to best aid in debugging.
@item --debug @var{flags}
@opindex debug
-This option is only useful for debugging and the behaviour may change at
+This option is only useful for debugging and the behavior may change at
any time without notice. FLAGS are bit encoded and may be given in
usual C-Syntax.
@item --debug-all
@opindex debug-all
Same as @code{--debug=0xffffffff}
@item --gnutls-debug @var{level}
@opindex gnutls-debug
Enable debugging of GNUTLS at @var{level}.
@item --debug-wait @var{n}
@opindex debug-wait
When running in server mode, wait @var{n} seconds before entering the
actual processing loop and print the pid. This gives time to attach a
debugger.
@item --disable-check-own-socket
@opindex disable-check-own-socket
On some platforms @command{dirmngr} is able to detect the removal of
its socket file and shutdown itself. This option disable this
self-test for debugging purposes.
@item -s
@itemx --sh
@itemx -c
@itemx --csh
@opindex s
@opindex sh
@opindex c
@opindex csh
Format the info output in daemon mode for use with the standard Bourne
shell respective the C-shell . The default ist to guess it based on the
environment variable @code{SHELL} which is in almost all cases
sufficient.
@item --force
@opindex force
Enabling this option forces loading of expired CRLs; this is only
useful for debugging.
@item --use-tor
@opindex use-tor
This option switches Dirmngr and thus GnuPG into ``Tor mode'' to route
all network access via Tor (an anonymity network). WARNING: As of now
this still leaks the DNS queries; e.g. to lookup the hosts in a
keyserver pool. Certain other features are disabled if this mode is
active.
@item --keyserver @var{name}
@opindex keyserver
Use @var{name} as your keyserver. This is the server that @command{gpg}
communicates with to receive keys, send keys, and search for
keys. The format of the @var{name} is a URI:
`scheme:[//]keyservername[:port]' The scheme is the type of keyserver:
"hkp" for the HTTP (or compatible) keyservers, "ldap" for the LDAP
keyservers, or "mailto" for the Graff email keyserver. Note that your
particular installation of GnuPG may have other keyserver types
available as well. Keyserver schemes are case-insensitive. After the
keyserver name, optional keyserver configuration options may be
provided. These are the same as the @option{--keyserver-options} of
@command{gpg}, but apply only to this particular keyserver.
Most keyservers synchronize with each other, so there is generally no
need to send keys to more than one server. The keyserver
@code{hkp://keys.gnupg.net} uses round robin DNS to give a different
keyserver each time you use it.
If exactly two keyservers are configured and only one is a Tor hidden
service (.onion), Dirmngr selects the keyserver to use depending on
whether Tor is locally running or not. The check for a running Tor is
done for each new connection.
@item --nameserver @var{ipaddr}
@opindex nameserver
In ``Tor mode'' Dirmngr uses a public resolver via Tor to resolve DNS
names. If the default public resolver, which is @code{8.8.8.8}, shall
not be used a different one can be given using this option. Note that
a numerical IP address must be given (IPv6 or IPv4) and that no error
checking is done for @var{ipaddr}. DNS queries in Tor mode do only
work if GnuPG as been build with ADNS support.
@item --disable-ldap
@opindex disable-ldap
Entirely disables the use of LDAP.
@item --disable-http
@opindex disable-http
Entirely disables the use of HTTP.
@item --ignore-http-dp
@opindex ignore-http-dp
When looking for the location of a CRL, the to be tested certificate
usually contains so called @dfn{CRL Distribution Point} (DP) entries
which are URLs describing the way to access the CRL. The first found DP
entry is used. With this option all entries using the @acronym{HTTP}
scheme are ignored when looking for a suitable DP.
@item --ignore-ldap-dp
@opindex ignore-ldap-dp
This is similar to @option{--ignore-http-dp} but ignores entries using
the @acronym{LDAP} scheme. Both options may be combined resulting in
ignoring DPs entirely.
@item --ignore-ocsp-service-url
@opindex ignore-ocsp-service-url
Ignore all OCSP URLs contained in the certificate. The effect is to
force the use of the default responder.
@item --honor-http-proxy
@opindex honor-http-proxy
If the environment variable @env{http_proxy} has been set, use its
value to access HTTP servers.
@item --http-proxy @var{host}[:@var{port}]
@opindex http-proxy
@efindex http_proxy
Use @var{host} and @var{port} to access HTTP servers. The use of this
option overrides the environment variable @env{http_proxy} regardless
whether @option{--honor-http-proxy} has been set.
@item --ldap-proxy @var{host}[:@var{port}]
@opindex ldap-proxy
Use @var{host} and @var{port} to connect to LDAP servers. If @var{port}
is omitted, port 389 (standard LDAP port) is used. This overrides any
specified host and port part in a LDAP URL and will also be used if host
and port have been omitted from the URL.
@item --only-ldap-proxy
@opindex only-ldap-proxy
Never use anything else but the LDAP "proxy" as configured with
@option{--ldap-proxy}. Usually @command{dirmngr} tries to use other
configured LDAP server if the connection using the "proxy" failed.
@item --ldapserverlist-file @var{file}
@opindex ldapserverlist-file
Read the list of LDAP servers to consult for CRLs and certificates from
file instead of the default per-user ldap server list file. The default
value for @var{file} is @file{dirmngr_ldapservers.conf} or
@file{ldapservers.conf} when running in @option{--daemon} mode.
This server list file contains one LDAP server per line in the format
@sc{hostname:port:username:password:base_dn}
Lines starting with a @samp{#} are comments.
Note that as usual all strings entered are expected to be UTF-8 encoded.
Obviously this will lead to problems if the password has originally been
encoded as Latin-1. There is no other solution here than to put such a
password in the binary encoding into the file (i.e. non-ascii characters
won't show up readable).@footnote{The @command{gpgconf} tool might be
helpful for frontends as it enables editing this configuration file using
percent-escaped strings.}
@item --ldaptimeout @var{secs}
@opindex ldaptimeout
Specify the number of seconds to wait for an LDAP query before timing
out. The default is currently 100 seconds. 0 will never timeout.
@item --add-servers
@opindex add-servers
This option makes dirmngr add any servers it discovers when validating
certificates against CRLs to the internal list of servers to consult for
certificates and CRLs.
This option is useful when trying to validate a certificate that has
a CRL distribution point that points to a server that is not already
listed in the ldapserverlist. Dirmngr will always go to this server and
try to download the CRL, but chances are high that the certificate used
to sign the CRL is located on the same server. So if dirmngr doesn't add
that new server to list, it will often not be able to verify the
signature of the CRL unless the @code{--add-servers} option is used.
Note: The current version of dirmngr has this option disabled by default.
@item --allow-ocsp
@opindex allow-ocsp
This option enables OCSP support if requested by the client.
OCSP requests are rejected by default because they may violate the
privacy of the user; for example it is possible to track the time when
a user is reading a mail.
@item --ocsp-responder @var{url}
@opindex ocsp-responder
Use @var{url} as the default OCSP Responder if the certificate does
not contain information about an assigned responder. Note, that
@code{--ocsp-signer} must also be set to a valid certificate.
@item --ocsp-signer @var{fpr}|@var{file}
@opindex ocsp-signer
Use the certificate with the fingerprint @var{fpr} to check the
responses of the default OCSP Responder. Alternatively a filename can be
given in which case the response is expected to be signed by one of the
certificates described in that file. Any argument which contains a
slash, dot or tilde is considered a filename. Usual filename expansion
takes place: A tilde at the start followed by a slash is replaced by the
content of @env{HOME}, no slash at start describes a relative filename
which will be searched at the home directory. To make sure that the
@var{file} is searched in the home directory, either prepend the name
with "./" or use a name which contains a dot.
If a response has been signed by a certificate described by these
fingerprints no further check upon the validity of this certificate is
done.
The format of the @var{FILE} is a list of SHA-1 fingerprint, one per
line with optional colons between the bytes. Empty lines and lines
prefix with a hash mark are ignored.
@item --ocsp-max-clock-skew @var{n}
@opindex ocsp-max-clock-skew
The number of seconds a skew between the OCSP responder and them local
clock is accepted. Default is 600 (20 minutes).
@item --ocsp-max-period @var{n}
@opindex ocsp-max-period
Seconds a response is at maximum considered valid after the time given
in the thisUpdate field. Default is 7776000 (90 days).
@item --ocsp-current-period @var{n}
@opindex ocsp-current-period
The number of seconds an OCSP response is considered valid after the
time given in the NEXT_UPDATE datum. Default is 10800 (3 hours).
@item --max-replies @var{n}
@opindex max-replies
Do not return more that @var{n} items in one query. The default is
10.
@item --ignore-cert-extension @var{oid}
@opindex ignore-cert-extension
Add @var{oid} to the list of ignored certificate extensions. The
@var{oid} is expected to be in dotted decimal form, like
@code{2.5.29.3}. This option may be used more than once. Critical
flagged certificate extensions matching one of the OIDs in the list
are treated as if they are actually handled and thus the certificate
won't be rejected due to an unknown critical extension. Use this
option with care because extensions are usually flagged as critical
for a reason.
@item --hkp-cacert @var{file}
Use the root certificates in @var{file} for verification of the TLS
certificates used with @code{hkps} (keyserver access over TLS). If
the file is in PEM format a suffix of @code{.pem} is expected for
@var{file}. This option may be given multiple times to add more
root certificates. Tilde expansion is supported.
@end table
@c
@c Dirmngr Configuration
@c
@mansect files
@node Dirmngr Configuration
@section Configuration
Dirmngr makes use of several directories when running in daemon mode:
@table @file
@item ~/.gnupg
This is the standard home directory for all configuration files.
@item /etc/gnupg/trusted-certs
This directory should be filled with certificates of Root CAs you
are trusting in checking the CRLs and signing OCSP Responses.
Usually these are the same certificates you use with the applications
making use of dirmngr. It is expected that each of these certificate
files contain exactly one @acronym{DER} encoded certificate in a file
with the suffix @file{.crt} or @file{.der}. @command{dirmngr} reads
those certificates on startup and when given a SIGHUP. Certificates
which are not readable or do not make up a proper X.509 certificate
are ignored; see the log file for details.
Applications using dirmngr (e.g. gpgsm) can request these
certificates to complete a trust chain in the same way as with the
extra-certs directory (see below).
Note that for OCSP responses the certificate specified using the option
@option{--ocsp-signer} is always considered valid to sign OCSP requests.
@item /etc/gnupg/extra-certs
This directory may contain extra certificates which are preloaded
into the interal cache on startup. Applications using dirmngr (e.g. gpgsm)
can request cached certificates to complete a trust chain.
This is convenient in cases you have a couple intermediate CA certificates
or certificates usually used to sign OCSP responses.
These certificates are first tried before going
out to the net to look for them. These certificates must also be
@acronym{DER} encoded and suffixed with @file{.crt} or @file{.der}.
@item ~/.gnupg/crls.d
This directory is used to store cached CRLs. The @file{crls.d}
part will be created by dirmngr if it does not exists but you need to
make sure that the upper directory exists.
@end table
@manpause
To be able to see what's going on you should create the configure file
@file{~/gnupg/dirmngr.conf} with at least one line:
@example
log-file ~/dirmngr.log
@end example
To be able to perform OCSP requests you probably want to add the line:
@example
allow-ocsp
@end example
To make sure that new options are read and that after the installation
of a new GnuPG versions the installed dirmngr is running, you may want
to kill an existing dirmngr first:
@example
gpgconf --kill dirmngr
@end example
You may check the log file to see whether all desired root
certificates have been loaded correctly.
@c
@c Dirmngr Signals
@c
@mansect signals
@node Dirmngr Signals
@section Use of signals.
A running @command{dirmngr} may be controlled by signals, i.e. using
the @command{kill} command to send a signal to the process.
Here is a list of supported signals:
@table @gnupgtabopt
@item SIGHUP
@cpindex SIGHUP
This signal flushes all internally cached CRLs as well as any cached
certificates. Then the certificate cache is reinitialized as on
startup. Options are re-read from the configuration file. Instead of
sending this signal it is better to use
@example
gpgconf --reload dirmngr
@end example
@item SIGTERM
@cpindex SIGTERM
Shuts down the process but waits until all current requests are
fulfilled. If the process has received 3 of these signals and requests
are still pending, a shutdown is forced. You may also use
@example
gpgconf --kill dirmngr
@end example
instead of this signal
@item SIGINT
@cpindex SIGINT
Shuts down the process immediately.
@item SIGUSR1
@cpindex SIGUSR1
This prints some caching statistics to the log file.
@end table
@c
@c Examples
@c
@mansect examples
@node Dirmngr Examples
@section Examples
Here is an example on how to show dirmngr's internal table of OpenPGP
keyserver addresses. The output is intended for debugging purposes
and not part of a defined API.
@example
gpg-connect-agent --dirmngr 'keyserver --hosttable' /bye
@end example
To inhibit the use of a particular host you have noticed in one of the
keyserver pools, you may use
@example
gpg-connect-agent --dirmngr 'keyserver --dead pgpkeys.bnd.de' /bye
@end example
The description of the @code{keyserver} command can be printed using
@example
gpg-connect-agent --dirmngr 'help keyserver' /bye
@end example
@c
@c Assuan Protocol
@c
@manpause
@node Dirmngr Protocol
@section Dirmngr's Assuan Protocol
Assuan is the IPC protocol used to access dirmngr. This is a
description of the commands implemented by dirmngr.
@menu
* Dirmngr LOOKUP:: Look up a certificate via LDAP
* Dirmngr ISVALID:: Validate a certificate using a CRL or OCSP.
* Dirmngr CHECKCRL:: Validate a certificate using a CRL.
* Dirmngr CHECKOCSP:: Validate a certificate using OCSP.
* Dirmngr CACHECERT:: Put a certificate into the internal cache.
* Dirmngr VALIDATE:: Validate a certificate for debugging.
@end menu
@node Dirmngr LOOKUP
@subsection Return the certificate(s) found
Lookup certificate. To allow multiple patterns (which are ORed)
quoting is required: Spaces are to be translated into "+" or into
"%20"; obviously this requires that the usual escape quoting rules
are applied. The server responds with:
@example
S: D <DER encoded certificate>
S: END
S: D <second DER encoded certificate>
S: END
S: OK
@end example
In this example 2 certificates are returned. The server may return
any number of certificates; OK will also be returned when no
certificates were found. The dirmngr might return a status line
@example
S: S TRUNCATED <n>
@end example
To indicate that the output was truncated to N items due to a
limitation of the server or by an arbitrary set limit.
The option @option{--url} may be used if instead of a search pattern a
complete URL to the certificate is known:
@example
C: LOOKUP --url CN%3DWerner%20Koch,o%3DIntevation%20GmbH,c%3DDE?userCertificate
@end example
If the option @option{--cache-only} is given, no external lookup is done
so that only certificates from the cache are returned.
With the option @option{--single}, the first and only the first match
will be returned. Unless option @option{--cache-only} is also used, no
local lookup will be done in this case.
@node Dirmngr ISVALID
@subsection Validate a certificate using a CRL or OCSP
@example
ISVALID [--only-ocsp] [--force-default-responder] @var{certid}|@var{certfpr}
@end example
Check whether the certificate described by the @var{certid} has been
revoked. Due to caching, the Dirmngr is able to answer immediately in
most cases.
The @var{certid} is a hex encoded string consisting of two parts,
delimited by a single dot. The first part is the SHA-1 hash of the
issuer name and the second part the serial number.
Alternatively the certificate's SHA-1 fingerprint @var{certfpr} may be
given in which case an OCSP request is done before consulting the CRL.
If the option @option{--only-ocsp} is given, no fallback to a CRL check
will be used. If the option @option{--force-default-responder} is
given, only the default OCSP responder will be used and any other
methods of obtaining an OCSP responder URL won't be used.
@noindent
Common return values are:
@table @code
@item GPG_ERR_NO_ERROR (0)
This is the positive answer: The certificate is not revoked and we have
an up-to-date revocation list for that certificate. If OCSP was used
the responder confirmed that the certificate has not been revoked.
@item GPG_ERR_CERT_REVOKED
This is the negative answer: The certificate has been revoked. Either
it is in a CRL and that list is up to date or an OCSP responder informed
us that it has been revoked.
@item GPG_ERR_NO_CRL_KNOWN
No CRL is known for this certificate or the CRL is not valid or out of
date.
@item GPG_ERR_NO_DATA
The OCSP responder returned an ``unknown'' status. This means that it
is not aware of the certificate's status.
@item GPG_ERR_NOT_SUPPORTED
This is commonly seen if OCSP support has not been enabled in the
configuration.
@end table
If DirMngr has not enough information about the given certificate (which
is the case for not yet cached certificates), it will will inquire the
missing data:
@example
S: INQUIRE SENDCERT <CertID>
C: D <DER encoded certificate>
C: END
@end example
A client should be aware that DirMngr may ask for more than one
certificate.
If Dirmngr has a certificate but the signature of the certificate
could not been validated because the root certificate is not known to
dirmngr as trusted, it may ask back to see whether the client trusts
this the root certificate:
@example
S: INQUIRE ISTRUSTED <CertHexfpr>
C: D 1
C: END
@end example
Only this answer will let Dirmngr consider the CRL as valid.
@node Dirmngr CHECKCRL
@subsection Validate a certificate using a CRL
Check whether the certificate with FINGERPRINT (SHA-1 hash of the
entire X.509 certificate blob) is valid or not by consulting the CRL
responsible for this certificate. If the fingerprint has not been
given or the certificate is not known, the function inquires the
certificate using:
@example
S: INQUIRE TARGETCERT
C: D <DER encoded certificate>
C: END
@end example
Thus the caller is expected to return the certificate for the request
(which should match FINGERPRINT) as a binary blob. Processing then
takes place without further interaction; in particular dirmngr tries
to locate other required certificate by its own mechanism which
includes a local certificate store as well as a list of trusted root
certificates.
@noindent
The return code is 0 for success; i.e. the certificate has not been
revoked or one of the usual error codes from libgpg-error.
@node Dirmngr CHECKOCSP
@subsection Validate a certificate using OCSP
@example
CHECKOCSP [--force-default-responder] [@var{fingerprint}]
@end example
Check whether the certificate with @var{fingerprint} (the SHA-1 hash of
the entire X.509 certificate blob) is valid by consulting the appropriate
OCSP responder. If the fingerprint has not been given or the
certificate is not known by Dirmngr, the function inquires the
certificate using:
@example
S: INQUIRE TARGETCERT
C: D <DER encoded certificate>
C: END
@end example
Thus the caller is expected to return the certificate for the request
(which should match @var{fingerprint}) as a binary blob. Processing
then takes place without further interaction; in particular dirmngr
tries to locate other required certificates by its own mechanism which
includes a local certificate store as well as a list of trusted root
certificates.
