Page Menu
Home
GnuPG
Search
Configure Global Search
Log In
Files
F34311307
keyid.c
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Size
38 KB
Subscribers
None
keyid.c
View Options
/* keyid.c - key ID and fingerprint handling
* Copyright (C) 1998, 1999, 2000, 2001, 2003,
* 2004, 2006, 2010 Free Software Foundation, Inc.
* Copyright (C) 2014 Werner Koch
* Copyright (C) 2016, 2023 g10 Code GmbH
*
* This file is part of GnuPG.
*
* GnuPG is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* GnuPG is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <https://www.gnu.org/licenses/>.
* SPDX-License-Identifier: GPL-3.0-or-later
*/
#include
<config.h>
#include
<stdio.h>
#include
<stdlib.h>
#include
<string.h>
#include
<errno.h>
#include
<time.h>
#include
"gpg.h"
#include
"../common/util.h"
#include
"main.h"
#include
"packet.h"
#include
"options.h"
#include
"keydb.h"
#include
"../common/i18n.h"
#include
"rmd160.h"
#include
"../common/host2net.h"
#define KEYID_STR_SIZE 19
#ifdef HAVE_UNSIGNED_TIME_T
# define IS_INVALID_TIME_T(a) ((a) == (time_t)(-1))
#else
/* Error or 32 bit time_t and value after 2038-01-19. */
# define IS_INVALID_TIME_T(a) ((a) < 0)
#endif
/* Return a letter describing the public key algorithms. */
int
pubkey_letter
(
int
algo
)
{
switch
(
algo
)
{
case
PUBKEY_ALGO_RSA
:
return
'R'
;
case
PUBKEY_ALGO_RSA_E
:
return
'r'
;
case
PUBKEY_ALGO_RSA_S
:
return
's'
;
case
PUBKEY_ALGO_ELGAMAL_E
:
return
'g'
;
case
PUBKEY_ALGO_ELGAMAL
:
return
'G'
;
case
PUBKEY_ALGO_DSA
:
return
'D'
;
case
PUBKEY_ALGO_ECDH
:
return
'e'
;
/* ECC DH (encrypt only) */
case
PUBKEY_ALGO_ECDSA
:
return
'E'
;
/* ECC DSA (sign only) */
case
PUBKEY_ALGO_EDDSA
:
return
'E'
;
/* ECC EdDSA (sign only) */
default
:
return
'?'
;
}
}
/* Return a string describing the public key algorithm and the
keysize. For elliptic curves the function prints the name of the
curve because the keysize is a property of the curve. The string
is copied to the supplied buffer up a length of BUFSIZE-1.
Examples for the output are:
"rsa3072" - RSA with 3072 bit
"elg1024" - Elgamal with 1024 bit
"ed25519" - EdDSA using the curve Ed25519.
"cv25519" - ECDH using the curve X25519.
"ky768_cv448 - Kyber-768 with X448 as second algo.
"ky1024_bp512 - Kyber-1024 with BrainpoolP256r1 as second algo.
"E_1.2.3.4" - ECC using the unsupported curve with OID "1.2.3.4".
"unknown_N" - Unknown OpenPGP algorithm N.
"E_1.3.6.1.4.1.11591.2.12242973" ECC with a bogus OID.
Note that with Kyber we use "bp" as abbreviation for BrainpoolP and
ignore the final r1 part.
If the option --legacy-list-mode is active, the output use the
legacy format:
"3072R" - RSA with 3072 bit
"1024g" - Elgamal with 1024 bit
"256E" - ECDSA using a curve with 256 bit
The macro PUBKEY_STRING_SIZE may be used to allocate a buffer with
a suitable size. Note that a more general version of this function
exists as get_keyalgo_string. However, that has no special
treatment for the old and unsupported Elgamal which we here print as
xxxNNNN. */
char
*
pubkey_string
(
PKT_public_key
*
pk
,
char
*
buffer
,
size_t
bufsize
)
{
const
char
*
prefix
=
NULL
;
int
dual
=
0
;
char
*
curve
;
const
char
*
name
;
if
(
opt
.
legacy_list_mode
)
{
snprintf
(
buffer
,
bufsize
,
"%4u%c"
,
nbits_from_pk
(
pk
),
pubkey_letter
(
pk
->
pubkey_algo
));
return
buffer
;
}
switch
(
pk
->
pubkey_algo
)
{
case
PUBKEY_ALGO_RSA
:
case
PUBKEY_ALGO_RSA_E
:
case
PUBKEY_ALGO_RSA_S
:
prefix
=
"rsa"
;
break
;
case
PUBKEY_ALGO_ELGAMAL_E
:
prefix
=
"elg"
;
break
;
case
PUBKEY_ALGO_DSA
:
prefix
=
"dsa"
;
break
;
case
PUBKEY_ALGO_ELGAMAL
:
prefix
=
"xxx"
;
break
;
case
PUBKEY_ALGO_ECDH
:
case
PUBKEY_ALGO_ECDSA
:
case
PUBKEY_ALGO_EDDSA
:
prefix
=
""
;
break
;
case
PUBKEY_ALGO_KYBER
:
prefix
=
"ky"
;
dual
=
1
;
break
;
case
PUBKEY_ALGO_DIL3_25519
:
prefix
=
"dil3"
;
break
;
case
PUBKEY_ALGO_DIL5_448
:
prefix
=
"dil5"
;
break
;
case
PUBKEY_ALGO_SPHINX_SHA2
:
prefix
=
"sphinx_sha2"
;
break
;
}
if
(
prefix
&&
*
prefix
)
{
if
(
dual
)
{
curve
=
openpgp_oid_to_str
(
pk
->
pkey
[
0
]);
/* Note that we prefer the abbreviated name of the curve. */
name
=
openpgp_oid_to_curve
(
curve
,
2
);
if
(
!
name
)
name
=
"unknown"
;
snprintf
(
buffer
,
bufsize
,
"%s%u_%s"
,
prefix
,
nbits_from_pk
(
pk
),
name
);
xfree
(
curve
);
}
else
snprintf
(
buffer
,
bufsize
,
"%s%u"
,
prefix
,
nbits_from_pk
(
pk
));
}
else
if
(
prefix
)
{
curve
=
openpgp_oid_to_str
(
pk
->
pkey
[
0
]);
name
=
openpgp_oid_to_curve
(
curve
,
0
);
if
(
name
)
snprintf
(
buffer
,
bufsize
,
"%s"
,
name
);
else
if
(
curve
)
snprintf
(
buffer
,
bufsize
,
"E_%s"
,
curve
);
else
snprintf
(
buffer
,
bufsize
,
"E_error"
);
xfree
(
curve
);
}
else
snprintf
(
buffer
,
bufsize
,
"unknown_%u"
,
(
unsigned
int
)
pk
->
pubkey_algo
);
return
buffer
;
}
/* Helper for compare_pubkey_string. This skips leading spaces,
* commas and optional condition operators and returns a pointer to
* the first non-space character or NULL in case of an error. The
* length of a prefix consisting of letters is then returned ar PFXLEN
* and the value of the number (e.g. 384 for "brainpoolP384r1") at
* NUMBER. R_LENGTH receives the entire length of the algorithm name
* which is terminated by a space, nul, or a comma. If R_CONDITION is
* not NULL, 0 is stored for a leading "=", 1 for a ">", 2 for a ">=",
* -1 for a "<", and -2 for a "<=". If R_CONDITION is NULL no
* condition prefix is allowed. */
static
const
char
*
parse_one_algo_string
(
const
char
*
str
,
size_t
*
pfxlen
,
unsigned
int
*
number
,
size_t
*
r_length
,
int
*
r_condition
)
{
int
condition
=
0
;
const
char
*
result
;
while
(
spacep
(
str
)
||
*
str
==
','
)
str
++
;
if
(
!
r_condition
)
;
else
if
(
*
str
==
'>'
&&
str
[
1
]
==
'='
)
condition
=
2
,
str
+=
2
;
else
if
(
*
str
==
'>'
)
condition
=
1
,
str
+=
1
;
else
if
(
*
str
==
'<'
&&
str
[
1
]
==
'='
)
condition
=
-2
,
str
+=
2
;
else
if
(
*
str
==
'<'
)
condition
=
-1
,
str
+=
1
;
else
if
(
*
str
==
'='
)
/* Default. */
str
+=
1
;
if
(
!
alphap
(
str
))
return
NULL
;
/* Error. */
*
pfxlen
=
1
;
for
(
result
=
str
++
;
alphap
(
str
);
str
++
)
++*
pfxlen
;
while
(
*
str
==
'-'
||
*
str
==
'+'
)
str
++
;
*
number
=
atoi
(
str
);
while
(
*
str
&&
!
spacep
(
str
)
&&
*
str
!=
','
)
str
++
;
*
r_length
=
str
-
result
;
if
(
r_condition
)
*
r_condition
=
condition
;
return
result
;
}
/* Return an extra algo strength offset to handle peculiarities like
* ed448 > ed25519. */
static
size_t
extra_algo_strength_offset
(
const
char
*
string
)
{
if
(
!
string
||
!*
string
)
return
0
;
if
(
!
ascii_strcasecmp
(
string
,
"ed448"
))
return
50000
;
/* (ed)50448 is larger (ed)25519. */
if
(
!
ascii_strcasecmp
(
string
,
"cv448"
))
return
50000
;
/* (cv)50448 is larger (cv)25519. */
return
0
;
}
/* Helper for compare_pubkey_string. If BPARSED is set to 0 on
* return, an error in ASTR or BSTR was found and further checks are
* not possible. */
static
int
compare_pubkey_string_part
(
const
char
*
astr
,
const
char
*
bstr_arg
,
size_t
*
bparsed
)
{
const
char
*
bstr
=
bstr_arg
;
size_t
alen
,
apfxlen
,
blen
,
bpfxlen
;
unsigned
int
anumber
,
bnumber
;
int
condition
;
*
bparsed
=
0
;
astr
=
parse_one_algo_string
(
astr
,
&
apfxlen
,
&
anumber
,
&
alen
,
&
condition
);
if
(
!
astr
)
return
0
;
/* Invalid algorithm name. */
anumber
+=
extra_algo_strength_offset
(
astr
);
bstr
=
parse_one_algo_string
(
bstr
,
&
bpfxlen
,
&
bnumber
,
&
blen
,
&
condition
);
if
(
!
bstr
)
return
0
;
/* Invalid algorithm name. */
bnumber
+=
extra_algo_strength_offset
(
bstr
);
*
bparsed
=
blen
+
(
bstr
-
bstr_arg
);
if
(
apfxlen
!=
bpfxlen
||
ascii_strncasecmp
(
astr
,
bstr
,
apfxlen
))
return
0
;
/* false. */
switch
(
condition
)
{
case
2
:
return
anumber
>=
bnumber
;
case
1
:
return
anumber
>
bnumber
;
case
-1
:
return
anumber
<
bnumber
;
case
-2
:
return
anumber
<=
bnumber
;
}
return
alen
==
blen
&&
!
ascii_strncasecmp
(
astr
,
bstr
,
alen
);
}
/* Check whether ASTR matches the constraints given by BSTR. ASTR may
* be any algo string like "rsa2048", "ed25519" and BSTR may be a
* constraint which is in the simplest case just another algo string.
* BSTR may have more that one string in which case they are comma
* separated and any match will return true. It is possible to prefix
* BSTR with ">", ">=", "<=", or "<". That prefix operator is applied
* to the number part of the algorithm, i.e. the first sequence of
* digits found before end-of-string or a comma. Examples:
*
* | ASTR | BSTR | result |
* |----------+----------------------+--------|
* | rsa2048 | rsa2048 | true |
* | rsa2048 | >=rsa2048 | true |
* | rsa2048 | >rsa2048 | false |
* | ed25519 | >rsa1024 | false |
* | ed25519 | ed25519 | true |
* | nistp384 | >nistp256 | true |
* | nistp521 | >=rsa3072, >nistp384 | true |
*/
int
compare_pubkey_string
(
const
char
*
astr
,
const
char
*
bstr
)
{
size_t
bparsed
;
int
result
;
while
(
*
bstr
)
{
result
=
compare_pubkey_string_part
(
astr
,
bstr
,
&
bparsed
);
if
(
result
)
return
1
;
if
(
!
bparsed
)
return
0
;
/* Syntax error in ASTR or BSTR. */
bstr
+=
bparsed
;
}
return
0
;
}
/* Hash a public key and allow to specify the to be used format.
* Note that if the v5 format is requested for a v4 key, a 0x04 as
* version is hashed instead of the 0x05. */
static
void
do_hash_public_key
(
gcry_md_hd_t
md
,
PKT_public_key
*
pk
,
int
use_v5
)
{
unsigned
int
n
;
unsigned
int
nn
[
PUBKEY_MAX_NPKEY
];
byte
*
pp
[
PUBKEY_MAX_NPKEY
];
int
i
;
unsigned
int
nbits
;
size_t
nbytes
;
int
npkey
=
pubkey_get_npkey
(
pk
->
pubkey_algo
);
n
=
use_v5
?