If the option @option{--force-default-responder} is given, only the
default OCSP responder is used. This option is the per-command variant
of the global option @option{--ignore-ocsp-service-url}.
@noindent
The return code is 0 for success; i.e. the certificate has not been
revoked or one of the usual error codes from libgpg-error.
@node Dirmngr CACHECERT
@subsection Put a certificate into the internal cache
Put a certificate into the internal cache. This command might be
useful if a client knows in advance certificates required for a test and
wants to make sure they get added to the internal cache. It is also
helpful for debugging. To get the actual certificate, this command
immediately inquires it using
@example
S: INQUIRE TARGETCERT
C: D <DER encoded certificate>
C: END
@end example
Thus the caller is expected to return the certificate for the request
as a binary blob.
@noindent
The return code is 0 for success; i.e. the certificate has not been
successfully cached or one of the usual error codes from libgpg-error.
@node Dirmngr VALIDATE
@subsection Validate a certificate for debugging
Validate a certificate using the certificate validation function used
internally by dirmngr. This command is only useful for debugging. To
get the actual certificate, this command immediately inquires it using
@example
S: INQUIRE TARGETCERT
C: D <DER encoded certificate>
C: END
@end example
Thus the caller is expected to return the certificate for the request
as a binary blob.
@mansect see also
@ifset isman
@command{gpgsm}(1),
@command{dirmngr-client}(1)
@end ifset
@include see-also-note.texi
@c
@c !!! UNDER CONSTRUCTION !!!
@c
@c
@c @section Verifying a Certificate
@c
@c There are several ways to request services from Dirmngr. Almost all of
@c them are done using the Assuan protocol. What we describe here is the
@c Assuan command CHECKCRL as used for example by the dirmnr-client tool if
@c invoked as
@c
@c @example
@c dirmngr-client foo.crt
@c @end example
@c
@c This command will send an Assuan request to an already running Dirmngr
@c instance. foo.crt is expected to be a standard X.509 certificate and
@c dirmngr will receive the Assuan command
@c
@c @example
@c CHECKCRL @var [{fingerprint}]
@c @end example
@c
@c @var{fingerprint} is optional and expected to be the SHA-1 has of the
@c DER encoding of the certificate under question. It is to be HEX
@c encoded. The rationale for sending the fingerprint is that it allows
@c dirmngr to reply immediately if it has already cached such a request. If
@c this is not the case and no certificate has been found in dirmngr's
@c internal certificate storage, dirmngr will request the certificate using
@c the Assuan inquiry
@c
@c @example
@c INQUIRE TARGETCERT
@c @end example
@c
@c The caller (in our example dirmngr-client) is then expected to return
@c the certificate for the request (which should match @var{fingerprint})
@c as a binary blob.
@c
@c Dirmngr now passes control to @code{crl_cache_cert_isvalid}. This
@c function checks whether a CRL item exists for target certificate. These
@c CRL items are kept in a database of already loaded and verified CRLs.
@c This mechanism is called the CRL cache. Obviously timestamps are kept
@c there with each item to cope with the expiration date of the CRL. The
@c possible return values are: @code{0} to indicate that a valid CRL is
@c available for the certificate and the certificate itself is not listed
@c in this CRL, @code{GPG_ERR_CERT_REVOKED} to indicate that the certificate is
@c listed in the CRL or @code{GPG_ERR_NO_CRL_KNOWN} in cases where no CRL or no
@c information is available. The first two codes are immediately returned to
@c the caller and the processing of this request has been done.
@c
@c Only the @code{GPG_ERR_NO_CRL_KNOWN} needs more attention: Dirmngr now
@c calls @code{clr_cache_reload_crl} and if this succeeds calls
@c @code{crl_cache_cert_isvald) once more. All further errors are
@c immediately returned to the caller.
@c
@c @code{crl_cache_reload_crl} is the actual heart of the CRL management.
@c It locates the corresponding CRL for the target certificate, reads and
@c verifies this CRL and stores it in the CRL cache. It works like this:
@c
@c * Loop over all crlDPs in the target certificate.
@c * If the crlDP is invalid immediately terminate the loop.
@c * Loop over all names in the current crlDP.
@c * If the URL scheme is unknown or not enabled
@c (--ignore-http-dp, --ignore-ldap-dp) continues with
@c the next name.
@c * @code{crl_fetch} is called to actually retrieve the CRL.
@c In case of problems this name is ignore and we continue with
@c the next name. Note that @code{crl_fetch} does only return
@c a descriptor for the CRL for further reading so does the CRL
@c does not yet end up in memory.
@c * @code{crl_cache_insert} is called with that descriptor to
@c actually read the CRL into the cache. See below for a
@c description of this function. If there is any error (e.g. read
@c problem, CRL not correctly signed or verification of signature
@c not possible), this descriptor is rejected and we continue
@c with the next name. If the CRL has been successfully loaded,
@c the loop is terminated.
@c * If no crlDP has been found in the previous loop use a default CRL.
@c Note, that if any crlDP has been found but loading of the CRL failed,
@c this condition is not true.
@c * Try to load a CRL from all configured servers (ldapservers.conf)
@c in turn. The first server returning a CRL is used.
@c * @code(crl_cache_insert) is then used to actually insert the CRL
@c into the cache. If this failed we give up immediately without
@c checking the rest of the servers from the first step.
@c * Ready.
@c
@c
@c The @code{crl_cache_insert} function takes care of reading the bulk of
@c the CRL, parsing it and checking the signature. It works like this: A
@c new database file is created using a temporary file name. The CRL
@c parsing machinery is started and all items of the CRL are put into
@c this database file. At the end the issuer certificate of the CRL
@c needs to be retrieved. Three cases are to be distinguished:
@c
@c a) An authorityKeyIdentifier with an issuer and serialno exits: The
@c certificate is retrieved using @code{find_cert_bysn}. If
@c the certificate is in the certificate cache, it is directly
@c returned. Then the requester (i.e. the client who requested the
@c CRL check) is asked via the Assuan inquiry ``SENDCERT'' whether
@c he can provide this certificate. If this succeed the returned
@c certificate gets cached and returned. Note, that dirmngr does not
@c verify in any way whether the expected certificate is returned.
@c It is in the interest of the client to return a useful certificate
@c as otherwise the service request will fail due to a bad signature.
@c The last way to get the certificate is by looking it up at
@c external resources. This is done using the @code{ca_cert_fetch}
@c and @code{fetch_next_ksba_cert} and comparing the returned
@c certificate to match the requested issuer and seriano (This is
@c needed because the LDAP layer may return several certificates as
@c LDAP as no standard way to retrieve by serial number).
@c
@c b) An authorityKeyIdentifier with a key ID exists: The certificate is
@c retrieved using @code{find_cert_bysubject}. If the certificate is
@c in the certificate cache, it is directly returned. Then the
@c requester is asked via the Assuan inquiry ``SENDCERT_SKI'' whether
@c he can provide this certificate. If this succeed the returned
@c certificate gets cached and returned. Note, that dirmngr does not
@c verify in any way whether the expected certificate is returned.
@c It is in the interest of the client to return a useful certificate
@c as otherwise the service request will fail due to a bad signature.
@c The last way to get the certificate is by looking it up at
@c external resources. This is done using the @code{ca_cert_fetch}
@c and @code{fetch_next_ksba_cert} and comparing the returned
@c certificate to match the requested subject and key ID.
@c
@c c) No authorityKeyIdentifier exits: The certificate is retrieved
@c using @code{find_cert_bysubject} without the key ID argument. If
@c the certificate is in the certificate cache the first one with a
@c matching subject is is directly returned. Then the requester is
@c asked via the Assuan inquiry ``SENDCERT'' and an exact
@c specification of the subject whether he can
@c provide this certificate. If this succeed the returned
@c certificate gets cached and returned. Note, that dirmngr does not
@c verify in any way whether the expected certificate is returned.
@c It is in the interest of the client to return a useful certificate
@c as otherwise the service request will fail due to a bad signature.
@c The last way to get the certificate is by looking it up at
@c external resources. This is done using the @code{ca_cert_fetch}
@c and @code{fetch_next_ksba_cert} and comparing the returned
@c certificate to match the requested subject; the first certificate
@c with a matching subject is then returned.
@c
@c If no certificate was found, the function returns with the error
@c GPG_ERR_MISSING_CERT. Now the signature is verified. If this fails,
@c the erro is returned. On success the @code{validate_cert_chain} is
@c used to verify that the certificate is actually valid.
@c
@c Here we may encounter a recursive situation:
@c @code{validate_cert_chain} needs to look at other certificates and
@c also at CRLs to check whether these other certificates and well, the
@c CRL issuer certificate itself are not revoked. FIXME: We need to make
@c sure that @code{validate_cert_chain} does not try to lookup the CRL we
@c are currently processing. This would be a catch-22 and may indicate a
@c broken PKI. However, due to overlapping expiring times and imprecise
@c clocks this may actually happen.
@c
@c For historical reasons the Assuan command ISVALID is a bit different
@c to CHECKCRL but this is mainly due to different calling conventions.
@c In the end the same fucntionality is used, albeit hidden by a couple
@c of indirection and argument and result code mangling. It furthere
@c ingetrages OCSP checking depending on options are the way it is
@c called. GPGSM still uses this command but might eventuall switch over
@c to CHECKCRL and CHECKOCSP so that ISVALID can be retired.
@c
@c
@c @section Validating a certificate
@c
@c We describe here how the internal function @code{validate_cert_chain}
@c works. Note that mainly testing purposes this functionality may be
@c called directly using @cmd{dirmngr-client --validate @file{foo.crt}}.
@c
@c The function takes the target certificate and a mode argument as
@c parameters and returns an error code and optionally the closes
@c expiration time of all certificates in the chain.
@c
@c We first check that the certificate may be used for the requested
@c purpose (i.e. OCSP or CRL signing). If this is not the case
@c GPG_ERR_WRONG_KEY_USAGE is returned.
@c
@c The next step is to find the trust anchor (root certificate) and to
@c assemble the chain in memory: Starting with the target certificate,
@c the expiration time is checked against the current date, unknown
@c critical extensions are detected and certificate policies are matched
@c (We only allow 2.289.9.9 but I have no clue about that OID and from
@c where I got it - it does not even seem to be assigned - debug cruft?).
@c
@c Now if this certificate is a self-signed one, we have reached the
@c trust anchor. In this case we check that the signature is good, the
@c certificate is allowed to act as a CA, that it is a trusted one (by
@c checking whether it is has been put into the trusted-certs
@c configuration directory) and finally prepend into to our list
@c representing the certificate chain. This steps ends then.
@c
@c If it is not a self-signed certificate, we check that the chain won't
@c get too long (current limit is 100), if this is the case we terminate
@c with the error GPG_ERR_BAD_CERT_CHAIN.
@c
@c Now the issuer's certificate is looked up: If an
@c authorityKeyIdentifier is available, this one is used to locate the
@c certificate either using issuer and serialnumber or subject DN
@c (i.e. the issuer's DN) and the keyID. The functions
@c @code{find_cert_bysn) and @code{find_cert_bysubject} are used
@c respectively. The have already been described above under the
@c description of @code{crl_cache_insert}. If no certificate was found
@c or with no authorityKeyIdentifier, only the cache is consulted using
@c @code{get_cert_bysubject}. The latter is is done under the assumption
@c that a matching certificate has explicitly been put into the
@c certificate cache. If the issuer's certificate could not be found,
@c the validation terminates with the error code @code{GPG_ERR_MISSING_CERT}.
@c
@c If the issuer's certificate has been found, the signature of the
@c actual certificate is checked and in case this fails the error
@c #code{GPG_ERR_BAD_CERT_CHAIN} is returned. If the signature checks out, the
@c maximum chain length of the issuing certificate is checked as well as
@c the capability of the certificate (i.e. whether he may be used for
@c certificate signing). Then the certificate is prepended to our list
@c representing the certificate chain. Finally the loop is continued now
@c with the issuer's certificate as the current certificate.
@c
@c After the end of the loop and if no error as been encountered
@c (i.e. the certificate chain has been assempled correctly), a check is
@c done whether any certificate expired or a critical policy has not been
@c met. In any of these cases the validation terminates with an
@c appropriate error.
@c
@c Finally the function @code{check_revocations} is called to verify no
@c certificate in the assempled chain has been revoked: This is an
@c recursive process because a CRL has to be checked for each certificate
@c in the chain except for the root certificate, of which we already know
@c that it is trusted and we avoid checking a CRL here due to common
@c setup problems and the assumption that a revoked root certifcate has
@c been removed from the list of trusted certificates.
@c
@c
@c
@c
@c @section Looking up certificates through LDAP.
@c
@c This describes the LDAP layer to retrieve certificates.
@c the functions @code{ca_cert_fetch} and @code{fetch_next_ksba_cert} are
@c used for this. The first one starts a search and the second one is
@c used to retrieve certificate after certificate.
@c
diff --git a/doc/gpg-agent.texi b/doc/gpg-agent.texi
index b99dc5f5f..8176b3766 100644
--- a/doc/gpg-agent.texi
+++ b/doc/gpg-agent.texi
@@ -1,1505 +1,1505 @@
@c Copyright (C) 2002 Free Software Foundation, Inc.
@c This is part of the GnuPG manual.
@c For copying conditions, see the file gnupg.texi.
@include defs.inc
@node Invoking GPG-AGENT
@chapter Invoking GPG-AGENT
@cindex GPG-AGENT command options
@cindex command options
@cindex options, GPG-AGENT command
@manpage gpg-agent.1
@ifset manverb
.B gpg-agent
\- Secret key management for GnuPG
@end ifset
@mansect synopsis
@ifset manverb
.B gpg-agent
.RB [ \-\-homedir
.IR dir ]
.RB [ \-\-options
.IR file ]
.RI [ options ]
.br
.B gpg-agent
.RB [ \-\-homedir
.IR dir ]
.RB [ \-\-options
.IR file ]
.RI [ options ]
.B \-\-server
.br
.B gpg-agent
.RB [ \-\-homedir
.IR dir ]
.RB [ \-\-options
.IR file ]
.RI [ options ]
.B \-\-daemon
.RI [ command_line ]
@end ifset
@mansect description
@command{gpg-agent} is a daemon to manage secret (private) keys
independently from any protocol. It is used as a backend for
@command{gpg} and @command{gpgsm} as well as for a couple of other
utilities.
The agent is automatically started on demand by @command{gpg},
@command{gpgsm}, @command{gpgconf}, or @command{gpg-connect-agent}.
Thus there is no reason to start it manually. In case you want to use
the included Secure Shell Agent you may start the agent using:
@c From dkg on gnupg-devel on 2016-04-21:
@c
@c Here's an attempt at writing a short description of the goals of an
@c isolated cryptographic agent:
@c
@c A cryptographic agent should control access to secret key material.
@c The agent permits use of the secret key material by a supplicant
@c without providing a copy of the secret key material to the supplicant.
@c
@c An isolated cryptographic agent separates the request for use of
@c secret key material from permission for use of secret key material.
@c That is, the system or process requesting use of the key (the
@c "supplicant") can be denied use of the key by the owner/operator of
@c the agent (the "owner"), which the supplicant has no control over.
@c
@c One way of enforcing this split is a per-key or per-session
@c passphrase, known only by the owner, which must be supplied to the
@c agent to permit the use of the secret key material. Another way is
@c with an out-of-band permission mechanism (e.g. a button or GUI
@c interface that the owner has access to, but the supplicant does not).
@c
@c The rationale for this separation is that it allows access to the
@c secret key to be tightly controlled and audited, and it doesn't permit
@c the the supplicant to either copy the key or to override the owner's
@c intentions.
@example
gpg-connect-agent /bye
@end example
@noindent
@efindex GPG_TTY
You should always add the following lines to your @code{.bashrc} or
whatever initialization file is used for all shell invocations:
@smallexample
GPG_TTY=$(tty)
export GPG_TTY
@end smallexample
@noindent
It is important that this environment variable always reflects the
output of the @code{tty} command. For W32 systems this option is not
required.
Please make sure that a proper pinentry program has been installed
under the default filename (which is system dependent) or use the
option @option{pinentry-program} to specify the full name of that program.
It is often useful to install a symbolic link from the actual used
pinentry (e.g. @file{@value{BINDIR}/pinentry-gtk}) to the expected
one (e.g. @file{@value{BINDIR}/pinentry}).
@manpause
@noindent
@xref{Option Index},for an index to @command{GPG-AGENT}'s commands and options.
@mancont
@menu
* Agent Commands:: List of all commands.
* Agent Options:: List of all options.
* Agent Configuration:: Configuration files.
* Agent Signals:: Use of some signals.
* Agent Examples:: Some usage examples.
* Agent Protocol:: The protocol the agent uses.
@end menu
@mansect commands
@node Agent Commands
@section Commands
Commands are not distinguished from options except for the fact that
only one command is allowed.
@table @gnupgtabopt
@item --version
@opindex version
Print the program version and licensing information. Note that you cannot
abbreviate this command.
@item --help
@itemx -h
@opindex help
Print a usage message summarizing the most useful command-line options.
Note that you can abbreviate this command.
@item --dump-options
@opindex dump-options
Print a list of all available options and commands. Note that you cannot
abbreviate this command.
@item --server
@opindex server
Run in server mode and wait for commands on the @code{stdin}. The
default mode is to create a socket and listen for commands there.
@item --daemon [@var{command line}]
@opindex daemon
Start the gpg-agent as a daemon; that is, detach it from the console
and run it in the background.
As an alternative you may create a new process as a child of
gpg-agent: @code{gpg-agent --daemon /bin/sh}. This way you get a new
shell with the environment setup properly; after you exit from this
shell, gpg-agent terminates within a few seconds.
@end table
@mansect options
@node Agent Options
@section Option Summary
@table @gnupgtabopt
@anchor{option --options}
@item --options @var{file}
@opindex options
Reads configuration from @var{file} instead of from the default
per-user configuration file. The default configuration file is named
@file{gpg-agent.conf} and expected in the @file{.gnupg} directory directly
below the home directory of the user.
@anchor{option --homedir}
@include opt-homedir.texi
@item -v
@item --verbose
@opindex verbose
Outputs additional information while running.