10
:
6
;
/* FIXME: We can avoid the extra malloc by calling only the first
mpi_print here which computes the required length and calling the
real mpi_print only at the end. The speed advantage would only be
for ECC (opaque MPIs) or if we could implement an mpi_print
variant with a callback handler to do the hashing. */
if
(
npkey
==
0
&&
pk
->
pkey
[
0
]
&&
gcry_mpi_get_flag
(
pk
->
pkey
[
0
],
GCRYMPI_FLAG_OPAQUE
))
{
pp
[
0
]
=
gcry_mpi_get_opaque
(
pk
->
pkey
[
0
],
&
nbits
);
nn
[
0
]
=
(
nbits
+
7
)
/
8
;
n
+=
nn
[
0
];
}
else
{
for
(
i
=
0
;
i
<
npkey
;
i
++
)
{
if
(
!
pk
->
pkey
[
i
])
{
/* This case may only happen if the parsing of the MPI
failed but the key was anyway created. May happen
during "gpg KEYFILE". */
pp
[
i
]
=
NULL
;
nn
[
i
]
=
0
;
}
else
if
(
pk
->
pubkey_algo
==
PUBKEY_ALGO_KYBER
&&
i
==
2
)
{
/* Ugly: We need to re-construct the wire format of the
* key parameter. It would be easier to use a second
* index for pp and nn which we could bump independent of
* i. */
const
char
*
p
;
p
=
gcry_mpi_get_opaque
(
pk
->
pkey
[
i
],
&
nbits
);
nn
[
i
]
=
(
nbits
+
7
)
/
8
;
pp
[
i
]
=
xmalloc
(
4
+
nn
[
i
]
+
1
);
if
(
p
)
{
pp
[
i
][
0
]
=
nn
[
i
]
>>
24
;
pp
[
i
][
1
]
=
nn
[
i
]
>>
16
;
pp
[
i
][
2
]
=
nn
[
i
]
>>
8
;
pp
[
i
][
3
]
=
nn
[
i
];
memcpy
(
pp
[
i
]
+
4
,
p
,
nn
[
i
]);
nn
[
i
]
+=
4
;
}
else
pp
[
i
]
=
NULL
;
n
+=
nn
[
i
];
}
else
if
(
gcry_mpi_get_flag
(
pk
->
pkey
[
i
],
GCRYMPI_FLAG_OPAQUE
))
{
const
char
*
p
;
int
is_sos
=
0
;
if
(
gcry_mpi_get_flag
(
pk
->
pkey
[
i
],
GCRYMPI_FLAG_USER2
))
is_sos
=
2
;
p
=
gcry_mpi_get_opaque
(
pk
->
pkey
[
i
],
&
nbits
);
pp
[
i
]
=
xmalloc
((
nbits
+
7
)
/
8
+
is_sos
);
if
(
p
)
memcpy
(
pp
[
i
]
+
is_sos
,
p
,
(
nbits
+
7
)
/
8
);
else
pp
[
i
]
=
NULL
;
if
(
is_sos
)
{
if
(
*
p
)
{
nbits
=
((
nbits
+
7
)
/
8
)
*
8
;
if
(
nbits
>=
8
&&
!
(
*
p
&
0x80
))
if
(
--
nbits
>=
7
&&
!
(
*
p
&
0x40
))
if
(
--
nbits
>=
6
&&
!
(
*
p
&
0x20
))
if
(
--
nbits
>=
5
&&
!
(
*
p
&
0x10
))
if
(
--
nbits
>=
4
&&
!
(
*
p
&
0x08
))
if
(
--
nbits
>=
3
&&
!
(
*
p
&
0x04
))
if
(
--
nbits
>=
2
&&
!
(
*
p
&
0x02
))
if
(
--
nbits
>=
1
&&
!
(
*
p
&
0x01
))
--
nbits
;
}
pp
[
i
][
0
]
=
(
nbits
>>
8
);
pp
[
i
][
1
]
=
nbits
;
}
nn
[
i
]
=
(
nbits
+
7
)
/
8
+
is_sos
;
n
+=
nn
[
i
];
}
else
{
if
(
gcry_mpi_print
(
GCRYMPI_FMT_PGP
,
NULL
,
0
,
&
nbytes
,
pk
->
pkey
[
i
]))
BUG
();
pp
[
i
]
=
xmalloc
(
nbytes
);
if
(
gcry_mpi_print
(
GCRYMPI_FMT_PGP
,
pp
[
i
],
nbytes
,
&
nbytes
,
pk
->
pkey
[
i
]))
BUG
();
nn
[
i
]
=
nbytes
;
n
+=
nn
[
i
];
}
}
}
if
(
use_v5
)
{
gcry_md_putc
(
md
,
0x9a
);
/* ctb */
gcry_md_putc
(
md
,
n
>>
24
);
/* 4 byte length header (upper bits) */
gcry_md_putc
(
md
,
n
>>
16
);
}
else
{
gcry_md_putc
(
md
,
0x99
);
/* ctb */
}
gcry_md_putc
(
md
,
n
>>
8
);
/* lower bits of the length header. */
gcry_md_putc
(
md
,
n
);
gcry_md_putc
(
md
,
pk
->
version
);
gcry_md_putc
(
md
,
pk
->
timestamp
>>
24
);
gcry_md_putc
(
md
,
pk
->
timestamp
>>
16
);
gcry_md_putc
(
md
,
pk
->
timestamp
>>
8
);
gcry_md_putc
(
md
,
pk
->
timestamp
);
gcry_md_putc
(
md
,
pk
->
pubkey_algo
);
if
(
use_v5
)
/* Hash the 32 bit length */
{
n
-=
10
;
gcry_md_putc
(
md
,
n
>>
24
);
gcry_md_putc
(
md
,
n
>>
16
);
gcry_md_putc
(
md
,
n
>>
8
);
gcry_md_putc
(
md
,
n
);
}
if
(
npkey
==
0
&&
pk
->
pkey
[
0
]
&&
gcry_mpi_get_flag
(
pk
->
pkey
[
0
],
GCRYMPI_FLAG_OPAQUE
))
{
if
(
pp
[
0
])
gcry_md_write
(
md
,
pp
[
0
],
nn
[
0
]);
}
else
{
for
(
i
=
0
;
i
<
npkey
;
i
++
)
{
if
(
pp
[
i
])
gcry_md_write
(
md
,
pp
[
i
],
nn
[
i
]
);
xfree
(
pp
[
i
]);
}
}
}
/* Hash a public key. This function is useful for v4 and v5
* fingerprints and for v3 or v4 key signing. */
void
hash_public_key
(
gcry_md_hd_t
md
,
PKT_public_key
*
pk
)
{
do_hash_public_key
(
md
,
pk
,
(
pk
->
version
==
5
));
}
/* fixme: Check whether we can replace this function or if not
describe why we need it. */
u32
v3_keyid
(
gcry_mpi_t
a
,
u32
*
ki
)
{
byte
*
buffer
,
*
p
;
size_t
nbytes
;
if
(
gcry_mpi_print
(
GCRYMPI_FMT_USG
,
NULL
,
0
,
&
nbytes
,
a
))
BUG
();
/* fixme: allocate it on the stack */
buffer
=
xmalloc
(
nbytes
);
if
(
gcry_mpi_print
(
GCRYMPI_FMT_USG
,
buffer
,
nbytes
,
NULL
,
a
))
BUG
();
if
(
nbytes
<
8
)
/* oops */
ki
[
0
]
=
ki
[
1
]
=
0
;
else
{
p
=
buffer
+
nbytes
-
8
;
ki
[
0
]
=
buf32_to_u32
(
p
);
p
+=
4
;
ki
[
1
]
=
buf32_to_u32
(
p
);
}
xfree
(
buffer
);
return
ki
[
1
];
}
/* Return PK's keyid. The memory is owned by PK. */
u32
*
pk_keyid
(
PKT_public_key
*
pk
)
{
keyid_from_pk
(
pk
,
NULL
);
/* Uncomment this for help tracking down bugs related to keyid or
main_keyid not being set correctly. */
#if 0
if (! (pk->main_keyid[0] || pk->main_keyid[1]))
log_bug ("pk->main_keyid not set!\n");
if (keyid_cmp (pk->keyid, pk->main_keyid) == 0
&& ! pk->flags.primary)
log_bug ("keyid and main_keyid are the same, but primary flag not set!\n");
if (keyid_cmp (pk->keyid, pk->main_keyid) != 0
&& pk->flags.primary)
log_bug ("keyid and main_keyid are different, but primary flag set!\n");
#endif
return
pk
->
keyid
;
}
/* Return the keyid of the primary key associated with PK. The memory
is owned by PK. */
u32
*
pk_main_keyid
(
PKT_public_key
*
pk
)
{
/* Uncomment this for help tracking down bugs related to keyid or
main_keyid not being set correctly. */
#if 0
if (! (pk->main_keyid[0] || pk->main_keyid[1]))
log_bug ("pk->main_keyid not set!\n");
#endif
return
pk
->
main_keyid
;
}
/* Copy the keyid in SRC to DEST and return DEST. */
u32
*
keyid_copy
(
u32
*
dest
,
const
u32
*
src
)
{
dest
[
0
]
=
src
[
0
];
dest
[
1
]
=
src
[
1
];
return
dest
;
}
char
*
format_keyid
(
u32
*
keyid
,
int
format
,
char
*
buffer
,
int
len
)
{
if
(
!