You can increase the verbosity by giving several
verbose commands to @command{gpgsm}, such as @samp{-vv}.
@item -q
@item --quiet
@opindex quiet
Try to be as quiet as possible.
@item --batch
@opindex batch
Don't invoke a pinentry or do any other thing requiring human interaction.
@item --faked-system-time @var{epoch}
@opindex faked-system-time
This option is only useful for testing; it sets the system time back or
forth to @var{epoch} which is the number of seconds elapsed since the year
1970.
@item --debug-level @var{level}
@opindex debug-level
Select the debug level for investigating problems. @var{level} may be
a numeric value or a keyword:
@table @code
@item none
No debugging at all. A value of less than 1 may be used instead of
the keyword.
@item basic
Some basic debug messages. A value between 1 and 2 may be used
instead of the keyword.
@item advanced
More verbose debug messages. A value between 3 and 5 may be used
instead of the keyword.
@item expert
Even more detailed messages. A value between 6 and 8 may be used
instead of the keyword.
@item guru
All of the debug messages you can get. A value greater than 8 may be
used instead of the keyword. The creation of hash tracing files is
only enabled if the keyword is used.
@end table
How these messages are mapped to the actual debugging flags is not
specified and may change with newer releases of this program. They are
however carefully selected to best aid in debugging.
@item --debug @var{flags}
@opindex debug
-This option is only useful for debugging and the behaviour may change at
+This option is only useful for debugging and the behavior may change at
any time without notice. FLAGS are bit encoded and may be given in
usual C-Syntax. The currently defined bits are:
@table @code
@item 0 (1)
X.509 or OpenPGP protocol related data
@item 1 (2)
values of big number integers
@item 2 (4)
low level crypto operations
@item 5 (32)
memory allocation
@item 6 (64)
caching
@item 7 (128)
show memory statistics.
@item 9 (512)
write hashed data to files named @code{dbgmd-000*}
@item 10 (1024)
trace Assuan protocol
@item 12 (4096)
bypass all certificate validation
@end table
@item --debug-all
@opindex debug-all
Same as @code{--debug=0xffffffff}
@item --debug-wait @var{n}
@opindex debug-wait
When running in server mode, wait @var{n} seconds before entering the
actual processing loop and print the pid. This gives time to attach a
debugger.
@item --debug-quick-random
@opindex debug-quick-random
This option inhibits the use of the very secure random quality level
(Libgcrypt’s @code{GCRY_VERY_STRONG_RANDOM}) and degrades all request
down to standard random quality. It is only used for testing and
should not be used for any production quality keys. This option is
only effective when given on the command line.
On GNU/Linux, another way to quickly generate insecure keys is to use
@command{rngd} to fill the kernel's entropy pool with lower quality
random data. @command{rngd} is typically provided by the
@command{rng-tools} package. It can be run as follows: @samp{sudo
rngd -f -r /dev/urandom}.
@item --debug-pinentry
@opindex debug-pinentry
This option enables extra debug information pertaining to the
Pinentry. As of now it is only useful when used along with
@code{--debug 1024}.
@item --no-detach
@opindex no-detach
Don't detach the process from the console. This is mainly useful for
debugging.
@item -s
@itemx --sh
@itemx -c
@itemx --csh
@opindex sh
@opindex csh
@efindex SHELL
Format the info output in daemon mode for use with the standard Bourne
shell or the C-shell respectively. The default is to guess it based on
the environment variable @code{SHELL} which is correct in almost all
cases.
@item --no-grab
@opindex no-grab
Tell the pinentry not to grab the keyboard and mouse. This option
should in general not be used to avoid X-sniffing attacks.
@anchor{option --log-file}
@item --log-file @var{file}
@opindex log-file
@efindex HKCU\Software\GNU\GnuPG:DefaultLogFile
Append all logging output to @var{file}. This is very helpful in
seeing what the agent actually does. Use @file{socket://} to log to
socket. If neither a log file nor a log file descriptor has been set
on a Windows platform, the Registry entry
@code{HKCU\Software\GNU\GnuPG:DefaultLogFile}, if set, is used to
specify the logging output.
@anchor{option --no-allow-mark-trusted}
@item --no-allow-mark-trusted
@opindex no-allow-mark-trusted
Do not allow clients to mark keys as trusted, i.e. put them into the
@file{trustlist.txt} file. This makes it harder for users to inadvertently
accept Root-CA keys.
@anchor{option --allow-preset-passphrase}
@item --allow-preset-passphrase
@opindex allow-preset-passphrase
This option allows the use of @command{gpg-preset-passphrase} to seed the
internal cache of @command{gpg-agent} with passphrases.
@anchor{option --no-allow-loopback-pinentry}
@item --no-allow-loopback-pinentry
@item --allow-loopback-pinentry
@opindex no-allow-loopback-pinentry
@opindex allow-loopback-pinentry
Disallow or allow clients to use the loopback pinentry features; see
the option @option{pinentry-mode} for details. Allow is the default.
The @option{--force} option of the Assuan command @command{DELETE_KEY}
is also controlled by this option: The option is ignored if a loopback
pinentry is disallowed.
@item --no-allow-external-cache
@opindex no-allow-external-cache
Tell Pinentry not to enable features which use an external cache for
passphrases.
Some desktop environments prefer to unlock all
credentials with one master password and may have installed a Pinentry
which employs an additional external cache to implement such a policy.
By using this option the Pinentry is advised not to make use of such a
cache and instead always ask the user for the requested passphrase.
@item --allow-emacs-pinentry
@opindex allow-emacs-pinentry
Tell Pinentry to allow features to divert the passphrase entry to a
running Emacs instance. How this is exactly handled depends on the
version of the used Pinentry.
@item --ignore-cache-for-signing
@opindex ignore-cache-for-signing
This option will let @command{gpg-agent} bypass the passphrase cache for all
signing operation. Note that there is also a per-session option to
-control this behaviour but this command line option takes precedence.
+control this behavior but this command line option takes precedence.
@item --default-cache-ttl @var{n}
@opindex default-cache-ttl
Set the time a cache entry is valid to @var{n} seconds. The default
is 600 seconds. Each time a cache entry is accessed, the entry's
timer is reset. To set an entry's maximum lifetime, use
@command{max-cache-ttl}.
@item --default-cache-ttl-ssh @var{n}
@opindex default-cache-ttl
Set the time a cache entry used for SSH keys is valid to @var{n}
seconds. The default is 1800 seconds. Each time a cache entry is
accessed, the entry's timer is reset. To set an entry's maximum
lifetime, use @command{max-cache-ttl-ssh}.
@item --max-cache-ttl @var{n}
@opindex max-cache-ttl
Set the maximum time a cache entry is valid to @var{n} seconds. After
this time a cache entry will be expired even if it has been accessed
recently or has been set using @command{gpg-preset-passphrase}. The
default is 2 hours (7200 seconds).
@item --max-cache-ttl-ssh @var{n}
@opindex max-cache-ttl-ssh
Set the maximum time a cache entry used for SSH keys is valid to
@var{n} seconds. After this time a cache entry will be expired even
if it has been accessed recently or has been set using
@command{gpg-preset-passphrase}. The default is 2 hours (7200
seconds).
@item --enforce-passphrase-constraints
@opindex enforce-passphrase-constraints
Enforce the passphrase constraints by not allowing the user to bypass
them using the ``Take it anyway'' button.
@item --min-passphrase-len @var{n}
@opindex min-passphrase-len
Set the minimal length of a passphrase. When entering a new passphrase
shorter than this value a warning will be displayed. Defaults to 8.
@item --min-passphrase-nonalpha @var{n}
@opindex min-passphrase-nonalpha
Set the minimal number of digits or special characters required in a
passphrase. When entering a new passphrase with less than this number
of digits or special characters a warning will be displayed. Defaults
to 1.
@item --check-passphrase-pattern @var{file}
@opindex check-passphrase-pattern
Check the passphrase against the pattern given in @var{file}. When
entering a new passphrase matching one of these pattern a warning will
be displayed. @var{file} should be an absolute filename. The default is
not to use any pattern file.
Security note: It is known that checking a passphrase against a list of
pattern or even against a complete dictionary is not very effective to
enforce good passphrases. Users will soon figure up ways to bypass such
a policy. A better policy is to educate users on good security
behavior and optionally to run a passphrase cracker regularly on all
users passphrases to catch the very simple ones.
@item --max-passphrase-days @var{n}
@opindex max-passphrase-days
Ask the user to change the passphrase if @var{n} days have passed since
the last change. With @option{--enforce-passphrase-constraints} set the
user may not bypass this check.
@item --enable-passphrase-history
@opindex enable-passphrase-history
This option does nothing yet.
@item --pinentry-invisible-char @var{char}
@opindex pinentry-invisible-char
This option asks the Pinentry to use @var{char} for displaying hidden
characters. @var{char} must be one character UTF-8 string. A
Pinentry may or may not honor this request.
@item --pinentry-timeout @var{n}
@opindex pinentry-timeout
This option asks the Pinentry to timeout after @var{n} seconds with no
user input. The default value of 0 does not ask the pinentry to
timeout, however a Pinentry may use its own default timeout value in
this case. A Pinentry may or may not honor this request.
@item --pinentry-program @var{filename}
@opindex pinentry-program
Use program @var{filename} as the PIN entry. The default is
installation dependent. With the default configuration the name of
the default pinentry is @file{pinentry}; if that file does not exist
but a @file{pinentry-basic} exist the latter is used.
On a Windows platform the default is to use the first existing program
from this list:
@file{bin\pinentry.exe},
@file{..\Gpg4win\bin\pinentry.exe},
@file{..\Gpg4win\pinentry.exe},
@file{..\GNU\GnuPG\pinentry.exe},
@file{..\GNU\bin\pinentry.exe},
@file{bin\pinentry-basic.exe}
where the file names are relative to the GnuPG installation directory.
@item --pinentry-touch-file @var{filename}
@opindex pinentry-touch-file
By default the filename of the socket gpg-agent is listening for
requests is passed to Pinentry, so that it can touch that file before
exiting (it does this only in curses mode). This option changes the
file passed to Pinentry to @var{filename}. The special name
@code{/dev/null} may be used to completely disable this feature. Note
that Pinentry will not create that file, it will only change the
modification and access time.
@item --scdaemon-program @var{filename}
@opindex scdaemon-program
Use program @var{filename} as the Smartcard daemon. The default is
installation dependent and can be shown with the @command{gpgconf}
command.
@item --disable-scdaemon
@opindex disable-scdaemon
Do not make use of the scdaemon tool. This option has the effect of
disabling the ability to do smartcard operations. Note, that enabling
this option at runtime does not kill an already forked scdaemon.
@item --disable-check-own-socket
@opindex disable-check-own-socket
@command{gpg-agent} employs a periodic self-test to detect a stolen
socket. This usually means a second instance of @command{gpg-agent}
has taken over the socket and @command{gpg-agent} will then terminate
itself. This option may be used to disable this self-test for
debugging purposes.
@item --use-standard-socket
@itemx --no-use-standard-socket
@itemx --use-standard-socket-p
@opindex use-standard-socket
@opindex no-use-standard-socket
@opindex use-standard-socket-p
Since GnuPG 2.1 the standard socket is always used. These options
have no more effect. The command @code{gpg-agent
--use-standard-socket-p} will thus always return success.
@item --display @var{string}
@itemx --ttyname @var{string}
@itemx --ttytype @var{string}
@itemx --lc-ctype @var{string}
@itemx --lc-messages @var{string}
@itemx --xauthority @var{string}
@opindex display
@opindex ttyname
@opindex ttytype
@opindex lc-ctype
@opindex lc-messages
@opindex xauthority
These options are used with the server mode to pass localization
information.
@item --keep-tty
@itemx --keep-display
@opindex keep-tty
@opindex keep-display
Ignore requests to change the current @code{tty} or X window system's
@code{DISPLAY} variable respectively. This is useful to lock the
pinentry to pop up at the @code{tty} or display you started the agent.
@anchor{option --extra-socket}
@item --extra-socket @var{name}
@opindex extra-socket
Also listen on native gpg-agent connections on the given socket. The
intended use for this extra socket is to setup a Unix domain socket
forwarding from a remote machine to this socket on the local machine.
A @command{gpg} running on the remote machine may then connect to the
local gpg-agent and use its private keys. This enables decrypting or
signing data on a remote machine without exposing the private keys to the
remote machine.
@anchor{option --enable-ssh-support}
@item --enable-ssh-support
@itemx --enable-putty-support
@opindex enable-ssh-support
@opindex enable-putty-support
Enable the OpenSSH Agent protocol.
In this mode of operation, the agent does not only implement the
gpg-agent protocol, but also the agent protocol used by OpenSSH
(through a separate socket). Consequently, it should be possible to use
the gpg-agent as a drop-in replacement for the well known ssh-agent.
SSH Keys, which are to be used through the agent, need to be added to
the gpg-agent initially through the ssh-add utility. When a key is
added, ssh-add will ask for the password of the provided key file and
send the unprotected key material to the agent; this causes the
gpg-agent to ask for a passphrase, which is to be used for encrypting
the newly received key and storing it in a gpg-agent specific
directory.
Once a key has been added to the gpg-agent this way, the gpg-agent
will be ready to use the key.
Note: in case the gpg-agent receives a signature request, the user might
need to be prompted for a passphrase, which is necessary for decrypting
the stored key. Since the ssh-agent protocol does not contain a
mechanism for telling the agent on which display/terminal it is running,
gpg-agent's ssh-support will use the TTY or X display where gpg-agent
has been started. To switch this display to the current one, the
following command may be used:
@smallexample
gpg-connect-agent updatestartuptty /bye
@end smallexample
Although all GnuPG components try to start the gpg-agent as needed, this
is not possible for the ssh support because ssh does not know about it.
Thus if no GnuPG tool which accesses the agent has been run, there is no
guarantee that ssh is able to use gpg-agent for authentication. To fix
this you may start gpg-agent if needed using this simple command:
@smallexample
gpg-connect-agent /bye
@end smallexample
Adding the @option{--verbose} shows the progress of starting the agent.
The @option{--enable-putty-support} is only available under Windows
and allows the use of gpg-agent with the ssh implementation
@command{putty}. This is similar to the regular ssh-agent support but
makes use of Windows message queue as required by @command{putty}.
@end table
All the long options may also be given in the configuration file after
stripping off the two leading dashes.
@mansect files
@node Agent Configuration
@section Configuration
There are a few configuration files needed for the operation of the
agent. By default they may all be found in the current home directory
(@pxref{option --homedir}).
@table @file
@item gpg-agent.conf
@efindex gpg-agent.conf
This is the standard configuration file read by @command{gpg-agent} on
startup. It may contain any valid long option; the leading
two dashes may not be entered and the option may not be abbreviated.
This file is also read after a @code{SIGHUP} however only a few
options will actually have an effect. This default name may be
changed on the command line (@pxref{option --options}).
You should backup this file.
@item trustlist.txt
@efindex trustlist.txt
This is the list of trusted keys. You should backup this file.
Comment lines, indicated by a leading hash mark, as well as empty
lines are ignored. To mark a key as trusted you need to enter its
fingerprint followed by a space and a capital letter @code{S}. Colons
may optionally be used to separate the bytes of a fingerprint; this
enables cutting and pasting the fingerprint from a key listing output. If
the line is prefixed with a @code{!} the key is explicitly marked as
not trusted.
Here is an example where two keys are marked as ultimately trusted
and one as not trusted:
@cartouche
@smallexample
# CN=Wurzel ZS 3,O=Intevation GmbH,C=DE
A6935DD34EF3087973C706FC311AA2CCF733765B S
# CN=PCA-1-Verwaltung-02/O=PKI-1-Verwaltung/C=DE
DC:BD:69:25:48:BD:BB:7E:31:6E:BB:80:D3:00:80:35:D4:F8:A6:CD S
# CN=Root-CA/O=Schlapphuete/L=Pullach/C=DE
!14:56:98:D3:FE:9C:CA:5A:31:6E:BC:81:D3:11:4E:00:90:A3:44:C2 S
@end smallexample
@end cartouche
Before entering a key into this file, you need to ensure its
authenticity. How to do this depends on your organisation; your
administrator might have already entered those keys which are deemed
trustworthy enough into this file. Places where to look for the
fingerprint of a root certificate are letters received from the CA or
the website of the CA (after making 100% sure that this is indeed the
website of that CA). You may want to consider disallowing interactive
updates of this file by using the @ref{option --no-allow-mark-trusted}.
It might even be advisable to change the permissions to read-only so
that this file can't be changed inadvertently.
As a special feature a line @code{include-default} will include a global
list of trusted certificates (e.g. @file{@value{SYSCONFDIR}/trustlist.txt}).
This global list is also used if the local list is not available.
It is possible to add further flags after the @code{S} for use by the
caller:
@table @code
@item relax
@cindex relax
Relax checking of some root certificate requirements. As of now this
flag allows the use of root certificates with a missing basicConstraints
attribute (despite that it is a MUST for CA certificates) and disables
CRL checking for the root certificate.
@item cm
If validation of a certificate finally issued by a CA with this flag set
fails, try again using the chain validation model.
@end table
@item sshcontrol
@efindex sshcontrol
This file is used when support for the secure shell agent protocol has
been enabled (@pxref{option --enable-ssh-support}). Only keys present in
this file are used in the SSH protocol. You should backup this file.
The @command{ssh-add} tool may be used to add new entries to this file;
you may also add them manually. Comment lines, indicated by a leading
hash mark, as well as empty lines are ignored. An entry starts with
optional whitespace, followed by the keygrip of the key given as 40 hex
digits, optionally followed by the caching TTL in seconds and another
optional field for arbitrary flags. A non-zero TTL overrides the global
default as set by @option{--default-cache-ttl-ssh}.
The only flag support is @code{confirm}. If this flag is found for a
key, each use of the key will pop up a pinentry to confirm the use of
that key. The flag is automatically set if a new key was loaded into
@code{gpg-agent} using the option @option{-c} of the @code{ssh-add}
command.
The keygrip may be prefixed with a @code{!} to disable an entry.
The following example lists exactly one key. Note that keys available
through a OpenPGP smartcard in the active smartcard reader are
implicitly added to this list; i.e. there is no need to list them.