buffer
)
{
len
=
KEYID_STR_SIZE
;
buffer
=
xtrymalloc
(
len
);
if
(
!
buffer
)
return
NULL
;
}
if
(
format
==
KF_DEFAULT
)
format
=
opt
.
keyid_format
;
if
(
format
==
KF_DEFAULT
)
format
=
KF_NONE
;
switch
(
format
)
{
case
KF_NONE
:
if
(
len
)
*
buffer
=
0
;
break
;
case
KF_SHORT
:
snprintf
(
buffer
,
len
,
"%08lX"
,
(
ulong
)
keyid
[
1
]);
break
;
case
KF_LONG
:
snprintf
(
buffer
,
len
,
"%08lX%08lX"
,
(
ulong
)
keyid
[
0
],
(
ulong
)
keyid
[
1
]);
break
;
case
KF_0xSHORT
:
snprintf
(
buffer
,
len
,
"0x%08lX"
,
(
ulong
)
keyid
[
1
]);
break
;
case
KF_0xLONG
:
snprintf
(
buffer
,
len
,
"0x%08lX%08lX"
,
(
ulong
)
keyid
[
0
],(
ulong
)
keyid
[
1
]);
break
;
default
:
BUG
();
}
return
buffer
;
}
size_t
keystrlen
(
void
)
{
int
format
=
opt
.
keyid_format
;
if
(
format
==
KF_DEFAULT
)
format
=
KF_NONE
;
switch
(
format
)
{
case
KF_NONE
:
return
0
;
case
KF_SHORT
:
return
8
;
case
KF_LONG
:
return
16
;
case
KF_0xSHORT
:
return
10
;
case
KF_0xLONG
:
return
18
;
default
:
BUG
();
}
}
const
char
*
keystr
(
u32
*
keyid
)
{
static
char
keyid_str
[
KEYID_STR_SIZE
];
int
format
=
opt
.
keyid_format
;
if
(
format
==
KF_DEFAULT
)
format
=
KF_NONE
;
if
(
format
==
KF_NONE
)
format
=
KF_LONG
;
return
format_keyid
(
keyid
,
format
,
keyid_str
,
sizeof
(
keyid_str
));
}
/* This function returns the key id of the main and possible the
* subkey as one string. It is used by error messages. */
const
char
*
keystr_with_sub
(
u32
*
main_kid
,
u32
*
sub_kid
)
{
static
char
buffer
[
KEYID_STR_SIZE
+
1
+
KEYID_STR_SIZE
];
char
*
p
;
int
format
=
opt
.
keyid_format
;
if
(
format
==
KF_NONE
)
format
=
KF_LONG
;
format_keyid
(
main_kid
,
format
,
buffer
,
KEYID_STR_SIZE
);
if
(
sub_kid
)
{
p
=
buffer
+
strlen
(
buffer
);
*
p
++
=
'/'
;
format_keyid
(
sub_kid
,
format
,
p
,
KEYID_STR_SIZE
);
}
return
buffer
;
}
const
char
*
keystr_from_pk
(
PKT_public_key
*
pk
)
{
keyid_from_pk
(
pk
,
NULL
);
return
keystr
(
pk
->
keyid
);
}
const
char
*
keystr_from_pk_with_sub
(
PKT_public_key
*
main_pk
,
PKT_public_key
*
sub_pk
)
{
keyid_from_pk
(
main_pk
,
NULL
);
if
(
sub_pk
)
keyid_from_pk
(
sub_pk
,
NULL
);
return
keystr_with_sub
(
main_pk
->
keyid
,
sub_pk
?
sub_pk
->
keyid
:
NULL
);
}
/* Return PK's key id as a string using the default format. PK owns
the storage. */
const
char
*
pk_keyid_str
(
PKT_public_key
*
pk
)
{
return
keystr
(
pk_keyid
(
pk
));
}
const
char
*
keystr_from_desc
(
KEYDB_SEARCH_DESC
*
desc
)
{
switch
(
desc
->
mode
)
{
case
KEYDB_SEARCH_MODE_LONG_KID
:
case
KEYDB_SEARCH_MODE_SHORT_KID
:
return
keystr
(
desc
->
u
.
kid
);
case
KEYDB_SEARCH_MODE_FPR
:
{
u32
keyid
[
2
];
if
(
desc
->
fprlen
==
32
)
{
keyid
[
0
]
=
buf32_to_u32
(
desc
->
u
.
fpr
);
keyid
[
1
]
=
buf32_to_u32
(
desc
->
u
.
fpr
+
4
);
}
else
if
(
desc
->
fprlen
==
20
)
{
keyid
[
0
]
=
buf32_to_u32
(
desc
->
u
.
fpr
+
12
);
keyid
[
1
]
=
buf32_to_u32
(
desc
->
u
.
fpr
+
16
);
}
else
if
(
desc
->
fprlen
==
16
)
return
"?v3 fpr?"
;
else
/* oops */
return
"?vx fpr?"