@cartouche
@smallexample
# Key added on: 2011-07-20 20:38:46
# Fingerprint: 5e:8d:c4:ad:e7:af:6e:27:8a:d6:13:e4:79:ad:0b:81
34B62F25E277CF13D3C6BCEBFD3F85D08F0A864B 0 confirm
@end smallexample
@end cartouche
@item private-keys-v1.d/
@efindex private-keys-v1.d
This is the directory where gpg-agent stores the private keys. Each
key is stored in a file with the name made up of the keygrip and the
suffix @file{key}. You should backup all files in this directory
and take great care to keep this backup closed away.
@end table
Note that on larger installations, it is useful to put predefined
files into the directory @file{@value{SYSCONFSKELDIR}} so that newly created
users start up with a working configuration. For existing users the
a small helper script is provided to create these files (@pxref{addgnupghome}).
@c
@c Agent Signals
@c
@mansect signals
@node Agent Signals
@section Use of some signals.
A running @command{gpg-agent} may be controlled by signals, i.e. using
the @command{kill} command to send a signal to the process.
Here is a list of supported signals:
@table @gnupgtabopt
@item SIGHUP
@cpindex SIGHUP
This signal flushes all cached passphrases and if the program has been
started with a configuration file, the configuration file is read
again. Only certain options are honored: @code{quiet},
@code{verbose}, @code{debug}, @code{debug-all}, @code{debug-level},
@code{debug-pinentry},
@code{no-grab},
@code{pinentry-program},
@code{pinentry-invisible-char},
@code{default-cache-ttl},
@code{max-cache-ttl}, @code{ignore-cache-for-signing},
@code{no-allow-external-cache}, @code{allow-emacs-pinentry},
@code{no-allow-mark-trusted}, @code{disable-scdaemon}, and
@code{disable-check-own-socket}. @code{scdaemon-program} is also
supported but due to the current implementation, which calls the
scdaemon only once, it is not of much use unless you manually kill the
scdaemon.
@item SIGTERM
@cpindex SIGTERM
Shuts down the process but waits until all current requests are
fulfilled. If the process has received 3 of these signals and requests
are still pending, a shutdown is forced.
@item SIGINT
@cpindex SIGINT
Shuts down the process immediately.
@item SIGUSR1
@cpindex SIGUSR1
Dump internal information to the log file.
@item SIGUSR2
@cpindex SIGUSR2
This signal is used for internal purposes.
@end table
@c
@c Examples
@c
@mansect examples
@node Agent Examples
@section Examples
It is important to set the environment variable @code{GPG_TTY} in
your login shell, for example in the @file{~/.bashrc} init script:
@cartouche
@example
export GPG_TTY=$(tty)
@end example
@end cartouche
If you enabled the Ssh Agent Support, you also need to tell ssh about
it by adding this to your init script:
@cartouche
@example
unset SSH_AGENT_PID
if [ "$@{gnupg_SSH_AUTH_SOCK_by:-0@}" -ne $$ ]; then
export SSH_AUTH_SOCK="$(gpgconf --list-dirs agent-ssh-socket)"
fi
@end example
@end cartouche
@c
@c Assuan Protocol
@c
@manpause
@node Agent Protocol
@section Agent's Assuan Protocol
Note: this section does only document the protocol, which is used by
GnuPG components; it does not deal with the ssh-agent protocol. To
see the full specification of each command, use
@example
gpg-connect-agent 'help COMMAND' /bye
@end example
@noindent
or just 'help' to list all available commands.
@noindent
The @command{gpg-agent} daemon is started on demand by the GnuPG
components.
To identify a key we use a thing called keygrip which is the SHA-1 hash
of an canonical encoded S-Expression of the public key as used in
Libgcrypt. For the purpose of this interface the keygrip is given as a
hex string. The advantage of using this and not the hash of a
certificate is that it will be possible to use the same keypair for
different protocols, thereby saving space on the token used to keep the
secret keys.
The @command{gpg-agent} may send status messages during a command or when
returning from a command to inform a client about the progress or result of an
operation. For example, the @var{INQUIRE_MAXLEN} status message may be sent
during a server inquire to inform the client of the maximum usable length of
the inquired data (which should not be exceeded).
@menu
* Agent PKDECRYPT:: Decrypting a session key
* Agent PKSIGN:: Signing a Hash
* Agent GENKEY:: Generating a Key
* Agent IMPORT:: Importing a Secret Key
* Agent EXPORT:: Exporting a Secret Key
* Agent ISTRUSTED:: Importing a Root Certificate
* Agent GET_PASSPHRASE:: Ask for a passphrase
* Agent CLEAR_PASSPHRASE:: Expire a cached passphrase
* Agent PRESET_PASSPHRASE:: Set a passphrase for a keygrip
* Agent GET_CONFIRMATION:: Ask for confirmation
* Agent HAVEKEY:: Check whether a key is available
* Agent LEARN:: Register a smartcard
* Agent PASSWD:: Change a Passphrase
* Agent UPDATESTARTUPTTY:: Change the Standard Display
* Agent GETEVENTCOUNTER:: Get the Event Counters
* Agent GETINFO:: Return information about the process
* Agent OPTION:: Set options for the session
@end menu
@node Agent PKDECRYPT
@subsection Decrypting a session key
The client asks the server to decrypt a session key. The encrypted
session key should have all information needed to select the
appropriate secret key or to delegate it to a smartcard.
@example
SETKEY <keyGrip>
@end example
Tell the server about the key to be used for decryption. If this is
not used, @command{gpg-agent} may try to figure out the key by trying to
decrypt the message with each key available.
@example
PKDECRYPT
@end example
The agent checks whether this command is allowed and then does an
INQUIRY to get the ciphertext the client should then send the cipher
text.
@example
S: INQUIRE CIPHERTEXT
C: D (xxxxxx
C: D xxxx)
C: END
@end example
Please note that the server may send status info lines while reading the
data lines from the client. The data send is a SPKI like S-Exp with
this structure:
@example
(enc-val
(<algo>
(<param_name1> <mpi>)
...
(<param_namen> <mpi>)))
@end example
Where algo is a string with the name of the algorithm; see the libgcrypt
documentation for a list of valid algorithms. The number and names of
the parameters depend on the algorithm. The agent does return an error
if there is an inconsistency.
If the decryption was successful the decrypted data is returned by
means of "D" lines.
Here is an example session:
@cartouche
@smallexample
C: PKDECRYPT
S: INQUIRE CIPHERTEXT
C: D (enc-val elg (a 349324324)
C: D (b 3F444677CA)))
C: END
S: # session key follows
S: S PADDING 0
S: D (value 1234567890ABCDEF0)
S: OK decryption successful
@end smallexample
@end cartouche
The “PADDING” status line is only send if gpg-agent can tell what kind
of padding is used. As of now only the value 0 is used to indicate
that the padding has been removed.
@node Agent PKSIGN
@subsection Signing a Hash
The client asks the agent to sign a given hash value. A default key
will be chosen if no key has been set. To set a key a client first
uses:
@example
SIGKEY <keyGrip>
@end example
This can be used multiple times to create multiple signature, the list
of keys is reset with the next PKSIGN command or a RESET. The server
tests whether the key is a valid key to sign something and responds with
okay.
@example
SETHASH --hash=<name>|<algo> <hexstring>
@end example
The client can use this command to tell the server about the data <hexstring>
(which usually is a hash) to be signed. <algo> is the decimal encoded hash
algorithm number as used by Libgcrypt. Either <algo> or --hash=<name>
must be given. Valid names for <name> are:
@table @code
@item sha1
The SHA-1 hash algorithm
@item sha256
The SHA-256 hash algorithm
@item rmd160
The RIPE-MD160 hash algorithm
@item md5
The old and broken MD5 hash algorithm
@item tls-md5sha1
A combined hash algorithm as used by the TLS protocol.
@end table
@noindent
The actual signing is done using
@example
PKSIGN <options>
@end example
Options are not yet defined, but may later be used to choose among
different algorithms. The agent does then some checks, asks for the
passphrase and as a result the server returns the signature as an SPKI
like S-expression in "D" lines:
@example
(sig-val
(<algo>
(<param_name1> <mpi>)
...
(<param_namen> <mpi>)))
@end example
The operation is affected by the option
@example
OPTION use-cache-for-signing=0|1
@end example
The default of @code{1} uses the cache. Setting this option to @code{0}
will lead @command{gpg-agent} to ignore the passphrase cache. Note, that there is
also a global command line option for @command{gpg-agent} to globally disable the
caching.
Here is an example session:
@cartouche
@smallexample
C: SIGKEY <keyGrip>
S: OK key available
C: SIGKEY <keyGrip>
S: OK key available
C: PKSIGN
S: # I did ask the user whether he really wants to sign
S: # I did ask the user for the passphrase
S: INQUIRE HASHVAL
C: D ABCDEF012345678901234
C: END
S: # signature follows
S: D (sig-val rsa (s 45435453654612121212))
S: OK
@end smallexample
@end cartouche
@node Agent GENKEY
@subsection Generating a Key
This is used to create a new keypair and store the secret key inside the
active PSE --- which is in most cases a Soft-PSE. A not-yet-defined
option allows choosing the storage location. To get the secret key out
of the PSE, a special export tool has to be used.
@example
GENKEY [--no-protection] [--preset] [<cache_nonce>]
@end example
Invokes the key generation process and the server will then inquire
on the generation parameters, like:
@example
S: INQUIRE KEYPARM
C: D (genkey (rsa (nbits 1024)))
C: END
@end example
The format of the key parameters which depends on the algorithm is of
the form:
@example
(genkey
(algo
(parameter_name_1 ....)
....
(parameter_name_n ....)))
@end example
If everything succeeds, the server returns the *public key* in a SPKI
like S-Expression like this:
@example
(public-key
(rsa
(n <mpi>)
(e <mpi>)))
@end example
Here is an example session:
@cartouche
@smallexample
C: GENKEY
S: INQUIRE KEYPARM
C: D (genkey (rsa (nbits 1024)))
C: END
S: D (public-key
S: D (rsa (n 326487324683264) (e 10001)))
S OK key created
@end smallexample
@end cartouche
The @option{--no-protection} option may be used to prevent prompting for a
passphrase to protect the secret key while leaving the secret key unprotected.
The @option{--preset} option may be used to add the passphrase to the cache
using the default cache parameters.
The @option{--inq-passwd} option may be used to create the key with a
supplied passphrase. When used the agent does an inquiry with the
keyword @code{NEWPASSWD} to retrieve that passphrase. This option
takes precedence over @option{--no-protection}; however if the client
sends a empty (zero-length) passphrase, this is identical to
@option{--no-protection}.
@node Agent IMPORT
@subsection Importing a Secret Key
This operation is not yet supported by GpgAgent. Specialized tools
are to be used for this.
There is no actual need because we can expect that secret keys
created by a 3rd party are stored on a smartcard. If we have
generated the key ourselves, we do not need to import it.
@node Agent EXPORT
@subsection Export a Secret Key
Not implemented.
Should be done by an extra tool.
@node Agent ISTRUSTED
@subsection Importing a Root Certificate
Actually we do not import a Root Cert but provide a way to validate
any piece of data by storing its Hash along with a description and
an identifier in the PSE. Here is the interface description:
@example
ISTRUSTED <fingerprint>
@end example
Check whether the OpenPGP primary key or the X.509 certificate with the
given fingerprint is an ultimately trusted key or a trusted Root CA
certificate. The fingerprint should be given as a hexstring (without
any blanks or colons or whatever in between) and may be left padded with
00 in case of an MD5 fingerprint. GPGAgent will answer with:
@example
OK
@end example
The key is in the table of trusted keys.
@example
ERR 304 (Not Trusted)
@end example
The key is not in this table.
Gpg needs the entire list of trusted keys to maintain the web of
trust; the following command is therefore quite helpful:
@example
LISTTRUSTED
@end example
GpgAgent returns a list of trusted keys line by line:
@example
S: D 000000001234454556565656677878AF2F1ECCFF P
S: D 340387563485634856435645634856438576457A P
S: D FEDC6532453745367FD83474357495743757435D S
S: OK
@end example
The first item on a line is the hexified fingerprint where MD5
fingerprints are @code{00} padded to the left and the second item is a
flag to indicate the type of key (so that gpg is able to only take care
of PGP keys). P = OpenPGP, S = S/MIME. A client should ignore the rest
of the line, so that we can extend the format in the future.
Finally a client should be able to mark a key as trusted:
@example
MARKTRUSTED @var{fingerprint} "P"|"S"
@end example
The server will then pop up a window to ask the user whether she
really trusts this key. For this it will probably ask for a text to
be displayed like this:
@example
S: INQUIRE TRUSTDESC
C: D Do you trust the key with the fingerprint @@FPR@@
C: D bla fasel blurb.
C: END
S: OK
@end example
Known sequences with the pattern @@foo@@ are replaced according to this
table:
@table @code
@item @@FPR16@@
Format the fingerprint according to gpg rules for a v3 keys.
@item @@FPR20@@
Format the fingerprint according to gpg rules for a v4 keys.
@item @@FPR@@
Choose an appropriate format to format the fingerprint.
@item @@@@
Replaced by a single @code{@@}
@end table
@node Agent GET_PASSPHRASE
@subsection Ask for a passphrase
This function is usually used to ask for a passphrase to be used for
symmetric encryption, but may also be used by programs which need
special handling of passphrases. This command uses a syntax which helps
clients to use the agent with minimum effort.
@example
GET_PASSPHRASE [--data] [--check] [--no-ask] [--repeat[=N]] \
[--qualitybar] @var{cache_id} \
[@var{error_message} @var{prompt} @var{description}]
@end example
@var{cache_id} is expected to be a string used to identify a cached
passphrase. Use a @code{X} to bypass the cache. With no other
arguments the agent returns a cached passphrase or an error. By
convention either the hexified fingerprint of the key shall be used for
@var{cache_id} or an arbitrary string prefixed with the name of the
calling application and a colon: Like @code{gpg:somestring}.
@var{error_message} is either a single @code{X} for no error message or
a string to be shown as an error message like (e.g. "invalid
passphrase"). Blanks must be percent escaped or replaced by @code{+}'.
@var{prompt} is either a single @code{X} for a default prompt or the
text to be shown as the prompt. Blanks must be percent escaped or
replaced by @code{+}.
@var{description} is a text shown above the entry field. Blanks must be
percent escaped or replaced by @code{+}.
The agent either returns with an error or with a OK followed by the hex
encoded passphrase. Note that the length of the strings is implicitly
limited by the maximum length of a command. If the option
@option{--data} is used, the passphrase is not returned on the OK line
but by regular data lines; this is the preferred method.
If the option @option{--check} is used, the standard passphrase
constraints checks are applied. A check is not done if the passphrase
has been found in the cache.
If the option @option{--no-ask} is used and the passphrase is not in the
cache the user will not be asked to enter a passphrase but the error
code @code{GPG_ERR_NO_DATA} is returned.
If the option @option{--qualitybar} is used and a minimum passphrase
length has been configured, a visual indication of the entered
passphrase quality is shown.
@example
CLEAR_PASSPHRASE @var{cache_id}
@end example
may be used to invalidate the cache entry for a passphrase. The
function returns with OK even when there is no cached passphrase.
@node Agent CLEAR_PASSPHRASE
@subsection Remove a cached passphrase
Use this command to remove a cached passphrase.
@example
CLEAR_PASSPHRASE [--mode=normal] <cache_id>
@end example
The @option{--mode=normal} option can be used to clear a @var{cache_id} that
was set by gpg-agent.
@node Agent PRESET_PASSPHRASE
@subsection Set a passphrase for a keygrip
This command adds a passphrase to the cache for the specified @var{keygrip}.
@example
PRESET_PASSPHRASE [--inquire] <string_or_keygrip> <timeout> [<hexstring>]
@end example
The passphrase is a hexidecimal string when specified. When not specified, the
passphrase will be retrieved from the pinentry module unless the
@option{--inquire} option was specified in which case the passphrase will be
retrieved from the client.
The @var{timeout} parameter keeps the passphrase cached for the specified
number of seconds. A value of @code{-1} means infinite while @code{0} means
the default (currently only a timeout of -1 is allowed, which means to never
expire it).
@node Agent GET_CONFIRMATION
@subsection Ask for confirmation
This command may be used to ask for a simple confirmation by
presenting a text and 2 buttons: Okay and Cancel.
@example
GET_CONFIRMATION @var{description}
@end example
@var{description}is displayed along with a Okay and Cancel
button. Blanks must be percent escaped or replaced by @code{+}. A
@code{X} may be used to display confirmation dialog with a default
text.
The agent either returns with an error or with a OK. Note, that the
length of @var{description} is implicitly limited by the maximum
length of a command.
@node Agent HAVEKEY
@subsection Check whether a key is available
This can be used to see whether a secret key is available. It does
not return any information on whether the key is somehow protected.
@example
HAVEKEY @var{keygrips}
@end example
The agent answers either with OK or @code{No_Secret_Key} (208). The
caller may want to check for other error codes as well. More than one
keygrip may be given. In this case the command returns success if at
least one of the keygrips corresponds to an available secret key.
@node Agent LEARN
@subsection Register a smartcard
@example
LEARN [--send]
@end example
This command is used to register a smartcard. With the --send
option given the certificates are sent back.
@node Agent PASSWD
@subsection Change a Passphrase
@example
PASSWD [--cache-nonce=<c>] [--passwd-nonce=<s>] [--preset] @var{keygrip}
@end example
This command is used to interactively change the passphrase of the key
identified by the hex string @var{keygrip}. The @option{--preset}
option may be used to add the new passphrase to the cache using the
default cache parameters.
@node Agent UPDATESTARTUPTTY
@subsection Change the standard display
@example
UPDATESTARTUPTTY
@end example
Set the startup TTY and X-DISPLAY variables to the values of this
session. This command is useful to direct future pinentry invocations
to another screen. It is only required because there is no way in the
ssh-agent protocol to convey this information.
@node Agent GETEVENTCOUNTER
@subsection Get the Event Counters
@example
GETEVENTCOUNTER
@end example
This function return one status line with the current values of the
event counters. The event counters are useful to avoid polling by
delaying a poll until something has changed. The values are decimal
numbers in the range @code{0} to @code{UINT_MAX} and wrapping around to
0. The actual values should not be relied upon; they shall only be used
to detect a change.
The currently defined counters are are:
@table @code
@item ANY
Incremented with any change of any of the other counters.
@item KEY
Incremented for added or removed private keys.
@item CARD
Incremented for changes of the card readers stati.
@end table
@node Agent GETINFO
@subsection Return information about the process
This is a multipurpose function to return a variety of information.
@example
GETINFO @var{what}
@end example
The value of @var{what} specifies the kind of information returned:
@table @code
@item version
Return the version of the program.
@item pid
Return the process id of the process.
@item socket_name
Return the name of the socket used to connect the agent.
@item ssh_socket_name
Return the name of the socket used for SSH connections. If SSH support
has not been enabled the error @code{GPG_ERR_NO_DATA} will be returned.
@end table
@node Agent OPTION
@subsection Set options for the session
Here is a list of session options which are not yet described with
other commands. The general syntax for an Assuan option is:
@smallexample
OPTION @var{key}=@var{value}
@end smallexample
@noindent
Supported @var{key}s are:
@table @code
@item agent-awareness
This may be used to tell gpg-agent of which gpg-agent version the
client is aware of. gpg-agent uses this information to enable
features which might break older clients.
@item putenv
Change the session's environment to be used for the
Pinentry. Valid values are:
@table @code
@item @var{name}
Delete envvar @var{name}
@item @var{name}=
Set envvar @var{name} to the empty string
@item @var{name}=@var{value}
Set envvar @var{name} to the string @var{value}.
@end table
@item use-cache-for-signing
See Assuan command @code{PKSIGN}.
@item allow-pinentry-notify
This does not need any value. It is used to enable the
PINENTRY_LAUNCHED inquiry.
@item pinentry-mode
This option is used to change the operation mode of the pinentry. The
following values are defined:
@table @code
@item ask
This is the default mode which pops up a pinentry as needed.
@item cancel
Instead of popping up a pinentry, return the error code
@code{GPG_ERR_CANCELED}.
@item error
Instead of popping up a pinentry, return the error code
@code{GPG_ERR_NO_PIN_ENTRY}.
@item loopback
Use a loopback pinentry. This fakes a pinentry by using inquiries
back to the caller to ask for a passphrase. This option may only be
set if the agent has been configured for that.
To disable this feature use @ref{option --no-allow-loopback-pinentry}.
@end table
@item cache-ttl-opt-preset
This option sets the cache TTL for new entries created by GENKEY and
PASSWD commands when using the @option{--preset} option. It it is not
used a default value is used.
@item s2k-count
Instead of using the standard S2K count (which is computed on the
fly), the given S2K count is used for new keys or when changing the
passphrase of a key. Values below 65536 are considered to be 0. This
option is valid for the entire session or until reset to 0. This
option is useful if the key is later used on boxes which are either
much slower or faster than the actual box.
@end table
@mansect see also
@ifset isman
@command{gpg2}(1),
@command{gpgsm}(1),
@command{gpg-connect-agent}(1),
@command{scdaemon}(1)
@end ifset
@include see-also-note.texi
diff --git a/doc/scdaemon.texi b/doc/scdaemon.texi
index 3ab44ae9b..3728d9622 100644
--- a/doc/scdaemon.texi
+++ b/doc/scdaemon.texi
@@ -1,765 +1,765 @@
@c Copyright (C) 2002 Free Software Foundation, Inc.
@c This is part of the GnuPG manual.
@c For copying conditions, see the file gnupg.texi.
@include defs.inc
@node Invoking SCDAEMON
@chapter Invoking the SCDAEMON
@cindex SCDAEMON command options
@cindex command options
@cindex options, SCDAEMON command
@manpage scdaemon.1
@ifset manverb
.B scdaemon
\- Smartcard daemon for the GnuPG system
@end ifset
@mansect synopsis
@ifset manverb
.B scdaemon
.RB [ \-\-homedir
.IR dir ]
.RB [ \-\-options
.IR file ]
.RI [ options ]
.B \-\-server
.br
.B scdaemon
.RB [ \-\-homedir
.IR dir ]
.RB [ \-\-options
.IR file ]
.RI [ options ]
.B \-\-daemon
.RI [ command_line ]
@end ifset
@mansect description
The @command{scdaemon} is a daemon to manage smartcards. It is usually
invoked by @command{gpg-agent} and in general not used directly.
@manpause
@xref{Option Index}, for an index to @command{scdaemon}'s commands and
options.
@mancont
@menu
* Scdaemon Commands:: List of all commands.
* Scdaemon Options:: List of all options.
* Card applications:: Description of card applications.
* Scdaemon Configuration:: Configuration files.
* Scdaemon Examples:: Some usage examples.
* Scdaemon Protocol:: The protocol the daemon uses.
@end menu
@mansect commands
@node Scdaemon Commands
@section Commands
Commands are not distinguished from options except for the fact that
only one command is allowed.
@table @gnupgtabopt
@item --version
@opindex version
Print the program version and licensing information. Note that you cannot
abbreviate this command.
@item --help, -h
@opindex help
Print a usage message summarizing the most useful command-line options.
Note that you can abbreviate this command.
@item --dump-options
@opindex dump-options
Print a list of all available options and commands. Note that you cannot
abbreviate this command.
@item --server
@opindex server
Run in server mode and wait for commands on the @code{stdin}. The
default mode is to create a socket and listen for commands there.
@item --multi-server
@opindex multi-server
Run in server mode and wait for commands on the @code{stdin} as well as
on an additional Unix Domain socket. The server command @code{GETINFO}
may be used to get the name of that extra socket.
@item --daemon
@opindex daemon
Run the program in the background. This option is required to prevent
it from being accidentally running in the background.
@end table
@mansect options
@node Scdaemon Options
@section Option Summary
@table @gnupgtabopt
@item --options @var{file}
@opindex options
Reads configuration from @var{file} instead of from the default
per-user configuration file. The default configuration file is named
@file{scdaemon.conf} and expected in the @file{.gnupg} directory directly
below the home directory of the user.
@include opt-homedir.texi
@item -v
@item --verbose
@opindex v
@opindex verbose
Outputs additional information while running.
You can increase the verbosity by giving several
verbose commands to @command{gpgsm}, such as @samp{-vv}.
@item --debug-level @var{level}
@opindex debug-level
Select the debug level for investigating problems. @var{level} may be
a numeric value or a keyword:
@table @code
@item none
No debugging at all. A value of less than 1 may be used instead of
the keyword.
@item basic
Some basic debug messages. A value between 1 and 2 may be used
instead of the keyword.
@item advanced
More verbose debug messages. A value between 3 and 5 may be used
instead of the keyword.
@item expert
Even more detailed messages. A value between 6 and 8 may be used
instead of the keyword.
@item guru
All of the debug messages you can get. A value greater than 8 may be
used instead of the keyword. The creation of hash tracing files is
only enabled if the keyword is used.
@end table
How these messages are mapped to the actual debugging flags is not
specified and may change with newer releases of this program. They are
however carefully selected to best aid in debugging.
@quotation Note
All debugging options are subject to change and thus should not be used
by any application program. As the name says, they are only used as
helpers to debug problems.
@end quotation
@item --debug @var{flags}
@opindex debug
-This option is only useful for debugging and the behaviour may change at
+This option is only useful for debugging and the behavior may change at
any time without notice. FLAGS are bit encoded and may be given in
usual C-Syntax. The currently defined bits are:
@table @code
@item 0 (1)
command I/O
@item 1 (2)
values of big number integers
@item 2 (4)
low level crypto operations
@item 5 (32)
memory allocation
@item 6 (64)
caching
@item 7 (128)
show memory statistics.
@item 9 (512)
write hashed data to files named @code{dbgmd-000*}
@item 10 (1024)
trace Assuan protocol.
See also option @option{--debug-assuan-log-cats}.
@item 11 (2048)
trace APDU I/O to the card. This may reveal sensitive data.
@item 12 (4096)
trace some card reader related function calls.
@end table
@item --debug-all
@opindex debug-all
Same as @code{--debug=0xffffffff}
@item --debug-wait @var{n}
@opindex debug-wait
When running in server mode, wait @var{n} seconds before entering the
actual processing loop and print the pid. This gives time to attach a
debugger.
@item --debug-ccid-driver
@opindex debug-wait
Enable debug output from the included CCID driver for smartcards.
Using this option twice will also enable some tracing of the T=1
protocol. Note that this option may reveal sensitive data.
@item --debug-disable-ticker
@opindex debug-disable-ticker
This option disables all ticker functions like checking for card
insertions.
@item --debug-allow-core-dump
@opindex debug-allow-core-dump
For security reasons we won't create a core dump when the process
aborts. For debugging purposes it is sometimes better to allow core
dump. This option enables it and also changes the working directory to
@file{/tmp} when running in @option{--server} mode.
@item --debug-log-tid
@opindex debug-log-tid
This option appends a thread ID to the PID in the log output.
@item --debug-assuan-log-cats @var{cats}
@opindex debug-assuan-log-cats
@efindex ASSUAN_DEBUG
Changes the active Libassuan logging categories to @var{cats}. The
value for @var{cats} is an unsigned integer given in usual C-Syntax.
A value of of 0 switches to a default category. If this option is not
used the categories are taken from the environment variable
@code{ASSUAN_DEBUG}. Note that this option has only an effect if the
Assuan debug flag has also been with the option @option{--debug}. For
a list of categories see the Libassuan manual.
@item --no-detach
@opindex no-detach
Don't detach the process from the console. This is mainly useful for
debugging.
@item --log-file @var{file}
@opindex log-file
Append all logging output to @var{file}. This is very helpful in
seeing what the agent actually does. Use @file{socket://} to log to
socket.
@item --pcsc-driver @var{library}
@opindex pcsc-driver
Use @var{library} to access the smartcard reader. The current default
is @file{libpcsclite.so}. Instead of using this option you might also
want to install a symbolic link to the default file name
(e.g. from @file{libpcsclite.so.1}).
@item --ctapi-driver @var{library}
@opindex ctapi-driver
Use @var{library} to access the smartcard reader. The current default
is @file{libtowitoko.so}. Note that the use of this interface is
deprecated; it may be removed in future releases.
@item --disable-ccid
@opindex disable-ccid
Disable the integrated support for CCID compliant readers. This
allows falling back to one of the other drivers even if the internal
CCID driver can handle the reader. Note, that CCID support is only
available if libusb was available at build time.
@item --reader-port @var{number_or_string}
@opindex reader-port
This option may be used to specify the port of the card terminal. A
value of 0 refers to the first serial device; add 32768 to access USB
devices. The default is 32768 (first USB device). PC/SC or CCID
readers might need a string here; run the program in verbose mode to get
a list of available readers. The default is then the first reader
found.
To get a list of available CCID readers you may use this command:
@cartouche
@smallexample
echo scd getinfo reader_list \
| gpg-connect-agent --decode | awk '/^D/ @{print $2@}'
@end smallexample
@end cartouche
@item --card-timeout @var{n}
@opindex card-timeout
If @var{n} is not 0 and no client is actively using the card, the card
will be powered down after @var{n} seconds. Powering down the card
avoids a potential risk of damaging a card when used with certain
cheap readers. This also allows applications that are not aware of
Scdaemon to access the card. The disadvantage of using a card timeout
is that accessing the card takes longer and that the user needs to
enter the PIN again after the next power up.
Note that with the current version of Scdaemon the card is powered
down immediately at the next timer tick for any value of @var{n} other
than 0.
@item --enable-pinpad-varlen
@opindex enable-pinpad-varlen
Please specify this option when the card reader supports variable
length input for pinpad (default is no). For known readers (listed in
ccid-driver.c and apdu.c), this option is not needed. Note that if
your card reader doesn't supports variable length input but you want
to use it, you need to specify your pinpad request on your card.
@item --disable-pinpad
@opindex disable-pinpad
Even if a card reader features a pinpad, do not try to use it.
@item --deny-admin
@opindex deny-admin
@opindex allow-admin
This option disables the use of admin class commands for card
applications where this is supported. Currently we support it for the
OpenPGP card. This commands is useful to inhibit accidental access to
admin class command which could ultimately lock the card through wrong
PIN numbers. Note that GnuPG versions older than 2.0.11 featured an
@option{--allow-admin} command which was required to use such admin
commands. This option has no more effect today because the default is
now to allow admin commands.
@item --disable-application @var{name}
@opindex disable-application
This option disables the use of the card application named
@var{name}. This is mainly useful for debugging or if a application
with lower priority should be used by default.
@end table
All the long options may also be given in the configuration file after
stripping off the two leading dashes.
@mansect card applications
@node Card applications
@section Description of card applications
@command{scdaemon} supports the card applications as described below.
@menu
* OpenPGP Card:: The OpenPGP card application
* NKS Card:: The Telesec NetKey card application
* DINSIG Card:: The DINSIG card application
* PKCS#15 Card:: The PKCS#15 card application
* Geldkarte Card:: The Geldkarte application
* SmartCard-HSM:: The SmartCard-HSM application
* Undefined Card:: The Undefined stub application
@end menu
@node OpenPGP Card
@subsection The OpenPGP card application ``openpgp''
This application is currently only used by @command{gpg} but may in
future also be useful with @command{gpgsm}. Version 1 and version 2 of
the card is supported.
@noindent
The specifications for these cards are available at@*
@uref{http://g10code.com/docs/openpgp-card-1.0.pdf} and@*
@uref{http://g10code.com/docs/openpgp-card-2.0.pdf}.
@node NKS Card
@subsection The Telesec NetKey card ``nks''
This is the main application of the Telesec cards as available in
Germany. It is a superset of the German DINSIG card. The card is
used by @command{gpgsm}.
@node DINSIG Card
@subsection The DINSIG card application ``dinsig''
This is an application as described in the German draft standard
@emph{DIN V 66291-1}. It is intended to be used by cards supporting
the German signature law and its bylaws (SigG and SigV).
@node PKCS#15 Card
@subsection The PKCS#15 card application ``p15''
This is common framework for smart card applications. It is used by
@command{gpgsm}.
@node Geldkarte Card
@subsection The Geldkarte card application ``geldkarte''
This is a simple application to display information of a German
Geldkarte. The Geldkarte is a small amount debit card application which
comes with almost all German banking cards.
@node SmartCard-HSM
@subsection The SmartCard-HSM card application ``sc-hsm''
This application adds read-only support for keys and certificates
stored on a @uref{http://www.smartcard-hsm.com, SmartCard-HSM}.
To generate keys and store certifiates you may use
@uref{https://github.com/OpenSC/OpenSC/wiki/SmartCardHSM, OpenSC} or
the tools from @uref{http://www.openscdp.org, OpenSCDP}.
The SmartCard-HSM cards requires a card reader that supports Extended
Length APDUs.
@node Undefined Card
@subsection The Undefined card application ``undefined''
This is a stub application to allow the use of the APDU command even
if no supported application is found on the card. This application is
not used automatically but must be explicitly requested using the
SERIALNO command.
@c *******************************************
@c *************** ****************
@c *************** FILES ****************
@c *************** ****************
@c *******************************************
@mansect files
@node Scdaemon Configuration
@section Configuration files
There are a few configuration files to control certain aspects of
@command{scdaemons}'s operation. Unless noted, they are expected in the
current home directory (@pxref{option --homedir}).
@table @file
@item scdaemon.conf
@cindex scdaemon.conf
This is the standard configuration file read by @command{scdaemon} on
startup. It may contain any valid long option; the leading two dashes
may not be entered and the option may not be abbreviated. This default
name may be changed on the command line (@pxref{option --options}).
@item scd-event
@cindex scd-event
If this file is present and executable, it will be called on every card
reader's status change. An example of this script is provided with the
distribution
@item reader_@var{n}.status
This file is created by @command{scdaemon} to let other applications now
about reader status changes. Its use is now deprecated in favor of
@file{scd-event}.
@end table
@c
@c Examples
@c
@mansect examples
@node Scdaemon Examples
@section Examples
@c man begin EXAMPLES
@example
$ scdaemon --server -v
@end example
@c man end
@c
@c Assuan Protocol
@c
@manpause
@node Scdaemon Protocol
@section Scdaemon's Assuan Protocol
The SC-Daemon should be started by the system to provide access to
external tokens. Using Smartcards on a multi-user system does not
make much sense except for system services, but in this case no
regular user accounts are hosted on the machine.
A client connects to the SC-Daemon by connecting to the socket named
@file{@value{LOCALRUNDIR}/scdaemon/socket}, configuration information
is read from @var{@value{SYSCONFDIR}/scdaemon.conf}
Each connection acts as one session, SC-Daemon takes care of
synchronizing access to a token between sessions.
@menu
* Scdaemon SERIALNO:: Return the serial number.
* Scdaemon LEARN:: Read all useful information from the card.
* Scdaemon READCERT:: Return a certificate.
* Scdaemon READKEY:: Return a public key.
* Scdaemon PKSIGN:: Signing data with a Smartcard.
* Scdaemon PKDECRYPT:: Decrypting data with a Smartcard.
* Scdaemon GETATTR:: Read an attribute's value.
* Scdaemon SETATTR:: Update an attribute's value.
* Scdaemon WRITEKEY:: Write a key to a card.
* Scdaemon GENKEY:: Generate a new key on-card.
* Scdaemon RANDOM:: Return random bytes generated on-card.
* Scdaemon PASSWD:: Change PINs.
* Scdaemon CHECKPIN:: Perform a VERIFY operation.
* Scdaemon RESTART:: Restart connection
* Scdaemon APDU:: Send a verbatim APDU to the card
@end menu
@node Scdaemon SERIALNO
@subsection Return the serial number
This command should be used to check for the presence of a card. It is
special in that it can be used to reset the card. Most other commands
will return an error when a card change has been detected and the use of
this function is therefore required.
Background: We want to keep the client clear of handling card changes
between operations; i.e. the client can assume that all operations are
done on the same card unless he call this function.
@example
SERIALNO
@end example
Return the serial number of the card using a status response like:
@example
S SERIALNO D27600000000000000000000 0
@end example
The trailing 0 should be ignored for now, it is reserved for a future
extension. The serial number is the hex encoded value identified by
the @code{0x5A} tag in the GDO file (FIX=0x2F02).
@node Scdaemon LEARN
@subsection Read all useful information from the card
@example
LEARN [--force]
@end example
Learn all useful information of the currently inserted card. When
used without the force options, the command might do an INQUIRE
like this:
@example
INQUIRE KNOWNCARDP <hexstring_with_serialNumber> <timestamp>
@end example
The client should just send an @code{END} if the processing should go on
or a @code{CANCEL} to force the function to terminate with a cancel
error message. The response of this command is a list of status lines
formatted as this:
@example
S KEYPAIRINFO @var{hexstring_with_keygrip} @var{hexstring_with_id}
@end example
If there is no certificate yet stored on the card a single "X" is
returned in @var{hexstring_with_keygrip}.