;
return
keystr
(
keyid
);
}
default
:
BUG
();
}
}
/* Compute the fingerprint and keyid and store it in PK. */
static
void
compute_fingerprint
(
PKT_public_key
*
pk
)
{
const
byte
*
dp
;
gcry_md_hd_t
md
;
size_t
len
;
if
(
gcry_md_open
(
&
md
,
pk
->
version
==
5
?
GCRY_MD_SHA256
:
GCRY_MD_SHA1
,
0
))
BUG
();
hash_public_key
(
md
,
pk
);
gcry_md_final
(
md
);
dp
=
gcry_md_read
(
md
,
0
);
len
=
gcry_md_get_algo_dlen
(
gcry_md_get_algo
(
md
));
log_assert
(
len
<=
MAX_FINGERPRINT_LEN
);
memcpy
(
pk
->
fpr
,
dp
,
len
);
pk
->
fprlen
=
len
;
if
(
pk
->
version
==
5
)
{
pk
->
keyid
[
0
]
=
buf32_to_u32
(
dp
);
pk
->
keyid
[
1
]
=
buf32_to_u32
(
dp
+
4
);
}
else
{
pk
->
keyid
[
0
]
=
buf32_to_u32
(
dp
+
12
);
pk
->
keyid
[
1
]
=
buf32_to_u32
(
dp
+
16
);
}
gcry_md_close
(
md
);
}
/*
* Get the keyid from the public key PK and store it at KEYID unless
* this is NULL. Returns the 32 bit short keyid.
*/
u32
keyid_from_pk
(
PKT_public_key
*
pk
,
u32
*
keyid
)
{
u32
dummy_keyid
[
2
];
if
(
!
keyid
)
keyid
=
dummy_keyid
;
if
(
!
pk
->
fprlen
)
compute_fingerprint
(
pk
);
keyid
[
0
]
=
pk
->
keyid
[
0
];
keyid
[
1
]
=
pk
->
keyid
[
1
];
if
(
pk
->
fprlen
==
32
)
return
keyid
[
0
];
else
return
keyid
[
1
];
}
/*
* Get the keyid from the fingerprint. This function is simple for
* most keys, but has to do a key lookup for old v3 keys where the
* keyid is not part of the fingerprint.
*/
u32
keyid_from_fingerprint
(
ctrl_t
ctrl
,
const
byte
*
fpr
,
size_t
fprlen
,
u32
*
keyid
)
{
u32
dummy_keyid
[
2
];
if
(
!
keyid
)
keyid
=
dummy_keyid
;
if
(
fprlen
!=
20
&&
fprlen
!=
32
)
{
/* This is special as we have to lookup the key first. */
PKT_public_key
pk
;
int
rc
;
memset
(
&
pk
,
0
,
sizeof
pk
);
rc
=
get_pubkey_byfpr
(
ctrl
,
&
pk
,
NULL
,
fpr
,
fprlen
);
if
(
rc
)
{
log_printhex
(
fpr
,
fprlen
,
"Oops: keyid_from_fingerprint: no pubkey; fpr:"
);
keyid
[
0
]
=
0
;
keyid
[
1
]
=
0
;
}
else
keyid_from_pk
(
&
pk
,
keyid
);
}
else
{
const
byte
*
dp
=
fpr
;
if
(
fprlen
==
20
)
/* v4 key */
{
keyid
[
0
]
=
buf32_to_u32
(
dp
+
12
);
keyid
[
1
]
=
buf32_to_u32
(
dp
+
16
);
}
else
/* v5 key */
{
keyid
[
0
]
=
buf32_to_u32
(
dp
);
keyid
[
1
]
=
buf32_to_u32
(
dp
+
4
);
}
}
return
keyid
[
1
];
}
u32
keyid_from_sig
(
PKT_signature
*
sig
,
u32
*
keyid
)
{
if
(
keyid
)
{
keyid
[
0
]
=
sig
->
keyid
[
0
];
keyid
[
1
]
=
sig
->
keyid
[
1
];
}
return
sig
->
keyid
[
1
];
/*FIXME:shortkeyid*/
}
byte
*
namehash_from_uid
(
PKT_user_id
*
uid
)
{
if
(
!
uid
->
namehash
)
{
uid
->
namehash
=
xmalloc
(
20
);
if
(
uid
->
attrib_data
)
rmd160_hash_buffer
(
uid
->
namehash
,
uid
->
attrib_data
,
uid
->
attrib_len
);
else
rmd160_hash_buffer
(
uid
->
namehash
,
uid
->
name
,
uid
->
len
);
}
return
uid
->
namehash
;
}
/*
* Return the number of bits used in PK. For Kyber we return the
* octet count of the Kyber part and not of the ECC (thus likely
* values are 768 or 1024). Note that this function may be called
* with only pubkey_algo and pkey[] correctly set.
*/
unsigned
int
nbits_from_pk
(
PKT_public_key
*
pk
)
{
if
(
pk
->
pubkey_algo
==
PUBKEY_ALGO_KYBER
)
{
unsigned
int
nbits
;
if
(
!
gcry_mpi_get_opaque
(
pk
->
pkey
[
2
],
&
nbits
))
return
0
;
switch
(
nbits
/
8
)
{
case
800
:
nbits
=
512
;
break
;
case
1184
:
nbits
=
768
;
break
;
case
1568
:
nbits
=
1024
;
break
;
default
:
nbits
=
0
;
break
;
/* Unknown version. */
}
return
nbits
;
}
else
return
pubkey_nbits
(
pk
->
pubkey_algo
,
pk
->
pkey
);
}
/* Convert an UTC TIMESTAMP into an UTC yyyy-mm-dd string. Return
* that string. The caller should pass a buffer with at least a size
* of MK_DATESTR_SIZE. */
char
*
mk_datestr
(
char
*
buffer
,
size_t
bufsize
,
u32
timestamp
)
{
time_t
atime
=
timestamp
;
struct
tm
*
tp
;
if
(
IS_INVALID_TIME_T
(
atime
))
strcpy
(
buffer
,
"????"
"-??"
"-??"
);
/* Mark this as invalid. */
else
{
tp
=
gmtime
(
&
atime
);
snprintf
(
buffer
,
bufsize
,
"%04d-%02d-%02d"
,
1900
+
tp
->
tm_year
,
tp
->
tm_mon
+
1
,
tp
->
tm_mday
);
}
return
buffer
;
}
/*
* return a string with the creation date of the pk
* Note: this is alloced in a static buffer.