@node Scdaemon READCERT
@subsection Return a certificate
@example
READCERT @var{hexified_certid}|@var{keyid}
@end example
This function is used to read a certificate identified by
@var{hexified_certid} from the card. With OpenPGP cards the keyid
@code{OpenPGP.3} may be used to read the certificate of version 2 cards.
@node Scdaemon READKEY
@subsection Return a public key
@example
READKEY @var{hexified_certid}
@end example
Return the public key for the given cert or key ID as an standard
S-Expression.
@node Scdaemon PKSIGN
@subsection Signing data with a Smartcard
To sign some data the caller should use the command
@example
SETDATA @var{hexstring}
@end example
to tell @command{scdaemon} about the data to be signed. The data must be given in
hex notation. The actual signing is done using the command
@example
PKSIGN @var{keyid}
@end example
where @var{keyid} is the hexified ID of the key to be used. The key id
may have been retrieved using the command @code{LEARN}. If another
hash algorithm than SHA-1 is used, that algorithm may be given like:
@example
PKSIGN --hash=@var{algoname} @var{keyid}
@end example
With @var{algoname} are one of @code{sha1}, @code{rmd160} or @code{md5}.
@node Scdaemon PKDECRYPT
@subsection Decrypting data with a Smartcard
To decrypt some data the caller should use the command
@example
SETDATA @var{hexstring}
@end example
to tell @command{scdaemon} about the data to be decrypted. The data
must be given in hex notation. The actual decryption is then done
using the command
@example
PKDECRYPT @var{keyid}
@end example
where @var{keyid} is the hexified ID of the key to be used.
If the card is aware of the apdding format a status line with padding
information is send before the plaintext data. The key for this
status line is @code{PADDING} with the only defined value being 0 and
meaning padding has been removed.
@node Scdaemon GETATTR
@subsection Read an attribute's value.
TO BE WRITTEN.
@node Scdaemon SETATTR
@subsection Update an attribute's value.
TO BE WRITTEN.
@node Scdaemon WRITEKEY
@subsection Write a key to a card.
@example
WRITEKEY [--force] @var{keyid}
@end example
This command is used to store a secret key on a smartcard. The
allowed keyids depend on the currently selected smartcard
application. The actual keydata is requested using the inquiry
@code{KEYDATA} and need to be provided without any protection. With
@option{--force} set an existing key under this @var{keyid} will get
overwritten. The key data is expected to be the usual canonical encoded
S-expression.
A PIN will be requested in most cases. This however depends on the
actual card application.
@node Scdaemon GENKEY
@subsection Generate a new key on-card.
TO BE WRITTEN.
@node Scdaemon RANDOM
@subsection Return random bytes generate on-card.
TO BE WRITTEN.
@node Scdaemon PASSWD
@subsection Change PINs.
@example
PASSWD [--reset] [--nullpin] @var{chvno}
@end example
Change the PIN or reset the retry counter of the card holder
verification vector number @var{chvno}. The option @option{--nullpin}
is used to initialize the PIN of TCOS cards (6 byte NullPIN only).
@node Scdaemon CHECKPIN
@subsection Perform a VERIFY operation.
@example
CHECKPIN @var{idstr}
@end example
Perform a VERIFY operation without doing anything else. This may be
used to initialize a the PIN cache earlier to long lasting
operations. Its use is highly application dependent:
@table @strong
@item OpenPGP
Perform a simple verify operation for CHV1 and CHV2, so that further
operations won't ask for CHV2 and it is possible to do a cheap check on
the PIN: If there is something wrong with the PIN entry system, only the
regular CHV will get blocked and not the dangerous CHV3. @var{idstr} is
the usual card's serial number in hex notation; an optional fingerprint
part will get ignored.
There is however a special mode if @var{idstr} is suffixed with the
literal string @code{[CHV3]}: In this case the Admin PIN is checked if
and only if the retry counter is still at 3.
@end table
@node Scdaemon RESTART
@subsection Perform a RESTART operation.
@example
RESTART
@end example
Restart the current connection; this is a kind of warm reset. It
deletes the context used by this connection but does not actually
reset the card.
This is used by gpg-agent to reuse a primary pipe connection and
may be used by clients to backup from a conflict in the serial
command; i.e. to select another application.
@node Scdaemon APDU
@subsection Send a verbatim APDU to the card.
@example
APDU [--atr] [--more] [--exlen[=@var{n}]] [@var{hexstring}]
@end example
Send an APDU to the current reader. This command bypasses the high
level functions and sends the data directly to the card.
@var{hexstring} is expected to be a proper APDU. If @var{hexstring} is
not given no commands are send to the card; However the command will
implicitly check whether the card is ready for use.
Using the option @code{--atr} returns the ATR of the card as a status
message before any data like this:
@example
S CARD-ATR 3BFA1300FF813180450031C173C00100009000B1
@end example
Using the option @code{--more} handles the card status word MORE_DATA
(61xx) and concatenate all responses to one block.
Using the option @code{--exlen} the returned APDU may use extended
length up to N bytes. If N is not given a default value is used
(currently 4096).
@mansect see also
@ifset isman
@command{gpg-agent}(1),
@command{gpgsm}(1),
@command{gpg2}(1)
@end ifset
@include see-also-note.texi
diff --git a/doc/tools.texi b/doc/tools.texi
index d6e130f17..1cb992eb1 100644
--- a/doc/tools.texi
+++ b/doc/tools.texi
@@ -1,1910 +1,1910 @@
@c Copyright (C) 2004, 2008 Free Software Foundation, Inc.
@c This is part of the GnuPG manual.
@c For copying conditions, see the file GnuPG.texi.
@include defs.inc
@node Helper Tools
@chapter Helper Tools
GnuPG comes with a couple of smaller tools:
@menu
* watchgnupg:: Read logs from a socket.
* gpgv:: Verify OpenPGP signatures.
* addgnupghome:: Create .gnupg home directories.
* gpgconf:: Modify .gnupg home directories.
* applygnupgdefaults:: Run gpgconf for all users.
* gpg-preset-passphrase:: Put a passphrase into the cache.
* gpg-connect-agent:: Communicate with a running agent.
* dirmngr-client:: How to use the Dirmngr client tool.
* gpgparsemail:: Parse a mail message into an annotated format
* symcryptrun:: Call a simple symmetric encryption tool.
* gpg-zip:: Encrypt or sign files into an archive.
@end menu
@c
@c WATCHGNUPG
@c
@manpage watchgnupg.1
@node watchgnupg
@section Read logs from a socket
@ifset manverb
.B watchgnupg
\- Read and print logs from a socket
@end ifset
@mansect synopsis
@ifset manverb
.B watchgnupg
.RB [ \-\-force ]
.RB [ \-\-verbose ]
.I socketname
@end ifset
@mansect description
Most of the main utilities are able to write their log files to a Unix
Domain socket if configured that way. @command{watchgnupg} is a simple
listener for such a socket. It ameliorates the output with a time stamp
and makes sure that long lines are not interspersed with log output from
other utilities. This tool is not available for Windows.
@noindent
@command{watchgnupg} is commonly invoked as
@example
watchgnupg --force ~/.gnupg/S.log
@end example
@manpause
@noindent
This starts it on the current terminal for listening on the socket
@file{~/.gnupg/S.log}.
@mansect options
@noindent
@command{watchgnupg} understands these options:
@table @gnupgtabopt
@item --force
@opindex force
Delete an already existing socket file.
@anchor{option watchgnupg --tcp}
@item --tcp @var{n}
Instead of reading from a local socket, listen for connects on TCP port
@var{n}.
@item --verbose
@opindex verbose
Enable extra informational output.
@item --version
@opindex version
Print version of the program and exit.
@item --help
@opindex help
Display a brief help page and exit.
@end table
@noindent
@mansect examples
@chapheading Examples
@example
$ watchgnupg --force /home/foo/.gnupg/S.log
@end example
This waits for connections on the local socket
@file{/home/foo/.gnupg/S.log} and shows all log entries. To make this
work the option @option{log-file} needs to be used with all modules
which logs are to be shown. The value for that option must be given
with a special prefix (e.g. in the conf files):
@example
log-file socket:///home/foo/.gnupg/S.log
@end example
If only @code{socket://} is used a default socket file named
@file{S.log} in the standard socket directory is used.
For debugging purposes it is also possible to do remote logging. Take
care if you use this feature because the information is send in the
clear over the network. Use this syntax in the conf files:
@example
log-file tcp://192.168.1.1:4711
@end example
You may use any port and not just 4711 as shown above; only IP addresses
are supported (v4 and v6) and no host names. You need to start
@command{watchgnupg} with the @option{tcp} option. Note that under
Windows the registry entry @var{HKCU\Software\GNU\GnuPG:DefaultLogFile}
can be used to change the default log output from @code{stderr} to
whatever is given by that entry. However the only useful entry is a TCP
name for remote debugging.
@mansect see also
@ifset isman
@command{gpg}(1),
@command{gpgsm}(1),
@command{gpg-agent}(1),
@command{scdaemon}(1)
@end ifset
@include see-also-note.texi
@c
@c GPGV
@c
@include gpgv.texi
@c
@c ADDGNUPGHOME
@c
@manpage addgnupghome.8
@node addgnupghome
@section Create .gnupg home directories.
@ifset manverb
.B addgnupghome
\- Create .gnupg home directories
@end ifset
@mansect synopsis
@ifset manverb
.B addgnupghome
.I account_1
.IR account_2 ... account_n
@end ifset
@mansect description
If GnuPG is installed on a system with existing user accounts, it is
sometimes required to populate the GnuPG home directory with existing
files. Especially a @file{trustlist.txt} and a keybox with some
initial certificates are often desired. This script helps to do this
by copying all files from @file{/etc/skel/.gnupg} to the home
directories of the accounts given on the command line. It takes care
not to overwrite existing GnuPG home directories.
@noindent
@command{addgnupghome} is invoked by root as:
@example
addgnupghome account1 account2 ... accountn
@end example
@c
@c GPGCONF
@c
@manpage gpgconf.1
@node gpgconf
@section Modify .gnupg home directories.
@ifset manverb
.B gpgconf
\- Modify .gnupg home directories
@end ifset
@mansect synopsis
@ifset manverb
.B gpgconf
.RI [ options ]
.B \-\-list-components
.br
.B gpgconf
.RI [ options ]
.B \-\-list-options
.I component
.br
.B gpgconf
.RI [ options ]
.B \-\-change-options
.I component
@end ifset
@mansect description
The @command{gpgconf} is a utility to automatically and reasonable
safely query and modify configuration files in the @file{.gnupg} home
directory. It is designed not to be invoked manually by the user, but
automatically by graphical user interfaces (GUI).@footnote{Please note
that currently no locking is done, so concurrent access should be
avoided. There are some precautions to avoid corruption with
concurrent usage, but results may be inconsistent and some changes may
get lost. The stateless design makes it difficult to provide more
guarantees.}
@command{gpgconf} provides access to the configuration of one or more
components of the GnuPG system. These components correspond more or
less to the programs that exist in the GnuPG framework, like GnuPG,
GPGSM, DirMngr, etc. But this is not a strict one-to-one
relationship. Not all configuration options are available through
@command{gpgconf}. @command{gpgconf} provides a generic and abstract
method to access the most important configuration options that can
feasibly be controlled via such a mechanism.
@command{gpgconf} can be used to gather and change the options
available in each component, and can also provide their default
values. @command{gpgconf} will give detailed type information that
can be used to restrict the user's input without making an attempt to
commit the changes.
@command{gpgconf} provides the backend of a configuration editor. The
configuration editor would usually be a graphical user interface
program that displays the current options, their default
values, and allows the user to make changes to the options. These
changes can then be made active with @command{gpgconf} again. Such a
program that uses @command{gpgconf} in this way will be called GUI
throughout this section.
@menu
* Invoking gpgconf:: List of all commands and options.
* Format conventions:: Formatting conventions relevant for all commands.
* Listing components:: List all gpgconf components.
* Checking programs:: Check all programs known to gpgconf.
* Listing options:: List all options of a component.
* Changing options:: Changing options of a component.
* Listing global options:: List all global options.
* Files used by gpgconf:: What files are used by gpgconf.
@end menu
@manpause
@node Invoking gpgconf
@subsection Invoking gpgconf
@mansect commands
One of the following commands must be given:
@table @gnupgtabopt
@item --list-components
List all components. This is the default command used if none is
specified.
@item --check-programs
List all available backend programs and test whether they are runnable.
@item --list-options @var{component}
List all options of the component @var{component}.
@item --change-options @var{component}
Change the options of the component @var{component}.
@item --check-options @var{component}
Check the options for the component @var{component}.
@item --apply-defaults
Update all configuration files with values taken from the global
configuration file (usually @file{/etc/gnupg/gpgconf.conf}).
@item --list-dirs [@var{names}]
Lists the directories used by @command{gpgconf}. One directory is
listed per line, and each line consists of a colon-separated list where
the first field names the directory type (for example @code{sysconfdir})
and the second field contains the percent-escaped directory. Although
they are not directories, the socket file names used by
@command{gpg-agent} and @command{dirmngr} are printed as well. Note
that the socket file names and the @code{homedir} lines are the default
names and they may be overridden by command line switches. If
@var{names} are given only the directories or file names specified by
the list names are printed without any escaping.
@item --list-config [@var{filename}]
List the global configuration file in a colon separated format. If
@var{filename} is given, check that file instead.
@item --check-config [@var{filename}]
Run a syntax check on the global configuration file. If @var{filename}
is given, check that file instead.
@item --reload [@var{component}]
@opindex reload
Reload all or the given component. This is basically the same as sending
a SIGHUP to the component. Components which don't support reloading are
ignored.
@item --launch [@var{component}]
@opindex launch
If the @var{component} is not already running, start it.
@command{component} must be a daemon. This is in general not required
because the system starts these daemons as needed. However, external
software making direct use of @command{gpg-agent} or @command{dirmngr}
may use this command to ensure that they are started.
@item --kill [@var{component}]
@opindex kill
Kill the given component. Components which support killing are
gpg-agent and scdaemon. Components which don't support reloading are
ignored. Note that as of now reload and kill have the same effect for
scdaemon.
@item --create-socketdir
@opindex create-socketdir
Create a directory for sockets below /run/user or /var/run/user. This
is command is only required if a non default home directory is used
and the /run based sockets shall be used. For the default home
directory GnUPG creates a directory on the fly.
@item --remove-socketdir
@opindex remove-socketdir
Remove a directory created with command @option{--create-socketdir}.
@end table
@mansect options
The following options may be used:
@table @gnupgtabopt
@item -o @var{file}
@itemx --output @var{file}
Write output to @var{file}. Default is to write to stdout.
@item -v
@itemx --verbose
Outputs additional information while running. Specifically, this
extends numerical field values by human-readable descriptions.
@item -q
@itemx --quiet
@opindex quiet
Try to be as quiet as possible.
@item -n
@itemx --dry-run
Do not actually change anything. This is currently only implemented
for @code{--change-options} and can be used for testing purposes.
@item -r
@itemx --runtime
Only used together with @code{--change-options}. If one of the
modified options can be changed in a running daemon process, signal
the running daemon to ask it to reparse its configuration file after
changing.
This means that the changes will take effect at run-time, as far as
this is possible. Otherwise, they will take effect at the next start
of the respective backend programs.
@manpause
@end table
@node Format conventions
@subsection Format conventions
Some lines in the output of @command{gpgconf} contain a list of
colon-separated fields. The following conventions apply:
@itemize @bullet
@item
The GUI program is required to strip off trailing newline and/or
carriage return characters from the output.
@item
@command{gpgconf} will never leave out fields. If a certain version
provides a certain field, this field will always be present in all
@command{gpgconf} versions from that time on.
@item
Future versions of @command{gpgconf} might append fields to the list.
New fields will always be separated from the previously last field by
a colon separator. The GUI should be prepared to parse the last field
it knows about up until a colon or end of line.
@item
Not all fields are defined under all conditions. You are required to
ignore the content of undefined fields.
@end itemize
There are several standard types for the content of a field:
@table @asis
@item verbatim
Some fields contain strings that are not escaped in any way. Such
fields are described to be used @emph{verbatim}. These fields will
never contain a colon character (for obvious reasons). No de-escaping
or other formatting is required to use the field content. This is for
easy parsing of the output, when it is known that the content can
never contain any special characters.
@item percent-escaped
Some fields contain strings that are described to be
@emph{percent-escaped}. Such strings need to be de-escaped before
their content can be presented to the user. A percent-escaped string
is de-escaped by replacing all occurrences of @code{%XY} by the byte
that has the hexadecimal value @code{XY}. @code{X} and @code{Y} are
from the set @code{0-9a-f}.
-@item localised
-Some fields contain strings that are described to be @emph{localised}.
+@item localized
+Some fields contain strings that are described to be @emph{localized}.
Such strings are translated to the active language and formatted in
the active character set.
@item @w{unsigned number}
Some fields contain an @emph{unsigned number}. This number will
always fit into a 32-bit unsigned integer variable. The number may be
followed by a space, followed by a human readable description of that
value (if the verbose option is used). You should ignore everything
in the field that follows the number.
@item @w{signed number}
Some fields contain a @emph{signed number}. This number will always
fit into a 32-bit signed integer variable. The number may be followed
by a space, followed by a human readable description of that value (if
the verbose option is used). You should ignore everything in the
field that follows the number.
@item @w{boolean value}
Some fields contain a @emph{boolean value}. This is a number with
either the value 0 or 1. The number may be followed by a space,
followed by a human readable description of that value (if the verbose
option is used). You should ignore everything in the field that follows
the number; checking just the first character is sufficient in this
case.
@item option
Some fields contain an @emph{option} argument. The format of an
option argument depends on the type of the option and on some flags:
@table @asis
@item no argument
The simplest case is that the option does not take an argument at all
(@var{type} @code{0}). Then the option argument is an unsigned number
that specifies how often the option occurs. If the @code{list} flag
is not set, then the only valid number is @code{1}. Options that do
not take an argument never have the @code{default} or @code{optional
arg} flag set.
@item number
If the option takes a number argument (@var{alt-type} is @code{2} or
@code{3}), and it can only occur once (@code{list} flag is not set),
then the option argument is either empty (only allowed if the argument
is optional), or it is a number. A number is a string that begins
with an optional minus character, followed by one or more digits. The
number must fit into an integer variable (unsigned or signed,
depending on @var{alt-type}).