* Format is: yyyy-mm-dd
*/
const
char
*
dateonlystr_from_pk
(
PKT_public_key
*
pk
)
{
static
char
buffer
[
MK_DATESTR_SIZE
];
return
mk_datestr
(
buffer
,
sizeof
buffer
,
pk
->
timestamp
);
}
/* Same as dateonlystr_from_pk but with a global option a full iso
* timestamp is returned. In this case it shares a static buffer with
* isotimestamp(). */
const
char
*
datestr_from_pk
(
PKT_public_key
*
pk
)
{
if
(
opt
.
flags
.
full_timestrings
)
return
isotimestamp
(
pk
->
timestamp
);
else
return
dateonlystr_from_pk
(
pk
);
}
const
char
*
dateonlystr_from_sig
(
PKT_signature
*
sig
)
{
static
char
buffer
[
MK_DATESTR_SIZE
];
return
mk_datestr
(
buffer
,
sizeof
buffer
,
sig
->
timestamp
);
}
const
char
*
datestr_from_sig
(
PKT_signature
*
sig
)
{
if
(
opt
.
flags
.
full_timestrings
)
return
isotimestamp
(
sig
->
timestamp
);
else
return
dateonlystr_from_sig
(
sig
);
}
const
char
*
expirestr_from_pk
(
PKT_public_key
*
pk
)
{
static
char
buffer
[
MK_DATESTR_SIZE
];
if
(
!
pk
->
expiredate
)
return
_
(
"never "
);
if
(
opt
.
flags
.
full_timestrings
)
return
isotimestamp
(
pk
->
expiredate
);
return
mk_datestr
(
buffer
,
sizeof
buffer
,
pk
->
expiredate
);
}
const
char
*
expirestr_from_sig
(
PKT_signature
*
sig
)
{
static
char
buffer
[
MK_DATESTR_SIZE
];
if
(
!
sig
->
expiredate
)
return
_
(
"never "
);
if
(
opt
.
flags
.
full_timestrings
)
return
isotimestamp
(
sig
->
expiredate
);
return
mk_datestr
(
buffer
,
sizeof
buffer
,
sig
->
expiredate
);
}
const
char
*
revokestr_from_pk
(
PKT_public_key
*
pk
)
{
static
char
buffer
[
MK_DATESTR_SIZE
];
if
(
!
pk
->
revoked
.
date
)
return
_
(
"never "
);
if
(
opt
.
flags
.
full_timestrings
)
return
isotimestamp
(
pk
->
revoked
.
date
);
return
mk_datestr
(
buffer
,
sizeof
buffer
,
pk
->
revoked
.
date
);
}
const
char
*
usagestr_from_pk
(
PKT_public_key
*
pk
,
int
fill
)
{
static
char
buffer
[
10
];
int
i
=
0
;
unsigned
int
use
=
pk
->
pubkey_usage
;
if
(
use
&
PUBKEY_USAGE_SIG
)
buffer
[
i
++
]
=
'S'
;
if
(
use
&
PUBKEY_USAGE_CERT
)
buffer
[
i
++
]
=
'C'
;
if
(
use
&
PUBKEY_USAGE_ENC
)
buffer
[
i
++
]
=
'E'
;
if
(
(
use
&
PUBKEY_USAGE_AUTH
)
)
buffer
[
i
++
]
=
'A'
;
if
(
(
use
&
PUBKEY_USAGE_RENC
)
)
buffer
[
i
++
]
=
'R'
;
if
(
(
use
&
PUBKEY_USAGE_TIME
)
)
buffer
[
i
++
]
=
'T'
;
if
(
(
use
&
PUBKEY_USAGE_GROUP
)
)
buffer
[
i
++
]
=
'G'
;
while
(
fill
&&
i
<
4
)
buffer
[
i
++
]
=
' '
;
buffer
[
i
]
=
0
;
return
buffer
;
}
const
char
*
colon_strtime
(
u32
t
)
{
static
char
buf
[
20
];
if
(
!
t
)
return
""
;
snprintf
(
buf
,
sizeof
buf
,
"%lu"
,
(
ulong
)
t
);
return
buf
;
}
const
char
*
colon_datestr_from_pk
(
PKT_public_key
*
pk
)
{
static
char
buf
[
20
];
snprintf
(
buf
,
sizeof
buf
,
"%lu"
,
(
ulong
)
pk
->
timestamp
);
return
buf
;
}
const
char
*
colon_datestr_from_sig
(
PKT_signature
*
sig
)
{
static
char
buf
[
20
];
snprintf
(
buf
,
sizeof
buf
,
"%lu"
,
(
ulong
)
sig
->
timestamp
);
return
buf
;
}
const
char
*
colon_expirestr_from_sig
(
PKT_signature
*
sig
)
{
static
char
buf
[
20
];
if
(
!
sig
->
expiredate
)
return
""
;
snprintf
(
buf
,
sizeof
buf
,
"%lu"
,
(
ulong
)
sig
->
expiredate
);
return
buf
;
}
/*
* Return a byte array with the fingerprint for the given PK/SK
* The length of the array is returned in ret_len. Caller must free
* the array or provide an array of length MAX_FINGERPRINT_LEN.
*/
byte
*
fingerprint_from_pk
(
PKT_public_key
*
pk
,
byte
*
array
,
size_t
*
ret_len
)
{
if
(
!
pk
->
fprlen
)
compute_fingerprint
(
pk
);
if
(
!
array
)
array
=
xmalloc
(
pk
->
fprlen
);
memcpy
(
array
,
pk
->
fpr
,
pk
->
fprlen
);
if
(
ret_len
)
*
ret_len
=
pk
->
fprlen
;
return
array
;
}
/*
* Return a byte array with the fingerprint for the given PK/SK The
* length of the array is returned in ret_len. Caller must free the
* array or provide an array of length MAX_FINGERPRINT_LEN. This
* version creates a v5 fingerprint even for v4 keys.
*/
byte
*
v5_fingerprint_from_pk
(
PKT_public_key
*
pk
,
byte
*
array
,
size_t
*
ret_len
)
{
const
byte
*
dp
;
gcry_md_hd_t
md
;
if
(
pk
->
version
==
5
)
return
fingerprint_from_pk
(
pk
,
array
,
ret_len
);
if
(
gcry_md_open
(
&
md
,
GCRY_MD_SHA256
,
0
))
BUG
();
do_hash_public_key
(
md
,
pk
,
1
);
gcry_md_final
(
md
);
dp
=
gcry_md_read
(
md
,
0
);
if
(
!
array
)
array
=
xmalloc
(
32
);
memcpy
(
array
,
dp
,
32
);
gcry_md_close
(
md
);
if
(
ret_len
)
*
ret_len
=
32
;
return
array
;
}
/*
* This is the core of fpr20_from_pk which directly takes a
* fingerprint and its length instead of the public key. See below
* for details.
*/
void
fpr20_from_fpr
(
const
byte
*
fpr
,
unsigned
int
fprlen
,
byte
array
[
20
])
{
if
(
fprlen
>=
32
)
/* v5 fingerprint (or larger) */
{
memcpy
(
array
+
0
,
fpr
+
20
,
4
);
memcpy
(
array
+
4
,
fpr
+
24
,
4
);
memcpy
(
array
+
8
,
fpr
+
28
,
4
);
memcpy
(
array
+
12
,
fpr
+
0
,
4
);
/* kid[0] */
memcpy
(
array
+
16
,
fpr
+
4
,
4
);
/* kid[1] */
}
else
if
(
fprlen
==
20
)
/* v4 fingerprint */
memcpy
(
array
,
fpr
,
20
);
else
/* v3 or too short: fill up with zeroes. */
{
memset
(
array
,
0
,
20
);
memcpy
(
array
,
fpr
,
fprlen
);
}
}
/*
* Get FPR20 for the given PK/SK into ARRAY.