@item number list
If the option takes a number argument and it can occur more than once,
then the option argument is either empty, or it is a comma-separated
list of numbers as described above.
@item string
If the option takes a string argument (@var{alt-type} is 1), and it
can only occur once (@code{list} flag is not set) then the option
argument is either empty (only allowed if the argument is optional),
or it starts with a double quote character (@code{"}) followed by a
percent-escaped string that is the argument value. Note that there is
only a leading double quote character, no trailing one. The double
quote character is only needed to be able to differentiate between no
value and the empty string as value.
@item string list
If the option takes a number argument and it can occur more than once,
then the option argument is either empty, or it is a comma-separated
list of string arguments as described above.
@end table
@end table
The active language and character set are currently determined from
the locale environment of the @command{gpgconf} program.
@c FIXME: Document the active language and active character set. Allow
@c to change it via the command line?
@mansect usage
@node Listing components
@subsection Listing components
The command @code{--list-components} will list all components that can
be configured with @command{gpgconf}. Usually, one component will
correspond to one GnuPG-related program and contain the options of
that program's configuration file that can be modified using
@command{gpgconf}. However, this is not necessarily the case. A
component might also be a group of selected options from several
programs, or contain entirely virtual options that have a special
effect rather than changing exactly one option in one configuration
file.
A component is a set of configuration options that semantically belong
together. Furthermore, several changes to a component can be made in
an atomic way with a single operation. The GUI could for example
provide a menu with one entry for each component, or a window with one
tabulator sheet per component.
The command argument @code{--list-components} lists all available
components, one per line. The format of each line is:
@code{@var{name}:@var{description}:@var{pgmname}:}
@table @var
@item name
This field contains a name tag of the component. The name tag is used
to specify the component in all communication with @command{gpgconf}.
The name tag is to be used @emph{verbatim}. It is thus not in any
escaped format.
@item description
The @emph{string} in this field contains a human-readable description
of the component. It can be displayed to the user of the GUI for
informational purposes. It is @emph{percent-escaped} and
@emph{localized}.
@item pgmname
The @emph{string} in this field contains the absolute name of the
program's file. It can be used to unambiguously invoke that program.
It is @emph{percent-escaped}.
@end table
Example:
@example
$ gpgconf --list-components
gpg:GPG for OpenPGP:/usr/local/bin/gpg2:
gpg-agent:GPG Agent:/usr/local/bin/gpg-agent:
scdaemon:Smartcard Daemon:/usr/local/bin/scdaemon:
gpgsm:GPG for S/MIME:/usr/local/bin/gpgsm:
dirmngr:Directory Manager:/usr/local/bin/dirmngr:
@end example
@node Checking programs
@subsection Checking programs
The command @code{--check-programs} is similar to
@code{--list-components} but works on backend programs and not on
components. It runs each program to test whether it is installed and
runnable. This also includes a syntax check of all config file options
of the program.
The command argument @code{--check-programs} lists all available
programs, one per line. The format of each line is:
@code{@var{name}:@var{description}:@var{pgmname}:@var{avail}:@var{okay}:@var{cfgfile}:@var{line}:@var{error}:}
@table @var
@item name
This field contains a name tag of the program which is identical to the
name of the component. The name tag is to be used @emph{verbatim}. It
is thus not in any escaped format. This field may be empty to indicate
a continuation of error descriptions for the last name. The description
and pgmname fields are then also empty.
@item description
The @emph{string} in this field contains a human-readable description
of the component. It can be displayed to the user of the GUI for
informational purposes. It is @emph{percent-escaped} and
@emph{localized}.
@item pgmname
The @emph{string} in this field contains the absolute name of the
program's file. It can be used to unambiguously invoke that program.
It is @emph{percent-escaped}.
@item avail
The @emph{boolean value} in this field indicates whether the program is
installed and runnable.
@item okay
The @emph{boolean value} in this field indicates whether the program's
config file is syntactically okay.
@item cfgfile
If an error occurred in the configuration file (as indicated by a false
value in the field @code{okay}), this field has the name of the failing
configuration file. It is @emph{percent-escaped}.
@item line
If an error occurred in the configuration file, this field has the line
number of the failing statement in the configuration file.
It is an @emph{unsigned number}.
@item error
If an error occurred in the configuration file, this field has the error
text of the failing statement in the configuration file. It is
@emph{percent-escaped} and @emph{localized}.
@end table
@noindent
In the following example the @command{dirmngr} is not runnable and the
configuration file of @command{scdaemon} is not okay.
@example
$ gpgconf --check-programs
gpg:GPG for OpenPGP:/usr/local/bin/gpg2:1:1:
gpg-agent:GPG Agent:/usr/local/bin/gpg-agent:1:1:
scdaemon:Smartcard Daemon:/usr/local/bin/scdaemon:1:0:
gpgsm:GPG for S/MIME:/usr/local/bin/gpgsm:1:1:
dirmngr:Directory Manager:/usr/local/bin/dirmngr:0:0:
@end example
@noindent
The command @w{@code{--check-options @var{component}}} will verify the
configuration file in the same manner as @code{--check-programs}, but
only for the component @var{component}.
@node Listing options
@subsection Listing options
Every component contains one or more options. Options may be gathered
into option groups to allow the GUI to give visual hints to the user
about which options are related.
The command argument @code{@w{--list-options @var{component}}} lists
all options (and the groups they belong to) in the component
@var{component}, one per line. @var{component} must be the string in
the field @var{name} in the output of the @code{--list-components}
command.
There is one line for each option and each group. First come all
options that are not in any group. Then comes a line describing a
group. Then come all options that belong into each group. Then comes
the next group and so on. There does not need to be any group (and in
this case the output will stop after the last non-grouped option).
The format of each line is:
@code{@var{name}:@var{flags}:@var{level}:@var{description}:@var{type}:@var{alt-type}:@var{argname}:@var{default}:@var{argdef}:@var{value}}
@table @var
@item name
This field contains a name tag for the group or option. The name tag
is used to specify the group or option in all communication with
@command{gpgconf}. The name tag is to be used @emph{verbatim}. It is
thus not in any escaped format.
@item flags
The flags field contains an @emph{unsigned number}. Its value is the
OR-wise combination of the following flag values:
@table @code
@item group (1)
If this flag is set, this is a line describing a group and not an
option.
@end table
The following flag values are only defined for options (that is, if
the @code{group} flag is not used).
@table @code
@item optional arg (2)
If this flag is set, the argument is optional. This is never set for
@var{type} @code{0} (none) options.
@item list (4)
If this flag is set, the option can be given multiple times.
@item runtime (8)
If this flag is set, the option can be changed at runtime.
@item default (16)
If this flag is set, a default value is available.
@item default desc (32)
If this flag is set, a (runtime) default is available. This and the
@code{default} flag are mutually exclusive.
@item no arg desc (64)
If this flag is set, and the @code{optional arg} flag is set, then the
option has a special meaning if no argument is given.
@item no change (128)
If this flag is set, gpgconf ignores requests to change the value. GUI
frontends should grey out this option. Note, that manual changes of the
configuration files are still possible.
@end table
@item level
This field is defined for options and for groups. It contains an
@emph{unsigned number} that specifies the expert level under which
this group or option should be displayed. The following expert levels
are defined for options (they have analogous meaning for groups):
@table @code
@item basic (0)
This option should always be offered to the user.
@item advanced (1)
This option may be offered to advanced users.
@item expert (2)
This option should only be offered to expert users.
@item invisible (3)
This option should normally never be displayed, not even to expert
users.
@item internal (4)
This option is for internal use only. Ignore it.
@end table
The level of a group will always be the lowest level of all options it
contains.
@item description
This field is defined for options and groups. The @emph{string} in
this field contains a human-readable description of the option or
group. It can be displayed to the user of the GUI for informational
purposes. It is @emph{percent-escaped} and @emph{localized}.
@item type
This field is only defined for options. It contains an @emph{unsigned
number} that specifies the type of the option's argument, if any. The
following types are defined:
Basic types:
@table @code
@item none (0)
No argument allowed.
@item string (1)
An @emph{unformatted string}.
@item int32 (2)
A @emph{signed number}.
@item uint32 (3)
An @emph{unsigned number}.
@end table
Complex types:
@table @code
@item pathname (32)
A @emph{string} that describes the pathname of a file. The file does
not necessarily need to exist.
@item ldap server (33)
A @emph{string} that describes an LDAP server in the format:
@code{@var{hostname}:@var{port}:@var{username}:@var{password}:@var{base_dn}}
@item key fingerprint (34)
A @emph{string} with a 40 digit fingerprint specifying a certificate.
@item pub key (35)
A @emph{string} that describes a certificate by user ID, key ID or
fingerprint.
@item sec key (36)
A @emph{string} that describes a certificate with a key by user ID,
key ID or fingerprint.
@item alias list (37)
A @emph{string} that describes an alias list, like the one used with
gpg's group option. The list consists of a key, an equal sign and space
separated values.
@end table
More types will be added in the future. Please see the @var{alt-type}
field for information on how to cope with unknown types.
@item alt-type
This field is identical to @var{type}, except that only the types
@code{0} to @code{31} are allowed. The GUI is expected to present the
user the option in the format specified by @var{type}. But if the
argument type @var{type} is not supported by the GUI, it can still
display the option in the more generic basic type @var{alt-type}. The
GUI must support all the defined basic types to be able to display all
options. More basic types may be added in future versions. If the
GUI encounters a basic type it doesn't support, it should report an
error and abort the operation.
@item argname
This field is only defined for options with an argument type
@var{type} that is not @code{0}. In this case it may contain a
-@emph{percent-escaped} and @emph{localised string} that gives a short
+@emph{percent-escaped} and @emph{localized string} that gives a short
name for the argument. The field may also be empty, though, in which
case a short name is not known.
@item default
This field is defined only for options for which the @code{default} or
@code{default desc} flag is set. If the @code{default} flag is set,
its format is that of an @emph{option argument} (@pxref{Format
conventions}, for details). If the default value is empty, then no
default is known. Otherwise, the value specifies the default value
for this option. If the @code{default desc} flag is set, the field is
either empty or contains a description of the effect if the option is
not given.
@item argdef
This field is defined only for options for which the @code{optional
arg} flag is set. If the @code{no arg desc} flag is not set, its
format is that of an @emph{option argument} (@pxref{Format
conventions}, for details). If the default value is empty, then no
default is known. Otherwise, the value specifies the default argument
for this option. If the @code{no arg desc} flag is set, the field is
either empty or contains a description of the effect of this option if
no argument is given.
@item value
This field is defined only for options. Its format is that of an
@emph{option argument}. If it is empty, then the option is not
explicitly set in the current configuration, and the default applies
(if any). Otherwise, it contains the current value of the option.
Note that this field is also meaningful if the option itself does not
take a real argument (in this case, it contains the number of times
the option appears).
@end table
@node Changing options
@subsection Changing options
The command @w{@code{--change-options @var{component}}} will attempt
to change the options of the component @var{component} to the
specified values. @var{component} must be the string in the field
@var{name} in the output of the @code{--list-components} command. You
have to provide the options that shall be changed in the following
format on standard input:
@code{@var{name}:@var{flags}:@var{new-value}}
@table @var
@item name
This is the name of the option to change. @var{name} must be the
string in the field @var{name} in the output of the
@code{--list-options} command.
@item flags
The flags field contains an @emph{unsigned number}. Its value is the
OR-wise combination of the following flag values:
@table @code
@item default (16)
If this flag is set, the option is deleted and the default value is
used instead (if applicable).
@end table
@item new-value
The new value for the option. This field is only defined if the
@code{default} flag is not set. The format is that of an @emph{option
argument}. If it is empty (or the field is omitted), the default
argument is used (only allowed if the argument is optional for this
option). Otherwise, the option will be set to the specified value.
@end table
@noindent
The output of the command is the same as that of
@code{--check-options} for the modified configuration file.
Examples:
To set the force option, which is of basic type @code{none (0)}:
@example
$ echo 'force:0:1' | gpgconf --change-options dirmngr
@end example
To delete the force option:
@example
$ echo 'force:16:' | gpgconf --change-options dirmngr
@end example
The @code{--runtime} option can influence when the changes take
effect.
@node Listing global options
@subsection Listing global options
Sometimes it is useful for applications to look at the global options
file @file{gpgconf.conf}.
The colon separated listing format is record oriented and uses the first
field to identify the record type:
@table @code
@item k
This describes a key record to start the definition of a new ruleset for
a user/group. The format of a key record is:
@code{k:@var{user}:@var{group}:}
@table @var
@item user
This is the user field of the key. It is percent escaped. See the
definition of the gpgconf.conf format for details.
@item group
This is the group field of the key. It is percent escaped.
@end table
@item r
This describes a rule record. All rule records up to the next key record
make up a rule set for that key. The format of a rule record is:
@code{r:::@var{component}:@var{option}:@var{flags}:@var{value}:}
@table @var
@item component
This is the component part of a rule. It is a plain string.
@item option
This is the option part of a rule. It is a plain string.
@item flag
This is the flags part of a rule. There may be only one flag per rule
but by using the same component and option, several flags may be
assigned to an option. It is a plain string.
@item value
This is the optional value for the option. It is a percent escaped
string with a single quotation mark to indicate a string. The quotation
mark is only required to distinguish between no value specified and an
empty string.
@end table
@end table
@noindent
Unknown record types should be ignored. Note that there is intentionally
no feature to change the global option file through @command{gpgconf}.
@mansect files
@node Files used by gpgconf
@subsection Files used by gpgconf
@table @file
@item /etc/gnupg/gpgconf.conf
@cindex gpgconf.conf
If this file exists, it is processed as a global configuration file.
A commented example can be found in the @file{examples} directory of
the distribution.
@end table
@mansect see also
@ifset isman
@command{gpg}(1),
@command{gpgsm}(1),
@command{gpg-agent}(1),
@command{scdaemon}(1),
@command{dirmngr}(1)
@end ifset
@include see-also-note.texi
@c
@c APPLYGNUPGDEFAULTS
@c
@manpage applygnupgdefaults.8
@node applygnupgdefaults
@section Run gpgconf for all users.
@ifset manverb
.B applygnupgdefaults
\- Run gpgconf --apply-defaults for all users.
@end ifset
@mansect synopsis
@ifset manverb
.B applygnupgdefaults
@end ifset
@mansect description
This script is a wrapper around @command{gpgconf} to run it with the
command @code{--apply-defaults} for all real users with an existing
GnuPG home directory. Admins might want to use this script to update he
GnuPG configuration files for all users after
@file{/etc/gnupg/gpgconf.conf} has been changed. This allows enforcing
certain policies for all users. Note, that this is not a bulletproof way to
force a user to use certain options. A user may always directly edit
the configuration files and bypass gpgconf.
@noindent
@command{applygnupgdefaults} is invoked by root as:
@example
applygnupgdefaults
@end example
@c
@c GPG-PRESET-PASSPHRASE
@c
@node gpg-preset-passphrase
@section Put a passphrase into the cache.
@manpage gpg-preset-passphrase.1
@ifset manverb
.B gpg-preset-passphrase
\- Put a passphrase into gpg-agent's cache
@end ifset
@mansect synopsis
@ifset manverb
.B gpg-preset-passphrase
.RI [ options ]
.RI [ command ]
.I cache-id
@end ifset
@mansect description
The @command{gpg-preset-passphrase} is a utility to seed the internal
cache of a running @command{gpg-agent} with passphrases. It is mainly
useful for unattended machines, where the usual @command{pinentry} tool
may not be used and the passphrases for the to be used keys are given at
machine startup.
Passphrases set with this utility don't expire unless the
@option{--forget} option is used to explicitly clear them from the
cache --- or @command{gpg-agent} is either restarted or reloaded (by
sending a SIGHUP to it). Note that the maximum cache time as set with
@option{--max-cache-ttl} is still honored. It is necessary to allow
this passphrase presetting by starting @command{gpg-agent} with the
@option{--allow-preset-passphrase}.
@menu
* Invoking gpg-preset-passphrase:: List of all commands and options.
@end menu
@manpause
@node Invoking gpg-preset-passphrase
@subsection List of all commands and options.
@mancont
@noindent
@command{gpg-preset-passphrase} is invoked this way:
@example
gpg-preset-passphrase [options] [command] @var{cacheid}
@end example
@var{cacheid} is either a 40 character keygrip of hexadecimal
characters identifying the key for which the passphrase should be set
or cleared. The keygrip is listed along with the key when running the
command: @code{gpgsm --dump-secret-keys}. Alternatively an arbitrary
string may be used to identify a passphrase; it is suggested that such
a string is prefixed with the name of the application (e.g
@code{foo:12346}).
@noindent
One of the following command options must be given:
@table @gnupgtabopt
@item --preset
@opindex preset
Preset a passphrase. This is what you usually will
use. @command{gpg-preset-passphrase} will then read the passphrase from
@code{stdin}.
@item --forget
@opindex forget
Flush the passphrase for the given cache ID from the cache.
@end table
@noindent
The following additional options may be used:
@table @gnupgtabopt
@item -v
@itemx --verbose
@opindex verbose
Output additional information while running.
@item -P @var{string}
@itemx --passphrase @var{string}
@opindex passphrase
Instead of reading the passphrase from @code{stdin}, use the supplied
@var{string} as passphrase. Note that this makes the passphrase visible
for other users.
@end table
@mansect see also
@ifset isman
@command{gpg}(1),
@command{gpgsm}(1),
@command{gpg-agent}(1),
@command{scdaemon}(1)
@end ifset
@include see-also-note.texi
@c
@c GPG-CONNECT-AGENT
@c
@node gpg-connect-agent
@section Communicate with a running agent.
@manpage gpg-connect-agent.1
@ifset manverb
.B gpg-connect-agent
\- Communicate with a running agent
@end ifset
@mansect synopsis
@ifset manverb
.B gpg-connect-agent
.RI [ options ] [commands]
@end ifset
@mansect description
The @command{gpg-connect-agent} is a utility to communicate with a
running @command{gpg-agent}. It is useful to check out the commands
gpg-agent provides using the Assuan interface. It might also be useful
for scripting simple applications. Input is expected at stdin and out
put gets printed to stdout.
It is very similar to running @command{gpg-agent} in server mode; but
here we connect to a running instance.
@menu
* Invoking gpg-connect-agent:: List of all options.
* Controlling gpg-connect-agent:: Control commands.
@end menu
@manpause
@node Invoking gpg-connect-agent
@subsection List of all options.