*
* FPR20 is special form of fingerprint of length 20 for the record of
* trustdb. For v4key, having fingerprint with SHA-1, FPR20 is the
* same one. For v5key, FPR20 is constructed from its fingerprint
* with SHA-2, so that its kid of last 8-byte can be as same as
* kid of v5key fingerprint.
*
*/
void
fpr20_from_pk
(
PKT_public_key
*
pk
,
byte
array
[
20
])
{
if
(
!
pk
->
fprlen
)
compute_fingerprint
(
pk
);
fpr20_from_fpr
(
pk
->
fpr
,
pk
->
fprlen
,
array
);
}
/* Return an allocated buffer with the fingerprint of PK formatted as
* a plain hexstring. If BUFFER is NULL the result is a malloc'd
* string. If BUFFER is not NULL the result will be copied into this
* buffer. In the latter case BUFLEN describes the length of the
* buffer; if this is too short the function terminates the process.
* Returns a malloc'ed string or BUFFER. A suitable length for BUFFER
* is (2*MAX_FINGERPRINT_LEN + 1). */
char
*
hexfingerprint
(
PKT_public_key
*
pk
,
char
*
buffer
,
size_t
buflen
)
{
if
(
!
pk
->
fprlen
)
compute_fingerprint
(
pk
);
if
(
!
buffer
)
{
buffer
=
xtrymalloc
(
2
*
pk
->
fprlen
+
1
);
if
(
!
buffer
)
return
NULL
;
}
else
if
(
buflen
<
2
*
pk
->
fprlen
+
1
)
log_fatal
(
"%s: buffer too short (%zu)
\n
"
,
__func__
,
buflen
);
bin2hex
(
pk
->
fpr
,
pk
->
fprlen
,
buffer
);
return
buffer
;
}
/* Same as hexfingerprint but returns a v5 fingerprint also for a v4
* key. */
char
*
v5hexfingerprint
(
PKT_public_key
*
pk
,
char
*
buffer
,
size_t
buflen
)
{
char
fprbuf
[
32
];
if
(
pk
->
version
==
5
)
return
hexfingerprint
(
pk
,
buffer
,
buflen
);
if
(
!
buffer
)
{
buffer
=
xtrymalloc
(
2
*
32
+
1
);
if
(
!
buffer
)
return
NULL
;
}
else
if
(
buflen
<
2
*
32
+
1
)
log_fatal
(
"%s: buffer too short (%zu)
\n
"
,
__func__
,
buflen
);
v5_fingerprint_from_pk
(
pk
,
fprbuf
,
NULL
);
return
bin2hex
(
fprbuf
,
32
,
buffer
);
}
/* Pretty print a hex fingerprint. If BUFFER is NULL the result is a
malloc'd string. If BUFFER is not NULL the result will be copied
into this buffer. In the latter case BUFLEN describes the length
of the buffer; if this is too short the function terminates the
process. Returns a malloc'ed string or BUFFER. A suitable length
for BUFFER is (MAX_FORMATTED_FINGERPRINT_LEN + 1). */
char
*
format_hexfingerprint
(
const
char
*
fingerprint
,
char
*
buffer
,
size_t
buflen
)
{
int
hexlen
=
strlen
(
fingerprint
);
int
space
;
int
i
,
j
;
if
(
hexlen
==
40
)
/* v4 fingerprint */
{
space
=
(
/* The characters and the NUL. */
40
+
1
/* After every fourth character, we add a space (except
the last). */
+
40
/
4
-
1
/* Half way through we add a second space. */
+
1
);
}
else
if
(
hexlen
==
64
||
hexlen
==
50
)
/* v5 fingerprint */
{
/* The v5 fingerprint is commonly printed truncated to 25
* octets. We accept the truncated as well as the full hex
* version here and format it like this:
* 19347 BC987 24640 25F99 DF3EC 2E000 0ED98 84892 E1F7B 3EA4C
*/
hexlen
=
50
;
space
=
10
*
5
+
9
+
1
;
}
else
/* Other fingerprint versions - print as is. */
{
/* We truncated here so that we do not need to provide a buffer
* of a length which is in reality never used. */
if
(
hexlen
>
MAX_FORMATTED_FINGERPRINT_LEN
-
1
)
hexlen
=
MAX_FORMATTED_FINGERPRINT_LEN
-
1
;
space
=
hexlen
+
1
;
}
if
(
!
buffer
)
buffer
=
xmalloc
(
space
);
else
if
(
buflen
<
space
)
log_fatal
(
"%s: buffer too short (%zu)
\n
"
,
__func__
,
buflen
);
if
(
hexlen
==
40
)
/* v4 fingerprint */
{
for
(
i
=
0
,
j
=
0
;
i
<
40
;
i
++
)
{
if
(
i
&&
!
(
i
%
4
))
buffer
[
j
++
]
=
' '
;
if
(
i
==
40
/
2
)
buffer
[
j
++
]
=
' '
;
buffer
[
j
++
]
=
fingerprint
[
i
];
}
buffer
[
j
++
]
=
0
;
log_assert
(
j
==
space
);
}
else
if
(
hexlen
==
50
)
/* v5 fingerprint */
{
for
(
i
=
j
=
0
;
i
<
50
;
i
++
)
{
if
(
i
&&
!
(
i
%
5
))
buffer
[
j
++
]
=
' '
;
buffer
[
j
++
]
=
fingerprint
[
i
];
}
buffer
[
j
++
]
=
0
;
log_assert
(
j
==
space
);
}
else
{
mem2str
(
buffer
,
fingerprint
,
space
);
}
return
buffer
;
}
/* Return the so called KEYGRIP which is the SHA-1 hash of the public
* key parameters expressed as an canonical encoded S-Exp. ARRAY must
* be 20 bytes long. Returns 0 on success or an error code. If
* GET_SECOND Is one and PK has dual algorithm, the keygrip of the
* second algorithm is return; GPG_ERR_FALSE is returned if the algo
* is not a dual algorithm. */
gpg_error_t
keygrip_from_pk
(
PKT_public_key
*
pk
,
unsigned
char
*
array
,
int
get_second
)
{
gpg_error_t
err
;
gcry_sexp_t
s_pkey
;
if
(
DBG_PACKET
)
log_debug
(
"get_keygrip for public key%s
\n
"
,
get_second
?