@noindent
@command{gpg-connect-agent} is invoked this way:
@example
gpg-connect-agent [options] [commands]
@end example
@mancont
@noindent
The following options may be used:
@table @gnupgtabopt
@item -v
@itemx --verbose
@opindex verbose
Output additional information while running.
@item -q
@item --quiet
@opindex q
@opindex quiet
Try to be as quiet as possible.
@include opt-homedir.texi
@item --agent-program @var{file}
@opindex agent-program
Specify the agent program to be started if none is running. The
default value is determined by running @command{gpgconf} with the
option @option{--list-dirs}. Note that the pipe symbol (@code{|}) is
used for a regression test suite hack and may thus not be used in the
file name.
@item --dirmngr-program @var{file}
@opindex dirmngr-program
Specify the directory manager (keyserver client) program to be started
if none is running. This has only an effect if used together with the
option @option{--dirmngr}.
@item --dirmngr
@opindex dirmngr
Connect to a running directory manager (keyserver client) instead of
to the gpg-agent. If a dirmngr is not running, start it.
@item -S
@itemx --raw-socket @var{name}
@opindex raw-socket
Connect to socket @var{name} assuming this is an Assuan style server.
Do not run any special initializations or environment checks. This may
be used to directly connect to any Assuan style socket server.
@item -E
@itemx --exec
@opindex exec
Take the rest of the command line as a program and it's arguments and
execute it as an Assuan server. Here is how you would run @command{gpgsm}:
@smallexample
gpg-connect-agent --exec gpgsm --server
@end smallexample
Note that you may not use options on the command line in this case.
@item --no-ext-connect
@opindex no-ext-connect
When using @option{-S} or @option{--exec}, @command{gpg-connect-agent}
connects to the Assuan server in extended mode to allow descriptor
passing. This option makes it use the old mode.
@item --no-autostart
@opindex no-autostart
Do not start the gpg-agent or the dirmngr if it has not yet been
started.
@item -r @var{file}
@itemx --run @var{file}
@opindex run
Run the commands from @var{file} at startup and then continue with the
regular input method. Note, that commands given on the command line are
executed after this file.
@item -s
@itemx --subst
@opindex subst
Run the command @code{/subst} at startup.
@item --hex
@opindex hex
Print data lines in a hex format and the ASCII representation of
non-control characters.
@item --decode
@opindex decode
Decode data lines. That is to remove percent escapes but make sure that
a new line always starts with a D and a space.
@end table
@mansect control commands
@node Controlling gpg-connect-agent
@subsection Control commands.
While reading Assuan commands, gpg-agent also allows a few special
commands to control its operation. These control commands all start
with a slash (@code{/}).
@table @code
@item /echo @var{args}
Just print @var{args}.
@item /let @var{name} @var{value}
Set the variable @var{name} to @var{value}. Variables are only
substituted on the input if the @command{/subst} has been used.
Variables are referenced by prefixing the name with a dollar sign and
optionally include the name in curly braces. The rules for a valid name
are identically to those of the standard bourne shell. This is not yet
enforced but may be in the future. When used with curly braces no
leading or trailing white space is allowed.
If a variable is not found, it is searched in the environment and if
found copied to the table of variables.
Variable functions are available: The name of the function must be
followed by at least one space and the at least one argument. The
following functions are available:
@table @code
@item get
Return a value described by the argument. Available arguments are:
@table @code
@item cwd
The current working directory.
@item homedir
The gnupg homedir.
@item sysconfdir
GnuPG's system configuration directory.
@item bindir
GnuPG's binary directory.
@item libdir
GnuPG's library directory.
@item libexecdir
GnuPG's library directory for executable files.
@item datadir
GnuPG's data directory.
@item serverpid
The PID of the current server. Command @command{/serverpid} must
have been given to return a useful value.
@end table
@item unescape @var{args}
Remove C-style escapes from @var{args}. Note that @code{\0} and
@code{\x00} terminate the returned string implicitly. The string to be
converted are the entire arguments right behind the delimiting space of
the function name.
@item unpercent @var{args}
@itemx unpercent+ @var{args}
Remove percent style escaping from @var{args}. Note that @code{%00}
terminates the string implicitly. The string to be converted are the
entire arguments right behind the delimiting space of the function
name. @code{unpercent+} also maps plus signs to a spaces.
@item percent @var{args}
@itemx percent+ @var{args}
Escape the @var{args} using percent style escaping. Tabs, formfeeds,
linefeeds, carriage returns and colons are escaped. @code{percent+} also
maps spaces to plus signs.
@item errcode @var{arg}
@itemx errsource @var{arg}
@itemx errstring @var{arg}
Assume @var{arg} is an integer and evaluate it using @code{strtol}. Return
the gpg-error error code, error source or a formatted string with the
error code and error source.
@item +
@itemx -
@itemx *
@itemx /
@itemx %
Evaluate all arguments as long integers using @code{strtol} and apply
this operator. A division by zero yields an empty string.
@item !
@itemx |
@itemx &
Evaluate all arguments as long integers using @code{strtol} and apply
the logical operators NOT, OR or AND. The NOT operator works on the
last argument only.
@end table
@item /definq @var{name} @var{var}
Use content of the variable @var{var} for inquiries with @var{name}.
@var{name} may be an asterisk (@code{*}) to match any inquiry.
@item /definqfile @var{name} @var{file}
Use content of @var{file} for inquiries with @var{name}.
@var{name} may be an asterisk (@code{*}) to match any inquiry.
@item /definqprog @var{name} @var{prog}
Run @var{prog} for inquiries matching @var{name} and pass the
entire line to it as command line arguments.
@item /datafile @var{name}
Write all data lines from the server to the file @var{name}. The file
is opened for writing and created if it does not exists. An existing
file is first truncated to 0. The data written to the file fully
decoded. Using a single dash for @var{name} writes to stdout. The
file is kept open until a new file is set using this command or this
command is used without an argument.
@item /showdef
Print all definitions
@item /cleardef
Delete all definitions
@item /sendfd @var{file} @var{mode}
Open @var{file} in @var{mode} (which needs to be a valid @code{fopen}
mode string) and send the file descriptor to the server. This is
usually followed by a command like @code{INPUT FD} to set the
input source for other commands.
@item /recvfd
Not yet implemented.
@item /open @var{var} @var{file} [@var{mode}]
Open @var{file} and assign the file descriptor to @var{var}. Warning:
This command is experimental and might change in future versions.
@item /close @var{fd}
Close the file descriptor @var{fd}. Warning: This command is
experimental and might change in future versions.
@item /showopen
Show a list of open files.
@item /serverpid
Send the Assuan command @command{GETINFO pid} to the server and store
the returned PID for internal purposes.
@item /sleep
Sleep for a second.
@item /hex
@itemx /nohex
Same as the command line option @option{--hex}.
@item /decode
@itemx /nodecode
Same as the command line option @option{--decode}.
@item /subst
@itemx /nosubst
Enable and disable variable substitution. It defaults to disabled
unless the command line option @option{--subst} has been used.
If /subst as been enabled once, leading whitespace is removed from
input lines which makes scripts easier to read.
@item /while @var{condition}
@itemx /end
These commands provide a way for executing loops. All lines between
the @code{while} and the corresponding @code{end} are executed as long
as the evaluation of @var{condition} yields a non-zero value or is the
string @code{true} or @code{yes}. The evaluation is done by passing
@var{condition} to the @code{strtol} function. Example:
@smallexample
/subst
/let i 3
/while $i
/echo loop couter is $i
/let i $@{- $i 1@}
/end
@end smallexample
@item /if @var{condition}
@itemx /end
These commands provide a way for conditional execution. All lines between
the @code{if} and the corresponding @code{end} are executed only if
the evaluation of @var{condition} yields a non-zero value or is the
string @code{true} or @code{yes}. The evaluation is done by passing
@var{condition} to the @code{strtol} function.
@item /run @var{file}
Run commands from @var{file}.
@item /bye
Terminate the connection and the program
@item /help
Print a list of available control commands.
@end table
@ifset isman
@mansect see also
@command{gpg-agent}(1),
@command{scdaemon}(1)
@include see-also-note.texi
@end ifset
@c
@c DIRMNGR-CLIENT
@c
@node dirmngr-client
@section The Dirmngr Client Tool
@manpage dirmngr-client.1
@ifset manverb
.B dirmngr-client
\- Tool to access the Dirmngr services
@end ifset
@mansect synopsis
@ifset manverb
.B dirmngr-client
.RI [ options ]
.RI [ certfile | pattern ]
@end ifset
@mansect description
The @command{dirmngr-client} is a simple tool to contact a running
dirmngr and test whether a certificate has been revoked --- either by
being listed in the corresponding CRL or by running the OCSP protocol.
If no dirmngr is running, a new instances will be started but this is
in general not a good idea due to the huge performance overhead.
@noindent
The usual way to run this tool is either:
@example
dirmngr-client @var{acert}
@end example
@noindent
or
@example
dirmngr-client <@var{acert}
@end example
Where @var{acert} is one DER encoded (binary) X.509 certificates to be
tested.
@ifclear isman
The return value of this command is
@end ifclear
@mansect return value
@ifset isman
@command{dirmngr-client} returns these values:
@end ifset
@table @code
@item 0
The certificate under question is valid; i.e. there is a valid CRL
available and it is not listed there or the OCSP request returned that
that certificate is valid.
@item 1
The certificate has been revoked
@item 2 (and other values)
There was a problem checking the revocation state of the certificate.
A message to stderr has given more detailed information. Most likely
this is due to a missing or expired CRL or due to a network problem.
@end table
@mansect options
@noindent
@command{dirmngr-client} may be called with the following options:
@table @gnupgtabopt
@item --version
@opindex version
Print the program version and licensing information. Note that you cannot
abbreviate this command.
@item --help, -h
@opindex help
Print a usage message summarizing the most useful command-line options.
Note that you can abbreviate this command.
@item --quiet, -q
@opindex quiet
Make the output extra brief by suppressing any informational messages.
@item -v
@item --verbose
@opindex v
@opindex verbose
Outputs additional information while running.
You can increase the verbosity by giving several
verbose commands to @sc{dirmngr}, such as @samp{-vv}.
@item --pem
@opindex pem
Assume that the given certificate is in PEM (armored) format.
@item --ocsp
@opindex ocsp
Do the check using the OCSP protocol and ignore any CRLs.
@item --force-default-responder
@opindex force-default-responder
When checking using the OCSP protocol, force the use of the default OCSP
responder. That is not to use the Reponder as given by the certificate.
@item --ping
@opindex ping
Check whether the dirmngr daemon is up and running.
@item --cache-cert
@opindex cache-cert
Put the given certificate into the cache of a running dirmngr. This is
mainly useful for debugging.
@item --validate
@opindex validate
Validate the given certificate using dirmngr's internal validation code.
This is mainly useful for debugging.
@item --load-crl
@opindex load-crl
This command expects a list of filenames with DER encoded CRL files.
With the option @option{--url} URLs are expected in place of filenames
and they are loaded directly from the given location. All CRLs will be
validated and then loaded into dirmngr's cache.
@item --lookup
@opindex lookup
Take the remaining arguments and run a lookup command on each of them.
The results are Base-64 encoded outputs (without header lines). This
may be used to retrieve certificates from a server. However the output
format is not very well suited if more than one certificate is returned.
@item --url
@itemx -u
@opindex url
Modify the @command{lookup} and @command{load-crl} commands to take an URL.
@item --local
@itemx -l
@opindex url
Let the @command{lookup} command only search the local cache.
@item --squid-mode
@opindex squid-mode
Run @sc{dirmngr-client} in a mode suitable as a helper program for
Squid's @option{external_acl_type} option.
@end table
@ifset isman
@mansect see also
@command{dirmngr}(8),
@command{gpgsm}(1)
@include see-also-note.texi
@end ifset
@c
@c GPGPARSEMAIL
@c
@node gpgparsemail
@section Parse a mail message into an annotated format
@manpage gpgparsemail.1
@ifset manverb
.B gpgparsemail
\- Parse a mail message into an annotated format
@end ifset
@mansect synopsis
@ifset manverb
.B gpgparsemail
.RI [ options ]
.RI [ file ]
@end ifset
@mansect description
The @command{gpgparsemail} is a utility currently only useful for
debugging. Run it with @code{--help} for usage information.
@c
@c SYMCRYPTRUN
@c
@node symcryptrun
@section Call a simple symmetric encryption tool.
@manpage symcryptrun.1
@ifset manverb
.B symcryptrun
\- Call a simple symmetric encryption tool
@end ifset
@mansect synopsis
@ifset manverb
.B symcryptrun
.B \-\-class
.I class
.B \-\-program
.I program
.B \-\-keyfile
.I keyfile
.RB [ --decrypt | --encrypt ]
.RI [ inputfile ]
@end ifset
@mansect description
Sometimes simple encryption tools are already in use for a long time and
there might be a desire to integrate them into the GnuPG framework. The
protocols and encryption methods might be non-standard or not even
properly documented, so that a full-fledged encryption tool with an
interface like gpg is not doable. @command{symcryptrun} provides a
solution: It operates by calling the external encryption/decryption
module and provides a passphrase for a key using the standard
@command{pinentry} based mechanism through @command{gpg-agent}.
Note, that @command{symcryptrun} is only available if GnuPG has been
configured with @samp{--enable-symcryptrun} at build time.
@menu
* Invoking symcryptrun:: List of all commands and options.
@end menu
@manpause
@node Invoking symcryptrun
@subsection List of all commands and options.
@noindent
@command{symcryptrun} is invoked this way:
@example
symcryptrun --class CLASS --program PROGRAM --keyfile KEYFILE
[--decrypt | --encrypt] [inputfile]
@end example
@mancont
For encryption, the plain text must be provided on STDIN or as the
argument @var{inputfile}, and the ciphertext will be output to STDOUT.
For decryption vice versa.
@var{CLASS} describes the calling conventions of the external tool.
Currently it must be given as @samp{confucius}. @var{PROGRAM} is
the full filename of that external tool.
For the class @samp{confucius} the option @option{--keyfile} is
required; @var{keyfile} is the name of a file containing the secret key,
which may be protected by a passphrase. For detailed calling
conventions, see the source code.
@noindent
Note, that @command{gpg-agent} must be running before starting
@command{symcryptrun}.
@noindent
The following additional options may be used:
@table @gnupgtabopt
@item -v
@itemx --verbose
@opindex verbose
Output additional information while running.
@item -q
@item --quiet
@opindex q
@opindex quiet
Try to be as quiet as possible.
@include opt-homedir.texi
@item --log-file @var{file}
@opindex log-file
Append all logging output to @var{file}. Use @file{socket://} to log
to socket. Default is to write logging information to STDERR.
@end table
@noindent
The possible exit status codes of @command{symcryptrun} are:
@table @code
@item 0
Success.
@item 1
Some error occurred.
@item 2
No valid passphrase was provided.
@item 3
The operation was canceled by the user.
@end table
@mansect see also
@ifset isman
@command{gpg}(1),
@command{gpgsm}(1),
@command{gpg-agent}(1),
@end ifset
@include see-also-note.texi
@c
@c GPG-ZIP
@c
@c The original manpage on which this section is based was written
@c by Colin Tuckley <colin@tuckley.org> and Daniel Leidert
@c <daniel.leidert@wgdd.de> for the Debian distribution (but may be used by
@c others).
@manpage gpg-zip.1
@node gpg-zip
@section Encrypt or sign files into an archive
@ifset manverb
.B gpg-zip \- Encrypt or sign files into an archive
@end ifset
@mansect synopsis
@ifset manverb
.B gpg-zip
.RI [ options ]
.I filename1
.I [ filename2, ... ]
.I directory1
.I [ directory2, ... ]
@end ifset
@mansect description
@command{gpg-zip} encrypts or signs files into an archive. It is an
gpg-ized tar using the same format as used by PGP's PGP Zip.
@manpause
@noindent
@command{gpg-zip} is invoked this way:
@example
gpg-zip [options] @var{filename1} [@var{filename2}, ...] @var{directory} [@var{directory2}, ...]
@end example
@mansect options
@noindent
@command{gpg-zip} understands these options:
@table @gnupgtabopt
@item --encrypt
@itemx -e
@opindex encrypt
Encrypt data. This option may be combined with @option{--symmetric} (for output that may be decrypted via a secret key or a passphrase).
@item --decrypt
@itemx -d
@opindex decrypt
Decrypt data.
@item --symmetric
@itemx -c
Encrypt with a symmetric cipher using a passphrase. The default
symmetric cipher used is CAST5, but may be chosen with the
@option{--cipher-algo} option to @command{gpg}.
@item --sign
@itemx -s
Make a signature. See @command{gpg}.
@item --recipient @var{user}
@itemx -r @var{user}
@opindex recipient
Encrypt for user id @var{user}. See @command{gpg}.
@item --local-user @var{user}
@itemx -u @var{user}
@opindex local-user
Use @var{user} as the key to sign with. See @command{gpg}.
@item --list-archive
@opindex list-archive
List the contents of the specified archive.
@item --output @var{file}
@itemx -o @var{file}
@opindex output
Write output to specified file @var{file}.
@item --gpg @var{gpgcmd}
@opindex gpg
Use the specified command @var{gpgcmd} instead of @command{gpg}.
@item --gpg-args @var{args}
@opindex gpg-args
Pass the specified options to @command{gpg}.
@item --tar @var{tarcmd}
@opindex tar
Use the specified command @var{tarcmd} instead of @command{tar}.
@item --tar-args @var{args}
@opindex tar-args
Pass the specified options to @command{tar}.
@item --version
@opindex version
Print version of the program and exit.
@item --help
@opindex help
Display a brief help page and exit.
@end table
@mansect diagnostics
@noindent
The program returns 0 if everything was fine, 1 otherwise.
@mansect examples
@ifclear isman
@noindent
Some examples:
@end ifclear
@noindent
Encrypt the contents of directory @file{mydocs} for user Bob to file
@file{test1}:
@example
gpg-zip --encrypt --output test1 --gpg-args -r Bob mydocs
@end example
@noindent
List the contents of archive @file{test1}:
@example
gpg-zip --list-archive test1
@end example
@mansect see also
@ifset isman
@command{gpg}(1),
@command{tar}(1),
@end ifset
@include see-also-note.texi
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Sat, May 10, 8:33 AM (1 d, 7 h)
Storage Engine
local-disk
Storage Format
Raw Data
Storage Handle
86/c0/bf9e56d00ab3c0bcda3a1863e258
Attached To
rG GnuPG
Event Timeline
Log In to Comment