" (second)"
:
""
);
if
(
get_second
&&
pk
->
pubkey_algo
!=
PUBKEY_ALGO_KYBER
)
return
gpg_error
(
GPG_ERR_FALSE
);
switch
(
pk
->
pubkey_algo
)
{
case
GCRY_PK_DSA
:
err
=
gcry_sexp_build
(
&
s_pkey
,
NULL
,
"(public-key(dsa(p%m)(q%m)(g%m)(y%m)))"
,
pk
->
pkey
[
0
],
pk
->
pkey
[
1
],
pk
->
pkey
[
2
],
pk
->
pkey
[
3
]);
break
;
case
GCRY_PK_ELG
:
case
GCRY_PK_ELG_E
:
err
=
gcry_sexp_build
(
&
s_pkey
,
NULL
,
"(public-key(elg(p%m)(g%m)(y%m)))"
,
pk
->
pkey
[
0
],
pk
->
pkey
[
1
],
pk
->
pkey
[
2
]);
break
;
case
GCRY_PK_RSA
:
case
GCRY_PK_RSA_S
:
case
GCRY_PK_RSA_E
:
err
=
gcry_sexp_build
(
&
s_pkey
,
NULL
,
"(public-key(rsa(n%m)(e%m)))"
,
pk
->
pkey
[
0
],
pk
->
pkey
[
1
]);
break
;
case
PUBKEY_ALGO_EDDSA
:
case
PUBKEY_ALGO_ECDSA
:
case
PUBKEY_ALGO_ECDH
:
{
char
*
curve
=
openpgp_oid_to_str
(
pk
->
pkey
[
0
]);
if
(
!
curve
)
err
=
gpg_error_from_syserror
();
else
{
err
=
gcry_sexp_build
(
&
s_pkey
,
NULL
,
pk
->
pubkey_algo
==
PUBKEY_ALGO_EDDSA
?
"(public-key(ecc(curve%s)(flags eddsa)(q%m)))"
:
(
pk
->
pubkey_algo
==
PUBKEY_ALGO_ECDH
&&
openpgp_oid_is_cv25519
(
pk
->
pkey
[
0
]))
?
"(public-key(ecc(curve%s)(flags djb-tweak)(q%m)))"
:
"(public-key(ecc(curve%s)(q%m)))"
,
curve
,
pk
->
pkey
[
1
]);
xfree
(
curve
);
}
}
break
;
case
PUBKEY_ALGO_KYBER
:
if
(
get_second
)
{
char
tmpname
[
15
];
snprintf
(
tmpname
,
sizeof
tmpname
,
"kyber%u"
,
nbits_from_pk
(
pk
));
err
=
gcry_sexp_build
(
&
s_pkey
,
NULL
,
"(public-key(%s(p%m)))"
,
tmpname
,
pk
->
pkey
[
2
]);
}
else
{
char
*
curve
=
openpgp_oid_to_str
(
pk
->
pkey
[
0
]);
if
(
!
curve
)
err
=
gpg_error_from_syserror
();
else
{
err
=
gcry_sexp_build
(
&
s_pkey
,
NULL
,
openpgp_oid_is_cv25519
(
pk
->
pkey
[
0
])
?
"(public-key(ecc(curve%s)(flags djb-tweak)(q%m)))"
:
"(public-key(ecc(curve%s)(q%m)))"
,
curve
,
pk
->
pkey
[
1
]);
xfree
(
curve
);
}
}
break
;
default
:
err
=
gpg_error
(
GPG_ERR_PUBKEY_ALGO
);
break
;
}
if
(
err
)
return
err
;
if
(
!
gcry_pk_get_keygrip
(
s_pkey
,
array
))
{
char
*
hexfpr
;
hexfpr
=
hexfingerprint
(
pk
,
NULL
,
0
);
log_info
(
"error computing keygrip (fpr=%s)
\n
"
,
hexfpr
);
xfree
(
hexfpr
);
memset
(
array
,
0
,
20
);
err
=
gpg_error
(
GPG_ERR_GENERAL
);
}
else
{
if
(
DBG_PACKET
)
log_printhex
(
array
,
20
,
"keygrip="
);
/* FIXME: Save the keygrip in PK. */
}
gcry_sexp_release
(
s_pkey
);
return
err
;
}
/* Store an allocated buffer with the keygrip of PK encoded as a
* hexstring at r_GRIP. Returns 0 on success. For dual algorithms
* the keygrips are delimited by a comma. */
gpg_error_t
hexkeygrip_from_pk
(
PKT_public_key
*
pk
,
char
**
r_grip
)
{
gpg_error_t
err
;
char
*
buf
;
unsigned
char
grip
[
KEYGRIP_LEN
];
unsigned
char
grip2
[
KEYGRIP_LEN
];
*
r_grip
=
NULL
;
err
=
keygrip_from_pk
(
pk
,
grip
,
0
);
if
(
!
err
)
{
if
(
pk
->
pubkey_algo
==
PUBKEY_ALGO_KYBER
)
{
err
=
keygrip_from_pk
(
pk
,
grip2
,
1
);
if
(
err
)
goto
leave
;
buf
=
xtrymalloc
(
2
*
KEYGRIP_LEN
*
2
+
1
+
1
);
}
else
buf
=
xtrymalloc
(
KEYGRIP_LEN
*
2
+
1
);
if
(
!
buf
)
{
err
=
gpg_error_from_syserror
();
goto
leave
;
}
bin2hex
(
grip
,
KEYGRIP_LEN
,
buf
);
if
(
pk
->
pubkey_algo
==
PUBKEY_ALGO_KYBER
)
{
buf
[
2
*
KEYGRIP_LEN
]
=
','
;
bin2hex
(
grip2
,
KEYGRIP_LEN
,
buf
+
2
*
KEYGRIP_LEN
+
1
);
}
*
r_grip
=
buf
;
}
leave
:
return
err
;
}
/* Return a hexfied malloced string of the ECDH parameters for an ECDH
* key from the public key PK. Returns NULL on error. */
char
*
ecdh_param_str_from_pk
(
PKT_public_key
*
pk
)
{
const
unsigned
char
*
s
;
unsigned
int
n
;
if
(
!
pk
||
pk
->
pubkey_algo
!=
PUBKEY_ALGO_ECDH
||
!
gcry_mpi_get_flag
(
pk
->
pkey
[
2
],
GCRYMPI_FLAG_OPAQUE
)
||
!
(
s
=
gcry_mpi_get_opaque
(
pk
->
pkey
[
2
],
&
n
))
||
!
n
)
{
gpg_err_set_errno
(
EINVAL
);
return
NULL
;
/* Invalid parameter */
}
n
=
(
n
+
7
)
/
8
;
return
bin2hex
(
s
,
n
,
NULL
);
}
File Metadata
Details
Attached
Mime Type
text/x-c
Expires
Mon, Dec 29, 7:01 AM (6 h, 49 m)
Storage Engine
local-disk
Storage Format
Raw Data
Storage Handle
61/f9/caccf655e8737b721c1e175a62bb
Attached To
rG GnuPG
Event Timeline
Log In to Comment